1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
42 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
43 : Object(name
, input_file
, true, offset
),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_
= this->input_file()->found_name();
53 if (this->offset() != 0)
55 std::string::size_type open_paren
= this->name().find('(');
56 std::string::size_type close_paren
= this->name().find(')');
57 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_
= this->name().substr(open_paren
+ 1,
61 close_paren
- (open_paren
+ 1));
66 // Class Sized_dynobj.
68 template<int size
, bool big_endian
>
69 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
70 const std::string
& name
,
71 Input_file
* input_file
,
73 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
74 : Dynobj(name
, input_file
, offset
),
81 template<int size
, bool big_endian
>
83 Sized_dynobj
<size
, big_endian
>::setup(
84 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
86 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
87 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
88 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
90 const unsigned int shnum
= this->elf_file_
.shnum();
91 this->set_shnum(shnum
);
94 // Find the SHT_DYNSYM section and the various version sections, and
95 // the dynamic section, given the section headers.
97 template<int size
, bool big_endian
>
99 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
100 const unsigned char* pshdrs
,
101 unsigned int* pdynsym_shndx
,
102 unsigned int* pversym_shndx
,
103 unsigned int* pverdef_shndx
,
104 unsigned int* pverneed_shndx
,
105 unsigned int* pdynamic_shndx
)
107 *pdynsym_shndx
= -1U;
108 *pversym_shndx
= -1U;
109 *pverdef_shndx
= -1U;
110 *pverneed_shndx
= -1U;
111 *pdynamic_shndx
= -1U;
113 const unsigned int shnum
= this->shnum();
114 const unsigned char* p
= pshdrs
;
115 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
117 typename
This::Shdr
shdr(p
);
120 switch (shdr
.get_sh_type())
122 case elfcpp::SHT_DYNSYM
:
125 case elfcpp::SHT_GNU_versym
:
128 case elfcpp::SHT_GNU_verdef
:
131 case elfcpp::SHT_GNU_verneed
:
134 case elfcpp::SHT_DYNAMIC
:
146 this->error(_("unexpected duplicate type %u section: %u, %u"),
147 shdr
.get_sh_type(), *pi
, i
);
153 // Read the contents of section SHNDX. PSHDRS points to the section
154 // headers. TYPE is the expected section type. LINK is the expected
155 // section link. Store the data in *VIEW and *VIEW_SIZE. The
156 // section's sh_info field is stored in *VIEW_INFO.
158 template<int size
, bool big_endian
>
160 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
161 const unsigned char* pshdrs
,
166 section_size_type
* view_size
,
167 unsigned int* view_info
)
177 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
179 gold_assert(shdr
.get_sh_type() == type
);
181 if (shdr
.get_sh_link() != link
)
182 this->error(_("unexpected link in section %u header: %u != %u"),
183 shndx
, shdr
.get_sh_link(), link
);
185 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
187 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
188 *view_info
= shdr
.get_sh_info();
191 // Read the dynamic tags. Set the soname field if this shared object
192 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
193 // the section headers. DYNAMIC_SHNDX is the section index of the
194 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
195 // section index and contents of a string table which may be the one
196 // associated with the SHT_DYNAMIC section.
198 template<int size
, bool big_endian
>
200 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
201 unsigned int dynamic_shndx
,
202 unsigned int strtab_shndx
,
203 const unsigned char* strtabu
,
206 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
207 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
209 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
210 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
211 dynamic_size
, true, false);
213 const unsigned int link
= dynamicshdr
.get_sh_link();
214 if (link
!= strtab_shndx
)
216 if (link
>= this->shnum())
218 this->error(_("DYNAMIC section %u link out of range: %u"),
219 dynamic_shndx
, link
);
223 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
224 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
226 this->error(_("DYNAMIC section %u link %u is not a strtab"),
227 dynamic_shndx
, link
);
231 strtab_size
= strtabshdr
.get_sh_size();
232 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false,
236 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
238 for (const unsigned char* p
= pdynamic
;
239 p
< pdynamic
+ dynamic_size
;
242 typename
This::Dyn
dyn(p
);
244 switch (dyn
.get_d_tag())
246 case elfcpp::DT_NULL
:
247 // We should always see DT_NULL at the end of the dynamic
251 case elfcpp::DT_SONAME
:
253 off_t val
= dyn
.get_d_val();
254 if (val
>= strtab_size
)
255 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
256 static_cast<long long>(val
),
257 static_cast<long long>(strtab_size
));
259 this->set_soname_string(strtab
+ val
);
263 case elfcpp::DT_NEEDED
:
265 off_t val
= dyn
.get_d_val();
266 if (val
>= strtab_size
)
267 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
268 static_cast<long long>(val
),
269 static_cast<long long>(strtab_size
));
271 this->add_needed(strtab
+ val
);
280 this->error(_("missing DT_NULL in dynamic segment"));
283 // Read the symbols and sections from a dynamic object. We read the
284 // dynamic symbols, not the normal symbols.
