Remainder of fixes for ARM WINCE support
[binutils.git] / bfd / elf.c
blobcd107bda03535f974f407348304a4d875282f83c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* SECTION
23 ELF backends
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
43 static int elf_sort_sections (const void *, const void *);
44 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
45 static bfd_boolean prep_headers (bfd *);
46 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
47 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49 /* Swap version information in and out. The version information is
50 currently size independent. If that ever changes, this code will
51 need to move into elfcode.h. */
53 /* Swap in a Verdef structure. */
55 void
56 _bfd_elf_swap_verdef_in (bfd *abfd,
57 const Elf_External_Verdef *src,
58 Elf_Internal_Verdef *dst)
60 dst->vd_version = H_GET_16 (abfd, src->vd_version);
61 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
62 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
63 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
64 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
65 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
66 dst->vd_next = H_GET_32 (abfd, src->vd_next);
69 /* Swap out a Verdef structure. */
71 void
72 _bfd_elf_swap_verdef_out (bfd *abfd,
73 const Elf_Internal_Verdef *src,
74 Elf_External_Verdef *dst)
76 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
77 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
78 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
79 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
80 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
81 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
82 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
85 /* Swap in a Verdaux structure. */
87 void
88 _bfd_elf_swap_verdaux_in (bfd *abfd,
89 const Elf_External_Verdaux *src,
90 Elf_Internal_Verdaux *dst)
92 dst->vda_name = H_GET_32 (abfd, src->vda_name);
93 dst->vda_next = H_GET_32 (abfd, src->vda_next);
96 /* Swap out a Verdaux structure. */
98 void
99 _bfd_elf_swap_verdaux_out (bfd *abfd,
100 const Elf_Internal_Verdaux *src,
101 Elf_External_Verdaux *dst)
103 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
104 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
107 /* Swap in a Verneed structure. */
109 void
110 _bfd_elf_swap_verneed_in (bfd *abfd,
111 const Elf_External_Verneed *src,
112 Elf_Internal_Verneed *dst)
114 dst->vn_version = H_GET_16 (abfd, src->vn_version);
115 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
116 dst->vn_file = H_GET_32 (abfd, src->vn_file);
117 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
118 dst->vn_next = H_GET_32 (abfd, src->vn_next);
121 /* Swap out a Verneed structure. */
123 void
124 _bfd_elf_swap_verneed_out (bfd *abfd,
125 const Elf_Internal_Verneed *src,
126 Elf_External_Verneed *dst)
128 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
129 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
130 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
131 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
132 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
135 /* Swap in a Vernaux structure. */
137 void
138 _bfd_elf_swap_vernaux_in (bfd *abfd,
139 const Elf_External_Vernaux *src,
140 Elf_Internal_Vernaux *dst)
142 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
143 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
144 dst->vna_other = H_GET_16 (abfd, src->vna_other);
145 dst->vna_name = H_GET_32 (abfd, src->vna_name);
146 dst->vna_next = H_GET_32 (abfd, src->vna_next);
149 /* Swap out a Vernaux structure. */
151 void
152 _bfd_elf_swap_vernaux_out (bfd *abfd,
153 const Elf_Internal_Vernaux *src,
154 Elf_External_Vernaux *dst)
156 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
157 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
158 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
159 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
160 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
163 /* Swap in a Versym structure. */
165 void
166 _bfd_elf_swap_versym_in (bfd *abfd,
167 const Elf_External_Versym *src,
168 Elf_Internal_Versym *dst)
170 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
173 /* Swap out a Versym structure. */
175 void
176 _bfd_elf_swap_versym_out (bfd *abfd,
177 const Elf_Internal_Versym *src,
178 Elf_External_Versym *dst)
180 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
183 /* Standard ELF hash function. Do not change this function; you will
184 cause invalid hash tables to be generated. */
186 unsigned long
187 bfd_elf_hash (const char *namearg)
189 const unsigned char *name = (const unsigned char *) namearg;
190 unsigned long h = 0;
191 unsigned long g;
192 int ch;
194 while ((ch = *name++) != '\0')
196 h = (h << 4) + ch;
197 if ((g = (h & 0xf0000000)) != 0)
199 h ^= g >> 24;
200 /* The ELF ABI says `h &= ~g', but this is equivalent in
201 this case and on some machines one insn instead of two. */
202 h ^= g;
205 return h & 0xffffffff;
208 /* Read a specified number of bytes at a specified offset in an ELF
209 file, into a newly allocated buffer, and return a pointer to the
210 buffer. */
212 static char *
213 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 char *buf;
217 if ((buf = bfd_alloc (abfd, size)) == NULL)
218 return NULL;
219 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
220 return NULL;
221 if (bfd_bread (buf, size, abfd) != size)
223 if (bfd_get_error () != bfd_error_system_call)
224 bfd_set_error (bfd_error_file_truncated);
225 return NULL;
227 return buf;
230 bfd_boolean
231 bfd_elf_mkobject (bfd *abfd)
233 /* This just does initialization. */
234 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
235 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
236 if (elf_tdata (abfd) == 0)
237 return FALSE;
238 /* Since everything is done at close time, do we need any
239 initialization? */
241 return TRUE;
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 Elf_Internal_Shdr **i_shdrp;
255 char *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
261 return 0;
263 shstrtab = (char *) i_shdrp[shindex]->contents;
264 if (shstrtab == NULL)
266 /* No cached one, attempt to read, and cache what we read. */
267 offset = i_shdrp[shindex]->sh_offset;
268 shstrtabsize = i_shdrp[shindex]->sh_size;
269 shstrtab = elf_read (abfd, offset, shstrtabsize);
270 i_shdrp[shindex]->contents = shstrtab;
272 return shstrtab;
275 char *
276 bfd_elf_string_from_elf_section (bfd *abfd,
277 unsigned int shindex,
278 unsigned int strindex)
280 Elf_Internal_Shdr *hdr;
282 if (strindex == 0)
283 return "";
285 hdr = elf_elfsections (abfd)[shindex];
287 if (hdr->contents == NULL
288 && bfd_elf_get_str_section (abfd, shindex) == NULL)
289 return NULL;
291 if (strindex >= hdr->sh_size)
293 (*_bfd_error_handler)
294 (_("%s: invalid string offset %u >= %lu for section `%s'"),
295 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
296 ((shindex == elf_elfheader(abfd)->e_shstrndx
297 && strindex == hdr->sh_name)
298 ? ".shstrtab"
299 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
300 return "";
303 return ((char *) hdr->contents) + strindex;
306 /* Read and convert symbols to internal format.
307 SYMCOUNT specifies the number of symbols to read, starting from
308 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
309 are non-NULL, they are used to store the internal symbols, external
310 symbols, and symbol section index extensions, respectively. */
312 Elf_Internal_Sym *
313 bfd_elf_get_elf_syms (bfd *ibfd,
314 Elf_Internal_Shdr *symtab_hdr,
315 size_t symcount,
316 size_t symoffset,
317 Elf_Internal_Sym *intsym_buf,
318 void *extsym_buf,
319 Elf_External_Sym_Shndx *extshndx_buf)
321 Elf_Internal_Shdr *shndx_hdr;
322 void *alloc_ext;
323 const bfd_byte *esym;
324 Elf_External_Sym_Shndx *alloc_extshndx;
325 Elf_External_Sym_Shndx *shndx;
326 Elf_Internal_Sym *isym;
327 Elf_Internal_Sym *isymend;
328 const struct elf_backend_data *bed;
329 size_t extsym_size;
330 bfd_size_type amt;
331 file_ptr pos;
333 if (symcount == 0)
334 return intsym_buf;
336 /* Normal syms might have section extension entries. */
337 shndx_hdr = NULL;
338 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
339 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341 /* Read the symbols. */
342 alloc_ext = NULL;
343 alloc_extshndx = NULL;
344 bed = get_elf_backend_data (ibfd);
345 extsym_size = bed->s->sizeof_sym;
346 amt = symcount * extsym_size;
347 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
348 if (extsym_buf == NULL)
350 alloc_ext = bfd_malloc (amt);
351 extsym_buf = alloc_ext;
353 if (extsym_buf == NULL
354 || bfd_seek (ibfd, pos, SEEK_SET) != 0
355 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 intsym_buf = NULL;
358 goto out;
361 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
362 extshndx_buf = NULL;
363 else
365 amt = symcount * sizeof (Elf_External_Sym_Shndx);
366 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
367 if (extshndx_buf == NULL)
369 alloc_extshndx = bfd_malloc (amt);
370 extshndx_buf = alloc_extshndx;
372 if (extshndx_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 intsym_buf = NULL;
377 goto out;
381 if (intsym_buf == NULL)
383 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
384 intsym_buf = bfd_malloc (amt);
385 if (intsym_buf == NULL)
386 goto out;
389 /* Convert the symbols to internal form. */
390 isymend = intsym_buf + symcount;
391 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
392 isym < isymend;
393 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
394 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396 out:
397 if (alloc_ext != NULL)
398 free (alloc_ext);
399 if (alloc_extshndx != NULL)
400 free (alloc_extshndx);
402 return intsym_buf;
405 /* Look up a symbol name. */
406 const char *
407 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 unsigned int iname = isym->st_name;
410 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
411 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
414 shindex = elf_elfheader (abfd)->e_shstrndx;
417 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
420 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
421 sections. The first element is the flags, the rest are section
422 pointers. */
424 typedef union elf_internal_group {
425 Elf_Internal_Shdr *shdr;
426 unsigned int flags;
427 } Elf_Internal_Group;
429 /* Return the name of the group signature symbol. Why isn't the
430 signature just a string? */
432 static const char *
433 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 Elf_Internal_Shdr *hdr;
436 unsigned char esym[sizeof (Elf64_External_Sym)];
437 Elf_External_Sym_Shndx eshndx;
438 Elf_Internal_Sym isym;
440 /* First we need to ensure the symbol table is available. */
441 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
442 return NULL;
444 /* Go read the symbol. */
445 hdr = &elf_tdata (abfd)->symtab_hdr;
446 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
447 &isym, esym, &eshndx) == NULL)
448 return NULL;
450 return bfd_elf_local_sym_name (abfd, &isym);
453 /* Set next_in_group list pointer, and group name for NEWSECT. */
455 static bfd_boolean
456 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 unsigned int num_group = elf_tdata (abfd)->num_group;
460 /* If num_group is zero, read in all SHT_GROUP sections. The count
461 is set to -1 if there are no SHT_GROUP sections. */
462 if (num_group == 0)
464 unsigned int i, shnum;
466 /* First count the number of groups. If we have a SHT_GROUP
467 section with just a flag word (ie. sh_size is 4), ignore it. */
468 shnum = elf_numsections (abfd);
469 num_group = 0;
470 for (i = 0; i < shnum; i++)
472 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
473 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
474 num_group += 1;
477 if (num_group == 0)
478 num_group = (unsigned) -1;
479 elf_tdata (abfd)->num_group = num_group;
481 if (num_group > 0)
483 /* We keep a list of elf section headers for group sections,
484 so we can find them quickly. */
485 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
486 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
487 if (elf_tdata (abfd)->group_sect_ptr == NULL)
488 return FALSE;
490 num_group = 0;
491 for (i = 0; i < shnum; i++)
493 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
494 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 unsigned char *src;
497 Elf_Internal_Group *dest;
499 /* Add to list of sections. */
500 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
501 num_group += 1;
503 /* Read the raw contents. */
504 BFD_ASSERT (sizeof (*dest) >= 4);
505 amt = shdr->sh_size * sizeof (*dest) / 4;
506 shdr->contents = bfd_alloc (abfd, amt);
507 if (shdr->contents == NULL
508 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
509 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
510 != shdr->sh_size))
511 return FALSE;
513 /* Translate raw contents, a flag word followed by an
514 array of elf section indices all in target byte order,
515 to the flag word followed by an array of elf section
516 pointers. */
517 src = shdr->contents + shdr->sh_size;
518 dest = (Elf_Internal_Group *) (shdr->contents + amt);
519 while (1)
521 unsigned int idx;
523 src -= 4;
524 --dest;
525 idx = H_GET_32 (abfd, src);
526 if (src == shdr->contents)
528 dest->flags = idx;
529 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
530 shdr->bfd_section->flags
531 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
532 break;
534 if (idx >= shnum)
536 ((*_bfd_error_handler)
537 (_("%s: invalid SHT_GROUP entry"),
538 bfd_archive_filename (abfd)));
539 idx = 0;
541 dest->shdr = elf_elfsections (abfd)[idx];
548 if (num_group != (unsigned) -1)
550 unsigned int i;
552 for (i = 0; i < num_group; i++)
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
563 asection *s = NULL;
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
582 else
584 const char *gname;
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
600 i = num_group - 1;
601 break;
606 if (elf_group_name (newsect) == NULL)
608 (*_bfd_error_handler) (_("%s: no group info for section %s"),
609 bfd_archive_filename (abfd), newsect->name);
611 return TRUE;
614 bfd_boolean
615 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
617 asection *first = elf_next_in_group (group);
618 asection *s = first;
620 while (s != NULL)
622 s->output_section = bfd_abs_section_ptr;
623 s = elf_next_in_group (s);
624 /* These lists are circular. */
625 if (s == first)
626 break;
628 return TRUE;
631 /* Make a BFD section from an ELF section. We store a pointer to the
632 BFD section in the bfd_section field of the header. */
634 bfd_boolean
635 _bfd_elf_make_section_from_shdr (bfd *abfd,
636 Elf_Internal_Shdr *hdr,
637 const char *name)
639 asection *newsect;
640 flagword flags;
641 const struct elf_backend_data *bed;
643 if (hdr->bfd_section != NULL)
645 BFD_ASSERT (strcmp (name,
646 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
647 return TRUE;
650 newsect = bfd_make_section_anyway (abfd, name);
651 if (newsect == NULL)
652 return FALSE;
654 /* Always use the real type/flags. */
655 elf_section_type (newsect) = hdr->sh_type;
656 elf_section_flags (newsect) = hdr->sh_flags;
658 newsect->filepos = hdr->sh_offset;
660 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
661 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
662 || ! bfd_set_section_alignment (abfd, newsect,
663 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
664 return FALSE;
666 flags = SEC_NO_FLAGS;
667 if (hdr->sh_type != SHT_NOBITS)
668 flags |= SEC_HAS_CONTENTS;
669 if (hdr->sh_type == SHT_GROUP)
670 flags |= SEC_GROUP | SEC_EXCLUDE;
671 if ((hdr->sh_flags & SHF_ALLOC) != 0)
673 flags |= SEC_ALLOC;
674 if (hdr->sh_type != SHT_NOBITS)
675 flags |= SEC_LOAD;
677 if ((hdr->sh_flags & SHF_WRITE) == 0)
678 flags |= SEC_READONLY;
679 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
680 flags |= SEC_CODE;
681 else if ((flags & SEC_LOAD) != 0)
682 flags |= SEC_DATA;
683 if ((hdr->sh_flags & SHF_MERGE) != 0)
685 flags |= SEC_MERGE;
686 newsect->entsize = hdr->sh_entsize;
687 if ((hdr->sh_flags & SHF_STRINGS) != 0)
688 flags |= SEC_STRINGS;
690 if (hdr->sh_flags & SHF_GROUP)
691 if (!setup_group (abfd, hdr, newsect))
692 return FALSE;
693 if ((hdr->sh_flags & SHF_TLS) != 0)
694 flags |= SEC_THREAD_LOCAL;
696 /* The debugging sections appear to be recognized only by name, not
697 any sort of flag. */
699 static const char *debug_sec_names [] =
701 ".debug",
702 ".gnu.linkonce.wi.",
703 ".line",
704 ".stab"
706 int i;
708 for (i = ARRAY_SIZE (debug_sec_names); i--;)
709 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
710 break;
712 if (i >= 0)
713 flags |= SEC_DEBUGGING;
716 /* As a GNU extension, if the name begins with .gnu.linkonce, we
717 only link a single copy of the section. This is used to support
718 g++. g++ will emit each template expansion in its own section.
719 The symbols will be defined as weak, so that multiple definitions
720 are permitted. The GNU linker extension is to actually discard
721 all but one of the sections. */
722 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
723 && elf_next_in_group (newsect) == NULL)
724 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
726 bed = get_elf_backend_data (abfd);
727 if (bed->elf_backend_section_flags)
728 if (! bed->elf_backend_section_flags (&flags, hdr))
729 return FALSE;
731 if (! bfd_set_section_flags (abfd, newsect, flags))
732 return FALSE;
734 if ((flags & SEC_ALLOC) != 0)
736 Elf_Internal_Phdr *phdr;
737 unsigned int i;
739 /* Look through the phdrs to see if we need to adjust the lma.
740 If all the p_paddr fields are zero, we ignore them, since
741 some ELF linkers produce such output. */
742 phdr = elf_tdata (abfd)->phdr;
743 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
745 if (phdr->p_paddr != 0)
746 break;
748 if (i < elf_elfheader (abfd)->e_phnum)
750 phdr = elf_tdata (abfd)->phdr;
751 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
753 /* This section is part of this segment if its file
754 offset plus size lies within the segment's memory
755 span and, if the section is loaded, the extent of the
756 loaded data lies within the extent of the segment.
758 Note - we used to check the p_paddr field as well, and
759 refuse to set the LMA if it was 0. This is wrong
760 though, as a perfectly valid initialised segment can
761 have a p_paddr of zero. Some architectures, eg ARM,
762 place special significance on the address 0 and
763 executables need to be able to have a segment which
764 covers this address. */
765 if (phdr->p_type == PT_LOAD
766 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
767 && (hdr->sh_offset + hdr->sh_size
768 <= phdr->p_offset + phdr->p_memsz)
769 && ((flags & SEC_LOAD) == 0
770 || (hdr->sh_offset + hdr->sh_size
771 <= phdr->p_offset + phdr->p_filesz)))
773 if ((flags & SEC_LOAD) == 0)
774 newsect->lma = (phdr->p_paddr
775 + hdr->sh_addr - phdr->p_vaddr);
776 else
777 /* We used to use the same adjustment for SEC_LOAD
778 sections, but that doesn't work if the segment
779 is packed with code from multiple VMAs.
780 Instead we calculate the section LMA based on
781 the segment LMA. It is assumed that the
782 segment will contain sections with contiguous
783 LMAs, even if the VMAs are not. */
784 newsect->lma = (phdr->p_paddr
785 + hdr->sh_offset - phdr->p_offset);
787 /* With contiguous segments, we can't tell from file
788 offsets whether a section with zero size should
789 be placed at the end of one segment or the
790 beginning of the next. Decide based on vaddr. */
791 if (hdr->sh_addr >= phdr->p_vaddr
792 && (hdr->sh_addr + hdr->sh_size
793 <= phdr->p_vaddr + phdr->p_memsz))
794 break;
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
803 return TRUE;
807 INTERNAL_FUNCTION
808 bfd_elf_find_section
810 SYNOPSIS
811 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
813 DESCRIPTION
814 Helper functions for GDB to locate the string tables.
815 Since BFD hides string tables from callers, GDB needs to use an
816 internal hook to find them. Sun's .stabstr, in particular,
817 isn't even pointed to by the .stab section, so ordinary
818 mechanisms wouldn't work to find it, even if we had some.
