1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
49 // Initialize fields in Symbol. This initializes everything except u_
53 Symbol::init_fields(const char* name
, const char* version
,
54 elfcpp::STT type
, elfcpp::STB binding
,
55 elfcpp::STV visibility
, unsigned char nonvis
)
58 this->version_
= version
;
59 this->symtab_index_
= 0;
60 this->dynsym_index_
= 0;
61 this->got_offsets_
.init();
62 this->plt_offset_
= -1U;
64 this->binding_
= binding
;
65 this->visibility_
= visibility
;
66 this->nonvis_
= nonvis
;
67 this->is_def_
= false;
68 this->is_forwarder_
= false;
69 this->has_alias_
= false;
70 this->needs_dynsym_entry_
= false;
71 this->in_reg_
= false;
72 this->in_dyn_
= false;
73 this->has_warning_
= false;
74 this->is_copied_from_dynobj_
= false;
75 this->is_forced_local_
= false;
76 this->is_ordinary_shndx_
= false;
77 this->in_real_elf_
= false;
78 this->is_defined_in_discarded_section_
= false;
81 // Return the demangled version of the symbol's name, but only
82 // if the --demangle flag was set.
85 demangle(const char* name
)
87 if (!parameters
->options().do_demangle())
90 // cplus_demangle allocates memory for the result it returns,
91 // and returns NULL if the name is already demangled.
92 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
93 if (demangled_name
== NULL
)
96 std::string
retval(demangled_name
);
102 Symbol::demangled_name() const
104 return demangle(this->name());
107 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109 template<int size
, bool big_endian
>
111 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
112 const elfcpp::Sym
<size
, big_endian
>& sym
,
113 unsigned int st_shndx
, bool is_ordinary
)
115 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
116 sym
.get_st_visibility(), sym
.get_st_nonvis());
117 this->u_
.from_object
.object
= object
;
118 this->u_
.from_object
.shndx
= st_shndx
;
119 this->is_ordinary_shndx_
= is_ordinary
;
120 this->source_
= FROM_OBJECT
;
121 this->in_reg_
= !object
->is_dynamic();
122 this->in_dyn_
= object
->is_dynamic();
123 this->in_real_elf_
= object
->pluginobj() == NULL
;
126 // Initialize the fields in the base class Symbol for a symbol defined
127 // in an Output_data.
130 Symbol::init_base_output_data(const char* name
, const char* version
,
131 Output_data
* od
, elfcpp::STT type
,
132 elfcpp::STB binding
, elfcpp::STV visibility
,
133 unsigned char nonvis
, bool offset_is_from_end
)
135 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
136 this->u_
.in_output_data
.output_data
= od
;
137 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
138 this->source_
= IN_OUTPUT_DATA
;
139 this->in_reg_
= true;
140 this->in_real_elf_
= true;
143 // Initialize the fields in the base class Symbol for a symbol defined
144 // in an Output_segment.
147 Symbol::init_base_output_segment(const char* name
, const char* version
,
148 Output_segment
* os
, elfcpp::STT type
,
149 elfcpp::STB binding
, elfcpp::STV visibility
,
150 unsigned char nonvis
,
151 Segment_offset_base offset_base
)
153 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
154 this->u_
.in_output_segment
.output_segment
= os
;
155 this->u_
.in_output_segment
.offset_base
= offset_base
;
156 this->source_
= IN_OUTPUT_SEGMENT
;
157 this->in_reg_
= true;
158 this->in_real_elf_
= true;
161 // Initialize the fields in the base class Symbol for a symbol defined
165 Symbol::init_base_constant(const char* name
, const char* version
,
166 elfcpp::STT type
, elfcpp::STB binding
,
167 elfcpp::STV visibility
, unsigned char nonvis
)
169 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
170 this->source_
= IS_CONSTANT
;
171 this->in_reg_
= true;
172 this->in_real_elf_
= true;
175 // Initialize the fields in the base class Symbol for an undefined
179 Symbol::init_base_undefined(const char* name
, const char* version
,
180 elfcpp::STT type
, elfcpp::STB binding
,
181 elfcpp::STV visibility
, unsigned char nonvis
)
183 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
184 this->dynsym_index_
= -1U;
185 this->source_
= IS_UNDEFINED
;
186 this->in_reg_
= true;
187 this->in_real_elf_
= true;
190 // Allocate a common symbol in the base.
193 Symbol::allocate_base_common(Output_data
* od
)
195 gold_assert(this->is_common());
196 this->source_
= IN_OUTPUT_DATA
;
197 this->u_
.in_output_data
.output_data
= od
;
198 this->u_
.in_output_data
.offset_is_from_end
= false;
201 // Initialize the fields in Sized_symbol for SYM in OBJECT.
204 template<bool big_endian
>
206 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
208 const elfcpp::Sym
<size
, big_endian
>& sym
,
209 unsigned int st_shndx
, bool is_ordinary
)
211 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
212 this->value_
= sym
.get_st_value();
213 this->symsize_
= sym
.get_st_size();
216 // Initialize the fields in Sized_symbol for a symbol defined in an
221 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
222 Output_data
* od
, Value_type value
,
223 Size_type symsize
, elfcpp::STT type
,
225 elfcpp::STV visibility
,
226 unsigned char nonvis
,
227 bool offset_is_from_end
)
229 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
230 nonvis
, offset_is_from_end
);
231 this->value_
= value
;
232 this->symsize_
= symsize
;
235 // Initialize the fields in Sized_symbol for a symbol defined in an
240 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
241 Output_segment
* os
, Value_type value
,
242 Size_type symsize
, elfcpp::STT type
,
244 elfcpp::STV visibility
,
245 unsigned char nonvis
,
246 Segment_offset_base offset_base
)
248 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
249 nonvis
, offset_base
);
250 this->value_
= value
;
251 this->symsize_
= symsize
;
254 // Initialize the fields in Sized_symbol for a symbol defined as a
259 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
260 Value_type value
, Size_type symsize
,
261 elfcpp::STT type
, elfcpp::STB binding
,
262 elfcpp::STV visibility
, unsigned char nonvis
)
264 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
265 this->value_
= value
;
266 this->symsize_
= symsize
;
269 // Initialize the fields in Sized_symbol for an undefined symbol.
273 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
274 elfcpp::STT type
, elfcpp::STB binding
,
275 elfcpp::STV visibility
, unsigned char nonvis
)
277 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
282 // Return true if SHNDX represents a common symbol.
285 Symbol::is_common_shndx(unsigned int shndx
)
287 return (shndx
== elfcpp::SHN_COMMON
288 || shndx
== parameters
->target().small_common_shndx()
289 || shndx
== parameters
->target().large_common_shndx());
292 // Allocate a common symbol.
296 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
298 this->allocate_base_common(od
);
299 this->value_
= value
;
302 // The ""'s around str ensure str is a string literal, so sizeof works.
303 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
305 // Return true if this symbol should be added to the dynamic symbol
309 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
311 // If the symbol is used by a dynamic relocation, we need to add it.
312 if (this->needs_dynsym_entry())
315 // If this symbol's section is not added, the symbol need not be added.
316 // The section may have been GCed. Note that export_dynamic is being
317 // overridden here. This should not be done for shared objects.
318 if (parameters
->options().gc_sections()
319 && !parameters
->options().shared()
320 && this->source() == Symbol::FROM_OBJECT
321 && !this->object()->is_dynamic())
323 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
325 unsigned int shndx
= this->shndx(&is_ordinary
);
326 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
327 && !relobj
->is_section_included(shndx
)
328 && !symtab
->is_section_folded(relobj
, shndx
))
332 // If the symbol was forced local in a version script, do not add it.
333 if (this->is_forced_local())
336 // If the symbol was forced dynamic in a --dynamic-list file, add it.
337 if (parameters
->options().in_dynamic_list(this->name()))
340 // If dynamic-list-data was specified, add any STT_OBJECT.
341 if (parameters
->options().dynamic_list_data()
342 && !this->is_from_dynobj()
343 && this->type() == elfcpp::STT_OBJECT
)
346 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
347 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
348 if ((parameters
->options().dynamic_list_cpp_new()
349 || parameters
->options().dynamic_list_cpp_typeinfo())
350 && !this->is_from_dynobj())
352 // TODO(csilvers): We could probably figure out if we're an operator
353 // new/delete or typeinfo without the need to demangle.
354 char* demangled_name
= cplus_demangle(this->name(),
355 DMGL_ANSI
| DMGL_PARAMS
);
356 if (demangled_name
== NULL
)
358 // Not a C++ symbol, so it can't satisfy these flags
360 else if (parameters
->options().dynamic_list_cpp_new()
361 && (strprefix(demangled_name
, "operator new")
362 || strprefix(demangled_name
, "operator delete")))
364 free(demangled_name
);
367 else if (parameters
->options().dynamic_list_cpp_typeinfo()
368 && (strprefix(demangled_name
, "typeinfo name for")
369 || strprefix(demangled_name
, "typeinfo for")))
371 free(demangled_name
);
375 free(demangled_name
);
378 // If exporting all symbols or building a shared library,
379 // and the symbol is defined in a regular object and is
380 // externally visible, we need to add it.
381 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
382 && !this->is_from_dynobj()
383 && this->is_externally_visible())
389 // Return true if the final value of this symbol is known at link
393 Symbol::final_value_is_known() const
395 // If we are not generating an executable, then no final values are
396 // known, since they will change at runtime.
397 if (parameters
->options().output_is_position_independent()
398 || parameters
->options().relocatable())
401 // If the symbol is not from an object file, and is not undefined,
402 // then it is defined, and known.
