daily update
[binutils.git] / opcodes / sh64-dis.c
blob9bd21afa3371ddc2c937cf239c0f24e4bd89e9f5
1 /* Disassemble SH64 instructions.
2 Copyright 2000, 2001, 2002, 2003, 2005 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
18 #include <stdio.h>
20 #include "dis-asm.h"
21 #include "sysdep.h"
22 #include "sh64-opc.h"
23 #include "libiberty.h"
24 /* We need to refer to the ELF header structure. */
25 #include "elf-bfd.h"
26 #include "elf/sh.h"
27 #include "elf32-sh64.h"
29 #define ELF_MODE32_CODE_LABEL_P(SYM) \
30 (((elf_symbol_type *) (SYM))->internal_elf_sym.st_other & STO_SH5_ISA32)
32 #define SAVED_MOVI_R(INFO) \
33 (((struct sh64_disassemble_info *) ((INFO)->private_data))->address_reg)
35 #define SAVED_MOVI_IMM(INFO) \
36 (((struct sh64_disassemble_info *) ((INFO)->private_data))->built_address)
38 struct sh64_disassemble_info
40 /* When we see a MOVI, we save the register and the value, and merge a
41 subsequent SHORI and display the address, if there is one. */
42 unsigned int address_reg;
43 bfd_signed_vma built_address;
45 /* This is the range decriptor for the current address. It is kept
46 around for the next call. */
47 sh64_elf_crange crange;
50 /* Each item in the table is a mask to indicate which bits to be set
51 to determine an instruction's operator.
52 The index is as same as the instruction in the opcode table.
53 Note that some archs have this as a field in the opcode table. */
54 static unsigned long *shmedia_opcode_mask_table;
56 /* Initialize the SH64 opcode mask table for each instruction in SHmedia
57 mode. */
59 static void
60 initialize_shmedia_opcode_mask_table (void)
62 int n_opc;
63 int n;
65 /* Calculate number of opcodes. */
66 for (n_opc = 0; shmedia_table[n_opc].name != NULL; n_opc++)
69 shmedia_opcode_mask_table
70 = xmalloc (sizeof (shmedia_opcode_mask_table[0]) * n_opc);
72 for (n = 0; n < n_opc; n++)
74 int i;
76 unsigned long mask = 0;
78 for (i = 0; shmedia_table[n].arg[i] != A_NONE; i++)
80 int offset = shmedia_table[n].nibbles[i];
81 int length;
83 switch (shmedia_table[n].arg[i])
85 case A_GREG_M:
86 case A_GREG_N:
87 case A_GREG_D:
88 case A_CREG_K:
89 case A_CREG_J:
90 case A_FREG_G:
91 case A_FREG_H:
92 case A_FREG_F:
93 case A_DREG_G:
94 case A_DREG_H:
95 case A_DREG_F:
96 case A_FMREG_G:
97 case A_FMREG_H:
98 case A_FMREG_F:
99 case A_FPREG_G:
100 case A_FPREG_H:
101 case A_FPREG_F:
102 case A_FVREG_G:
103 case A_FVREG_H:
104 case A_FVREG_F:
105 case A_REUSE_PREV:
106 length = 6;
107 break;
109 case A_TREG_A:
110 case A_TREG_B:
111 length = 3;
112 break;
114 case A_IMMM:
115 abort ();
116 break;
118 case A_IMMU5:
119 length = 5;
120 break;
122 case A_IMMS6:
123 case A_IMMU6:
124 case A_IMMS6BY32:
125 length = 6;
126 break;
128 case A_IMMS10:
129 case A_IMMS10BY1:
130 case A_IMMS10BY2:
131 case A_IMMS10BY4:
132 case A_IMMS10BY8:
133 length = 10;
134 break;
136 case A_IMMU16:
137 case A_IMMS16:
138 case A_PCIMMS16BY4:
139 case A_PCIMMS16BY4_PT:
140 length = 16;
141 break;
143 default:
144 abort ();
145 length = 0;
146 break;
149 if (length != 0)
150 mask |= (0xffffffff >> (32 - length)) << offset;
152 shmedia_opcode_mask_table[n] = 0xffffffff & ~mask;
156 /* Get a predefined control-register-name, or return NULL. */
158 static const char *
159 creg_name (int cregno)
161 const shmedia_creg_info *cregp;
163 /* If control register usage is common enough, change this to search a
164 hash-table. */
165 for (cregp = shmedia_creg_table; cregp->name != NULL; cregp++)
166 if (cregp->cregno == cregno)
167 return cregp->name;
169 return NULL;
172 /* Main function to disassemble SHmedia instructions. */
174 static int
175 print_insn_shmedia (bfd_vma memaddr, struct disassemble_info *info)
177 fprintf_ftype fprintf_fn = info->fprintf_func;
178 void *stream = info->stream;
179 unsigned char insn[4];