821 struct elf_internal_shdr *
822 bfd_elf_find_section (bfd *abfd, char *name)
824 Elf_Internal_Shdr **i_shdrp;
825 char *shstrtab;
826 unsigned int max;
827 unsigned int i;
829 i_shdrp = elf_elfsections (abfd);
830 if (i_shdrp != NULL)
832 shstrtab = bfd_elf_get_str_section (abfd,
833 elf_elfheader (abfd)->e_shstrndx);
834 if (shstrtab != NULL)
836 max = elf_numsections (abfd);
837 for (i = 1; i < max; i++)
838 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
839 return i_shdrp[i];
842 return 0;
845 const char *const bfd_elf_section_type_names[] = {
846 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
847 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
848 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
851 /* ELF relocs are against symbols. If we are producing relocatable
852 output, and the reloc is against an external symbol, and nothing
853 has given us any additional addend, the resulting reloc will also
854 be against the same symbol. In such a case, we don't want to
855 change anything about the way the reloc is handled, since it will
856 all be done at final link time. Rather than put special case code
857 into bfd_perform_relocation, all the reloc types use this howto
858 function. It just short circuits the reloc if producing
859 relocatable output against an external symbol. */
861 bfd_reloc_status_type
862 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
863 arelent *reloc_entry,
864 asymbol *symbol,
865 void *data ATTRIBUTE_UNUSED,
866 asection *input_section,
867 bfd *output_bfd,
868 char **error_message ATTRIBUTE_UNUSED)
870 if (output_bfd != NULL
871 && (symbol->flags & BSF_SECTION_SYM) == 0
872 && (! reloc_entry->howto->partial_inplace
873 || reloc_entry->addend == 0))
875 reloc_entry->address += input_section->output_offset;
876 return bfd_reloc_ok;
879 return bfd_reloc_continue;
882 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
884 static void
885 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
886 asection *sec)
888 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
889 sec->sec_info_type = ELF_INFO_TYPE_NONE;
892 /* Finish SHF_MERGE section merging. */
894 bfd_boolean
895 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
897 if (!is_elf_hash_table (info->hash))
898 return FALSE;
899 if (elf_hash_table (info)->merge_info)
900 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
901 merge_sections_remove_hook);
902 return TRUE;
905 void
906 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
908 sec->output_section = bfd_abs_section_ptr;
909 sec->output_offset = sec->vma;
910 if (!is_elf_hash_table (info->hash))
911 return;
913 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
916 /* Copy the program header and other data from one object module to
917 another. */
919 bfd_boolean
920 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
922 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
923 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
924 return TRUE;
926 BFD_ASSERT (!elf_flags_init (obfd)
927 || (elf_elfheader (obfd)->e_flags
928 == elf_elfheader (ibfd)->e_flags));
930 elf_gp (obfd) = elf_gp (ibfd);
931 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
932 elf_flags_init (obfd) = TRUE;
933 return TRUE;
936 /* Print out the program headers. */
938 bfd_boolean
939 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
941 FILE *f = farg;
942 Elf_Internal_Phdr *p;
943 asection *s;
944 bfd_byte *dynbuf = NULL;
946 p = elf_tdata (abfd)->phdr;
947 if (p != NULL)
949 unsigned int i, c;
951 fprintf (f, _("\nProgram Header:\n"));
952 c = elf_elfheader (abfd)->e_phnum;
953 for (i = 0; i < c; i++, p++)
955 const char *pt;
956 char buf[20];
958 switch (p->p_type)
960 case PT_NULL: pt = "NULL"; break;
961 case PT_LOAD: pt = "LOAD"; break;
962 case PT_DYNAMIC: pt = "DYNAMIC"; break;
963 case PT_INTERP: pt = "INTERP"; break;
964 case PT_NOTE: pt = "NOTE"; break;
965 case PT_SHLIB: pt = "SHLIB"; break;
966 case PT_PHDR: pt = "PHDR"; break;
967 case PT_TLS: pt = "TLS"; break;
968 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
969 case PT_GNU_STACK: pt = "STACK"; break;
970 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
972 fprintf (f, "%8s off 0x", pt);
973 bfd_fprintf_vma (abfd, f, p->p_offset);
974 fprintf (f, " vaddr 0x");
975 bfd_fprintf_vma (abfd, f, p->p_vaddr);
976 fprintf (f, " paddr 0x");
977 bfd_fprintf_vma (abfd, f, p->p_paddr);
978 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
979 fprintf (f, " filesz 0x");
980 bfd_fprintf_vma (abfd, f, p->p_filesz);
981 fprintf (f, " memsz 0x");
982 bfd_fprintf_vma (abfd, f, p->p_memsz);
983 fprintf (f, " flags %c%c%c",
984 (p->p_flags & PF_R) != 0 ? 'r' : '-',
985 (p->p_flags & PF_W) != 0 ? 'w' : '-',
986 (p->p_flags & PF_X) != 0 ? 'x' : '-');
987 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
988 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
989 fprintf (f, "\n");
993 s = bfd_get_section_by_name (abfd, ".dynamic");
994 if (s != NULL)
996 int elfsec;
997 unsigned long shlink;
998 bfd_byte *extdyn, *extdynend;
999 size_t extdynsize;
1000 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1002 fprintf (f, _("\nDynamic Section:\n"));
1004 dynbuf = bfd_malloc (s->_raw_size);
1005 if (dynbuf == NULL)
1006 goto error_return;
1007 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1008 goto error_return;
1010 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1011 if (elfsec == -1)
1012 goto error_return;
1013 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1015 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1016 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1018 extdyn = dynbuf;
1019 extdynend = extdyn + s->_raw_size;
1020 for (; extdyn < extdynend; extdyn += extdynsize)
1022 Elf_Internal_Dyn dyn;
1023 const char *name;
1024 char ab[20];
1025 bfd_boolean stringp;
1027 (*swap_dyn_in) (abfd, extdyn, &dyn);
1029 if (dyn.d_tag == DT_NULL)
1030 break;
1032 stringp = FALSE;
1033 switch (dyn.d_tag)
1035 default:
1036 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1037 name = ab;
1038 break;
1040 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1041 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1042 case DT_PLTGOT: name = "PLTGOT"; break;
1043 case DT_HASH: name = "HASH"; break;
1044 case DT_STRTAB: name = "STRTAB"; break;
1045 case DT_SYMTAB: name = "SYMTAB"; break;
1046 case DT_RELA: name = "RELA"; break;
1047 case DT_RELASZ: name = "RELASZ"; break;
1048 case DT_RELAENT: name = "RELAENT"; break;
1049 case DT_STRSZ: name = "STRSZ"; break;
1050 case DT_SYMENT: name = "SYMENT"; break;
1051 case DT_INIT: name = "INIT"; break;
1052 case DT_FINI: name = "FINI"; break;
1053 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1054 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1055 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1056 case DT_REL: name = "REL"; break;
1057 case DT_RELSZ: name = "RELSZ"; break;
1058 case DT_RELENT: name = "RELENT"; break;
1059 case DT_PLTREL: name = "PLTREL"; break;
1060 case DT_DEBUG: name = "DEBUG"; break;
1061 case DT_TEXTREL: name = "TEXTREL"; break;
1062 case DT_JMPREL: name = "JMPREL"; break;
1063 case DT_BIND_NOW: name = "BIND_NOW"; break;
1064 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1065 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1066 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1067 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1068 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1069 case DT_FLAGS: name = "FLAGS"; break;
1070 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1071 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1072 case DT_CHECKSUM: name = "CHECKSUM"; break;
1073 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1074 case DT_MOVEENT: name = "MOVEENT"; break;
1075 case DT_MOVESZ: name = "MOVESZ"; break;
1076 case DT_FEATURE: name = "FEATURE"; break;
1077 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1078 case DT_SYMINSZ: name = "SYMINSZ"; break;
1079 case DT_SYMINENT: name = "SYMINENT"; break;
1080 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1081 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1082 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1083 case DT_PLTPAD: name = "PLTPAD"; break;
1084 case DT_MOVETAB: name = "MOVETAB"; break;
1085 case DT_SYMINFO: name = "SYMINFO"; break;
1086 case DT_RELACOUNT: name = "RELACOUNT"; break;
1087 case DT_RELCOUNT: name = "RELCOUNT"; break;
1088 case DT_FLAGS_1: name = "FLAGS_1"; break;
1089 case DT_VERSYM: name = "VERSYM"; break;
1090 case DT_VERDEF: name = "VERDEF"; break;
1091 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1092 case DT_VERNEED: name = "VERNEED"; break;
1093 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1094 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1095 case DT_USED: name = "USED"; break;
1096 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1099 fprintf (f, " %-11s ", name);
1100 if (! stringp)
1101 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1102 else
1104 const char *string;
1105 unsigned int tagv = dyn.d_un.d_val;
1107 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1108 if (string == NULL)
1109 goto error_return;
1110 fprintf (f, "%s", string);
1112 fprintf (f, "\n");
1115 free (dynbuf);
1116 dynbuf = NULL;
1119 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1120 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1122 if (! _bfd_elf_slurp_version_tables (abfd))
1123 return FALSE;
1126 if (elf_dynverdef (abfd) != 0)
1128 Elf_Internal_Verdef *t;
1130 fprintf (f, _("\nVersion definitions:\n"));
1131 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1133 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1134 t->vd_flags, t->vd_hash, t->vd_nodename);
1135 if (t->vd_auxptr->vda_nextptr != NULL)
1137 Elf_Internal_Verdaux *a;
1139 fprintf (f, "\t");
1140 for (a = t->vd_auxptr->vda_nextptr;
1141 a != NULL;
1142 a = a->vda_nextptr)
1143 fprintf (f, "%s ", a->vda_nodename);
1144 fprintf (f, "\n");
1149 if (elf_dynverref (abfd) != 0)
1151 Elf_Internal_Verneed *t;
1153 fprintf (f, _("\nVersion References:\n"));
1154 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1156 Elf_Internal_Vernaux *a;
1158 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1161 a->vna_flags, a->vna_other, a->vna_nodename);
1165 return TRUE;
1167 error_return:
1168 if (dynbuf != NULL)
1169 free (dynbuf);
1170 return FALSE;
1173 /* Display ELF-specific fields of a symbol. */
1175 void
1176 bfd_elf_print_symbol (bfd *abfd,
1177 void *filep,
1178 asymbol *symbol,
1179 bfd_print_symbol_type how)
1181 FILE *file = filep;
1182 switch (how)
1184 case bfd_print_symbol_name:
1185 fprintf (file, "%s", symbol->name);
1186 break;
1187 case bfd_print_symbol_more:
1188 fprintf (file, "elf ");
1189 bfd_fprintf_vma (abfd, file, symbol->value);
1190 fprintf (file, " %lx", (long) symbol->flags);
1191 break;
1192 case bfd_print_symbol_all:
1194 const char *section_name;
1195 const char *name = NULL;
1196 const struct elf_backend_data *bed;
1197 unsigned char st_other;
1198 bfd_vma val;
1200 section_name = symbol->section ? symbol->section->name : "(*none*)";
1202 bed = get_elf_backend_data (abfd);
1203 if (bed->elf_backend_print_symbol_all)
1204 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1206 if (name == NULL)
1208 name = symbol->name;
1209 bfd_print_symbol_vandf (abfd, file, symbol);
1212 fprintf (file, " %s\t", section_name);
1213 /* Print the "other" value for a symbol. For common symbols,
1214 we've already printed the size; now print the alignment.
1215 For other symbols, we have no specified alignment, and
1216 we've printed the address; now print the size. */
1217 if (bfd_is_com_section (symbol->section))
1218 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1219 else
1220 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1221 bfd_fprintf_vma (abfd, file, val);
1223 /* If we have version information, print it. */
1224 if (elf_tdata (abfd)->dynversym_section != 0
1225 && (elf_tdata (abfd)->dynverdef_section != 0
1226 || elf_tdata (abfd)->dynverref_section != 0))
1228 unsigned int vernum;
1229 const char *version_string;
1231 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1233 if (vernum == 0)
1234 version_string = "";
1235 else if (vernum == 1)
1236 version_string = "Base";
1237 else if (vernum <= elf_tdata (abfd)->cverdefs)
1238 version_string =
1239 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1240 else
1242 Elf_Internal_Verneed *t;
1244 version_string = "";
1245 for (t = elf_tdata (abfd)->verref;
1246 t != NULL;
1247 t = t->vn_nextref)
1249 Elf_Internal_Vernaux *a;
1251 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1253 if (a->vna_other == vernum)
1255 version_string = a->vna_nodename;
1256 break;
1262 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1263 fprintf (file, " %-11s", version_string);
1264 else
1266 int i;
1268 fprintf (file, " (%s)", version_string);
1269 for (i = 10 - strlen (version_string); i > 0; --i)
1270 putc (' ', file);
1274 /* If the st_other field is not zero, print it. */
1275 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1277 switch (st_other)
1279 case 0: break;
1280 case STV_INTERNAL: fprintf (file, " .internal"); break;
1281 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1282 case STV_PROTECTED: fprintf (file, " .protected"); break;
1283 default:
1284 /* Some other non-defined flags are also present, so print
1285 everything hex. */
1286 fprintf (file, " 0x%02x", (unsigned int) st_other);
1289 fprintf (file, " %s", name);
1291 break;
1295 /* Create an entry in an ELF linker hash table. */
1297 struct bfd_hash_entry *
1298 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1299 struct bfd_hash_table *table,
1300 const char *string)
1302 /* Allocate the structure if it has not already been allocated by a
1303 subclass. */
1304 if (entry == NULL)
1306 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1307 if (entry == NULL)
1308 return entry;
1311 /* Call the allocation method of the superclass. */
1312 entry = _bfd_link_hash_newfunc (entry, table, string);
1313 if (entry != NULL)
1315 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1316 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1318 /* Set local fields. */
1319 ret->indx = -1;
1320 ret->dynindx = -1;
1321 ret->dynstr_index = 0;
1322 ret->elf_hash_value = 0;
1323 ret->weakdef = NULL;
1324 ret->verinfo.verdef = NULL;
1325 ret->vtable_entries_size = 0;
1326 ret->vtable_entries_used = NULL;
1327 ret->vtable_parent = NULL;
1328 ret->got = htab->init_refcount;
1329 ret->plt = htab->init_refcount;
1330 ret->size = 0;
1331 ret->type = STT_NOTYPE;
1332 ret->other = 0;
1333 /* Assume that we have been called by a non-ELF symbol reader.
1334 This flag is then reset by the code which reads an ELF input
1335 file. This ensures that a symbol created by a non-ELF symbol
1336 reader will have the flag set correctly. */
1337 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1340 return entry;
1343 /* Copy data from an indirect symbol to its direct symbol, hiding the
1344 old indirect symbol. Also used for copying flags to a weakdef. */
1346 void
1347 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1348 struct elf_link_hash_entry *dir,
1349 struct elf_link_hash_entry *ind)
1351 bfd_signed_vma tmp;
1352 bfd_signed_vma lowest_valid = bed->can_refcount;
1354 /* Copy down any references that we may have already seen to the
1355 symbol which just became indirect. */
1357 dir->elf_link_hash_flags
1358 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1359 | ELF_LINK_HASH_REF_REGULAR
1360 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1361 | ELF_LINK_NON_GOT_REF
1362 | ELF_LINK_HASH_NEEDS_PLT
1363 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1365 if (ind->root.type != bfd_link_hash_indirect)
1366 return;
1368 /* Copy over the global and procedure linkage table refcount entries.
1369 These may have been already set up by a check_relocs routine. */
1370 tmp = dir->got.refcount;
1371 if (tmp < lowest_valid)
1373 dir->got.refcount = ind->got.refcount;
1374 ind->got.refcount = tmp;
1376 else
1377 BFD_ASSERT (ind->got.refcount < lowest_valid);
1379 tmp = dir->plt.refcount;
1380 if (tmp < lowest_valid)
1382 dir->plt.refcount = ind->plt.refcount;
1383 ind->plt.refcount = tmp;
1385 else
1386 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1388 if (dir->dynindx == -1)
1390 dir->dynindx = ind->dynindx;
1391 dir->dynstr_index = ind->dynstr_index;
1392 ind->dynindx = -1;
1393 ind->dynstr_index = 0;
1395 else
1396 BFD_ASSERT (ind->dynindx == -1);
1399 void
1400 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1401 struct elf_link_hash_entry *h,
1402 bfd_boolean force_local)
1404 h->plt = elf_hash_table (info)->init_offset;
1405 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1406 if (force_local)
1408 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1409 if (h->dynindx != -1)
1411 h->dynindx = -1;
1412 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1413 h->dynstr_index);
1418 /* Initialize an ELF linker hash table. */
1420 bfd_boolean
1421 _bfd_elf_link_hash_table_init
1422 (struct elf_link_hash_table *table,
1423 bfd *abfd,
1424 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1425 struct bfd_hash_table *,
1426 const char *))
1428 bfd_boolean ret;
1430 table->dynamic_sections_created = FALSE;
1431 table->dynobj = NULL;
1432 /* Make sure can_refcount is extended to the width and signedness of
1433 init_refcount before we subtract one from it. */
1434 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1435 table->init_refcount.refcount -= 1;
1436 table->init_offset.offset = -(bfd_vma) 1;
1437 /* The first dynamic symbol is a dummy. */
1438 table->dynsymcount = 1;
1439 table->dynstr = NULL;
1440 table->bucketcount = 0;
1441 table->needed = NULL;
1442 table->hgot = NULL;
1443 table->stab_info = NULL;
1444 table->merge_info = NULL;
1445 memset (&table->eh_info, 0, sizeof (table->eh_info));
1446 table->dynlocal = NULL;
1447 table->runpath = NULL;
1448 table->tls_sec = NULL;
1449 table->tls_size = 0;
1450 table->loaded = NULL;
1452 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1453 table->root.type = bfd_link_elf_hash_table;
1455 return ret;
1458 /* Create an ELF linker hash table. */
1460 struct bfd_link_hash_table *
1461 _bfd_elf_link_hash_table_create (bfd *abfd)
1463 struct elf_link_hash_table *ret;
1464 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1466 ret = bfd_malloc (amt);
1467 if (ret == NULL)
1468 return NULL;
1470 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1472 free (ret);
1473 return NULL;
1476 return &ret->root;
1479 /* This is a hook for the ELF emulation code in the generic linker to
1480 tell the backend linker what file name to use for the DT_NEEDED
1481 entry for a dynamic object. The generic linker passes name as an
1482 empty string to indicate that no DT_NEEDED entry should be made. */
1484 void
1485 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1487 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1488 && bfd_get_format (abfd) == bfd_object)
1489 elf_dt_name (abfd) = name;
1492 void
1493 bfd_elf_set_dt_needed_soname (bfd *abfd, const char *name)
1495 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1496 && bfd_get_format (abfd) == bfd_object)
1497 elf_dt_soname (abfd) = name;
1500 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1501 the linker ELF emulation code. */
1503 struct bfd_link_needed_list *
1504 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1505 struct bfd_link_info *info)
1507 if (! is_elf_hash_table (info->hash))
1508 return NULL;
1509 return elf_hash_table (info)->needed;
1512 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1513 hook for the linker ELF emulation code. */
1515 struct bfd_link_needed_list *
1516 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1517 struct bfd_link_info *info)
1519 if (! is_elf_hash_table (info->hash))
1520 return NULL;
1521 return elf_hash_table (info)->runpath;
1524 /* Get the name actually used for a dynamic object for a link. This
1525 is the SONAME entry if there is one. Otherwise, it is the string
1526 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1528 const char *
1529 bfd_elf_get_dt_soname (bfd *abfd)
1531 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1532 && bfd_get_format (abfd) == bfd_object)
1533 return elf_dt_name (abfd);
1534 return NULL;
1537 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1538 the ELF linker emulation code. */
1540 bfd_boolean
1541 bfd_elf_get_bfd_needed_list (bfd *abfd,
1542 struct bfd_link_needed_list **pneeded)
1544 asection *s;
1545 bfd_byte *dynbuf = NULL;
1546 int elfsec;
1547 unsigned long shlink;
1548 bfd_byte *extdyn, *extdynend;
1549 size_t extdynsize;
1550 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1552 *pneeded = NULL;
1554 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1555 || bfd_get_format (abfd) != bfd_object)
1556 return TRUE;
1558 s = bfd_get_section_by_name (abfd, ".dynamic");
1559 if (s == NULL || s->_raw_size == 0)
1560 return TRUE;
1562 dynbuf = bfd_malloc (s->_raw_size);
1563 if (dynbuf == NULL)
1564 goto error_return;
1566 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1567 goto error_return;
1569 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1570 if (elfsec == -1)
1571 goto error_return;
1573 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1575 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1576 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1578 extdyn = dynbuf;
1579 extdynend = extdyn + s->_raw_size;
1580 for (; extdyn < extdynend; extdyn += extdynsize)
1582 Elf_Internal_Dyn dyn;
1584 (*swap_dyn_in) (abfd, extdyn, &dyn);
1586 if (dyn.d_tag == DT_NULL)
1587 break;
1589 if (dyn.d_tag == DT_NEEDED)
1591 const char *string;
1592 struct bfd_link_needed_list *l;
1593 unsigned int tagv = dyn.d_un.d_val;
1594 bfd_size_type amt;
1596 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1597 if (string == NULL)
1598 goto error_return;
1600 amt = sizeof *l;
1601 l = bfd_alloc (abfd, amt);
1602 if (l == NULL)
1603 goto error_return;
1605 l->by = abfd;
1606 l->name = string;
1607 l->next = *pneeded;
1608 *pneeded = l;
1612 free (dynbuf);
1614 return TRUE;
1616 error_return:
1617 if (dynbuf != NULL)
1618 free (dynbuf);
1619 return FALSE;
1622 /* Allocate an ELF string table--force the first byte to be zero. */
1624 struct bfd_strtab_hash *
1625 _bfd_elf_stringtab_init (void)
1627 struct bfd_strtab_hash *ret;
1629 ret = _bfd_stringtab_init ();
1630 if (ret != NULL)
1632 bfd_size_type loc;
1634 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1635 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1636 if (loc == (bfd_size_type) -1)
1638 _bfd_stringtab_free (ret);
1639 ret = NULL;
1642 return ret;
1645 /* ELF .o/exec file reading */
1647 /* Create a new bfd section from an ELF section header. */
1649 bfd_boolean
1650 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1652 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1653 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1655 const char *name;
1657 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1659 switch (hdr->sh_type)
1661 case SHT_NULL:
1662 /* Inactive section. Throw it away. */
1663 return TRUE;
1665 case SHT_PROGBITS: /* Normal section with contents. */
1666 case SHT_NOBITS: /* .bss section. */
1667 case SHT_HASH: /* .hash section. */
1668 case SHT_NOTE: /* .note section. */
1669 case SHT_INIT_ARRAY: /* .init_array section. */
1670 case SHT_FINI_ARRAY: /* .fini_array section. */
1671 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1672 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1674 case SHT_DYNAMIC: /* Dynamic linking information. */
1675 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1676 return FALSE;
1677 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1679 Elf_Internal_Shdr *dynsymhdr;
1681 /* The shared libraries distributed with hpux11 have a bogus
1682 sh_link field for the ".dynamic" section. Find the
1683 string table for the ".dynsym" section instead. */
1684 if (elf_dynsymtab (abfd) != 0)
1686 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1687 hdr->sh_link = dynsymhdr->sh_link;
1689 else
1691 unsigned int i, num_sec;
1693 num_sec = elf_numsections (abfd);
1694 for (i = 1; i < num_sec; i++)
1696 dynsymhdr = elf_elfsections (abfd)[i];
1697 if (dynsymhdr->sh_type == SHT_DYNSYM)
1699 hdr->sh_link = dynsymhdr->sh_link;
1700 break;
1705 break;
1707 case SHT_SYMTAB: /* A symbol table */
1708 if (elf_onesymtab (abfd) == shindex)
1709 return TRUE;
1711 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1712 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1713 elf_onesymtab (abfd) = shindex;
1714 elf_tdata (abfd)->symtab_hdr = *hdr;
1715 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1716 abfd->flags |= HAS_SYMS;
1718 /* Sometimes a shared object will map in the symbol table. If
1719 SHF_ALLOC is set, and this is a shared object, then we also
1720 treat this section as a BFD section. We can not base the
1721 decision purely on SHF_ALLOC, because that flag is sometimes
1722 set in a relocatable object file, which would confuse the
1723 linker. */
1724 if ((hdr->sh_flags & SHF_ALLOC) != 0
1725 && (abfd->flags & DYNAMIC) != 0
1726 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1727 return FALSE;
1729 return TRUE;
1731 case SHT_DYNSYM: /* A dynamic symbol table */
1732 if (elf_dynsymtab (abfd) == shindex)
1733 return TRUE;
1735 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1736 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1737 elf_dynsymtab (abfd) = shindex;
1738 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1740 abfd->flags |= HAS_SYMS;
1742 /* Besides being a symbol table, we also treat this as a regular
1743 section, so that objcopy can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1746 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1747 if (elf_symtab_shndx (abfd) == shindex)
1748 return TRUE;
1750 /* Get the associated symbol table. */
1751 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1752 || hdr->sh_link != elf_onesymtab (abfd))
1753 return FALSE;
1755 elf_symtab_shndx (abfd) = shindex;
1756 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1757 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1758 return TRUE;
1760 case SHT_STRTAB: /* A string table */
1761 if (hdr->bfd_section != NULL)
1762 return TRUE;
1763 if (ehdr->e_shstrndx == shindex)
1765 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1766 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1767 return TRUE;
1770 unsigned int i, num_sec;
1772 num_sec = elf_numsections (abfd);
1773 for (i = 1; i < num_sec; i++)
1775 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1776 if (hdr2->sh_link == shindex)
1778 if (! bfd_section_from_shdr (abfd, i))
1779 return FALSE;
1780 if (elf_onesymtab (abfd) == i)
1782 elf_tdata (abfd)->strtab_hdr = *hdr;
1783 elf_elfsections (abfd)[shindex] =
1784 &elf_tdata (abfd)->strtab_hdr;
1785 return TRUE;
1787 if (elf_dynsymtab (abfd) == i)
1789 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1790 elf_elfsections (abfd)[shindex] = hdr =
1791 &elf_tdata (abfd)->dynstrtab_hdr;
1792 /* We also treat this as a regular section, so
1793 that objcopy can handle it. */
1794 break;
1796 #if 0 /* Not handling other string tables specially right now. */
1797 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1798 /* We have a strtab for some random other section. */
1799 newsect = (asection *) hdr2->bfd_section;
1800 if (!newsect)
1801 break;
1802 hdr->bfd_section = newsect;
1803 hdr2 = &elf_section_data (newsect)->str_hdr;
1804 *hdr2 = *hdr;
1805 elf_elfsections (abfd)[shindex] = hdr2;
1806 #endif
1811 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1813 case SHT_REL:
1814 case SHT_RELA:
1815 /* *These* do a lot of work -- but build no sections! */
1817 asection *target_sect;
1818 Elf_Internal_Shdr *hdr2;
1819 unsigned int num_sec = elf_numsections (abfd);
1821 /* Check for a bogus link to avoid crashing. */
1822 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1823 || hdr->sh_link >= num_sec)
1825 ((*_bfd_error_handler)
1826 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1827 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1828 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1831 /* For some incomprehensible reason Oracle distributes
1832 libraries for Solaris in which some of the objects have
1833 bogus sh_link fields. It would be nice if we could just
1834 reject them, but, unfortunately, some people need to use
1835 them. We scan through the section headers; if we find only
1836 one suitable symbol table, we clobber the sh_link to point
1837 to it. I hope this doesn't break anything. */
1838 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1839 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1841 unsigned int scan;
1842 int found;
1844 found = 0;
1845 for (scan = 1; scan < num_sec; scan++)
1847 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1848 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1850 if (found != 0)
1852 found = 0;
1853 break;
1855 found = scan;
1858 if (found != 0)
1859 hdr->sh_link = found;
1862 /* Get the symbol table. */
1863 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1864 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1865 return FALSE;
1867 /* If this reloc section does not use the main symbol table we
1868 don't treat it as a reloc section. BFD can't adequately
1869 represent such a section, so at least for now, we don't
1870 try. We just present it as a normal section. We also
1871 can't use it as a reloc section if it points to the null
1872 section. */
1873 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1874 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1882 if ((target_sect->flags & SEC_RELOC) == 0
1883 || target_sect->reloc_count == 0)
1884 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1885 else
1887 bfd_size_type amt;
1888 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = bfd_alloc (abfd, amt);
1891 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1893 *hdr2 = *hdr;
1894 elf_elfsections (abfd)[shindex] = hdr2;
1895 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1896 target_sect->flags |= SEC_RELOC;
1897 target_sect->relocation = NULL;
1898 target_sect->rel_filepos = hdr->sh_offset;
1899 /* In the section to which the relocations apply, mark whether
1900 its relocations are of the REL or RELA variety. */
1901 if (hdr->sh_size != 0)
1902 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1903 abfd->flags |= HAS_RELOC;
1904 return TRUE;
1906 break;
1908 case SHT_GNU_verdef:
1909 elf_dynverdef (abfd) = shindex;
1910 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1912 break;
1914 case SHT_GNU_versym:
1915 elf_dynversym (abfd) = shindex;
1916 elf_tdata (abfd)->dynversym_hdr = *hdr;
1917 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1918 break;
1920 case SHT_GNU_verneed:
1921 elf_dynverref (abfd) = shindex;
1922 elf_tdata (abfd)->dynverref_hdr = *hdr;
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1924 break;
1926 case SHT_SHLIB:
1927 return TRUE;
1929 case SHT_GROUP:
1930 /* We need a BFD section for objcopy and relocatable linking,
1931 and it's handy to have the signature available as the section
1932 name. */
1933 name = group_signature (abfd, hdr);
1934 if (name == NULL)
1935 return FALSE;
1936 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1937 return FALSE;
1938 if (hdr->contents != NULL)
1940 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1941 unsigned int n_elt = hdr->sh_size / 4;
1942 asection *s;
1944 if (idx->flags & GRP_COMDAT)
1945 hdr->bfd_section->flags
1946 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1948 while (--n_elt != 0)
1949 if ((s = (++idx)->shdr->bfd_section) != NULL
1950 && elf_next_in_group (s) != NULL)
1952 elf_next_in_group (hdr->bfd_section) = s;
1953 break;
1956 break;
1958 default:
1959 /* Check for any processor-specific section types. */
1961 if (bed->elf_backend_section_from_shdr)
1962 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1964 break;
1967 return TRUE;
1970 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1971 Return SEC for sections that have no elf section, and NULL on error. */
1973 asection *
1974 bfd_section_from_r_symndx (bfd *abfd,
1975 struct sym_sec_cache *cache,
1976 asection *sec,
1977 unsigned long r_symndx)
1979 Elf_Internal_Shdr *symtab_hdr;
1980 unsigned char esym[sizeof (Elf64_External_Sym)];
1981 Elf_External_Sym_Shndx eshndx;
1982 Elf_Internal_Sym isym;
1983 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1985 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1986 return cache->sec[ent];
1988 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1989 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1990 &isym, esym, &eshndx) == NULL)
1991 return NULL;
1993 if (cache->abfd != abfd)
1995 memset (cache->indx, -1, sizeof (cache->indx));
1996 cache->abfd = abfd;
1998 cache->indx[ent] = r_symndx;
1999 cache->sec[ent] = sec;
2000 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2001 || isym.st_shndx > SHN_HIRESERVE)
2003 asection *s;
2004 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2005 if (s != NULL)
2006 cache->sec[ent] = s;
2008 return cache->sec[ent];
2011 /* Given an ELF section number, retrieve the corresponding BFD
2012 section. */
2014 asection *
2015 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2017 if (index >= elf_numsections (abfd))
2018 return NULL;
2019 return elf_elfsections (abfd)[index]->bfd_section;
2022 static struct bfd_elf_special_section const special_sections[] =
2024 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2025 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2026 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2029 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2030 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { ".line", 5, 0, SHT_PROGBITS, 0 },
2032 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2033 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2034 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2035 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2036 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2037 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2038 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2040 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2041 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2042 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2043 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2044 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2045 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2046 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2047 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2048 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2049 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2050 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2051 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2052 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2053 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2054 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2055 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2056 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2057 { ".note", 5, -1, SHT_NOTE, 0 },
2058 { ".rela", 5, -1, SHT_RELA, 0 },
2059 { ".rel", 4, -1, SHT_REL, 0 },
2060 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2061 { NULL, 0, 0, 0, 0 }
2064 static const struct bfd_elf_special_section *
2065 get_special_section (const char *name,
2066 const struct bfd_elf_special_section *special_sections,
2067 unsigned int rela)
2069 int i;
2070 int len = strlen (name);
2072 for (i = 0; special_sections[i].prefix != NULL; i++)
2074 int suffix_len;
2075 int prefix_len = special_sections[i].prefix_length;
2077 if (len < prefix_len)
2078 continue;
2079 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2080 continue;
2082 suffix_len = special_sections[i].suffix_length;
2083 if (suffix_len <= 0)
2085 if (name[prefix_len] != 0)
2087 if (suffix_len == 0)
2088 continue;
2089 if (name[prefix_len] != '.'
