2009-03-23 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / gold / symtab.cc
blob30e7d1057b47ef58f0a8524b794f19a151047d02
1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
44 namespace gold
47 // Class Symbol.
49 // Initialize fields in Symbol. This initializes everything except u_
50 // and source_.
52 void
53 Symbol::init_fields(const char* name, const char* version,
54 elfcpp::STT type, elfcpp::STB binding,
55 elfcpp::STV visibility, unsigned char nonvis)
57 this->name_ = name;
58 this->version_ = version;
59 this->symtab_index_ = 0;
60 this->dynsym_index_ = 0;
61 this->got_offsets_.init();
62 this->plt_offset_ = 0;
63 this->type_ = type;
64 this->binding_ = binding;
65 this->visibility_ = visibility;
66 this->nonvis_ = nonvis;
67 this->is_target_special_ = false;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_plt_offset_ = false;
75 this->has_warning_ = false;
76 this->is_copied_from_dynobj_ = false;
77 this->is_forced_local_ = false;
78 this->is_ordinary_shndx_ = false;
79 this->in_real_elf_ = false;
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
85 static std::string
86 demangle(const char* name)
88 if (!parameters->options().do_demangle())
89 return name;
91 // cplus_demangle allocates memory for the result it returns,
92 // and returns NULL if the name is already demangled.
93 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94 if (demangled_name == NULL)
95 return name;
97 std::string retval(demangled_name);
98 free(demangled_name);
99 return retval;
102 std::string
103 Symbol::demangled_name() const
105 return demangle(this->name());
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113 const elfcpp::Sym<size, big_endian>& sym,
114 unsigned int st_shndx, bool is_ordinary)
116 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117 sym.get_st_visibility(), sym.get_st_nonvis());
118 this->u_.from_object.object = object;
119 this->u_.from_object.shndx = st_shndx;
120 this->is_ordinary_shndx_ = is_ordinary;
121 this->source_ = FROM_OBJECT;
122 this->in_reg_ = !object->is_dynamic();
123 this->in_dyn_ = object->is_dynamic();
124 this->in_real_elf_ = object->pluginobj() == NULL;
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132 Output_data* od, elfcpp::STT type,
133 elfcpp::STB binding, elfcpp::STV visibility,
134 unsigned char nonvis, bool offset_is_from_end)
136 this->init_fields(name, version, type, binding, visibility, nonvis);
137 this->u_.in_output_data.output_data = od;
138 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139 this->source_ = IN_OUTPUT_DATA;
140 this->in_reg_ = true;
141 this->in_real_elf_ = true;
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149 Output_segment* os, elfcpp::STT type,
150 elfcpp::STB binding, elfcpp::STV visibility,
151 unsigned char nonvis,
152 Segment_offset_base offset_base)
154 this->init_fields(name, version, type, binding, visibility, nonvis);
155 this->u_.in_output_segment.output_segment = os;
156 this->u_.in_output_segment.offset_base = offset_base;
157 this->source_ = IN_OUTPUT_SEGMENT;
158 this->in_reg_ = true;
159 this->in_real_elf_ = true;
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167 elfcpp::STT type, elfcpp::STB binding,
168 elfcpp::STV visibility, unsigned char nonvis)
170 this->init_fields(name, version, type, binding, visibility, nonvis);
171 this->source_ = IS_CONSTANT;
172 this->in_reg_ = true;
173 this->in_real_elf_ = true;
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181 elfcpp::STT type, elfcpp::STB binding,
182 elfcpp::STV visibility, unsigned char nonvis)
184 this->init_fields(name, version, type, binding, visibility, nonvis);
185 this->dynsym_index_ = -1U;
186 this->source_ = IS_UNDEFINED;
187 this->in_reg_ = true;
188 this->in_real_elf_ = true;
191 // Allocate a common symbol in the base.
193 void
194 Symbol::allocate_base_common(Output_data* od)
196 gold_assert(this->is_common());
197 this->source_ = IN_OUTPUT_DATA;
198 this->u_.in_output_data.output_data = od;
199 this->u_.in_output_data.offset_is_from_end = false;
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208 Object* object,
209 const elfcpp::Sym<size, big_endian>& sym,
210 unsigned int st_shndx, bool is_ordinary)
212 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213 this->value_ = sym.get_st_value();
214 this->symsize_ = sym.get_st_size();
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223 Output_data* od, Value_type value,
224 Size_type symsize, elfcpp::STT type,
225 elfcpp::STB binding,
226 elfcpp::STV visibility,
227 unsigned char nonvis,
228 bool offset_is_from_end)
230 this->init_base_output_data(name, version, od, type, binding, visibility,
231 nonvis, offset_is_from_end);
232 this->value_ = value;
233 this->symsize_ = symsize;
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242 Output_segment* os, Value_type value,
243 Size_type symsize, elfcpp::STT type,
244 elfcpp::STB binding,
245 elfcpp::STV visibility,
246 unsigned char nonvis,
247 Segment_offset_base offset_base)
249 this->init_base_output_segment(name, version, os, type, binding, visibility,
250 nonvis, offset_base);
251 this->value_ = value;
252 this->symsize_ = symsize;
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261 Value_type value, Size_type symsize,
262 elfcpp::STT type, elfcpp::STB binding,
263 elfcpp::STV visibility, unsigned char nonvis)
265 this->init_base_constant(name, version, type, binding, visibility, nonvis);
266 this->value_ = value;
267 this->symsize_ = symsize;
270 // Initialize the fields in Sized_symbol for an undefined symbol.
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis)
278 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279 this->value_ = 0;
280 this->symsize_ = 0;
283 // Allocate a common symbol.
285 template<int size>
286 void
287 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
289 this->allocate_base_common(od);
290 this->value_ = value;
293 // The ""'s around str ensure str is a string literal, so sizeof works.
294 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
296 // Return true if this symbol should be added to the dynamic symbol
297 // table.
299 inline bool
300 Symbol::should_add_dynsym_entry() const
302 // If the symbol is used by a dynamic relocation, we need to add it.
303 if (this->needs_dynsym_entry())
304 return true;
306 // If this symbol's section is not added, the symbol need not be added.
307 // The section may have been GCed. Note that export_dynamic is being
308 // overridden here. This should not be done for shared objects.
309 if (parameters->options().gc_sections()
310 && !parameters->options().shared()
311 && this->source() == Symbol::FROM_OBJECT
312 && !this->object()->is_dynamic())
314 Relobj* relobj = static_cast<Relobj*>(this->object());
315 bool is_ordinary;
316 unsigned int shndx = this->shndx(&is_ordinary);
317 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
318 && !relobj->is_section_included(shndx))
319 return false;
322 // If the symbol was forced local in a version script, do not add it.
323 if (this->is_forced_local())
324 return false;
326 // If the symbol was forced dynamic in a --dynamic-list file, add it.
327 if (parameters->options().in_dynamic_list(this->name()))
328 return true;
330 // If dynamic-list-data was specified, add any STT_OBJECT.
331 if (parameters->options().dynamic_list_data()
332 && !this->is_from_dynobj()
333 && this->type() == elfcpp::STT_OBJECT)
334 return true;
336 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
337 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
338 if ((parameters->options().dynamic_list_cpp_new()
339 || parameters->options().dynamic_list_cpp_typeinfo())
340 && !this->is_from_dynobj())
342 // TODO(csilvers): We could probably figure out if we're an operator
343 // new/delete or typeinfo without the need to demangle.
344 char* demangled_name = cplus_demangle(this->name(),
345 DMGL_ANSI | DMGL_PARAMS);
346 if (demangled_name == NULL)
348 // Not a C++ symbol, so it can't satisfy these flags
350 else if (parameters->options().dynamic_list_cpp_new()
351 && (strprefix(demangled_name, "operator new")
352 || strprefix(demangled_name, "operator delete")))
354 free(demangled_name);
355 return true;
357 else if (parameters->options().dynamic_list_cpp_typeinfo()
358 && (strprefix(demangled_name, "typeinfo name for")
359 || strprefix(demangled_name, "typeinfo for")))
361 free(demangled_name);
362 return true;
364 else
365 free(demangled_name);
368 // If exporting all symbols or building a shared library,
369 // and the symbol is defined in a regular object and is
370 // externally visible, we need to add it.
371 if ((parameters->options().export_dynamic() || parameters->options().shared())
372 && !this->is_from_dynobj()
373 && this->is_externally_visible())
374 return true;
376 return false;
379 // Return true if the final value of this symbol is known at link
380 // time.
382 bool
383 Symbol::final_value_is_known() const
385 // If we are not generating an executable, then no final values are
386 // known, since they will change at runtime.
387 if (parameters->options().shared() || parameters->options().relocatable())
388 return false;
390 // If the symbol is not from an object file, and is not undefined,
391 // then it is defined, and known.
392 if (this->source_ != FROM_OBJECT)
394 if (this->source_ != IS_UNDEFINED)
395 return true;
397 else
399 // If the symbol is from a dynamic object, then the final value
400 // is not known.
401 if (this->object()->is_dynamic())
402 return false;
404 // If the symbol is not undefined (it is defined or common),
405 // then the final value is known.
406 if (!this->is_undefined())
407 return true;
410 // If the symbol is undefined, then whether the final value is known
411 // depends on whether we are doing a static link. If we are doing a
412 // dynamic link, then the final value could be filled in at runtime.
413 // This could reasonably be the case for a weak undefined symbol.
414 return parameters->doing_static_link();
417 // Return the output section where this symbol is defined.
419 Output_section*
420 Symbol::output_section() const
422 switch (this->source_)
424 case FROM_OBJECT:
426 unsigned int shndx = this->u_.from_object.shndx;
427 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
429 gold_assert(!this->u_.from_object.object->is_dynamic());
430 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
431 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
432 return relobj->output_section(shndx);
434 return NULL;
437 case IN_OUTPUT_DATA:
438 return this->u_.in_output_data.output_data->output_section();
440 case IN_OUTPUT_SEGMENT:
441 case IS_CONSTANT:
442 case IS_UNDEFINED:
443 return NULL;
445 default:
446 gold_unreachable();
450 // Set the symbol's output section. This is used for symbols defined
451 // in scripts. This should only be called after the symbol table has
452 // been finalized.
454 void
455 Symbol::set_output_section(Output_section* os)
457 switch (this->source_)
459 case FROM_OBJECT:
460 case IN_OUTPUT_DATA:
461 gold_assert(this->output_section() == os);
462 break;
463 case IS_CONSTANT:
464 this->source_ = IN_OUTPUT_DATA;
465 this->u_.in_output_data.output_data = os;
466 this->u_.in_output_data.offset_is_from_end = false;
467 break;
468 case IN_OUTPUT_SEGMENT:
469 case IS_UNDEFINED:
470 default:
471 gold_unreachable();
475 // Class Symbol_table.
