Expect cvtsi2ssl instead of cvtsi2ss.
[binutils.git] / bfd / elf32-hppa.c
blobb707345ba4b473f693c2f85124db5bab2c8a23e3
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/hppa.h"
35 #include "libhppa.h"
36 #include "elf32-hppa.h"
37 #define ARCH_SIZE 32
38 #include "elf32-hppa.h"
39 #include "elf-hppa.h"
41 /* In order to gain some understanding of code in this file without
42 knowing all the intricate details of the linker, note the
43 following:
45 Functions named elf32_hppa_* are called by external routines, other
46 functions are only called locally. elf32_hppa_* functions appear
47 in this file more or less in the order in which they are called
48 from external routines. eg. elf32_hppa_check_relocs is called
49 early in the link process, elf32_hppa_finish_dynamic_sections is
50 one of the last functions. */
52 /* We use two hash tables to hold information for linking PA ELF objects.
54 The first is the elf32_hppa_link_hash_table which is derived
55 from the standard ELF linker hash table. We use this as a place to
56 attach other hash tables and static information.
58 The second is the stub hash table which is derived from the
59 base BFD hash table. The stub hash table holds the information
60 necessary to build the linker stubs during a link.
62 There are a number of different stubs generated by the linker.
64 Long branch stub:
65 : ldil LR'X,%r1
66 : be,n RR'X(%sr4,%r1)
68 PIC long branch stub:
69 : b,l .+8,%r1
70 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
71 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73 Import stub to call shared library routine from normal object file
74 (single sub-space version)
75 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
76 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : bv %r0(%r21)
78 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get procedure entry point
83 : ldw RR'ltoff(%r1),%r21
84 : bv %r0(%r21)
85 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87 Import stub to call shared library routine from normal object file
88 (multiple sub-space support)
89 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
90 : ldw RR'lt_ptr+ltoff(%r1),%r21
91 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
92 : ldsid (%r21),%r1
93 : mtsp %r1,%sr0
94 : be 0(%sr0,%r21) ; branch to target
95 : stw %rp,-24(%sp) ; save rp
97 Import stub to call shared library routine from shared library
98 (multiple sub-space support)
99 : addil LR'ltoff,%r19 ; get procedure entry point
100 : ldw RR'ltoff(%r1),%r21
101 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
102 : ldsid (%r21),%r1
103 : mtsp %r1,%sr0
104 : be 0(%sr0,%r21) ; branch to target
105 : stw %rp,-24(%sp) ; save rp
107 Export stub to return from shared lib routine (multiple sub-space support)
108 One of these is created for each exported procedure in a shared
109 library (and stored in the shared lib). Shared lib routines are
110 called via the first instruction in the export stub so that we can
111 do an inter-space return. Not required for single sub-space.
112 : bl,n X,%rp ; trap the return
113 : nop
114 : ldw -24(%sp),%rp ; restore the original rp
115 : ldsid (%rp),%r1
116 : mtsp %r1,%sr0
117 : be,n 0(%sr0,%rp) ; inter-space return. */
120 /* Variable names follow a coding style.
121 Please follow this (Apps Hungarian) style:
123 Structure/Variable Prefix
124 elf_link_hash_table "etab"
125 elf_link_hash_entry "eh"
127 elf32_hppa_link_hash_table "htab"
128 elf32_hppa_link_hash_entry "hh"
130 bfd_hash_table "btab"
131 bfd_hash_entry "bh"
133 bfd_hash_table containing stubs "bstab"
134 elf32_hppa_stub_hash_entry "hsh"
136 elf32_hppa_dyn_reloc_entry "hdh"
138 Always remember to use GNU Coding Style. */
140 #define PLT_ENTRY_SIZE 8
141 #define GOT_ENTRY_SIZE 4
142 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144 static const bfd_byte plt_stub[] =
146 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
147 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
148 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
149 #define PLT_STUB_ENTRY (3*4)
150 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
151 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
152 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
153 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
156 /* Section name for stubs is the associated section name plus this
157 string. */
158 #define STUB_SUFFIX ".stub"
160 /* We don't need to copy certain PC- or GP-relative dynamic relocs
161 into a shared object's dynamic section. All the relocs of the
162 limited class we are interested in, are absolute. */
163 #ifndef RELATIVE_DYNRELOCS
164 #define RELATIVE_DYNRELOCS 0
165 #define IS_ABSOLUTE_RELOC(r_type) 1
166 #endif
168 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
169 copying dynamic variables from a shared lib into an app's dynbss
170 section, and instead use a dynamic relocation to point into the
171 shared lib. */
172 #define ELIMINATE_COPY_RELOCS 1
174 enum elf32_hppa_stub_type
176 hppa_stub_long_branch,
177 hppa_stub_long_branch_shared,
178 hppa_stub_import,
179 hppa_stub_import_shared,
180 hppa_stub_export,
181 hppa_stub_none
184 struct elf32_hppa_stub_hash_entry
186 /* Base hash table entry structure. */
187 struct bfd_hash_entry bh_root;
189 /* The stub section. */
190 asection *stub_sec;
192 /* Offset within stub_sec of the beginning of this stub. */
193 bfd_vma stub_offset;
195 /* Given the symbol's value and its section we can determine its final
196 value when building the stubs (so the stub knows where to jump. */
197 bfd_vma target_value;
198 asection *target_section;
200 enum elf32_hppa_stub_type stub_type;
202 /* The symbol table entry, if any, that this was derived from. */
203 struct elf32_hppa_link_hash_entry *hh;
205 /* Where this stub is being called from, or, in the case of combined
206 stub sections, the first input section in the group. */
207 asection *id_sec;
210 struct elf32_hppa_link_hash_entry
212 struct elf_link_hash_entry eh;
214 /* A pointer to the most recently used stub hash entry against this
215 symbol. */
216 struct elf32_hppa_stub_hash_entry *hsh_cache;
218 /* Used to count relocations for delayed sizing of relocation
219 sections. */
220 struct elf32_hppa_dyn_reloc_entry
222 /* Next relocation in the chain. */
223 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225 /* The input section of the reloc. */
226 asection *sec;
228 /* Number of relocs copied in this section. */
229 bfd_size_type count;
231 #if RELATIVE_DYNRELOCS
232 /* Number of relative relocs copied for the input section. */
233 bfd_size_type relative_count;
234 #endif
235 } *dyn_relocs;
237 enum
239 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
240 } tls_type;
242 /* Set if this symbol is used by a plabel reloc. */
243 unsigned int plabel:1;
246 struct elf32_hppa_link_hash_table
248 /* The main hash table. */
249 struct elf_link_hash_table etab;
251 /* The stub hash table. */
252 struct bfd_hash_table bstab;
254 /* Linker stub bfd. */
255 bfd *stub_bfd;
257 /* Linker call-backs. */
258 asection * (*add_stub_section) (const char *, asection *);
259 void (*layout_sections_again) (void);
261 /* Array to keep track of which stub sections have been created, and
262 information on stub grouping. */
263 struct map_stub
265 /* This is the section to which stubs in the group will be
266 attached. */
267 asection *link_sec;
268 /* The stub section. */
269 asection *stub_sec;
270 } *stub_group;
272 /* Assorted information used by elf32_hppa_size_stubs. */
273 unsigned int bfd_count;
274 int top_index;
275 asection **input_list;
276 Elf_Internal_Sym **all_local_syms;
278 /* Short-cuts to get to dynamic linker sections. */
279 asection *sgot;
280 asection *srelgot;
281 asection *splt;
282 asection *srelplt;
283 asection *sdynbss;
284 asection *srelbss;
286 /* Used during a final link to store the base of the text and data
287 segments so that we can perform SEGREL relocations. */
288 bfd_vma text_segment_base;
289 bfd_vma data_segment_base;
291 /* Whether we support multiple sub-spaces for shared libs. */
292 unsigned int multi_subspace:1;
294 /* Flags set when various size branches are detected. Used to
295 select suitable defaults for the stub group size. */
296 unsigned int has_12bit_branch:1;
297 unsigned int has_17bit_branch:1;
298 unsigned int has_22bit_branch:1;
300 /* Set if we need a .plt stub to support lazy dynamic linking. */
301 unsigned int need_plt_stub:1;
303 /* Small local sym to section mapping cache. */
304 struct sym_sec_cache sym_sec;
306 /* Data for LDM relocations. */
307 union
309 bfd_signed_vma refcount;
310 bfd_vma offset;
311 } tls_ldm_got;
314 /* Various hash macros and functions. */
315 #define hppa_link_hash_table(p) \
316 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
337 /* Assorted hash table functions. */
339 /* Initialize an entry in the stub hash table. */
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
360 struct elf32_hppa_stub_hash_entry *hsh;
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
373 return entry;
376 /* Initialize an entry in the link hash table. */
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
397 struct elf32_hppa_link_hash_entry *hh;
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
407 return entry;
410 /* Create the derived linker hash table. The PA ELF port uses the derived
411 hash table to keep information specific to the PA ELF linker (without
412 using static variables). */
414 static struct bfd_link_hash_table *
415 elf32_hppa_link_hash_table_create (bfd *abfd)
417 struct elf32_hppa_link_hash_table *htab;
418 bfd_size_type amt = sizeof (*htab);
420 htab = bfd_malloc (amt);
421 if (htab == NULL)
422 return NULL;
424 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
425 sizeof (struct elf32_hppa_link_hash_entry)))
427 free (htab);
428 return NULL;
431 /* Init the stub hash table too. */
432 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
433 sizeof (struct elf32_hppa_stub_hash_entry)))
434 return NULL;
436 htab->stub_bfd = NULL;
437 htab->add_stub_section = NULL;
438 htab->layout_sections_again = NULL;
439 htab->stub_group = NULL;
440 htab->sgot = NULL;
441 htab->srelgot = NULL;
442 htab->splt = NULL;
443 htab->srelplt = NULL;
444 htab->sdynbss = NULL;
445 htab->srelbss = NULL;
446 htab->text_segment_base = (bfd_vma) -1;
447 htab->data_segment_base = (bfd_vma) -1;
448 htab->multi_subspace = 0;
449 htab->has_12bit_branch = 0;
450 htab->has_17bit_branch = 0;
451 htab->has_22bit_branch = 0;
452 htab->need_plt_stub = 0;
453 htab->sym_sec.abfd = NULL;
454 htab->tls_ldm_got.refcount = 0;
456 return &htab->etab.root;
459 /* Free the derived linker hash table. */
461 static void
462 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
464 struct elf32_hppa_link_hash_table *htab
465 = (struct elf32_hppa_link_hash_table *) btab;
467 bfd_hash_table_free (&htab->bstab);
468 _bfd_generic_link_hash_table_free (btab);
471 /* Build a name for an entry in the stub hash table. */
473 static char *
474 hppa_stub_name (const asection *input_section,
475 const asection *sym_sec,
476 const struct elf32_hppa_link_hash_entry *hh,
477 const Elf_Internal_Rela *rela)
479 char *stub_name;
480 bfd_size_type len;
482 if (hh)
484 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
485 stub_name = bfd_malloc (len);
486 if (stub_name != NULL)
487 sprintf (stub_name, "%08x_%s+%x",
488 input_section->id & 0xffffffff,
489 hh_name (hh),
490 (int) rela->r_addend & 0xffffffff);
492 else
494 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%x:%x+%x",
498 input_section->id & 0xffffffff,
499 sym_sec->id & 0xffffffff,
500 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
501 (int) rela->r_addend & 0xffffffff);
503 return stub_name;
506 /* Look up an entry in the stub hash. Stub entries are cached because
507 creating the stub name takes a bit of time. */
509 static struct elf32_hppa_stub_hash_entry *
510 hppa_get_stub_entry (const asection *input_section,
511 const asection *sym_sec,
512 struct elf32_hppa_link_hash_entry *hh,
513 const Elf_Internal_Rela *rela,
514 struct elf32_hppa_link_hash_table *htab)
516 struct elf32_hppa_stub_hash_entry *hsh_entry;
517 const asection *id_sec;
519 /* If this input section is part of a group of sections sharing one
520 stub section, then use the id of the first section in the group.
521 Stub names need to include a section id, as there may well be
522 more than one stub used to reach say, printf, and we need to
523 distinguish between them. */
524 id_sec = htab->stub_group[input_section->id].link_sec;
526 if (hh != NULL && hh->hsh_cache != NULL
527 && hh->hsh_cache->hh == hh
528 && hh->hsh_cache->id_sec == id_sec)
530 hsh_entry = hh->hsh_cache;
532 else
534 char *stub_name;
536 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
537 if (stub_name == NULL)
538 return NULL;
540 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
541 stub_name, FALSE, FALSE);
542 if (hh != NULL)
543 hh->hsh_cache = hsh_entry;
545 free (stub_name);
548 return hsh_entry;
551 /* Add a new stub entry to the stub hash. Not all fields of the new
552 stub entry are initialised. */
554 static struct elf32_hppa_stub_hash_entry *
555 hppa_add_stub (const char *stub_name,
556 asection *section,
557 struct elf32_hppa_link_hash_table *htab)
559 asection *link_sec;
560 asection *stub_sec;
561 struct elf32_hppa_stub_hash_entry *hsh;
563 link_sec = htab->stub_group[section->id].link_sec;
564 stub_sec = htab->stub_group[section->id].stub_sec;
565 if (stub_sec == NULL)
567 stub_sec = htab->stub_group[link_sec->id].stub_sec;
568 if (stub_sec == NULL)
570 size_t namelen;
571 bfd_size_type len;
572 char *s_name;
574 namelen = strlen (link_sec->name);
575 len = namelen + sizeof (STUB_SUFFIX);
576 s_name = bfd_alloc (htab->stub_bfd, len);
577 if (s_name == NULL)
578 return NULL;
580 memcpy (s_name, link_sec->name, namelen);
581 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
582 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
583 if (stub_sec == NULL)
584 return NULL;
585 htab->stub_group[link_sec->id].stub_sec = stub_sec;
587 htab->stub_group[section->id].stub_sec = stub_sec;
590 /* Enter this entry into the linker stub hash table. */
591 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
592 TRUE, FALSE);
593 if (hsh == NULL)
595 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
596 section->owner,
597 stub_name);
598 return NULL;
601 hsh->stub_sec = stub_sec;
602 hsh->stub_offset = 0;
603 hsh->id_sec = link_sec;
604 return hsh;
607 /* Determine the type of stub needed, if any, for a call. */
609 static enum elf32_hppa_stub_type
610 hppa_type_of_stub (asection *input_sec,
611 const Elf_Internal_Rela *rela,
612 struct elf32_hppa_link_hash_entry *hh,
613 bfd_vma destination,
614 struct bfd_link_info *info)
616 bfd_vma location;
617 bfd_vma branch_offset;
618 bfd_vma max_branch_offset;
619 unsigned int r_type;
621 if (hh != NULL
622 && hh->eh.plt.offset != (bfd_vma) -1
623 && hh->eh.dynindx != -1
624 && !hh->plabel
625 && (info->shared
626 || !hh->eh.def_regular
627 || hh->eh.root.type == bfd_link_hash_defweak))
629 /* We need an import stub. Decide between hppa_stub_import
630 and hppa_stub_import_shared later. */
631 return hppa_stub_import;
634 /* Determine where the call point is. */
635 location = (input_sec->output_offset
636 + input_sec->output_section->vma
637 + rela->r_offset);
639 branch_offset = destination - location - 8;
640 r_type = ELF32_R_TYPE (rela->r_info);
642 /* Determine if a long branch stub is needed. parisc branch offsets
643 are relative to the second instruction past the branch, ie. +8
644 bytes on from the branch instruction location. The offset is
645 signed and counts in units of 4 bytes. */
646 if (r_type == (unsigned int) R_PARISC_PCREL17F)
647 max_branch_offset = (1 << (17 - 1)) << 2;
649 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
650 max_branch_offset = (1 << (12 - 1)) << 2;
652 else /* R_PARISC_PCREL22F. */
653 max_branch_offset = (1 << (22 - 1)) << 2;
655 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
656 return hppa_stub_long_branch;
658 return hppa_stub_none;
661 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
662 IN_ARG contains the link info pointer. */
664 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
665 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
667 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
668 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
669 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
671 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
672 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
673 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
674 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
676 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
677 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
679 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
680 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
681 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
682 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
684 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
685 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
686 #define NOP 0x08000240 /* nop */
687 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
688 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
689 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
691 #ifndef R19_STUBS
692 #define R19_STUBS 1
693 #endif
695 #if R19_STUBS
696 #define LDW_R1_DLT LDW_R1_R19
697 #else
698 #define LDW_R1_DLT LDW_R1_DP
699 #endif
701 static bfd_boolean
702 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
704 struct elf32_hppa_stub_hash_entry *hsh;
705 struct bfd_link_info *info;
706 struct elf32_hppa_link_hash_table *htab;
707 asection *stub_sec;
708 bfd *stub_bfd;
709 bfd_byte *loc;
710 bfd_vma sym_value;
711 bfd_vma insn;
712 bfd_vma off;
713 int val;
714 int size;
716 /* Massage our args to the form they really have. */
717 hsh = hppa_stub_hash_entry (bh);
718 info = (struct bfd_link_info *)in_arg;
720 htab = hppa_link_hash_table (info);
721 stub_sec = hsh->stub_sec;
723 /* Make a note of the offset within the stubs for this entry. */
724 hsh->stub_offset = stub_sec->size;
725 loc = stub_sec->contents + hsh->stub_offset;
727 stub_bfd = stub_sec->owner;
729 switch (hsh->stub_type)
731 case hppa_stub_long_branch:
732 /* Create the long branch. A long branch is formed with "ldil"
733 loading the upper bits of the target address into a register,
734 then branching with "be" which adds in the lower bits.