2090 && (suffix_len == -2
2091 || (rela && special_sections[i].type == SHT_REL)))
2092 continue;
2095 else
2097 if (len < prefix_len + suffix_len)
2098 continue;
2099 if (memcmp (name + len - suffix_len,
2100 special_sections[i].prefix + prefix_len,
2101 suffix_len) != 0)
2102 continue;
2104 return &special_sections[i];
2107 return NULL;
2110 const struct bfd_elf_special_section *
2111 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2114 const struct bfd_elf_special_section *ssect = NULL;
2116 /* See if this is one of the special sections. */
2117 if (name)
2119 unsigned int rela = bed->default_use_rela_p;
2121 if (bed->special_sections)
2122 ssect = get_special_section (name, bed->special_sections, rela);
2124 if (! ssect)
2125 ssect = get_special_section (name, special_sections, rela);
2128 return ssect;
2131 bfd_boolean
2132 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2134 struct bfd_elf_section_data *sdata;
2135 const struct bfd_elf_special_section *ssect;
2137 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2138 if (sdata == NULL)
2140 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2141 if (sdata == NULL)
2142 return FALSE;
2143 sec->used_by_bfd = sdata;
2146 elf_section_type (sec) = SHT_NULL;
2147 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2148 if (ssect != NULL)
2150 elf_section_type (sec) = ssect->type;
2151 elf_section_flags (sec) = ssect->attr;
2154 /* Indicate whether or not this section should use RELA relocations. */
2155 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2157 return TRUE;
2160 /* Create a new bfd section from an ELF program header.
2162 Since program segments have no names, we generate a synthetic name
2163 of the form segment<NUM>, where NUM is generally the index in the
2164 program header table. For segments that are split (see below) we
2165 generate the names segment<NUM>a and segment<NUM>b.
2167 Note that some program segments may have a file size that is different than
2168 (less than) the memory size. All this means is that at execution the
2169 system must allocate the amount of memory specified by the memory size,
2170 but only initialize it with the first "file size" bytes read from the
2171 file. This would occur for example, with program segments consisting
2172 of combined data+bss.
2174 To handle the above situation, this routine generates TWO bfd sections
2175 for the single program segment. The first has the length specified by
2176 the file size of the segment, and the second has the length specified
2177 by the difference between the two sizes. In effect, the segment is split
2178 into it's initialized and uninitialized parts.
2182 bfd_boolean
2183 _bfd_elf_make_section_from_phdr (bfd *abfd,
2184 Elf_Internal_Phdr *hdr,
2185 int index,
2186 const char *typename)
2188 asection *newsect;
2189 char *name;
2190 char namebuf[64];
2191 size_t len;
2192 int split;
2194 split = ((hdr->p_memsz > 0)
2195 && (hdr->p_filesz > 0)
2196 && (hdr->p_memsz > hdr->p_filesz));
2197 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2198 len = strlen (namebuf) + 1;
2199 name = bfd_alloc (abfd, len);
2200 if (!name)
2201 return FALSE;
2202 memcpy (name, namebuf, len);
2203 newsect = bfd_make_section (abfd, name);
2204 if (newsect == NULL)
2205 return FALSE;
2206 newsect->vma = hdr->p_vaddr;
2207 newsect->lma = hdr->p_paddr;
2208 newsect->_raw_size = hdr->p_filesz;
2209 newsect->filepos = hdr->p_offset;
2210 newsect->flags |= SEC_HAS_CONTENTS;
2211 newsect->alignment_power = bfd_log2 (hdr->p_align);
2212 if (hdr->p_type == PT_LOAD)
2214 newsect->flags |= SEC_ALLOC;
2215 newsect->flags |= SEC_LOAD;
2216 if (hdr->p_flags & PF_X)
2218 /* FIXME: all we known is that it has execute PERMISSION,
2219 may be data. */
2220 newsect->flags |= SEC_CODE;
2223 if (!(hdr->p_flags & PF_W))
2225 newsect->flags |= SEC_READONLY;
2228 if (split)
2230 sprintf (namebuf, "%s%db", typename, index);
2231 len = strlen (namebuf) + 1;
2232 name = bfd_alloc (abfd, len);
2233 if (!name)
2234 return FALSE;
2235 memcpy (name, namebuf, len);
2236 newsect = bfd_make_section (abfd, name);
2237 if (newsect == NULL)
2238 return FALSE;
2239 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2240 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2241 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2242 if (hdr->p_type == PT_LOAD)
2244 newsect->flags |= SEC_ALLOC;
2245 if (hdr->p_flags & PF_X)
2246 newsect->flags |= SEC_CODE;
2248 if (!(hdr->p_flags & PF_W))
2249 newsect->flags |= SEC_READONLY;
2252 return TRUE;
2255 bfd_boolean
2256 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2258 const struct elf_backend_data *bed;
2260 switch (hdr->p_type)
2262 case PT_NULL:
2263 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2265 case PT_LOAD:
2266 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2268 case PT_DYNAMIC:
2269 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2271 case PT_INTERP:
2272 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2274 case PT_NOTE:
2275 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2276 return FALSE;
2277 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2278 return FALSE;
2279 return TRUE;
2281 case PT_SHLIB:
2282 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2284 case PT_PHDR:
2285 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2287 case PT_GNU_EH_FRAME:
2288 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2289 "eh_frame_hdr");
2291 case PT_GNU_STACK:
2292 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2294 default:
2295 /* Check for any processor-specific program segment types.
2296 If no handler for them, default to making "segment" sections. */
2297 bed = get_elf_backend_data (abfd);
2298 if (bed->elf_backend_section_from_phdr)
2299 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2300 else
2301 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2305 /* Initialize REL_HDR, the section-header for new section, containing
2306 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2307 relocations; otherwise, we use REL relocations. */
2309 bfd_boolean
2310 _bfd_elf_init_reloc_shdr (bfd *abfd,
2311 Elf_Internal_Shdr *rel_hdr,
2312 asection *asect,
2313 bfd_boolean use_rela_p)
2315 char *name;
2316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2317 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2319 name = bfd_alloc (abfd, amt);
2320 if (name == NULL)
2321 return FALSE;
2322 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2323 rel_hdr->sh_name =
2324 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2325 FALSE);
2326 if (rel_hdr->sh_name == (unsigned int) -1)
2327 return FALSE;
2328 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2329 rel_hdr->sh_entsize = (use_rela_p
2330 ? bed->s->sizeof_rela
2331 : bed->s->sizeof_rel);
2332 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2333 rel_hdr->sh_flags = 0;
2334 rel_hdr->sh_addr = 0;
2335 rel_hdr->sh_size = 0;
2336 rel_hdr->sh_offset = 0;
2338 return TRUE;
2341 /* Set up an ELF internal section header for a section. */
2343 static void
2344 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2347 bfd_boolean *failedptr = failedptrarg;
2348 Elf_Internal_Shdr *this_hdr;
2350 if (*failedptr)
2352 /* We already failed; just get out of the bfd_map_over_sections
2353 loop. */
2354 return;
2357 this_hdr = &elf_section_data (asect)->this_hdr;
2359 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2360 asect->name, FALSE);
2361 if (this_hdr->sh_name == (unsigned int) -1)
2363 *failedptr = TRUE;
2364 return;
2367 this_hdr->sh_flags = 0;
2369 if ((asect->flags & SEC_ALLOC) != 0
2370 || asect->user_set_vma)
2371 this_hdr->sh_addr = asect->vma;
2372 else
2373 this_hdr->sh_addr = 0;
2375 this_hdr->sh_offset = 0;
2376 this_hdr->sh_size = asect->_raw_size;
2377 this_hdr->sh_link = 0;
2378 this_hdr->sh_addralign = 1 << asect->alignment_power;
2379 /* The sh_entsize and sh_info fields may have been set already by
2380 copy_private_section_data. */
2382 this_hdr->bfd_section = asect;
2383 this_hdr->contents = NULL;
2385 /* If the section type is unspecified, we set it based on
2386 asect->flags. */
2387 if (this_hdr->sh_type == SHT_NULL)
2389 if ((asect->flags & SEC_ALLOC) != 0
2390 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2391 || (asect->flags & SEC_NEVER_LOAD) != 0))
2392 this_hdr->sh_type = SHT_NOBITS;
2393 else
2394 this_hdr->sh_type = SHT_PROGBITS;
2397 switch (this_hdr->sh_type)
2399 default:
2400 break;
2402 case SHT_STRTAB:
2403 case SHT_INIT_ARRAY:
2404 case SHT_FINI_ARRAY:
2405 case SHT_PREINIT_ARRAY:
2406 case SHT_NOTE:
2407 case SHT_NOBITS:
2408 case SHT_PROGBITS:
2409 break;
2411 case SHT_HASH:
2412 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2413 break;
2415 case SHT_DYNSYM:
2416 this_hdr->sh_entsize = bed->s->sizeof_sym;
2417 break;
2419 case SHT_DYNAMIC:
2420 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2421 break;
2423 case SHT_RELA:
2424 if (get_elf_backend_data (abfd)->may_use_rela_p)
2425 this_hdr->sh_entsize = bed->s->sizeof_rela;
2426 break;
2428 case SHT_REL:
2429 if (get_elf_backend_data (abfd)->may_use_rel_p)
2430 this_hdr->sh_entsize = bed->s->sizeof_rel;
2431 break;
2433 case SHT_GNU_versym:
2434 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2435 break;
2437 case SHT_GNU_verdef:
2438 this_hdr->sh_entsize = 0;
2439 /* objcopy or strip will copy over sh_info, but may not set
2440 cverdefs. The linker will set cverdefs, but sh_info will be
2441 zero. */
2442 if (this_hdr->sh_info == 0)
2443 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2444 else
2445 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2446 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2447 break;
2449 case SHT_GNU_verneed:
2450 this_hdr->sh_entsize = 0;
2451 /* objcopy or strip will copy over sh_info, but may not set
2452 cverrefs. The linker will set cverrefs, but sh_info will be
2453 zero. */
2454 if (this_hdr->sh_info == 0)
2455 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2456 else
2457 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2458 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2459 break;
2461 case SHT_GROUP:
2462 this_hdr->sh_entsize = 4;
2463 break;
2466 if ((asect->flags & SEC_ALLOC) != 0)
2467 this_hdr->sh_flags |= SHF_ALLOC;
2468 if ((asect->flags & SEC_READONLY) == 0)
2469 this_hdr->sh_flags |= SHF_WRITE;
2470 if ((asect->flags & SEC_CODE) != 0)
2471 this_hdr->sh_flags |= SHF_EXECINSTR;
2472 if ((asect->flags & SEC_MERGE) != 0)
2474 this_hdr->sh_flags |= SHF_MERGE;
2475 this_hdr->sh_entsize = asect->entsize;
2476 if ((asect->flags & SEC_STRINGS) != 0)
2477 this_hdr->sh_flags |= SHF_STRINGS;
2479 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2480 this_hdr->sh_flags |= SHF_GROUP;
2481 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2483 this_hdr->sh_flags |= SHF_TLS;
2484 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2486 struct bfd_link_order *o;
2488 this_hdr->sh_size = 0;
2489 for (o = asect->link_order_head; o != NULL; o = o->next)
2490 if (this_hdr->sh_size < o->offset + o->size)
2491 this_hdr->sh_size = o->offset + o->size;
2492 if (this_hdr->sh_size)
2493 this_hdr->sh_type = SHT_NOBITS;
2497 /* Check for processor-specific section types. */
2498 if (bed->elf_backend_fake_sections
2499 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2500 *failedptr = TRUE;
2502 /* If the section has relocs, set up a section header for the
2503 SHT_REL[A] section. If two relocation sections are required for
2504 this section, it is up to the processor-specific back-end to
2505 create the other. */
2506 if ((asect->flags & SEC_RELOC) != 0
2507 && !_bfd_elf_init_reloc_shdr (abfd,
2508 &elf_section_data (asect)->rel_hdr,
2509 asect,
2510 asect->use_rela_p))
2511 *failedptr = TRUE;
2514 /* Fill in the contents of a SHT_GROUP section. */
2516 void
2517 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2519 bfd_boolean *failedptr = failedptrarg;
2520 unsigned long symindx;
2521 asection *elt, *first;
2522 unsigned char *loc;
2523 struct bfd_link_order *l;
2524 bfd_boolean gas;
2526 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2527 || *failedptr)
2528 return;
2530 symindx = 0;
2531 if (elf_group_id (sec) != NULL)
2532 symindx = elf_group_id (sec)->udata.i;
2534 if (symindx == 0)
2536 /* If called from the assembler, swap_out_syms will have set up
2537 elf_section_syms; If called for "ld -r", use target_index. */
2538 if (elf_section_syms (abfd) != NULL)
2539 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2540 else
2541 symindx = sec->target_index;
2543 elf_section_data (sec)->this_hdr.sh_info = symindx;
2545 /* The contents won't be allocated for "ld -r" or objcopy. */
2546 gas = TRUE;
2547 if (sec->contents == NULL)
2549 gas = FALSE;
2550 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2552 /* Arrange for the section to be written out. */
2553 elf_section_data (sec)->this_hdr.contents = sec->contents;
2554 if (sec->contents == NULL)
2556 *failedptr = TRUE;
2557 return;
2561 loc = sec->contents + sec->_raw_size;
2563 /* Get the pointer to the first section in the group that gas
2564 squirreled away here. objcopy arranges for this to be set to the
2565 start of the input section group. */
2566 first = elt = elf_next_in_group (sec);
2568 /* First element is a flag word. Rest of section is elf section
2569 indices for all the sections of the group. Write them backwards
2570 just to keep the group in the same order as given in .section
2571 directives, not that it matters. */
2572 while (elt != NULL)
2574 asection *s;
2575 unsigned int idx;
2577 loc -= 4;
2578 s = elt;
2579 if (!gas)
2580 s = s->output_section;
2581 idx = 0;
2582 if (s != NULL)
2583 idx = elf_section_data (s)->this_idx;
2584 H_PUT_32 (abfd, idx, loc);
2585 elt = elf_next_in_group (elt);
2586 if (elt == first)
2587 break;
2590 /* If this is a relocatable link, then the above did nothing because
2591 SEC is the output section. Look through the input sections
2592 instead. */
2593 for (l = sec->link_order_head; l != NULL; l = l->next)
2594 if (l->type == bfd_indirect_link_order
2595 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2598 loc -= 4;
2599 H_PUT_32 (abfd,
2600 elf_section_data (elt->output_section)->this_idx, loc);
2601 elt = elf_next_in_group (elt);
2602 /* During a relocatable link, the lists are circular. */
2604 while (elt != elf_next_in_group (l->u.indirect.section));
2606 /* With ld -r, merging SHT_GROUP sections results in wasted space
2607 due to allowing for the flag word on each input. We may well
2608 duplicate entries too. */
2609 while ((loc -= 4) > sec->contents)
2610 H_PUT_32 (abfd, 0, loc);
2612 if (loc != sec->contents)
2613 abort ();
2615 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2618 /* Assign all ELF section numbers. The dummy first section is handled here
2619 too. The link/info pointers for the standard section types are filled
2620 in here too, while we're at it. */
2622 static bfd_boolean
2623 assign_section_numbers (bfd *abfd)
2625 struct elf_obj_tdata *t = elf_tdata (abfd);
2626 asection *sec;
2627 unsigned int section_number, secn;
2628 Elf_Internal_Shdr **i_shdrp;
2629 bfd_size_type amt;
2631 section_number = 1;
2633 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2635 for (sec = abfd->sections; sec; sec = sec->next)
2637 struct bfd_elf_section_data *d = elf_section_data (sec);
2639 if (section_number == SHN_LORESERVE)
2640 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2641 d->this_idx = section_number++;
2642 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2643 if ((sec->flags & SEC_RELOC) == 0)
2644 d->rel_idx = 0;
2645 else
2647 if (section_number == SHN_LORESERVE)
2648 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2649 d->rel_idx = section_number++;
2650 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2653 if (d->rel_hdr2)
2655 if (section_number == SHN_LORESERVE)
2656 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2657 d->rel_idx2 = section_number++;
2658 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2660 else
2661 d->rel_idx2 = 0;
2664 if (section_number == SHN_LORESERVE)
2665 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2666 t->shstrtab_section = section_number++;
2667 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2668 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2670 if (bfd_get_symcount (abfd) > 0)
2672 if (section_number == SHN_LORESERVE)
2673 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2674 t->symtab_section = section_number++;
2675 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2676 if (section_number > SHN_LORESERVE - 2)
2678 if (section_number == SHN_LORESERVE)
2679 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2680 t->symtab_shndx_section = section_number++;
2681 t->symtab_shndx_hdr.sh_name
2682 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2683 ".symtab_shndx", FALSE);
2684 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2685 return FALSE;
2687 if (section_number == SHN_LORESERVE)
2688 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2689 t->strtab_section = section_number++;
2690 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2693 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2694 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2696 elf_numsections (abfd) = section_number;
2697 elf_elfheader (abfd)->e_shnum = section_number;
2698 if (section_number > SHN_LORESERVE)
2699 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2701 /* Set up the list of section header pointers, in agreement with the
2702 indices. */
2703 amt = section_number * sizeof (Elf_Internal_Shdr *);
2704 i_shdrp = bfd_zalloc (abfd, amt);
2705 if (i_shdrp == NULL)
2706 return FALSE;
2708 amt = sizeof (Elf_Internal_Shdr);
2709 i_shdrp[0] = bfd_zalloc (abfd, amt);
2710 if (i_shdrp[0] == NULL)
2712 bfd_release (abfd, i_shdrp);
2713 return FALSE;
2716 elf_elfsections (abfd) = i_shdrp;
2718 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2719 if (bfd_get_symcount (abfd) > 0)
2721 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2722 if (elf_numsections (abfd) > SHN_LORESERVE)
2724 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2725 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2727 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2728 t->symtab_hdr.sh_link = t->strtab_section;
2730 for (sec = abfd->sections; sec; sec = sec->next)
2732 struct bfd_elf_section_data *d = elf_section_data (sec);
2733 asection *s;
2734 const char *name;
2736 i_shdrp[d->this_idx] = &d->this_hdr;
2737 if (d->rel_idx != 0)
2738 i_shdrp[d->rel_idx] = &d->rel_hdr;
2739 if (d->rel_idx2 != 0)
2740 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2742 /* Fill in the sh_link and sh_info fields while we're at it. */
2744 /* sh_link of a reloc section is the section index of the symbol
2745 table. sh_info is the section index of the section to which
2746 the relocation entries apply. */
2747 if (d->rel_idx != 0)
2749 d->rel_hdr.sh_link = t->symtab_section;
2750 d->rel_hdr.sh_info = d->this_idx;
2752 if (d->rel_idx2 != 0)
2754 d->rel_hdr2->sh_link = t->symtab_section;
2755 d->rel_hdr2->sh_info = d->this_idx;
2758 switch (d->this_hdr.sh_type)
2760 case SHT_REL:
2761 case SHT_RELA:
2762 /* A reloc section which we are treating as a normal BFD
2763 section. sh_link is the section index of the symbol
2764 table. sh_info is the section index of the section to
2765 which the relocation entries apply. We assume that an
2766 allocated reloc section uses the dynamic symbol table.