477 Symbol_table::Symbol_table(unsigned int count,
478 const Version_script_info& version_script)
479 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
480 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
481 version_script_(version_script), gc_(NULL)
483 namepool_.reserve(count);
486 Symbol_table::~Symbol_table()
490 // The hash function. The key values are Stringpool keys.
492 inline size_t
493 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
495 return key.first ^ key.second;
498 // The symbol table key equality function. This is called with
499 // Stringpool keys.
501 inline bool
502 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
503 const Symbol_table_key& k2) const
505 return k1.first == k2.first && k1.second == k2.second;
508 // For symbols that have been listed with -u option, add them to the
509 // work list to avoid gc'ing them.
511 void
512 Symbol_table::gc_mark_undef_symbols()
514 for (options::String_set::const_iterator p =
515 parameters->options().undefined_begin();
516 p != parameters->options().undefined_end();
517 ++p)
519 const char* name = p->c_str();
520 Symbol* sym = this->lookup(name);
521 gold_assert (sym != NULL);
522 if (sym->source() == Symbol::FROM_OBJECT
523 && !sym->object()->is_dynamic())
525 Relobj* obj = static_cast<Relobj*>(sym->object());
526 bool is_ordinary;
527 unsigned int shndx = sym->shndx(&is_ordinary);
528 if (is_ordinary)
530 gold_assert(this->gc_ != NULL);
531 this->gc_->worklist().push(Section_id(obj, shndx));
537 void
538 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
540 if (!sym->is_from_dynobj()
541 && sym->is_externally_visible())
543 //Add the object and section to the work list.
544 Relobj* obj = static_cast<Relobj*>(sym->object());
545 bool is_ordinary;
546 unsigned int shndx = sym->shndx(&is_ordinary);
547 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
549 gold_assert(this->gc_!= NULL);
550 this->gc_->worklist().push(Section_id(obj, shndx));
555 // When doing garbage collection, keep symbols that have been seen in
556 // dynamic objects.
557 inline void
558 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
560 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
561 && !sym->object()->is_dynamic())
563 Relobj *obj = static_cast<Relobj*>(sym->object());
564 bool is_ordinary;
565 unsigned int shndx = sym->shndx(&is_ordinary);
566 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
568 gold_assert(this->gc_ != NULL);
569 this->gc_->worklist().push(Section_id(obj, shndx));
574 // Make TO a symbol which forwards to FROM.
576 void
577 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
579 gold_assert(from != to);
580 gold_assert(!from->is_forwarder() && !to->is_forwarder());
581 this->forwarders_[from] = to;
582 from->set_forwarder();
585 // Resolve the forwards from FROM, returning the real symbol.
587 Symbol*
588 Symbol_table::resolve_forwards(const Symbol* from) const
590 gold_assert(from->is_forwarder());
591 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
592 this->forwarders_.find(from);
593 gold_assert(p != this->forwarders_.end());
594 return p->second;
597 // Look up a symbol by name.
599 Symbol*
600 Symbol_table::lookup(const char* name, const char* version) const
602 Stringpool::Key name_key;
603 name = this->namepool_.find(name, &name_key);
604 if (name == NULL)
605 return NULL;
607 Stringpool::Key version_key = 0;
608 if (version != NULL)
610 version = this->namepool_.find(version, &version_key);
611 if (version == NULL)
612 return NULL;
615 Symbol_table_key key(name_key, version_key);
616 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
617 if (p == this->table_.end())
618 return NULL;
619 return p->second;
622 // Resolve a Symbol with another Symbol. This is only used in the
623 // unusual case where there are references to both an unversioned
624 // symbol and a symbol with a version, and we then discover that that
625 // version is the default version. Because this is unusual, we do
626 // this the slow way, by converting back to an ELF symbol.
628 template<int size, bool big_endian>
629 void
630 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
632 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
633 elfcpp::Sym_write<size, big_endian> esym(buf);
634 // We don't bother to set the st_name or the st_shndx field.
635 esym.put_st_value(from->value());
636 esym.put_st_size(from->symsize());
637 esym.put_st_info(from->binding(), from->type());
638 esym.put_st_other(from->visibility(), from->nonvis());
639 bool is_ordinary;
640 unsigned int shndx = from->shndx(&is_ordinary);
641 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
642 from->version());
643 if (from->in_reg())
644 to->set_in_reg();
645 if (from->in_dyn())
646 to->set_in_dyn();
647 if (parameters->options().gc_sections())
648 this->gc_mark_dyn_syms(to);
651 // Record that a symbol is forced to be local by a version script or
652 // by visibility.
654 void
655 Symbol_table::force_local(Symbol* sym)
657 if (!sym->is_defined() && !sym->is_common())
658 return;
659 if (sym->is_forced_local())
661 // We already got this one.
662 return;
664 sym->set_is_forced_local();
665 this->forced_locals_.push_back(sym);
668 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
669 // is only called for undefined symbols, when at least one --wrap
670 // option was used.
672 const char*
673 Symbol_table::wrap_symbol(Object* object, const char* name,
674 Stringpool::Key* name_key)
676 // For some targets, we need to ignore a specific character when
677 // wrapping, and add it back later.
678 char prefix = '\0';
679 if (name[0] == object->target()->wrap_char())
681 prefix = name[0];
682 ++name;
685 if (parameters->options().is_wrap(name))
687 // Turn NAME into __wrap_NAME.
688 std::string s;
689 if (prefix != '\0')
690 s += prefix;
691 s += "__wrap_";
692 s += name;
694 // This will give us both the old and new name in NAMEPOOL_, but
695 // that is OK. Only the versions we need will wind up in the
696 // real string table in the output file.
697 return this->namepool_.add(s.c_str(), true, name_key);
700 const char* const real_prefix = "__real_";
701 const size_t real_prefix_length = strlen(real_prefix);
702 if (strncmp(name, real_prefix, real_prefix_length) == 0
703 && parameters->options().is_wrap(name + real_prefix_length))
705 // Turn __real_NAME into NAME.
706 std::string s;
707 if (prefix != '\0')
708 s += prefix;
709 s += name + real_prefix_length;
710 return this->namepool_.add(s.c_str(), true, name_key);
713 return name;
716 // This is called when we see a symbol NAME/VERSION, and the symbol
717 // already exists in the symbol table, and VERSION is marked as being
718 // the default version. SYM is the NAME/VERSION symbol we just added.
719 // DEFAULT_IS_NEW is true if this is the first time we have seen the
720 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
722 template<int size, bool big_endian>
723 void
724 Symbol_table::define_default_version(Sized_symbol<size>* sym,
725 bool default_is_new,
726 Symbol_table_type::iterator pdef)
728 if (default_is_new)
730 // This is the first time we have seen NAME/NULL. Make
731 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
732 // version.
733 pdef->second = sym;
734 sym->set_is_default();
736 else if (pdef->second == sym)
738 // NAME/NULL already points to NAME/VERSION. Don't mark the
739 // symbol as the default if it is not already the default.
741 else
743 // This is the unfortunate case where we already have entries
744 // for both NAME/VERSION and NAME/NULL. We now see a symbol
745 // NAME/VERSION where VERSION is the default version. We have
746 // already resolved this new symbol with the existing
747 // NAME/VERSION symbol.
749 // It's possible that NAME/NULL and NAME/VERSION are both
750 // defined in regular objects. This can only happen if one
751 // object file defines foo and another defines foo@@ver. This
752 // is somewhat obscure, but we call it a multiple definition
753 // error.
755 // It's possible that NAME/NULL actually has a version, in which
756 // case it won't be the same as VERSION. This happens with
757 // ver_test_7.so in the testsuite for the symbol t2_2. We see
758 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
759 // then see an unadorned t2_2 in an object file and give it
760 // version VER1 from the version script. This looks like a
761 // default definition for VER1, so it looks like we should merge
762 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
763 // not obvious that this is an error, either. So we just punt.
765 // If one of the symbols has non-default visibility, and the
766 // other is defined in a shared object, then they are different
767 // symbols.
769 // Otherwise, we just resolve the symbols as though they were
770 // the same.
772 if (pdef->second->version() != NULL)
773 gold_assert(pdef->second->version() != sym->version());
774 else if (sym->visibility() != elfcpp::STV_DEFAULT
775 && pdef->second->is_from_dynobj())
777 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
778 && sym->is_from_dynobj())
780 else
782 const Sized_symbol<size>* symdef;
783 symdef = this->get_sized_symbol<size>(pdef->second);
784 Symbol_table::resolve<size, big_endian>(sym, symdef);
785 this->make_forwarder(pdef->second, sym);
786 pdef->second = sym;
787 sym->set_is_default();
792 // Add one symbol from OBJECT to the symbol table. NAME is symbol
793 // name and VERSION is the version; both are canonicalized. DEF is
794 // whether this is the default version. ST_SHNDX is the symbol's
795 // section index; IS_ORDINARY is whether this is a normal section
796 // rather than a special code.
798 // If DEF is true, then this is the definition of a default version of
799 // a symbol. That means that any lookup of NAME/NULL and any lookup
800 // of NAME/VERSION should always return the same symbol. This is
801 // obvious for references, but in particular we want to do this for
802 // definitions: overriding NAME/NULL should also override
803 // NAME/VERSION. If we don't do that, it would be very hard to
804 // override functions in a shared library which uses versioning.
806 // We implement this by simply making both entries in the hash table
807 // point to the same Symbol structure. That is easy enough if this is
808 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
809 // that we have seen both already, in which case they will both have
810 // independent entries in the symbol table. We can't simply change
811 // the symbol table entry, because we have pointers to the entries
812 // attached to the object files. So we mark the entry attached to the
813 // object file as a forwarder, and record it in the forwarders_ map.
814 // Note that entries in the hash table will never be marked as
815 // forwarders.
817 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
818 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
819 // for a special section code. ST_SHNDX may be modified if the symbol
820 // is defined in a section being discarded.
822 template<int size, bool big_endian>
823 Sized_symbol<size>*
824 Symbol_table::add_from_object(Object* object,
825 const char *name,
826 Stringpool::Key name_key,
827 const char *version,
828 Stringpool::Key version_key,
829 bool def,
830 const elfcpp::Sym<size, big_endian>& sym,
831 unsigned int st_shndx,
832 bool is_ordinary,
833 unsigned int orig_st_shndx)
835 // Print a message if this symbol is being traced.
836 if (parameters->options().is_trace_symbol(name))
838 if (orig_st_shndx == elfcpp::SHN_UNDEF)
839 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
840 else
841 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
844 // For an undefined symbol, we may need to adjust the name using
845 // --wrap.
846 if (orig_st_shndx == elfcpp::SHN_UNDEF
847 && parameters->options().any_wrap())
849 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
850 if (wrap_name != name)
852 // If we see a reference to malloc with version GLIBC_2.0,
853 // and we turn it into a reference to __wrap_malloc, then we
854 // discard the version number. Otherwise the user would be
855 // required to specify the correct version for
856 // __wrap_malloc.