286 template<int size
, bool big_endian
>
288 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
290 this->read_section_data(&this->elf_file_
, sd
);
292 const unsigned char* const pshdrs
= sd
->section_headers
->data();
294 unsigned int dynsym_shndx
;
295 unsigned int versym_shndx
;
296 unsigned int verdef_shndx
;
297 unsigned int verneed_shndx
;
298 unsigned int dynamic_shndx
;
299 this->find_dynsym_sections(pshdrs
, &dynsym_shndx
, &versym_shndx
,
300 &verdef_shndx
, &verneed_shndx
, &dynamic_shndx
);
302 unsigned int strtab_shndx
= -1U;
305 sd
->symbols_size
= 0;
306 sd
->external_symbols_offset
= 0;
307 sd
->symbol_names
= NULL
;
308 sd
->symbol_names_size
= 0;
310 if (dynsym_shndx
!= -1U)
312 // Get the dynamic symbols.
313 typename
This::Shdr
dynsymshdr(pshdrs
+ dynsym_shndx
* This::shdr_size
);
314 gold_assert(dynsymshdr
.get_sh_type() == elfcpp::SHT_DYNSYM
);
316 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
317 dynsymshdr
.get_sh_size(), true,
320 convert_to_section_size_type(dynsymshdr
.get_sh_size());
322 // Get the symbol names.
323 strtab_shndx
= dynsymshdr
.get_sh_link();
324 if (strtab_shndx
>= this->shnum())
326 this->error(_("invalid dynamic symbol table name index: %u"),
330 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
331 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
333 this->error(_("dynamic symbol table name section "
334 "has wrong type: %u"),
335 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
339 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
340 strtabshdr
.get_sh_size(),
342 sd
->symbol_names_size
=
343 convert_to_section_size_type(strtabshdr
.get_sh_size());
345 // Get the version information.
348 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
349 dynsym_shndx
, &sd
->versym
, &sd
->versym_size
,
352 // We require that the version definition and need section link
353 // to the same string table as the dynamic symbol table. This
354 // is not a technical requirement, but it always happens in
355 // practice. We could change this if necessary.
357 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
358 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
361 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
362 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
366 // Read the SHT_DYNAMIC section to find whether this shared object
367 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
368 // doesn't really have anything to do with reading the symbols, but
369 // this is a convenient place to do it.
370 if (dynamic_shndx
!= -1U)
371 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
372 (sd
->symbol_names
== NULL
374 : sd
->symbol_names
->data()),
375 sd
->symbol_names_size
);
378 // Lay out the input sections for a dynamic object. We don't want to
379 // include sections from a dynamic object, so all that we actually do
380 // here is check for .gnu.warning sections.
382 template<int size
, bool big_endian
>
384 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
386 Read_symbols_data
* sd
)
388 const unsigned int shnum
= this->shnum();
392 // Get the section headers.
393 const unsigned char* pshdrs
= sd
->section_headers
->data();
395 // Get the section names.
396 const unsigned char* pnamesu
= sd
->section_names
->data();
397 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
399 // Skip the first, dummy, section.
400 pshdrs
+= This::shdr_size
;
401 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
403 typename
This::Shdr
shdr(pshdrs
);
405 if (shdr
.get_sh_name() >= sd
->section_names_size
)
407 this->error(_("bad section name offset for section %u: %lu"),
408 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
412 const char* name
= pnames
+ shdr
.get_sh_name();
414 this->handle_gnu_warning_section(name
, i
, symtab
);
417 delete sd
->section_headers
;
418 sd
->section_headers
= NULL
;
419 delete sd
->section_names
;
420 sd
->section_names
= NULL
;
423 // Add an entry to the vector mapping version numbers to version
426 template<int size
, bool big_endian
>
428 Sized_dynobj
<size
, big_endian
>::set_version_map(
429 Version_map
* version_map
,
431 const char* name
) const
433 if (ndx
>= version_map
->size())
434 version_map
->resize(ndx
+ 1);
435 if ((*version_map
)[ndx
] != NULL
)
436 this->error(_("duplicate definition for version %u"), ndx
);
437 (*version_map
)[ndx
] = name
;
440 // Add mappings for the version definitions to VERSION_MAP.