735 The "be" has its delay slot nullified. */
736 sym_value = (hsh->target_value
737 + hsh->target_section->output_offset
738 + hsh->target_section->output_section->vma);
740 val = hppa_field_adjust (sym_value, 0, e_lrsel);
741 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
742 bfd_put_32 (stub_bfd, insn, loc);
744 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
745 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
746 bfd_put_32 (stub_bfd, insn, loc + 4);
748 size = 8;
749 break;
751 case hppa_stub_long_branch_shared:
752 /* Branches are relative. This is where we are going to. */
753 sym_value = (hsh->target_value
754 + hsh->target_section->output_offset
755 + hsh->target_section->output_section->vma);
757 /* And this is where we are coming from, more or less. */
758 sym_value -= (hsh->stub_offset
759 + stub_sec->output_offset
760 + stub_sec->output_section->vma);
762 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
763 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
764 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
765 bfd_put_32 (stub_bfd, insn, loc + 4);
767 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
768 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
769 bfd_put_32 (stub_bfd, insn, loc + 8);
770 size = 12;
771 break;
773 case hppa_stub_import:
774 case hppa_stub_import_shared:
775 off = hsh->hh->eh.plt.offset;
776 if (off >= (bfd_vma) -2)
777 abort ();
779 off &= ~ (bfd_vma) 1;
780 sym_value = (off
781 + htab->splt->output_offset
782 + htab->splt->output_section->vma
783 - elf_gp (htab->splt->output_section->owner));
785 insn = ADDIL_DP;
786 #if R19_STUBS
787 if (hsh->stub_type == hppa_stub_import_shared)
788 insn = ADDIL_R19;
789 #endif
790 val = hppa_field_adjust (sym_value, 0, e_lrsel),
791 insn = hppa_rebuild_insn ((int) insn, val, 21);
792 bfd_put_32 (stub_bfd, insn, loc);
794 /* It is critical to use lrsel/rrsel here because we are using
795 two different offsets (+0 and +4) from sym_value. If we use
796 lsel/rsel then with unfortunate sym_values we will round
797 sym_value+4 up to the next 2k block leading to a mis-match
798 between the lsel and rsel value. */
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
803 if (htab->multi_subspace)
805 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 8);
809 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
810 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
811 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
812 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
814 size = 28;
816 else
818 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
820 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
821 bfd_put_32 (stub_bfd, insn, loc + 12);
823 size = 16;
826 break;
828 case hppa_stub_export:
829 /* Branches are relative. This is where we are going to. */
830 sym_value = (hsh->target_value
831 + hsh->target_section->output_offset
832 + hsh->target_section->output_section->vma);
834 /* And this is where we are coming from. */
835 sym_value -= (hsh->stub_offset
836 + stub_sec->output_offset
837 + stub_sec->output_section->vma);
839 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
840 && (!htab->has_22bit_branch
841 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
843 (*_bfd_error_handler)
844 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
845 hsh->target_section->owner,
846 stub_sec,
847 (long) hsh->stub_offset,
848 hsh->bh_root.string);
849 bfd_set_error (bfd_error_bad_value);
850 return FALSE;
853 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
854 if (!htab->has_22bit_branch)
855 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
856 else
857 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
858 bfd_put_32 (stub_bfd, insn, loc);
860 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
863 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
864 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
866 /* Point the function symbol at the stub. */
867 hsh->hh->eh.root.u.def.section = stub_sec;
868 hsh->hh->eh.root.u.def.value = stub_sec->size;
870 size = 24;
871 break;
873 default:
874 BFD_FAIL ();
875 return FALSE;
878 stub_sec->size += size;
879 return TRUE;
882 #undef LDIL_R1
883 #undef BE_SR4_R1
884 #undef BL_R1
885 #undef ADDIL_R1
886 #undef DEPI_R1
887 #undef LDW_R1_R21
888 #undef LDW_R1_DLT
889 #undef LDW_R1_R19
890 #undef ADDIL_R19
891 #undef LDW_R1_DP
892 #undef LDSID_R21_R1
893 #undef MTSP_R1
894 #undef BE_SR0_R21
895 #undef STW_RP
896 #undef BV_R0_R21
897 #undef BL_RP
898 #undef NOP
899 #undef LDW_RP
900 #undef LDSID_RP_R1
901 #undef BE_SR0_RP
903 /* As above, but don't actually build the stub. Just bump offset so
904 we know stub section sizes. */
906 static bfd_boolean
907 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
909 struct elf32_hppa_stub_hash_entry *hsh;
910 struct elf32_hppa_link_hash_table *htab;
911 int size;
913 /* Massage our args to the form they really have. */
914 hsh = hppa_stub_hash_entry (bh);
915 htab = in_arg;
917 if (hsh->stub_type == hppa_stub_long_branch)
918 size = 8;
919 else if (hsh->stub_type == hppa_stub_long_branch_shared)
920 size = 12;
921 else if (hsh->stub_type == hppa_stub_export)
922 size = 24;
923 else /* hppa_stub_import or hppa_stub_import_shared. */
925 if (htab->multi_subspace)
926 size = 28;
927 else
928 size = 16;
931 hsh->stub_sec->size += size;
932 return TRUE;
935 /* Return nonzero if ABFD represents an HPPA ELF32 file.
936 Additionally we set the default architecture and machine. */
938 static bfd_boolean
939 elf32_hppa_object_p (bfd *abfd)
941 Elf_Internal_Ehdr * i_ehdrp;
942 unsigned int flags;
944 i_ehdrp = elf_elfheader (abfd);
945 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
947 /* GCC on hppa-linux produces binaries with OSABI=Linux,
948 but the kernel produces corefiles with OSABI=SysV. */
949 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
950 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
951 return FALSE;
953 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
955 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
956 but the kernel produces corefiles with OSABI=SysV. */
957 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
958 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
959 return FALSE;
961 else
963 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
964 return FALSE;
967 flags = i_ehdrp->e_flags;
968 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
970 case EFA_PARISC_1_0:
971 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
972 case EFA_PARISC_1_1:
973 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
974 case EFA_PARISC_2_0:
975 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
976 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
979 return TRUE;
982 /* Create the .plt and .got sections, and set up our hash table
983 short-cuts to various dynamic sections. */
985 static bfd_boolean
986 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
988 struct elf32_hppa_link_hash_table *htab;
989 struct elf_link_hash_entry *eh;
991 /* Don't try to create the .plt and .got twice. */
992 htab = hppa_link_hash_table (info);
993 if (htab->splt != NULL)
994 return TRUE;
996 /* Call the generic code to do most of the work. */
997 if (! _bfd_elf_create_dynamic_sections (abfd, info))
998 return FALSE;
1000 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1001 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1003 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1004 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1005 (SEC_ALLOC
1006 | SEC_LOAD
1007 | SEC_HAS_CONTENTS
1008 | SEC_IN_MEMORY
1009 | SEC_LINKER_CREATED
1010 | SEC_READONLY));
1011 if (htab->srelgot == NULL
1012 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1013 return FALSE;
1015 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1016 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1018 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1019 application, because __canonicalize_funcptr_for_compare needs it. */
1020 eh = elf_hash_table (info)->hgot;
1021 eh->forced_local = 0;
1022 eh->other = STV_DEFAULT;
1023 return bfd_elf_link_record_dynamic_symbol (info, eh);
1026 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1028 static void
1029 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1030 struct elf_link_hash_entry *eh_dir,
1031 struct elf_link_hash_entry *eh_ind)
1033 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1035 hh_dir = hppa_elf_hash_entry (eh_dir);
1036 hh_ind = hppa_elf_hash_entry (eh_ind);
1038 if (hh_ind->dyn_relocs != NULL)
1040 if (hh_dir->dyn_relocs != NULL)
1042 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1043 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1045 /* Add reloc counts against the indirect sym to the direct sym
1046 list. Merge any entries against the same section. */
1047 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1049 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1051 for (hdh_q = hh_dir->dyn_relocs;
1052 hdh_q != NULL;
1053 hdh_q = hdh_q->hdh_next)
1054 if (hdh_q->sec == hdh_p->sec)
1056 #if RELATIVE_DYNRELOCS
1057 hdh_q->relative_count += hdh_p->relative_count;
1058 #endif
1059 hdh_q->count += hdh_p->count;
1060 *hdh_pp = hdh_p->hdh_next;
1061 break;
1063 if (hdh_q == NULL)
1064 hdh_pp = &hdh_p->hdh_next;
1066 *hdh_pp = hh_dir->dyn_relocs;
1069 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1070 hh_ind->dyn_relocs = NULL;
1073 if (ELIMINATE_COPY_RELOCS
1074 && eh_ind->root.type != bfd_link_hash_indirect
1075 && eh_dir->dynamic_adjusted)
1077 /* If called to transfer flags for a weakdef during processing
1078 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1079 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1080 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1081 eh_dir->ref_regular |= eh_ind->ref_regular;
1082 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1083 eh_dir->needs_plt |= eh_ind->needs_plt;
1085 else
1087 if (eh_ind->root.type == bfd_link_hash_indirect
1088 && eh_dir->got.refcount <= 0)
1090 hh_dir->tls_type = hh_ind->tls_type;
1091 hh_ind->tls_type = GOT_UNKNOWN;
1094 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1098 static int
1099 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1100 int r_type, int is_local ATTRIBUTE_UNUSED)
1102 /* For now we don't support linker optimizations. */
1103 return r_type;
1106 /* Look through the relocs for a section during the first phase, and
1107 calculate needed space in the global offset table, procedure linkage
1108 table, and dynamic reloc sections. At this point we haven't
1109 necessarily read all the input files. */
1111 static bfd_boolean
1112 elf32_hppa_check_relocs (bfd *abfd,
1113 struct bfd_link_info *info,
1114 asection *sec,
1115 const Elf_Internal_Rela *relocs)
1117 Elf_Internal_Shdr *symtab_hdr;
1118 struct elf_link_hash_entry **eh_syms;
1119 const Elf_Internal_Rela *rela;
1120 const Elf_Internal_Rela *rela_end;
1121 struct elf32_hppa_link_hash_table *htab;
1122 asection *sreloc;
1123 asection *stubreloc;
1124 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1126 if (info->relocatable)
1127 return TRUE;
1129 htab = hppa_link_hash_table (info);
1130 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1131 eh_syms = elf_sym_hashes (abfd);
1132 sreloc = NULL;
1133 stubreloc = NULL;
1135 rela_end = relocs + sec->reloc_count;
1136 for (rela = relocs; rela < rela_end; rela++)
1138 enum {
1139 NEED_GOT = 1,
1140 NEED_PLT = 2,
1141 NEED_DYNREL = 4,
1142 PLT_PLABEL = 8
1145 unsigned int r_symndx, r_type;
1146 struct elf32_hppa_link_hash_entry *hh;
1147 int need_entry = 0;
1149 r_symndx = ELF32_R_SYM (rela->r_info);
1151 if (r_symndx < symtab_hdr->sh_info)
1152 hh = NULL;
1153 else
1155 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1156 while (hh->eh.root.type == bfd_link_hash_indirect
1157 || hh->eh.root.type == bfd_link_hash_warning)
1158 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1161 r_type = ELF32_R_TYPE (rela->r_info);
1162 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1164 switch (r_type)
1166 case R_PARISC_DLTIND14F:
1167 case R_PARISC_DLTIND14R:
1168 case R_PARISC_DLTIND21L:
1169 /* This symbol requires a global offset table entry. */
1170 need_entry = NEED_GOT;
1171 break;
1173 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1174 case R_PARISC_PLABEL21L:
1175 case R_PARISC_PLABEL32:
1176 /* If the addend is non-zero, we break badly. */
1177 if (rela->r_addend != 0)
1178 abort ();
1180 /* If we are creating a shared library, then we need to
1181 create a PLT entry for all PLABELs, because PLABELs with
1182 local symbols may be passed via a pointer to another
1183 object. Additionally, output a dynamic relocation
1184 pointing to the PLT entry.
1186 For executables, the original 32-bit ABI allowed two
1187 different styles of PLABELs (function pointers): For
1188 global functions, the PLABEL word points into the .plt
1189 two bytes past a (function address, gp) pair, and for
1190 local functions the PLABEL points directly at the
1191 function. The magic +2 for the first type allows us to
1192 differentiate between the two. As you can imagine, this
1193 is a real pain when it comes to generating code to call
1194 functions indirectly or to compare function pointers.
1195 We avoid the mess by always pointing a PLABEL into the
1196 .plt, even for local functions. */
1197 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1198 break;
1200 case R_PARISC_PCREL12F:
1201 htab->has_12bit_branch = 1;
1202 goto branch_common;
1204 case R_PARISC_PCREL17C:
1205 case R_PARISC_PCREL17F:
1206 htab->has_17bit_branch = 1;
1207 goto branch_common;
1209 case R_PARISC_PCREL22F:
1210 htab->has_22bit_branch = 1;
1211 branch_common:
1212 /* Function calls might need to go through the .plt, and
1213 might require long branch stubs. */
1214 if (hh == NULL)
1216 /* We know local syms won't need a .plt entry, and if
1217 they need a long branch stub we can't guarantee that
1218 we can reach the stub. So just flag an error later
1219 if we're doing a shared link and find we need a long
1220 branch stub. */
1221 continue;
1223 else
1225 /* Global symbols will need a .plt entry if they remain
1226 global, and in most cases won't need a long branch
1227 stub. Unfortunately, we have to cater for the case
1228 where a symbol is forced local by versioning, or due
1229 to symbolic linking, and we lose the .plt entry. */
1230 need_entry = NEED_PLT;
1231 if (hh->eh.type == STT_PARISC_MILLI)
1232 need_entry = 0;
1234 break;
1236 case R_PARISC_SEGBASE: /* Used to set segment base. */
1237 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1238 case R_PARISC_PCREL14F: /* PC relative load/store. */
1239 case R_PARISC_PCREL14R:
1240 case R_PARISC_PCREL17R: /* External branches. */
1241 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1242 case R_PARISC_PCREL32:
1243 /* We don't need to propagate the relocation if linking a
1244 shared object since these are section relative. */
1245 continue;
1247 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1248 case R_PARISC_DPREL14R:
1249 case R_PARISC_DPREL21L:
1250 if (info->shared)
1252 (*_bfd_error_handler)
1253 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1254 abfd,
1255 elf_hppa_howto_table[r_type].name);
1256 bfd_set_error (bfd_error_bad_value);
1257 return FALSE;
1259 /* Fall through. */
1261 case R_PARISC_DIR17F: /* Used for external branches. */
1262 case R_PARISC_DIR17R:
1263 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1264 case R_PARISC_DIR14R:
1265 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1266 case R_PARISC_DIR32: /* .word relocs. */
1267 /* We may want to output a dynamic relocation later. */
1268 need_entry = NEED_DYNREL;
1269 break;
1271 /* This relocation describes the C++ object vtable hierarchy.