857 version = NULL;
858 version_key = 0;
859 name = wrap_name;
863 Symbol* const snull = NULL;
864 std::pair<typename Symbol_table_type::iterator, bool> ins =
865 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
866 snull));
868 std::pair<typename Symbol_table_type::iterator, bool> insdef =
869 std::make_pair(this->table_.end(), false);
870 if (def)
872 const Stringpool::Key vnull_key = 0;
873 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
874 vnull_key),
875 snull));
878 // ins.first: an iterator, which is a pointer to a pair.
879 // ins.first->first: the key (a pair of name and version).
880 // ins.first->second: the value (Symbol*).
881 // ins.second: true if new entry was inserted, false if not.
883 Sized_symbol<size>* ret;
884 bool was_undefined;
885 bool was_common;
886 if (!ins.second)
888 // We already have an entry for NAME/VERSION.
889 ret = this->get_sized_symbol<size>(ins.first->second);
890 gold_assert(ret != NULL);
892 was_undefined = ret->is_undefined();
893 was_common = ret->is_common();
895 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
896 version);
897 if (parameters->options().gc_sections())
898 this->gc_mark_dyn_syms(ret);
900 if (def)
901 this->define_default_version<size, big_endian>(ret, insdef.second,
902 insdef.first);
904 else
906 // This is the first time we have seen NAME/VERSION.
907 gold_assert(ins.first->second == NULL);
909 if (def && !insdef.second)
911 // We already have an entry for NAME/NULL. If we override
912 // it, then change it to NAME/VERSION.
913 ret = this->get_sized_symbol<size>(insdef.first->second);
915 was_undefined = ret->is_undefined();
916 was_common = ret->is_common();
918 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
919 version);
920 if (parameters->options().gc_sections())
921 this->gc_mark_dyn_syms(ret);
922 ins.first->second = ret;
924 else
926 was_undefined = false;
927 was_common = false;
929 Sized_target<size, big_endian>* target =
930 object->sized_target<size, big_endian>();
931 if (!target->has_make_symbol())
932 ret = new Sized_symbol<size>();
933 else
935 ret = target->make_symbol();
936 if (ret == NULL)
938 // This means that we don't want a symbol table
939 // entry after all.
940 if (!def)
941 this->table_.erase(ins.first);
942 else
944 this->table_.erase(insdef.first);
945 // Inserting insdef invalidated ins.
946 this->table_.erase(std::make_pair(name_key,
947 version_key));
949 return NULL;
953 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
955 ins.first->second = ret;
956 if (def)
958 // This is the first time we have seen NAME/NULL. Point
959 // it at the new entry for NAME/VERSION.
960 gold_assert(insdef.second);
961 insdef.first->second = ret;
965 if (def)
966 ret->set_is_default();
969 // Record every time we see a new undefined symbol, to speed up
970 // archive groups.
971 if (!was_undefined && ret->is_undefined())
972 ++this->saw_undefined_;
974 // Keep track of common symbols, to speed up common symbol
975 // allocation.
976 if (!was_common && ret->is_common())
978 if (ret->type() != elfcpp::STT_TLS)
979 this->commons_.push_back(ret);
980 else
981 this->tls_commons_.push_back(ret);
984 // If we're not doing a relocatable link, then any symbol with
985 // hidden or internal visibility is local.
986 if ((ret->visibility() == elfcpp::STV_HIDDEN
987 || ret->visibility() == elfcpp::STV_INTERNAL)
988 && (ret->binding() == elfcpp::STB_GLOBAL
989 || ret->binding() == elfcpp::STB_WEAK)
990 && !parameters->options().relocatable())
991 this->force_local(ret);
993 return ret;
996 // Add all the symbols in a relocatable object to the hash table.
998 template<int size, bool big_endian>
999 void
1000 Symbol_table::add_from_relobj(
1001 Sized_relobj<size, big_endian>* relobj,
1002 const unsigned char* syms,
1003 size_t count,
1004 size_t symndx_offset,
1005 const char* sym_names,
1006 size_t sym_name_size,
1007 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1008 size_t *defined)
1010 *defined = 0;
1012 gold_assert(size == relobj->target()->get_size());
1013 gold_assert(size == parameters->target().get_size());
1015 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1017 const bool just_symbols = relobj->just_symbols();
1019 const unsigned char* p = syms;
1020 for (size_t i = 0; i < count; ++i, p += sym_size)
1022 (*sympointers)[i] = NULL;
1024 elfcpp::Sym<size, big_endian> sym(p);
1026 unsigned int st_name = sym.get_st_name();
1027 if (st_name >= sym_name_size)
1029 relobj->error(_("bad global symbol name offset %u at %zu"),
1030 st_name, i);
1031 continue;
1034 const char* name = sym_names + st_name;
1036 bool is_ordinary;
1037 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1038 sym.get_st_shndx(),
1039 &is_ordinary);
1040 unsigned int orig_st_shndx = st_shndx;
1041 if (!is_ordinary)
1042 orig_st_shndx = elfcpp::SHN_UNDEF;
1044 if (st_shndx != elfcpp::SHN_UNDEF)
1045 ++*defined;
1047 // A symbol defined in a section which we are not including must
1048 // be treated as an undefined symbol.
1049 if (st_shndx != elfcpp::SHN_UNDEF
1050 && is_ordinary
1051 && !relobj->is_section_included(st_shndx))
1052 st_shndx = elfcpp::SHN_UNDEF;
1054 // In an object file, an '@' in the name separates the symbol
1055 // name from the version name. If there are two '@' characters,
1056 // this is the default version.
1057 const char* ver = strchr(name, '@');
1058 Stringpool::Key ver_key = 0;
1059 int namelen = 0;
1060 // DEF: is the version default? LOCAL: is the symbol forced local?
1061 bool def = false;
1062 bool local = false;
1064 if (ver != NULL)
1066 // The symbol name is of the form foo@VERSION or foo@@VERSION
1067 namelen = ver - name;
1068 ++ver;
1069 if (*ver == '@')
1071 def = true;
1072 ++ver;
1074 ver = this->namepool_.add(ver, true, &ver_key);
1076 // We don't want to assign a version to an undefined symbol,
1077 // even if it is listed in the version script. FIXME: What
1078 // about a common symbol?
1079 else
1081 namelen = strlen(name);
1082 if (!this->version_script_.empty()
1083 && st_shndx != elfcpp::SHN_UNDEF)
1085 // The symbol name did not have a version, but the
1086 // version script may assign a version anyway.
1087 std::string version;
1088 if (this->version_script_.get_symbol_version(name, &version))
1090 // The version can be empty if the version script is
1091 // only used to force some symbols to be local.
1092 if (!version.empty())
1094 ver = this->namepool_.add_with_length(version.c_str(),
1095 version.length(),
1096 true,
1097 &ver_key);
1098 def = true;
1101 else if (this->version_script_.symbol_is_local(name))
1102 local = true;
1106 elfcpp::Sym<size, big_endian>* psym = &sym;
1107 unsigned char symbuf[sym_size];
1108 elfcpp::Sym<size, big_endian> sym2(symbuf);
1109 if (just_symbols)
1111 memcpy(symbuf, p, sym_size);
1112 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1113 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1115 // Symbol values in object files are section relative.
1116 // This is normally what we want, but since here we are
1117 // converting the symbol to absolute we need to add the
1118 // section address. The section address in an object
1119 // file is normally zero, but people can use a linker
1120 // script to change it.
1121 sw.put_st_value(sym.get_st_value()
1122 + relobj->section_address(orig_st_shndx));
1124 st_shndx = elfcpp::SHN_ABS;
1125 is_ordinary = false;
1126 psym = &sym2;
1129 Stringpool::Key name_key;
1130 name = this->namepool_.add_with_length(name, namelen, true,
1131 &name_key);
1133 Sized_symbol<size>* res;
1134 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1135 def, *psym, st_shndx, is_ordinary,
1136 orig_st_shndx);
1138 // If building a shared library using garbage collection, do not
1139 // treat externally visible symbols as garbage.
1140 if (parameters->options().gc_sections()
1141 && parameters->options().shared())
1142 this->gc_mark_symbol_for_shlib(res);
1144 if (local)
1145 this->force_local(res);
1147 (*sympointers)[i] = res;
1151 // Add a symbol from a plugin-claimed file.
1153 template<int size, bool big_endian>
1154 Symbol*
1155 Symbol_table::add_from_pluginobj(
1156 Sized_pluginobj<size, big_endian>* obj,
1157 const char* name,
1158 const char* ver,
1159 elfcpp::Sym<size, big_endian>* sym)
1161 unsigned int st_shndx = sym->get_st_shndx();
1163 Stringpool::Key ver_key = 0;
1164 bool def = false;
1165 bool local = false;
1167 if (ver != NULL)
1169 ver = this->namepool_.add(ver, true, &ver_key);
1171 // We don't want to assign a version to an undefined symbol,
1172 // even if it is listed in the version script. FIXME: What
1173 // about a common symbol?
1174 else
1176 if (!this->version_script_.empty()
1177 && st_shndx != elfcpp::SHN_UNDEF)
1179 // The symbol name did not have a version, but the
1180 // version script may assign a version anyway.
1181 std::string version;
1182 if (this->version_script_.get_symbol_version(name, &version))
1184 // The version can be empty if the version script is
1185 // only used to force some symbols to be local.
1186 if (!version.empty())
1188 ver = this->namepool_.add_with_length(version.c_str(),
1189 version.length(),
1190 true,
1191 &ver_key);
1192 def = true;
1195 else if (this->version_script_.symbol_is_local(name))
1196 local = true;
1200 Stringpool::Key name_key;
1201 name = this->namepool_.add(name, true, &name_key);
1203 Sized_symbol<size>* res;
1204 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1205 def, *sym, st_shndx, true, st_shndx);
1207 if (local)
1208 this->force_local(res);
1210 return res;
1213 // Add all the symbols in a dynamic object to the hash table.
1215 template<int size, bool big_endian>
1216 void
1217 Symbol_table::add_from_dynobj(
1218 Sized_dynobj<size, big_endian>* dynobj,
1219 const unsigned char* syms,
1220 size_t count,
1221 const char* sym_names,
1222 size_t sym_name_size,
1223 const unsigned char* versym,
1224 size_t versym_size,
1225 const std::vector<const char*>* version_map,
1226 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1227 size_t* defined)
1229 *defined = 0;
1231 gold_assert(size == dynobj->target()->get_size());
1232 gold_assert(size == parameters->target().get_size());
1234 if (dynobj->just_symbols())
1236 gold_error(_("--just-symbols does not make sense with a shared object"));
1237 return;
1240 if (versym != NULL && versym_size / 2 < count)
1242 dynobj->error(_("too few symbol versions"));
1243 return;
1246 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1248 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1249 // weak aliases. This is necessary because if the dynamic object
1250 // provides the same variable under two names, one of which is a
1251 // weak definition, and the regular object refers to the weak
1252 // definition, we have to put both the weak definition and the
1253 // strong definition into the dynamic symbol table. Given a weak
1254 // definition, the only way that we can find the corresponding
1255 // strong definition, if any, is to search the symbol table.