2767 FIXME: How can we be sure? */
2768 s = bfd_get_section_by_name (abfd, ".dynsym");
2769 if (s != NULL)
2770 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2772 /* We look up the section the relocs apply to by name. */
2773 name = sec->name;
2774 if (d->this_hdr.sh_type == SHT_REL)
2775 name += 4;
2776 else
2777 name += 5;
2778 s = bfd_get_section_by_name (abfd, name);
2779 if (s != NULL)
2780 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2781 break;
2783 case SHT_STRTAB:
2784 /* We assume that a section named .stab*str is a stabs
2785 string section. We look for a section with the same name
2786 but without the trailing ``str'', and set its sh_link
2787 field to point to this section. */
2788 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2789 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2791 size_t len;
2792 char *alc;
2794 len = strlen (sec->name);
2795 alc = bfd_malloc (len - 2);
2796 if (alc == NULL)
2797 return FALSE;
2798 memcpy (alc, sec->name, len - 3);
2799 alc[len - 3] = '\0';
2800 s = bfd_get_section_by_name (abfd, alc);
2801 free (alc);
2802 if (s != NULL)
2804 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2806 /* This is a .stab section. */
2807 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2808 elf_section_data (s)->this_hdr.sh_entsize
2809 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2812 break;
2814 case SHT_DYNAMIC:
2815 case SHT_DYNSYM:
2816 case SHT_GNU_verneed:
2817 case SHT_GNU_verdef:
2818 /* sh_link is the section header index of the string table
2819 used for the dynamic entries, or the symbol table, or the
2820 version strings. */
2821 s = bfd_get_section_by_name (abfd, ".dynstr");
2822 if (s != NULL)
2823 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2824 break;
2826 case SHT_HASH:
2827 case SHT_GNU_versym:
2828 /* sh_link is the section header index of the symbol table
2829 this hash table or version table is for. */
2830 s = bfd_get_section_by_name (abfd, ".dynsym");
2831 if (s != NULL)
2832 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2833 break;
2835 case SHT_GROUP:
2836 d->this_hdr.sh_link = t->symtab_section;
2840 for (secn = 1; secn < section_number; ++secn)
2841 if (i_shdrp[secn] == NULL)
2842 i_shdrp[secn] = i_shdrp[0];
2843 else
2844 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2845 i_shdrp[secn]->sh_name);
2846 return TRUE;
2849 /* Map symbol from it's internal number to the external number, moving
2850 all local symbols to be at the head of the list. */
2852 static int
2853 sym_is_global (bfd *abfd, asymbol *sym)
2855 /* If the backend has a special mapping, use it. */
2856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2857 if (bed->elf_backend_sym_is_global)
2858 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2860 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2861 || bfd_is_und_section (bfd_get_section (sym))
2862 || bfd_is_com_section (bfd_get_section (sym)));
2865 static bfd_boolean
2866 elf_map_symbols (bfd *abfd)
2868 unsigned int symcount = bfd_get_symcount (abfd);
2869 asymbol **syms = bfd_get_outsymbols (abfd);
2870 asymbol **sect_syms;
2871 unsigned int num_locals = 0;
2872 unsigned int num_globals = 0;
2873 unsigned int num_locals2 = 0;
2874 unsigned int num_globals2 = 0;
2875 int max_index = 0;
2876 unsigned int idx;
2877 asection *asect;
2878 asymbol **new_syms;
2879 bfd_size_type amt;
2881 #ifdef DEBUG
2882 fprintf (stderr, "elf_map_symbols\n");
2883 fflush (stderr);
2884 #endif
2886 for (asect = abfd->sections; asect; asect = asect->next)
2888 if (max_index < asect->index)
2889 max_index = asect->index;
2892 max_index++;
2893 amt = max_index * sizeof (asymbol *);
2894 sect_syms = bfd_zalloc (abfd, amt);
2895 if (sect_syms == NULL)
2896 return FALSE;
2897 elf_section_syms (abfd) = sect_syms;
2898 elf_num_section_syms (abfd) = max_index;
2900 /* Init sect_syms entries for any section symbols we have already
2901 decided to output. */
2902 for (idx = 0; idx < symcount; idx++)
2904 asymbol *sym = syms[idx];
2906 if ((sym->flags & BSF_SECTION_SYM) != 0
2907 && sym->value == 0)
2909 asection *sec;
2911 sec = sym->section;
2913 if (sec->owner != NULL)
2915 if (sec->owner != abfd)
2917 if (sec->output_offset != 0)
2918 continue;
2920 sec = sec->output_section;
2922 /* Empty sections in the input files may have had a
2923 section symbol created for them. (See the comment
2924 near the end of _bfd_generic_link_output_symbols in
2925 linker.c). If the linker script discards such
2926 sections then we will reach this point. Since we know
2927 that we cannot avoid this case, we detect it and skip
2928 the abort and the assignment to the sect_syms array.
2929 To reproduce this particular case try running the
2930 linker testsuite test ld-scripts/weak.exp for an ELF
2931 port that uses the generic linker. */
2932 if (sec->owner == NULL)
2933 continue;
2935 BFD_ASSERT (sec->owner == abfd);
2937 sect_syms[sec->index] = syms[idx];
2942 /* Classify all of the symbols. */
2943 for (idx = 0; idx < symcount; idx++)
2945 if (!sym_is_global (abfd, syms[idx]))
2946 num_locals++;
2947 else
2948 num_globals++;
2951 /* We will be adding a section symbol for each BFD section. Most normal
2952 sections will already have a section symbol in outsymbols, but
2953 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2954 at least in that case. */
2955 for (asect = abfd->sections; asect; asect = asect->next)
2957 if (sect_syms[asect->index] == NULL)
2959 if (!sym_is_global (abfd, asect->symbol))
2960 num_locals++;
2961 else
2962 num_globals++;
2966 /* Now sort the symbols so the local symbols are first. */
2967 amt = (num_locals + num_globals) * sizeof (asymbol *);
2968 new_syms = bfd_alloc (abfd, amt);
2970 if (new_syms == NULL)
2971 return FALSE;
2973 for (idx = 0; idx < symcount; idx++)
2975 asymbol *sym = syms[idx];
2976 unsigned int i;
2978 if (!sym_is_global (abfd, sym))
2979 i = num_locals2++;
2980 else
2981 i = num_locals + num_globals2++;
2982 new_syms[i] = sym;
2983 sym->udata.i = i + 1;
2985 for (asect = abfd->sections; asect; asect = asect->next)
2987 if (sect_syms[asect->index] == NULL)
2989 asymbol *sym = asect->symbol;
2990 unsigned int i;
2992 sect_syms[asect->index] = sym;
2993 if (!sym_is_global (abfd, sym))
2994 i = num_locals2++;
2995 else
2996 i = num_locals + num_globals2++;
2997 new_syms[i] = sym;
2998 sym->udata.i = i + 1;
3002 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3004 elf_num_locals (abfd) = num_locals;
3005 elf_num_globals (abfd) = num_globals;
3006 return TRUE;
3009 /* Align to the maximum file alignment that could be required for any
3010 ELF data structure. */
3012 static inline file_ptr
3013 align_file_position (file_ptr off, int align)
3015 return (off + align - 1) & ~(align - 1);
3018 /* Assign a file position to a section, optionally aligning to the
3019 required section alignment. */
3021 file_ptr
3022 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3023 file_ptr offset,
3024 bfd_boolean align)
3026 if (align)
3028 unsigned int al;
3030 al = i_shdrp->sh_addralign;
3031 if (al > 1)
3032 offset = BFD_ALIGN (offset, al);
3034 i_shdrp->sh_offset = offset;
3035 if (i_shdrp->bfd_section != NULL)
3036 i_shdrp->bfd_section->filepos = offset;
3037 if (i_shdrp->sh_type != SHT_NOBITS)
3038 offset += i_shdrp->sh_size;
3039 return offset;
3042 /* Compute the file positions we are going to put the sections at, and
3043 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3044 is not NULL, this is being called by the ELF backend linker. */
3046 bfd_boolean
3047 _bfd_elf_compute_section_file_positions (bfd *abfd,
3048 struct bfd_link_info *link_info)
3050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3051 bfd_boolean failed;
3052 struct bfd_strtab_hash *strtab;
3053 Elf_Internal_Shdr *shstrtab_hdr;
3055 if (abfd->output_has_begun)
3056 return TRUE;
3058 /* Do any elf backend specific processing first. */
3059 if (bed->elf_backend_begin_write_processing)
3060 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3062 if (! prep_headers (abfd))
3063 return FALSE;
3065 /* Post process the headers if necessary. */
3066 if (bed->elf_backend_post_process_headers)
3067 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3069 failed = FALSE;
3070 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3071 if (failed)
3072 return FALSE;
3074 if (!assign_section_numbers (abfd))
3075 return FALSE;
3077 /* The backend linker builds symbol table information itself. */
3078 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3080 /* Non-zero if doing a relocatable link. */
3081 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3083 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3084 return FALSE;
3087 if (link_info == NULL)
3089 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3090 if (failed)
3091 return FALSE;
3094 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3095 /* sh_name was set in prep_headers. */
3096 shstrtab_hdr->sh_type = SHT_STRTAB;
3097 shstrtab_hdr->sh_flags = 0;
3098 shstrtab_hdr->sh_addr = 0;
3099 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3100 shstrtab_hdr->sh_entsize = 0;
3101 shstrtab_hdr->sh_link = 0;
3102 shstrtab_hdr->sh_info = 0;
3103 /* sh_offset is set in assign_file_positions_except_relocs. */
3104 shstrtab_hdr->sh_addralign = 1;
3106 if (!assign_file_positions_except_relocs (abfd, link_info))
3107 return FALSE;
3109 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3111 file_ptr off;
3112 Elf_Internal_Shdr *hdr;
3114 off = elf_tdata (abfd)->next_file_pos;
3116 hdr = &elf_tdata (abfd)->symtab_hdr;
3117 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3119 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3120 if (hdr->sh_size != 0)
3121 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3123 hdr = &elf_tdata (abfd)->strtab_hdr;
3124 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3126 elf_tdata (abfd)->next_file_pos = off;
3128 /* Now that we know where the .strtab section goes, write it
3129 out. */
3130 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3131 || ! _bfd_stringtab_emit (abfd, strtab))
3132 return FALSE;
3133 _bfd_stringtab_free (strtab);
3136 abfd->output_has_begun = TRUE;
3138 return TRUE;
3141 /* Create a mapping from a set of sections to a program segment. */
3143 static struct elf_segment_map *
3144 make_mapping (bfd *abfd,
3145 asection **sections,
3146 unsigned int from,
3147 unsigned int to,
3148 bfd_boolean phdr)
3150 struct elf_segment_map *m;
3151 unsigned int i;
3152 asection **hdrpp;
3153 bfd_size_type amt;
3155 amt = sizeof (struct elf_segment_map);
3156 amt += (to - from - 1) * sizeof (asection *);
3157 m = bfd_zalloc (abfd, amt);
3158 if (m == NULL)
3159 return NULL;
3160 m->next = NULL;
3161 m->p_type = PT_LOAD;
3162 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3163 m->sections[i - from] = *hdrpp;
3164 m->count = to - from;
3166 if (from == 0 && phdr)
3168 /* Include the headers in the first PT_LOAD segment. */
3169 m->includes_filehdr = 1;
3170 m->includes_phdrs = 1;
3173 return m;
3176 /* Set up a mapping from BFD sections to program segments. */
3178 static bfd_boolean
3179 map_sections_to_segments (bfd *abfd)
3181 asection **sections = NULL;
3182 asection *s;
3183 unsigned int i;
3184 unsigned int count;
3185 struct elf_segment_map *mfirst;
3186 struct elf_segment_map **pm;
3187 struct elf_segment_map *m;
3188 asection *last_hdr;
3189 unsigned int phdr_index;
3190 bfd_vma maxpagesize;
3191 asection **hdrpp;
3192 bfd_boolean phdr_in_segment = TRUE;
3193 bfd_boolean writable;
3194 int tls_count = 0;
3195 asection *first_tls = NULL;
3196 asection *dynsec, *eh_frame_hdr;
3197 bfd_size_type amt;
3199 if (elf_tdata (abfd)->segment_map != NULL)
3200 return TRUE;
3202 if (bfd_count_sections (abfd) == 0)
3203 return TRUE;
3205 /* Select the allocated sections, and sort them. */
3207 amt = bfd_count_sections (abfd) * sizeof (asection *);
3208 sections = bfd_malloc (amt);
3209 if (sections == NULL)
3210 goto error_return;
3212 i = 0;
3213 for (s = abfd->sections; s != NULL; s = s->next)
3215 if ((s->flags & SEC_ALLOC) != 0)
3217 sections[i] = s;
3218 ++i;
3221 BFD_ASSERT (i <= bfd_count_sections (abfd));
3222 count = i;
3224 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3226 /* Build the mapping. */
3228 mfirst = NULL;
3229 pm = &mfirst;
3231 /* If we have a .interp section, then create a PT_PHDR segment for
3232 the program headers and a PT_INTERP segment for the .interp
3233 section. */
3234 s = bfd_get_section_by_name (abfd, ".interp");
3235 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3237 amt = sizeof (struct elf_segment_map);
3238 m = bfd_zalloc (abfd, amt);
3239 if (m == NULL)
3240 goto error_return;
3241 m->next = NULL;
3242 m->p_type = PT_PHDR;
3243 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3244 m->p_flags = PF_R | PF_X;
3245 m->p_flags_valid = 1;
3246 m->includes_phdrs = 1;
3248 *pm = m;
3249 pm = &m->next;
3251 amt = sizeof (struct elf_segment_map);
3252 m = bfd_zalloc (abfd, amt);
3253 if (m == NULL)
3254 goto error_return;
3255 m->next = NULL;
3256 m->p_type = PT_INTERP;
3257 m->count = 1;
3258 m->sections[0] = s;
3260 *pm = m;
3261 pm = &m->next;
3264 /* Look through the sections. We put sections in the same program
3265 segment when the start of the second section can be placed within
3266 a few bytes of the end of the first section. */
3267 last_hdr = NULL;
3268 phdr_index = 0;
3269 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3270 writable = FALSE;
3271 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3272 if (dynsec != NULL
3273 && (dynsec->flags & SEC_LOAD) == 0)
3274 dynsec = NULL;
3276 /* Deal with -Ttext or something similar such that the first section
3277 is not adjacent to the program headers. This is an
3278 approximation, since at this point we don't know exactly how many
3279 program headers we will need. */
3280 if (count > 0)
3282 bfd_size_type phdr_size;
3284 phdr_size = elf_tdata (abfd)->program_header_size;
3285 if (phdr_size == 0)
3286 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3287 if ((abfd->flags & D_PAGED) == 0
3288 || sections[0]->lma < phdr_size
3289 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3290 phdr_in_segment = FALSE;
3293 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3295 asection *hdr;
3296 bfd_boolean new_segment;
3298 hdr = *hdrpp;
3300 /* See if this section and the last one will fit in the same
3301 segment. */
3303 if (last_hdr == NULL)
3305 /* If we don't have a segment yet, then we don't need a new
3306 one (we build the last one after this loop). */
3307 new_segment = FALSE;
3309 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3311 /* If this section has a different relation between the
3312 virtual address and the load address, then we need a new
3313 segment. */
3314 new_segment = TRUE;
3316 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3317 < BFD_ALIGN (hdr->lma, maxpagesize))
3319 /* If putting this section in this segment would force us to
3320 skip a page in the segment, then we need a new segment. */
3321 new_segment = TRUE;
3323 else if ((last_hdr->flags & SEC_LOAD) == 0
3324 && (hdr->flags & SEC_LOAD) != 0)
3326 /* We don't want to put a loadable section after a
3327 nonloadable section in the same segment. */
3328 new_segment = TRUE;
3330 else if ((abfd->flags & D_PAGED) == 0)
3332 /* If the file is not demand paged, which means that we
3333 don't require the sections to be correctly aligned in the
3334 file, then there is no other reason for a new segment. */
3335 new_segment = FALSE;
3337 else if (! writable
3338 && (hdr->flags & SEC_READONLY) == 0
3339 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3340 & ~(maxpagesize - 1))
3341 != (hdr->lma & ~(maxpagesize - 1))))
3343 /* We don't want to put a writable section in a read only
3344 segment, unless they are on the same page in memory
3345 anyhow. We already know that the last section does not
3346 bring us past the current section on the page, so the
3347 only case in which the new section is not on the same
3348 page as the previous section is when the previous section
3349 ends precisely on a page boundary. */
3350 new_segment = TRUE;
3352 else
3354 /* Otherwise, we can use the same segment. */
3355 new_segment = FALSE;
3358 if (! new_segment)
3360 if ((hdr->flags & SEC_READONLY) == 0)
3361 writable = TRUE;
3362 last_hdr = hdr;
3363 continue;
3366 /* We need a new program segment. We must create a new program
3367 header holding all the sections from phdr_index until hdr. */
3369 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3370 if (m == NULL)
3371 goto error_return;
3373 *pm = m;
3374 pm = &m->next;
3376 if ((hdr->flags & SEC_READONLY) == 0)
3377 writable = TRUE;
3378 else
3379 writable = FALSE;
3381 last_hdr = hdr;
3382 phdr_index = i;
3383 phdr_in_segment = FALSE;
3386 /* Create a final PT_LOAD program segment. */
3387 if (last_hdr != NULL)
3389 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3390 if (m == NULL)
3391 goto error_return;
3393 *pm = m;
3394 pm = &m->next;
3397 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3398 if (dynsec != NULL)
3400 amt = sizeof (struct elf_segment_map);
3401 m = bfd_zalloc (abfd, amt);
3402 if (m == NULL)
3403 goto error_return;
3404 m->next = NULL;
3405 m->p_type = PT_DYNAMIC;
3406 m->count = 1;
3407 m->sections[0] = dynsec;
3409 *pm = m;
3410 pm = &m->next;
3413 /* For each loadable .note section, add a PT_NOTE segment. We don't
3414 use bfd_get_section_by_name, because if we link together
3415 nonloadable .note sections and loadable .note sections, we will
3416 generate two .note sections in the output file. FIXME: Using
3417 names for section types is bogus anyhow. */
3418 for (s = abfd->sections; s != NULL; s = s->next)
3420 if ((s->flags & SEC_LOAD) != 0
3421 && strncmp (s->name, ".note", 5) == 0)
3423 amt = sizeof (struct elf_segment_map);
3424 m = bfd_zalloc (abfd, amt);
3425 if (m == NULL)
3426 goto error_return;
3427 m->next = NULL;
3428 m->p_type = PT_NOTE;
3429 m->count = 1;
3430 m->sections[0] = s;
3432 *pm = m;
3433 pm = &m->next;
3435 if (s->flags & SEC_THREAD_LOCAL)
3437 if (! tls_count)
3438 first_tls = s;
3439 tls_count++;
3443 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3444 if (tls_count > 0)
3446 int i;
3448 amt = sizeof (struct elf_segment_map);
3449 amt += (tls_count - 1) * sizeof (asection *);
3450 m = bfd_zalloc (abfd, amt);
3451 if (m == NULL)
3452 goto error_return;
3453 m->next = NULL;
3454 m->p_type = PT_TLS;
3455 m->count = tls_count;
3456 /* Mandated PF_R. */
3457 m->p_flags = PF_R;
3458 m->p_flags_valid = 1;
3459 for (i = 0; i < tls_count; ++i)
3461 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3462 m->sections[i] = first_tls;
3463 first_tls = first_tls->next;
3466 *pm = m;
3467 pm = &m->next;
3470 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3471 segment. */
3472 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3473 if (eh_frame_hdr != NULL
3474 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3476 amt = sizeof (struct elf_segment_map);
3477 m = bfd_zalloc (abfd, amt);
3478 if (m == NULL)
3479 goto error_return;
3480 m->next = NULL;
3481 m->p_type = PT_GNU_EH_FRAME;
3482 m->count = 1;
3483 m->sections[0] = eh_frame_hdr->output_section;
3485 *pm = m;
3486 pm = &m->next;
3489 if (elf_tdata (abfd)->stack_flags)
3491 amt = sizeof (struct elf_segment_map);
3492 m = bfd_zalloc (abfd, amt);
3493 if (m == NULL)
3494 goto error_return;
3495 m->next = NULL;
3496 m->p_type = PT_GNU_STACK;
3497 m->p_flags = elf_tdata (abfd)->stack_flags;
3498 m->p_flags_valid = 1;
3500 *pm = m;
3501 pm = &m->next;
3504 free (sections);
3505 sections = NULL;
3507 elf_tdata (abfd)->segment_map = mfirst;
3508 return TRUE;
3510 error_return:
3511 if (sections != NULL)
3512 free (sections);
3513 return FALSE;
3516 /* Sort sections by address. */
3518 static int
3519 elf_sort_sections (const void *arg1, const void *arg2)
3521 const asection *sec1 = *(const asection **) arg1;
3522 const asection *sec2 = *(const asection **) arg2;
3523 bfd_size_type size1, size2;
3525 /* Sort by LMA first, since this is the address used to
3526 place the section into a segment. */
3527 if (sec1->lma < sec2->lma)
3528 return -1;
3529 else if (sec1->lma > sec2->lma)
3530 return 1;
3532 /* Then sort by VMA. Normally the LMA and the VMA will be
3533 the same, and this will do nothing. */
3534 if (sec1->vma < sec2->vma)
3535 return -1;
3536 else if (sec1->vma > sec2->vma)
3537 return 1;
3539 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3541 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3543 if (TOEND (sec1))
3545 if (TOEND (sec2))
3547 /* If the indicies are the same, do not return 0
3548 here, but continue to try the next comparison. */
3549 if (sec1->target_index - sec2->target_index != 0)
3550 return sec1->target_index - sec2->target_index;
3552 else
3553 return 1;
3555 else if (TOEND (sec2))
3556 return -1;
3558 #undef TOEND
3560 /* Sort by size, to put zero sized sections
3561 before others at the same address. */
3563 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3564 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3566 if (size1 < size2)
3567 return -1;
3568 if (size1 > size2)
3569 return 1;
3571 return sec1->target_index - sec2->target_index;
3574 /* Assign file positions to the sections based on the mapping from
3575 sections to segments. This function also sets up some fields in
3576 the file header, and writes out the program headers. */
3578 static bfd_boolean
3579 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3582 unsigned int count;
3583 struct elf_segment_map *m;
3584 unsigned int alloc;
3585 Elf_Internal_Phdr *phdrs;
3586 file_ptr off, voff;
3587 bfd_vma filehdr_vaddr, filehdr_paddr;
3588 bfd_vma phdrs_vaddr, phdrs_paddr;
3589 Elf_Internal_Phdr *p;
3590 bfd_size_type amt;
3592 if (elf_tdata (abfd)->segment_map == NULL)
3594 if (! map_sections_to_segments (abfd))
3595 return FALSE;
3597 else
3599 /* The placement algorithm assumes that non allocated sections are
3600 not in PT_LOAD segments. We ensure this here by removing such
3601 sections from the segment map. */
3602 for (m = elf_tdata (abfd)->segment_map;
3603 m != NULL;
3604 m = m->next)
3606 unsigned int new_count;
3607 unsigned int i;
3609 if (m->p_type != PT_LOAD)
3610 continue;
3612 new_count = 0;
3613 for (i = 0; i < m->count; i ++)
3615 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3617 if (i != new_count)
3618 m->sections[new_count] = m->sections[i];
3620 new_count ++;
3624 if (new_count != m->count)
3625 m->count = new_count;
3629 if (bed->elf_backend_modify_segment_map)
3631 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3632 return FALSE;
3635 count = 0;
3636 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3637 ++count;
3639 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3640 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3641 elf_elfheader (abfd)->e_phnum = count;
3643 if (count == 0)
3644 return TRUE;
3646 /* If we already counted the number of program segments, make sure
3647 that we allocated enough space. This happens when SIZEOF_HEADERS
3648 is used in a linker script. */
3649 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3650 if (alloc != 0 && count > alloc)
3652 ((*_bfd_error_handler)
3653 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3654 bfd_get_filename (abfd), alloc, count));
3655 bfd_set_error (bfd_error_bad_value);
3656 return FALSE;
3659 if (alloc == 0)
3660 alloc = count;
3662 amt = alloc * sizeof (Elf_Internal_Phdr);
3663 phdrs = bfd_alloc (abfd, amt);
3664 if (phdrs == NULL)
3665 return FALSE;
3667 off = bed->s->sizeof_ehdr;
3668 off += alloc * bed->s->sizeof_phdr;
3670 filehdr_vaddr = 0;
3671 filehdr_paddr = 0;
3672 phdrs_vaddr = 0;
3673 phdrs_paddr = 0;
3675 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3676 m != NULL;
3677 m = m->next, p++)
3679 unsigned int i;
3680 asection **secpp;
3682 /* If elf_segment_map is not from map_sections_to_segments, the
3683 sections may not be correctly ordered. NOTE: sorting should
3684 not be done to the PT_NOTE section of a corefile, which may
3685 contain several pseudo-sections artificially created by bfd.