180 unsigned long instruction;
181 int status;
182 int n;
183 const shmedia_opcode_info *op;
184 int i;
185 unsigned int r = 0;
186 long imm = 0;
187 bfd_vma disp_pc_addr;
189 status = info->read_memory_func (memaddr, insn, 4, info);
191 /* If we can't read four bytes, something is wrong. Display any data we
192 can get as .byte:s. */
193 if (status != 0)
195 int i;
197 for (i = 0; i < 3; i++)
199 status = info->read_memory_func (memaddr + i, insn, 1, info);
200 if (status != 0)
201 break;
202 (*fprintf_fn) (stream, "%s0x%02x",
203 i == 0 ? ".byte " : ", ",
204 insn[0]);
207 return i ? i : -1;
210 /* Rearrange the bytes to make up an instruction. */
211 if (info->endian == BFD_ENDIAN_LITTLE)
212 instruction = bfd_getl32 (insn);
213 else
214 instruction = bfd_getb32 (insn);
216 /* FIXME: Searching could be implemented using a hash on relevant
217 fields. */
218 for (n = 0, op = shmedia_table;
219 op->name != NULL
220 && ((instruction & shmedia_opcode_mask_table[n]) != op->opcode_base);
221 n++, op++)
224 /* FIXME: We should also check register number constraints. */
225 if (op->name == NULL)
227 fprintf_fn (stream, ".long 0x%08lx", instruction);
228 return 4;
231 fprintf_fn (stream, "%s\t", op->name);
233 for (i = 0; i < 3 && op->arg[i] != A_NONE; i++)
235 unsigned long temp = instruction >> op->nibbles[i];
236 int by_number = 0;
238 if (i > 0 && op->arg[i] != A_REUSE_PREV)
239 fprintf_fn (stream, ",");
241 switch (op->arg[i])
243 case A_REUSE_PREV:
244 continue;
246 case A_GREG_M:
247 case A_GREG_N:
248 case A_GREG_D:
249 r = temp & 0x3f;
250 fprintf_fn (stream, "r%d", r);
251 break;
253 case A_FVREG_F:
254 case A_FVREG_G:
255 case A_FVREG_H:
256 r = temp & 0x3f;
257 fprintf_fn (stream, "fv%d", r);
258 break;
260 case A_FPREG_F:
261 case A_FPREG_G:
262 case A_FPREG_H:
263 r = temp & 0x3f;
264 fprintf_fn (stream, "fp%d", r);
265 break;
267 case A_FMREG_F:
268 case A_FMREG_G:
269 case A_FMREG_H:
270 r = temp & 0x3f;
271 fprintf_fn (stream, "mtrx%d", r);
272 break;
274 case A_CREG_K:
275 case A_CREG_J:
277 const char *name;
279 r = temp & 0x3f;
281 name = creg_name (r);
283 if (name != NULL)
284 fprintf_fn (stream, "%s", name);
285 else
286 fprintf_fn (stream, "cr%d", r);
288 break;
290 case A_FREG_G:
291 case A_FREG_H:
292 case A_FREG_F:
293 r = temp & 0x3f;
294 fprintf_fn (stream, "fr%d", r);
295 break;
297 case A_DREG_G:
298 case A_DREG_H:
299 case A_DREG_F:
300 r = temp & 0x3f;
301 fprintf_fn (stream, "dr%d", r);
302 break;
304 case A_TREG_A:
305 case A_TREG_B:
306 r = temp & 0x7;
307 fprintf_fn (stream, "tr%d", r);
308 break;
310 /* A signed 6-bit number. */
311 case A_IMMS6:
312 imm = temp & 0x3f;
313 if (imm & (unsigned long) 0x20)
314 imm |= ~(unsigned long) 0x3f;
315 fprintf_fn (stream, "%ld", imm);
316 break;
318 /* A signed 6-bit number, multiplied by 32 when used. */
319 case A_IMMS6BY32:
320 imm = temp & 0x3f;
321 if (imm & (unsigned long) 0x20)
322 imm |= ~(unsigned long) 0x3f;
323 fprintf_fn (stream, "%ld", imm * 32);
324 break;
326 /* A signed 10-bit number, multiplied by 8 when used. */
327 case A_IMMS10BY8:
328 by_number++;
329 /* Fall through. */
331 /* A signed 10-bit number, multiplied by 4 when used. */
332 case A_IMMS10BY4:
333 by_number++;
334 /* Fall through. */
336 /* A signed 10-bit number, multiplied by 2 when used. */
337 case A_IMMS10BY2:
338 by_number++;
339 /* Fall through. */
341 /* A signed 10-bit number. */
342 case A_IMMS10:
343 case A_IMMS10BY1:
344 imm = temp & 0x3ff;
345 if (imm & (unsigned long) 0x200)
346 imm |= ~(unsigned long) 0x3ff;
347 imm <<= by_number;
348 fprintf_fn (stream, "%ld", imm);
349 break;
351 /* A signed 16-bit number. */
352 case A_IMMS16:
353 imm = temp & 0xffff;
354 if (imm & (unsigned long) 0x8000)
355 imm |= ~((unsigned long) 0xffff);
356 fprintf_fn (stream, "%ld", imm);