1272 Reconstruct it for later use during GC. */
1273 case R_PARISC_GNU_VTINHERIT:
1274 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1275 return FALSE;
1276 continue;
1278 /* This relocation describes which C++ vtable entries are actually
1279 used. Record for later use during GC. */
1280 case R_PARISC_GNU_VTENTRY:
1281 BFD_ASSERT (hh != NULL);
1282 if (hh != NULL
1283 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1284 return FALSE;
1285 continue;
1287 case R_PARISC_TLS_GD21L:
1288 case R_PARISC_TLS_GD14R:
1289 case R_PARISC_TLS_LDM21L:
1290 case R_PARISC_TLS_LDM14R:
1291 need_entry = NEED_GOT;
1292 break;
1294 case R_PARISC_TLS_IE21L:
1295 case R_PARISC_TLS_IE14R:
1296 if (info->shared)
1297 info->flags |= DF_STATIC_TLS;
1298 need_entry = NEED_GOT;
1299 break;
1301 default:
1302 continue;
1305 /* Now carry out our orders. */
1306 if (need_entry & NEED_GOT)
1308 switch (r_type)
1310 default:
1311 tls_type = GOT_NORMAL;
1312 break;
1313 case R_PARISC_TLS_GD21L:
1314 case R_PARISC_TLS_GD14R:
1315 tls_type |= GOT_TLS_GD;
1316 break;
1317 case R_PARISC_TLS_LDM21L:
1318 case R_PARISC_TLS_LDM14R:
1319 tls_type |= GOT_TLS_LDM;
1320 break;
1321 case R_PARISC_TLS_IE21L:
1322 case R_PARISC_TLS_IE14R:
1323 tls_type |= GOT_TLS_IE;
1324 break;
1327 /* Allocate space for a GOT entry, as well as a dynamic
1328 relocation for this entry. */
1329 if (htab->sgot == NULL)
1331 if (htab->etab.dynobj == NULL)
1332 htab->etab.dynobj = abfd;
1333 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1334 return FALSE;
1337 if (r_type == R_PARISC_TLS_LDM21L
1338 || r_type == R_PARISC_TLS_LDM14R)
1339 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1340 else
1342 if (hh != NULL)
1344 hh->eh.got.refcount += 1;
1345 old_tls_type = hh->tls_type;
1347 else
1349 bfd_signed_vma *local_got_refcounts;
1351 /* This is a global offset table entry for a local symbol. */
1352 local_got_refcounts = elf_local_got_refcounts (abfd);
1353 if (local_got_refcounts == NULL)
1355 bfd_size_type size;
1357 /* Allocate space for local got offsets and local
1358 plt offsets. Done this way to save polluting
1359 elf_obj_tdata with another target specific
1360 pointer. */
1361 size = symtab_hdr->sh_info;
1362 size *= 2 * sizeof (bfd_signed_vma);
1363 /* Add in space to store the local GOT TLS types. */
1364 size += symtab_hdr->sh_info;
1365 local_got_refcounts = bfd_zalloc (abfd, size);
1366 if (local_got_refcounts == NULL)
1367 return FALSE;
1368 elf_local_got_refcounts (abfd) = local_got_refcounts;
1369 memset (hppa_elf_local_got_tls_type (abfd),
1370 GOT_UNKNOWN, symtab_hdr->sh_info);
1372 local_got_refcounts[r_symndx] += 1;
1374 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1377 tls_type |= old_tls_type;
1379 if (old_tls_type != tls_type)
1381 if (hh != NULL)
1382 hh->tls_type = tls_type;
1383 else
1384 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1390 if (need_entry & NEED_PLT)
1392 /* If we are creating a shared library, and this is a reloc
1393 against a weak symbol or a global symbol in a dynamic
1394 object, then we will be creating an import stub and a
1395 .plt entry for the symbol. Similarly, on a normal link
1396 to symbols defined in a dynamic object we'll need the
1397 import stub and a .plt entry. We don't know yet whether
1398 the symbol is defined or not, so make an entry anyway and
1399 clean up later in adjust_dynamic_symbol. */
1400 if ((sec->flags & SEC_ALLOC) != 0)
1402 if (hh != NULL)
1404 hh->eh.needs_plt = 1;
1405 hh->eh.plt.refcount += 1;
1407 /* If this .plt entry is for a plabel, mark it so
1408 that adjust_dynamic_symbol will keep the entry
1409 even if it appears to be local. */
1410 if (need_entry & PLT_PLABEL)
1411 hh->plabel = 1;
1413 else if (need_entry & PLT_PLABEL)
1415 bfd_signed_vma *local_got_refcounts;
1416 bfd_signed_vma *local_plt_refcounts;
1418 local_got_refcounts = elf_local_got_refcounts (abfd);
1419 if (local_got_refcounts == NULL)
1421 bfd_size_type size;
1423 /* Allocate space for local got offsets and local
1424 plt offsets. */
1425 size = symtab_hdr->sh_info;
1426 size *= 2 * sizeof (bfd_signed_vma);
1427 /* Add in space to store the local GOT TLS types. */
1428 size += symtab_hdr->sh_info;
1429 local_got_refcounts = bfd_zalloc (abfd, size);
1430 if (local_got_refcounts == NULL)
1431 return FALSE;
1432 elf_local_got_refcounts (abfd) = local_got_refcounts;
1434 local_plt_refcounts = (local_got_refcounts
1435 + symtab_hdr->sh_info);
1436 local_plt_refcounts[r_symndx] += 1;
1441 if (need_entry & NEED_DYNREL)
1443 /* Flag this symbol as having a non-got, non-plt reference
1444 so that we generate copy relocs if it turns out to be
1445 dynamic. */
1446 if (hh != NULL && !info->shared)
1447 hh->eh.non_got_ref = 1;
1449 /* If we are creating a shared library then we need to copy
1450 the reloc into the shared library. However, if we are
1451 linking with -Bsymbolic, we need only copy absolute
1452 relocs or relocs against symbols that are not defined in
1453 an object we are including in the link. PC- or DP- or
1454 DLT-relative relocs against any local sym or global sym
1455 with DEF_REGULAR set, can be discarded. At this point we
1456 have not seen all the input files, so it is possible that
1457 DEF_REGULAR is not set now but will be set later (it is
1458 never cleared). We account for that possibility below by
1459 storing information in the dyn_relocs field of the
1460 hash table entry.
1462 A similar situation to the -Bsymbolic case occurs when
1463 creating shared libraries and symbol visibility changes
1464 render the symbol local.
1466 As it turns out, all the relocs we will be creating here
1467 are absolute, so we cannot remove them on -Bsymbolic
1468 links or visibility changes anyway. A STUB_REL reloc
1469 is absolute too, as in that case it is the reloc in the
1470 stub we will be creating, rather than copying the PCREL
1471 reloc in the branch.
1473 If on the other hand, we are creating an executable, we
1474 may need to keep relocations for symbols satisfied by a
1475 dynamic library if we manage to avoid copy relocs for the
1476 symbol. */
1477 if ((info->shared
1478 && (sec->flags & SEC_ALLOC) != 0
1479 && (IS_ABSOLUTE_RELOC (r_type)
1480 || (hh != NULL
1481 && (!info->symbolic
1482 || hh->eh.root.type == bfd_link_hash_defweak
1483 || !hh->eh.def_regular))))
1484 || (ELIMINATE_COPY_RELOCS
1485 && !info->shared
1486 && (sec->flags & SEC_ALLOC) != 0
1487 && hh != NULL
1488 && (hh->eh.root.type == bfd_link_hash_defweak
1489 || !hh->eh.def_regular)))
1491 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1492 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1494 /* Create a reloc section in dynobj and make room for
1495 this reloc. */
1496 if (sreloc == NULL)
1498 char *name;
1499 bfd *dynobj;
1501 name = (bfd_elf_string_from_elf_section
1502 (abfd,
1503 elf_elfheader (abfd)->e_shstrndx,
1504 elf_section_data (sec)->rel_hdr.sh_name));
1505 if (name == NULL)
1507 (*_bfd_error_handler)
1508 (_("Could not find relocation section for %s"),
1509 sec->name);
1510 bfd_set_error (bfd_error_bad_value);
1511 return FALSE;
1514 if (htab->etab.dynobj == NULL)
1515 htab->etab.dynobj = abfd;
1517 dynobj = htab->etab.dynobj;
1518 sreloc = bfd_get_section_by_name (dynobj, name);
1519 if (sreloc == NULL)
1521 flagword flags;
1523 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1524 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1525 if ((sec->flags & SEC_ALLOC) != 0)
1526 flags |= SEC_ALLOC | SEC_LOAD;
1527 sreloc = bfd_make_section_with_flags (dynobj,
1528 name,
1529 flags);
1530 if (sreloc == NULL
1531 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1532 return FALSE;
1535 elf_section_data (sec)->sreloc = sreloc;
1538 /* If this is a global symbol, we count the number of
1539 relocations we need for this symbol. */
1540 if (hh != NULL)
1542 hdh_head = &hh->dyn_relocs;
1544 else
1546 /* Track dynamic relocs needed for local syms too.
1547 We really need local syms available to do this
1548 easily. Oh well. */
1550 asection *sr;
1551 void *vpp;
1553 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1554 sec, r_symndx);
1555 if (sr == NULL)
1556 return FALSE;
1558 vpp = &elf_section_data (sr)->local_dynrel;
1559 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1562 hdh_p = *hdh_head;
1563 if (hdh_p == NULL || hdh_p->sec != sec)
1565 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1566 if (hdh_p == NULL)
1567 return FALSE;
1568 hdh_p->hdh_next = *hdh_head;
1569 *hdh_head = hdh_p;
1570 hdh_p->sec = sec;
1571 hdh_p->count = 0;
1572 #if RELATIVE_DYNRELOCS
1573 hdh_p->relative_count = 0;
1574 #endif
1577 hdh_p->count += 1;
1578 #if RELATIVE_DYNRELOCS
1579 if (!IS_ABSOLUTE_RELOC (rtype))
1580 hdh_p->relative_count += 1;
1581 #endif
1586 return TRUE;
1589 /* Return the section that should be marked against garbage collection
1590 for a given relocation. */
1592 static asection *
1593 elf32_hppa_gc_mark_hook (asection *sec,
1594 struct bfd_link_info *info,
1595 Elf_Internal_Rela *rela,
1596 struct elf_link_hash_entry *hh,
1597 Elf_Internal_Sym *sym)
1599 if (hh != NULL)
1600 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1602 case R_PARISC_GNU_VTINHERIT:
1603 case R_PARISC_GNU_VTENTRY:
1604 return NULL;
1607 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1610 /* Update the got and plt entry reference counts for the section being
1611 removed. */
1613 static bfd_boolean
1614 elf32_hppa_gc_sweep_hook (bfd *abfd,
1615 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1616 asection *sec,
1617 const Elf_Internal_Rela *relocs)
1619 Elf_Internal_Shdr *symtab_hdr;
1620 struct elf_link_hash_entry **eh_syms;
1621 bfd_signed_vma *local_got_refcounts;
1622 bfd_signed_vma *local_plt_refcounts;
1623 const Elf_Internal_Rela *rela, *relend;
1625 elf_section_data (sec)->local_dynrel = NULL;
1627 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1628 eh_syms = elf_sym_hashes (abfd);
1629 local_got_refcounts = elf_local_got_refcounts (abfd);
1630 local_plt_refcounts = local_got_refcounts;
1631 if (local_plt_refcounts != NULL)
1632 local_plt_refcounts += symtab_hdr->sh_info;
1634 relend = relocs + sec->reloc_count;
1635 for (rela = relocs; rela < relend; rela++)
1637 unsigned long r_symndx;
1638 unsigned int r_type;
1639 struct elf_link_hash_entry *eh = NULL;
1641 r_symndx = ELF32_R_SYM (rela->r_info);
1642 if (r_symndx >= symtab_hdr->sh_info)
1644 struct elf32_hppa_link_hash_entry *hh;
1645 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1646 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1648 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1649 while (eh->root.type == bfd_link_hash_indirect
1650 || eh->root.type == bfd_link_hash_warning)
1651 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1652 hh = hppa_elf_hash_entry (eh);
1654 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1655 if (hdh_p->sec == sec)
1657 /* Everything must go for SEC. */
1658 *hdh_pp = hdh_p->hdh_next;
1659 break;
1663 r_type = ELF32_R_TYPE (rela->r_info);
1664 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1666 switch (r_type)
1668 case R_PARISC_DLTIND14F:
1669 case R_PARISC_DLTIND14R:
1670 case R_PARISC_DLTIND21L:
1671 case R_PARISC_TLS_GD21L:
1672 case R_PARISC_TLS_GD14R:
1673 case R_PARISC_TLS_IE21L:
1674 case R_PARISC_TLS_IE14R:
1675 if (eh != NULL)
1677 if (eh->got.refcount > 0)
1678 eh->got.refcount -= 1;
1680 else if (local_got_refcounts != NULL)
1682 if (local_got_refcounts[r_symndx] > 0)
1683 local_got_refcounts[r_symndx] -= 1;
1685 break;
1687 case R_PARISC_TLS_LDM21L:
1688 case R_PARISC_TLS_LDM14R:
1689 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1690 break;
1692 case R_PARISC_PCREL12F:
1693 case R_PARISC_PCREL17C:
1694 case R_PARISC_PCREL17F:
1695 case R_PARISC_PCREL22F:
1696 if (eh != NULL)
1698 if (eh->plt.refcount > 0)
1699 eh->plt.refcount -= 1;
1701 break;
1703 case R_PARISC_PLABEL14R:
1704 case R_PARISC_PLABEL21L:
1705 case R_PARISC_PLABEL32:
1706 if (eh != NULL)
1708 if (eh->plt.refcount > 0)
1709 eh->plt.refcount -= 1;
1711 else if (local_plt_refcounts != NULL)
1713 if (local_plt_refcounts[r_symndx] > 0)
1714 local_plt_refcounts[r_symndx] -= 1;
1716 break;
1718 default:
1719 break;
1723 return TRUE;
1726 /* Support for core dump NOTE sections. */
1728 static bfd_boolean
1729 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1731 int offset;
1732 size_t size;
1734 switch (note->descsz)
1736 default:
1737 return FALSE;
1739 case 396: /* Linux/hppa */
1740 /* pr_cursig */
1741 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1743 /* pr_pid */
1744 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1746 /* pr_reg */
1747 offset = 72;
1748 size = 320;
1750 break;
1753 /* Make a ".reg/999" section. */
1754 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1755 size, note->descpos + offset);
1758 static bfd_boolean
1759 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1761 switch (note->descsz)
1763 default:
1764 return FALSE;
1766 case 124: /* Linux/hppa elf_prpsinfo. */
1767 elf_tdata (abfd)->core_program
1768 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1769 elf_tdata (abfd)->core_command
1770 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1773 /* Note that for some reason, a spurious space is tacked
1774 onto the end of the args in some (at least one anyway)
1775 implementations, so strip it off if it exists. */
1777 char *command = elf_tdata (abfd)->core_command;
1778 int n = strlen (command);
1780 if (0 < n && command[n - 1] == ' ')
1781 command[n - 1] = '\0';
1784 return TRUE;
1787 /* Our own version of hide_symbol, so that we can keep plt entries for
1788 plabels. */
1790 static void
1791 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1792 struct elf_link_hash_entry *eh,
1793 bfd_boolean force_local)
1795 if (force_local)
1797 eh->forced_local = 1;
1798 if (eh->dynindx != -1)
1800 eh->dynindx = -1;
1801 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1802 eh->dynstr_index);
1806 if (! hppa_elf_hash_entry (eh)->plabel)
1808 eh->needs_plt = 0;
1809 eh->plt = elf_hash_table (info)->init_plt_refcount;
1813 /* Adjust a symbol defined by a dynamic object and referenced by a
1814 regular object. The current definition is in some section of the
1815 dynamic object, but we're not including those sections. We have to
1816 change the definition to something the rest of the link can
1817 understand. */
1819 static bfd_boolean
1820 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1821 struct elf_link_hash_entry *eh)
1823 struct elf32_hppa_link_hash_table *htab;
1824 asection *sec;
1826 /* If this is a function, put it in the procedure linkage table. We
1827 will fill in the contents of the procedure linkage table later. */
1828 if (eh->type == STT_FUNC
1829 || eh->needs_plt)
1831 if (eh->plt.refcount <= 0
1832 || (eh->def_regular
1833 && eh->root.type != bfd_link_hash_defweak
1834 && ! hppa_elf_hash_entry (eh)->plabel
1835 && (!info->shared || info->symbolic)))
1837 /* The .plt entry is not needed when:
1838 a) Garbage collection has removed all references to the
1839 symbol, or
1840 b) We know for certain the symbol is defined in this
1841 object, and it's not a weak definition, nor is the symbol
1842 used by a plabel relocation. Either this object is the
1843 application or we are doing a shared symbolic link. */
1845 eh->plt.offset = (bfd_vma) -1;
1846 eh->needs_plt = 0;
1849 return TRUE;
1851 else
1852 eh->plt.offset = (bfd_vma) -1;
1854 /* If this is a weak symbol, and there is a real definition, the
1855 processor independent code will have arranged for us to see the
1856 real definition first, and we can just use the same value. */
1857 if (eh->u.weakdef != NULL)
1859 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1860 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1861 abort ();
1862 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1863 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1864 if (ELIMINATE_COPY_RELOCS)
1865 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1866 return TRUE;
1869 /* This is a reference to a symbol defined by a dynamic object which
1870 is not a function. */
1872 /* If we are creating a shared library, we must presume that the
1873 only references to the symbol are via the global offset table.