3686 Sorting these pseudo-sections breaks things badly. */
3687 if (m->count > 1
3688 && !(elf_elfheader (abfd)->e_type == ET_CORE
3689 && m->p_type == PT_NOTE))
3690 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3691 elf_sort_sections);
3693 p->p_type = m->p_type;
3694 p->p_flags = m->p_flags;
3696 if (p->p_type == PT_LOAD
3697 && m->count > 0
3698 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3700 if ((abfd->flags & D_PAGED) != 0)
3701 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3702 else
3704 bfd_size_type align;
3706 align = 0;
3707 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3709 bfd_size_type secalign;
3711 secalign = bfd_get_section_alignment (abfd, *secpp);
3712 if (secalign > align)
3713 align = secalign;
3716 off += (m->sections[0]->vma - off) % (1 << align);
3720 if (m->count == 0)
3721 p->p_vaddr = 0;
3722 else
3723 p->p_vaddr = m->sections[0]->vma;
3725 if (m->p_paddr_valid)
3726 p->p_paddr = m->p_paddr;
3727 else if (m->count == 0)
3728 p->p_paddr = 0;
3729 else
3730 p->p_paddr = m->sections[0]->lma;
3732 if (p->p_type == PT_LOAD
3733 && (abfd->flags & D_PAGED) != 0)
3734 p->p_align = bed->maxpagesize;
3735 else if (m->count == 0)
3736 p->p_align = 1 << bed->s->log_file_align;
3737 else
3738 p->p_align = 0;
3740 p->p_offset = 0;
3741 p->p_filesz = 0;
3742 p->p_memsz = 0;
3744 if (m->includes_filehdr)
3746 if (! m->p_flags_valid)
3747 p->p_flags |= PF_R;
3748 p->p_offset = 0;
3749 p->p_filesz = bed->s->sizeof_ehdr;
3750 p->p_memsz = bed->s->sizeof_ehdr;
3751 if (m->count > 0)
3753 BFD_ASSERT (p->p_type == PT_LOAD);
3755 if (p->p_vaddr < (bfd_vma) off)
3757 (*_bfd_error_handler)
3758 (_("%s: Not enough room for program headers, try linking with -N"),
3759 bfd_get_filename (abfd));
3760 bfd_set_error (bfd_error_bad_value);
3761 return FALSE;
3764 p->p_vaddr -= off;
3765 if (! m->p_paddr_valid)
3766 p->p_paddr -= off;
3768 if (p->p_type == PT_LOAD)
3770 filehdr_vaddr = p->p_vaddr;
3771 filehdr_paddr = p->p_paddr;
3775 if (m->includes_phdrs)
3777 if (! m->p_flags_valid)
3778 p->p_flags |= PF_R;
3780 if (m->includes_filehdr)
3782 if (p->p_type == PT_LOAD)
3784 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3785 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3788 else
3790 p->p_offset = bed->s->sizeof_ehdr;
3792 if (m->count > 0)
3794 BFD_ASSERT (p->p_type == PT_LOAD);
3795 p->p_vaddr -= off - p->p_offset;
3796 if (! m->p_paddr_valid)
3797 p->p_paddr -= off - p->p_offset;
3800 if (p->p_type == PT_LOAD)
3802 phdrs_vaddr = p->p_vaddr;
3803 phdrs_paddr = p->p_paddr;
3805 else
3806 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3809 p->p_filesz += alloc * bed->s->sizeof_phdr;
3810 p->p_memsz += alloc * bed->s->sizeof_phdr;
3813 if (p->p_type == PT_LOAD
3814 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3816 if (! m->includes_filehdr && ! m->includes_phdrs)
3817 p->p_offset = off;
3818 else
3820 file_ptr adjust;
3822 adjust = off - (p->p_offset + p->p_filesz);
3823 p->p_filesz += adjust;
3824 p->p_memsz += adjust;
3828 voff = off;
3830 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3832 asection *sec;
3833 flagword flags;
3834 bfd_size_type align;
3836 sec = *secpp;
3837 flags = sec->flags;
3838 align = 1 << bfd_get_section_alignment (abfd, sec);
3840 /* The section may have artificial alignment forced by a
3841 link script. Notice this case by the gap between the
3842 cumulative phdr lma and the section's lma. */
3843 if (p->p_paddr + p->p_memsz < sec->lma)
3845 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3847 p->p_memsz += adjust;
3848 if (p->p_type == PT_LOAD
3849 || (p->p_type == PT_NOTE
3850 && bfd_get_format (abfd) == bfd_core))
3852 off += adjust;
3853 voff += adjust;
3855 if ((flags & SEC_LOAD) != 0
3856 || (flags & SEC_THREAD_LOCAL) != 0)
3857 p->p_filesz += adjust;
3860 if (p->p_type == PT_LOAD)
3862 bfd_signed_vma adjust;
3864 if ((flags & SEC_LOAD) != 0)
3866 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3867 if (adjust < 0)
3868 adjust = 0;
3870 else if ((flags & SEC_ALLOC) != 0)
3872 /* The section VMA must equal the file position
3873 modulo the page size. FIXME: I'm not sure if
3874 this adjustment is really necessary. We used to
3875 not have the SEC_LOAD case just above, and then
3876 this was necessary, but now I'm not sure. */
3877 if ((abfd->flags & D_PAGED) != 0)
3878 adjust = (sec->vma - voff) % bed->maxpagesize;
3879 else
3880 adjust = (sec->vma - voff) % align;
3882 else
3883 adjust = 0;
3885 if (adjust != 0)
3887 if (i == 0)
3889 (* _bfd_error_handler) (_("\
3890 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3891 bfd_section_name (abfd, sec),
3892 sec->lma,
3893 p->p_paddr);
3894 return FALSE;
3896 p->p_memsz += adjust;
3897 off += adjust;
3898 voff += adjust;
3899 if ((flags & SEC_LOAD) != 0)
3900 p->p_filesz += adjust;
3903 sec->filepos = off;
3905 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3906 used in a linker script we may have a section with
3907 SEC_LOAD clear but which is supposed to have
3908 contents. */
3909 if ((flags & SEC_LOAD) != 0
3910 || (flags & SEC_HAS_CONTENTS) != 0)
3911 off += sec->_raw_size;
3913 if ((flags & SEC_ALLOC) != 0
3914 && ((flags & SEC_LOAD) != 0
3915 || (flags & SEC_THREAD_LOCAL) == 0))
3916 voff += sec->_raw_size;
3919 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3921 /* The actual "note" segment has i == 0.
3922 This is the one that actually contains everything. */
3923 if (i == 0)
3925 sec->filepos = off;
3926 p->p_filesz = sec->_raw_size;
3927 off += sec->_raw_size;
3928 voff = off;
3930 else
3932 /* Fake sections -- don't need to be written. */
3933 sec->filepos = 0;
3934 sec->_raw_size = 0;
3935 flags = sec->flags = 0;
3937 p->p_memsz = 0;
3938 p->p_align = 1;
3940 else
3942 if ((sec->flags & SEC_LOAD) != 0
3943 || (sec->flags & SEC_THREAD_LOCAL) == 0
3944 || p->p_type == PT_TLS)
3945 p->p_memsz += sec->_raw_size;
3947 if ((flags & SEC_LOAD) != 0)
3948 p->p_filesz += sec->_raw_size;
3950 if (p->p_type == PT_TLS
3951 && sec->_raw_size == 0
3952 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3954 struct bfd_link_order *o;
3955 bfd_vma tbss_size = 0;
3957 for (o = sec->link_order_head; o != NULL; o = o->next)
3958 if (tbss_size < o->offset + o->size)
3959 tbss_size = o->offset + o->size;
3961 p->p_memsz += tbss_size;
3964 if (align > p->p_align
3965 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3966 p->p_align = align;
3969 if (! m->p_flags_valid)
3971 p->p_flags |= PF_R;
3972 if ((flags & SEC_CODE) != 0)
3973 p->p_flags |= PF_X;
3974 if ((flags & SEC_READONLY) == 0)
3975 p->p_flags |= PF_W;
3980 /* Now that we have set the section file positions, we can set up
3981 the file positions for the non PT_LOAD segments. */
3982 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3983 m != NULL;
3984 m = m->next, p++)
3986 if (p->p_type != PT_LOAD && m->count > 0)
3988 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3989 p->p_offset = m->sections[0]->filepos;
3991 if (m->count == 0)
3993 if (m->includes_filehdr)
3995 p->p_vaddr = filehdr_vaddr;
3996 if (! m->p_paddr_valid)
3997 p->p_paddr = filehdr_paddr;
3999 else if (m->includes_phdrs)
4001 p->p_vaddr = phdrs_vaddr;
4002 if (! m->p_paddr_valid)
4003 p->p_paddr = phdrs_paddr;
4008 /* Clear out any program headers we allocated but did not use. */
4009 for (; count < alloc; count++, p++)
4011 memset (p, 0, sizeof *p);
4012 p->p_type = PT_NULL;
4015 elf_tdata (abfd)->phdr = phdrs;
4017 elf_tdata (abfd)->next_file_pos = off;
4019 /* Write out the program headers. */
4020 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4021 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4022 return FALSE;
4024 return TRUE;
4027 /* Get the size of the program header.
4029 If this is called by the linker before any of the section VMA's are set, it
4030 can't calculate the correct value for a strange memory layout. This only
4031 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4032 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4033 data segment (exclusive of .interp and .dynamic).
4035 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4036 will be two segments. */
4038 static bfd_size_type
4039 get_program_header_size (bfd *abfd)
4041 size_t segs;
4042 asection *s;
4043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4045 /* We can't return a different result each time we're called. */
4046 if (elf_tdata (abfd)->program_header_size != 0)
4047 return elf_tdata (abfd)->program_header_size;
4049 if (elf_tdata (abfd)->segment_map != NULL)
4051 struct elf_segment_map *m;
4053 segs = 0;
4054 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4055 ++segs;
4056 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4057 return elf_tdata (abfd)->program_header_size;
4060 /* Assume we will need exactly two PT_LOAD segments: one for text
4061 and one for data. */
4062 segs = 2;
4064 s = bfd_get_section_by_name (abfd, ".interp");
4065 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4067 /* If we have a loadable interpreter section, we need a
4068 PT_INTERP segment. In this case, assume we also need a
4069 PT_PHDR segment, although that may not be true for all
4070 targets. */
4071 segs += 2;
4074 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4076 /* We need a PT_DYNAMIC segment. */
4077 ++segs;
4080 if (elf_tdata (abfd)->eh_frame_hdr)
4082 /* We need a PT_GNU_EH_FRAME segment. */
4083 ++segs;
4086 if (elf_tdata (abfd)->stack_flags)
4088 /* We need a PT_GNU_STACK segment. */
4089 ++segs;
4092 for (s = abfd->sections; s != NULL; s = s->next)
4094 if ((s->flags & SEC_LOAD) != 0
4095 && strncmp (s->name, ".note", 5) == 0)
4097 /* We need a PT_NOTE segment. */
4098 ++segs;
4102 for (s = abfd->sections; s != NULL; s = s->next)
4104 if (s->flags & SEC_THREAD_LOCAL)
4106 /* We need a PT_TLS segment. */
4107 ++segs;
4108 break;
4112 /* Let the backend count up any program headers it might need. */
4113 if (bed->elf_backend_additional_program_headers)
4115 int a;
4117 a = (*bed->elf_backend_additional_program_headers) (abfd);
4118 if (a == -1)
4119 abort ();
4120 segs += a;
4123 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4124 return elf_tdata (abfd)->program_header_size;
4127 /* Work out the file positions of all the sections. This is called by
4128 _bfd_elf_compute_section_file_positions. All the section sizes and
4129 VMAs must be known before this is called.
4131 We do not consider reloc sections at this point, unless they form
4132 part of the loadable image. Reloc sections are assigned file
4133 positions in assign_file_positions_for_relocs, which is called by
4134 write_object_contents and final_link.
4136 We also don't set the positions of the .symtab and .strtab here. */
4138 static bfd_boolean
4139 assign_file_positions_except_relocs (bfd *abfd,
4140 struct bfd_link_info *link_info)
4142 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4143 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4144 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4145 unsigned int num_sec = elf_numsections (abfd);
4146 file_ptr off;
4147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4149 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4150 && bfd_get_format (abfd) != bfd_core)
4152 Elf_Internal_Shdr **hdrpp;
4153 unsigned int i;
4155 /* Start after the ELF header. */
4156 off = i_ehdrp->e_ehsize;
4158 /* We are not creating an executable, which means that we are
4159 not creating a program header, and that the actual order of
4160 the sections in the file is unimportant. */
4161 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4163 Elf_Internal_Shdr *hdr;
4165 hdr = *hdrpp;
4166 if (hdr->sh_type == SHT_REL
4167 || hdr->sh_type == SHT_RELA
4168 || i == tdata->symtab_section
4169 || i == tdata->symtab_shndx_section
4170 || i == tdata->strtab_section)
4172 hdr->sh_offset = -1;
4174 else
4175 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4177 if (i == SHN_LORESERVE - 1)
4179 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4180 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4184 else
4186 unsigned int i;
4187 Elf_Internal_Shdr **hdrpp;
4189 /* Assign file positions for the loaded sections based on the
4190 assignment of sections to segments. */
4191 if (! assign_file_positions_for_segments (abfd, link_info))
4192 return FALSE;
4194 /* Assign file positions for the other sections. */
4196 off = elf_tdata (abfd)->next_file_pos;
4197 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4199 Elf_Internal_Shdr *hdr;
4201 hdr = *hdrpp;
4202 if (hdr->bfd_section != NULL
4203 && hdr->bfd_section->filepos != 0)
4204 hdr->sh_offset = hdr->bfd_section->filepos;
4205 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4207 ((*_bfd_error_handler)
4208 (_("%s: warning: allocated section `%s' not in segment"),
4209 bfd_get_filename (abfd),
4210 (hdr->bfd_section == NULL
4211 ? "*unknown*"
4212 : hdr->bfd_section->name)));
4213 if ((abfd->flags & D_PAGED) != 0)
4214 off += (hdr->sh_addr - off) % bed->maxpagesize;
4215 else
4216 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4217 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4218 FALSE);
4220 else if (hdr->sh_type == SHT_REL
4221 || hdr->sh_type == SHT_RELA
4222 || hdr == i_shdrpp[tdata->symtab_section]
4223 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4224 || hdr == i_shdrpp[tdata->strtab_section])
4225 hdr->sh_offset = -1;
4226 else
4227 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4229 if (i == SHN_LORESERVE - 1)
4231 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4232 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4237 /* Place the section headers. */
4238 off = align_file_position (off, 1 << bed->s->log_file_align);
4239 i_ehdrp->e_shoff = off;
4240 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4242 elf_tdata (abfd)->next_file_pos = off;
4244 return TRUE;
4247 static bfd_boolean
4248 prep_headers (bfd *abfd)
4250 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4251 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4252 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4253 struct elf_strtab_hash *shstrtab;
4254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4256 i_ehdrp = elf_elfheader (abfd);
4257 i_shdrp = elf_elfsections (abfd);
4259 shstrtab = _bfd_elf_strtab_init ();
4260 if (shstrtab == NULL)
4261 return FALSE;
4263 elf_shstrtab (abfd) = shstrtab;
4265 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4266 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4267 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4268 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4270 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4271 i_ehdrp->e_ident[EI_DATA] =
4272 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4273 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4275 if ((abfd->flags & DYNAMIC) != 0)
4276 i_ehdrp->e_type = ET_DYN;
4277 else if ((abfd->flags & EXEC_P) != 0)
4278 i_ehdrp->e_type = ET_EXEC;
4279 else if (bfd_get_format (abfd) == bfd_core)
4280 i_ehdrp->e_type = ET_CORE;
4281 else
4282 i_ehdrp->e_type = ET_REL;
4284 switch (bfd_get_arch (abfd))
4286 case bfd_arch_unknown:
4287 i_ehdrp->e_machine = EM_NONE;
4288 break;
4290 /* There used to be a long list of cases here, each one setting
4291 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4292 in the corresponding bfd definition. To avoid duplication,
4293 the switch was removed. Machines that need special handling
4294 can generally do it in elf_backend_final_write_processing(),
4295 unless they need the information earlier than the final write.
4296 Such need can generally be supplied by replacing the tests for
4297 e_machine with the conditions used to determine it. */
4298 default:
4299 i_ehdrp->e_machine = bed->elf_machine_code;
4302 i_ehdrp->e_version = bed->s->ev_current;
4303 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4305 /* No program header, for now. */
4306 i_ehdrp->e_phoff = 0;
4307 i_ehdrp->e_phentsize = 0;
4308 i_ehdrp->e_phnum = 0;
4310 /* Each bfd section is section header entry. */
4311 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4312 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4314 /* If we're building an executable, we'll need a program header table. */
4315 if (abfd->flags & EXEC_P)
4317 /* It all happens later. */
4318 #if 0
4319 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4321 /* elf_build_phdrs() returns a (NULL-terminated) array of
4322 Elf_Internal_Phdrs. */
4323 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4324 i_ehdrp->e_phoff = outbase;
4325 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4326 #endif
4328 else
4330 i_ehdrp->e_phentsize = 0;
4331 i_phdrp = 0;
4332 i_ehdrp->e_phoff = 0;
4335 elf_tdata (abfd)->symtab_hdr.sh_name =
4336 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4337 elf_tdata (abfd)->strtab_hdr.sh_name =
4338 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4339 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4340 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4341 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4342 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4343 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4344 return FALSE;
4346 return TRUE;
4349 /* Assign file positions for all the reloc sections which are not part
4350 of the loadable file image. */
4352 void
4353 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4355 file_ptr off;
4356 unsigned int i, num_sec;
4357 Elf_Internal_Shdr **shdrpp;
4359 off = elf_tdata (abfd)->next_file_pos;
4361 num_sec = elf_numsections (abfd);
4362 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4364 Elf_Internal_Shdr *shdrp;
4366 shdrp = *shdrpp;
4367 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4368 && shdrp->sh_offset == -1)
4369 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4372 elf_tdata (abfd)->next_file_pos = off;
4375 bfd_boolean
4376 _bfd_elf_write_object_contents (bfd *abfd)
4378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4379 Elf_Internal_Ehdr *i_ehdrp;
4380 Elf_Internal_Shdr **i_shdrp;
4381 bfd_boolean failed;
4382 unsigned int count, num_sec;
4384 if (! abfd->output_has_begun
4385 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4386 return FALSE;
4388 i_shdrp = elf_elfsections (abfd);
4389 i_ehdrp = elf_elfheader (abfd);
4391 failed = FALSE;
4392 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4393 if (failed)
4394 return FALSE;
4396 _bfd_elf_assign_file_positions_for_relocs (abfd);
4398 /* After writing the headers, we need to write the sections too... */
4399 num_sec = elf_numsections (abfd);
4400 for (count = 1; count < num_sec; count++)
4402 if (bed->elf_backend_section_processing)
4403 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4404 if (i_shdrp[count]->contents)
4406 bfd_size_type amt = i_shdrp[count]->sh_size;
4408 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4409 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4410 return FALSE;
4412 if (count == SHN_LORESERVE - 1)
4413 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4416 /* Write out the section header names. */
4417 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4418 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4419 return FALSE;
4421 if (bed->elf_backend_final_write_processing)
4422 (*bed->elf_backend_final_write_processing) (abfd,
4423 elf_tdata (abfd)->linker);
4425 return bed->s->write_shdrs_and_ehdr (abfd);
4428 bfd_boolean
4429 _bfd_elf_write_corefile_contents (bfd *abfd)
4431 /* Hopefully this can be done just like an object file. */
4432 return _bfd_elf_write_object_contents (abfd);
4435 /* Given a section, search the header to find them. */
4438 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4440 const struct elf_backend_data *bed;
4441 int index;
4443 if (elf_section_data (asect) != NULL
4444 && elf_section_data (asect)->this_idx != 0)
4445 return elf_section_data (asect)->this_idx;
4447 if (bfd_is_abs_section (asect))
4448 index = SHN_ABS;
4449 else if (bfd_is_com_section (asect))
4450 index = SHN_COMMON;
4451 else if (bfd_is_und_section (asect))
4452 index = SHN_UNDEF;
4453 else
4455 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4456 int maxindex = elf_numsections (abfd);
4458 for (index = 1; index < maxindex; index++)
4460 Elf_Internal_Shdr *hdr = i_shdrp[index];
4462 if (hdr != NULL && hdr->bfd_section == asect)
4463 return index;
4465 index = -1;
4468 bed = get_elf_backend_data (abfd);
4469 if (bed->elf_backend_section_from_bfd_section)
4471 int retval = index;
4473 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4474 return retval;
4477 if (index == -1)
4478 bfd_set_error (bfd_error_nonrepresentable_section);
4480 return index;
4483 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4484 on error. */
4487 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4489 asymbol *asym_ptr = *asym_ptr_ptr;
4490 int idx;
4491 flagword flags = asym_ptr->flags;
4493 /* When gas creates relocations against local labels, it creates its
4494 own symbol for the section, but does put the symbol into the
4495 symbol chain, so udata is 0. When the linker is generating
4496 relocatable output, this section symbol may be for one of the
4497 input sections rather than the output section. */
4498 if (asym_ptr->udata.i == 0
4499 && (flags & BSF_SECTION_SYM)
4500 && asym_ptr->section)
4502 int indx;
4504 if (asym_ptr->section->output_section != NULL)
4505 indx = asym_ptr->section->output_section->index;
4506 else
4507 indx = asym_ptr->section->index;
4508 if (indx < elf_num_section_syms (abfd)
4509 && elf_section_syms (abfd)[indx] != NULL)
4510 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4513 idx = asym_ptr->udata.i;
4515 if (idx == 0)
4517 /* This case can occur when using --strip-symbol on a symbol
4518 which is used in a relocation entry. */
4519 (*_bfd_error_handler)
4520 (_("%s: symbol `%s' required but not present"),
4521 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4522 bfd_set_error (bfd_error_no_symbols);
4523 return -1;
4526 #if DEBUG & 4
4528 fprintf (stderr,
4529 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4530 (long) asym_ptr, asym_ptr->name, idx, flags,
4531 elf_symbol_flags (flags));
4532 fflush (stderr);
4534 #endif
4536 return idx;
4539 /* Copy private BFD data. This copies any program header information. */
4541 static bfd_boolean
4542 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4544 Elf_Internal_Ehdr *iehdr;
4545 struct elf_segment_map *map;
4546 struct elf_segment_map *map_first;
4547 struct elf_segment_map **pointer_to_map;
4548 Elf_Internal_Phdr *segment;
4549 asection *section;
4550 unsigned int i;
4551 unsigned int num_segments;
4552 bfd_boolean phdr_included = FALSE;
4553 bfd_vma maxpagesize;
4554 struct elf_segment_map *phdr_adjust_seg = NULL;
4555 unsigned int phdr_adjust_num = 0;
4556 const struct elf_backend_data *bed;
4558 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4559 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4560 return TRUE;
4562 if (elf_tdata (ibfd)->phdr == NULL)
4563 return TRUE;
4565 bed = get_elf_backend_data (ibfd);
4566 iehdr = elf_elfheader (ibfd);
4568 map_first = NULL;
4569 pointer_to_map = &map_first;
4571 num_segments = elf_elfheader (ibfd)->e_phnum;
4572 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4574 /* Returns the end address of the segment + 1. */
4575 #define SEGMENT_END(segment, start) \
4576 (start + (segment->p_memsz > segment->p_filesz \
4577 ? segment->p_memsz : segment->p_filesz))
4579 #define SECTION_SIZE(section, segment) \
4580 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4581 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4582 ? section->_raw_size : 0)
4584 /* Returns TRUE if the given section is contained within
4585 the given segment. VMA addresses are compared. */
4586 #define IS_CONTAINED_BY_VMA(section, segment) \
4587 (section->vma >= segment->p_vaddr \
4588 && (section->vma + SECTION_SIZE (section, segment) \
4589 <= (SEGMENT_END (segment, segment->p_vaddr))))
4591 /* Returns TRUE if the given section is contained within
4592 the given segment. LMA addresses are compared. */
4593 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4594 (section->lma >= base \
4595 && (section->lma + SECTION_SIZE (section, segment) \
4596 <= SEGMENT_END (segment, base)))
4598 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4599 #define IS_COREFILE_NOTE(p, s) \
4600 (p->p_type == PT_NOTE \
4601 && bfd_get_format (ibfd) == bfd_core \
4602 && s->vma == 0 && s->lma == 0 \
4603 && (bfd_vma) s->filepos >= p->p_offset \
4604 && ((bfd_vma) s->filepos + s->_raw_size \
4605 <= p->p_offset + p->p_filesz))
4607 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4608 linker, which generates a PT_INTERP section with p_vaddr and
4609 p_memsz set to 0. */
4610 #define IS_SOLARIS_PT_INTERP(p, s) \
4611 (p->p_vaddr == 0 \
4612 && p->p_paddr == 0 \
4613 && p->p_memsz == 0 \
4614 && p->p_filesz > 0 \
4615 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4616 && s->_raw_size > 0 \
4617 && (bfd_vma) s->filepos >= p->p_offset \
4618 && ((bfd_vma) s->filepos + s->_raw_size \
4619 <= p->p_offset + p->p_filesz))
4621 /* Decide if the given section should be included in the given segment.