403 if (this->source_
!= FROM_OBJECT
)
405 if (this->source_
!= IS_UNDEFINED
)
410 // If the symbol is from a dynamic object, then the final value
412 if (this->object()->is_dynamic())
415 // If the symbol is not undefined (it is defined or common),
416 // then the final value is known.
417 if (!this->is_undefined())
421 // If the symbol is undefined, then whether the final value is known
422 // depends on whether we are doing a static link. If we are doing a
423 // dynamic link, then the final value could be filled in at runtime.
424 // This could reasonably be the case for a weak undefined symbol.
425 return parameters
->doing_static_link();
428 // Return the output section where this symbol is defined.
431 Symbol::output_section() const
433 switch (this->source_
)
437 unsigned int shndx
= this->u_
.from_object
.shndx
;
438 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
440 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
441 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
442 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
443 return relobj
->output_section(shndx
);
449 return this->u_
.in_output_data
.output_data
->output_section();
451 case IN_OUTPUT_SEGMENT
:
461 // Set the symbol's output section. This is used for symbols defined
462 // in scripts. This should only be called after the symbol table has
466 Symbol::set_output_section(Output_section
* os
)
468 switch (this->source_
)
472 gold_assert(this->output_section() == os
);
475 this->source_
= IN_OUTPUT_DATA
;
476 this->u_
.in_output_data
.output_data
= os
;
477 this->u_
.in_output_data
.offset_is_from_end
= false;
479 case IN_OUTPUT_SEGMENT
:
486 // Class Symbol_table.
488 Symbol_table::Symbol_table(unsigned int count
,
489 const Version_script_info
& version_script
)
490 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
491 forwarders_(), commons_(), tls_commons_(), small_commons_(),
492 large_commons_(), forced_locals_(), warnings_(),
493 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
495 namepool_
.reserve(count
);
498 Symbol_table::~Symbol_table()
502 // The hash function. The key values are Stringpool keys.
505 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
507 return key
.first
^ key
.second
;
510 // The symbol table key equality function. This is called with
514 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
515 const Symbol_table_key
& k2
) const
517 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
521 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
523 return (parameters
->options().icf_enabled()
524 && this->icf_
->is_section_folded(obj
, shndx
));
527 // For symbols that have been listed with -u option, add them to the
528 // work list to avoid gc'ing them.
531 Symbol_table::gc_mark_undef_symbols()
533 for (options::String_set::const_iterator p
=
534 parameters
->options().undefined_begin();
535 p
!= parameters
->options().undefined_end();
538 const char* name
= p
->c_str();
539 Symbol
* sym
= this->lookup(name
);
540 gold_assert (sym
!= NULL
);
541 if (sym
->source() == Symbol::FROM_OBJECT
542 && !sym
->object()->is_dynamic())
544 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
546 unsigned int shndx
= sym
->shndx(&is_ordinary
);
549 gold_assert(this->gc_
!= NULL
);
550 this->gc_
->worklist().push(Section_id(obj
, shndx
));
557 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
559 if (!sym
->is_from_dynobj()
560 && sym
->is_externally_visible())
562 //Add the object and section to the work list.
563 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
565 unsigned int shndx
= sym
->shndx(&is_ordinary
);
566 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
568 gold_assert(this->gc_
!= NULL
);
569 this->gc_
->worklist().push(Section_id(obj
, shndx
));
574 // When doing garbage collection, keep symbols that have been seen in
577 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
579 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
580 && !sym
->object()->is_dynamic())
582 Relobj
*obj
= static_cast<Relobj
*>(sym
->object());
584 unsigned int shndx
= sym
->shndx(&is_ordinary
);
585 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
587 gold_assert(this->gc_
!= NULL
);
588 this->gc_
->worklist().push(Section_id(obj
, shndx
));
593 // Make TO a symbol which forwards to FROM.
596 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
598 gold_assert(from
!= to
);
599 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
600 this->forwarders_
[from
] = to
;
601 from
->set_forwarder();
604 // Resolve the forwards from FROM, returning the real symbol.
607 Symbol_table::resolve_forwards(const Symbol
* from
) const
609 gold_assert(from
->is_forwarder());
610 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
611 this->forwarders_
.find(from
);
612 gold_assert(p
!= this->forwarders_
.end());
616 // Look up a symbol by name.
619 Symbol_table::lookup(const char* name
, const char* version
) const
621 Stringpool::Key name_key
;
622 name
= this->namepool_
.find(name
, &name_key
);
626 Stringpool::Key version_key
= 0;
629 version
= this->namepool_
.find(version
, &version_key
);
634 Symbol_table_key
key(name_key
, version_key
);
635 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
636 if (p
== this->table_
.end())
641 // Resolve a Symbol with another Symbol. This is only used in the
642 // unusual case where there are references to both an unversioned
643 // symbol and a symbol with a version, and we then discover that that
644 // version is the default version. Because this is unusual, we do
645 // this the slow way, by converting back to an ELF symbol.
647 template<int size
, bool big_endian
>
649 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
651 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
652 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
653 // We don't bother to set the st_name or the st_shndx field.
654 esym
.put_st_value(from
->value());
655 esym
.put_st_size(from
->symsize());
656 esym
.put_st_info(from
->binding(), from
->type());
657 esym
.put_st_other(from
->visibility(), from
->nonvis());
659 unsigned int shndx
= from
->shndx(&is_ordinary
);
660 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
666 if (parameters
->options().gc_sections())
667 this->gc_mark_dyn_syms(to
);
670 // Record that a symbol is forced to be local by a version script or
674 Symbol_table::force_local(Symbol
* sym
)
676 if (!sym
->is_defined() && !sym
->is_common())
678 if (sym
->is_forced_local())
680 // We already got this one.
683 sym
->set_is_forced_local();
684 this->forced_locals_
.push_back(sym
);
687 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
688 // is only called for undefined symbols, when at least one --wrap
692 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
694 // For some targets, we need to ignore a specific character when
695 // wrapping, and add it back later.
697 if (name
[0] == parameters
->target().wrap_char())
703 if (parameters
->options().is_wrap(name
))
705 // Turn NAME into __wrap_NAME.
712 // This will give us both the old and new name in NAMEPOOL_, but
713 // that is OK. Only the versions we need will wind up in the
714 // real string table in the output file.
715 return this->namepool_
.add(s
.c_str(), true, name_key
);
718 const char* const real_prefix
= "__real_";
719 const size_t real_prefix_length
= strlen(real_prefix
);
720 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
721 && parameters
->options().is_wrap(name
+ real_prefix_length
))
723 // Turn __real_NAME into NAME.
727 s
+= name
+ real_prefix_length
;
728 return this->namepool_
.add(s
.c_str(), true, name_key
);
734 // This is called when we see a symbol NAME/VERSION, and the symbol
735 // already exists in the symbol table, and VERSION is marked as being
736 // the default version. SYM is the NAME/VERSION symbol we just added.
737 // DEFAULT_IS_NEW is true if this is the first time we have seen the
738 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
740 template<int size
, bool big_endian
>
742 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
744 Symbol_table_type::iterator pdef
)
748 // This is the first time we have seen NAME/NULL. Make
749 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
752 sym
->set_is_default();
754 else if (pdef
->second
== sym
)
756 // NAME/NULL already points to NAME/VERSION. Don't mark the
757 // symbol as the default if it is not already the default.
761 // This is the unfortunate case where we already have entries
762 // for both NAME/VERSION and NAME/NULL. We now see a symbol
763 // NAME/VERSION where VERSION is the default version. We have
764 // already resolved this new symbol with the existing
765 // NAME/VERSION symbol.
767 // It's possible that NAME/NULL and NAME/VERSION are both
768 // defined in regular objects. This can only happen if one
769 // object file defines foo and another defines foo@@ver. This
770 // is somewhat obscure, but we call it a multiple definition
773 // It's possible that NAME/NULL actually has a version, in which
774 // case it won't be the same as VERSION. This happens with
775 // ver_test_7.so in the testsuite for the symbol t2_2. We see
776 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
777 // then see an unadorned t2_2 in an object file and give it
778 // version VER1 from the version script. This looks like a
779 // default definition for VER1, so it looks like we should merge
780 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
781 // not obvious that this is an error, either. So we just punt.
783 // If one of the symbols has non-default visibility, and the
784 // other is defined in a shared object, then they are different
787 // Otherwise, we just resolve the symbols as though they were
790 if (pdef
->second
->version() != NULL
)
791 gold_assert(pdef
->second
->version() != sym
->version());
792 else if (sym
->visibility() != elfcpp::STV_DEFAULT
793 && pdef
->second
->is_from_dynobj())
795 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
796 && sym
->is_from_dynobj())
800 const Sized_symbol
<size
>* symdef
;
801 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
802 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
803 this->make_forwarder(pdef
->second
, sym
);
805 sym
->set_is_default();
810 // Add one symbol from OBJECT to the symbol table. NAME is symbol
811 // name and VERSION is the version; both are canonicalized. DEF is
812 // whether this is the default version. ST_SHNDX is the symbol's
813 // section index; IS_ORDINARY is whether this is a normal section
814 // rather than a special code.
816 // If IS_DEFAULT_VERSION is true, then this is the definition of a
817 // default version of a symbol. That means that any lookup of
818 // NAME/NULL and any lookup of NAME/VERSION should always return the
819 // same symbol. This is obvious for references, but in particular we
820 // want to do this for definitions: overriding NAME/NULL should also
821 // override NAME/VERSION. If we don't do that, it would be very hard
822 // to override functions in a shared library which uses versioning.
