2009-03-23 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / gold / resolve.cc
blobbd327e88a58466f8d8b53fdd0cbd470eae937640
1 // resolve.cc -- symbol resolution for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
31 namespace gold
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
39 inline void
40 Symbol::override_version(const char* version)
42 if (version == NULL)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
54 else
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
109 // Override the fields in Sized_symbol.
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
146 while (ssym != tosym);
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
176 unsigned int bits;
178 switch (binding)
180 case elfcpp::STB_GLOBAL:
181 bits = global_flag;
182 break;
184 case elfcpp::STB_WEAK:
185 bits = weak_flag;
186 break;
188 case elfcpp::STB_LOCAL:
189 // We should only see externally visible symbols in the symbol
190 // table.
191 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
192 bits = global_flag;
194 default:
195 // Any target which wants to handle STB_LOOS, etc., needs to
196 // define a resolve method.
197 gold_error(_("unsupported symbol binding"));
198 bits = global_flag;
201 if (is_dynamic)
202 bits |= dynamic_flag;
203 else
204 bits |= regular_flag;
206 switch (shndx)
208 case elfcpp::SHN_UNDEF:
209 bits |= undef_flag;
210 break;
212 case elfcpp::SHN_COMMON:
213 if (!is_ordinary)
214 bits |= common_flag;
215 break;
217 default:
218 if (type == elfcpp::STT_COMMON)
219 bits |= common_flag;
220 else
221 bits |= def_flag;
222 break;
225 return bits;
228 // Resolve a symbol. This is called the second and subsequent times
229 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
230 // section index for SYM, possibly adjusted for many sections.
231 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
232 // than a special code. ORIG_ST_SHNDX is the original section index,
233 // before any munging because of discarded sections, except that all
234 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
235 // the version of SYM.
237 template<int size, bool big_endian>
238 void
239 Symbol_table::resolve(Sized_symbol<size>* to,
240 const elfcpp::Sym<size, big_endian>& sym,
241 unsigned int st_shndx, bool is_ordinary,
242 unsigned int orig_st_shndx,
243 Object* object, const char* version)
245 if (object->target()->has_resolve())
247 Sized_target<size, big_endian>* sized_target;
248 sized_target = object->sized_target<size, big_endian>();
249 sized_target->resolve(to, sym, object, version);
250 return;
253 if (!object->is_dynamic())
255 // Record that we've seen this symbol in a regular object.
256 to->set_in_reg();
258 else
260 // Record that we've seen this symbol in a dynamic object.
261 to->set_in_dyn();
264 // Record if we've seen this symbol in a real ELF object (i.e., the
265 // symbol is referenced from outside the world known to the plugin).
266 if (object->pluginobj() == NULL)
267 to->set_in_real_elf();
269 // If we're processing replacement files, allow new symbols to override
270 // the placeholders from the plugin objects.
271 if (to->source() == Symbol::FROM_OBJECT)
273 Pluginobj* obj = to->object()->pluginobj();
274 if (obj != NULL
275 && parameters->options().plugins()->in_replacement_phase())
277 this->override(to, sym, st_shndx, is_ordinary, object, version);
278 return;
282 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
283 object->is_dynamic(),
284 st_shndx, is_ordinary,
285 sym.get_st_type());
287 bool adjust_common_sizes;
288 if (Symbol_table::should_override(to, frombits, object,
289 &adjust_common_sizes))
291 typename Sized_symbol<size>::Size_type tosize = to->symsize();
293 this->override(to, sym, st_shndx, is_ordinary, object, version);
295 if (adjust_common_sizes && tosize > to->symsize())
296 to->set_symsize(tosize);
298 else
300 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
301 to->set_symsize(sym.get_st_size());
302 // The ELF ABI says that even for a reference to a symbol we
303 // merge the visibility.