4622 A section will be included if:
4623 1. It is within the address space of the segment -- we use the LMA
4624 if that is set for the segment and the VMA otherwise,
4625 2. It is an allocated segment,
4626 3. There is an output section associated with it,
4627 4. The section has not already been allocated to a previous segment.
4628 5. PT_GNU_STACK segments do not include any sections.
4629 6. PT_TLS segment includes only SHF_TLS sections.
4630 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4631 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4632 ((((segment->p_paddr \
4633 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4634 : IS_CONTAINED_BY_VMA (section, segment)) \
4635 && (section->flags & SEC_ALLOC) != 0) \
4636 || IS_COREFILE_NOTE (segment, section)) \
4637 && section->output_section != NULL \
4638 && segment->p_type != PT_GNU_STACK \
4639 && (segment->p_type != PT_TLS \
4640 || (section->flags & SEC_THREAD_LOCAL)) \
4641 && (segment->p_type == PT_LOAD \
4642 || segment->p_type == PT_TLS \
4643 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4644 && ! section->segment_mark)
4646 /* Returns TRUE iff seg1 starts after the end of seg2. */
4647 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4648 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4650 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4651 their VMA address ranges and their LMA address ranges overlap.
4652 It is possible to have overlapping VMA ranges without overlapping LMA
4653 ranges. RedBoot images for example can have both .data and .bss mapped
4654 to the same VMA range, but with the .data section mapped to a different
4655 LMA. */
4656 #define SEGMENT_OVERLAPS(seg1, seg2) \
4657 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4658 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4659 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4660 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4662 /* Initialise the segment mark field. */
4663 for (section = ibfd->sections; section != NULL; section = section->next)
4664 section->segment_mark = FALSE;
4666 /* Scan through the segments specified in the program header
4667 of the input BFD. For this first scan we look for overlaps
4668 in the loadable segments. These can be created by weird
4669 parameters to objcopy. Also, fix some solaris weirdness. */
4670 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4671 i < num_segments;
4672 i++, segment++)
4674 unsigned int j;
4675 Elf_Internal_Phdr *segment2;
4677 if (segment->p_type == PT_INTERP)
4678 for (section = ibfd->sections; section; section = section->next)
4679 if (IS_SOLARIS_PT_INTERP (segment, section))
4681 /* Mininal change so that the normal section to segment
4682 assignment code will work. */
4683 segment->p_vaddr = section->vma;
4684 break;
4687 if (segment->p_type != PT_LOAD)
4688 continue;
4690 /* Determine if this segment overlaps any previous segments. */
4691 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4693 bfd_signed_vma extra_length;
4695 if (segment2->p_type != PT_LOAD
4696 || ! SEGMENT_OVERLAPS (segment, segment2))
4697 continue;
4699 /* Merge the two segments together. */
4700 if (segment2->p_vaddr < segment->p_vaddr)
4702 /* Extend SEGMENT2 to include SEGMENT and then delete
4703 SEGMENT. */
4704 extra_length =
4705 SEGMENT_END (segment, segment->p_vaddr)
4706 - SEGMENT_END (segment2, segment2->p_vaddr);
4708 if (extra_length > 0)
4710 segment2->p_memsz += extra_length;
4711 segment2->p_filesz += extra_length;
4714 segment->p_type = PT_NULL;
4716 /* Since we have deleted P we must restart the outer loop. */
4717 i = 0;
4718 segment = elf_tdata (ibfd)->phdr;
4719 break;
4721 else
4723 /* Extend SEGMENT to include SEGMENT2 and then delete
4724 SEGMENT2. */
4725 extra_length =
4726 SEGMENT_END (segment2, segment2->p_vaddr)
4727 - SEGMENT_END (segment, segment->p_vaddr);
4729 if (extra_length > 0)
4731 segment->p_memsz += extra_length;
4732 segment->p_filesz += extra_length;
4735 segment2->p_type = PT_NULL;
4740 /* The second scan attempts to assign sections to segments. */
4741 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4742 i < num_segments;
4743 i ++, segment ++)
4745 unsigned int section_count;
4746 asection ** sections;
4747 asection * output_section;
4748 unsigned int isec;
4749 bfd_vma matching_lma;
4750 bfd_vma suggested_lma;
4751 unsigned int j;
4752 bfd_size_type amt;
4754 if (segment->p_type == PT_NULL)
4755 continue;
4757 /* Compute how many sections might be placed into this segment. */
4758 for (section = ibfd->sections, section_count = 0;
4759 section != NULL;
4760 section = section->next)
4761 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4762 ++section_count;
4764 /* Allocate a segment map big enough to contain
4765 all of the sections we have selected. */
4766 amt = sizeof (struct elf_segment_map);
4767 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4768 map = bfd_alloc (obfd, amt);
4769 if (map == NULL)
4770 return FALSE;
4772 /* Initialise the fields of the segment map. Default to
4773 using the physical address of the segment in the input BFD. */
4774 map->next = NULL;
4775 map->p_type = segment->p_type;
4776 map->p_flags = segment->p_flags;
4777 map->p_flags_valid = 1;
4778 map->p_paddr = segment->p_paddr;
4779 map->p_paddr_valid = 1;
4781 /* Determine if this segment contains the ELF file header
4782 and if it contains the program headers themselves. */
4783 map->includes_filehdr = (segment->p_offset == 0
4784 && segment->p_filesz >= iehdr->e_ehsize);
4786 map->includes_phdrs = 0;
4788 if (! phdr_included || segment->p_type != PT_LOAD)
4790 map->includes_phdrs =
4791 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4792 && (segment->p_offset + segment->p_filesz
4793 >= ((bfd_vma) iehdr->e_phoff
4794 + iehdr->e_phnum * iehdr->e_phentsize)));
4796 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4797 phdr_included = TRUE;
4800 if (section_count == 0)
4802 /* Special segments, such as the PT_PHDR segment, may contain
4803 no sections, but ordinary, loadable segments should contain
4804 something. They are allowed by the ELF spec however, so only
4805 a warning is produced. */
4806 if (segment->p_type == PT_LOAD)
4807 (*_bfd_error_handler)
4808 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4809 bfd_archive_filename (ibfd));
4811 map->count = 0;
4812 *pointer_to_map = map;
4813 pointer_to_map = &map->next;
4815 continue;
4818 /* Now scan the sections in the input BFD again and attempt
4819 to add their corresponding output sections to the segment map.
4820 The problem here is how to handle an output section which has
4821 been moved (ie had its LMA changed). There are four possibilities:
4823 1. None of the sections have been moved.
4824 In this case we can continue to use the segment LMA from the
4825 input BFD.
4827 2. All of the sections have been moved by the same amount.
4828 In this case we can change the segment's LMA to match the LMA
4829 of the first section.
4831 3. Some of the sections have been moved, others have not.
4832 In this case those sections which have not been moved can be
4833 placed in the current segment which will have to have its size,
4834 and possibly its LMA changed, and a new segment or segments will
4835 have to be created to contain the other sections.
4837 4. The sections have been moved, but not by the same amount.
4838 In this case we can change the segment's LMA to match the LMA
4839 of the first section and we will have to create a new segment
4840 or segments to contain the other sections.
4842 In order to save time, we allocate an array to hold the section
4843 pointers that we are interested in. As these sections get assigned
4844 to a segment, they are removed from this array. */
4846 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4847 to work around this long long bug. */
4848 amt = section_count * sizeof (asection *);
4849 sections = bfd_malloc (amt);
4850 if (sections == NULL)
4851 return FALSE;
4853 /* Step One: Scan for segment vs section LMA conflicts.
4854 Also add the sections to the section array allocated above.
4855 Also add the sections to the current segment. In the common
4856 case, where the sections have not been moved, this means that
4857 we have completely filled the segment, and there is nothing
4858 more to do. */
4859 isec = 0;
4860 matching_lma = 0;
4861 suggested_lma = 0;
4863 for (j = 0, section = ibfd->sections;
4864 section != NULL;
4865 section = section->next)
4867 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4869 output_section = section->output_section;
4871 sections[j ++] = section;
4873 /* The Solaris native linker always sets p_paddr to 0.
4874 We try to catch that case here, and set it to the
4875 correct value. Note - some backends require that
4876 p_paddr be left as zero. */
4877 if (segment->p_paddr == 0
4878 && segment->p_vaddr != 0
4879 && (! bed->want_p_paddr_set_to_zero)
4880 && isec == 0
4881 && output_section->lma != 0
4882 && (output_section->vma == (segment->p_vaddr
4883 + (map->includes_filehdr
4884 ? iehdr->e_ehsize
4885 : 0)
4886 + (map->includes_phdrs
4887 ? (iehdr->e_phnum
4888 * iehdr->e_phentsize)
4889 : 0))))
4890 map->p_paddr = segment->p_vaddr;
4892 /* Match up the physical address of the segment with the
4893 LMA address of the output section. */
4894 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4895 || IS_COREFILE_NOTE (segment, section)
4896 || (bed->want_p_paddr_set_to_zero &&
4897 IS_CONTAINED_BY_VMA (output_section, segment))
4900 if (matching_lma == 0)
4901 matching_lma = output_section->lma;
4903 /* We assume that if the section fits within the segment
4904 then it does not overlap any other section within that
4905 segment. */
4906 map->sections[isec ++] = output_section;
4908 else if (suggested_lma == 0)
4909 suggested_lma = output_section->lma;
4913 BFD_ASSERT (j == section_count);
4915 /* Step Two: Adjust the physical address of the current segment,
4916 if necessary. */
4917 if (isec == section_count)
4919 /* All of the sections fitted within the segment as currently
4920 specified. This is the default case. Add the segment to
4921 the list of built segments and carry on to process the next
4922 program header in the input BFD. */
4923 map->count = section_count;
4924 *pointer_to_map = map;
4925 pointer_to_map = &map->next;
4927 free (sections);
4928 continue;
4930 else
4932 if (matching_lma != 0)
4934 /* At least one section fits inside the current segment.
4935 Keep it, but modify its physical address to match the
4936 LMA of the first section that fitted. */
4937 map->p_paddr = matching_lma;
4939 else
4941 /* None of the sections fitted inside the current segment.
4942 Change the current segment's physical address to match
4943 the LMA of the first section. */
4944 map->p_paddr = suggested_lma;
4947 /* Offset the segment physical address from the lma
4948 to allow for space taken up by elf headers. */
4949 if (map->includes_filehdr)
4950 map->p_paddr -= iehdr->e_ehsize;
4952 if (map->includes_phdrs)
4954 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4956 /* iehdr->e_phnum is just an estimate of the number
4957 of program headers that we will need. Make a note
4958 here of the number we used and the segment we chose
4959 to hold these headers, so that we can adjust the
4960 offset when we know the correct value. */
4961 phdr_adjust_num = iehdr->e_phnum;
4962 phdr_adjust_seg = map;
4966 /* Step Three: Loop over the sections again, this time assigning
4967 those that fit to the current segment and removing them from the
4968 sections array; but making sure not to leave large gaps. Once all
4969 possible sections have been assigned to the current segment it is
4970 added to the list of built segments and if sections still remain
4971 to be assigned, a new segment is constructed before repeating
4972 the loop. */
4973 isec = 0;
4976 map->count = 0;
4977 suggested_lma = 0;
4979 /* Fill the current segment with sections that fit. */
4980 for (j = 0; j < section_count; j++)
4982 section = sections[j];
4984 if (section == NULL)
4985 continue;
4987 output_section = section->output_section;
4989 BFD_ASSERT (output_section != NULL);
4991 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4992 || IS_COREFILE_NOTE (segment, section))
4994 if (map->count == 0)
4996 /* If the first section in a segment does not start at
4997 the beginning of the segment, then something is
4998 wrong. */
4999 if (output_section->lma !=
5000 (map->p_paddr
5001 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5002 + (map->includes_phdrs
5003 ? iehdr->e_phnum * iehdr->e_phentsize
5004 : 0)))
5005 abort ();
5007 else
5009 asection * prev_sec;
5011 prev_sec = map->sections[map->count - 1];
5013 /* If the gap between the end of the previous section
5014 and the start of this section is more than
5015 maxpagesize then we need to start a new segment. */
5016 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5017 maxpagesize)
5018 < BFD_ALIGN (output_section->lma, maxpagesize))
5019 || ((prev_sec->lma + prev_sec->_raw_size)
5020 > output_section->lma))
5022 if (suggested_lma == 0)
5023 suggested_lma = output_section->lma;
5025 continue;
5029 map->sections[map->count++] = output_section;
5030 ++isec;
5031 sections[j] = NULL;
5032 section->segment_mark = TRUE;
5034 else if (suggested_lma == 0)
5035 suggested_lma = output_section->lma;
5038 BFD_ASSERT (map->count > 0);
5040 /* Add the current segment to the list of built segments. */
5041 *pointer_to_map = map;
5042 pointer_to_map = &map->next;
5044 if (isec < section_count)
5046 /* We still have not allocated all of the sections to
5047 segments. Create a new segment here, initialise it
5048 and carry on looping. */
5049 amt = sizeof (struct elf_segment_map);
5050 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5051 map = bfd_alloc (obfd, amt);
5052 if (map == NULL)
5054 free (sections);
5055 return FALSE;
5058 /* Initialise the fields of the segment map. Set the physical
5059 physical address to the LMA of the first section that has
5060 not yet been assigned. */
5061 map->next = NULL;
5062 map->p_type = segment->p_type;
5063 map->p_flags = segment->p_flags;
5064 map->p_flags_valid = 1;
5065 map->p_paddr = suggested_lma;
5066 map->p_paddr_valid = 1;
5067 map->includes_filehdr = 0;
5068 map->includes_phdrs = 0;
5071 while (isec < section_count);
5073 free (sections);
5076 /* The Solaris linker creates program headers in which all the
5077 p_paddr fields are zero. When we try to objcopy or strip such a
5078 file, we get confused. Check for this case, and if we find it
5079 reset the p_paddr_valid fields. */
5080 for (map = map_first; map != NULL; map = map->next)
5081 if (map->p_paddr != 0)
5082 break;
5083 if (map == NULL)
5084 for (map = map_first; map != NULL; map = map->next)
5085 map->p_paddr_valid = 0;
5087 elf_tdata (obfd)->segment_map = map_first;
5089 /* If we had to estimate the number of program headers that were
5090 going to be needed, then check our estimate now and adjust
5091 the offset if necessary. */
5092 if (phdr_adjust_seg != NULL)
5094 unsigned int count;
5096 for (count = 0, map = map_first; map != NULL; map = map->next)
5097 count++;
5099 if (count > phdr_adjust_num)
5100 phdr_adjust_seg->p_paddr
5101 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5104 #if 0
5105 /* Final Step: Sort the segments into ascending order of physical
5106 address. */
5107 if (map_first != NULL)
5109 struct elf_segment_map *prev;
5111 prev = map_first;
5112 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5114 /* Yes I know - its a bubble sort.... */
5115 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5117 /* Swap map and map->next. */
5118 prev->next = map->next;
5119 map->next = map->next->next;
5120 prev->next->next = map;
5122 /* Restart loop. */
5123 map = map_first;
5127 #endif
5129 #undef SEGMENT_END
5130 #undef SECTION_SIZE
5131 #undef IS_CONTAINED_BY_VMA
5132 #undef IS_CONTAINED_BY_LMA
5133 #undef IS_COREFILE_NOTE
5134 #undef IS_SOLARIS_PT_INTERP
5135 #undef INCLUDE_SECTION_IN_SEGMENT
5136 #undef SEGMENT_AFTER_SEGMENT
5137 #undef SEGMENT_OVERLAPS
5138 return TRUE;
5141 /* Copy private section information. This copies over the entsize
5142 field, and sometimes the info field. */
5144 bfd_boolean
5145 _bfd_elf_copy_private_section_data (bfd *ibfd,
5146 asection *isec,
5147 bfd *obfd,
5148 asection *osec)
5150 Elf_Internal_Shdr *ihdr, *ohdr;
5152 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5153 || obfd->xvec->flavour != bfd_target_elf_flavour)
5154 return TRUE;
5156 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5158 asection *s;
5160 /* Only set up the segments if there are no more SEC_ALLOC
5161 sections. FIXME: This won't do the right thing if objcopy is
5162 used to remove the last SEC_ALLOC section, since objcopy
5163 won't call this routine in that case. */
5164 for (s = isec->next; s != NULL; s = s->next)
5165 if ((s->flags & SEC_ALLOC) != 0)
5166 break;
5167 if (s == NULL)
5169 if (! copy_private_bfd_data (ibfd, obfd))
5170 return FALSE;
5174 ihdr = &elf_section_data (isec)->this_hdr;
5175 ohdr = &elf_section_data (osec)->this_hdr;
5177 ohdr->sh_entsize = ihdr->sh_entsize;
5179 if (ihdr->sh_type == SHT_SYMTAB
5180 || ihdr->sh_type == SHT_DYNSYM
5181 || ihdr->sh_type == SHT_GNU_verneed
5182 || ihdr->sh_type == SHT_GNU_verdef)
5183 ohdr->sh_info = ihdr->sh_info;
5185 /* Set things up for objcopy. The output SHT_GROUP section will
5186 have its elf_next_in_group pointing back to the input group
5187 members. */
5188 elf_next_in_group (osec) = elf_next_in_group (isec);
5189 elf_group_name (osec) = elf_group_name (isec);
5191 osec->use_rela_p = isec->use_rela_p;
5193 return TRUE;
5196 /* Copy private symbol information. If this symbol is in a section
5197 which we did not map into a BFD section, try to map the section
5198 index correctly. We use special macro definitions for the mapped
5199 section indices; these definitions are interpreted by the
5200 swap_out_syms function. */
5202 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5203 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5204 #define MAP_STRTAB (SHN_HIOS + 3)
5205 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5206 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5208 bfd_boolean
5209 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5210 asymbol *isymarg,
5211 bfd *obfd,
5212 asymbol *osymarg)
5214 elf_symbol_type *isym, *osym;
5216 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5217 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5218 return TRUE;
5220 isym = elf_symbol_from (ibfd, isymarg);
5221 osym = elf_symbol_from (obfd, osymarg);
5223 if (isym != NULL
5224 && osym != NULL
5225 && bfd_is_abs_section (isym->symbol.section))
5227 unsigned int shndx;
5229 shndx = isym->internal_elf_sym.st_shndx;
5230 if (shndx == elf_onesymtab (ibfd))
5231 shndx = MAP_ONESYMTAB;
5232 else if (shndx == elf_dynsymtab (ibfd))
5233 shndx = MAP_DYNSYMTAB;
5234 else if (shndx == elf_tdata (ibfd)->strtab_section)
5235 shndx = MAP_STRTAB;
5236 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5237 shndx = MAP_SHSTRTAB;
5238 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5239 shndx = MAP_SYM_SHNDX;
5240 osym->internal_elf_sym.st_shndx = shndx;
5243 return TRUE;
5246 /* Swap out the symbols. */
5248 static bfd_boolean
5249 swap_out_syms (bfd *abfd,
5250 struct bfd_strtab_hash **sttp,
5251 int relocatable_p)
5253 const struct elf_backend_data *bed;
5254 int symcount;
5255 asymbol **syms;
5256 struct bfd_strtab_hash *stt;
5257 Elf_Internal_Shdr *symtab_hdr;
5258 Elf_Internal_Shdr *symtab_shndx_hdr;
5259 Elf_Internal_Shdr *symstrtab_hdr;
5260 char *outbound_syms;
5261 char *outbound_shndx;
5262 int idx;
5263 bfd_size_type amt;
5265 if (!elf_map_symbols (abfd))
5266 return FALSE;
5268 /* Dump out the symtabs. */
5269 stt = _bfd_elf_stringtab_init ();
5270 if (stt == NULL)
5271 return FALSE;
5273 bed = get_elf_backend_data (abfd);
5274 symcount = bfd_get_symcount (abfd);
5275 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5276 symtab_hdr->sh_type = SHT_SYMTAB;
5277 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5278 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5279 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5280 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5282 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5283 symstrtab_hdr->sh_type = SHT_STRTAB;
5285 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5286 outbound_syms = bfd_alloc (abfd, amt);
5287 if (outbound_syms == NULL)
5289 _bfd_stringtab_free (stt);
5290 return FALSE;
5292 symtab_hdr->contents = outbound_syms;
5294 outbound_shndx = NULL;
5295 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5296 if (symtab_shndx_hdr->sh_name != 0)
5298 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5299 outbound_shndx = bfd_zalloc (abfd, amt);
5300 if (outbound_shndx == NULL)
5302 _bfd_stringtab_free (stt);
5303 return FALSE;
5306 symtab_shndx_hdr->contents = outbound_shndx;
5307 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5308 symtab_shndx_hdr->sh_size = amt;
5309 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5310 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5313 /* Now generate the data (for "contents"). */
5315 /* Fill in zeroth symbol and swap it out. */
5316 Elf_Internal_Sym sym;
5317 sym.st_name = 0;
5318 sym.st_value = 0;
5319 sym.st_size = 0;
5320 sym.st_info = 0;
5321 sym.st_other = 0;
5322 sym.st_shndx = SHN_UNDEF;
5323 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5324 outbound_syms += bed->s->sizeof_sym;
5325 if (outbound_shndx != NULL)
5326 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5329 syms = bfd_get_outsymbols (abfd);
5330 for (idx = 0; idx < symcount; idx++)
5332 Elf_Internal_Sym sym;
5333 bfd_vma value = syms[idx]->value;
5334 elf_symbol_type *type_ptr;
5335 flagword flags = syms[idx]->flags;
5336 int type;
5338 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5340 /* Local section symbols have no name. */
5341 sym.st_name = 0;
5343 else
5345 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5346 syms[idx]->name,
5347 TRUE, FALSE);
5348 if (sym.st_name == (unsigned long) -1)
5350 _bfd_stringtab_free (stt);
5351 return FALSE;
5355 type_ptr = elf_symbol_from (abfd, syms[idx]);
5357 if ((flags & BSF_SECTION_SYM) == 0
5358 && bfd_is_com_section (syms[idx]->section))
5360 /* ELF common symbols put the alignment into the `value' field,
5361 and the size into the `size' field. This is backwards from
5362 how BFD handles it, so reverse it here. */
5363 sym.st_size = value;
5364 if (type_ptr == NULL
5365 || type_ptr->internal_elf_sym.st_value == 0)
5366 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5367 else
5368 sym.st_value = type_ptr->internal_elf_sym.st_value;
5369 sym.st_shndx = _bfd_elf_section_from_bfd_section
5370 (abfd, syms[idx]->section);
5372 else
5374 asection *sec = syms[idx]->section;
5375 int shndx;
5377 if (sec->output_section)
5379 value += sec->output_offset;
5380 sec = sec->output_section;
5383 /* Don't add in the section vma for relocatable output. */
5384 if (! relocatable_p)