442 template<int size
, bool big_endian
>
444 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
445 Read_symbols_data
* sd
,
446 Version_map
* version_map
) const
448 if (sd
->verdef
== NULL
)
451 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
452 section_size_type names_size
= sd
->symbol_names_size
;
454 const unsigned char* pverdef
= sd
->verdef
->data();
455 section_size_type verdef_size
= sd
->verdef_size
;
456 const unsigned int count
= sd
->verdef_info
;
458 const unsigned char* p
= pverdef
;
459 for (unsigned int i
= 0; i
< count
; ++i
)
461 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
463 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
465 this->error(_("unexpected verdef version %u"),
466 verdef
.get_vd_version());
470 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
472 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
475 // The first Verdaux holds the name of this version. Subsequent
476 // ones are versions that this one depends upon, which we don't
478 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
481 this->error(_("verdef vd_cnt field too small: %u"),
482 static_cast<unsigned int>(vd_cnt
));
486 const section_size_type vd_aux
= verdef
.get_vd_aux();
487 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
489 this->error(_("verdef vd_aux field out of range: %u"),
490 static_cast<unsigned int>(vd_aux
));
494 const unsigned char* pvda
= p
+ vd_aux
;
495 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
497 const section_size_type vda_name
= verdaux
.get_vda_name();
498 if (vda_name
>= names_size
)
500 this->error(_("verdaux vda_name field out of range: %u"),
501 static_cast<unsigned int>(vda_name
));
505 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
507 const section_size_type vd_next
= verdef
.get_vd_next();
508 if ((p
- pverdef
) + vd_next
>= verdef_size
)
510 this->error(_("verdef vd_next field out of range: %u"),
511 static_cast<unsigned int>(vd_next
));
519 // Add mappings for the required versions to VERSION_MAP.
521 template<int size
, bool big_endian
>
523 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
524 Read_symbols_data
* sd
,
525 Version_map
* version_map
) const
527 if (sd
->verneed
== NULL
)
530 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
531 section_size_type names_size
= sd
->symbol_names_size
;
533 const unsigned char* pverneed
= sd
->verneed
->data();
534 const section_size_type verneed_size
= sd
->verneed_size
;
535 const unsigned int count
= sd
->verneed_info
;
537 const unsigned char* p
= pverneed
;
538 for (unsigned int i
= 0; i
< count
; ++i
)
540 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
542 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
544 this->error(_("unexpected verneed version %u"),
545 verneed
.get_vn_version());
549 const section_size_type vn_aux
= verneed
.get_vn_aux();
551 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
553 this->error(_("verneed vn_aux field out of range: %u"),
554 static_cast<unsigned int>(vn_aux
));
558 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
559 const unsigned char* pvna
= p
+ vn_aux
;
560 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
562 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
564 const unsigned int vna_name
= vernaux
.get_vna_name();
565 if (vna_name
>= names_size
)
567 this->error(_("vernaux vna_name field out of range: %u"),
568 static_cast<unsigned int>(vna_name
));
572 this->set_version_map(version_map
, vernaux
.get_vna_other(),
575 const section_size_type vna_next
= vernaux
.get_vna_next();
576 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
578 this->error(_("verneed vna_next field out of range: %u"),
579 static_cast<unsigned int>(vna_next
));
586 const section_size_type vn_next
= verneed
.get_vn_next();
587 if ((p
- pverneed
) + vn_next
>= verneed_size
)
589 this->error(_("verneed vn_next field out of range: %u"),
590 static_cast<unsigned int>(vn_next
));
598 // Create a vector mapping version numbers to version strings.
600 template<int size
, bool big_endian
>
602 Sized_dynobj
<size
, big_endian
>::make_version_map(
603 Read_symbols_data
* sd
,
604 Version_map
* version_map
) const
606 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
609 // A guess at the maximum version number we will see. If this is
610 // wrong we will be less efficient but still correct.
611 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
613 this->make_verdef_map(sd
, version_map
);
614 this->make_verneed_map(sd
, version_map
);
617 // Add the dynamic symbols to the symbol table.