304 to->override_visibility(sym.get_st_visibility());
307 // A new weak undefined reference, merging with an old weak
308 // reference, could be a One Definition Rule (ODR) violation --
309 // especially if the types or sizes of the references differ. We'll
310 // store such pairs and look them up later to make sure they
311 // actually refer to the same lines of code. (Note: not all ODR
312 // violations can be found this way, and not everything this finds
313 // is an ODR violation. But it's helpful to warn about.)
314 bool to_is_ordinary;
315 if (parameters->options().detect_odr_violations()
316 && sym.get_st_bind() == elfcpp::STB_WEAK
317 && to->binding() == elfcpp::STB_WEAK
318 && orig_st_shndx != elfcpp::SHN_UNDEF
319 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
320 && to_is_ordinary
321 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
322 && to->symsize() != 0
323 && (sym.get_st_type() != to->type()
324 || sym.get_st_size() != to->symsize())
325 // C does not have a concept of ODR, so we only need to do this
326 // on C++ symbols. These have (mangled) names starting with _Z.
327 && to->name()[0] == '_' && to->name()[1] == 'Z')
329 Symbol_location fromloc
330 = { object, orig_st_shndx, sym.get_st_value() };
331 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
332 to->value() };
333 this->candidate_odr_violations_[to->name()].insert(fromloc);
334 this->candidate_odr_violations_[to->name()].insert(toloc);
338 // Handle the core of symbol resolution. This is called with the
339 // existing symbol, TO, and a bitflag describing the new symbol. This
340 // returns true if we should override the existing symbol with the new
341 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
342 // true if we should set the symbol size to the maximum of the TO and
343 // FROM sizes. It handles error conditions.
345 bool
346 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
347 Object* object, bool* adjust_common_sizes)
349 *adjust_common_sizes = false;
351 unsigned int tobits;
352 if (to->source() == Symbol::IS_UNDEFINED)
353 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
354 to->type());
355 else if (to->source() != Symbol::FROM_OBJECT)
356 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
357 to->type());
358 else
360 bool is_ordinary;
361 unsigned int shndx = to->shndx(&is_ordinary);
362 tobits = symbol_to_bits(to->binding(),
363 to->object()->is_dynamic(),
364 shndx,
365 is_ordinary,
366 to->type());
369 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
371 // We use a giant switch table for symbol resolution. This code is
372 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
373 // cases; 3) it is easy to change the handling of a particular case.
374 // The alternative would be a series of conditionals, but it is easy
375 // to get the ordering wrong. This could also be done as a table,
376 // but that is no easier to understand than this large switch
377 // statement.
379 // These are the values generated by the bit codes.
380 enum
382 DEF = global_flag | regular_flag | def_flag,
383 WEAK_DEF = weak_flag | regular_flag | def_flag,
384 DYN_DEF = global_flag | dynamic_flag | def_flag,
385 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
386 UNDEF = global_flag | regular_flag | undef_flag,
387 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
388 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
389 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
390 COMMON = global_flag | regular_flag | common_flag,
391 WEAK_COMMON = weak_flag | regular_flag | common_flag,
392 DYN_COMMON = global_flag | dynamic_flag | common_flag,
393 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
396 switch (tobits * 16 + frombits)
398 case DEF * 16 + DEF:
399 // Two definitions of the same symbol.
401 // If either symbol is defined by an object included using
402 // --just-symbols, then don't warn. This is for compatibility
403 // with the GNU linker. FIXME: This is a hack.
404 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
405 || object->just_symbols())
406 return false;
408 // FIXME: Do a better job of reporting locations.
409 gold_error(_("%s: multiple definition of %s"),
410 object != NULL ? object->name().c_str() : _("command line"),
411 to->demangled_name().c_str());
412 gold_error(_("%s: previous definition here"),
413 (to->source() == Symbol::FROM_OBJECT
414 ? to->object()->name().c_str()
415 : _("command line")));
416 return false;
418 case WEAK_DEF * 16 + DEF:
419 // We've seen a weak definition, and now we see a strong
420 // definition. In the original SVR4 linker, this was treated as
421 // a multiple definition error. In the Solaris linker and the
422 // GNU linker, a weak definition followed by a regular
423 // definition causes the weak definition to be overridden. We
424 // are currently compatible with the GNU linker. In the future
425 // we should add a target specific option to change this.