5385 value += sec->vma;
5386 sym.st_value = value;
5387 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5389 if (bfd_is_abs_section (sec)
5390 && type_ptr != NULL
5391 && type_ptr->internal_elf_sym.st_shndx != 0)
5393 /* This symbol is in a real ELF section which we did
5394 not create as a BFD section. Undo the mapping done
5395 by copy_private_symbol_data. */
5396 shndx = type_ptr->internal_elf_sym.st_shndx;
5397 switch (shndx)
5399 case MAP_ONESYMTAB:
5400 shndx = elf_onesymtab (abfd);
5401 break;
5402 case MAP_DYNSYMTAB:
5403 shndx = elf_dynsymtab (abfd);
5404 break;
5405 case MAP_STRTAB:
5406 shndx = elf_tdata (abfd)->strtab_section;
5407 break;
5408 case MAP_SHSTRTAB:
5409 shndx = elf_tdata (abfd)->shstrtab_section;
5410 break;
5411 case MAP_SYM_SHNDX:
5412 shndx = elf_tdata (abfd)->symtab_shndx_section;
5413 break;
5414 default:
5415 break;
5418 else
5420 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5422 if (shndx == -1)
5424 asection *sec2;
5426 /* Writing this would be a hell of a lot easier if
5427 we had some decent documentation on bfd, and
5428 knew what to expect of the library, and what to
5429 demand of applications. For example, it
5430 appears that `objcopy' might not set the
5431 section of a symbol to be a section that is
5432 actually in the output file. */
5433 sec2 = bfd_get_section_by_name (abfd, sec->name);
5434 if (sec2 == NULL)
5436 _bfd_error_handler (_("\
5437 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5438 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5439 sec->name);
5440 bfd_set_error (bfd_error_invalid_operation);
5441 _bfd_stringtab_free (stt);
5442 return FALSE;
5445 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5446 BFD_ASSERT (shndx != -1);
5450 sym.st_shndx = shndx;
5453 if ((flags & BSF_THREAD_LOCAL) != 0)
5454 type = STT_TLS;
5455 else if ((flags & BSF_FUNCTION) != 0)
5456 type = STT_FUNC;
5457 else if ((flags & BSF_OBJECT) != 0)
5458 type = STT_OBJECT;
5459 else
5460 type = STT_NOTYPE;
5462 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5463 type = STT_TLS;
5465 /* Processor-specific types. */
5466 if (type_ptr != NULL
5467 && bed->elf_backend_get_symbol_type)
5468 type = ((*bed->elf_backend_get_symbol_type)
5469 (&type_ptr->internal_elf_sym, type));
5471 if (flags & BSF_SECTION_SYM)
5473 if (flags & BSF_GLOBAL)
5474 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5475 else
5476 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5478 else if (bfd_is_com_section (syms[idx]->section))
5479 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5480 else if (bfd_is_und_section (syms[idx]->section))
5481 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5482 ? STB_WEAK
5483 : STB_GLOBAL),
5484 type);
5485 else if (flags & BSF_FILE)
5486 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5487 else
5489 int bind = STB_LOCAL;
5491 if (flags & BSF_LOCAL)
5492 bind = STB_LOCAL;
5493 else if (flags & BSF_WEAK)
5494 bind = STB_WEAK;
5495 else if (flags & BSF_GLOBAL)
5496 bind = STB_GLOBAL;
5498 sym.st_info = ELF_ST_INFO (bind, type);
5501 if (type_ptr != NULL)
5502 sym.st_other = type_ptr->internal_elf_sym.st_other;
5503 else
5504 sym.st_other = 0;
5506 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5507 outbound_syms += bed->s->sizeof_sym;
5508 if (outbound_shndx != NULL)
5509 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5512 *sttp = stt;
5513 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5514 symstrtab_hdr->sh_type = SHT_STRTAB;
5516 symstrtab_hdr->sh_flags = 0;
5517 symstrtab_hdr->sh_addr = 0;
5518 symstrtab_hdr->sh_entsize = 0;
5519 symstrtab_hdr->sh_link = 0;
5520 symstrtab_hdr->sh_info = 0;
5521 symstrtab_hdr->sh_addralign = 1;
5523 return TRUE;
5526 /* Return the number of bytes required to hold the symtab vector.
5528 Note that we base it on the count plus 1, since we will null terminate
5529 the vector allocated based on this size. However, the ELF symbol table
5530 always has a dummy entry as symbol #0, so it ends up even. */
5532 long
5533 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5535 long symcount;
5536 long symtab_size;
5537 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5539 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5540 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5541 if (symcount > 0)
5542 symtab_size -= sizeof (asymbol *);
5544 return symtab_size;
5547 long
5548 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5550 long symcount;
5551 long symtab_size;
5552 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5554 if (elf_dynsymtab (abfd) == 0)
5556 bfd_set_error (bfd_error_invalid_operation);
5557 return -1;
5560 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5561 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5562 if (symcount > 0)
5563 symtab_size -= sizeof (asymbol *);
5565 return symtab_size;
5568 long
5569 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5570 sec_ptr asect)
5572 return (asect->reloc_count + 1) * sizeof (arelent *);
5575 /* Canonicalize the relocs. */
5577 long
5578 _bfd_elf_canonicalize_reloc (bfd *abfd,
5579 sec_ptr section,
5580 arelent **relptr,
5581 asymbol **symbols)
5583 arelent *tblptr;
5584 unsigned int i;
5585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5587 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5588 return -1;
5590 tblptr = section->relocation;
5591 for (i = 0; i < section->reloc_count; i++)
5592 *relptr++ = tblptr++;
5594 *relptr = NULL;
5596 return section->reloc_count;
5599 long
5600 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5602 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5603 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5605 if (symcount >= 0)
5606 bfd_get_symcount (abfd) = symcount;
5607 return symcount;
5610 long
5611 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5612 asymbol **allocation)
5614 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5615 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5617 if (symcount >= 0)
5618 bfd_get_dynamic_symcount (abfd) = symcount;
5619 return symcount;
5622 /* Return the size required for the dynamic reloc entries. Any
5623 section that was actually installed in the BFD, and has type
5624 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5625 considered to be a dynamic reloc section. */
5627 long
5628 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5630 long ret;
5631 asection *s;
5633 if (elf_dynsymtab (abfd) == 0)
5635 bfd_set_error (bfd_error_invalid_operation);
5636 return -1;
5639 ret = sizeof (arelent *);
5640 for (s = abfd->sections; s != NULL; s = s->next)
5641 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5642 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5643 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5644 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5645 * sizeof (arelent *));
5647 return ret;
5650 /* Canonicalize the dynamic relocation entries. Note that we return
5651 the dynamic relocations as a single block, although they are
5652 actually associated with particular sections; the interface, which
5653 was designed for SunOS style shared libraries, expects that there
5654 is only one set of dynamic relocs. Any section that was actually
5655 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5656 the dynamic symbol table, is considered to be a dynamic reloc
5657 section. */
5659 long
5660 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5661 arelent **storage,
5662 asymbol **syms)
5664 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5665 asection *s;
5666 long ret;
5668 if (elf_dynsymtab (abfd) == 0)
5670 bfd_set_error (bfd_error_invalid_operation);
5671 return -1;
5674 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5675 ret = 0;
5676 for (s = abfd->sections; s != NULL; s = s->next)
5678 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5679 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5680 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5682 arelent *p;
5683 long count, i;
5685 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5686 return -1;
5687 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5688 p = s->relocation;
5689 for (i = 0; i < count; i++)
5690 *storage++ = p++;
5691 ret += count;
5695 *storage = NULL;
5697 return ret;
5700 /* Read in the version information. */
5702 bfd_boolean
5703 _bfd_elf_slurp_version_tables (bfd *abfd)
5705 bfd_byte *contents = NULL;
5706 bfd_size_type amt;
5708 if (elf_dynverdef (abfd) != 0)
5710 Elf_Internal_Shdr *hdr;
5711 Elf_External_Verdef *everdef;
5712 Elf_Internal_Verdef *iverdef;
5713 Elf_Internal_Verdef *iverdefarr;
5714 Elf_Internal_Verdef iverdefmem;
5715 unsigned int i;
5716 unsigned int maxidx;
5718 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5720 contents = bfd_malloc (hdr->sh_size);
5721 if (contents == NULL)
5722 goto error_return;
5723 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5724 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5725 goto error_return;
5727 /* We know the number of entries in the section but not the maximum
5728 index. Therefore we have to run through all entries and find
5729 the maximum. */
5730 everdef = (Elf_External_Verdef *) contents;
5731 maxidx = 0;
5732 for (i = 0; i < hdr->sh_info; ++i)
5734 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5736 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5737 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5739 everdef = ((Elf_External_Verdef *)
5740 ((bfd_byte *) everdef + iverdefmem.vd_next));
5743 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5744 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5745 if (elf_tdata (abfd)->verdef == NULL)
5746 goto error_return;
5748 elf_tdata (abfd)->cverdefs = maxidx;
5750 everdef = (Elf_External_Verdef *) contents;
5751 iverdefarr = elf_tdata (abfd)->verdef;
5752 for (i = 0; i < hdr->sh_info; i++)
5754 Elf_External_Verdaux *everdaux;
5755 Elf_Internal_Verdaux *iverdaux;
5756 unsigned int j;
5758 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5760 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5761 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5763 iverdef->vd_bfd = abfd;
5765 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5766 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5767 if (iverdef->vd_auxptr == NULL)
5768 goto error_return;
5770 everdaux = ((Elf_External_Verdaux *)
5771 ((bfd_byte *) everdef + iverdef->vd_aux));
5772 iverdaux = iverdef->vd_auxptr;
5773 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5775 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5777 iverdaux->vda_nodename =
5778 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5779 iverdaux->vda_name);
5780 if (iverdaux->vda_nodename == NULL)
5781 goto error_return;
5783 if (j + 1 < iverdef->vd_cnt)
5784 iverdaux->vda_nextptr = iverdaux + 1;
5785 else
5786 iverdaux->vda_nextptr = NULL;
5788 everdaux = ((Elf_External_Verdaux *)
5789 ((bfd_byte *) everdaux + iverdaux->vda_next));
5792 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5794 if (i + 1 < hdr->sh_info)
5795 iverdef->vd_nextdef = iverdef + 1;
5796 else
5797 iverdef->vd_nextdef = NULL;
5799 everdef = ((Elf_External_Verdef *)
5800 ((bfd_byte *) everdef + iverdef->vd_next));
5803 free (contents);
5804 contents = NULL;
5807 if (elf_dynverref (abfd) != 0)
5809 Elf_Internal_Shdr *hdr;
5810 Elf_External_Verneed *everneed;
5811 Elf_Internal_Verneed *iverneed;
5812 unsigned int i;
5814 hdr = &elf_tdata (abfd)->dynverref_hdr;
5816 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5817 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5818 if (elf_tdata (abfd)->verref == NULL)
5819 goto error_return;
5821 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5823 contents = bfd_malloc (hdr->sh_size);
5824 if (contents == NULL)
5825 goto error_return;
5826 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5827 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5828 goto error_return;
5830 everneed = (Elf_External_Verneed *) contents;
5831 iverneed = elf_tdata (abfd)->verref;
5832 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5834 Elf_External_Vernaux *evernaux;
5835 Elf_Internal_Vernaux *ivernaux;
5836 unsigned int j;
5838 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5840 iverneed->vn_bfd = abfd;
5842 iverneed->vn_filename =
5843 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5844 iverneed->vn_file);
5845 if (iverneed->vn_filename == NULL)
5846 goto error_return;
5848 amt = iverneed->vn_cnt;
5849 amt *= sizeof (Elf_Internal_Vernaux);
5850 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5852 evernaux = ((Elf_External_Vernaux *)
5853 ((bfd_byte *) everneed + iverneed->vn_aux));
5854 ivernaux = iverneed->vn_auxptr;
5855 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5857 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5859 ivernaux->vna_nodename =
5860 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5861 ivernaux->vna_name);
5862 if (ivernaux->vna_nodename == NULL)
5863 goto error_return;
5865 if (j + 1 < iverneed->vn_cnt)
5866 ivernaux->vna_nextptr = ivernaux + 1;
5867 else
5868 ivernaux->vna_nextptr = NULL;
5870 evernaux = ((Elf_External_Vernaux *)
5871 ((bfd_byte *) evernaux + ivernaux->vna_next));
5874 if (i + 1 < hdr->sh_info)
5875 iverneed->vn_nextref = iverneed + 1;
5876 else
5877 iverneed->vn_nextref = NULL;
5879 everneed = ((Elf_External_Verneed *)
5880 ((bfd_byte *) everneed + iverneed->vn_next));
5883 free (contents);
5884 contents = NULL;
5887 return TRUE;
5889 error_return:
5890 if (contents != NULL)
5891 free (contents);
5892 return FALSE;
5895 asymbol *
5896 _bfd_elf_make_empty_symbol (bfd *abfd)
5898 elf_symbol_type *newsym;
5899 bfd_size_type amt = sizeof (elf_symbol_type);
5901 newsym = bfd_zalloc (abfd, amt);
5902 if (!newsym)
5903 return NULL;
5904 else
5906 newsym->symbol.the_bfd = abfd;
5907 return &newsym->symbol;
5911 void
5912 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5913 asymbol *symbol,
5914 symbol_info *ret)
5916 bfd_symbol_info (symbol, ret);
5919 /* Return whether a symbol name implies a local symbol. Most targets
5920 use this function for the is_local_label_name entry point, but some
5921 override it. */
5923 bfd_boolean
5924 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5925 const char *name)
5927 /* Normal local symbols start with ``.L''. */
5928 if (name[0] == '.' && name[1] == 'L')
5929 return TRUE;
5931 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5932 DWARF debugging symbols starting with ``..''. */
5933 if (name[0] == '.' && name[1] == '.')
5934 return TRUE;
5936 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5937 emitting DWARF debugging output. I suspect this is actually a
5938 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5939 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5940 underscore to be emitted on some ELF targets). For ease of use,
5941 we treat such symbols as local. */
5942 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5943 return TRUE;
5945 return FALSE;
5948 alent *
5949 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5950 asymbol *symbol ATTRIBUTE_UNUSED)
5952 abort ();
5953 return NULL;
5956 bfd_boolean
5957 _bfd_elf_set_arch_mach (bfd *abfd,
5958 enum bfd_architecture arch,
5959 unsigned long machine)
5961 /* If this isn't the right architecture for this backend, and this
5962 isn't the generic backend, fail. */
5963 if (arch != get_elf_backend_data (abfd)->arch
5964 && arch != bfd_arch_unknown
5965 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5966 return FALSE;
5968 return bfd_default_set_arch_mach (abfd, arch, machine);
5971 /* Find the function to a particular section and offset,
5972 for error reporting. */
5974 static bfd_boolean
5975 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5976 asection *section,
5977 asymbol **symbols,
5978 bfd_vma offset,
5979 const char **filename_ptr,
5980 const char **functionname_ptr)
5982 const char *filename;
5983 asymbol *func;
5984 bfd_vma low_func;
5985 asymbol **p;
5987 filename = NULL;
5988 func = NULL;
5989 low_func = 0;
5991 for (p = symbols; *p != NULL; p++)
5993 elf_symbol_type *q;
5995 q = (elf_symbol_type *) *p;
5997 if (bfd_get_section (&q->symbol) != section)
5998 continue;
6000 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6002 default:
6003 break;
6004 case STT_FILE:
6005 filename = bfd_asymbol_name (&q->symbol);
6006 break;
6007 case STT_NOTYPE:
6008 case STT_FUNC:
6009 if (q->symbol.section == section
6010 && q->symbol.value >= low_func
6011 && q->symbol.value <= offset)
6013 func = (asymbol *) q;
6014 low_func = q->symbol.value;
6016 break;
6020 if (func == NULL)
6021 return FALSE;
6023 if (filename_ptr)
6024 *filename_ptr = filename;
6025 if (functionname_ptr)
6026 *functionname_ptr = bfd_asymbol_name (func);
6028 return TRUE;
6031 /* Find the nearest line to a particular section and offset,
6032 for error reporting. */
6034 bfd_boolean
6035 _bfd_elf_find_nearest_line (bfd *abfd,
6036 asection *section,
6037 asymbol **symbols,
6038 bfd_vma offset,
6039 const char **filename_ptr,
6040 const char **functionname_ptr,
6041 unsigned int *line_ptr)
6043 bfd_boolean found;
6045 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6046 filename_ptr, functionname_ptr,
6047 line_ptr))
6049 if (!*functionname_ptr)
6050 elf_find_function (abfd, section, symbols, offset,
6051 *filename_ptr ? NULL : filename_ptr,
6052 functionname_ptr);
6054 return TRUE;
6057 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6058 filename_ptr, functionname_ptr,
6059 line_ptr, 0,
6060 &elf_tdata (abfd)->dwarf2_find_line_info))
6062 if (!*functionname_ptr)
6063 elf_find_function (abfd, section, symbols, offset,
6064 *filename_ptr ? NULL : filename_ptr,
6065 functionname_ptr);
6067 return TRUE;
6070 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6071 &found, filename_ptr,
6072 functionname_ptr, line_ptr,
6073 &elf_tdata (abfd)->line_info))
6074 return FALSE;
6075 if (found && (*functionname_ptr || *line_ptr))
6076 return TRUE;
6078 if (symbols == NULL)
6079 return FALSE;
6081 if (! elf_find_function (abfd, section, symbols, offset,
6082 filename_ptr, functionname_ptr))
6083 return FALSE;
6085 *line_ptr = 0;
6086 return TRUE;
6090 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6092 int ret;
6094 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6095 if (! reloc)
6096 ret += get_program_header_size (abfd);
6097 return ret;
6100 bfd_boolean
6101 _bfd_elf_set_section_contents (bfd *abfd,
6102 sec_ptr section,
6103 const void *location,
6104 file_ptr offset,
6105 bfd_size_type count)
6107 Elf_Internal_Shdr *hdr;
6108 bfd_signed_vma pos;
6110 if (! abfd->output_has_begun
6111 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6112 return FALSE;
6114 hdr = &elf_section_data (section)->this_hdr;
6115 pos = hdr->sh_offset + offset;
6116 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6117 || bfd_bwrite (location, count, abfd) != count)
6118 return FALSE;
6120 return TRUE;
6123 void
6124 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6125 arelent *cache_ptr ATTRIBUTE_UNUSED,
6126 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6128 abort ();
6131 /* Try to convert a non-ELF reloc into an ELF one. */
6133 bfd_boolean
6134 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6136 /* Check whether we really have an ELF howto. */
6138 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6140 bfd_reloc_code_real_type code;
6141 reloc_howto_type *howto;
6143 /* Alien reloc: Try to determine its type to replace it with an
6144 equivalent ELF reloc. */
6146 if (areloc->howto->pc_relative)
6148 switch (areloc->howto->bitsize)
6150 case 8:
6151 code = BFD_RELOC_8_PCREL;
6152 break;
6153 case 12:
6154 code = BFD_RELOC_12_PCREL;
6155 break;
6156 case 16:
6157 code = BFD_RELOC_16_PCREL;
6158 break;
6159 case 24:
6160 code = BFD_RELOC_24_PCREL;
6161 break;
6162 case 32:
6163 code = BFD_RELOC_32_PCREL;
6164 break;
6165 case 64:
6166 code = BFD_RELOC_64_PCREL;
6167 break;
6168 default:
6169 goto fail;
6172 howto = bfd_reloc_type_lookup (abfd, code);
6174 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6176 if (howto->pcrel_offset)
6177 areloc->addend += areloc->address;
6178 else
6179 areloc->addend -= areloc->address; /* addend is unsigned!! */
6182 else
6184 switch (areloc->howto->bitsize)
6186 case 8:
6187 code = BFD_RELOC_8;
6188 break;
6189 case 14:
6190 code = BFD_RELOC_14;
6191 break;
6192 case 16:
6193 code = BFD_RELOC_16;
6194 break;
6195 case 26:
6196 code = BFD_RELOC_26;
6197 break;
6198 case 32:
6199 code = BFD_RELOC_32;
6200 break;
6201 case 64:
6202 code = BFD_RELOC_64;
6203 break;
6204 default:
6205 goto fail;
6208 howto = bfd_reloc_type_lookup (abfd, code);
6211 if (howto)
6212 areloc->howto = howto;
6213 else
6214 goto fail;
6217 return TRUE;
6219 fail:
6220 (*_bfd_error_handler)
6221 (_("%s: unsupported relocation type %s"),
6222 bfd_archive_filename (abfd), areloc->howto->name);
6223 bfd_set_error (bfd_error_bad_value);
6224 return FALSE;
6227 bfd_boolean
6228 _bfd_elf_close_and_cleanup (bfd *abfd)
6230 if (bfd_get_format (abfd) == bfd_object)
6232 if (elf_shstrtab (abfd) != NULL)
6233 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6236 return _bfd_generic_close_and_cleanup (abfd);
6239 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6240 in the relocation's offset. Thus we cannot allow any sort of sanity
6241 range-checking to interfere. There is nothing else to do in processing
6242 this reloc. */
6244 bfd_reloc_status_type
6245 _bfd_elf_rel_vtable_reloc_fn
6246 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6247 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6248 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6249 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6251 return bfd_reloc_ok;
6254 /* Elf core file support. Much of this only works on native
6255 toolchains, since we rely on knowing the
6256 machine-dependent procfs structure in order to pick
6257 out details about the corefile. */
6259 #ifdef HAVE_SYS_PROCFS_H
6260 # include <sys/procfs.h>
6261 #endif
6263 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6265 static int
6266 elfcore_make_pid (bfd *abfd)
6268 return ((elf_tdata (abfd)->core_lwpid << 16)
6269 + (elf_tdata (abfd)->core_pid));
6272 /* If there isn't a section called NAME, make one, using
6273 data from SECT. Note, this function will generate a
6274 reference to NAME, so you shouldn't deallocate or
6275 overwrite it. */
6277 static bfd_boolean
6278 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6280 asection *sect2;
6282 if (bfd_get_section_by_name (abfd, name) != NULL)
6283 return TRUE;
6285 sect2 = bfd_make_section (abfd, name);
6286 if (sect2 == NULL)
6287 return FALSE;
6289 sect2->_raw_size = sect->_raw_size;
6290 sect2->filepos = sect->filepos;
6291 sect2->flags = sect->flags;
6292 sect2->alignment_power = sect->alignment_power;
6293 return TRUE;
6296 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6297 actually creates up to two pseudosections:
6298 - For the single-threaded case, a section named NAME, unless
6299 such a section already exists.