1256 std::vector<Sized_symbol<size>*> object_symbols;
1258 const unsigned char* p = syms;
1259 const unsigned char* vs = versym;
1260 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1262 elfcpp::Sym<size, big_endian> sym(p);
1264 if (sympointers != NULL)
1265 (*sympointers)[i] = NULL;
1267 // Ignore symbols with local binding or that have
1268 // internal or hidden visibility.
1269 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1270 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1271 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1272 continue;
1274 // A protected symbol in a shared library must be treated as a
1275 // normal symbol when viewed from outside the shared library.
1276 // Implement this by overriding the visibility here.
1277 elfcpp::Sym<size, big_endian>* psym = &sym;
1278 unsigned char symbuf[sym_size];
1279 elfcpp::Sym<size, big_endian> sym2(symbuf);
1280 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1282 memcpy(symbuf, p, sym_size);
1283 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1284 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1285 psym = &sym2;
1288 unsigned int st_name = psym->get_st_name();
1289 if (st_name >= sym_name_size)
1291 dynobj->error(_("bad symbol name offset %u at %zu"),
1292 st_name, i);
1293 continue;
1296 const char* name = sym_names + st_name;
1298 bool is_ordinary;
1299 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1300 &is_ordinary);
1302 if (st_shndx != elfcpp::SHN_UNDEF)
1303 ++*defined;
1305 Sized_symbol<size>* res;
1307 if (versym == NULL)
1309 Stringpool::Key name_key;
1310 name = this->namepool_.add(name, true, &name_key);
1311 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1312 false, *psym, st_shndx, is_ordinary,
1313 st_shndx);
1315 else
1317 // Read the version information.
1319 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1321 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1322 v &= elfcpp::VERSYM_VERSION;
1324 // The Sun documentation says that V can be VER_NDX_LOCAL,
1325 // or VER_NDX_GLOBAL, or a version index. The meaning of
1326 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1327 // The old GNU linker will happily generate VER_NDX_LOCAL
1328 // for an undefined symbol. I don't know what the Sun
1329 // linker will generate.
1331 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1332 && st_shndx != elfcpp::SHN_UNDEF)
1334 // This symbol should not be visible outside the object.
1335 continue;
1338 // At this point we are definitely going to add this symbol.
1339 Stringpool::Key name_key;
1340 name = this->namepool_.add(name, true, &name_key);
1342 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1343 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1345 // This symbol does not have a version.
1346 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1347 false, *psym, st_shndx, is_ordinary,
1348 st_shndx);
1350 else
1352 if (v >= version_map->size())
1354 dynobj->error(_("versym for symbol %zu out of range: %u"),
1355 i, v);
1356 continue;
1359 const char* version = (*version_map)[v];
1360 if (version == NULL)
1362 dynobj->error(_("versym for symbol %zu has no name: %u"),
1363 i, v);
1364 continue;
1367 Stringpool::Key version_key;
1368 version = this->namepool_.add(version, true, &version_key);
1370 // If this is an absolute symbol, and the version name
1371 // and symbol name are the same, then this is the
1372 // version definition symbol. These symbols exist to
1373 // support using -u to pull in particular versions. We
1374 // do not want to record a version for them.
1375 if (st_shndx == elfcpp::SHN_ABS
1376 && !is_ordinary
1377 && name_key == version_key)
1378 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1379 false, *psym, st_shndx, is_ordinary,
1380 st_shndx);
1381 else
1383 const bool def = (!hidden
1384 && st_shndx != elfcpp::SHN_UNDEF);
1385 res = this->add_from_object(dynobj, name, name_key, version,
1386 version_key, def, *psym, st_shndx,
1387 is_ordinary, st_shndx);
1392 // Note that it is possible that RES was overridden by an
1393 // earlier object, in which case it can't be aliased here.
1394 if (st_shndx != elfcpp::SHN_UNDEF
1395 && is_ordinary
1396 && psym->get_st_type() == elfcpp::STT_OBJECT
1397 && res->source() == Symbol::FROM_OBJECT
1398 && res->object() == dynobj)
1399 object_symbols.push_back(res);
1401 if (sympointers != NULL)
1402 (*sympointers)[i] = res;
1405 this->record_weak_aliases(&object_symbols);
1408 // This is used to sort weak aliases. We sort them first by section
1409 // index, then by offset, then by weak ahead of strong.
1411 template<int size>
1412 class Weak_alias_sorter
1414 public:
1415 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1418 template<int size>
1419 bool
1420 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1421 const Sized_symbol<size>* s2) const
1423 bool is_ordinary;
1424 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1425 gold_assert(is_ordinary);
1426 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1427 gold_assert(is_ordinary);
1428 if (s1_shndx != s2_shndx)
1429 return s1_shndx < s2_shndx;
1431 if (s1->value() != s2->value())
1432 return s1->value() < s2->value();
1433 if (s1->binding() != s2->binding())
1435 if (s1->binding() == elfcpp::STB_WEAK)
1436 return true;
1437 if (s2->binding() == elfcpp::STB_WEAK)
1438 return false;
1440 return std::string(s1->name()) < std::string(s2->name());
1443 // SYMBOLS is a list of object symbols from a dynamic object. Look
1444 // for any weak aliases, and record them so that if we add the weak
1445 // alias to the dynamic symbol table, we also add the corresponding
1446 // strong symbol.
1448 template<int size>
1449 void
1450 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1452 // Sort the vector by section index, then by offset, then by weak
1453 // ahead of strong.
1454 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1456 // Walk through the vector. For each weak definition, record
1457 // aliases.
1458 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1459 symbols->begin();
1460 p != symbols->end();
1461 ++p)
1463 if ((*p)->binding() != elfcpp::STB_WEAK)
1464 continue;
1466 // Build a circular list of weak aliases. Each symbol points to
1467 // the next one in the circular list.
1469 Sized_symbol<size>* from_sym = *p;
1470 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1471 for (q = p + 1; q != symbols->end(); ++q)
1473 bool dummy;
1474 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1475 || (*q)->value() != from_sym->value())
1476 break;
1478 this->weak_aliases_[from_sym] = *q;
1479 from_sym->set_has_alias();
1480 from_sym = *q;
1483 if (from_sym != *p)
1485 this->weak_aliases_[from_sym] = *p;
1486 from_sym->set_has_alias();
1489 p = q - 1;
1493 // Create and return a specially defined symbol. If ONLY_IF_REF is
1494 // true, then only create the symbol if there is a reference to it.
1495 // If this does not return NULL, it sets *POLDSYM to the existing
1496 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1497 // resolve the newly created symbol to the old one. This
1498 // canonicalizes *PNAME and *PVERSION.
1500 template<int size, bool big_endian>
1501 Sized_symbol<size>*
1502 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1503 bool only_if_ref,
1504 Sized_symbol<size>** poldsym,
1505 bool *resolve_oldsym)
1507 *resolve_oldsym = false;
1509 // If the caller didn't give us a version, see if we get one from
1510 // the version script.
1511 std::string v;
1512 bool is_default_version = false;
1513 if (*pversion == NULL)
1515 if (this->version_script_.get_symbol_version(*pname, &v))
1517 if (!v.empty())
1518 *pversion = v.c_str();
1520 // If we get the version from a version script, then we are
1521 // also the default version.
1522 is_default_version = true;
1526 Symbol* oldsym;
1527 Sized_symbol<size>* sym;
1529 bool add_to_table = false;
1530 typename Symbol_table_type::iterator add_loc = this->table_.end();
1531 bool add_def_to_table = false;
1532 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1534 if (only_if_ref)
1536 oldsym = this->lookup(*pname, *pversion);
1537 if (oldsym == NULL && is_default_version)
1538 oldsym = this->lookup(*pname, NULL);
1539 if (oldsym == NULL || !oldsym->is_undefined())
1540 return NULL;
1542 *pname = oldsym->name();
1543 if (!is_default_version)
1544 *pversion = oldsym->version();
1546 else
1548 // Canonicalize NAME and VERSION.
1549 Stringpool::Key name_key;
1550 *pname = this->namepool_.add(*pname, true, &name_key);
1552 Stringpool::Key version_key = 0;
1553 if (*pversion != NULL)
1554 *pversion = this->namepool_.add(*pversion, true, &version_key);
1556 Symbol* const snull = NULL;
1557 std::pair<typename Symbol_table_type::iterator, bool> ins =
1558 this->table_.insert(std::make_pair(std::make_pair(name_key,
1559 version_key),
1560 snull));
1562 std::pair<typename Symbol_table_type::iterator, bool> insdef =
1563 std::make_pair(this->table_.end(), false);
1564 if (is_default_version)
1566 const Stringpool::Key vnull = 0;
1567 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
1568 vnull),
1569 snull));
1572 if (!ins.second)
1574 // We already have a symbol table entry for NAME/VERSION.
1575 oldsym = ins.first->second;
1576 gold_assert(oldsym != NULL);
1578 if (is_default_version)
1580 Sized_symbol<size>* soldsym =
1581 this->get_sized_symbol<size>(oldsym);
1582 this->define_default_version<size, big_endian>(soldsym,
1583 insdef.second,
1584 insdef.first);
1587 else
1589 // We haven't seen this symbol before.
1590 gold_assert(ins.first->second == NULL);
1592 add_to_table = true;
1593 add_loc = ins.first;
1595 if (is_default_version && !insdef.second)
1597 // We are adding NAME/VERSION, and it is the default
1598 // version. We already have an entry for NAME/NULL.
1599 oldsym = insdef.first->second;
1600 *resolve_oldsym = true;
1602 else
1604 oldsym = NULL;
1606 if (is_default_version)
1608 add_def_to_table = true;
1609 add_def_loc = insdef.first;
1615 const Target& target = parameters->target();
1616 if (!target.has_make_symbol())
1617 sym = new Sized_symbol<size>();
1618 else
1620 gold_assert(target.get_size() == size);
1621 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1622 typedef Sized_target<size, big_endian> My_target;
1623 const My_target* sized_target =
1624 static_cast<const My_target*>(&target);
1625 sym = sized_target->make_symbol();
1626 if (sym == NULL)
1627 return NULL;
1630 if (add_to_table)
1631 add_loc->second = sym;
1632 else
1633 gold_assert(oldsym != NULL);
1635 if (add_def_to_table)
1636 add_def_loc->second = sym;
1638 *poldsym = this->get_sized_symbol<size>(oldsym);
1640 return sym;
1643 // Define a symbol based on an Output_data.