357 break;
359 /* A PC-relative signed 16-bit number, multiplied by 4 when
360 used. */
361 case A_PCIMMS16BY4:
362 imm = temp & 0xffff; /* 16 bits */
363 if (imm & (unsigned long) 0x8000)
364 imm |= ~(unsigned long) 0xffff;
365 imm <<= 2;
366 disp_pc_addr = (bfd_vma) imm + memaddr;
367 (*info->print_address_func) (disp_pc_addr, info);
368 break;
370 /* An unsigned 5-bit number. */
371 case A_IMMU5:
372 imm = temp & 0x1f;
373 fprintf_fn (stream, "%ld", imm);
374 break;
376 /* An unsigned 6-bit number. */
377 case A_IMMU6:
378 imm = temp & 0x3f;
379 fprintf_fn (stream, "%ld", imm);
380 break;
382 /* An unsigned 16-bit number. */
383 case A_IMMU16:
384 imm = temp & 0xffff;
385 fprintf_fn (stream, "%ld", imm);
386 break;
388 default:
389 abort ();
390 break;
394 /* FIXME: Looks like 32-bit values only are handled.
395 FIXME: PC-relative numbers aren't handled correctly. */
396 if (op->opcode_base == (unsigned long) SHMEDIA_SHORI_OPC
397 && SAVED_MOVI_R (info) == r)
399 asection *section = info->section;
401 /* Most callers do not set the section field correctly yet. Revert
402 to getting the section from symbols, if any. */
403 if (section == NULL
404 && info->symbols != NULL
405 && bfd_asymbol_flavour (info->symbols[0]) == bfd_target_elf_flavour
406 && ! bfd_is_und_section (bfd_get_section (info->symbols[0]))
407 && ! bfd_is_abs_section (bfd_get_section (info->symbols[0])))
408 section = bfd_get_section (info->symbols[0]);
410 /* Only guess addresses when the contents of this section is fully
411 relocated. Otherwise, the value will be zero or perhaps even
412 bogus. */
413 if (section == NULL
414 || section->owner == NULL
415 || elf_elfheader (section->owner)->e_type == ET_EXEC)
417 bfd_signed_vma shori_addr;
419 shori_addr = SAVED_MOVI_IMM (info) << 16;
420 shori_addr |= imm;
422 fprintf_fn (stream, "\t! 0x");
423 (*info->print_address_func) (shori_addr, info);
427 if (op->opcode_base == SHMEDIA_MOVI_OPC)
429 SAVED_MOVI_IMM (info) = imm;
430 SAVED_MOVI_R (info) = r;
432 else
434 SAVED_MOVI_IMM (info) = 0;
435 SAVED_MOVI_R (info) = 255;
438 return 4;
441 /* Check the type of contents about to be disassembled. This is like
442 sh64_get_contents_type (which may be called from here), except that it
443 takes the same arguments as print_insn_* and does what can be done if
444 no section is available. */
446 static enum sh64_elf_cr_type
447 sh64_get_contents_type_disasm (bfd_vma memaddr, struct disassemble_info *info)
449 struct sh64_disassemble_info *sh64_infop = info->private_data;
451 /* Perhaps we have a region from a previous probe and it still counts
452 for this address? */
453 if (sh64_infop->crange.cr_type != CRT_NONE
454 && memaddr >= sh64_infop->crange.cr_addr
455 && memaddr < sh64_infop->crange.cr_addr + sh64_infop->crange.cr_size)
456 return sh64_infop->crange.cr_type;
458 /* If we have a section, try and use it. */
459 if (info->section
460 && bfd_get_flavour (info->section->owner) == bfd_target_elf_flavour)
462 enum sh64_elf_cr_type cr_type
463 = sh64_get_contents_type (info->section, memaddr,
464 &sh64_infop->crange);
466 if (cr_type != CRT_NONE)
467 return cr_type;
470 /* If we have symbols, we can try and get at a section from *that*. */
471 if (info->symbols != NULL
472 && bfd_asymbol_flavour (info->symbols[0]) == bfd_target_elf_flavour
473 && ! bfd_is_und_section (bfd_get_section (info->symbols[0]))
474 && ! bfd_is_abs_section (bfd_get_section (info->symbols[0])))
476 enum sh64_elf_cr_type cr_type
477 = sh64_get_contents_type (bfd_get_section (info->symbols[0]),
478 memaddr, &sh64_infop->crange);
480 if (cr_type != CRT_NONE)
481 return cr_type;
484 /* We can make a reasonable guess based on the st_other field of a
485 symbol; for a BranchTarget this is marked as STO_SH5_ISA32 and then