1874 For such cases we need not do anything here; the relocations will
1875 be handled correctly by relocate_section. */
1876 if (info->shared)
1877 return TRUE;
1879 /* If there are no references to this symbol that do not use the
1880 GOT, we don't need to generate a copy reloc. */
1881 if (!eh->non_got_ref)
1882 return TRUE;
1884 if (ELIMINATE_COPY_RELOCS)
1886 struct elf32_hppa_link_hash_entry *hh;
1887 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1889 hh = hppa_elf_hash_entry (eh);
1890 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1892 sec = hdh_p->sec->output_section;
1893 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1894 break;
1897 /* If we didn't find any dynamic relocs in read-only sections, then
1898 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1899 if (hdh_p == NULL)
1901 eh->non_got_ref = 0;
1902 return TRUE;
1906 if (eh->size == 0)
1908 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1909 eh->root.root.string);
1910 return TRUE;
1913 /* We must allocate the symbol in our .dynbss section, which will
1914 become part of the .bss section of the executable. There will be
1915 an entry for this symbol in the .dynsym section. The dynamic
1916 object will contain position independent code, so all references
1917 from the dynamic object to this symbol will go through the global
1918 offset table. The dynamic linker will use the .dynsym entry to
1919 determine the address it must put in the global offset table, so
1920 both the dynamic object and the regular object will refer to the
1921 same memory location for the variable. */
1923 htab = hppa_link_hash_table (info);
1925 /* We must generate a COPY reloc to tell the dynamic linker to
1926 copy the initial value out of the dynamic object and into the
1927 runtime process image. */
1928 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1930 htab->srelbss->size += sizeof (Elf32_External_Rela);
1931 eh->needs_copy = 1;
1934 sec = htab->sdynbss;
1936 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1939 /* Allocate space in the .plt for entries that won't have relocations.
1940 ie. plabel entries. */
1942 static bfd_boolean
1943 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1945 struct bfd_link_info *info;
1946 struct elf32_hppa_link_hash_table *htab;
1947 struct elf32_hppa_link_hash_entry *hh;
1948 asection *sec;
1950 if (eh->root.type == bfd_link_hash_indirect)
1951 return TRUE;
1953 if (eh->root.type == bfd_link_hash_warning)
1954 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1956 info = (struct bfd_link_info *) inf;
1957 hh = hppa_elf_hash_entry (eh);
1958 htab = hppa_link_hash_table (info);
1959 if (htab->etab.dynamic_sections_created
1960 && eh->plt.refcount > 0)
1962 /* Make sure this symbol is output as a dynamic symbol.
1963 Undefined weak syms won't yet be marked as dynamic. */
1964 if (eh->dynindx == -1
1965 && !eh->forced_local
1966 && eh->type != STT_PARISC_MILLI)
1968 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1969 return FALSE;
1972 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1974 /* Allocate these later. From this point on, h->plabel
1975 means that the plt entry is only used by a plabel.
1976 We'll be using a normal plt entry for this symbol, so
1977 clear the plabel indicator. */
1979 hh->plabel = 0;
1981 else if (hh->plabel)
1983 /* Make an entry in the .plt section for plabel references
1984 that won't have a .plt entry for other reasons. */
1985 sec = htab->splt;
1986 eh->plt.offset = sec->size;
1987 sec->size += PLT_ENTRY_SIZE;
1989 else
1991 /* No .plt entry needed. */
1992 eh->plt.offset = (bfd_vma) -1;
1993 eh->needs_plt = 0;
1996 else
1998 eh->plt.offset = (bfd_vma) -1;
1999 eh->needs_plt = 0;
2002 return TRUE;
2005 /* Allocate space in .plt, .got and associated reloc sections for
2006 global syms. */
2008 static bfd_boolean
2009 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2011 struct bfd_link_info *info;
2012 struct elf32_hppa_link_hash_table *htab;
2013 asection *sec;
2014 struct elf32_hppa_link_hash_entry *hh;
2015 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2017 if (eh->root.type == bfd_link_hash_indirect)
2018 return TRUE;
2020 if (eh->root.type == bfd_link_hash_warning)
2021 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2023 info = inf;
2024 htab = hppa_link_hash_table (info);
2025 hh = hppa_elf_hash_entry (eh);
2027 if (htab->etab.dynamic_sections_created
2028 && eh->plt.offset != (bfd_vma) -1
2029 && !hh->plabel
2030 && eh->plt.refcount > 0)
2032 /* Make an entry in the .plt section. */
2033 sec = htab->splt;
2034 eh->plt.offset = sec->size;
2035 sec->size += PLT_ENTRY_SIZE;
2037 /* We also need to make an entry in the .rela.plt section. */
2038 htab->srelplt->size += sizeof (Elf32_External_Rela);
2039 htab->need_plt_stub = 1;
2042 if (eh->got.refcount > 0)
2044 /* Make sure this symbol is output as a dynamic symbol.
2045 Undefined weak syms won't yet be marked as dynamic. */
2046 if (eh->dynindx == -1
2047 && !eh->forced_local
2048 && eh->type != STT_PARISC_MILLI)
2050 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2051 return FALSE;
2054 sec = htab->sgot;
2055 eh->got.offset = sec->size;
2056 sec->size += GOT_ENTRY_SIZE;
2057 /* R_PARISC_TLS_GD* needs two GOT entries */
2058 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2059 sec->size += GOT_ENTRY_SIZE * 2;
2060 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2061 sec->size += GOT_ENTRY_SIZE;
2062 if (htab->etab.dynamic_sections_created
2063 && (info->shared
2064 || (eh->dynindx != -1
2065 && !eh->forced_local)))
2067 htab->srelgot->size += sizeof (Elf32_External_Rela);
2068 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2069 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2070 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2071 htab->srelgot->size += sizeof (Elf32_External_Rela);
2074 else
2075 eh->got.offset = (bfd_vma) -1;
2077 if (hh->dyn_relocs == NULL)
2078 return TRUE;
2080 /* If this is a -Bsymbolic shared link, then we need to discard all
2081 space allocated for dynamic pc-relative relocs against symbols
2082 defined in a regular object. For the normal shared case, discard
2083 space for relocs that have become local due to symbol visibility
2084 changes. */
2085 if (info->shared)
2087 #if RELATIVE_DYNRELOCS
2088 if (SYMBOL_CALLS_LOCAL (info, eh))
2090 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2092 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2094 hdh_p->count -= hdh_p->relative_count;
2095 hdh_p->relative_count = 0;
2096 if (hdh_p->count == 0)
2097 *hdh_pp = hdh_p->hdh_next;
2098 else
2099 hdh_pp = &hdh_p->hdh_next;
2102 #endif
2104 /* Also discard relocs on undefined weak syms with non-default
2105 visibility. */
2106 if (hh->dyn_relocs != NULL
2107 && eh->root.type == bfd_link_hash_undefweak)
2109 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2110 hh->dyn_relocs = NULL;
2112 /* Make sure undefined weak symbols are output as a dynamic
2113 symbol in PIEs. */
2114 else if (eh->dynindx == -1
2115 && !eh->forced_local)
2117 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2118 return FALSE;
2122 else
2124 /* For the non-shared case, discard space for relocs against
2125 symbols which turn out to need copy relocs or are not
2126 dynamic. */
2128 if (!eh->non_got_ref
2129 && ((ELIMINATE_COPY_RELOCS
2130 && eh->def_dynamic
2131 && !eh->def_regular)
2132 || (htab->etab.dynamic_sections_created
2133 && (eh->root.type == bfd_link_hash_undefweak
2134 || eh->root.type == bfd_link_hash_undefined))))
2136 /* Make sure this symbol is output as a dynamic symbol.
2137 Undefined weak syms won't yet be marked as dynamic. */
2138 if (eh->dynindx == -1
2139 && !eh->forced_local
2140 && eh->type != STT_PARISC_MILLI)
2142 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2143 return FALSE;
2146 /* If that succeeded, we know we'll be keeping all the
2147 relocs. */
2148 if (eh->dynindx != -1)
2149 goto keep;
2152 hh->dyn_relocs = NULL;
2153 return TRUE;
2155 keep: ;
2158 /* Finally, allocate space. */
2159 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2161 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2162 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2165 return TRUE;
2168 /* This function is called via elf_link_hash_traverse to force
2169 millicode symbols local so they do not end up as globals in the
2170 dynamic symbol table. We ought to be able to do this in
2171 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2172 for all dynamic symbols. Arguably, this is a bug in
2173 elf_adjust_dynamic_symbol. */
2175 static bfd_boolean
2176 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2177 struct bfd_link_info *info)
2179 if (eh->root.type == bfd_link_hash_warning)
2180 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2182 if (eh->type == STT_PARISC_MILLI
2183 && !eh->forced_local)
2185 elf32_hppa_hide_symbol (info, eh, TRUE);
2187 return TRUE;
2190 /* Find any dynamic relocs that apply to read-only sections. */
2192 static bfd_boolean
2193 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2195 struct elf32_hppa_link_hash_entry *hh;
2196 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2198 if (eh->root.type == bfd_link_hash_warning)
2199 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2201 hh = hppa_elf_hash_entry (eh);
2202 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2204 asection *sec = hdh_p->sec->output_section;
2206 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2208 struct bfd_link_info *info = inf;
2210 info->flags |= DF_TEXTREL;
2212 /* Not an error, just cut short the traversal. */
2213 return FALSE;
2216 return TRUE;
2219 /* Set the sizes of the dynamic sections. */
2221 static bfd_boolean
2222 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2223 struct bfd_link_info *info)
2225 struct elf32_hppa_link_hash_table *htab;
2226 bfd *dynobj;
2227 bfd *ibfd;
2228 asection *sec;
2229 bfd_boolean relocs;
2231 htab = hppa_link_hash_table (info);
2232 dynobj = htab->etab.dynobj;
2233 if (dynobj == NULL)
2234 abort ();
2236 if (htab->etab.dynamic_sections_created)
2238 /* Set the contents of the .interp section to the interpreter. */
2239 if (info->executable)
2241 sec = bfd_get_section_by_name (dynobj, ".interp");
2242 if (sec == NULL)
2243 abort ();
2244 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2245 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2248 /* Force millicode symbols local. */
2249 elf_link_hash_traverse (&htab->etab,
2250 clobber_millicode_symbols,
2251 info);
2254 /* Set up .got and .plt offsets for local syms, and space for local
2255 dynamic relocs. */
2256 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2258 bfd_signed_vma *local_got;
2259 bfd_signed_vma *end_local_got;
2260 bfd_signed_vma *local_plt;
2261 bfd_signed_vma *end_local_plt;
2262 bfd_size_type locsymcount;
2263 Elf_Internal_Shdr *symtab_hdr;
2264 asection *srel;
2265 char *local_tls_type;
2267 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2268 continue;
2270 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2272 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2274 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2275 elf_section_data (sec)->local_dynrel);
2276 hdh_p != NULL;
2277 hdh_p = hdh_p->hdh_next)
2279 if (!bfd_is_abs_section (hdh_p->sec)
2280 && bfd_is_abs_section (hdh_p->sec->output_section))
2282 /* Input section has been discarded, either because
2283 it is a copy of a linkonce section or due to
2284 linker script /DISCARD/, so we'll be discarding
2285 the relocs too. */
2287 else if (hdh_p->count != 0)
2289 srel = elf_section_data (hdh_p->sec)->sreloc;
2290 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2291 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2292 info->flags |= DF_TEXTREL;
2297 local_got = elf_local_got_refcounts (ibfd);
2298 if (!local_got)
2299 continue;
2301 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2302 locsymcount = symtab_hdr->sh_info;
2303 end_local_got = local_got + locsymcount;
2304 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2305 sec = htab->sgot;
2306 srel = htab->srelgot;
2307 for (; local_got < end_local_got; ++local_got)
2309 if (*local_got > 0)
2311 *local_got = sec->size;
2312 sec->size += GOT_ENTRY_SIZE;
2313 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2314 sec->size += 2 * GOT_ENTRY_SIZE;
2315 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2316 sec->size += GOT_ENTRY_SIZE;
2317 if (info->shared)
2319 srel->size += sizeof (Elf32_External_Rela);
2320 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2321 srel->size += 2 * sizeof (Elf32_External_Rela);
2322 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2323 srel->size += sizeof (Elf32_External_Rela);
2326 else
2327 *local_got = (bfd_vma) -1;
2329 ++local_tls_type;
2332 local_plt = end_local_got;
2333 end_local_plt = local_plt + locsymcount;
2334 if (! htab->etab.dynamic_sections_created)
2336 /* Won't be used, but be safe. */
2337 for (; local_plt < end_local_plt; ++local_plt)
2338 *local_plt = (bfd_vma) -1;
2340 else
2342 sec = htab->splt;
2343 srel = htab->srelplt;
2344 for (; local_plt < end_local_plt; ++local_plt)
2346 if (*local_plt > 0)
2348 *local_plt = sec->size;
2349 sec->size += PLT_ENTRY_SIZE;
2350 if (info->shared)
2351 srel->size += sizeof (Elf32_External_Rela);
2353 else
2354 *local_plt = (bfd_vma) -1;
2359 if (htab->tls_ldm_got.refcount > 0)
2361 /* Allocate 2 got entries and 1 dynamic reloc for
2362 R_PARISC_TLS_DTPMOD32 relocs. */
2363 htab->tls_ldm_got.offset = htab->sgot->size;
2364 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2365 htab->srelgot->size += sizeof (Elf32_External_Rela);