1645 Symbol*
1646 Symbol_table::define_in_output_data(const char* name,
1647 const char* version,
1648 Output_data* od,
1649 uint64_t value,
1650 uint64_t symsize,
1651 elfcpp::STT type,
1652 elfcpp::STB binding,
1653 elfcpp::STV visibility,
1654 unsigned char nonvis,
1655 bool offset_is_from_end,
1656 bool only_if_ref)
1658 if (parameters->target().get_size() == 32)
1660 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1661 return this->do_define_in_output_data<32>(name, version, od,
1662 value, symsize, type, binding,
1663 visibility, nonvis,
1664 offset_is_from_end,
1665 only_if_ref);
1666 #else
1667 gold_unreachable();
1668 #endif
1670 else if (parameters->target().get_size() == 64)
1672 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1673 return this->do_define_in_output_data<64>(name, version, od,
1674 value, symsize, type, binding,
1675 visibility, nonvis,
1676 offset_is_from_end,
1677 only_if_ref);
1678 #else
1679 gold_unreachable();
1680 #endif
1682 else
1683 gold_unreachable();
1686 // Define a symbol in an Output_data, sized version.
1688 template<int size>
1689 Sized_symbol<size>*
1690 Symbol_table::do_define_in_output_data(
1691 const char* name,
1692 const char* version,
1693 Output_data* od,
1694 typename elfcpp::Elf_types<size>::Elf_Addr value,
1695 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1696 elfcpp::STT type,
1697 elfcpp::STB binding,
1698 elfcpp::STV visibility,
1699 unsigned char nonvis,
1700 bool offset_is_from_end,
1701 bool only_if_ref)
1703 Sized_symbol<size>* sym;
1704 Sized_symbol<size>* oldsym;
1705 bool resolve_oldsym;
1707 if (parameters->target().is_big_endian())
1709 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1710 sym = this->define_special_symbol<size, true>(&name, &version,
1711 only_if_ref, &oldsym,
1712 &resolve_oldsym);
1713 #else
1714 gold_unreachable();
1715 #endif
1717 else
1719 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1720 sym = this->define_special_symbol<size, false>(&name, &version,
1721 only_if_ref, &oldsym,
1722 &resolve_oldsym);
1723 #else
1724 gold_unreachable();
1725 #endif
1728 if (sym == NULL)
1729 return NULL;
1731 sym->init_output_data(name, version, od, value, symsize, type, binding,
1732 visibility, nonvis, offset_is_from_end);
1734 if (oldsym == NULL)
1736 if (binding == elfcpp::STB_LOCAL
1737 || this->version_script_.symbol_is_local(name))
1738 this->force_local(sym);
1739 else if (version != NULL)
1740 sym->set_is_default();
1741 return sym;
1744 if (Symbol_table::should_override_with_special(oldsym))
1745 this->override_with_special(oldsym, sym);
1747 if (resolve_oldsym)
1748 return sym;
1749 else
1751 delete sym;
1752 return oldsym;
1756 // Define a symbol based on an Output_segment.
1758 Symbol*
1759 Symbol_table::define_in_output_segment(const char* name,
1760 const char* version, Output_segment* os,
1761 uint64_t value,
1762 uint64_t symsize,
1763 elfcpp::STT type,
1764 elfcpp::STB binding,
1765 elfcpp::STV visibility,
1766 unsigned char nonvis,
1767 Symbol::Segment_offset_base offset_base,
1768 bool only_if_ref)
1770 if (parameters->target().get_size() == 32)
1772 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1773 return this->do_define_in_output_segment<32>(name, version, os,
1774 value, symsize, type,
1775 binding, visibility, nonvis,
1776 offset_base, only_if_ref);
1777 #else
1778 gold_unreachable();
1779 #endif
1781 else if (parameters->target().get_size() == 64)
1783 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1784 return this->do_define_in_output_segment<64>(name, version, os,
1785 value, symsize, type,
1786 binding, visibility, nonvis,
1787 offset_base, only_if_ref);
1788 #else
1789 gold_unreachable();
1790 #endif
1792 else
1793 gold_unreachable();
1796 // Define a symbol in an Output_segment, sized version.
1798 template<int size>
1799 Sized_symbol<size>*
1800 Symbol_table::do_define_in_output_segment(
1801 const char* name,
1802 const char* version,
1803 Output_segment* os,
1804 typename elfcpp::Elf_types<size>::Elf_Addr value,
1805 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1806 elfcpp::STT type,
1807 elfcpp::STB binding,
1808 elfcpp::STV visibility,
1809 unsigned char nonvis,
1810 Symbol::Segment_offset_base offset_base,
1811 bool only_if_ref)
1813 Sized_symbol<size>* sym;
1814 Sized_symbol<size>* oldsym;
1815 bool resolve_oldsym;
1817 if (parameters->target().is_big_endian())
1819 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1820 sym = this->define_special_symbol<size, true>(&name, &version,
1821 only_if_ref, &oldsym,
1822 &resolve_oldsym);
1823 #else
1824 gold_unreachable();
1825 #endif
1827 else
1829 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1830 sym = this->define_special_symbol<size, false>(&name, &version,
1831 only_if_ref, &oldsym,
1832 &resolve_oldsym);
1833 #else
1834 gold_unreachable();
1835 #endif
1838 if (sym == NULL)
1839 return NULL;
1841 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1842 visibility, nonvis, offset_base);
1844 if (oldsym == NULL)
1846 if (binding == elfcpp::STB_LOCAL
1847 || this->version_script_.symbol_is_local(name))
1848 this->force_local(sym);
1849 else if (version != NULL)
1850 sym->set_is_default();
1851 return sym;
1854 if (Symbol_table::should_override_with_special(oldsym))
1855 this->override_with_special(oldsym, sym);
1857 if (resolve_oldsym)
1858 return sym;
1859 else
1861 delete sym;
1862 return oldsym;
1866 // Define a special symbol with a constant value. It is a multiple
1867 // definition error if this symbol is already defined.
1869 Symbol*
1870 Symbol_table::define_as_constant(const char* name,
1871 const char* version,
1872 uint64_t value,
1873 uint64_t symsize,
1874 elfcpp::STT type,
1875 elfcpp::STB binding,
1876 elfcpp::STV visibility,
1877 unsigned char nonvis,
1878 bool only_if_ref,
1879 bool force_override)
1881 if (parameters->target().get_size() == 32)
1883 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1884 return this->do_define_as_constant<32>(name, version, value,
1885 symsize, type, binding,
1886 visibility, nonvis, only_if_ref,
1887 force_override);
1888 #else
1889 gold_unreachable();
1890 #endif
1892 else if (parameters->target().get_size() == 64)
1894 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1895 return this->do_define_as_constant<64>(name, version, value,
1896 symsize, type, binding,
1897 visibility, nonvis, only_if_ref,
1898 force_override);
1899 #else
1900 gold_unreachable();
1901 #endif
1903 else
1904 gold_unreachable();
1907 // Define a symbol as a constant, sized version.
1909 template<int size>
1910 Sized_symbol<size>*
1911 Symbol_table::do_define_as_constant(
1912 const char* name,
1913 const char* version,
1914 typename elfcpp::Elf_types<size>::Elf_Addr value,
1915 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1916 elfcpp::STT type,
1917 elfcpp::STB binding,
1918 elfcpp::STV visibility,
1919 unsigned char nonvis,
1920 bool only_if_ref,
1921 bool force_override)
1923 Sized_symbol<size>* sym;
1924 Sized_symbol<size>* oldsym;
1925 bool resolve_oldsym;
1927 if (parameters->target().is_big_endian())
1929 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1930 sym = this->define_special_symbol<size, true>(&name, &version,
1931 only_if_ref, &oldsym,
1932 &resolve_oldsym);
1933 #else
1934 gold_unreachable();
1935 #endif
1937 else
1939 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1940 sym = this->define_special_symbol<size, false>(&name, &version,
1941 only_if_ref, &oldsym,
1942 &resolve_oldsym);
1943 #else
1944 gold_unreachable();
1945 #endif
1948 if (sym == NULL)
1949 return NULL;
1951 sym->init_constant(name, version, value, symsize, type, binding, visibility,
1952 nonvis);
1954 if (oldsym == NULL)
1956 // Version symbols are absolute symbols with name == version.
1957 // We don't want to force them to be local.
1958 if ((version == NULL
1959 || name != version
1960 || value != 0)
1961 && (binding == elfcpp::STB_LOCAL
1962 || this->version_script_.symbol_is_local(name)))
1963 this->force_local(sym);
1964 else if (version != NULL
1965 && (name != version || value != 0))
1966 sym->set_is_default();
1967 return sym;
1970 if (force_override || Symbol_table::should_override_with_special(oldsym))
1971 this->override_with_special(oldsym, sym);
1973 if (resolve_oldsym)
1974 return sym;
1975 else
1977 delete sym;
1978 return oldsym;
1982 // Define a set of symbols in output sections.
1984 void
1985 Symbol_table::define_symbols(const Layout* layout, int count,
1986 const Define_symbol_in_section* p,
1987 bool only_if_ref)
1989 for (int i = 0; i < count; ++i, ++p)
1991 Output_section* os = layout->find_output_section(p->output_section);
1992 if (os != NULL)
1993 this->define_in_output_data(p->name, NULL, os, p->value,
1994 p->size, p->type, p->binding,
1995 p->visibility, p->nonvis,
1996 p->offset_is_from_end,
1997 only_if_ref || p->only_if_ref);
1998 else
1999 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2000 p->binding, p->visibility, p->nonvis,
2001 only_if_ref || p->only_if_ref,
2002 false);
2006 // Define a set of symbols in output segments.
2008 void
2009 Symbol_table::define_symbols(const Layout* layout, int count,
2010 const Define_symbol_in_segment* p,
2011 bool only_if_ref)
2013 for (int i = 0; i < count; ++i, ++p)
2015 Output_segment* os = layout->find_output_segment(p->segment_type,
2016 p->segment_flags_set,
2017 p->segment_flags_clear);
2018 if (os != NULL)
2019 this->define_in_output_segment(p->name, NULL, os, p->value,
2020 p->size, p->type, p->binding,
2021 p->visibility, p->nonvis,
2022 p->offset_base,
2023 only_if_ref || p->only_if_ref);
2024 else
2025 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2026 p->binding, p->visibility, p->nonvis,
2027 only_if_ref || p->only_if_ref,
2028 false);
2032 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2033 // symbol should be defined--typically a .dyn.bss section. VALUE is
2034 // the offset within POSD.
2036 template<int size>
2037 void
2038 Symbol_table::define_with_copy_reloc(
2039 Sized_symbol<size>* csym,
2040 Output_data* posd,
2041 typename elfcpp::Elf_types<size>::Elf_Addr value)
2043 gold_assert(csym->is_from_dynobj());
2044 gold_assert(!csym->is_copied_from_dynobj());
2045 Object* object = csym->object();
2046 gold_assert(object->is_dynamic());
2047 Dynobj* dynobj = static_cast<Dynobj*>(object);
2049 // Our copied variable has to override any variable in a shared
2050 // library.