426 // FIXME.
427 return true;
429 case DYN_DEF * 16 + DEF:
430 case DYN_WEAK_DEF * 16 + DEF:
431 // We've seen a definition in a dynamic object, and now we see a
432 // definition in a regular object. The definition in the
433 // regular object overrides the definition in the dynamic
434 // object.
435 return true;
437 case UNDEF * 16 + DEF:
438 case WEAK_UNDEF * 16 + DEF:
439 case DYN_UNDEF * 16 + DEF:
440 case DYN_WEAK_UNDEF * 16 + DEF:
441 // We've seen an undefined reference, and now we see a
442 // definition. We use the definition.
443 return true;
445 case COMMON * 16 + DEF:
446 case WEAK_COMMON * 16 + DEF:
447 case DYN_COMMON * 16 + DEF:
448 case DYN_WEAK_COMMON * 16 + DEF:
449 // We've seen a common symbol and now we see a definition. The
450 // definition overrides. FIXME: We should optionally issue, version a
451 // warning.
452 return true;
454 case DEF * 16 + WEAK_DEF:
455 case WEAK_DEF * 16 + WEAK_DEF:
456 // We've seen a definition and now we see a weak definition. We
457 // ignore the new weak definition.
458 return false;
460 case DYN_DEF * 16 + WEAK_DEF:
461 case DYN_WEAK_DEF * 16 + WEAK_DEF:
462 // We've seen a dynamic definition and now we see a regular weak
463 // definition. The regular weak definition overrides.
464 return true;
466 case UNDEF * 16 + WEAK_DEF:
467 case WEAK_UNDEF * 16 + WEAK_DEF:
468 case DYN_UNDEF * 16 + WEAK_DEF:
469 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
470 // A weak definition of a currently undefined symbol.
471 return true;
473 case COMMON * 16 + WEAK_DEF:
474 case WEAK_COMMON * 16 + WEAK_DEF:
475 // A weak definition does not override a common definition.
476 return false;
478 case DYN_COMMON * 16 + WEAK_DEF:
479 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
480 // A weak definition does override a definition in a dynamic
481 // object. FIXME: We should optionally issue a warning.
482 return true;
484 case DEF * 16 + DYN_DEF:
485 case WEAK_DEF * 16 + DYN_DEF:
486 case DYN_DEF * 16 + DYN_DEF:
487 case DYN_WEAK_DEF * 16 + DYN_DEF:
488 // Ignore a dynamic definition if we already have a definition.
489 return false;
491 case UNDEF * 16 + DYN_DEF:
492 case WEAK_UNDEF * 16 + DYN_DEF:
493 case DYN_UNDEF * 16 + DYN_DEF:
494 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
495 // Use a dynamic definition if we have a reference.
496 return true;
498 case COMMON * 16 + DYN_DEF:
499 case WEAK_COMMON * 16 + DYN_DEF:
500 case DYN_COMMON * 16 + DYN_DEF:
501 case DYN_WEAK_COMMON * 16 + DYN_DEF:
502 // Ignore a dynamic definition if we already have a common
503 // definition.
504 return false;
506 case DEF * 16 + DYN_WEAK_DEF:
507 case WEAK_DEF * 16 + DYN_WEAK_DEF:
508 case DYN_DEF * 16 + DYN_WEAK_DEF:
509 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
510 // Ignore a weak dynamic definition if we already have a
511 // definition.
512 return false;
514 case UNDEF * 16 + DYN_WEAK_DEF:
515 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
516 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
517 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
518 // Use a weak dynamic definition if we have a reference.