2367 else
2368 htab->tls_ldm_got.offset = -1;
2370 /* Do all the .plt entries without relocs first. The dynamic linker
2371 uses the last .plt reloc to find the end of the .plt (and hence
2372 the start of the .got) for lazy linking. */
2373 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2375 /* Allocate global sym .plt and .got entries, and space for global
2376 sym dynamic relocs. */
2377 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2379 /* The check_relocs and adjust_dynamic_symbol entry points have
2380 determined the sizes of the various dynamic sections. Allocate
2381 memory for them. */
2382 relocs = FALSE;
2383 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2385 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2386 continue;
2388 if (sec == htab->splt)
2390 if (htab->need_plt_stub)
2392 /* Make space for the plt stub at the end of the .plt
2393 section. We want this stub right at the end, up
2394 against the .got section. */
2395 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2396 int pltalign = bfd_section_alignment (dynobj, sec);
2397 bfd_size_type mask;
2399 if (gotalign > pltalign)
2400 bfd_set_section_alignment (dynobj, sec, gotalign);
2401 mask = ((bfd_size_type) 1 << gotalign) - 1;
2402 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2405 else if (sec == htab->sgot
2406 || sec == htab->sdynbss)
2408 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2410 if (sec->size != 0)
2412 /* Remember whether there are any reloc sections other
2413 than .rela.plt. */
2414 if (sec != htab->srelplt)
2415 relocs = TRUE;
2417 /* We use the reloc_count field as a counter if we need
2418 to copy relocs into the output file. */
2419 sec->reloc_count = 0;
2422 else
2424 /* It's not one of our sections, so don't allocate space. */
2425 continue;
2428 if (sec->size == 0)
2430 /* If we don't need this section, strip it from the
2431 output file. This is mostly to handle .rela.bss and
2432 .rela.plt. We must create both sections in
2433 create_dynamic_sections, because they must be created
2434 before the linker maps input sections to output
2435 sections. The linker does that before
2436 adjust_dynamic_symbol is called, and it is that
2437 function which decides whether anything needs to go
2438 into these sections. */
2439 sec->flags |= SEC_EXCLUDE;
2440 continue;
2443 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2444 continue;
2446 /* Allocate memory for the section contents. Zero it, because
2447 we may not fill in all the reloc sections. */
2448 sec->contents = bfd_zalloc (dynobj, sec->size);
2449 if (sec->contents == NULL)
2450 return FALSE;
2453 if (htab->etab.dynamic_sections_created)
2455 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2456 actually has nothing to do with the PLT, it is how we
2457 communicate the LTP value of a load module to the dynamic
2458 linker. */
2459 #define add_dynamic_entry(TAG, VAL) \
2460 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2462 if (!add_dynamic_entry (DT_PLTGOT, 0))
2463 return FALSE;
2465 /* Add some entries to the .dynamic section. We fill in the
2466 values later, in elf32_hppa_finish_dynamic_sections, but we
2467 must add the entries now so that we get the correct size for
2468 the .dynamic section. The DT_DEBUG entry is filled in by the
2469 dynamic linker and used by the debugger. */
2470 if (info->executable)
2472 if (!add_dynamic_entry (DT_DEBUG, 0))
2473 return FALSE;
2476 if (htab->srelplt->size != 0)
2478 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2479 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2480 || !add_dynamic_entry (DT_JMPREL, 0))
2481 return FALSE;
2484 if (relocs)
2486 if (!add_dynamic_entry (DT_RELA, 0)
2487 || !add_dynamic_entry (DT_RELASZ, 0)
2488 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2489 return FALSE;
2491 /* If any dynamic relocs apply to a read-only section,
2492 then we need a DT_TEXTREL entry. */
2493 if ((info->flags & DF_TEXTREL) == 0)
2494 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2496 if ((info->flags & DF_TEXTREL) != 0)
2498 if (!add_dynamic_entry (DT_TEXTREL, 0))
2499 return FALSE;
2503 #undef add_dynamic_entry
2505 return TRUE;
2508 /* External entry points for sizing and building linker stubs. */
2510 /* Set up various things so that we can make a list of input sections
2511 for each output section included in the link. Returns -1 on error,
2512 0 when no stubs will be needed, and 1 on success. */
2515 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2517 bfd *input_bfd;
2518 unsigned int bfd_count;
2519 int top_id, top_index;
2520 asection *section;
2521 asection **input_list, **list;
2522 bfd_size_type amt;
2523 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2525 /* Count the number of input BFDs and find the top input section id. */
2526 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2527 input_bfd != NULL;
2528 input_bfd = input_bfd->link_next)
2530 bfd_count += 1;
2531 for (section = input_bfd->sections;
2532 section != NULL;
2533 section = section->next)
2535 if (top_id < section->id)
2536 top_id = section->id;
2539 htab->bfd_count = bfd_count;
2541 amt = sizeof (struct map_stub) * (top_id + 1);
2542 htab->stub_group = bfd_zmalloc (amt);
2543 if (htab->stub_group == NULL)
2544 return -1;
2546 /* We can't use output_bfd->section_count here to find the top output
2547 section index as some sections may have been removed, and
2548 strip_excluded_output_sections doesn't renumber the indices. */
2549 for (section = output_bfd->sections, top_index = 0;
2550 section != NULL;
2551 section = section->next)
2553 if (top_index < section->index)
2554 top_index = section->index;
2557 htab->top_index = top_index;
2558 amt = sizeof (asection *) * (top_index + 1);
2559 input_list = bfd_malloc (amt);
2560 htab->input_list = input_list;
2561 if (input_list == NULL)
2562 return -1;
2564 /* For sections we aren't interested in, mark their entries with a
2565 value we can check later. */
2566 list = input_list + top_index;
2568 *list = bfd_abs_section_ptr;
2569 while (list-- != input_list);
2571 for (section = output_bfd->sections;
2572 section != NULL;
2573 section = section->next)
2575 if ((section->flags & SEC_CODE) != 0)
2576 input_list[section->index] = NULL;
2579 return 1;
2582 /* The linker repeatedly calls this function for each input section,
2583 in the order that input sections are linked into output sections.
2584 Build lists of input sections to determine groupings between which
2585 we may insert linker stubs. */
2587 void
2588 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2590 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2592 if (isec->output_section->index <= htab->top_index)
2594 asection **list = htab->input_list + isec->output_section->index;
2595 if (*list != bfd_abs_section_ptr)
2597 /* Steal the link_sec pointer for our list. */
2598 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2599 /* This happens to make the list in reverse order,
2600 which is what we want. */
2601 PREV_SEC (isec) = *list;
2602 *list = isec;
2607 /* See whether we can group stub sections together. Grouping stub
2608 sections may result in fewer stubs. More importantly, we need to
2609 put all .init* and .fini* stubs at the beginning of the .init or
2610 .fini output sections respectively, because glibc splits the
2611 _init and _fini functions into multiple parts. Putting a stub in
2612 the middle of a function is not a good idea. */
2614 static void
2615 group_sections (struct elf32_hppa_link_hash_table *htab,
2616 bfd_size_type stub_group_size,
2617 bfd_boolean stubs_always_before_branch)
2619 asection **list = htab->input_list + htab->top_index;
2622 asection *tail = *list;
2623 if (tail == bfd_abs_section_ptr)
2624 continue;
2625 while (tail != NULL)
2627 asection *curr;
2628 asection *prev;
2629 bfd_size_type total;
2630 bfd_boolean big_sec;
2632 curr = tail;
2633 total = tail->size;
2634 big_sec = total >= stub_group_size;
2636 while ((prev = PREV_SEC (curr)) != NULL
2637 && ((total += curr->output_offset - prev->output_offset)
2638 < stub_group_size))
2639 curr = prev;
2641 /* OK, the size from the start of CURR to the end is less
2642 than 240000 bytes and thus can be handled by one stub
2643 section. (or the tail section is itself larger than
2644 240000 bytes, in which case we may be toast.)
2645 We should really be keeping track of the total size of
2646 stubs added here, as stubs contribute to the final output
2647 section size. That's a little tricky, and this way will
2648 only break if stubs added total more than 22144 bytes, or
2649 2768 long branch stubs. It seems unlikely for more than
2650 2768 different functions to be called, especially from
2651 code only 240000 bytes long. This limit used to be
2652 250000, but c++ code tends to generate lots of little
2653 functions, and sometimes violated the assumption. */
2656 prev = PREV_SEC (tail);
2657 /* Set up this stub group. */
2658 htab->stub_group[tail->id].link_sec = curr;
2660 while (tail != curr && (tail = prev) != NULL);
2662 /* But wait, there's more! Input sections up to 240000
2663 bytes before the stub section can be handled by it too.
2664 Don't do this if we have a really large section after the
2665 stubs, as adding more stubs increases the chance that
2666 branches may not reach into the stub section. */
2667 if (!stubs_always_before_branch && !big_sec)
2669 total = 0;
2670 while (prev != NULL
2671 && ((total += tail->output_offset - prev->output_offset)
2672 < stub_group_size))
2674 tail = prev;
2675 prev = PREV_SEC (tail);
2676 htab->stub_group[tail->id].link_sec = curr;
2679 tail = prev;
2682 while (list-- != htab->input_list);
2683 free (htab->input_list);
2684 #undef PREV_SEC
2687 /* Read in all local syms for all input bfds, and create hash entries
2688 for export stubs if we are building a multi-subspace shared lib.
2689 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2691 static int
2692 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2694 unsigned int bfd_indx;
2695 Elf_Internal_Sym *local_syms, **all_local_syms;
2696 int stub_changed = 0;
2697 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2699 /* We want to read in symbol extension records only once. To do this
2700 we need to read in the local symbols in parallel and save them for
2701 later use; so hold pointers to the local symbols in an array. */
2702 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2703 all_local_syms = bfd_zmalloc (amt);
2704 htab->all_local_syms = all_local_syms;
2705 if (all_local_syms == NULL)
2706 return -1;
2708 /* Walk over all the input BFDs, swapping in local symbols.
2709 If we are creating a shared library, create hash entries for the
2710 export stubs. */
2711 for (bfd_indx = 0;
2712 input_bfd != NULL;
2713 input_bfd = input_bfd->link_next, bfd_indx++)
2715 Elf_Internal_Shdr *symtab_hdr;
2717 /* We'll need the symbol table in a second. */
2718 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2719 if (symtab_hdr->sh_info == 0)
2720 continue;
2722 /* We need an array of the local symbols attached to the input bfd. */
2723 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2724 if (local_syms == NULL)
2726 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2727 symtab_hdr->sh_info, 0,
2728 NULL, NULL, NULL);
2729 /* Cache them for elf_link_input_bfd. */
2730 symtab_hdr->contents = (unsigned char *) local_syms;
2732 if (local_syms == NULL)
2733 return -1;
2735 all_local_syms[bfd_indx] = local_syms;
2737 if (info->shared && htab->multi_subspace)
2739 struct elf_link_hash_entry **eh_syms;
2740 struct elf_link_hash_entry **eh_symend;
2741 unsigned int symcount;
2743 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2744 - symtab_hdr->sh_info);
2745 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2746 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2748 /* Look through the global syms for functions; We need to
2749 build export stubs for all globally visible functions. */
2750 for (; eh_syms < eh_symend; eh_syms++)
2752 struct elf32_hppa_link_hash_entry *hh;
2754 hh = hppa_elf_hash_entry (*eh_syms);
2756 while (hh->eh.root.type == bfd_link_hash_indirect
2757 || hh->eh.root.type == bfd_link_hash_warning)
2758 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2760 /* At this point in the link, undefined syms have been
2761 resolved, so we need to check that the symbol was
2762 defined in this BFD. */
2763 if ((hh->eh.root.type == bfd_link_hash_defined
2764 || hh->eh.root.type == bfd_link_hash_defweak)
2765 && hh->eh.type == STT_FUNC
2766 && hh->eh.root.u.def.section->output_section != NULL
2767 && (hh->eh.root.u.def.section->output_section->owner
2768 == output_bfd)
2769 && hh->eh.root.u.def.section->owner == input_bfd
2770 && hh->eh.def_regular
2771 && !hh->eh.forced_local
2772 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2774 asection *sec;
2775 const char *stub_name;
2776 struct elf32_hppa_stub_hash_entry *hsh;
2778 sec = hh->eh.root.u.def.section;
2779 stub_name = hh_name (hh);
2780 hsh = hppa_stub_hash_lookup (&htab->bstab,
2781 stub_name,
2782 FALSE, FALSE);
2783 if (hsh == NULL)
2785 hsh = hppa_add_stub (stub_name, sec, htab);
2786 if (!hsh)
2787 return -1;
2789 hsh->target_value = hh->eh.root.u.def.value;
2790 hsh->target_section = hh->eh.root.u.def.section;
2791 hsh->stub_type = hppa_stub_export;
2792 hsh->hh = hh;
2793 stub_changed = 1;
2795 else
2797 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2798 input_bfd,
2799 stub_name);
2806 return stub_changed;
2809 /* Determine and set the size of the stub section for a final link.