2051 elfcpp::STB binding = csym->binding();
2052 if (binding == elfcpp::STB_WEAK)
2053 binding = elfcpp::STB_GLOBAL;
2055 this->define_in_output_data(csym->name(), csym->version(),
2056 posd, value, csym->symsize(),
2057 csym->type(), binding,
2058 csym->visibility(), csym->nonvis(),
2059 false, false);
2061 csym->set_is_copied_from_dynobj();
2062 csym->set_needs_dynsym_entry();
2064 this->copied_symbol_dynobjs_[csym] = dynobj;
2066 // We have now defined all aliases, but we have not entered them all
2067 // in the copied_symbol_dynobjs_ map.
2068 if (csym->has_alias())
2070 Symbol* sym = csym;
2071 while (true)
2073 sym = this->weak_aliases_[sym];
2074 if (sym == csym)
2075 break;
2076 gold_assert(sym->output_data() == posd);
2078 sym->set_is_copied_from_dynobj();
2079 this->copied_symbol_dynobjs_[sym] = dynobj;
2084 // SYM is defined using a COPY reloc. Return the dynamic object where
2085 // the original definition was found.
2087 Dynobj*
2088 Symbol_table::get_copy_source(const Symbol* sym) const
2090 gold_assert(sym->is_copied_from_dynobj());
2091 Copied_symbol_dynobjs::const_iterator p =
2092 this->copied_symbol_dynobjs_.find(sym);
2093 gold_assert(p != this->copied_symbol_dynobjs_.end());
2094 return p->second;
2097 // Add any undefined symbols named on the command line.
2099 void
2100 Symbol_table::add_undefined_symbols_from_command_line()
2102 if (parameters->options().any_undefined())
2104 if (parameters->target().get_size() == 32)
2106 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2107 this->do_add_undefined_symbols_from_command_line<32>();
2108 #else
2109 gold_unreachable();
2110 #endif
2112 else if (parameters->target().get_size() == 64)
2114 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2115 this->do_add_undefined_symbols_from_command_line<64>();
2116 #else
2117 gold_unreachable();
2118 #endif
2120 else
2121 gold_unreachable();
2125 template<int size>
2126 void
2127 Symbol_table::do_add_undefined_symbols_from_command_line()
2129 for (options::String_set::const_iterator p =
2130 parameters->options().undefined_begin();
2131 p != parameters->options().undefined_end();
2132 ++p)
2134 const char* name = p->c_str();
2136 if (this->lookup(name) != NULL)
2137 continue;
2139 const char* version = NULL;
2141 Sized_symbol<size>* sym;
2142 Sized_symbol<size>* oldsym;
2143 bool resolve_oldsym;
2144 if (parameters->target().is_big_endian())
2146 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2147 sym = this->define_special_symbol<size, true>(&name, &version,
2148 false, &oldsym,
2149 &resolve_oldsym);
2150 #else
2151 gold_unreachable();
2152 #endif
2154 else
2156 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2157 sym = this->define_special_symbol<size, false>(&name, &version,
2158 false, &oldsym,
2159 &resolve_oldsym);
2160 #else
2161 gold_unreachable();
2162 #endif
2165 gold_assert(oldsym == NULL);
2167 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2168 elfcpp::STV_DEFAULT, 0);
2169 ++this->saw_undefined_;
2173 // Set the dynamic symbol indexes. INDEX is the index of the first
2174 // global dynamic symbol. Pointers to the symbols are stored into the
2175 // vector SYMS. The names are added to DYNPOOL. This returns an
2176 // updated dynamic symbol index.
2178 unsigned int
2179 Symbol_table::set_dynsym_indexes(unsigned int index,
2180 std::vector<Symbol*>* syms,
2181 Stringpool* dynpool,
2182 Versions* versions)
2184 for (Symbol_table_type::iterator p = this->table_.begin();
2185 p != this->table_.end();
2186 ++p)
2188 Symbol* sym = p->second;
2190 // Note that SYM may already have a dynamic symbol index, since
2191 // some symbols appear more than once in the symbol table, with
2192 // and without a version.
2194 if (!sym->should_add_dynsym_entry())
2195 sym->set_dynsym_index(-1U);
2196 else if (!sym->has_dynsym_index())
2198 sym->set_dynsym_index(index);
2199 ++index;
2200 syms->push_back(sym);
2201 dynpool->add(sym->name(), false, NULL);
2203 // Record any version information.
2204 if (sym->version() != NULL)
2205 versions->record_version(this, dynpool, sym);
2209 // Finish up the versions. In some cases this may add new dynamic
2210 // symbols.
2211 index = versions->finalize(this, index, syms);
2213 return index;
2216 // Set the final values for all the symbols. The index of the first
2217 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2218 // file offset OFF. Add their names to POOL. Return the new file
2219 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2221 off_t
2222 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2223 size_t dyncount, Stringpool* pool,
2224 unsigned int *plocal_symcount)
2226 off_t ret;
2228 gold_assert(*plocal_symcount != 0);
2229 this->first_global_index_ = *plocal_symcount;
2231 this->dynamic_offset_ = dynoff;
2232 this->first_dynamic_global_index_ = dyn_global_index;
2233 this->dynamic_count_ = dyncount;
2235 if (parameters->target().get_size() == 32)
2237 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2238 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2239 #else
2240 gold_unreachable();
2241 #endif
2243 else if (parameters->target().get_size() == 64)
2245 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2246 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2247 #else
2248 gold_unreachable();
2249 #endif
2251 else
2252 gold_unreachable();
2254 // Now that we have the final symbol table, we can reliably note
2255 // which symbols should get warnings.
2256 this->warnings_.note_warnings(this);
2258 return ret;
2261 // SYM is going into the symbol table at *PINDEX. Add the name to
2262 // POOL, update *PINDEX and *POFF.
2264 template<int size>
2265 void
2266 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2267 unsigned int* pindex, off_t* poff)
2269 sym->set_symtab_index(*pindex);
2270 pool->add(sym->name(), false, NULL);
2271 ++*pindex;
2272 *poff += elfcpp::Elf_sizes<size>::sym_size;
2275 // Set the final value for all the symbols. This is called after
2276 // Layout::finalize, so all the output sections have their final
2277 // address.
2279 template<int size>
2280 off_t
2281 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2282 unsigned int* plocal_symcount)
2284 off = align_address(off, size >> 3);
2285 this->offset_ = off;
2287 unsigned int index = *plocal_symcount;
2288 const unsigned int orig_index = index;
2290 // First do all the symbols which have been forced to be local, as
2291 // they must appear before all global symbols.
2292 for (Forced_locals::iterator p = this->forced_locals_.begin();
2293 p != this->forced_locals_.end();
2294 ++p)
2296 Symbol* sym = *p;
2297 gold_assert(sym->is_forced_local());
2298 if (this->sized_finalize_symbol<size>(sym))
2300 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2301 ++*plocal_symcount;
2305 // Now do all the remaining symbols.
2306 for (Symbol_table_type::iterator p = this->table_.begin();
2307 p != this->table_.end();
2308 ++p)
2310 Symbol* sym = p->second;
2311 if (this->sized_finalize_symbol<size>(sym))
2312 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2315 this->output_count_ = index - orig_index;
2317 return off;
2320 // Finalize the symbol SYM. This returns true if the symbol should be
2321 // added to the symbol table, false otherwise.
2323 template<int size>
2324 bool
2325 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2327 typedef typename Sized_symbol<size>::Value_type Value_type;
2329 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2331 // The default version of a symbol may appear twice in the symbol
2332 // table. We only need to finalize it once.
2333 if (sym->has_symtab_index())
2334 return false;
2336 if (!sym->in_reg())
2338 gold_assert(!sym->has_symtab_index());
2339 sym->set_symtab_index(-1U);
2340 gold_assert(sym->dynsym_index() == -1U);
2341 return false;
2344 Value_type value;
2346 switch (sym->source())
2348 case Symbol::FROM_OBJECT:
2350 bool is_ordinary;
2351 unsigned int shndx = sym->shndx(&is_ordinary);
2353 // FIXME: We need some target specific support here.
2354 if (!is_ordinary
2355 && shndx != elfcpp::SHN_ABS
2356 && shndx != elfcpp::SHN_COMMON)
2358 gold_error(_("%s: unsupported symbol section 0x%x"),
2359 sym->demangled_name().c_str(), shndx);
2360 shndx = elfcpp::SHN_UNDEF;
2363 Object* symobj = sym->object();
2364 if (symobj->is_dynamic())
2366 value = 0;
2367 shndx = elfcpp::SHN_UNDEF;
2369 else if (symobj->pluginobj() != NULL)
2371 value = 0;
2372 shndx = elfcpp::SHN_UNDEF;
2374 else if (shndx == elfcpp::SHN_UNDEF)
2375 value = 0;
2376 else if (!is_ordinary
2377 && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2378 value = sym->value();
2379 else
2381 Relobj* relobj = static_cast<Relobj*>(symobj);
2382 Output_section* os = relobj->output_section(shndx);
2384 if (os == NULL)
2386 sym->set_symtab_index(-1U);
2387 bool static_or_reloc = (parameters->doing_static_link() ||
2388 parameters->options().relocatable());
2389 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2391 return false;
2394 uint64_t secoff64 = relobj->output_section_offset(shndx);
2395 if (secoff64 == -1ULL)
2397 // The section needs special handling (e.g., a merge section).
2398 value = os->output_address(relobj, shndx, sym->value());
2400 else
2402 Value_type secoff =
2403 convert_types<Value_type, uint64_t>(secoff64);
2404 if (sym->type() == elfcpp::STT_TLS)
2405 value = sym->value() + os->tls_offset() + secoff;
2406 else
2407 value = sym->value() + os->address() + secoff;
2411 break;
2413 case Symbol::IN_OUTPUT_DATA:
2415 Output_data* od = sym->output_data();
2416 value = sym->value();
2417 if (sym->type() != elfcpp::STT_TLS)
2418 value += od->address();
2419 else
2421 Output_section* os = od->output_section();
2422 gold_assert(os != NULL);
2423 value += os->tls_offset() + (od->address() - os->address());
2425 if (sym->offset_is_from_end())
2426 value += od->data_size();
2428 break;
2430 case Symbol::IN_OUTPUT_SEGMENT:
2432 Output_segment* os = sym->output_segment();
2433 value = sym->value();
2434 if (sym->type() != elfcpp::STT_TLS)
2435 value += os->vaddr();
2436 switch (sym->offset_base())
2438 case Symbol::SEGMENT_START:
2439 break;
2440 case Symbol::SEGMENT_END:
2441 value += os->memsz();
2442 break;
2443 case Symbol::SEGMENT_BSS:
2444 value += os->filesz();
2445 break;
2446 default:
2447 gold_unreachable();
2450 break;
2452 case Symbol::IS_CONSTANT:
2453 value = sym->value();
2454 break;
2456 case Symbol::IS_UNDEFINED:
2457 value = 0;
2458 break;
2460 default:
2461 gold_unreachable();
2464 sym->set_value(value);
2466 if (parameters->options().strip_all())
2468 sym->set_symtab_index(-1U);
2469 return false;
2472 return true;
2475 // Write out the global symbols.