619 template<int size
, bool big_endian
>
621 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
622 Read_symbols_data
* sd
)
624 if (sd
->symbols
== NULL
)
626 gold_assert(sd
->symbol_names
== NULL
);
627 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
628 && sd
->verneed
== NULL
);
632 const int sym_size
= This::sym_size
;
633 const size_t symcount
= sd
->symbols_size
/ sym_size
;
634 gold_assert(sd
->external_symbols_offset
== 0);
635 if (symcount
* sym_size
!= sd
->symbols_size
)
637 this->error(_("size of dynamic symbols is not multiple of symbol size"));
641 Version_map version_map
;
642 this->make_version_map(sd
, &version_map
);
644 const char* sym_names
=
645 reinterpret_cast<const char*>(sd
->symbol_names
->data());
646 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
647 sym_names
, sd
->symbol_names_size
,
650 : sd
->versym
->data()),
656 delete sd
->symbol_names
;
657 sd
->symbol_names
= NULL
;
658 if (sd
->versym
!= NULL
)
663 if (sd
->verdef
!= NULL
)
668 if (sd
->verneed
!= NULL
)
674 // This is normally the last time we will read any data from this
676 this->clear_view_cache_marks();
679 // Given a vector of hash codes, compute the number of hash buckets to
683 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
684 bool for_gnu_hash_table
)
686 // FIXME: Implement optional hash table optimization.
688 // Array used to determine the number of hash table buckets to use
689 // based on the number of symbols there are. If there are fewer
690 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
691 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
692 // use more than 262147 buckets. This is straight from the old GNU
694 static const unsigned int buckets
[] =
696 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
697 16411, 32771, 65537, 131101, 262147
699 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
701 unsigned int symcount
= hashcodes
.size();
702 unsigned int ret
= 1;
703 const double full_fraction
704 = 1.0 - parameters
->options().hash_bucket_empty_fraction();
705 for (int i
= 0; i
< buckets_count
; ++i
)
707 if (symcount
< buckets
[i
] * full_fraction
)
712 if (for_gnu_hash_table
&& ret
< 2)
718 // The standard ELF hash function. This hash function must not
719 // change, as the dynamic linker uses it also.
722 Dynobj::elf_hash(const char* name
)
724 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
727 while ((c
= *nameu
++) != '\0')
730 uint32_t g
= h
& 0xf0000000;
734 // The ELF ABI says h &= ~g, but using xor is equivalent in
735 // this case (since g was set from h) and may save one
743 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
744 // DYNSYMS is a vector with all the global dynamic symbols.
745 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
749 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
750 unsigned int local_dynsym_count
,
751 unsigned char** pphash
,
752 unsigned int* phashlen
)
754 unsigned int dynsym_count
= dynsyms
.size();
756 // Get the hash values for all the symbols.
757 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
758 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
759 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
761 const unsigned int bucketcount
=
762 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
764 std::vector
<uint32_t> bucket(bucketcount
);
765 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
767 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
769 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
770 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
771 chain
[dynsym_index
] = bucket
[bucketpos
];
772 bucket
[bucketpos
] = dynsym_index
;
775 unsigned int hashlen
= ((2
780 unsigned char* phash
= new unsigned char[hashlen
];
782 if (parameters
->target().is_big_endian())
784 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
785 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
793 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
794 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
805 // Fill in an ELF hash table.
807 template<bool big_endian
>
809 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
810 const std::vector
<uint32_t>& chain
,
811 unsigned char* phash
,
812 unsigned int hashlen
)
814 unsigned char* p
= phash
;
816 const unsigned int bucketcount
= bucket
.size();
817 const unsigned int chaincount
= chain
.size();
819 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
821 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
824 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
826 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
830 for (unsigned int i
= 0; i
< chaincount
; ++i
)
832 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
836 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
839 // The hash function used for the GNU hash table. This hash function
840 // must not change, as the dynamic linker uses it also.
843 Dynobj::gnu_hash(const char* name
)
845 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
848 while ((c
= *nameu
++) != '\0')
849 h
= (h
<< 5) + h
+ c
;
853 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
854 // tables are an extension to ELF which are recognized by the GNU
855 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
856 // TARGET is the target. DYNSYMS is a vector with all the global
857 // symbols which will be going into the dynamic symbol table.
858 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
862 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
863 unsigned int local_dynsym_count
,
864 unsigned char** pphash
,
865 unsigned int* phashlen
)
867 const unsigned int count
= dynsyms
.size();
869 // Sort the dynamic symbols into two vectors. Symbols which we do
870 // not want to put into the hash table we store into
871 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
872 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
873 // and records the hash codes.
875 std::vector
<Symbol
*> unhashed_dynsyms
;
876 unhashed_dynsyms
.reserve(count
);
878 std::vector
<Symbol
*> hashed_dynsyms
;
879 hashed_dynsyms
.reserve(count
);
881 std::vector
<uint32_t> dynsym_hashvals
;
882 dynsym_hashvals
.reserve(count
);
884 for (unsigned int i
= 0; i
< count
; ++i
)
886 Symbol
* sym
= dynsyms
[i
];
888 // FIXME: Should put on unhashed_dynsyms if the symbol is
890 if (sym
->is_undefined())
891 unhashed_dynsyms
.push_back(sym
);
894 hashed_dynsyms
.push_back(sym
);
895 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
899 // Put the unhashed symbols at the start of the global portion of
900 // the dynamic symbol table.