824 // We implement this by simply making both entries in the hash table
825 // point to the same Symbol structure. That is easy enough if this is
826 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
827 // that we have seen both already, in which case they will both have
828 // independent entries in the symbol table. We can't simply change
829 // the symbol table entry, because we have pointers to the entries
830 // attached to the object files. So we mark the entry attached to the
831 // object file as a forwarder, and record it in the forwarders_ map.
832 // Note that entries in the hash table will never be marked as
835 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
836 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
837 // for a special section code. ST_SHNDX may be modified if the symbol
838 // is defined in a section being discarded.
840 template<int size
, bool big_endian
>
842 Symbol_table::add_from_object(Object
* object
,
844 Stringpool::Key name_key
,
846 Stringpool::Key version_key
,
847 bool is_default_version
,
848 const elfcpp::Sym
<size
, big_endian
>& sym
,
849 unsigned int st_shndx
,
851 unsigned int orig_st_shndx
)
853 // Print a message if this symbol is being traced.
854 if (parameters
->options().is_trace_symbol(name
))
856 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
857 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
859 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
862 // For an undefined symbol, we may need to adjust the name using
864 if (orig_st_shndx
== elfcpp::SHN_UNDEF
865 && parameters
->options().any_wrap())
867 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
868 if (wrap_name
!= name
)
870 // If we see a reference to malloc with version GLIBC_2.0,
871 // and we turn it into a reference to __wrap_malloc, then we
872 // discard the version number. Otherwise the user would be
873 // required to specify the correct version for
881 Symbol
* const snull
= NULL
;
882 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
883 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
886 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
887 std::make_pair(this->table_
.end(), false);
888 if (is_default_version
)
890 const Stringpool::Key vnull_key
= 0;
891 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
896 // ins.first: an iterator, which is a pointer to a pair.
897 // ins.first->first: the key (a pair of name and version).
898 // ins.first->second: the value (Symbol*).
899 // ins.second: true if new entry was inserted, false if not.
901 Sized_symbol
<size
>* ret
;
906 // We already have an entry for NAME/VERSION.
907 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
908 gold_assert(ret
!= NULL
);
910 was_undefined
= ret
->is_undefined();
911 was_common
= ret
->is_common();
913 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
915 if (parameters
->options().gc_sections())
916 this->gc_mark_dyn_syms(ret
);
918 if (is_default_version
)
919 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
924 // This is the first time we have seen NAME/VERSION.
925 gold_assert(ins
.first
->second
== NULL
);
927 if (is_default_version
&& !insdefault
.second
)
929 // We already have an entry for NAME/NULL. If we override
930 // it, then change it to NAME/VERSION.
931 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
933 was_undefined
= ret
->is_undefined();
934 was_common
= ret
->is_common();
936 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
938 if (parameters
->options().gc_sections())
939 this->gc_mark_dyn_syms(ret
);
940 ins
.first
->second
= ret
;
944 was_undefined
= false;
947 Sized_target
<size
, big_endian
>* target
=
948 parameters
->sized_target
<size
, big_endian
>();
949 if (!target
->has_make_symbol())
950 ret
= new Sized_symbol
<size
>();
953 ret
= target
->make_symbol();
956 // This means that we don't want a symbol table
958 if (!is_default_version
)
959 this->table_
.erase(ins
.first
);
962 this->table_
.erase(insdefault
.first
);
963 // Inserting INSDEFAULT invalidated INS.
964 this->table_
.erase(std::make_pair(name_key
,
971 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
973 ins
.first
->second
= ret
;
974 if (is_default_version
)
976 // This is the first time we have seen NAME/NULL. Point
977 // it at the new entry for NAME/VERSION.
978 gold_assert(insdefault
.second
);
979 insdefault
.first
->second
= ret
;
983 if (is_default_version
)
984 ret
->set_is_default();
987 // Record every time we see a new undefined symbol, to speed up
989 if (!was_undefined
&& ret
->is_undefined())
990 ++this->saw_undefined_
;
992 // Keep track of common symbols, to speed up common symbol
994 if (!was_common
&& ret
->is_common())
996 if (ret
->type() == elfcpp::STT_TLS
)
997 this->tls_commons_
.push_back(ret
);
998 else if (!is_ordinary
999 && st_shndx
== parameters
->target().small_common_shndx())
1000 this->small_commons_
.push_back(ret
);
1001 else if (!is_ordinary
1002 && st_shndx
== parameters
->target().large_common_shndx())
1003 this->large_commons_
.push_back(ret
);
1005 this->commons_
.push_back(ret
);
1008 // If we're not doing a relocatable link, then any symbol with
1009 // hidden or internal visibility is local.
1010 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1011 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1012 && (ret
->binding() == elfcpp::STB_GLOBAL
1013 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1014 || ret
->binding() == elfcpp::STB_WEAK
)
1015 && !parameters
->options().relocatable())
1016 this->force_local(ret
);
1021 // Add all the symbols in a relocatable object to the hash table.
1023 template<int size
, bool big_endian
>
1025 Symbol_table::add_from_relobj(
1026 Sized_relobj
<size
, big_endian
>* relobj
,
1027 const unsigned char* syms
,
1029 size_t symndx_offset
,
1030 const char* sym_names
,
1031 size_t sym_name_size
,
1032 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1037 gold_assert(size
== parameters
->target().get_size());
1039 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1041 const bool just_symbols
= relobj
->just_symbols();
1043 const unsigned char* p
= syms
;
1044 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1046 (*sympointers
)[i
] = NULL
;
1048 elfcpp::Sym
<size
, big_endian
> sym(p
);
1050 unsigned int st_name
= sym
.get_st_name();
1051 if (st_name
>= sym_name_size
)
1053 relobj
->error(_("bad global symbol name offset %u at %zu"),
1058 const char* name
= sym_names
+ st_name
;
1061 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1064 unsigned int orig_st_shndx
= st_shndx
;
1066 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1068 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1071 // A symbol defined in a section which we are not including must
1072 // be treated as an undefined symbol.
1073 bool is_defined_in_discarded_section
= false;
1074 if (st_shndx
!= elfcpp::SHN_UNDEF
1076 && !relobj
->is_section_included(st_shndx
)
1077 && !this->is_section_folded(relobj
, st_shndx
))
1079 st_shndx
= elfcpp::SHN_UNDEF
;
1080 is_defined_in_discarded_section
= true;
1083 // In an object file, an '@' in the name separates the symbol
1084 // name from the version name. If there are two '@' characters,
1085 // this is the default version.
1086 const char* ver
= strchr(name
, '@');
1087 Stringpool::Key ver_key
= 0;
1089 // IS_DEFAULT_VERSION: is the version default?
1090 // IS_FORCED_LOCAL: is the symbol forced local?
1091 bool is_default_version
= false;
1092 bool is_forced_local
= false;
1096 // The symbol name is of the form foo@VERSION or foo@@VERSION
1097 namelen
= ver
- name
;
1101 is_default_version
= true;
1104 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1106 // We don't want to assign a version to an undefined symbol,
1107 // even if it is listed in the version script. FIXME: What
1108 // about a common symbol?
1111 namelen
= strlen(name
);
1112 if (!this->version_script_
.empty()
1113 && st_shndx
!= elfcpp::SHN_UNDEF
)
1115 // The symbol name did not have a version, but the
1116 // version script may assign a version anyway.
1117 std::string version
;
1119 if (this->version_script_
.get_symbol_version(name
, &version
,
1123 is_forced_local
= true;
1124 else if (!version
.empty())
1126 ver
= this->namepool_
.add_with_length(version
.c_str(),
1130 is_default_version
= true;
1136 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1137 unsigned char symbuf
[sym_size
];
1138 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1141 memcpy(symbuf
, p
, sym_size
);
1142 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1143 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
1145 // Symbol values in object files are section relative.
1146 // This is normally what we want, but since here we are
1147 // converting the symbol to absolute we need to add the
1148 // section address. The section address in an object
1149 // file is normally zero, but people can use a linker
1150 // script to change it.
1151 sw
.put_st_value(sym
.get_st_value()
1152 + relobj
->section_address(orig_st_shndx
));
1154 st_shndx
= elfcpp::SHN_ABS
;
1155 is_ordinary
= false;
1159 // Fix up visibility if object has no-export set.
1160 if (relobj
->no_export()
1161 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1163 // We may have copied symbol already above.
1166 memcpy(symbuf
, p
, sym_size
);
1170 elfcpp::STV visibility
= sym2
.get_st_visibility();
1171 if (visibility
== elfcpp::STV_DEFAULT
1172 || visibility
== elfcpp::STV_PROTECTED
)
1174 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1175 unsigned char nonvis
= sym2
.get_st_nonvis();
1176 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1180 Stringpool::Key name_key
;
1181 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1184 Sized_symbol
<size
>* res
;
1185 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1186 is_default_version
, *psym
, st_shndx
,
1187 is_ordinary
, orig_st_shndx
);
1189 // If building a shared library using garbage collection, do not
1190 // treat externally visible symbols as garbage.
1191 if (parameters
->options().gc_sections()
1192 && parameters
->options().shared())
1193 this->gc_mark_symbol_for_shlib(res
);
1195 if (is_forced_local
)
1196 this->force_local(res
);
1198 if (is_defined_in_discarded_section
)
1199 res
->set_is_defined_in_discarded_section();
1201 (*sympointers
)[i
] = res
;
1205 // Add a symbol from a plugin-claimed file.