519 return true;
521 case COMMON * 16 + DYN_WEAK_DEF:
522 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
523 case DYN_COMMON * 16 + DYN_WEAK_DEF:
524 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
525 // Ignore a weak dynamic definition if we already have a common
526 // definition.
527 return false;
529 case DEF * 16 + UNDEF:
530 case WEAK_DEF * 16 + UNDEF:
531 case DYN_DEF * 16 + UNDEF:
532 case DYN_WEAK_DEF * 16 + UNDEF:
533 case UNDEF * 16 + UNDEF:
534 // A new undefined reference tells us nothing.
535 return false;
537 case WEAK_UNDEF * 16 + UNDEF:
538 case DYN_UNDEF * 16 + UNDEF:
539 case DYN_WEAK_UNDEF * 16 + UNDEF:
540 // A strong undef overrides a dynamic or weak undef.
541 return true;
543 case COMMON * 16 + UNDEF:
544 case WEAK_COMMON * 16 + UNDEF:
545 case DYN_COMMON * 16 + UNDEF:
546 case DYN_WEAK_COMMON * 16 + UNDEF:
547 // A new undefined reference tells us nothing.
548 return false;
550 case DEF * 16 + WEAK_UNDEF:
551 case WEAK_DEF * 16 + WEAK_UNDEF:
552 case DYN_DEF * 16 + WEAK_UNDEF:
553 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
554 case UNDEF * 16 + WEAK_UNDEF:
555 case WEAK_UNDEF * 16 + WEAK_UNDEF:
556 case DYN_UNDEF * 16 + WEAK_UNDEF:
557 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
558 case COMMON * 16 + WEAK_UNDEF:
559 case WEAK_COMMON * 16 + WEAK_UNDEF:
560 case DYN_COMMON * 16 + WEAK_UNDEF:
561 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
562 // A new weak undefined reference tells us nothing.
563 return false;
565 case DEF * 16 + DYN_UNDEF:
566 case WEAK_DEF * 16 + DYN_UNDEF:
567 case DYN_DEF * 16 + DYN_UNDEF:
568 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
569 case UNDEF * 16 + DYN_UNDEF:
570 case WEAK_UNDEF * 16 + DYN_UNDEF:
571 case DYN_UNDEF * 16 + DYN_UNDEF:
572 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
573 case COMMON * 16 + DYN_UNDEF:
574 case WEAK_COMMON * 16 + DYN_UNDEF:
575 case DYN_COMMON * 16 + DYN_UNDEF:
576 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
577 // A new dynamic undefined reference tells us nothing.
578 return false;
580 case DEF * 16 + DYN_WEAK_UNDEF:
581 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
582 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
583 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
584 case UNDEF * 16 + DYN_WEAK_UNDEF:
585 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
586 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
587 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
588 case COMMON * 16 + DYN_WEAK_UNDEF:
589 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
590 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
591 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
592 // A new weak dynamic undefined reference tells us nothing.
593 return false;
595 case DEF * 16 + COMMON:
596 // A common symbol does not override a definition.
597 return false;
599 case WEAK_DEF * 16 + COMMON:
600 case DYN_DEF * 16 + COMMON:
601 case DYN_WEAK_DEF * 16 + COMMON:
602 // A common symbol does override a weak definition or a dynamic
603 // definition.
604 return true;
606 case UNDEF * 16 + COMMON:
607 case WEAK_UNDEF * 16 + COMMON:
608 case DYN_UNDEF * 16 + COMMON:
609 case DYN_WEAK_UNDEF * 16 + COMMON:
610 // A common symbol is a definition for a reference.
611 return true;
613 case COMMON * 16 + COMMON:
614 // Set the size to the maximum.
615 *adjust_common_sizes = true;
616 return false;
618 case WEAK_COMMON * 16 + COMMON:
619 // I'm not sure just what a weak common symbol means, but
620 // presumably it can be overridden by a regular common symbol.
621 return true;
623 case DYN_COMMON * 16 + COMMON:
624 case DYN_WEAK_COMMON * 16 + COMMON:
625 // Use the real common symbol, but adjust the size if necessary.