901 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
902 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
903 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
905 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
906 ++unhashed_dynsym_index
;
909 // For the actual data generation we call out to a templatized
911 int size
= parameters
->target().get_size();
912 bool big_endian
= parameters
->target().is_big_endian();
917 #ifdef HAVE_TARGET_32_BIG
918 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
920 unhashed_dynsym_index
,
929 #ifdef HAVE_TARGET_32_LITTLE
930 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
932 unhashed_dynsym_index
,
944 #ifdef HAVE_TARGET_64_BIG
945 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
947 unhashed_dynsym_index
,
956 #ifdef HAVE_TARGET_64_LITTLE
957 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
959 unhashed_dynsym_index
,
971 // Create the actual data for a GNU hash table. This is just a copy
972 // of the code from the old GNU linker.
974 template<int size
, bool big_endian
>
976 Dynobj::sized_create_gnu_hash_table(
977 const std::vector
<Symbol
*>& hashed_dynsyms
,
978 const std::vector
<uint32_t>& dynsym_hashvals
,
979 unsigned int unhashed_dynsym_count
,
980 unsigned char** pphash
,
981 unsigned int* phashlen
)
983 if (hashed_dynsyms
.empty())
985 // Special case for the empty hash table.
986 unsigned int hashlen
= 5 * 4 + size
/ 8;
987 unsigned char* phash
= new unsigned char[hashlen
];
989 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
990 // Symbol index above unhashed symbols.
991 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
992 // One word for bitmask.
993 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
994 // Only bloom filter.
995 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
997 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
998 // No hashes in only bucket.
999 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1001 *phashlen
= hashlen
;
1007 const unsigned int bucketcount
=
1008 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1010 const unsigned int nsyms
= hashed_dynsyms
.size();
1012 uint32_t maskbitslog2
= 1;
1013 uint32_t x
= nsyms
>> 1;
1019 if (maskbitslog2
< 3)
1021 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1031 if (maskbitslog2
== 5)
1035 uint32_t mask
= (1U << shift1
) - 1U;
1036 uint32_t shift2
= maskbitslog2
;
1037 uint32_t maskbits
= 1U << maskbitslog2
;
1038 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1040 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1041 std::vector
<Word
> bitmask(maskwords
);
1042 std::vector
<uint32_t> counts(bucketcount
);
1043 std::vector
<uint32_t> indx(bucketcount
);
1044 uint32_t symindx
= unhashed_dynsym_count
;
1046 // Count the number of times each hash bucket is used.
1047 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1048 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1050 unsigned int cnt
= symindx
;
1051 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1057 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1058 hashlen
+= maskbits
/ 8;
1059 unsigned char* phash
= new unsigned char[hashlen
];
1061 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1062 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1063 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1064 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1066 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1067 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1070 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1072 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1076 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1078 Symbol
* sym
= hashed_dynsyms
[i
];
1079 uint32_t hashval
= dynsym_hashvals
[i
];
1081 unsigned int bucket
= hashval
% bucketcount
;
1082 unsigned int val
= ((hashval
>> shift1
)
1083 & ((maskbits
>> shift1
) - 1));
1084 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1085 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1086 val
= hashval
& ~ 1U;
1087 if (counts
[bucket
] == 1)
1089 // Last element terminates the chain.
1092 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1096 sym
->set_dynsym_index(indx
[bucket
]);
1101 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1103 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1107 *phashlen
= hashlen
;
1113 // Write this definition to a buffer for the output section.
1115 template<int size
, bool big_endian
>
1117 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
) const
1119 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1120 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1122 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1123 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1124 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1125 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0));
1126 vd
.set_vd_ndx(this->index());
1127 vd
.set_vd_cnt(1 + this->deps_
.size());
1128 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1129 vd
.set_vd_aux(verdef_size
);
1130 vd
.set_vd_next(is_last
1132 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1135 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1136 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1137 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1140 Deps::const_iterator p
;
1142 for (p
= this->deps_
.begin(), i
= 0;
1143 p
!= this->deps_
.end();
1146 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1147 vda
.set_vda_name(dynpool
->get_offset(*p
));
1148 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1159 for (Need_versions::iterator p
= this->need_versions_
.begin();
1160 p
!= this->need_versions_
.end();
1165 // Add a new version to this file reference.