1207 template<int size
, bool big_endian
>
1209 Symbol_table::add_from_pluginobj(
1210 Sized_pluginobj
<size
, big_endian
>* obj
,
1213 elfcpp::Sym
<size
, big_endian
>* sym
)
1215 unsigned int st_shndx
= sym
->get_st_shndx();
1216 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1218 Stringpool::Key ver_key
= 0;
1219 bool is_default_version
= false;
1220 bool is_forced_local
= false;
1224 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1226 // We don't want to assign a version to an undefined symbol,
1227 // even if it is listed in the version script. FIXME: What
1228 // about a common symbol?
1231 if (!this->version_script_
.empty()
1232 && st_shndx
!= elfcpp::SHN_UNDEF
)
1234 // The symbol name did not have a version, but the
1235 // version script may assign a version anyway.
1236 std::string version
;
1238 if (this->version_script_
.get_symbol_version(name
, &version
,
1242 is_forced_local
= true;
1243 else if (!version
.empty())
1245 ver
= this->namepool_
.add_with_length(version
.c_str(),
1249 is_default_version
= true;
1255 Stringpool::Key name_key
;
1256 name
= this->namepool_
.add(name
, true, &name_key
);
1258 Sized_symbol
<size
>* res
;
1259 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1260 is_default_version
, *sym
, st_shndx
,
1261 is_ordinary
, st_shndx
);
1263 if (is_forced_local
)
1264 this->force_local(res
);
1269 // Add all the symbols in a dynamic object to the hash table.
1271 template<int size
, bool big_endian
>
1273 Symbol_table::add_from_dynobj(
1274 Sized_dynobj
<size
, big_endian
>* dynobj
,
1275 const unsigned char* syms
,
1277 const char* sym_names
,
1278 size_t sym_name_size
,
1279 const unsigned char* versym
,
1281 const std::vector
<const char*>* version_map
,
1282 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1287 gold_assert(size
== parameters
->target().get_size());
1289 if (dynobj
->just_symbols())
1291 gold_error(_("--just-symbols does not make sense with a shared object"));
1295 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1297 dynobj
->error(_("too few symbol versions"));
1301 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1303 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1304 // weak aliases. This is necessary because if the dynamic object
1305 // provides the same variable under two names, one of which is a
1306 // weak definition, and the regular object refers to the weak
1307 // definition, we have to put both the weak definition and the
1308 // strong definition into the dynamic symbol table. Given a weak
1309 // definition, the only way that we can find the corresponding
1310 // strong definition, if any, is to search the symbol table.
1311 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1313 const unsigned char* p
= syms
;
1314 const unsigned char* vs
= versym
;
1315 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1317 elfcpp::Sym
<size
, big_endian
> sym(p
);
1319 if (sympointers
!= NULL
)
1320 (*sympointers
)[i
] = NULL
;
1322 // Ignore symbols with local binding or that have
1323 // internal or hidden visibility.
1324 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1325 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1326 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1329 // A protected symbol in a shared library must be treated as a
1330 // normal symbol when viewed from outside the shared library.
1331 // Implement this by overriding the visibility here.
1332 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1333 unsigned char symbuf
[sym_size
];
1334 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1335 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1337 memcpy(symbuf
, p
, sym_size
);
1338 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1339 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1343 unsigned int st_name
= psym
->get_st_name();
1344 if (st_name
>= sym_name_size
)
1346 dynobj
->error(_("bad symbol name offset %u at %zu"),
1351 const char* name
= sym_names
+ st_name
;
1354 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1357 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1360 Sized_symbol
<size
>* res
;
1364 Stringpool::Key name_key
;
1365 name
= this->namepool_
.add(name
, true, &name_key
);
1366 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1367 false, *psym
, st_shndx
, is_ordinary
,
1372 // Read the version information.
1374 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1376 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1377 v
&= elfcpp::VERSYM_VERSION
;
1379 // The Sun documentation says that V can be VER_NDX_LOCAL,
1380 // or VER_NDX_GLOBAL, or a version index. The meaning of
1381 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1382 // The old GNU linker will happily generate VER_NDX_LOCAL
1383 // for an undefined symbol. I don't know what the Sun
1384 // linker will generate.
1386 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1387 && st_shndx
!= elfcpp::SHN_UNDEF
)
1389 // This symbol should not be visible outside the object.
1393 // At this point we are definitely going to add this symbol.
1394 Stringpool::Key name_key
;
1395 name
= this->namepool_
.add(name
, true, &name_key
);
1397 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1398 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1400 // This symbol does not have a version.
1401 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1402 false, *psym
, st_shndx
, is_ordinary
,
1407 if (v
>= version_map
->size())
1409 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1414 const char* version
= (*version_map
)[v
];
1415 if (version
== NULL
)
1417 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1422 Stringpool::Key version_key
;
1423 version
= this->namepool_
.add(version
, true, &version_key
);
1425 // If this is an absolute symbol, and the version name
1426 // and symbol name are the same, then this is the
1427 // version definition symbol. These symbols exist to
1428 // support using -u to pull in particular versions. We
1429 // do not want to record a version for them.
1430 if (st_shndx
== elfcpp::SHN_ABS
1432 && name_key
== version_key
)
1433 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1434 false, *psym
, st_shndx
, is_ordinary
,
1438 const bool is_default_version
=
1439 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1440 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1441 version_key
, is_default_version
,
1443 is_ordinary
, st_shndx
);
1448 // Note that it is possible that RES was overridden by an
1449 // earlier object, in which case it can't be aliased here.
1450 if (st_shndx
!= elfcpp::SHN_UNDEF
1452 && psym
->get_st_type() == elfcpp::STT_OBJECT
1453 && res
->source() == Symbol::FROM_OBJECT
1454 && res
->object() == dynobj
)
1455 object_symbols
.push_back(res
);
1457 if (sympointers
!= NULL
)
1458 (*sympointers
)[i
] = res
;
1461 this->record_weak_aliases(&object_symbols
);
1464 // This is used to sort weak aliases. We sort them first by section
1465 // index, then by offset, then by weak ahead of strong.
1468 class Weak_alias_sorter
1471 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1476 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1477 const Sized_symbol
<size
>* s2
) const
1480 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1481 gold_assert(is_ordinary
);
1482 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1483 gold_assert(is_ordinary
);
1484 if (s1_shndx
!= s2_shndx
)
1485 return s1_shndx
< s2_shndx
;
1487 if (s1
->value() != s2
->value())
1488 return s1
->value() < s2
->value();
1489 if (s1
->binding() != s2
->binding())
1491 if (s1
->binding() == elfcpp::STB_WEAK
)
1493 if (s2
->binding() == elfcpp::STB_WEAK
)
1496 return std::string(s1
->name()) < std::string(s2
->name());
1499 // SYMBOLS is a list of object symbols from a dynamic object. Look
1500 // for any weak aliases, and record them so that if we add the weak
1501 // alias to the dynamic symbol table, we also add the corresponding
1506 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1508 // Sort the vector by section index, then by offset, then by weak
1510 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1512 // Walk through the vector. For each weak definition, record
1514 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1516 p
!= symbols
->end();
1519 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1522 // Build a circular list of weak aliases. Each symbol points to
1523 // the next one in the circular list.
1525 Sized_symbol
<size
>* from_sym
= *p
;
1526 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1527 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1530 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1531 || (*q
)->value() != from_sym
->value())
1534 this->weak_aliases_
[from_sym
] = *q
;
1535 from_sym
->set_has_alias();
1541 this->weak_aliases_
[from_sym
] = *p
;
1542 from_sym
->set_has_alias();
1549 // Create and return a specially defined symbol. If ONLY_IF_REF is
1550 // true, then only create the symbol if there is a reference to it.
1551 // If this does not return NULL, it sets *POLDSYM to the existing
1552 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1553 // resolve the newly created symbol to the old one. This
1554 // canonicalizes *PNAME and *PVERSION.
1556 template<int size
, bool big_endian
>
1558 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1560 Sized_symbol
<size
>** poldsym
,
1561 bool *resolve_oldsym
)
1563 *resolve_oldsym
= false;
1565 // If the caller didn't give us a version, see if we get one from
1566 // the version script.
1568 bool is_default_version
= false;
1569 if (*pversion
== NULL
)
1572 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1574 if (is_global
&& !v
.empty())
1576 *pversion
= v
.c_str();
1577 // If we get the version from a version script, then we
1578 // are also the default version.
1579 is_default_version
= true;
1585 Sized_symbol
<size
>* sym
;
1587 bool add_to_table
= false;
1588 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1589 bool add_def_to_table
= false;
1590 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1594 oldsym
= this->lookup(*pname
, *pversion
);
1595 if (oldsym
== NULL
&& is_default_version
)
1596 oldsym
= this->lookup(*pname
, NULL
);
1597 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1600 *pname
= oldsym
->name();
1601 if (!is_default_version
)
1602 *pversion
= oldsym
->version();
1606 // Canonicalize NAME and VERSION.
1607 Stringpool::Key name_key
;
1608 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1610 Stringpool::Key version_key
= 0;
1611 if (*pversion
!= NULL
)
1612 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1614 Symbol
* const snull
= NULL
;
1615 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1616 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1620 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1621 std::make_pair(this->table_
.end(), false);
1622 if (is_default_version
)
1624 const Stringpool::Key vnull
= 0;
1626 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1633 // We already have a symbol table entry for NAME/VERSION.