2811 The basic idea here is to examine all the relocations looking for
2812 PC-relative calls to a target that is unreachable with a "bl"
2813 instruction. */
2815 bfd_boolean
2816 elf32_hppa_size_stubs
2817 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2818 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2819 asection * (*add_stub_section) (const char *, asection *),
2820 void (*layout_sections_again) (void))
2822 bfd_size_type stub_group_size;
2823 bfd_boolean stubs_always_before_branch;
2824 bfd_boolean stub_changed;
2825 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2827 /* Stash our params away. */
2828 htab->stub_bfd = stub_bfd;
2829 htab->multi_subspace = multi_subspace;
2830 htab->add_stub_section = add_stub_section;
2831 htab->layout_sections_again = layout_sections_again;
2832 stubs_always_before_branch = group_size < 0;
2833 if (group_size < 0)
2834 stub_group_size = -group_size;
2835 else
2836 stub_group_size = group_size;
2837 if (stub_group_size == 1)
2839 /* Default values. */
2840 if (stubs_always_before_branch)
2842 stub_group_size = 7680000;
2843 if (htab->has_17bit_branch || htab->multi_subspace)
2844 stub_group_size = 240000;
2845 if (htab->has_12bit_branch)
2846 stub_group_size = 7500;
2848 else
2850 stub_group_size = 6971392;
2851 if (htab->has_17bit_branch || htab->multi_subspace)
2852 stub_group_size = 217856;
2853 if (htab->has_12bit_branch)
2854 stub_group_size = 6808;
2858 group_sections (htab, stub_group_size, stubs_always_before_branch);
2860 switch (get_local_syms (output_bfd, info->input_bfds, info))
2862 default:
2863 if (htab->all_local_syms)
2864 goto error_ret_free_local;
2865 return FALSE;
2867 case 0:
2868 stub_changed = FALSE;
2869 break;
2871 case 1:
2872 stub_changed = TRUE;
2873 break;
2876 while (1)
2878 bfd *input_bfd;
2879 unsigned int bfd_indx;
2880 asection *stub_sec;
2882 for (input_bfd = info->input_bfds, bfd_indx = 0;
2883 input_bfd != NULL;
2884 input_bfd = input_bfd->link_next, bfd_indx++)
2886 Elf_Internal_Shdr *symtab_hdr;
2887 asection *section;
2888 Elf_Internal_Sym *local_syms;
2890 /* We'll need the symbol table in a second. */
2891 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2892 if (symtab_hdr->sh_info == 0)
2893 continue;
2895 local_syms = htab->all_local_syms[bfd_indx];
2897 /* Walk over each section attached to the input bfd. */
2898 for (section = input_bfd->sections;
2899 section != NULL;
2900 section = section->next)
2902 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2904 /* If there aren't any relocs, then there's nothing more
2905 to do. */
2906 if ((section->flags & SEC_RELOC) == 0
2907 || section->reloc_count == 0)
2908 continue;
2910 /* If this section is a link-once section that will be
2911 discarded, then don't create any stubs. */
2912 if (section->output_section == NULL
2913 || section->output_section->owner != output_bfd)
2914 continue;
2916 /* Get the relocs. */
2917 internal_relocs
2918 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2919 info->keep_memory);
2920 if (internal_relocs == NULL)
2921 goto error_ret_free_local;
2923 /* Now examine each relocation. */
2924 irela = internal_relocs;
2925 irelaend = irela + section->reloc_count;
2926 for (; irela < irelaend; irela++)
2928 unsigned int r_type, r_indx;
2929 enum elf32_hppa_stub_type stub_type;
2930 struct elf32_hppa_stub_hash_entry *hsh;
2931 asection *sym_sec;
2932 bfd_vma sym_value;
2933 bfd_vma destination;
2934 struct elf32_hppa_link_hash_entry *hh;
2935 char *stub_name;
2936 const asection *id_sec;
2938 r_type = ELF32_R_TYPE (irela->r_info);
2939 r_indx = ELF32_R_SYM (irela->r_info);
2941 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2943 bfd_set_error (bfd_error_bad_value);
2944 error_ret_free_internal:
2945 if (elf_section_data (section)->relocs == NULL)
2946 free (internal_relocs);
2947 goto error_ret_free_local;
2950 /* Only look for stubs on call instructions. */
2951 if (r_type != (unsigned int) R_PARISC_PCREL12F
2952 && r_type != (unsigned int) R_PARISC_PCREL17F
2953 && r_type != (unsigned int) R_PARISC_PCREL22F)
2954 continue;
2956 /* Now determine the call target, its name, value,
2957 section. */
2958 sym_sec = NULL;
2959 sym_value = 0;
2960 destination = 0;
2961 hh = NULL;
2962 if (r_indx < symtab_hdr->sh_info)
2964 /* It's a local symbol. */
2965 Elf_Internal_Sym *sym;
2966 Elf_Internal_Shdr *hdr;
2968 sym = local_syms + r_indx;
2969 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2970 sym_sec = hdr->bfd_section;
2971 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2972 sym_value = sym->st_value;
2973 destination = (sym_value + irela->r_addend
2974 + sym_sec->output_offset
2975 + sym_sec->output_section->vma);
2977 else
2979 /* It's an external symbol. */
2980 int e_indx;
2982 e_indx = r_indx - symtab_hdr->sh_info;
2983 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2985 while (hh->eh.root.type == bfd_link_hash_indirect
2986 || hh->eh.root.type == bfd_link_hash_warning)
2987 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2989 if (hh->eh.root.type == bfd_link_hash_defined
2990 || hh->eh.root.type == bfd_link_hash_defweak)
2992 sym_sec = hh->eh.root.u.def.section;
2993 sym_value = hh->eh.root.u.def.value;
2994 if (sym_sec->output_section != NULL)
2995 destination = (sym_value + irela->r_addend
2996 + sym_sec->output_offset
2997 + sym_sec->output_section->vma);
2999 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3001 if (! info->shared)
3002 continue;
3004 else if (hh->eh.root.type == bfd_link_hash_undefined)
3006 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3007 && (ELF_ST_VISIBILITY (hh->eh.other)
3008 == STV_DEFAULT)
3009 && hh->eh.type != STT_PARISC_MILLI))
3010 continue;
3012 else
3014 bfd_set_error (bfd_error_bad_value);
3015 goto error_ret_free_internal;
3019 /* Determine what (if any) linker stub is needed. */
3020 stub_type = hppa_type_of_stub (section, irela, hh,
3021 destination, info);
3022 if (stub_type == hppa_stub_none)
3023 continue;
3025 /* Support for grouping stub sections. */
3026 id_sec = htab->stub_group[section->id].link_sec;
3028 /* Get the name of this stub. */
3029 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3030 if (!stub_name)
3031 goto error_ret_free_internal;
3033 hsh = hppa_stub_hash_lookup (&htab->bstab,
3034 stub_name,
3035 FALSE, FALSE);
3036 if (hsh != NULL)
3038 /* The proper stub has already been created. */
3039 free (stub_name);
3040 continue;
3043 hsh = hppa_add_stub (stub_name, section, htab);
3044 if (hsh == NULL)
3046 free (stub_name);
3047 goto error_ret_free_internal;
3050 hsh->target_value = sym_value;
3051 hsh->target_section = sym_sec;
3052 hsh->stub_type = stub_type;
3053 if (info->shared)
3055 if (stub_type == hppa_stub_import)
3056 hsh->stub_type = hppa_stub_import_shared;
3057 else if (stub_type == hppa_stub_long_branch)
3058 hsh->stub_type = hppa_stub_long_branch_shared;
3060 hsh->hh = hh;
3061 stub_changed = TRUE;
3064 /* We're done with the internal relocs, free them. */
3065 if (elf_section_data (section)->relocs == NULL)
3066 free (internal_relocs);
3070 if (!stub_changed)
3071 break;
3073 /* OK, we've added some stubs. Find out the new size of the
3074 stub sections. */
3075 for (stub_sec = htab->stub_bfd->sections;
3076 stub_sec != NULL;
3077 stub_sec = stub_sec->next)
3078 stub_sec->size = 0;
3080 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3082 /* Ask the linker to do its stuff. */
3083 (*htab->layout_sections_again) ();
3084 stub_changed = FALSE;
3087 free (htab->all_local_syms);
3088 return TRUE;
3090 error_ret_free_local:
3091 free (htab->all_local_syms);
3092 return FALSE;
3095 /* For a final link, this function is called after we have sized the
3096 stubs to provide a value for __gp. */
3098 bfd_boolean
3099 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3101 struct bfd_link_hash_entry *h;
3102 asection *sec = NULL;
3103 bfd_vma gp_val = 0;
3104 struct elf32_hppa_link_hash_table *htab;
3106 htab = hppa_link_hash_table (info);
3107 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3109 if (h != NULL
3110 && (h->type == bfd_link_hash_defined
3111 || h->type == bfd_link_hash_defweak))
3113 gp_val = h->u.def.value;
3114 sec = h->u.def.section;
3116 else
3118 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3119 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3121 /* Choose to point our LTP at, in this order, one of .plt, .got,
3122 or .data, if these sections exist. In the case of choosing
3123 .plt try to make the LTP ideal for addressing anywhere in the
3124 .plt or .got with a 14 bit signed offset. Typically, the end
3125 of the .plt is the start of the .got, so choose .plt + 0x2000
3126 if either the .plt or .got is larger than 0x2000. If both
3127 the .plt and .got are smaller than 0x2000, choose the end of
3128 the .plt section. */
3129 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3130 ? NULL : splt;
3131 if (sec != NULL)
3133 gp_val = sec->size;
3134 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3136 gp_val = 0x2000;
3139 else
3141 sec = sgot;
3142 if (sec != NULL)
3144 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3146 /* We know we don't have a .plt. If .got is large,
3147 offset our LTP. */
3148 if (sec->size > 0x2000)
3149 gp_val = 0x2000;
3152 else
3154 /* No .plt or .got. Who cares what the LTP is? */
3155 sec = bfd_get_section_by_name (abfd, ".data");
3159 if (h != NULL)
3161 h->type = bfd_link_hash_defined;
3162 h->u.def.value = gp_val;
3163 if (sec != NULL)
3164 h->u.def.section = sec;
3165 else
3166 h->u.def.section = bfd_abs_section_ptr;
3170 if (sec != NULL && sec->output_section != NULL)
3171 gp_val += sec->output_section->vma + sec->output_offset;
3173 elf_gp (abfd) = gp_val;
3174 return TRUE;
3177 /* Build all the stubs associated with the current output file. The
3178 stubs are kept in a hash table attached to the main linker hash
3179 table. We also set up the .plt entries for statically linked PIC
3180 functions here. This function is called via hppaelf_finish in the
3181 linker. */
3183 bfd_boolean
3184 elf32_hppa_build_stubs (struct bfd_link_info *info)
3186 asection *stub_sec;
3187 struct bfd_hash_table *table;
3188 struct elf32_hppa_link_hash_table *htab;
3190 htab = hppa_link_hash_table (info);
3192 for (stub_sec = htab->stub_bfd->sections;
3193 stub_sec != NULL;
3194 stub_sec = stub_sec->next)
3196 bfd_size_type size;
3198 /* Allocate memory to hold the linker stubs. */
3199 size = stub_sec->size;
3200 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3201 if (stub_sec->contents == NULL && size != 0)
3202 return FALSE;
3203 stub_sec->size = 0;
3206 /* Build the stubs as directed by the stub hash table. */
3207 table = &htab->bstab;
3208 bfd_hash_traverse (table, hppa_build_one_stub, info);
3210 return TRUE;
3213 /* Return the base vma address which should be subtracted from the real
3214 address when resolving a dtpoff relocation.
3215 This is PT_TLS segment p_vaddr. */
3217 static bfd_vma
3218 dtpoff_base (struct bfd_link_info *info)
3220 /* If tls_sec is NULL, we should have signalled an error already. */
3221 if (elf_hash_table (info)->tls_sec == NULL)
3222 return 0;
3223 return elf_hash_table (info)->tls_sec->vma;
3226 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3228 static bfd_vma
3229 tpoff (struct bfd_link_info *info, bfd_vma address)
3231 struct elf_link_hash_table *htab = elf_hash_table (info);
3233 /* If tls_sec is NULL, we should have signalled an error already. */
3234 if (htab->tls_sec == NULL)
3235 return 0;
3236 /* hppa TLS ABI is variant I and static TLS block start just after
3237 tcbhead structure which has 2 pointer fields. */
3238 return (address - htab->tls_sec->vma
3239 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3242 /* Perform a final link. */
3244 static bfd_boolean
3245 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3247 /* Invoke the regular ELF linker to do all the work. */
3248 if (!bfd_elf_final_link (abfd, info))
3249 return FALSE;
3251 /* If we're producing a final executable, sort the contents of the
3252 unwind section. */
3253 return elf_hppa_sort_unwind (abfd);
3256 /* Record the lowest address for the data and text segments. */
3258 static void
3259 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3261 struct elf32_hppa_link_hash_table *htab;
3263 htab = (struct elf32_hppa_link_hash_table*) data;
3265 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3267 bfd_vma value;
3268 Elf_Internal_Phdr *p;
3270 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3271 BFD_ASSERT (p != NULL);
3272 value = p->p_vaddr;
3274 if ((section->flags & SEC_READONLY) != 0)
3276 if (value < htab->text_segment_base)
3277 htab->text_segment_base = value;
3279 else
3281 if (value < htab->data_segment_base)
3282 htab->data_segment_base = value;
3287 /* Perform a relocation as part of a final link. */
3289 static bfd_reloc_status_type
3290 final_link_relocate (asection *input_section,
3291 bfd_byte *contents,
3292 const Elf_Internal_Rela *rela,
3293 bfd_vma value,
3294 struct elf32_hppa_link_hash_table *htab,
3295 asection *sym_sec,
3296 struct elf32_hppa_link_hash_entry *hh,
3297 struct bfd_link_info *info)
3299 int insn;
3300 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3301 unsigned int orig_r_type = r_type;
3302 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3303 int r_format = howto->bitsize;
3304 enum hppa_reloc_field_selector_type_alt r_field;
3305 bfd *input_bfd = input_section->owner;
3306 bfd_vma offset = rela->r_offset;
3307 bfd_vma max_branch_offset = 0;
3308 bfd_byte *hit_data = contents + offset;
3309 bfd_signed_vma addend = rela->r_addend;
3310 bfd_vma location;
3311 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3312 int val;
3314 if (r_type == R_PARISC_NONE)
3315 return bfd_reloc_ok;
3317 insn = bfd_get_32 (input_bfd, hit_data);
3319 /* Find out where we are and where we're going. */
3320 location = (offset +
3321 input_section->output_offset +
3322 input_section->output_section->vma);
3324 /* If we are not building a shared library, convert DLTIND relocs to
3325 DPREL relocs. */
3326 if (!info->shared)
3328 switch (r_type)
3330 case R_PARISC_DLTIND21L:
3331 r_type = R_PARISC_DPREL21L;
3332 break;
3334 case R_PARISC_DLTIND14R:
3335 r_type = R_PARISC_DPREL14R;
3336 break;
3338 case R_PARISC_DLTIND14F:
3339 r_type = R_PARISC_DPREL14F;
3340 break;
3344 switch (r_type)
3346 case R_PARISC_PCREL12F:
3347 case R_PARISC_PCREL17F:
3348 case R_PARISC_PCREL22F:
3349 /* If this call should go via the plt, find the import stub in
3350 the stub hash. */
3351 if (sym_sec == NULL
3352 || sym_sec->output_section == NULL
3353 || (hh != NULL
3354 && hh->eh.plt.offset != (bfd_vma) -1
3355 && hh->eh.dynindx != -1
3356 && !hh->plabel
3357 && (info->shared
3358 || !hh->eh.def_regular
3359 || hh->eh.root.type == bfd_link_hash_defweak)))
3361 hsh = hppa_get_stub_entry (input_section, sym_sec,
3362 hh, rela, htab);
3363 if (hsh != NULL)
3365 value = (hsh->stub_offset
3366 + hsh->stub_sec->output_offset
3367 + hsh->stub_sec->output_section->vma);
3368 addend = 0;
3370 else if (sym_sec == NULL && hh != NULL
3371 && hh->eh.root.type == bfd_link_hash_undefweak)
3373 /* It's OK if undefined weak. Calls to undefined weak
3374 symbols behave as if the "called" function
3375 immediately returns. We can thus call to a weak
3376 function without first checking whether the function
3377 is defined. */
3378 value = location;
3379 addend = 8;
3381 else
3382 return bfd_reloc_undefined;
3384 /* Fall thru. */
3386 case R_PARISC_PCREL21L:
3387 case R_PARISC_PCREL17C:
3388 case R_PARISC_PCREL17R:
3389 case R_PARISC_PCREL14R:
3390 case R_PARISC_PCREL14F:
3391 case R_PARISC_PCREL32:
3392 /* Make it a pc relative offset. */
3393 value -= location;
3394 addend -= 8;
3395 break;
3397 case R_PARISC_DPREL21L:
3398 case R_PARISC_DPREL14R:
3399 case R_PARISC_DPREL14F:
3400 /* Convert instructions that use the linkage table pointer (r19) to
3401 instructions that use the global data pointer (dp). This is the
3402 most efficient way of using PIC code in an incomplete executable,
3403 but the user must follow the standard runtime conventions for
3404 accessing data for this to work. */
3405 if (orig_r_type == R_PARISC_DLTIND21L)
3407 /* Convert addil instructions if the original reloc was a
3408 DLTIND21L. GCC sometimes uses a register other than r19 for
3409 the operation, so we must convert any addil instruction
3410 that uses this relocation. */
3411 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3412 insn = ADDIL_DP;
3413 else
3414 /* We must have a ldil instruction. It's too hard to find
3415 and convert the associated add instruction, so issue an
3416 error. */
3417 (*_bfd_error_handler)
3418 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3419 input_bfd,
3420 input_section,
3421 offset,
3422 howto->name,
3423 insn);
3425 else if (orig_r_type == R_PARISC_DLTIND14F)
3427 /* This must be a format 1 load/store. Change the base
3428 register to dp. */
3429 insn = (insn & 0xfc1ffff) | (27 << 21);
3432 /* For all the DP relative relocations, we need to examine the symbol's
3433 section. If it has no section or if it's a code section, then
3434 "data pointer relative" makes no sense. In that case we don't
3435 adjust the "value", and for 21 bit addil instructions, we change the
3436 source addend register from %dp to %r0. This situation commonly
3437 arises for undefined weak symbols and when a variable's "constness"
3438 is declared differently from the way the variable is defined. For
3439 instance: "extern int foo" with foo defined as "const int foo". */
3440 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3442 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3443 == (((int) OP_ADDIL << 26) | (27 << 21)))
3445 insn &= ~ (0x1f << 21);
3447 /* Now try to make things easy for the dynamic linker. */
3449 break;
3451 /* Fall thru. */
3453 case R_PARISC_DLTIND21L:
3454 case R_PARISC_DLTIND14R:
3455 case R_PARISC_DLTIND14F:
3456 case R_PARISC_TLS_GD21L:
3457 case R_PARISC_TLS_GD14R:
3458 case R_PARISC_TLS_LDM21L:
3459 case R_PARISC_TLS_LDM14R:
3460 case R_PARISC_TLS_IE21L:
3461 case R_PARISC_TLS_IE14R:
3462 value -= elf_gp (input_section->output_section->owner);
3463 break;
3465 case R_PARISC_SEGREL32:
3466 if ((sym_sec->flags & SEC_CODE) != 0)
3467 value -= htab->text_segment_base;
3468 else
3469 value -= htab->data_segment_base;
3470 break;
3472 default:
3473 break;
3476 switch (r_type)
3478 case R_PARISC_DIR32:
3479 case R_PARISC_DIR14F:
3480 case R_PARISC_DIR17F:
3481 case R_PARISC_PCREL17C:
3482 case R_PARISC_PCREL14F:
3483 case R_PARISC_PCREL32:
3484 case R_PARISC_DPREL14F:
3485 case R_PARISC_PLABEL32:
3486 case R_PARISC_DLTIND14F:
3487 case R_PARISC_SEGBASE:
3488 case R_PARISC_SEGREL32:
3489 case R_PARISC_TLS_DTPMOD32:
3490 case R_PARISC_TLS_DTPOFF32:
3491 case R_PARISC_TLS_TPREL32:
3492 r_field = e_fsel;
3493 break;
3495 case R_PARISC_DLTIND21L:
3496 case R_PARISC_PCREL21L:
3497 case R_PARISC_PLABEL21L:
3498 r_field = e_lsel;
3499 break;
3501 case R_PARISC_DIR21L:
3502 case R_PARISC_DPREL21L:
3503 case R_PARISC_TLS_GD21L:
3504 case R_PARISC_TLS_LDM21L:
3505 case R_PARISC_TLS_LDO21L:
3506 case R_PARISC_TLS_IE21L:
3507 case R_PARISC_TLS_LE21L:
3508 r_field = e_lrsel;
3509 break;
3511 case R_PARISC_PCREL17R:
3512 case R_PARISC_PCREL14R:
3513 case R_PARISC_PLABEL14R:
3514 case R_PARISC_DLTIND14R:
3515 r_field = e_rsel;
3516 break;
3518 case R_PARISC_DIR17R:
3519 case R_PARISC_DIR14R:
3520 case R_PARISC_DPREL14R:
3521 case R_PARISC_TLS_GD14R:
3522 case R_PARISC_TLS_LDM14R:
3523 case R_PARISC_TLS_LDO14R:
3524 case R_PARISC_TLS_IE14R:
3525 case R_PARISC_TLS_LE14R:
3526 r_field = e_rrsel;
3527 break;
3529 case R_PARISC_PCREL12F:
3530 case R_PARISC_PCREL17F:
3531 case R_PARISC_PCREL22F:
3532 r_field = e_fsel;
3534 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3536 max_branch_offset = (1 << (17-1)) << 2;
3538 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3540 max_branch_offset = (1 << (12-1)) << 2;
3542 else
3544 max_branch_offset = (1 << (22-1)) << 2;
3547 /* sym_sec is NULL on undefined weak syms or when shared on
3548 undefined syms. We've already checked for a stub for the
3549 shared undefined case. */
3550 if (sym_sec == NULL)
3551 break;
3553 /* If the branch is out of reach, then redirect the
3554 call to the local stub for this function. */
3555 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3557 hsh = hppa_get_stub_entry (input_section, sym_sec,
3558 hh, rela, htab);
3559 if (hsh == NULL)
3560 return bfd_reloc_undefined;
3562 /* Munge up the value and addend so that we call the stub
3563 rather than the procedure directly. */
3564 value = (hsh->stub_offset
3565 + hsh->stub_sec->output_offset
3566 + hsh->stub_sec->output_section->vma
3567 - location);
3568 addend = -8;
3570 break;
3572 /* Something we don't know how to handle. */
3573 default:
3574 return bfd_reloc_notsupported;
3577 /* Make sure we can reach the stub. */
3578 if (max_branch_offset != 0
3579 && value + addend + max_branch_offset >= 2*max_branch_offset)
3581 (*_bfd_error_handler)
3582 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3583 input_bfd,
3584 input_section,
3585 offset,
3586 hsh->bh_root.string);
3587 bfd_set_error (bfd_error_bad_value);
3588 return bfd_reloc_notsupported;
3591 val = hppa_field_adjust (value, addend, r_field);
3593 switch (r_type)
3595 case R_PARISC_PCREL12F:
3596 case R_PARISC_PCREL17C:
3597 case R_PARISC_PCREL17F:
3598 case R_PARISC_PCREL17R:
3599 case R_PARISC_PCREL22F:
3600 case R_PARISC_DIR17F:
3601 case R_PARISC_DIR17R:
3602 /* This is a branch. Divide the offset by four.