1168 Verneed::add_name(const char* name
)
1170 Verneed_version
* vv
= new Verneed_version(name
);
1171 this->need_versions_
.push_back(vv
);
1175 // Set the version indexes starting at INDEX.
1178 Verneed::finalize(unsigned int index
)
1180 for (Need_versions::iterator p
= this->need_versions_
.begin();
1181 p
!= this->need_versions_
.end();
1184 (*p
)->set_index(index
);
1190 // Write this list of referenced versions to a buffer for the output
1193 template<int size
, bool big_endian
>
1195 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1196 unsigned char* pb
) const
1198 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1199 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1201 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1202 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1203 vn
.set_vn_cnt(this->need_versions_
.size());
1204 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1205 vn
.set_vn_aux(verneed_size
);
1206 vn
.set_vn_next(is_last
1208 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1211 Need_versions::const_iterator p
;
1213 for (p
= this->need_versions_
.begin(), i
= 0;
1214 p
!= this->need_versions_
.end();
1217 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1218 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1219 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1220 vna
.set_vna_flags(0);
1221 vna
.set_vna_other((*p
)->index());
1222 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1223 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1232 // Versions methods.
1234 Versions::Versions(const Version_script_info
& version_script
,
1235 Stringpool
* dynpool
)
1236 : defs_(), needs_(), version_table_(),
1237 is_finalized_(false), version_script_(version_script
)
1239 // We always need a base version, so define that first. Nothing
1240 // explicitly declares itself as part of base, so it doesn't need to
1241 // be in version_table_.
1242 // FIXME: Should use soname here when creating a shared object. Is
1243 // this fixme still valid? It looks like it's doing the right thing
1245 if (parameters
->options().shared())
1247 const char* name
= dynpool
->add(parameters
->options().output_file_name(),
1249 Verdef
* vdbase
= new Verdef(name
, std::vector
<std::string
>(),
1251 this->defs_
.push_back(vdbase
);
1254 if (!this->version_script_
.empty())
1256 // Parse the version script, and insert each declared version into
1257 // defs_ and version_table_.
1258 std::vector
<std::string
> versions
= this->version_script_
.get_versions();
1259 for (size_t k
= 0; k
< versions
.size(); ++k
)
1261 Stringpool::Key version_key
;
1262 const char* version
= dynpool
->add(versions
[k
].c_str(),
1263 true, &version_key
);
1264 Verdef
* const vd
= new Verdef(
1266 this->version_script_
.get_dependencies(version
),
1267 false, false, false);
1268 this->defs_
.push_back(vd
);
1269 Key
key(version_key
, 0);
1270 this->version_table_
.insert(std::make_pair(key
, vd
));
1275 Versions::~Versions()
1277 for (Defs::iterator p
= this->defs_
.begin();
1278 p
!= this->defs_
.end();
1282 for (Needs::iterator p
= this->needs_
.begin();
1283 p
!= this->needs_
.end();
1288 // Return the dynamic object which a symbol refers to.
1291 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1292 const Symbol
* sym
) const
1294 if (sym
->is_copied_from_dynobj())
1295 return symtab
->get_copy_source(sym
);
1298 Object
* object
= sym
->object();
1299 gold_assert(object
->is_dynamic());
1300 return static_cast<Dynobj
*>(object
);
1304 // Record version information for a symbol going into the dynamic
1308 Versions::record_version(const Symbol_table
* symtab
,
1309 Stringpool
* dynpool
, const Symbol
* sym
)
1311 gold_assert(!this->is_finalized_
);
1312 gold_assert(sym
->version() != NULL
);
1314 Stringpool::Key version_key
;
1315 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1317 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1319 if (parameters
->options().shared())
1320 this->add_def(sym
, version
, version_key
);
1324 // This is a version reference.
1325 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1326 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1330 // We've found a symbol SYM defined in version VERSION.
1333 Versions::add_def(const Symbol
* sym
, const char* version
,
1334 Stringpool::Key version_key
)
1336 Key
k(version_key
, 0);
1337 Version_base
* const vbnull
= NULL
;
1338 std::pair
<Version_table::iterator
, bool> ins
=
1339 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1343 // We already have an entry for this version.
1344 Version_base
* vb
= ins
.first
->second
;
1346 // We have now seen a symbol in this version, so it is not
1348 gold_assert(vb
!= NULL
);
1353 // If we are creating a shared object, it is an error to
1354 // find a definition of a symbol with a version which is not
1355 // in the version script.