1634 oldsym
= ins
.first
->second
;
1635 gold_assert(oldsym
!= NULL
);
1637 if (is_default_version
)
1639 Sized_symbol
<size
>* soldsym
=
1640 this->get_sized_symbol
<size
>(oldsym
);
1641 this->define_default_version
<size
, big_endian
>(soldsym
,
1648 // We haven't seen this symbol before.
1649 gold_assert(ins
.first
->second
== NULL
);
1651 add_to_table
= true;
1652 add_loc
= ins
.first
;
1654 if (is_default_version
&& !insdefault
.second
)
1656 // We are adding NAME/VERSION, and it is the default
1657 // version. We already have an entry for NAME/NULL.
1658 oldsym
= insdefault
.first
->second
;
1659 *resolve_oldsym
= true;
1665 if (is_default_version
)
1667 add_def_to_table
= true;
1668 add_def_loc
= insdefault
.first
;
1674 const Target
& target
= parameters
->target();
1675 if (!target
.has_make_symbol())
1676 sym
= new Sized_symbol
<size
>();
1679 Sized_target
<size
, big_endian
>* sized_target
=
1680 parameters
->sized_target
<size
, big_endian
>();
1681 sym
= sized_target
->make_symbol();
1687 add_loc
->second
= sym
;
1689 gold_assert(oldsym
!= NULL
);
1691 if (add_def_to_table
)
1692 add_def_loc
->second
= sym
;
1694 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1699 // Define a symbol based on an Output_data.
1702 Symbol_table::define_in_output_data(const char* name
,
1703 const char* version
,
1709 elfcpp::STB binding
,
1710 elfcpp::STV visibility
,
1711 unsigned char nonvis
,
1712 bool offset_is_from_end
,
1715 if (parameters
->target().get_size() == 32)
1717 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1718 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
1719 value
, symsize
, type
, binding
,
1727 else if (parameters
->target().get_size() == 64)
1729 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1730 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
1731 value
, symsize
, type
, binding
,
1743 // Define a symbol in an Output_data, sized version.
1747 Symbol_table::do_define_in_output_data(
1749 const char* version
,
1752 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1753 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1755 elfcpp::STB binding
,
1756 elfcpp::STV visibility
,
1757 unsigned char nonvis
,
1758 bool offset_is_from_end
,
1761 Sized_symbol
<size
>* sym
;
1762 Sized_symbol
<size
>* oldsym
;
1763 bool resolve_oldsym
;
1765 if (parameters
->target().is_big_endian())
1767 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1768 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1769 only_if_ref
, &oldsym
,
1777 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1778 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1779 only_if_ref
, &oldsym
,
1789 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1790 visibility
, nonvis
, offset_is_from_end
);
1794 if (binding
== elfcpp::STB_LOCAL
1795 || this->version_script_
.symbol_is_local(name
))
1796 this->force_local(sym
);
1797 else if (version
!= NULL
)
1798 sym
->set_is_default();
1802 if (Symbol_table::should_override_with_special(oldsym
, defined
))
1803 this->override_with_special(oldsym
, sym
);
1814 // Define a symbol based on an Output_segment.
1817 Symbol_table::define_in_output_segment(const char* name
,
1818 const char* version
,
1824 elfcpp::STB binding
,
1825 elfcpp::STV visibility
,
1826 unsigned char nonvis
,
1827 Symbol::Segment_offset_base offset_base
,
1830 if (parameters
->target().get_size() == 32)
1832 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1833 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
1834 value
, symsize
, type
,
1835 binding
, visibility
, nonvis
,
1836 offset_base
, only_if_ref
);
1841 else if (parameters
->target().get_size() == 64)
1843 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1844 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
1845 value
, symsize
, type
,
1846 binding
, visibility
, nonvis
,
1847 offset_base
, only_if_ref
);
1856 // Define a symbol in an Output_segment, sized version.
1860 Symbol_table::do_define_in_output_segment(
1862 const char* version
,
1865 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1866 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1868 elfcpp::STB binding
,
1869 elfcpp::STV visibility
,
1870 unsigned char nonvis
,
1871 Symbol::Segment_offset_base offset_base
,
1874 Sized_symbol
<size
>* sym
;
1875 Sized_symbol
<size
>* oldsym
;
1876 bool resolve_oldsym
;
1878 if (parameters
->target().is_big_endian())
1880 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1881 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1882 only_if_ref
, &oldsym
,
1890 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1891 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1892 only_if_ref
, &oldsym
,
1902 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1903 visibility
, nonvis
, offset_base
);
1907 if (binding
== elfcpp::STB_LOCAL
1908 || this->version_script_
.symbol_is_local(name
))
1909 this->force_local(sym
);
1910 else if (version
!= NULL
)
1911 sym
->set_is_default();
1915 if (Symbol_table::should_override_with_special(oldsym
, defined
))
1916 this->override_with_special(oldsym
, sym
);
1927 // Define a special symbol with a constant value. It is a multiple
1928 // definition error if this symbol is already defined.
1931 Symbol_table::define_as_constant(const char* name
,
1932 const char* version
,
1937 elfcpp::STB binding
,
1938 elfcpp::STV visibility
,
1939 unsigned char nonvis
,
1941 bool force_override
)
1943 if (parameters
->target().get_size() == 32)
1945 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1946 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
1947 symsize
, type
, binding
,
1948 visibility
, nonvis
, only_if_ref
,
1954 else if (parameters
->target().get_size() == 64)
1956 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1957 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
1958 symsize
, type
, binding
,
1959 visibility
, nonvis
, only_if_ref
,
1969 // Define a symbol as a constant, sized version.
1973 Symbol_table::do_define_as_constant(
1975 const char* version
,
1977 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1978 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1980 elfcpp::STB binding
,
1981 elfcpp::STV visibility
,
1982 unsigned char nonvis
,
1984 bool force_override
)
1986 Sized_symbol
<size
>* sym
;
1987 Sized_symbol
<size
>* oldsym
;
1988 bool resolve_oldsym
;
1990 if (parameters
->target().is_big_endian())
1992 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1993 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1994 only_if_ref
, &oldsym
,
2002 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2003 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2004 only_if_ref
, &oldsym
,
2014 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2019 // Version symbols are absolute symbols with name == version.
2020 // We don't want to force them to be local.
2021 if ((version
== NULL
2024 && (binding
== elfcpp::STB_LOCAL
2025 || this->version_script_
.symbol_is_local(name
)))
2026 this->force_local(sym
);
2027 else if (version
!= NULL
2028 && (name
!= version
|| value
!= 0))
2029 sym
->set_is_default();
2034 || Symbol_table::should_override_with_special(oldsym
, defined
))
2035 this->override_with_special(oldsym
, sym
);
2046 // Define a set of symbols in output sections.
2049 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2050 const Define_symbol_in_section
* p
,
2053 for (int i
= 0; i
< count
; ++i
, ++p
)
2055 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2057 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2058 p
->size
, p
->type
, p
->binding
,
2059 p
->visibility
, p
->nonvis
,
2060 p
->offset_is_from_end
,
2061 only_if_ref
|| p
->only_if_ref
);
2063 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2064 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2065 only_if_ref
|| p
->only_if_ref
,
2070 // Define a set of symbols in output segments.
2073 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2074 const Define_symbol_in_segment
* p
,
2077 for (int i
= 0; i
< count
; ++i
, ++p
)
2079 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2080 p
->segment_flags_set
,
2081 p
->segment_flags_clear
);
2083 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2084 p
->size
, p
->type
, p
->binding
,
2085 p
->visibility
, p
->nonvis
,
2087 only_if_ref
|| p
->only_if_ref
);
2089 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2090 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2091 only_if_ref
|| p
->only_if_ref
,
2096 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2097 // symbol should be defined--typically a .dyn.bss section. VALUE is
2098 // the offset within POSD.
2102 Symbol_table::define_with_copy_reloc(
2103 Sized_symbol
<size
>* csym
,
2105 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2107 gold_assert(csym
->is_from_dynobj());
2108 gold_assert(!csym
->is_copied_from_dynobj());
2109 Object
* object
= csym
->object();
2110 gold_assert(object
->is_dynamic());
2111 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2113 // Our copied variable has to override any variable in a shared
2115 elfcpp::STB binding
= csym
->binding();
2116 if (binding
== elfcpp::STB_WEAK
)
2117 binding
= elfcpp::STB_GLOBAL
;
2119 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2120 posd
, value
, csym
->symsize(),
2121 csym
->type(), binding
,
2122 csym
->visibility(), csym
->nonvis(),
2125 csym
->set_is_copied_from_dynobj();
2126 csym
->set_needs_dynsym_entry();
2128 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2130 // We have now defined all aliases, but we have not entered them all
2131 // in the copied_symbol_dynobjs_ map.
2132 if (csym
->has_alias())
2137 sym
= this->weak_aliases_
[sym
];
2140 gold_assert(sym
->output_data() == posd
);
2142 sym
->set_is_copied_from_dynobj();
2143 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2148 // SYM is defined using a COPY reloc. Return the dynamic object where
2149 // the original definition was found.
2152 Symbol_table::get_copy_source(const Symbol
* sym
) const
2154 gold_assert(sym
->is_copied_from_dynobj());
2155 Copied_symbol_dynobjs::const_iterator p
=
2156 this->copied_symbol_dynobjs_
.find(sym
);
2157 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2161 // Add any undefined symbols named on the command line.