2477 void
2478 Symbol_table::write_globals(const Stringpool* sympool,
2479 const Stringpool* dynpool,
2480 Output_symtab_xindex* symtab_xindex,
2481 Output_symtab_xindex* dynsym_xindex,
2482 Output_file* of) const
2484 switch (parameters->size_and_endianness())
2486 #ifdef HAVE_TARGET_32_LITTLE
2487 case Parameters::TARGET_32_LITTLE:
2488 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2489 dynsym_xindex, of);
2490 break;
2491 #endif
2492 #ifdef HAVE_TARGET_32_BIG
2493 case Parameters::TARGET_32_BIG:
2494 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2495 dynsym_xindex, of);
2496 break;
2497 #endif
2498 #ifdef HAVE_TARGET_64_LITTLE
2499 case Parameters::TARGET_64_LITTLE:
2500 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2501 dynsym_xindex, of);
2502 break;
2503 #endif
2504 #ifdef HAVE_TARGET_64_BIG
2505 case Parameters::TARGET_64_BIG:
2506 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2507 dynsym_xindex, of);
2508 break;
2509 #endif
2510 default:
2511 gold_unreachable();
2515 // Write out the global symbols.
2517 template<int size, bool big_endian>
2518 void
2519 Symbol_table::sized_write_globals(const Stringpool* sympool,
2520 const Stringpool* dynpool,
2521 Output_symtab_xindex* symtab_xindex,
2522 Output_symtab_xindex* dynsym_xindex,
2523 Output_file* of) const
2525 const Target& target = parameters->target();
2527 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2529 const unsigned int output_count = this->output_count_;
2530 const section_size_type oview_size = output_count * sym_size;
2531 const unsigned int first_global_index = this->first_global_index_;
2532 unsigned char* psyms;
2533 if (this->offset_ == 0 || output_count == 0)
2534 psyms = NULL;
2535 else
2536 psyms = of->get_output_view(this->offset_, oview_size);
2538 const unsigned int dynamic_count = this->dynamic_count_;
2539 const section_size_type dynamic_size = dynamic_count * sym_size;
2540 const unsigned int first_dynamic_global_index =
2541 this->first_dynamic_global_index_;
2542 unsigned char* dynamic_view;
2543 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2544 dynamic_view = NULL;
2545 else
2546 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2548 for (Symbol_table_type::const_iterator p = this->table_.begin();
2549 p != this->table_.end();
2550 ++p)
2552 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2554 // Possibly warn about unresolved symbols in shared libraries.
2555 this->warn_about_undefined_dynobj_symbol(sym);
2557 unsigned int sym_index = sym->symtab_index();
2558 unsigned int dynsym_index;
2559 if (dynamic_view == NULL)
2560 dynsym_index = -1U;
2561 else
2562 dynsym_index = sym->dynsym_index();
2564 if (sym_index == -1U && dynsym_index == -1U)
2566 // This symbol is not included in the output file.
2567 continue;
2570 unsigned int shndx;
2571 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2572 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2573 switch (sym->source())
2575 case Symbol::FROM_OBJECT:
2577 bool is_ordinary;
2578 unsigned int in_shndx = sym->shndx(&is_ordinary);
2580 // FIXME: We need some target specific support here.
2581 if (!is_ordinary
2582 && in_shndx != elfcpp::SHN_ABS
2583 && in_shndx != elfcpp::SHN_COMMON)
2585 gold_error(_("%s: unsupported symbol section 0x%x"),
2586 sym->demangled_name().c_str(), in_shndx);
2587 shndx = in_shndx;
2589 else
2591 Object* symobj = sym->object();
2592 if (symobj->is_dynamic())
2594 if (sym->needs_dynsym_value())
2595 dynsym_value = target.dynsym_value(sym);
2596 shndx = elfcpp::SHN_UNDEF;
2598 else if (symobj->pluginobj() != NULL)
2599 shndx = elfcpp::SHN_UNDEF;
2600 else if (in_shndx == elfcpp::SHN_UNDEF
2601 || (!is_ordinary
2602 && (in_shndx == elfcpp::SHN_ABS
2603 || in_shndx == elfcpp::SHN_COMMON)))
2604 shndx = in_shndx;
2605 else
2607 Relobj* relobj = static_cast<Relobj*>(symobj);
2608 Output_section* os = relobj->output_section(in_shndx);
2609 gold_assert(os != NULL);
2610 shndx = os->out_shndx();
2612 if (shndx >= elfcpp::SHN_LORESERVE)
2614 if (sym_index != -1U)
2615 symtab_xindex->add(sym_index, shndx);
2616 if (dynsym_index != -1U)
2617 dynsym_xindex->add(dynsym_index, shndx);
2618 shndx = elfcpp::SHN_XINDEX;
2621 // In object files symbol values are section
2622 // relative.
2623 if (parameters->options().relocatable())
2624 sym_value -= os->address();
2628 break;
2630 case Symbol::IN_OUTPUT_DATA:
2631 shndx = sym->output_data()->out_shndx();
2632 if (shndx >= elfcpp::SHN_LORESERVE)
2634 if (sym_index != -1U)
2635 symtab_xindex->add(sym_index, shndx);
2636 if (dynsym_index != -1U)
2637 dynsym_xindex->add(dynsym_index, shndx);
2638 shndx = elfcpp::SHN_XINDEX;
2640 break;
2642 case Symbol::IN_OUTPUT_SEGMENT:
2643 shndx = elfcpp::SHN_ABS;
2644 break;
2646 case Symbol::IS_CONSTANT:
2647 shndx = elfcpp::SHN_ABS;
2648 break;
2650 case Symbol::IS_UNDEFINED:
2651 shndx = elfcpp::SHN_UNDEF;
2652 break;
2654 default:
2655 gold_unreachable();
2658 if (sym_index != -1U)
2660 sym_index -= first_global_index;
2661 gold_assert(sym_index < output_count);
2662 unsigned char* ps = psyms + (sym_index * sym_size);
2663 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2664 sympool, ps);
2667 if (dynsym_index != -1U)
2669 dynsym_index -= first_dynamic_global_index;
2670 gold_assert(dynsym_index < dynamic_count);
2671 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2672 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2673 dynpool, pd);
2677 of->write_output_view(this->offset_, oview_size, psyms);
2678 if (dynamic_view != NULL)
2679 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2682 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2683 // strtab holding the name.
2685 template<int size, bool big_endian>
2686 void
2687 Symbol_table::sized_write_symbol(
2688 Sized_symbol<size>* sym,
2689 typename elfcpp::Elf_types<size>::Elf_Addr value,
2690 unsigned int shndx,
2691 const Stringpool* pool,
2692 unsigned char* p) const
2694 elfcpp::Sym_write<size, big_endian> osym(p);
2695 osym.put_st_name(pool->get_offset(sym->name()));
2696 osym.put_st_value(value);
2697 // Use a symbol size of zero for undefined symbols from shared libraries.
2698 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2699 osym.put_st_size(0);
2700 else
2701 osym.put_st_size(sym->symsize());
2702 // A version script may have overridden the default binding.
2703 if (sym->is_forced_local())
2704 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2705 else
2706 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2707 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2708 osym.put_st_shndx(shndx);
2711 // Check for unresolved symbols in shared libraries. This is
2712 // controlled by the --allow-shlib-undefined option.
2714 // We only warn about libraries for which we have seen all the
2715 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2716 // which were not seen in this link. If we didn't see a DT_NEEDED
2717 // entry, we aren't going to be able to reliably report whether the
2718 // symbol is undefined.
2720 // We also don't warn about libraries found in a system library
2721 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2722 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2723 // can have undefined references satisfied by ld-linux.so.
2725 inline void
2726 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2728 bool dummy;
2729 if (sym->source() == Symbol::FROM_OBJECT
2730 && sym->object()->is_dynamic()
2731 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2732 && sym->binding() != elfcpp::STB_WEAK
2733 && !parameters->options().allow_shlib_undefined()
2734 && !parameters->target().is_defined_by_abi(sym)
2735 && !sym->object()->is_in_system_directory())
2737 // A very ugly cast.
2738 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2739 if (!dynobj->has_unknown_needed_entries())
2740 gold_undefined_symbol(sym);
2744 // Write out a section symbol. Return the update offset.
2746 void
2747 Symbol_table::write_section_symbol(const Output_section *os,
2748 Output_symtab_xindex* symtab_xindex,
2749 Output_file* of,
2750 off_t offset) const
2752 switch (parameters->size_and_endianness())
2754 #ifdef HAVE_TARGET_32_LITTLE
2755 case Parameters::TARGET_32_LITTLE:
2756 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2757 offset);
2758 break;
2759 #endif
2760 #ifdef HAVE_TARGET_32_BIG
2761 case Parameters::TARGET_32_BIG:
2762 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2763 offset);
2764 break;
2765 #endif
2766 #ifdef HAVE_TARGET_64_LITTLE
2767 case Parameters::TARGET_64_LITTLE:
2768 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2769 offset);
2770 break;
2771 #endif
2772 #ifdef HAVE_TARGET_64_BIG
2773 case Parameters::TARGET_64_BIG:
2774 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2775 offset);
2776 break;
2777 #endif
2778 default:
2779 gold_unreachable();
2783 // Write out a section symbol, specialized for size and endianness.
2785 template<int size, bool big_endian>
2786 void
2787 Symbol_table::sized_write_section_symbol(const Output_section* os,
2788 Output_symtab_xindex* symtab_xindex,
2789 Output_file* of,
2790 off_t offset) const
2792 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2794 unsigned char* pov = of->get_output_view(offset, sym_size);
2796 elfcpp::Sym_write<size, big_endian> osym(pov);
2797 osym.put_st_name(0);
2798 if (parameters->options().relocatable())
2799 osym.put_st_value(0);
2800 else
2801 osym.put_st_value(os->address());
2802 osym.put_st_size(0);
2803 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2804 elfcpp::STT_SECTION));
2805 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2807 unsigned int shndx = os->out_shndx();
2808 if (shndx >= elfcpp::SHN_LORESERVE)
2810 symtab_xindex->add(os->symtab_index(), shndx);
2811 shndx = elfcpp::SHN_XINDEX;
2813 osym.put_st_shndx(shndx);
2815 of->write_output_view(offset, sym_size, pov);
2818 // Print statistical information to stderr. This is used for --stats.
2820 void
2821 Symbol_table::print_stats() const
2823 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2824 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2825 program_name, this->table_.size(), this->table_.bucket_count());
2826 #else
2827 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2828 program_name, this->table_.size());
2829 #endif
2830 this->namepool_.print_stats("symbol table stringpool");
2833 // We check for ODR violations by looking for symbols with the same
2834 // name for which the debugging information reports that they were
2835 // defined in different source locations. When comparing the source
2836 // location, we consider instances with the same base filename and
2837 // line number to be the same. This is because different object
2838 // files/shared libraries can include the same header file using
2839 // different paths, and we don't want to report an ODR violation in
2840 // that case.