1356 if (parameters
->options().shared())
1358 gold_error(_("symbol %s has undefined version %s"),
1359 sym
->demangled_name().c_str(), version
);
1363 // When creating a regular executable, automatically define
1365 Verdef
* vd
= new Verdef(version
, std::vector
<std::string
>(),
1366 false, false, false);
1367 this->defs_
.push_back(vd
);
1368 ins
.first
->second
= vd
;
1372 // Add a reference to version NAME in file FILENAME.
1375 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1376 Stringpool::Key name_key
)
1378 Stringpool::Key filename_key
;
1379 filename
= dynpool
->add(filename
, true, &filename_key
);
1381 Key
k(name_key
, filename_key
);
1382 Version_base
* const vbnull
= NULL
;
1383 std::pair
<Version_table::iterator
, bool> ins
=
1384 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1388 // We already have an entry for this filename/version.
1392 // See whether we already have this filename. We don't expect many
1393 // version references, so we just do a linear search. This could be
1394 // replaced by a hash table.
1396 for (Needs::iterator p
= this->needs_
.begin();
1397 p
!= this->needs_
.end();
1400 if ((*p
)->filename() == filename
)
1409 // We have a new filename.
1410 vn
= new Verneed(filename
);
1411 this->needs_
.push_back(vn
);
1414 ins
.first
->second
= vn
->add_name(name
);
1417 // Set the version indexes. Create a new dynamic version symbol for
1418 // each new version definition.
1421 Versions::finalize(Symbol_table
* symtab
, unsigned int dynsym_index
,
1422 std::vector
<Symbol
*>* syms
)
1424 gold_assert(!this->is_finalized_
);
1426 unsigned int vi
= 1;
1428 for (Defs::iterator p
= this->defs_
.begin();
1429 p
!= this->defs_
.end();
1432 (*p
)->set_index(vi
);
1435 // Create a version symbol if necessary.
1436 if (!(*p
)->is_symbol_created())
1438 Symbol
* vsym
= symtab
->define_as_constant((*p
)->name(),
1442 elfcpp::STV_DEFAULT
, 0,
1444 vsym
->set_needs_dynsym_entry();
1445 vsym
->set_dynsym_index(dynsym_index
);
1447 syms
->push_back(vsym
);
1448 // The name is already in the dynamic pool.
1452 // Index 1 is used for global symbols.
1455 gold_assert(this->defs_
.empty());
1459 for (Needs::iterator p
= this->needs_
.begin();
1460 p
!= this->needs_
.end();
1462 vi
= (*p
)->finalize(vi
);
1464 this->is_finalized_
= true;
1466 return dynsym_index
;
1469 // Return the version index to use for a symbol. This does two hash
1470 // table lookups: one in DYNPOOL and one in this->version_table_.
1471 // Another approach alternative would be store a pointer in SYM, which
1472 // would increase the size of the symbol table. Or perhaps we could
1473 // use a hash table from dynamic symbol pointer values to Version_base
1477 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1478 const Symbol
* sym
) const
1480 Stringpool::Key version_key
;
1481 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1482 gold_assert(version
!= NULL
);
1485 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1487 if (!parameters
->options().shared())
1488 return elfcpp::VER_NDX_GLOBAL
;
1489 k
= Key(version_key
, 0);
1493 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1495 Stringpool::Key filename_key
;
1496 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1497 gold_assert(filename
!= NULL
);
1499 k
= Key(version_key
, filename_key
);
1502 Version_table::const_iterator p
= this->version_table_
.find(k
);
1503 gold_assert(p
!= this->version_table_
.end());
1505 return p
->second
->index();
1508 // Return an allocated buffer holding the contents of the symbol
1511 template<int size
, bool big_endian
>
1513 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1514 const Stringpool
* dynpool
,
1515 unsigned int local_symcount
,
1516 const std::vector
<Symbol
*>& syms
,
1518 unsigned int* psize
) const
1520 gold_assert(this->is_finalized_
);
1522 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1523 unsigned char* pbuf
= new unsigned char[sz
];
1525 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1526 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1527 elfcpp::VER_NDX_LOCAL
);
1529 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1533 unsigned int version_index
;
1534 const char* version
= (*p
)->version();
1535 if (version
== NULL
)
1536 version_index
= elfcpp::VER_NDX_GLOBAL
;
1538 version_index
= this->version_index(symtab
, dynpool
, *p
);
1539 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1541 if ((*p
)->version() != NULL
&& !(*p
)->is_default())
1542 version_index
|= elfcpp::VERSYM_HIDDEN
;
1543 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1551 // Return an allocated buffer holding the contents of the version
1552 // definition section.