3603 Note that we need to decide whether it's a branch or
3604 otherwise by inspecting the reloc. Inspecting insn won't
3605 work as insn might be from a .word directive. */
3606 val >>= 2;
3607 break;
3609 default:
3610 break;
3613 insn = hppa_rebuild_insn (insn, val, r_format);
3615 /* Update the instruction word. */
3616 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3617 return bfd_reloc_ok;
3620 /* Relocate an HPPA ELF section. */
3622 static bfd_boolean
3623 elf32_hppa_relocate_section (bfd *output_bfd,
3624 struct bfd_link_info *info,
3625 bfd *input_bfd,
3626 asection *input_section,
3627 bfd_byte *contents,
3628 Elf_Internal_Rela *relocs,
3629 Elf_Internal_Sym *local_syms,
3630 asection **local_sections)
3632 bfd_vma *local_got_offsets;
3633 struct elf32_hppa_link_hash_table *htab;
3634 Elf_Internal_Shdr *symtab_hdr;
3635 Elf_Internal_Rela *rela;
3636 Elf_Internal_Rela *relend;
3638 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3640 htab = hppa_link_hash_table (info);
3641 local_got_offsets = elf_local_got_offsets (input_bfd);
3643 rela = relocs;
3644 relend = relocs + input_section->reloc_count;
3645 for (; rela < relend; rela++)
3647 unsigned int r_type;
3648 reloc_howto_type *howto;
3649 unsigned int r_symndx;
3650 struct elf32_hppa_link_hash_entry *hh;
3651 Elf_Internal_Sym *sym;
3652 asection *sym_sec;
3653 bfd_vma relocation;
3654 bfd_reloc_status_type rstatus;
3655 const char *sym_name;
3656 bfd_boolean plabel;
3657 bfd_boolean warned_undef;
3659 r_type = ELF32_R_TYPE (rela->r_info);
3660 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3662 bfd_set_error (bfd_error_bad_value);
3663 return FALSE;
3665 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3666 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3667 continue;
3669 r_symndx = ELF32_R_SYM (rela->r_info);
3670 hh = NULL;
3671 sym = NULL;
3672 sym_sec = NULL;
3673 warned_undef = FALSE;
3674 if (r_symndx < symtab_hdr->sh_info)
3676 /* This is a local symbol, h defaults to NULL. */
3677 sym = local_syms + r_symndx;
3678 sym_sec = local_sections[r_symndx];
3679 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3681 else
3683 struct elf_link_hash_entry *eh;
3684 bfd_boolean unresolved_reloc;
3685 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3687 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3688 r_symndx, symtab_hdr, sym_hashes,
3689 eh, sym_sec, relocation,
3690 unresolved_reloc, warned_undef);
3692 if (!info->relocatable
3693 && relocation == 0
3694 && eh->root.type != bfd_link_hash_defined
3695 && eh->root.type != bfd_link_hash_defweak
3696 && eh->root.type != bfd_link_hash_undefweak)
3698 if (info->unresolved_syms_in_objects == RM_IGNORE
3699 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3700 && eh->type == STT_PARISC_MILLI)
3702 if (! info->callbacks->undefined_symbol
3703 (info, eh_name (eh), input_bfd,
3704 input_section, rela->r_offset, FALSE))
3705 return FALSE;
3706 warned_undef = TRUE;
3709 hh = hppa_elf_hash_entry (eh);
3712 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3714 /* For relocs against symbols from removed linkonce
3715 sections, or sections discarded by a linker script,
3716 we just want the section contents zeroed. Avoid any
3717 special processing. */
3718 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3719 contents + rela->r_offset);
3720 rela->r_info = 0;
3721 rela->r_addend = 0;
3722 continue;
3725 if (info->relocatable)
3726 continue;
3728 /* Do any required modifications to the relocation value, and
3729 determine what types of dynamic info we need to output, if
3730 any. */
3731 plabel = 0;
3732 switch (r_type)
3734 case R_PARISC_DLTIND14F:
3735 case R_PARISC_DLTIND14R:
3736 case R_PARISC_DLTIND21L:
3738 bfd_vma off;
3739 bfd_boolean do_got = 0;
3741 /* Relocation is to the entry for this symbol in the
3742 global offset table. */
3743 if (hh != NULL)
3745 bfd_boolean dyn;
3747 off = hh->eh.got.offset;
3748 dyn = htab->etab.dynamic_sections_created;
3749 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3750 &hh->eh))
3752 /* If we aren't going to call finish_dynamic_symbol,
3753 then we need to handle initialisation of the .got
3754 entry and create needed relocs here. Since the
3755 offset must always be a multiple of 4, we use the
3756 least significant bit to record whether we have
3757 initialised it already. */
3758 if ((off & 1) != 0)
3759 off &= ~1;
3760 else
3762 hh->eh.got.offset |= 1;
3763 do_got = 1;
3767 else
3769 /* Local symbol case. */
3770 if (local_got_offsets == NULL)
3771 abort ();
3773 off = local_got_offsets[r_symndx];
3775 /* The offset must always be a multiple of 4. We use
3776 the least significant bit to record whether we have
3777 already generated the necessary reloc. */
3778 if ((off & 1) != 0)
3779 off &= ~1;
3780 else
3782 local_got_offsets[r_symndx] |= 1;
3783 do_got = 1;
3787 if (do_got)
3789 if (info->shared)
3791 /* Output a dynamic relocation for this GOT entry.
3792 In this case it is relative to the base of the
3793 object because the symbol index is zero. */
3794 Elf_Internal_Rela outrel;
3795 bfd_byte *loc;
3796 asection *sec = htab->srelgot;
3798 outrel.r_offset = (off
3799 + htab->sgot->output_offset
3800 + htab->sgot->output_section->vma);
3801 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3802 outrel.r_addend = relocation;
3803 loc = sec->contents;
3804 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3805 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3807 else
3808 bfd_put_32 (output_bfd, relocation,
3809 htab->sgot->contents + off);
3812 if (off >= (bfd_vma) -2)
3813 abort ();
3815 /* Add the base of the GOT to the relocation value. */
3816 relocation = (off
3817 + htab->sgot->output_offset
3818 + htab->sgot->output_section->vma);
3820 break;
3822 case R_PARISC_SEGREL32:
3823 /* If this is the first SEGREL relocation, then initialize
3824 the segment base values. */
3825 if (htab->text_segment_base == (bfd_vma) -1)
3826 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3827 break;
3829 case R_PARISC_PLABEL14R:
3830 case R_PARISC_PLABEL21L:
3831 case R_PARISC_PLABEL32:
3832 if (htab->etab.dynamic_sections_created)
3834 bfd_vma off;
3835 bfd_boolean do_plt = 0;
3836 /* If we have a global symbol with a PLT slot, then
3837 redirect this relocation to it. */
3838 if (hh != NULL)
3840 off = hh->eh.plt.offset;
3841 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3842 &hh->eh))
3844 /* In a non-shared link, adjust_dynamic_symbols
3845 isn't called for symbols forced local. We
3846 need to write out the plt entry here. */
3847 if ((off & 1) != 0)
3848 off &= ~1;
3849 else
3851 hh->eh.plt.offset |= 1;
3852 do_plt = 1;
3856 else
3858 bfd_vma *local_plt_offsets;
3860 if (local_got_offsets == NULL)
3861 abort ();
3863 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3864 off = local_plt_offsets[r_symndx];
3866 /* As for the local .got entry case, we use the last
3867 bit to record whether we've already initialised
3868 this local .plt entry. */
3869 if ((off & 1) != 0)
3870 off &= ~1;
3871 else
3873 local_plt_offsets[r_symndx] |= 1;
3874 do_plt = 1;
3878 if (do_plt)
3880 if (info->shared)
3882 /* Output a dynamic IPLT relocation for this
3883 PLT entry. */
3884 Elf_Internal_Rela outrel;
3885 bfd_byte *loc;
3886 asection *s = htab->srelplt;
3888 outrel.r_offset = (off
3889 + htab->splt->output_offset
3890 + htab->splt->output_section->vma);
3891 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3892 outrel.r_addend = relocation;
3893 loc = s->contents;
3894 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3895 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3897 else
3899 bfd_put_32 (output_bfd,
3900 relocation,
3901 htab->splt->contents + off);
3902 bfd_put_32 (output_bfd,
3903 elf_gp (htab->splt->output_section->owner),
3904 htab->splt->contents + off + 4);
3908 if (off >= (bfd_vma) -2)
3909 abort ();
3911 /* PLABELs contain function pointers. Relocation is to
3912 the entry for the function in the .plt. The magic +2
3913 offset signals to $$dyncall that the function pointer
3914 is in the .plt and thus has a gp pointer too.
3915 Exception: Undefined PLABELs should have a value of
3916 zero. */
3917 if (hh == NULL
3918 || (hh->eh.root.type != bfd_link_hash_undefweak
3919 && hh->eh.root.type != bfd_link_hash_undefined))
3921 relocation = (off
3922 + htab->splt->output_offset
3923 + htab->splt->output_section->vma
3924 + 2);
3926 plabel = 1;
3928 /* Fall through and possibly emit a dynamic relocation. */
3930 case R_PARISC_DIR17F:
3931 case R_PARISC_DIR17R:
3932 case R_PARISC_DIR14F:
3933 case R_PARISC_DIR14R:
3934 case R_PARISC_DIR21L:
3935 case R_PARISC_DPREL14F:
3936 case R_PARISC_DPREL14R:
3937 case R_PARISC_DPREL21L:
3938 case R_PARISC_DIR32:
3939 if ((input_section->flags & SEC_ALLOC) == 0)
3940 break;
3942 /* The reloc types handled here and this conditional
3943 expression must match the code in ..check_relocs and
3944 allocate_dynrelocs. ie. We need exactly the same condition
3945 as in ..check_relocs, with some extra conditions (dynindx
3946 test in this case) to cater for relocs removed by
3947 allocate_dynrelocs. If you squint, the non-shared test
3948 here does indeed match the one in ..check_relocs, the
3949 difference being that here we test DEF_DYNAMIC as well as
3950 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3951 which is why we can't use just that test here.