626 *adjust_common_sizes = true;
627 return true;
629 case DEF * 16 + WEAK_COMMON:
630 case WEAK_DEF * 16 + WEAK_COMMON:
631 case DYN_DEF * 16 + WEAK_COMMON:
632 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
633 // Whatever a weak common symbol is, it won't override a
634 // definition.
635 return false;
637 case UNDEF * 16 + WEAK_COMMON:
638 case WEAK_UNDEF * 16 + WEAK_COMMON:
639 case DYN_UNDEF * 16 + WEAK_COMMON:
640 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
641 // A weak common symbol is better than an undefined symbol.
642 return true;
644 case COMMON * 16 + WEAK_COMMON:
645 case WEAK_COMMON * 16 + WEAK_COMMON:
646 case DYN_COMMON * 16 + WEAK_COMMON:
647 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
648 // Ignore a weak common symbol in the presence of a real common
649 // symbol.
650 return false;
652 case DEF * 16 + DYN_COMMON:
653 case WEAK_DEF * 16 + DYN_COMMON:
654 case DYN_DEF * 16 + DYN_COMMON:
655 case DYN_WEAK_DEF * 16 + DYN_COMMON:
656 // Ignore a dynamic common symbol in the presence of a
657 // definition.
658 return false;
660 case UNDEF * 16 + DYN_COMMON:
661 case WEAK_UNDEF * 16 + DYN_COMMON:
662 case DYN_UNDEF * 16 + DYN_COMMON:
663 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
664 // A dynamic common symbol is a definition of sorts.
665 return true;
667 case COMMON * 16 + DYN_COMMON:
668 case WEAK_COMMON * 16 + DYN_COMMON:
669 case DYN_COMMON * 16 + DYN_COMMON:
670 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
671 // Set the size to the maximum.
672 *adjust_common_sizes = true;
673 return false;
675 case DEF * 16 + DYN_WEAK_COMMON:
676 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
677 case DYN_DEF * 16 + DYN_WEAK_COMMON:
678 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
679 // A common symbol is ignored in the face of a definition.
680 return false;
682 case UNDEF * 16 + DYN_WEAK_COMMON:
683 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
684 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
685 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
686 // I guess a weak common symbol is better than a definition.
687 return true;
689 case COMMON * 16 + DYN_WEAK_COMMON:
690 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
691 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
692 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
693 // Set the size to the maximum.
694 *adjust_common_sizes = true;
695 return false;
697 default:
698 gold_unreachable();
702 // A special case of should_override which is only called for a strong
703 // defined symbol from a regular object file. This is used when
704 // defining special symbols.
706 bool
707 Symbol_table::should_override_with_special(const Symbol* to)
709 bool adjust_common_sizes;
710 unsigned int frombits = global_flag | regular_flag | def_flag;
711 bool ret = Symbol_table::should_override(to, frombits, NULL,
712 &adjust_common_sizes);
713 gold_assert(!adjust_common_sizes);
714 return ret;
717 // Override symbol base with a special symbol.
719 void
720 Symbol::override_base_with_special(const Symbol* from)
722 gold_assert(this->name_ == from->name_ || this->has_alias());
724 this->source_ = from->source_;
725 switch (from->source_)
727 case FROM_OBJECT:
728 this->u_.from_object = from->u_.from_object;
729 break;
730 case IN_OUTPUT_DATA:
731 this->u_.in_output_data = from->u_.in_output_data;
732 break;
733 case IN_OUTPUT_SEGMENT:
734 this->u_.in_output_segment = from->u_.in_output_segment;
735 break;
736 case IS_CONSTANT:
737 case IS_UNDEFINED:
738 break;
739 default:
740 gold_unreachable();
741 break;
744 this->override_version(from->version_);
745 this->type_ = from->type_;
746 this->binding_ = from->binding_;
747 this->override_visibility(from->visibility_);
748 this->nonvis_ = from->nonvis_;
750 // Special symbols are always considered to be regular symbols.