1554 template<int size
, bool big_endian
>
1556 Versions::def_section_contents(const Stringpool
* dynpool
,
1557 unsigned char** pp
, unsigned int* psize
,
1558 unsigned int* pentries
) const
1560 gold_assert(this->is_finalized_
);
1561 gold_assert(!this->defs_
.empty());
1563 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1564 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1566 unsigned int sz
= 0;
1567 for (Defs::const_iterator p
= this->defs_
.begin();
1568 p
!= this->defs_
.end();
1571 sz
+= verdef_size
+ verdaux_size
;
1572 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1575 unsigned char* pbuf
= new unsigned char[sz
];
1577 unsigned char* pb
= pbuf
;
1578 Defs::const_iterator p
;
1580 for (p
= this->defs_
.begin(), i
= 0;
1581 p
!= this->defs_
.end();
1583 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1584 i
+ 1 >= this->defs_
.size(),
1587 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1591 *pentries
= this->defs_
.size();
1594 // Return an allocated buffer holding the contents of the version
1595 // reference section.
1597 template<int size
, bool big_endian
>
1599 Versions::need_section_contents(const Stringpool
* dynpool
,
1600 unsigned char** pp
, unsigned int *psize
,
1601 unsigned int *pentries
) const
1603 gold_assert(this->is_finalized_
);
1604 gold_assert(!this->needs_
.empty());
1606 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1607 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1609 unsigned int sz
= 0;
1610 for (Needs::const_iterator p
= this->needs_
.begin();
1611 p
!= this->needs_
.end();
1615 sz
+= (*p
)->count_versions() * vernaux_size
;
1618 unsigned char* pbuf
= new unsigned char[sz
];
1620 unsigned char* pb
= pbuf
;
1621 Needs::const_iterator p
;
1623 for (p
= this->needs_
.begin(), i
= 0;
1624 p
!= this->needs_
.end();
1626 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1627 i
+ 1 >= this->needs_
.size(),
1630 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1634 *pentries
= this->needs_
.size();
1637 // Instantiate the templates we need. We could use the configure
1638 // script to restrict this to only the ones for implemented targets.
1640 #ifdef HAVE_TARGET_32_LITTLE
1642 class Sized_dynobj
<32, false>;
1645 #ifdef HAVE_TARGET_32_BIG
1647 class Sized_dynobj
<32, true>;
1650 #ifdef HAVE_TARGET_64_LITTLE
1652 class Sized_dynobj
<64, false>;
1655 #ifdef HAVE_TARGET_64_BIG
1657 class Sized_dynobj
<64, true>;
1660 #ifdef HAVE_TARGET_32_LITTLE
1663 Versions::symbol_section_contents
<32, false>(
1664 const Symbol_table
*,
1667 const std::vector
<Symbol
*>&,
1669 unsigned int*) const;
1672 #ifdef HAVE_TARGET_32_BIG
1675 Versions::symbol_section_contents
<32, true>(
1676 const Symbol_table
*,
1679 const std::vector
<Symbol
*>&,
1681 unsigned int*) const;
1684 #ifdef HAVE_TARGET_64_LITTLE
1687 Versions::symbol_section_contents
<64, false>(
1688 const Symbol_table
*,
1691 const std::vector
<Symbol
*>&,
1693 unsigned int*) const;
1696 #ifdef HAVE_TARGET_64_BIG
1699 Versions::symbol_section_contents
<64, true>(
1700 const Symbol_table
*,
1703 const std::vector
<Symbol
*>&,
1705 unsigned int*) const;
1708 #ifdef HAVE_TARGET_32_LITTLE
1711 Versions::def_section_contents
<32, false>(
1715 unsigned int*) const;
1718 #ifdef HAVE_TARGET_32_BIG
1721 Versions::def_section_contents
<32, true>(
1725 unsigned int*) const;
1728 #ifdef HAVE_TARGET_64_LITTLE
1731 Versions::def_section_contents
<64, false>(
1735 unsigned int*) const;
1738 #ifdef HAVE_TARGET_64_BIG
1741 Versions::def_section_contents
<64, true>(
1745 unsigned int*) const;
1748 #ifdef HAVE_TARGET_32_LITTLE
1751 Versions::need_section_contents
<32, false>(
1755 unsigned int*) const;
1758 #ifdef HAVE_TARGET_32_BIG
1761 Versions::need_section_contents
<32, true>(
1765 unsigned int*) const;
1768 #ifdef HAVE_TARGET_64_LITTLE
1771 Versions::need_section_contents
<64, false>(
1775 unsigned int*) const;
1778 #ifdef HAVE_TARGET_64_BIG
1781 Versions::need_section_contents
<64, true>(
1785 unsigned int*) const;
1788 } // End namespace gold.