2164 Symbol_table::add_undefined_symbols_from_command_line()
2166 if (parameters
->options().any_undefined())
2168 if (parameters
->target().get_size() == 32)
2170 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2171 this->do_add_undefined_symbols_from_command_line
<32>();
2176 else if (parameters
->target().get_size() == 64)
2178 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2179 this->do_add_undefined_symbols_from_command_line
<64>();
2191 Symbol_table::do_add_undefined_symbols_from_command_line()
2193 for (options::String_set::const_iterator p
=
2194 parameters
->options().undefined_begin();
2195 p
!= parameters
->options().undefined_end();
2198 const char* name
= p
->c_str();
2200 if (this->lookup(name
) != NULL
)
2203 const char* version
= NULL
;
2205 Sized_symbol
<size
>* sym
;
2206 Sized_symbol
<size
>* oldsym
;
2207 bool resolve_oldsym
;
2208 if (parameters
->target().is_big_endian())
2210 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2211 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2220 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2221 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2229 gold_assert(oldsym
== NULL
);
2231 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2232 elfcpp::STV_DEFAULT
, 0);
2233 ++this->saw_undefined_
;
2237 // Set the dynamic symbol indexes. INDEX is the index of the first
2238 // global dynamic symbol. Pointers to the symbols are stored into the
2239 // vector SYMS. The names are added to DYNPOOL. This returns an
2240 // updated dynamic symbol index.
2243 Symbol_table::set_dynsym_indexes(unsigned int index
,
2244 std::vector
<Symbol
*>* syms
,
2245 Stringpool
* dynpool
,
2248 for (Symbol_table_type::iterator p
= this->table_
.begin();
2249 p
!= this->table_
.end();
2252 Symbol
* sym
= p
->second
;
2254 // Note that SYM may already have a dynamic symbol index, since
2255 // some symbols appear more than once in the symbol table, with
2256 // and without a version.
2258 if (!sym
->should_add_dynsym_entry(this))
2259 sym
->set_dynsym_index(-1U);
2260 else if (!sym
->has_dynsym_index())
2262 sym
->set_dynsym_index(index
);
2264 syms
->push_back(sym
);
2265 dynpool
->add(sym
->name(), false, NULL
);
2267 // Record any version information.
2268 if (sym
->version() != NULL
)
2269 versions
->record_version(this, dynpool
, sym
);
2271 // If the symbol is defined in a dynamic object and is
2272 // referenced in a regular object, then mark the dynamic
2273 // object as needed. This is used to implement --as-needed.
2274 if (sym
->is_from_dynobj() && sym
->in_reg())
2275 sym
->object()->set_is_needed();
2279 // Finish up the versions. In some cases this may add new dynamic
2281 index
= versions
->finalize(this, index
, syms
);
2286 // Set the final values for all the symbols. The index of the first
2287 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2288 // file offset OFF. Add their names to POOL. Return the new file
2289 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2292 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2293 size_t dyncount
, Stringpool
* pool
,
2294 unsigned int *plocal_symcount
)
2298 gold_assert(*plocal_symcount
!= 0);
2299 this->first_global_index_
= *plocal_symcount
;
2301 this->dynamic_offset_
= dynoff
;
2302 this->first_dynamic_global_index_
= dyn_global_index
;
2303 this->dynamic_count_
= dyncount
;
2305 if (parameters
->target().get_size() == 32)
2307 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2308 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2313 else if (parameters
->target().get_size() == 64)
2315 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2316 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2324 // Now that we have the final symbol table, we can reliably note
2325 // which symbols should get warnings.
2326 this->warnings_
.note_warnings(this);
2331 // SYM is going into the symbol table at *PINDEX. Add the name to
2332 // POOL, update *PINDEX and *POFF.
2336 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2337 unsigned int* pindex
, off_t
* poff
)
2339 sym
->set_symtab_index(*pindex
);
2340 pool
->add(sym
->name(), false, NULL
);
2342 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2345 // Set the final value for all the symbols. This is called after
2346 // Layout::finalize, so all the output sections have their final
2351 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2352 unsigned int* plocal_symcount
)
2354 off
= align_address(off
, size
>> 3);
2355 this->offset_
= off
;
2357 unsigned int index
= *plocal_symcount
;
2358 const unsigned int orig_index
= index
;
2360 // First do all the symbols which have been forced to be local, as
2361 // they must appear before all global symbols.
2362 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2363 p
!= this->forced_locals_
.end();
2367 gold_assert(sym
->is_forced_local());
2368 if (this->sized_finalize_symbol
<size
>(sym
))
2370 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2375 // Now do all the remaining symbols.
2376 for (Symbol_table_type::iterator p
= this->table_
.begin();
2377 p
!= this->table_
.end();
2380 Symbol
* sym
= p
->second
;
2381 if (this->sized_finalize_symbol
<size
>(sym
))
2382 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2385 this->output_count_
= index
- orig_index
;
2390 // Compute the final value of SYM and store status in location PSTATUS.
2391 // During relaxation, this may be called multiple times for a symbol to
2392 // compute its would-be final value in each relaxation pass.
2395 typename Sized_symbol
<size
>::Value_type
2396 Symbol_table::compute_final_value(
2397 const Sized_symbol
<size
>* sym
,
2398 Compute_final_value_status
* pstatus
) const
2400 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2403 switch (sym
->source())
2405 case Symbol::FROM_OBJECT
:
2408 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2411 && shndx
!= elfcpp::SHN_ABS
2412 && !Symbol::is_common_shndx(shndx
))
2414 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2418 Object
* symobj
= sym
->object();
2419 if (symobj
->is_dynamic())
2422 shndx
= elfcpp::SHN_UNDEF
;
2424 else if (symobj
->pluginobj() != NULL
)
2427 shndx
= elfcpp::SHN_UNDEF
;
2429 else if (shndx
== elfcpp::SHN_UNDEF
)
2431 else if (!is_ordinary
2432 && (shndx
== elfcpp::SHN_ABS
2433 || Symbol::is_common_shndx(shndx
)))
2434 value
= sym
->value();
2437 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2438 Output_section
* os
= relobj
->output_section(shndx
);
2440 if (this->is_section_folded(relobj
, shndx
))
2442 gold_assert(os
== NULL
);
2443 // Get the os of the section it is folded onto.
2444 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2446 gold_assert(folded
.first
!= NULL
);
2447 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2448 unsigned folded_shndx
= folded
.second
;
2450 os
= folded_obj
->output_section(folded_shndx
);
2451 gold_assert(os
!= NULL
);
2453 // Replace (relobj, shndx) with canonical ICF input section.
2454 shndx
= folded_shndx
;
2455 relobj
= folded_obj
;
2458 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2461 bool static_or_reloc
= (parameters
->doing_static_link() ||
2462 parameters
->options().relocatable());
2463 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2465 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2469 if (secoff64
== -1ULL)
2471 // The section needs special handling (e.g., a merge section).
2473 value
= os
->output_address(relobj
, shndx
, sym
->value());
2478 convert_types
<Value_type
, uint64_t>(secoff64
);
2479 if (sym
->type() == elfcpp::STT_TLS
)
2480 value
= sym
->value() + os
->tls_offset() + secoff
;
2482 value
= sym
->value() + os
->address() + secoff
;
2488 case Symbol::IN_OUTPUT_DATA
:
2490 Output_data
* od
= sym
->output_data();
2491 value
= sym
->value();
2492 if (sym
->type() != elfcpp::STT_TLS
)
2493 value
+= od
->address();
2496 Output_section
* os
= od
->output_section();
2497 gold_assert(os
!= NULL
);
2498 value
+= os
->tls_offset() + (od
->address() - os
->address());
2500 if (sym
->offset_is_from_end())
2501 value
+= od
->data_size();
2505 case Symbol::IN_OUTPUT_SEGMENT
:
2507 Output_segment
* os
= sym
->output_segment();
2508 value
= sym
->value();
2509 if (sym
->type() != elfcpp::STT_TLS
)
2510 value
+= os
->vaddr();
2511 switch (sym
->offset_base())
2513 case Symbol::SEGMENT_START
:
2515 case Symbol::SEGMENT_END
:
2516 value
+= os
->memsz();
2518 case Symbol::SEGMENT_BSS
:
2519 value
+= os
->filesz();
2527 case Symbol::IS_CONSTANT
:
2528 value
= sym
->value();
2531 case Symbol::IS_UNDEFINED
:
2543 // Finalize the symbol SYM. This returns true if the symbol should be
2544 // added to the symbol table, false otherwise.
2548 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2550 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2552 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2554 // The default version of a symbol may appear twice in the symbol
2555 // table. We only need to finalize it once.
2556 if (sym
->has_symtab_index())
2561 gold_assert(!sym
->has_symtab_index());
2562 sym
->set_symtab_index(-1U);
2563 gold_assert(sym
->dynsym_index() == -1U);
2567 // Compute final symbol value.
2568 Compute_final_value_status status
;
2569 Value_type value
= this->compute_final_value(sym
, &status
);
2575 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2578 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2579 gold_error(_("%s: unsupported symbol section 0x%x"),
2580 sym
->demangled_name().c_str(), shndx
);
2583 case CFVS_NO_OUTPUT_SECTION
:
2584 sym
->set_symtab_index(-1U);
2590 sym
->set_value(value
);
2592 if (parameters
->options().strip_all()
2593 || !parameters
->options().should_retain_symbol(sym
->name()))
2595 sym
->set_symtab_index(-1U);
2602 // Write out the global symbols.