2842 // This struct is used to compare line information, as returned by
2843 // Dwarf_line_info::one_addr2line. It implements a < comparison
2844 // operator used with std::set.
2846 struct Odr_violation_compare
2848 bool
2849 operator()(const std::string& s1, const std::string& s2) const
2851 std::string::size_type pos1 = s1.rfind('/');
2852 std::string::size_type pos2 = s2.rfind('/');
2853 if (pos1 == std::string::npos
2854 || pos2 == std::string::npos)
2855 return s1 < s2;
2856 return s1.compare(pos1, std::string::npos,
2857 s2, pos2, std::string::npos) < 0;
2861 // Check candidate_odr_violations_ to find symbols with the same name
2862 // but apparently different definitions (different source-file/line-no).
2864 void
2865 Symbol_table::detect_odr_violations(const Task* task,
2866 const char* output_file_name) const
2868 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2869 it != candidate_odr_violations_.end();
2870 ++it)
2872 const char* symbol_name = it->first;
2873 // We use a sorted set so the output is deterministic.
2874 std::set<std::string, Odr_violation_compare> line_nums;
2876 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2877 locs = it->second.begin();
2878 locs != it->second.end();
2879 ++locs)
2881 // We need to lock the object in order to read it. This
2882 // means that we have to run in a singleton Task. If we
2883 // want to run this in a general Task for better
2884 // performance, we will need one Task for object, plus
2885 // appropriate locking to ensure that we don't conflict with
2886 // other uses of the object. Also note, one_addr2line is not
2887 // currently thread-safe.
2888 Task_lock_obj<Object> tl(task, locs->object);
2889 // 16 is the size of the object-cache that one_addr2line should use.
2890 std::string lineno = Dwarf_line_info::one_addr2line(
2891 locs->object, locs->shndx, locs->offset, 16);
2892 if (!lineno.empty())
2893 line_nums.insert(lineno);
2896 if (line_nums.size() > 1)
2898 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2899 "places (possible ODR violation):"),
2900 output_file_name, demangle(symbol_name).c_str());
2901 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2902 it2 != line_nums.end();
2903 ++it2)
2904 fprintf(stderr, " %s\n", it2->c_str());
2907 // We only call one_addr2line() in this function, so we can clear its cache.
2908 Dwarf_line_info::clear_addr2line_cache();
2911 // Warnings functions.
2913 // Add a new warning.
2915 void
2916 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2917 const std::string& warning)
2919 name = symtab->canonicalize_name(name);
2920 this->warnings_[name].set(obj, warning);
2923 // Look through the warnings and mark the symbols for which we should
2924 // warn. This is called during Layout::finalize when we know the
2925 // sources for all the symbols.
2927 void
2928 Warnings::note_warnings(Symbol_table* symtab)
2930 for (Warning_table::iterator p = this->warnings_.begin();
2931 p != this->warnings_.end();
2932 ++p)
2934 Symbol* sym = symtab->lookup(p->first, NULL);
2935 if (sym != NULL
2936 && sym->source() == Symbol::FROM_OBJECT
2937 && sym->object() == p->second.object)
2938 sym->set_has_warning();
2942 // Issue a warning. This is called when we see a relocation against a
2943 // symbol for which has a warning.
2945 template<int size, bool big_endian>
2946 void
2947 Warnings::issue_warning(const Symbol* sym,
2948 const Relocate_info<size, big_endian>* relinfo,
2949 size_t relnum, off_t reloffset) const
2951 gold_assert(sym->has_warning());
2952 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2953 gold_assert(p != this->warnings_.end());
2954 gold_warning_at_location(relinfo, relnum, reloffset,
2955 "%s", p->second.text.c_str());
2958 // Instantiate the templates we need. We could use the configure
2959 // script to restrict this to only the ones needed for implemented
2960 // targets.
2962 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2963 template
2964 void
2965 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2966 #endif
2968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2969 template
2970 void
2971 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2972 #endif
2974 #ifdef HAVE_TARGET_32_LITTLE
2975 template
2976 void
2977 Symbol_table::add_from_relobj<32, false>(
2978 Sized_relobj<32, false>* relobj,
2979 const unsigned char* syms,
2980 size_t count,
2981 size_t symndx_offset,
2982 const char* sym_names,
2983 size_t sym_name_size,
2984 Sized_relobj<32, false>::Symbols* sympointers,
2985 size_t* defined);
2986 #endif
2988 #ifdef HAVE_TARGET_32_BIG
2989 template
2990 void
2991 Symbol_table::add_from_relobj<32, true>(
2992 Sized_relobj<32, true>* relobj,
2993 const unsigned char* syms,
2994 size_t count,
2995 size_t symndx_offset,
2996 const char* sym_names,
2997 size_t sym_name_size,
2998 Sized_relobj<32, true>::Symbols* sympointers,
2999 size_t* defined);
3000 #endif
3002 #ifdef HAVE_TARGET_64_LITTLE
3003 template
3004 void
3005 Symbol_table::add_from_relobj<64, false>(
3006 Sized_relobj<64, false>* relobj,
3007 const unsigned char* syms,
3008 size_t count,
3009 size_t symndx_offset,
3010 const char* sym_names,
3011 size_t sym_name_size,
3012 Sized_relobj<64, false>::Symbols* sympointers,
3013 size_t* defined);
3014 #endif
3016 #ifdef HAVE_TARGET_64_BIG
3017 template
3018 void
3019 Symbol_table::add_from_relobj<64, true>(
3020 Sized_relobj<64, true>* relobj,
3021 const unsigned char* syms,
3022 size_t count,
3023 size_t symndx_offset,
3024 const char* sym_names,
3025 size_t sym_name_size,
3026 Sized_relobj<64, true>::Symbols* sympointers,
3027 size_t* defined);
3028 #endif
3030 #ifdef HAVE_TARGET_32_LITTLE
3031 template
3032 Symbol*
3033 Symbol_table::add_from_pluginobj<32, false>(
3034 Sized_pluginobj<32, false>* obj,
3035 const char* name,
3036 const char* ver,
3037 elfcpp::Sym<32, false>* sym);
3038 #endif
3040 #ifdef HAVE_TARGET_32_BIG
3041 template
3042 Symbol*
3043 Symbol_table::add_from_pluginobj<32, true>(
3044 Sized_pluginobj<32, true>* obj,
3045 const char* name,
3046 const char* ver,
3047 elfcpp::Sym<32, true>* sym);
3048 #endif
3050 #ifdef HAVE_TARGET_64_LITTLE
3051 template
3052 Symbol*
3053 Symbol_table::add_from_pluginobj<64, false>(
3054 Sized_pluginobj<64, false>* obj,
3055 const char* name,
3056 const char* ver,
3057 elfcpp::Sym<64, false>* sym);
3058 #endif
3060 #ifdef HAVE_TARGET_64_BIG
3061 template
3062 Symbol*
3063 Symbol_table::add_from_pluginobj<64, true>(
3064 Sized_pluginobj<64, true>* obj,
3065 const char* name,
3066 const char* ver,
3067 elfcpp::Sym<64, true>* sym);
3068 #endif
3070 #ifdef HAVE_TARGET_32_LITTLE
3071 template
3072 void
3073 Symbol_table::add_from_dynobj<32, false>(
3074 Sized_dynobj<32, false>* dynobj,
3075 const unsigned char* syms,
3076 size_t count,
3077 const char* sym_names,
3078 size_t sym_name_size,
3079 const unsigned char* versym,
3080 size_t versym_size,
3081 const std::vector<const char*>* version_map,
3082 Sized_relobj<32, false>::Symbols* sympointers,
3083 size_t* defined);
3084 #endif
3086 #ifdef HAVE_TARGET_32_BIG
3087 template
3088 void
3089 Symbol_table::add_from_dynobj<32, true>(
3090 Sized_dynobj<32, true>* dynobj,
3091 const unsigned char* syms,
3092 size_t count,
3093 const char* sym_names,
3094 size_t sym_name_size,
3095 const unsigned char* versym,
3096 size_t versym_size,
3097 const std::vector<const char*>* version_map,
3098 Sized_relobj<32, true>::Symbols* sympointers,
3099 size_t* defined);
3100 #endif
3102 #ifdef HAVE_TARGET_64_LITTLE
3103 template
3104 void
3105 Symbol_table::add_from_dynobj<64, false>(
3106 Sized_dynobj<64, false>* dynobj,
3107 const unsigned char* syms,
3108 size_t count,
3109 const char* sym_names,
3110 size_t sym_name_size,
3111 const unsigned char* versym,
3112 size_t versym_size,
3113 const std::vector<const char*>* version_map,
3114 Sized_relobj<64, false>::Symbols* sympointers,
3115 size_t* defined);
3116 #endif
3118 #ifdef HAVE_TARGET_64_BIG
3119 template
3120 void
3121 Symbol_table::add_from_dynobj<64, true>(
3122 Sized_dynobj<64, true>* dynobj,
3123 const unsigned char* syms,
3124 size_t count,
3125 const char* sym_names,
3126 size_t sym_name_size,
3127 const unsigned char* versym,
3128 size_t versym_size,
3129 const std::vector<const char*>* version_map,
3130 Sized_relobj<64, true>::Symbols* sympointers,
3131 size_t* defined);
3132 #endif
3134 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3135 template
3136 void
3137 Symbol_table::define_with_copy_reloc<32>(
3138 Sized_symbol<32>* sym,
3139 Output_data* posd,
3140 elfcpp::Elf_types<32>::Elf_Addr value);
3141 #endif
3143 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3144 template
3145 void
3146 Symbol_table::define_with_copy_reloc<64>(
3147 Sized_symbol<64>* sym,
3148 Output_data* posd,
3149 elfcpp::Elf_types<64>::Elf_Addr value);
3150 #endif
3152 #ifdef HAVE_TARGET_32_LITTLE
3153 template
3154 void
3155 Warnings::issue_warning<32, false>(const Symbol* sym,
3156 const Relocate_info<32, false>* relinfo,
3157 size_t relnum, off_t reloffset) const;
3158 #endif
3160 #ifdef HAVE_TARGET_32_BIG
3161 template
3162 void
3163 Warnings::issue_warning<32, true>(const Symbol* sym,
3164 const Relocate_info<32, true>* relinfo,
3165 size_t relnum, off_t reloffset) const;
3166 #endif
3168 #ifdef HAVE_TARGET_64_LITTLE
3169 template
3170 void
3171 Warnings::issue_warning<64, false>(const Symbol* sym,
3172 const Relocate_info<64, false>* relinfo,
3173 size_t relnum, off_t reloffset) const;
3174 #endif
3176 #ifdef HAVE_TARGET_64_BIG
3177 template
3178 void
3179 Warnings::issue_warning<64, true>(const Symbol* sym,
3180 const Relocate_info<64, true>* relinfo,
3181 size_t relnum, off_t reloffset) const;
3182 #endif
3184 } // End namespace gold.