3952 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3953 there all files have not been loaded. */
3954 if ((info->shared
3955 && (hh == NULL
3956 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3957 || hh->eh.root.type != bfd_link_hash_undefweak)
3958 && (IS_ABSOLUTE_RELOC (r_type)
3959 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3960 || (!info->shared
3961 && hh != NULL
3962 && hh->eh.dynindx != -1
3963 && !hh->eh.non_got_ref
3964 && ((ELIMINATE_COPY_RELOCS
3965 && hh->eh.def_dynamic
3966 && !hh->eh.def_regular)
3967 || hh->eh.root.type == bfd_link_hash_undefweak
3968 || hh->eh.root.type == bfd_link_hash_undefined)))
3970 Elf_Internal_Rela outrel;
3971 bfd_boolean skip;
3972 asection *sreloc;
3973 bfd_byte *loc;
3975 /* When generating a shared object, these relocations
3976 are copied into the output file to be resolved at run
3977 time. */
3979 outrel.r_addend = rela->r_addend;
3980 outrel.r_offset =
3981 _bfd_elf_section_offset (output_bfd, info, input_section,
3982 rela->r_offset);
3983 skip = (outrel.r_offset == (bfd_vma) -1
3984 || outrel.r_offset == (bfd_vma) -2);
3985 outrel.r_offset += (input_section->output_offset
3986 + input_section->output_section->vma);
3988 if (skip)
3990 memset (&outrel, 0, sizeof (outrel));
3992 else if (hh != NULL
3993 && hh->eh.dynindx != -1
3994 && (plabel
3995 || !IS_ABSOLUTE_RELOC (r_type)
3996 || !info->shared
3997 || !info->symbolic
3998 || !hh->eh.def_regular))
4000 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4002 else /* It's a local symbol, or one marked to become local. */
4004 int indx = 0;
4006 /* Add the absolute offset of the symbol. */
4007 outrel.r_addend += relocation;
4009 /* Global plabels need to be processed by the
4010 dynamic linker so that functions have at most one
4011 fptr. For this reason, we need to differentiate
4012 between global and local plabels, which we do by
4013 providing the function symbol for a global plabel
4014 reloc, and no symbol for local plabels. */
4015 if (! plabel
4016 && sym_sec != NULL
4017 && sym_sec->output_section != NULL
4018 && ! bfd_is_abs_section (sym_sec))
4020 asection *osec;
4022 osec = sym_sec->output_section;
4023 indx = elf_section_data (osec)->dynindx;
4024 if (indx == 0)
4026 osec = htab->etab.text_index_section;
4027 indx = elf_section_data (osec)->dynindx;
4029 BFD_ASSERT (indx != 0);
4031 /* We are turning this relocation into one
4032 against a section symbol, so subtract out the
4033 output section's address but not the offset
4034 of the input section in the output section. */
4035 outrel.r_addend -= osec->vma;
4038 outrel.r_info = ELF32_R_INFO (indx, r_type);
4040 sreloc = elf_section_data (input_section)->sreloc;
4041 if (sreloc == NULL)
4042 abort ();
4044 loc = sreloc->contents;
4045 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4046 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4048 break;
4050 case R_PARISC_TLS_LDM21L:
4051 case R_PARISC_TLS_LDM14R:
4053 bfd_vma off;
4055 off = htab->tls_ldm_got.offset;
4056 if (off & 1)
4057 off &= ~1;
4058 else
4060 Elf_Internal_Rela outrel;
4061 bfd_byte *loc;
4063 outrel.r_offset = (off
4064 + htab->sgot->output_section->vma
4065 + htab->sgot->output_offset);
4066 outrel.r_addend = 0;
4067 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4068 loc = htab->srelgot->contents;
4069 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4071 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4072 htab->tls_ldm_got.offset |= 1;
4075 /* Add the base of the GOT to the relocation value. */
4076 relocation = (off
4077 + htab->sgot->output_offset
4078 + htab->sgot->output_section->vma);
4080 break;
4083 case R_PARISC_TLS_LDO21L:
4084 case R_PARISC_TLS_LDO14R:
4085 relocation -= dtpoff_base (info);
4086 break;
4088 case R_PARISC_TLS_GD21L:
4089 case R_PARISC_TLS_GD14R:
4090 case R_PARISC_TLS_IE21L:
4091 case R_PARISC_TLS_IE14R:
4093 bfd_vma off;
4094 int indx;
4095 char tls_type;
4097 indx = 0;
4098 if (hh != NULL)
4100 bfd_boolean dyn;
4101 dyn = htab->etab.dynamic_sections_created;
4103 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4104 && (!info->shared
4105 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4107 indx = hh->eh.dynindx;
4109 off = hh->eh.got.offset;
4110 tls_type = hh->tls_type;
4112 else
4114 off = local_got_offsets[r_symndx];
4115 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4118 if (tls_type == GOT_UNKNOWN)
4119 abort ();
4121 if ((off & 1) != 0)
4122 off &= ~1;
4123 else
4125 bfd_boolean need_relocs = FALSE;
4126 Elf_Internal_Rela outrel;
4127 bfd_byte *loc = NULL;
4128 int cur_off = off;
4130 /* The GOT entries have not been initialized yet. Do it
4131 now, and emit any relocations. If both an IE GOT and a
4132 GD GOT are necessary, we emit the GD first. */
4134 if ((info->shared || indx != 0)
4135 && (hh == NULL
4136 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4137 || hh->eh.root.type != bfd_link_hash_undefweak))
4139 need_relocs = TRUE;
4140 loc = htab->srelgot->contents;
4141 /* FIXME (CAO): Should this be reloc_count++ ? */
4142 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4145 if (tls_type & GOT_TLS_GD)
4147 if (need_relocs)
4149 outrel.r_offset = (cur_off
4150 + htab->sgot->output_section->vma
4151 + htab->sgot->output_offset);
4152 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4153 outrel.r_addend = 0;
4154 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4155 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4156 htab->srelgot->reloc_count++;
4157 loc += sizeof (Elf32_External_Rela);
4159 if (indx == 0)
4160 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4161 htab->sgot->contents + cur_off + 4);
4162 else
4164 bfd_put_32 (output_bfd, 0,
4165 htab->sgot->contents + cur_off + 4);
4166 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4167 outrel.r_offset += 4;
4168 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4169 htab->srelgot->reloc_count++;
4170 loc += sizeof (Elf32_External_Rela);
4173 else
4175 /* If we are not emitting relocations for a
4176 general dynamic reference, then we must be in a
4177 static link or an executable link with the
4178 symbol binding locally. Mark it as belonging
4179 to module 1, the executable. */
4180 bfd_put_32 (output_bfd, 1,
4181 htab->sgot->contents + cur_off);
4182 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4183 htab->sgot->contents + cur_off + 4);
4187 cur_off += 8;
4190 if (tls_type & GOT_TLS_IE)
4192 if (need_relocs)
4194 outrel.r_offset = (cur_off
4195 + htab->sgot->output_section->vma
4196 + htab->sgot->output_offset);
4197 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4199 if (indx == 0)
4200 outrel.r_addend = relocation - dtpoff_base (info);
4201 else
4202 outrel.r_addend = 0;
4204 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4205 htab->srelgot->reloc_count++;
4206 loc += sizeof (Elf32_External_Rela);
4208 else
4209 bfd_put_32 (output_bfd, tpoff (info, relocation),
4210 htab->sgot->contents + cur_off);
4212 cur_off += 4;
4215 if (hh != NULL)
4216 hh->eh.got.offset |= 1;
4217 else
4218 local_got_offsets[r_symndx] |= 1;
4221 if ((tls_type & GOT_TLS_GD)
4222 && r_type != R_PARISC_TLS_GD21L
4223 && r_type != R_PARISC_TLS_GD14R)
4224 off += 2 * GOT_ENTRY_SIZE;
4226 /* Add the base of the GOT to the relocation value. */
4227 relocation = (off
4228 + htab->sgot->output_offset
4229 + htab->sgot->output_section->vma);
4231 break;
4234 case R_PARISC_TLS_LE21L:
4235 case R_PARISC_TLS_LE14R:
4237 relocation = tpoff (info, relocation);
4238 break;
4240 break;
4242 default:
4243 break;
4246 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4247 htab, sym_sec, hh, info);
4249 if (rstatus == bfd_reloc_ok)
4250 continue;
4252 if (hh != NULL)
4253 sym_name = hh_name (hh);
4254 else
4256 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4257 symtab_hdr->sh_link,
4258 sym->st_name);
4259 if (sym_name == NULL)
4260 return FALSE;
4261 if (*sym_name == '\0')
4262 sym_name = bfd_section_name (input_bfd, sym_sec);
4265 howto = elf_hppa_howto_table + r_type;
4267 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4269 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4271 (*_bfd_error_handler)
4272 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4273 input_bfd,
4274 input_section,
4275 (long) rela->r_offset,
4276 howto->name,
4277 sym_name);
4278 bfd_set_error (bfd_error_bad_value);
4279 return FALSE;
4282 else
4284 if (!((*info->callbacks->reloc_overflow)
4285 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4286 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4287 return FALSE;
4291 return TRUE;
4294 /* Finish up dynamic symbol handling. We set the contents of various
4295 dynamic sections here. */
4297 static bfd_boolean
4298 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4299 struct bfd_link_info *info,
4300 struct elf_link_hash_entry *eh,
4301 Elf_Internal_Sym *sym)
4303 struct elf32_hppa_link_hash_table *htab;
4304 Elf_Internal_Rela rela;
4305 bfd_byte *loc;
4307 htab = hppa_link_hash_table (info);
4309 if (eh->plt.offset != (bfd_vma) -1)
4311 bfd_vma value;
4313 if (eh->plt.offset & 1)
4314 abort ();
4316 /* This symbol has an entry in the procedure linkage table. Set
4317 it up.
4319 The format of a plt entry is
4320 <funcaddr>
4321 <__gp>
4323 value = 0;
4324 if (eh->root.type == bfd_link_hash_defined
4325 || eh->root.type == bfd_link_hash_defweak)
4327 value = eh->root.u.def.value;
4328 if (eh->root.u.def.section->output_section != NULL)
4329 value += (eh->root.u.def.section->output_offset
4330 + eh->root.u.def.section->output_section->vma);
4333 /* Create a dynamic IPLT relocation for this entry. */
4334 rela.r_offset = (eh->plt.offset
4335 + htab->splt->output_offset
4336 + htab->splt->output_section->vma);
4337 if (eh->dynindx != -1)
4339 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4340 rela.r_addend = 0;
4342 else
4344 /* This symbol has been marked to become local, and is
4345 used by a plabel so must be kept in the .plt. */
4346 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4347 rela.r_addend = value;
4350 loc = htab->srelplt->contents;
4351 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4352 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4354 if (!eh->def_regular)
4356 /* Mark the symbol as undefined, rather than as defined in
4357 the .plt section. Leave the value alone. */
4358 sym->st_shndx = SHN_UNDEF;
4362 if (eh->got.offset != (bfd_vma) -1
4363 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4364 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4366 /* This symbol has an entry in the global offset table. Set it
4367 up. */
4369 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4370 + htab->sgot->output_offset
4371 + htab->sgot->output_section->vma);
4373 /* If this is a -Bsymbolic link and the symbol is defined
4374 locally or was forced to be local because of a version file,
4375 we just want to emit a RELATIVE reloc. The entry in the
4376 global offset table will already have been initialized in the
4377 relocate_section function. */
4378 if (info->shared
4379 && (info->symbolic || eh->dynindx == -1)
4380 && eh->def_regular)
4382 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4383 rela.r_addend = (eh->root.u.def.value
4384 + eh->root.u.def.section->output_offset
4385 + eh->root.u.def.section->output_section->vma);
4387 else
4389 if ((eh->got.offset & 1) != 0)
4390 abort ();
4392 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4393 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4394 rela.r_addend = 0;
4397 loc = htab->srelgot->contents;
4398 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4399 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4402 if (eh->needs_copy)
4404 asection *sec;
4406 /* This symbol needs a copy reloc. Set it up. */
4408 if (! (eh->dynindx != -1
4409 && (eh->root.type == bfd_link_hash_defined
4410 || eh->root.type == bfd_link_hash_defweak)))
4411 abort ();
4413 sec = htab->srelbss;
4415 rela.r_offset = (eh->root.u.def.value
4416 + eh->root.u.def.section->output_offset
4417 + eh->root.u.def.section->output_section->vma);
4418 rela.r_addend = 0;
4419 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4420 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4421 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4424 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4425 if (eh_name (eh)[0] == '_'
4426 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4427 || eh == htab->etab.hgot))
4429 sym->st_shndx = SHN_ABS;
4432 return TRUE;
4435 /* Used to decide how to sort relocs in an optimal manner for the
4436 dynamic linker, before writing them out. */
4438 static enum elf_reloc_type_class
4439 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4441 /* Handle TLS relocs first; we don't want them to be marked
4442 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4443 check below. */
4444 switch ((int) ELF32_R_TYPE (rela->r_info))
4446 case R_PARISC_TLS_DTPMOD32:
4447 case R_PARISC_TLS_DTPOFF32:
4448 case R_PARISC_TLS_TPREL32:
4449 return reloc_class_normal;
4452 if (ELF32_R_SYM (rela->r_info) == 0)
4453 return reloc_class_relative;
4455 switch ((int) ELF32_R_TYPE (rela->r_info))
4457 case R_PARISC_IPLT:
4458 return reloc_class_plt;
4459 case R_PARISC_COPY:
4460 return reloc_class_copy;
4461 default:
4462 return reloc_class_normal;
4466 /* Finish up the dynamic sections. */
4468 static bfd_boolean
4469 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4470 struct bfd_link_info *info)
4472 bfd *dynobj;
4473 struct elf32_hppa_link_hash_table *htab;
4474 asection *sdyn;
4476 htab = hppa_link_hash_table (info);
4477 dynobj = htab->etab.dynobj;
4479 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4481 if (htab->etab.dynamic_sections_created)
4483 Elf32_External_Dyn *dyncon, *dynconend;
4485 if (sdyn == NULL)
4486 abort ();
4488 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4489 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4490 for (; dyncon < dynconend; dyncon++)
4492 Elf_Internal_Dyn dyn;
4493 asection *s;
4495 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4497 switch (dyn.d_tag)
4499 default:
4500 continue;
4502 case DT_PLTGOT:
4503 /* Use PLTGOT to set the GOT register. */
4504 dyn.d_un.d_ptr = elf_gp (output_bfd);
4505 break;
4507 case DT_JMPREL:
4508 s = htab->srelplt;
4509 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4510 break;
4512 case DT_PLTRELSZ:
4513 s = htab->srelplt;
4514 dyn.d_un.d_val = s->size;
4515 break;
4517 case DT_RELASZ:
4518 /* Don't count procedure linkage table relocs in the
4519 overall reloc count. */
4520 s = htab->srelplt;
4521 if (s == NULL)
4522 continue;
4523 dyn.d_un.d_val -= s->size;
4524 break;
4526 case DT_RELA:
4527 /* We may not be using the standard ELF linker script.
4528 If .rela.plt is the first .rela section, we adjust
4529 DT_RELA to not include it. */
4530 s = htab->srelplt;
4531 if (s == NULL)
4532 continue;
4533 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4534 continue;
4535 dyn.d_un.d_ptr += s->size;
4536 break;
4539 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4543 if (htab->sgot != NULL && htab->sgot->size != 0)
4545 /* Fill in the first entry in the global offset table.
4546 We use it to point to our dynamic section, if we have one. */
4547 bfd_put_32 (output_bfd,
4548 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4549 htab->sgot->contents);
4551 /* The second entry is reserved for use by the dynamic linker. */
4552 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4554 /* Set .got entry size. */
4555 elf_section_data (htab->sgot->output_section)
4556 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4559 if (htab->splt != NULL && htab->splt->size != 0)
4561 /* Set plt entry size. */
4562 elf_section_data (htab->splt->output_section)
4563 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4565 if (htab->need_plt_stub)
4567 /* Set up the .plt stub. */
4568 memcpy (htab->splt->contents
4569 + htab->splt->size - sizeof (plt_stub),
4570 plt_stub, sizeof (plt_stub));
4572 if ((htab->splt->output_offset
4573 + htab->splt->output_section->vma
4574 + htab->splt->size)
4575 != (htab->sgot->output_offset
4576 + htab->sgot->output_section->vma))
4578 (*_bfd_error_handler)
4579 (_(".got section not immediately after .plt section"));
4580 return FALSE;
4585 return TRUE;
4588 /* Called when writing out an object file to decide the type of a
4589 symbol. */
4590 static int
4591 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4593 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4594 return STT_PARISC_MILLI;
4595 else
4596 return type;
4599 /* Misc BFD support code. */
4600 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4601 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4602 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4603 #define elf_info_to_howto elf_hppa_info_to_howto
4604 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4606 /* Stuff for the BFD linker. */
4607 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4608 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4609 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4610 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4611 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4612 #define elf_backend_check_relocs elf32_hppa_check_relocs
4613 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4614 #define elf_backend_fake_sections elf_hppa_fake_sections
4615 #define elf_backend_relocate_section elf32_hppa_relocate_section
4616 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4617 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4618 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4619 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4620 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4621 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4622 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4623 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4624 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4625 #define elf_backend_object_p elf32_hppa_object_p
4626 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4627 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4628 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4629 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4630 #define elf_backend_action_discarded elf_hppa_action_discarded
4632 #define elf_backend_can_gc_sections 1
4633 #define elf_backend_can_refcount 1
4634 #define elf_backend_plt_alignment 2
4635 #define elf_backend_want_got_plt 0
4636 #define elf_backend_plt_readonly 0
4637 #define elf_backend_want_plt_sym 0
4638 #define elf_backend_got_header_size 8
4639 #define elf_backend_rela_normal 1
4641 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4642 #define TARGET_BIG_NAME "elf32-hppa"
4643 #define ELF_ARCH bfd_arch_hppa
4644 #define ELF_MACHINE_CODE EM_PARISC
4645 #define ELF_MAXPAGESIZE 0x1000
4646 #define ELF_OSABI ELFOSABI_HPUX
4647 #define elf32_bed elf32_hppa_hpux_bed
4649 #include "elf32-target.h"
4651 #undef TARGET_BIG_SYM
4652 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4653 #undef TARGET_BIG_NAME
4654 #define TARGET_BIG_NAME "elf32-hppa-linux"
4655 #undef ELF_OSABI
4656 #define ELF_OSABI ELFOSABI_LINUX
4657 #undef elf32_bed
4658 #define elf32_bed elf32_hppa_linux_bed
4660 #include "elf32-target.h"
4662 #undef TARGET_BIG_SYM
4663 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4664 #undef TARGET_BIG_NAME
4665 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4666 #undef ELF_OSABI
4667 #define ELF_OSABI ELFOSABI_NETBSD
4668 #undef elf32_bed
4669 #define elf32_bed elf32_hppa_netbsd_bed
4671 #include "elf32-target.h"