486 it's most probably code there. */
487 if (info->symbols
488 && bfd_asymbol_flavour (info->symbols[0]) == bfd_target_elf_flavour
489 && elf_symbol_from (bfd_asymbol_bfd (info->symbols[0]),
490 info->symbols[0])->internal_elf_sym.st_other
491 == STO_SH5_ISA32)
492 return CRT_SH5_ISA32;
494 /* If all else fails, guess this is code and guess on the low bit set. */
495 return (memaddr & 1) == 1 ? CRT_SH5_ISA32 : CRT_SH5_ISA16;
498 /* Initialize static and dynamic disassembly state. */
500 static bfd_boolean
501 init_sh64_disasm_info (struct disassemble_info *info)
503 struct sh64_disassemble_info *sh64_infop
504 = calloc (sizeof (*sh64_infop), 1);
506 if (sh64_infop == NULL)
507 return FALSE;
509 info->private_data = sh64_infop;
511 SAVED_MOVI_IMM (info) = 0;
512 SAVED_MOVI_R (info) = 255;
514 if (shmedia_opcode_mask_table == NULL)
515 initialize_shmedia_opcode_mask_table ();
517 return TRUE;
520 /* Main entry to disassemble SHmedia instructions, given an endian set in
521 INFO. Note that the simulator uses this as the main entry and does not
522 use any of the functions further below. */
525 print_insn_sh64x_media (bfd_vma memaddr, struct disassemble_info *info)
527 if (info->private_data == NULL && ! init_sh64_disasm_info (info))
528 return -1;
530 /* Make reasonable output. */
531 info->bytes_per_line = 4;
532 info->bytes_per_chunk = 4;
534 return print_insn_shmedia (memaddr, info);
537 /* Main entry to disassemble SHmedia insns.
538 If we see an SHcompact instruction, return -2. */
541 print_insn_sh64 (bfd_vma memaddr, struct disassemble_info *info)
543 enum bfd_endian endian = info->endian;
544 enum sh64_elf_cr_type cr_type;
546 if (info->private_data == NULL && ! init_sh64_disasm_info (info))
547 return -1;
549 cr_type = sh64_get_contents_type_disasm (memaddr, info);
550 if (cr_type != CRT_SH5_ISA16)
552 int length = 4 - (memaddr % 4);
553 info->display_endian = endian;
555 /* If we got an uneven address to indicate SHmedia, adjust it. */
556 if (cr_type == CRT_SH5_ISA32 && length == 3)
557 memaddr--, length = 4;
559 /* Only disassemble on four-byte boundaries. Addresses that are not
560 a multiple of four can happen after a data region. */
561 if (cr_type == CRT_SH5_ISA32 && length == 4)
562 return print_insn_sh64x_media (memaddr, info);
564 /* We get CRT_DATA *only* for data regions in a mixed-contents
565 section. For sections with data only, we get indication of one
566 of the ISA:s. You may think that we shouldn't disassemble
567 section with only data if we can figure that out. However, the
568 disassembly function is by default not called for data-only
569 sections, so if the user explicitly specified disassembly of a
570 data section, that's what we should do. */
571 if (cr_type == CRT_DATA || length != 4)
573 int status;
574 unsigned char data[4];
575 struct sh64_disassemble_info *sh64_infop = info->private_data;
577 if (length == 4
578 && sh64_infop->crange.cr_type != CRT_NONE
579 && memaddr >= sh64_infop->crange.cr_addr
580 && memaddr < (sh64_infop->crange.cr_addr
581 + sh64_infop->crange.cr_size))
582 length
583 = (sh64_infop->crange.cr_addr
584 + sh64_infop->crange.cr_size - memaddr);
586 status
587 = (*info->read_memory_func) (memaddr, data,
588 length >= 4 ? 4 : length, info);
590 if (status == 0 && length >= 4)
592 (*info->fprintf_func) (info->stream, ".long 0x%08lx",
593 endian == BFD_ENDIAN_BIG
594 ? (long) (bfd_getb32 (data))
595 : (long) (bfd_getl32 (data)));
596 return 4;
598 else
600 int i;
602 for (i = 0; i < length; i++)
604 status = info->read_memory_func (memaddr + i, data, 1, info);
605 if (status != 0)
606 break;
607 (*info->fprintf_func) (info->stream, "%s0x%02x",
608 i == 0 ? ".byte " : ", ",
609 data[0]);
612 return i ? i : -1;
617 /* SH1 .. SH4 instruction, let caller handle it. */
618 return -2;