2605 Symbol_table::write_globals(const Stringpool
* sympool
,
2606 const Stringpool
* dynpool
,
2607 Output_symtab_xindex
* symtab_xindex
,
2608 Output_symtab_xindex
* dynsym_xindex
,
2609 Output_file
* of
) const
2611 switch (parameters
->size_and_endianness())
2613 #ifdef HAVE_TARGET_32_LITTLE
2614 case Parameters::TARGET_32_LITTLE
:
2615 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2619 #ifdef HAVE_TARGET_32_BIG
2620 case Parameters::TARGET_32_BIG
:
2621 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2625 #ifdef HAVE_TARGET_64_LITTLE
2626 case Parameters::TARGET_64_LITTLE
:
2627 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2631 #ifdef HAVE_TARGET_64_BIG
2632 case Parameters::TARGET_64_BIG
:
2633 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2642 // Write out the global symbols.
2644 template<int size
, bool big_endian
>
2646 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2647 const Stringpool
* dynpool
,
2648 Output_symtab_xindex
* symtab_xindex
,
2649 Output_symtab_xindex
* dynsym_xindex
,
2650 Output_file
* of
) const
2652 const Target
& target
= parameters
->target();
2654 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2656 const unsigned int output_count
= this->output_count_
;
2657 const section_size_type oview_size
= output_count
* sym_size
;
2658 const unsigned int first_global_index
= this->first_global_index_
;
2659 unsigned char* psyms
;
2660 if (this->offset_
== 0 || output_count
== 0)
2663 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2665 const unsigned int dynamic_count
= this->dynamic_count_
;
2666 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2667 const unsigned int first_dynamic_global_index
=
2668 this->first_dynamic_global_index_
;
2669 unsigned char* dynamic_view
;
2670 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2671 dynamic_view
= NULL
;
2673 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2675 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2676 p
!= this->table_
.end();
2679 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2681 // Possibly warn about unresolved symbols in shared libraries.
2682 this->warn_about_undefined_dynobj_symbol(sym
);
2684 unsigned int sym_index
= sym
->symtab_index();
2685 unsigned int dynsym_index
;
2686 if (dynamic_view
== NULL
)
2689 dynsym_index
= sym
->dynsym_index();
2691 if (sym_index
== -1U && dynsym_index
== -1U)
2693 // This symbol is not included in the output file.
2698 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2699 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2700 switch (sym
->source())
2702 case Symbol::FROM_OBJECT
:
2705 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2708 && in_shndx
!= elfcpp::SHN_ABS
2709 && !Symbol::is_common_shndx(in_shndx
))
2711 gold_error(_("%s: unsupported symbol section 0x%x"),
2712 sym
->demangled_name().c_str(), in_shndx
);
2717 Object
* symobj
= sym
->object();
2718 if (symobj
->is_dynamic())
2720 if (sym
->needs_dynsym_value())
2721 dynsym_value
= target
.dynsym_value(sym
);
2722 shndx
= elfcpp::SHN_UNDEF
;
2724 else if (symobj
->pluginobj() != NULL
)
2725 shndx
= elfcpp::SHN_UNDEF
;
2726 else if (in_shndx
== elfcpp::SHN_UNDEF
2728 && (in_shndx
== elfcpp::SHN_ABS
2729 || Symbol::is_common_shndx(in_shndx
))))
2733 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2734 Output_section
* os
= relobj
->output_section(in_shndx
);
2735 if (this->is_section_folded(relobj
, in_shndx
))
2737 // This global symbol must be written out even though
2739 // Get the os of the section it is folded onto.
2741 this->icf_
->get_folded_section(relobj
, in_shndx
);
2742 gold_assert(folded
.first
!=NULL
);
2743 Relobj
* folded_obj
=
2744 reinterpret_cast<Relobj
*>(folded
.first
);
2745 os
= folded_obj
->output_section(folded
.second
);
2746 gold_assert(os
!= NULL
);
2748 gold_assert(os
!= NULL
);
2749 shndx
= os
->out_shndx();
2751 if (shndx
>= elfcpp::SHN_LORESERVE
)
2753 if (sym_index
!= -1U)
2754 symtab_xindex
->add(sym_index
, shndx
);
2755 if (dynsym_index
!= -1U)
2756 dynsym_xindex
->add(dynsym_index
, shndx
);
2757 shndx
= elfcpp::SHN_XINDEX
;
2760 // In object files symbol values are section
2762 if (parameters
->options().relocatable())
2763 sym_value
-= os
->address();
2769 case Symbol::IN_OUTPUT_DATA
:
2770 shndx
= sym
->output_data()->out_shndx();
2771 if (shndx
>= elfcpp::SHN_LORESERVE
)
2773 if (sym_index
!= -1U)
2774 symtab_xindex
->add(sym_index
, shndx
);
2775 if (dynsym_index
!= -1U)
2776 dynsym_xindex
->add(dynsym_index
, shndx
);
2777 shndx
= elfcpp::SHN_XINDEX
;
2781 case Symbol::IN_OUTPUT_SEGMENT
:
2782 shndx
= elfcpp::SHN_ABS
;
2785 case Symbol::IS_CONSTANT
:
2786 shndx
= elfcpp::SHN_ABS
;
2789 case Symbol::IS_UNDEFINED
:
2790 shndx
= elfcpp::SHN_UNDEF
;
2797 if (sym_index
!= -1U)
2799 sym_index
-= first_global_index
;
2800 gold_assert(sym_index
< output_count
);
2801 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2802 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2806 if (dynsym_index
!= -1U)
2808 dynsym_index
-= first_dynamic_global_index
;
2809 gold_assert(dynsym_index
< dynamic_count
);
2810 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2811 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2816 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2817 if (dynamic_view
!= NULL
)
2818 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2821 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2822 // strtab holding the name.
2824 template<int size
, bool big_endian
>
2826 Symbol_table::sized_write_symbol(
2827 Sized_symbol
<size
>* sym
,
2828 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2830 const Stringpool
* pool
,
2831 unsigned char* p
) const
2833 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2834 osym
.put_st_name(pool
->get_offset(sym
->name()));
2835 osym
.put_st_value(value
);
2836 // Use a symbol size of zero for undefined symbols from shared libraries.
2837 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2838 osym
.put_st_size(0);
2840 osym
.put_st_size(sym
->symsize());
2841 elfcpp::STT type
= sym
->type();
2842 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2843 if (type
== elfcpp::STT_GNU_IFUNC
2844 && sym
->is_from_dynobj())
2845 type
= elfcpp::STT_FUNC
;
2846 // A version script may have overridden the default binding.
2847 if (sym
->is_forced_local())
2848 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
2850 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), type
));
2851 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2852 osym
.put_st_shndx(shndx
);
2855 // Check for unresolved symbols in shared libraries. This is
2856 // controlled by the --allow-shlib-undefined option.
2858 // We only warn about libraries for which we have seen all the
2859 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2860 // which were not seen in this link. If we didn't see a DT_NEEDED
2861 // entry, we aren't going to be able to reliably report whether the
2862 // symbol is undefined.
2864 // We also don't warn about libraries found in a system library
2865 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2866 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2867 // can have undefined references satisfied by ld-linux.so.
2870 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
2873 if (sym
->source() == Symbol::FROM_OBJECT
2874 && sym
->object()->is_dynamic()
2875 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2876 && sym
->binding() != elfcpp::STB_WEAK
2877 && !parameters
->options().allow_shlib_undefined()
2878 && !parameters
->target().is_defined_by_abi(sym
)
2879 && !sym
->object()->is_in_system_directory())
2881 // A very ugly cast.
2882 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2883 if (!dynobj
->has_unknown_needed_entries())
2884 gold_undefined_symbol(sym
);
2888 // Write out a section symbol. Return the update offset.
2891 Symbol_table::write_section_symbol(const Output_section
*os
,
2892 Output_symtab_xindex
* symtab_xindex
,
2896 switch (parameters
->size_and_endianness())
2898 #ifdef HAVE_TARGET_32_LITTLE
2899 case Parameters::TARGET_32_LITTLE
:
2900 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2904 #ifdef HAVE_TARGET_32_BIG
2905 case Parameters::TARGET_32_BIG
:
2906 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2910 #ifdef HAVE_TARGET_64_LITTLE
2911 case Parameters::TARGET_64_LITTLE
:
2912 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2916 #ifdef HAVE_TARGET_64_BIG
2917 case Parameters::TARGET_64_BIG
:
2918 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
2927 // Write out a section symbol, specialized for size and endianness.
2929 template<int size
, bool big_endian
>
2931 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2932 Output_symtab_xindex
* symtab_xindex
,
2936 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2938 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2940 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2941 osym
.put_st_name(0);
2942 if (parameters
->options().relocatable())
2943 osym
.put_st_value(0);
2945 osym
.put_st_value(os
->address());
2946 osym
.put_st_size(0);
2947 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2948 elfcpp::STT_SECTION
));
2949 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2951 unsigned int shndx
= os
->out_shndx();
2952 if (shndx
>= elfcpp::SHN_LORESERVE
)
2954 symtab_xindex
->add(os
->symtab_index(), shndx
);
2955 shndx
= elfcpp::SHN_XINDEX
;
2957 osym
.put_st_shndx(shndx
);
2959 of
->write_output_view(offset
, sym_size
, pov
);
2962 // Print statistical information to stderr. This is used for --stats.