751 this->in_reg_ = true;
753 if (from->needs_dynsym_entry_)
754 this->needs_dynsym_entry_ = true;
755 if (from->needs_dynsym_value_)
756 this->needs_dynsym_value_ = true;
758 // We shouldn't see these flags. If we do, we need to handle them
759 // somehow.
760 gold_assert(!from->is_target_special_ || this->is_target_special_);
761 gold_assert(!from->is_forwarder_);
762 gold_assert(!from->has_plt_offset_);
763 gold_assert(!from->has_warning_);
764 gold_assert(!from->is_copied_from_dynobj_);
765 gold_assert(!from->is_forced_local_);
768 // Override a symbol with a special symbol.
770 template<int size>
771 void
772 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
774 this->override_base_with_special(from);
775 this->value_ = from->value_;
776 this->symsize_ = from->symsize_;
779 // Override TOSYM with the special symbol FROMSYM. This handles all
780 // aliases of TOSYM.
782 template<int size>
783 void
784 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
785 const Sized_symbol<size>* fromsym)
787 tosym->override_with_special(fromsym);
788 if (tosym->has_alias())
790 Symbol* sym = this->weak_aliases_[tosym];
791 gold_assert(sym != NULL);
792 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
795 ssym->override_with_special(fromsym);
796 sym = this->weak_aliases_[ssym];
797 gold_assert(sym != NULL);
798 ssym = this->get_sized_symbol<size>(sym);
800 while (ssym != tosym);
802 if (tosym->binding() == elfcpp::STB_LOCAL
803 || ((tosym->visibility() == elfcpp::STV_HIDDEN
804 || tosym->visibility() == elfcpp::STV_INTERNAL)
805 && (tosym->binding() == elfcpp::STB_GLOBAL
806 || tosym->binding() == elfcpp::STB_WEAK)
807 && !parameters->options().relocatable()))
808 this->force_local(tosym);
811 // Instantiate the templates we need. We could use the configure
812 // script to restrict this to only the ones needed for implemented
813 // targets.
815 #ifdef HAVE_TARGET_32_LITTLE
816 template
817 void
818 Symbol_table::resolve<32, false>(
819 Sized_symbol<32>* to,
820 const elfcpp::Sym<32, false>& sym,
821 unsigned int st_shndx,
822 bool is_ordinary,
823 unsigned int orig_st_shndx,
824 Object* object,
825 const char* version);
826 #endif
828 #ifdef HAVE_TARGET_32_BIG
829 template
830 void
831 Symbol_table::resolve<32, true>(
832 Sized_symbol<32>* to,
833 const elfcpp::Sym<32, true>& sym,
834 unsigned int st_shndx,
835 bool is_ordinary,
836 unsigned int orig_st_shndx,
837 Object* object,
838 const char* version);
839 #endif
841 #ifdef HAVE_TARGET_64_LITTLE
842 template
843 void
844 Symbol_table::resolve<64, false>(
845 Sized_symbol<64>* to,
846 const elfcpp::Sym<64, false>& sym,
847 unsigned int st_shndx,
848 bool is_ordinary,
849 unsigned int orig_st_shndx,
850 Object* object,
851 const char* version);
852 #endif
854 #ifdef HAVE_TARGET_64_BIG
855 template
856 void
857 Symbol_table::resolve<64, true>(
858 Sized_symbol<64>* to,
859 const elfcpp::Sym<64, true>& sym,
860 unsigned int st_shndx,
861 bool is_ordinary,
862 unsigned int orig_st_shndx,
863 Object* object,
864 const char* version);
865 #endif
867 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
868 template
869 void
870 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
871 const Sized_symbol<32>*);
872 #endif
874 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
875 template
876 void
877 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
878 const Sized_symbol<64>*);
879 #endif
881 } // End namespace gold.