2965 Symbol_table::print_stats() const
2967 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2968 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2969 program_name
, this->table_
.size(), this->table_
.bucket_count());
2971 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2972 program_name
, this->table_
.size());
2974 this->namepool_
.print_stats("symbol table stringpool");
2977 // We check for ODR violations by looking for symbols with the same
2978 // name for which the debugging information reports that they were
2979 // defined in different source locations. When comparing the source
2980 // location, we consider instances with the same base filename and
2981 // line number to be the same. This is because different object
2982 // files/shared libraries can include the same header file using
2983 // different paths, and we don't want to report an ODR violation in
2986 // This struct is used to compare line information, as returned by
2987 // Dwarf_line_info::one_addr2line. It implements a < comparison
2988 // operator used with std::set.
2990 struct Odr_violation_compare
2993 operator()(const std::string
& s1
, const std::string
& s2
) const
2995 std::string::size_type pos1
= s1
.rfind('/');
2996 std::string::size_type pos2
= s2
.rfind('/');
2997 if (pos1
== std::string::npos
2998 || pos2
== std::string::npos
)
3000 return s1
.compare(pos1
, std::string::npos
,
3001 s2
, pos2
, std::string::npos
) < 0;
3005 // Check candidate_odr_violations_ to find symbols with the same name
3006 // but apparently different definitions (different source-file/line-no).
3009 Symbol_table::detect_odr_violations(const Task
* task
,
3010 const char* output_file_name
) const
3012 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3013 it
!= candidate_odr_violations_
.end();
3016 const char* symbol_name
= it
->first
;
3017 // We use a sorted set so the output is deterministic.
3018 std::set
<std::string
, Odr_violation_compare
> line_nums
;
3020 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3021 locs
= it
->second
.begin();
3022 locs
!= it
->second
.end();
3025 // We need to lock the object in order to read it. This
3026 // means that we have to run in a singleton Task. If we
3027 // want to run this in a general Task for better
3028 // performance, we will need one Task for object, plus
3029 // appropriate locking to ensure that we don't conflict with
3030 // other uses of the object. Also note, one_addr2line is not
3031 // currently thread-safe.
3032 Task_lock_obj
<Object
> tl(task
, locs
->object
);
3033 // 16 is the size of the object-cache that one_addr2line should use.
3034 std::string lineno
= Dwarf_line_info::one_addr2line(
3035 locs
->object
, locs
->shndx
, locs
->offset
, 16);
3036 if (!lineno
.empty())
3037 line_nums
.insert(lineno
);
3040 if (line_nums
.size() > 1)
3042 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
3043 "places (possible ODR violation):"),
3044 output_file_name
, demangle(symbol_name
).c_str());
3045 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
3046 it2
!= line_nums
.end();
3048 fprintf(stderr
, " %s\n", it2
->c_str());
3051 // We only call one_addr2line() in this function, so we can clear its cache.
3052 Dwarf_line_info::clear_addr2line_cache();
3055 // Warnings functions.
3057 // Add a new warning.
3060 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3061 const std::string
& warning
)
3063 name
= symtab
->canonicalize_name(name
);
3064 this->warnings_
[name
].set(obj
, warning
);
3067 // Look through the warnings and mark the symbols for which we should
3068 // warn. This is called during Layout::finalize when we know the
3069 // sources for all the symbols.
3072 Warnings::note_warnings(Symbol_table
* symtab
)
3074 for (Warning_table::iterator p
= this->warnings_
.begin();
3075 p
!= this->warnings_
.end();
3078 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3080 && sym
->source() == Symbol::FROM_OBJECT
3081 && sym
->object() == p
->second
.object
)
3082 sym
->set_has_warning();
3086 // Issue a warning. This is called when we see a relocation against a
3087 // symbol for which has a warning.
3089 template<int size
, bool big_endian
>
3091 Warnings::issue_warning(const Symbol
* sym
,
3092 const Relocate_info
<size
, big_endian
>* relinfo
,
3093 size_t relnum
, off_t reloffset
) const
3095 gold_assert(sym
->has_warning());
3096 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3097 gold_assert(p
!= this->warnings_
.end());
3098 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3099 "%s", p
->second
.text
.c_str());
3102 // Instantiate the templates we need. We could use the configure
3103 // script to restrict this to only the ones needed for implemented
3106 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3109 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3112 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3115 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3118 #ifdef HAVE_TARGET_32_LITTLE
3121 Symbol_table::add_from_relobj
<32, false>(
3122 Sized_relobj
<32, false>* relobj
,
3123 const unsigned char* syms
,
3125 size_t symndx_offset
,
3126 const char* sym_names
,
3127 size_t sym_name_size
,
3128 Sized_relobj
<32, false>::Symbols
* sympointers
,
3132 #ifdef HAVE_TARGET_32_BIG
3135 Symbol_table::add_from_relobj
<32, true>(
3136 Sized_relobj
<32, true>* relobj
,
3137 const unsigned char* syms
,
3139 size_t symndx_offset
,
3140 const char* sym_names
,
3141 size_t sym_name_size
,
3142 Sized_relobj
<32, true>::Symbols
* sympointers
,
3146 #ifdef HAVE_TARGET_64_LITTLE
3149 Symbol_table::add_from_relobj
<64, false>(
3150 Sized_relobj
<64, false>* relobj
,
3151 const unsigned char* syms
,
3153 size_t symndx_offset
,
3154 const char* sym_names
,
3155 size_t sym_name_size
,
3156 Sized_relobj
<64, false>::Symbols
* sympointers
,
3160 #ifdef HAVE_TARGET_64_BIG
3163 Symbol_table::add_from_relobj
<64, true>(
3164 Sized_relobj
<64, true>* relobj
,
3165 const unsigned char* syms
,
3167 size_t symndx_offset
,
3168 const char* sym_names
,
3169 size_t sym_name_size
,
3170 Sized_relobj
<64, true>::Symbols
* sympointers
,
3174 #ifdef HAVE_TARGET_32_LITTLE
3177 Symbol_table::add_from_pluginobj
<32, false>(
3178 Sized_pluginobj
<32, false>* obj
,
3181 elfcpp::Sym
<32, false>* sym
);
3184 #ifdef HAVE_TARGET_32_BIG
3187 Symbol_table::add_from_pluginobj
<32, true>(
3188 Sized_pluginobj
<32, true>* obj
,
3191 elfcpp::Sym
<32, true>* sym
);
3194 #ifdef HAVE_TARGET_64_LITTLE
3197 Symbol_table::add_from_pluginobj
<64, false>(
3198 Sized_pluginobj
<64, false>* obj
,
3201 elfcpp::Sym
<64, false>* sym
);
3204 #ifdef HAVE_TARGET_64_BIG
3207 Symbol_table::add_from_pluginobj
<64, true>(
3208 Sized_pluginobj
<64, true>* obj
,
3211 elfcpp::Sym
<64, true>* sym
);
3214 #ifdef HAVE_TARGET_32_LITTLE
3217 Symbol_table::add_from_dynobj
<32, false>(
3218 Sized_dynobj
<32, false>* dynobj
,
3219 const unsigned char* syms
,
3221 const char* sym_names
,
3222 size_t sym_name_size
,
3223 const unsigned char* versym
,
3225 const std::vector
<const char*>* version_map
,
3226 Sized_relobj
<32, false>::Symbols
* sympointers
,
3230 #ifdef HAVE_TARGET_32_BIG
3233 Symbol_table::add_from_dynobj
<32, true>(
3234 Sized_dynobj
<32, true>* dynobj
,
3235 const unsigned char* syms
,
3237 const char* sym_names
,
3238 size_t sym_name_size
,
3239 const unsigned char* versym
,
3241 const std::vector
<const char*>* version_map
,
3242 Sized_relobj
<32, true>::Symbols
* sympointers
,
3246 #ifdef HAVE_TARGET_64_LITTLE
3249 Symbol_table::add_from_dynobj
<64, false>(
3250 Sized_dynobj
<64, false>* dynobj
,
3251 const unsigned char* syms
,
3253 const char* sym_names
,
3254 size_t sym_name_size
,
3255 const unsigned char* versym
,
3257 const std::vector
<const char*>* version_map
,
3258 Sized_relobj
<64, false>::Symbols
* sympointers
,
3262 #ifdef HAVE_TARGET_64_BIG
3265 Symbol_table::add_from_dynobj
<64, true>(
3266 Sized_dynobj
<64, true>* dynobj
,
3267 const unsigned char* syms
,
3269 const char* sym_names
,
3270 size_t sym_name_size
,
3271 const unsigned char* versym
,
3273 const std::vector
<const char*>* version_map
,
3274 Sized_relobj
<64, true>::Symbols
* sympointers
,
3278 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3281 Symbol_table::define_with_copy_reloc
<32>(
3282 Sized_symbol
<32>* sym
,
3284 elfcpp::Elf_types
<32>::Elf_Addr value
);
3287 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3290 Symbol_table::define_with_copy_reloc
<64>(
3291 Sized_symbol
<64>* sym
,
3293 elfcpp::Elf_types
<64>::Elf_Addr value
);
3296 #ifdef HAVE_TARGET_32_LITTLE
3299 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3300 const Relocate_info
<32, false>* relinfo
,
3301 size_t relnum
, off_t reloffset
) const;
3304 #ifdef HAVE_TARGET_32_BIG
3307 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3308 const Relocate_info
<32, true>* relinfo
,
3309 size_t relnum
, off_t reloffset
) const;
3312 #ifdef HAVE_TARGET_64_LITTLE
3315 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3316 const Relocate_info
<64, false>* relinfo
,
3317 size_t relnum
, off_t reloffset
) const;
3320 #ifdef HAVE_TARGET_64_BIG
3323 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3324 const Relocate_info
<64, true>* relinfo
,
3325 size_t relnum
, off_t reloffset
) const;
3328 } // End namespace gold.