6300 - For the multi-threaded case, a section named "NAME/PID", where
6301 PID is elfcore_make_pid (abfd).
6302 Both pseudosections have identical contents. */
6303 bfd_boolean
6304 _bfd_elfcore_make_pseudosection (bfd *abfd,
6305 char *name,
6306 size_t size,
6307 ufile_ptr filepos)
6309 char buf[100];
6310 char *threaded_name;
6311 size_t len;
6312 asection *sect;
6314 /* Build the section name. */
6316 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6317 len = strlen (buf) + 1;
6318 threaded_name = bfd_alloc (abfd, len);
6319 if (threaded_name == NULL)
6320 return FALSE;
6321 memcpy (threaded_name, buf, len);
6323 sect = bfd_make_section_anyway (abfd, threaded_name);
6324 if (sect == NULL)
6325 return FALSE;
6326 sect->_raw_size = size;
6327 sect->filepos = filepos;
6328 sect->flags = SEC_HAS_CONTENTS;
6329 sect->alignment_power = 2;
6331 return elfcore_maybe_make_sect (abfd, name, sect);
6334 /* prstatus_t exists on:
6335 solaris 2.5+
6336 linux 2.[01] + glibc
6337 unixware 4.2
6340 #if defined (HAVE_PRSTATUS_T)
6342 static bfd_boolean
6343 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6345 size_t raw_size;
6346 int offset;
6348 if (note->descsz == sizeof (prstatus_t))
6350 prstatus_t prstat;
6352 raw_size = sizeof (prstat.pr_reg);
6353 offset = offsetof (prstatus_t, pr_reg);
6354 memcpy (&prstat, note->descdata, sizeof (prstat));
6356 /* Do not overwrite the core signal if it
6357 has already been set by another thread. */
6358 if (elf_tdata (abfd)->core_signal == 0)
6359 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6360 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6362 /* pr_who exists on:
6363 solaris 2.5+
6364 unixware 4.2
6365 pr_who doesn't exist on:
6366 linux 2.[01]
6368 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6369 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6370 #endif
6372 #if defined (HAVE_PRSTATUS32_T)
6373 else if (note->descsz == sizeof (prstatus32_t))
6375 /* 64-bit host, 32-bit corefile */
6376 prstatus32_t prstat;
6378 raw_size = sizeof (prstat.pr_reg);
6379 offset = offsetof (prstatus32_t, pr_reg);
6380 memcpy (&prstat, note->descdata, sizeof (prstat));
6382 /* Do not overwrite the core signal if it
6383 has already been set by another thread. */
6384 if (elf_tdata (abfd)->core_signal == 0)
6385 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6386 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6388 /* pr_who exists on:
6389 solaris 2.5+
6390 unixware 4.2
6391 pr_who doesn't exist on:
6392 linux 2.[01]
6394 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6395 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6396 #endif
6398 #endif /* HAVE_PRSTATUS32_T */
6399 else
6401 /* Fail - we don't know how to handle any other
6402 note size (ie. data object type). */
6403 return TRUE;
6406 /* Make a ".reg/999" section and a ".reg" section. */
6407 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6408 raw_size, note->descpos + offset);
6410 #endif /* defined (HAVE_PRSTATUS_T) */
6412 /* Create a pseudosection containing the exact contents of NOTE. */
6413 static bfd_boolean
6414 elfcore_make_note_pseudosection (bfd *abfd,
6415 char *name,
6416 Elf_Internal_Note *note)
6418 return _bfd_elfcore_make_pseudosection (abfd, name,
6419 note->descsz, note->descpos);
6422 /* There isn't a consistent prfpregset_t across platforms,
6423 but it doesn't matter, because we don't have to pick this
6424 data structure apart. */
6426 static bfd_boolean
6427 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6429 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6432 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6433 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6434 literally. */
6436 static bfd_boolean
6437 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6439 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6442 #if defined (HAVE_PRPSINFO_T)
6443 typedef prpsinfo_t elfcore_psinfo_t;
6444 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6445 typedef prpsinfo32_t elfcore_psinfo32_t;
6446 #endif
6447 #endif
6449 #if defined (HAVE_PSINFO_T)
6450 typedef psinfo_t elfcore_psinfo_t;
6451 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6452 typedef psinfo32_t elfcore_psinfo32_t;
6453 #endif
6454 #endif
6456 /* return a malloc'ed copy of a string at START which is at
6457 most MAX bytes long, possibly without a terminating '\0'.
6458 the copy will always have a terminating '\0'. */
6460 char *
6461 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6463 char *dups;
6464 char *end = memchr (start, '\0', max);
6465 size_t len;
6467 if (end == NULL)
6468 len = max;
6469 else
6470 len = end - start;
6472 dups = bfd_alloc (abfd, len + 1);
6473 if (dups == NULL)
6474 return NULL;
6476 memcpy (dups, start, len);
6477 dups[len] = '\0';
6479 return dups;
6482 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6483 static bfd_boolean
6484 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6486 if (note->descsz == sizeof (elfcore_psinfo_t))
6488 elfcore_psinfo_t psinfo;
6490 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6492 elf_tdata (abfd)->core_program
6493 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6494 sizeof (psinfo.pr_fname));
6496 elf_tdata (abfd)->core_command
6497 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6498 sizeof (psinfo.pr_psargs));
6500 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6501 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6503 /* 64-bit host, 32-bit corefile */
6504 elfcore_psinfo32_t psinfo;
6506 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6508 elf_tdata (abfd)->core_program
6509 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6510 sizeof (psinfo.pr_fname));
6512 elf_tdata (abfd)->core_command
6513 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6514 sizeof (psinfo.pr_psargs));
6516 #endif
6518 else
6520 /* Fail - we don't know how to handle any other
6521 note size (ie. data object type). */
6522 return TRUE;
6525 /* Note that for some reason, a spurious space is tacked
6526 onto the end of the args in some (at least one anyway)
6527 implementations, so strip it off if it exists. */
6530 char *command = elf_tdata (abfd)->core_command;
6531 int n = strlen (command);
6533 if (0 < n && command[n - 1] == ' ')
6534 command[n - 1] = '\0';
6537 return TRUE;
6539 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6541 #if defined (HAVE_PSTATUS_T)
6542 static bfd_boolean
6543 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6545 if (note->descsz == sizeof (pstatus_t)
6546 #if defined (HAVE_PXSTATUS_T)
6547 || note->descsz == sizeof (pxstatus_t)
6548 #endif
6551 pstatus_t pstat;
6553 memcpy (&pstat, note->descdata, sizeof (pstat));
6555 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6557 #if defined (HAVE_PSTATUS32_T)
6558 else if (note->descsz == sizeof (pstatus32_t))
6560 /* 64-bit host, 32-bit corefile */
6561 pstatus32_t pstat;
6563 memcpy (&pstat, note->descdata, sizeof (pstat));
6565 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6567 #endif
6568 /* Could grab some more details from the "representative"
6569 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6570 NT_LWPSTATUS note, presumably. */
6572 return TRUE;
6574 #endif /* defined (HAVE_PSTATUS_T) */
6576 #if defined (HAVE_LWPSTATUS_T)
6577 static bfd_boolean
6578 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6580 lwpstatus_t lwpstat;
6581 char buf[100];
6582 char *name;
6583 size_t len;
6584 asection *sect;
6586 if (note->descsz != sizeof (lwpstat)
6587 #if defined (HAVE_LWPXSTATUS_T)
6588 && note->descsz != sizeof (lwpxstatus_t)
6589 #endif
6591 return TRUE;
6593 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6595 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6596 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6598 /* Make a ".reg/999" section. */
6600 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6601 len = strlen (buf) + 1;
6602 name = bfd_alloc (abfd, len);
6603 if (name == NULL)
6604 return FALSE;
6605 memcpy (name, buf, len);
6607 sect = bfd_make_section_anyway (abfd, name);
6608 if (sect == NULL)
6609 return FALSE;
6611 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6612 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6613 sect->filepos = note->descpos
6614 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6615 #endif
6617 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6618 sect->_raw_size = sizeof (lwpstat.pr_reg);
6619 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6620 #endif
6622 sect->flags = SEC_HAS_CONTENTS;
6623 sect->alignment_power = 2;
6625 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6626 return FALSE;
6628 /* Make a ".reg2/999" section */
6630 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6631 len = strlen (buf) + 1;
6632 name = bfd_alloc (abfd, len);
6633 if (name == NULL)
6634 return FALSE;
6635 memcpy (name, buf, len);
6637 sect = bfd_make_section_anyway (abfd, name);
6638 if (sect == NULL)
6639 return FALSE;
6641 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6642 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6643 sect->filepos = note->descpos
6644 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6645 #endif
6647 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6648 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6649 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6650 #endif
6652 sect->flags = SEC_HAS_CONTENTS;
6653 sect->alignment_power = 2;
6655 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6657 #endif /* defined (HAVE_LWPSTATUS_T) */
6659 #if defined (HAVE_WIN32_PSTATUS_T)
6660 static bfd_boolean
6661 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6663 char buf[30];
6664 char *name;
6665 size_t len;
6666 asection *sect;
6667 win32_pstatus_t pstatus;
6669 if (note->descsz < sizeof (pstatus))
6670 return TRUE;
6672 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6674 switch (pstatus.data_type)
6676 case NOTE_INFO_PROCESS:
6677 /* FIXME: need to add ->core_command. */
6678 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6679 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6680 break;
6682 case NOTE_INFO_THREAD:
6683 /* Make a ".reg/999" section. */
6684 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6686 len = strlen (buf) + 1;
6687 name = bfd_alloc (abfd, len);
6688 if (name == NULL)
6689 return FALSE;
6691 memcpy (name, buf, len);
6693 sect = bfd_make_section_anyway (abfd, name);
6694 if (sect == NULL)
6695 return FALSE;
6697 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6698 sect->filepos = (note->descpos
6699 + offsetof (struct win32_pstatus,
6700 data.thread_info.thread_context));
6701 sect->flags = SEC_HAS_CONTENTS;
6702 sect->alignment_power = 2;
6704 if (pstatus.data.thread_info.is_active_thread)
6705 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6706 return FALSE;
6707 break;
6709 case NOTE_INFO_MODULE:
6710 /* Make a ".module/xxxxxxxx" section. */
6711 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6713 len = strlen (buf) + 1;
6714 name = bfd_alloc (abfd, len);
6715 if (name == NULL)
6716 return FALSE;
6718 memcpy (name, buf, len);
6720 sect = bfd_make_section_anyway (abfd, name);
6722 if (sect == NULL)
6723 return FALSE;
6725 sect->_raw_size = note->descsz;
6726 sect->filepos = note->descpos;
6727 sect->flags = SEC_HAS_CONTENTS;
6728 sect->alignment_power = 2;
6729 break;
6731 default:
6732 return TRUE;
6735 return TRUE;
6737 #endif /* HAVE_WIN32_PSTATUS_T */
6739 static bfd_boolean
6740 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6744 switch (note->type)
6746 default:
6747 return TRUE;
6749 case NT_PRSTATUS:
6750 if (bed->elf_backend_grok_prstatus)
6751 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6752 return TRUE;
6753 #if defined (HAVE_PRSTATUS_T)
6754 return elfcore_grok_prstatus (abfd, note);
6755 #else
6756 return TRUE;
6757 #endif
6759 #if defined (HAVE_PSTATUS_T)
6760 case NT_PSTATUS:
6761 return elfcore_grok_pstatus (abfd, note);
6762 #endif
6764 #if defined (HAVE_LWPSTATUS_T)
6765 case NT_LWPSTATUS:
6766 return elfcore_grok_lwpstatus (abfd, note);
6767 #endif
6769 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6770 return elfcore_grok_prfpreg (abfd, note);
6772 #if defined (HAVE_WIN32_PSTATUS_T)
6773 case NT_WIN32PSTATUS:
6774 return elfcore_grok_win32pstatus (abfd, note);
6775 #endif
6777 case NT_PRXFPREG: /* Linux SSE extension */
6778 if (note->namesz == 6
6779 && strcmp (note->namedata, "LINUX") == 0)
6780 return elfcore_grok_prxfpreg (abfd, note);
6781 else
6782 return TRUE;
6784 case NT_PRPSINFO:
6785 case NT_PSINFO:
6786 if (bed->elf_backend_grok_psinfo)
6787 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6788 return TRUE;
6789 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6790 return elfcore_grok_psinfo (abfd, note);
6791 #else
6792 return TRUE;
6793 #endif
6795 case NT_AUXV:
6797 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6799 if (sect == NULL)
6800 return FALSE;
6801 sect->_raw_size = note->descsz;
6802 sect->filepos = note->descpos;
6803 sect->flags = SEC_HAS_CONTENTS;
6804 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6806 return TRUE;
6811 static bfd_boolean
6812 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6814 char *cp;
6816 cp = strchr (note->namedata, '@');
6817 if (cp != NULL)
6819 *lwpidp = atoi(cp + 1);
6820 return TRUE;
6822 return FALSE;
6825 static bfd_boolean
6826 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6829 /* Signal number at offset 0x08. */
6830 elf_tdata (abfd)->core_signal
6831 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6833 /* Process ID at offset 0x50. */
6834 elf_tdata (abfd)->core_pid
6835 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6837 /* Command name at 0x7c (max 32 bytes, including nul). */
6838 elf_tdata (abfd)->core_command
6839 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6841 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
6842 note);
6845 static bfd_boolean
6846 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6848 int lwp;
6850 if (elfcore_netbsd_get_lwpid (note, &lwp))
6851 elf_tdata (abfd)->core_lwpid = lwp;
6853 if (note->type == NT_NETBSDCORE_PROCINFO)
6855 /* NetBSD-specific core "procinfo". Note that we expect to
6856 find this note before any of the others, which is fine,
6857 since the kernel writes this note out first when it
6858 creates a core file. */
6860 return elfcore_grok_netbsd_procinfo (abfd, note);
6863 /* As of Jan 2002 there are no other machine-independent notes
6864 defined for NetBSD core files. If the note type is less
6865 than the start of the machine-dependent note types, we don't
6866 understand it. */
6868 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6869 return TRUE;
6872 switch (bfd_get_arch (abfd))
6874 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6875 PT_GETFPREGS == mach+2. */
6877 case bfd_arch_alpha:
6878 case bfd_arch_sparc:
6879 switch (note->type)
6881 case NT_NETBSDCORE_FIRSTMACH+0:
6882 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6884 case NT_NETBSDCORE_FIRSTMACH+2:
6885 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6887 default:
6888 return TRUE;
6891 /* On all other arch's, PT_GETREGS == mach+1 and
6892 PT_GETFPREGS == mach+3. */
6894 default:
6895 switch (note->type)
6897 case NT_NETBSDCORE_FIRSTMACH+1:
6898 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6900 case NT_NETBSDCORE_FIRSTMACH+3:
6901 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6903 default:
6904 return TRUE;
6907 /* NOTREACHED */
6910 static bfd_boolean
6911 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6913 void *ddata = note->descdata;
6914 char buf[100];
6915 char *name;
6916 asection *sect;
6917 short sig;
6918 unsigned flags;
6920 /* nto_procfs_status 'pid' field is at offset 0. */
6921 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6923 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6924 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6926 /* nto_procfs_status 'flags' field is at offset 8. */
6927 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6929 /* nto_procfs_status 'what' field is at offset 14. */
6930 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6932 elf_tdata (abfd)->core_signal = sig;
6933 elf_tdata (abfd)->core_lwpid = *tid;
6936 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6937 do not come from signals so we make sure we set the current
6938 thread just in case. */
6939 if (flags & 0x00000080)
6940 elf_tdata (abfd)->core_lwpid = *tid;
6942 /* Make a ".qnx_core_status/%d" section. */
6943 sprintf (buf, ".qnx_core_status/%d", *tid);
6945 name = bfd_alloc (abfd, strlen (buf) + 1);
6946 if (name == NULL)
6947 return FALSE;
6948 strcpy (name, buf);
6950 sect = bfd_make_section_anyway (abfd, name);
6951 if (sect == NULL)
6952 return FALSE;
6954 sect->_raw_size = note->descsz;
6955 sect->filepos = note->descpos;
6956 sect->flags = SEC_HAS_CONTENTS;
6957 sect->alignment_power = 2;
6959 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
6962 static bfd_boolean
6963 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
6965 char buf[100];
6966 char *name;
6967 asection *sect;
6969 /* Make a ".reg/%d" section. */
6970 sprintf (buf, ".reg/%d", tid);
6972 name = bfd_alloc (abfd, strlen (buf) + 1);
6973 if (name == NULL)
6974 return FALSE;
6975 strcpy (name, buf);
6977 sect = bfd_make_section_anyway (abfd, name);
6978 if (sect == NULL)
6979 return FALSE;
6981 sect->_raw_size = note->descsz;
6982 sect->filepos = note->descpos;
6983 sect->flags = SEC_HAS_CONTENTS;
6984 sect->alignment_power = 2;
6986 /* This is the current thread. */
6987 if (elf_tdata (abfd)->core_lwpid == tid)
6988 return elfcore_maybe_make_sect (abfd, ".reg", sect);
6990 return TRUE;
6993 #define BFD_QNT_CORE_INFO 7
6994 #define BFD_QNT_CORE_STATUS 8
6995 #define BFD_QNT_CORE_GREG 9
6996 #define BFD_QNT_CORE_FPREG 10
6998 static bfd_boolean
6999 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7001 /* Every GREG section has a STATUS section before it. Store the
7002 tid from the previous call to pass down to the next gregs
7003 function. */
7004 static pid_t tid = 1;
7006 switch (note->type)
7008 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7009 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7010 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7011 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7012 default: return TRUE;
7016 /* Function: elfcore_write_note
7018 Inputs:
7019 buffer to hold note
7020 name of note
7021 type of note
7022 data for note
7023 size of data for note
7025 Return:
7026 End of buffer containing note. */
7028 char *
7029 elfcore_write_note (bfd *abfd,
7030 char *buf,
7031 int *bufsiz,
7032 const char *name,
7033 int type,
7034 const void *input,
7035 int size)
7037 Elf_External_Note *xnp;
7038 size_t namesz;
7039 size_t pad;
7040 size_t newspace;
7041 char *p, *dest;
7043 namesz = 0;
7044 pad = 0;
7045 if (name != NULL)
7047 const struct elf_backend_data *bed;
7049 namesz = strlen (name) + 1;
7050 bed = get_elf_backend_data (abfd);
7051 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7054 newspace = 12 + namesz + pad + size;
7056 p = realloc (buf, *bufsiz + newspace);
7057 dest = p + *bufsiz;
7058 *bufsiz += newspace;
7059 xnp = (Elf_External_Note *) dest;
7060 H_PUT_32 (abfd, namesz, xnp->namesz);
7061 H_PUT_32 (abfd, size, xnp->descsz);
7062 H_PUT_32 (abfd, type, xnp->type);
7063 dest = xnp->name;
7064 if (name != NULL)
7066 memcpy (dest, name, namesz);
7067 dest += namesz;
7068 while (pad != 0)
7070 *dest++ = '\0';
7071 --pad;
7074 memcpy (dest, input, size);
7075 return p;
7078 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7079 char *
7080 elfcore_write_prpsinfo (bfd *abfd,
7081 char *buf,
7082 int *bufsiz,
7083 const char *fname,
7084 const char *psargs)
7086 int note_type;
7087 char *note_name = "CORE";
7089 #if defined (HAVE_PSINFO_T)
7090 psinfo_t data;
7091 note_type = NT_PSINFO;
7092 #else
7093 prpsinfo_t data;
7094 note_type = NT_PRPSINFO;
7095 #endif
7097 memset (&data, 0, sizeof (data));
7098 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7099 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7100 return elfcore_write_note (abfd, buf, bufsiz,
7101 note_name, note_type, &data, sizeof (data));
7103 #endif /* PSINFO_T or PRPSINFO_T */
7105 #if defined (HAVE_PRSTATUS_T)
7106 char *
7107 elfcore_write_prstatus (bfd *abfd,
7108 char *buf,
7109 int *bufsiz,
7110 long pid,
7111 int cursig,
7112 const void *gregs)
7114 prstatus_t prstat;
7115 char *note_name = "CORE";
7117 memset (&prstat, 0, sizeof (prstat));
7118 prstat.pr_pid = pid;
7119 prstat.pr_cursig = cursig;
7120 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7121 return elfcore_write_note (abfd, buf, bufsiz,
7122 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7124 #endif /* HAVE_PRSTATUS_T */
7126 #if defined (HAVE_LWPSTATUS_T)
7127 char *
7128 elfcore_write_lwpstatus (bfd *abfd,
7129 char *buf,
7130 int *bufsiz,
7131 long pid,
7132 int cursig,
7133 const void *gregs)
7135 lwpstatus_t lwpstat;
7136 char *note_name = "CORE";
7138 memset (&lwpstat, 0, sizeof (lwpstat));
7139 lwpstat.pr_lwpid = pid >> 16;
7140 lwpstat.pr_cursig = cursig;
7141 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7142 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7143 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7144 #if !defined(gregs)
7145 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7146 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7147 #else
7148 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7149 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7150 #endif
7151 #endif
7152 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7153 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7155 #endif /* HAVE_LWPSTATUS_T */
7157 #if defined (HAVE_PSTATUS_T)
7158 char *
7159 elfcore_write_pstatus (bfd *abfd,
7160 char *buf,
7161 int *bufsiz,
7162 long pid,
7163 int cursig,
7164 const void *gregs)
7166 pstatus_t pstat;
7167 char *note_name = "CORE";
7169 memset (&pstat, 0, sizeof (pstat));
7170 pstat.pr_pid = pid & 0xffff;
7171 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7172 NT_PSTATUS, &pstat, sizeof (pstat));
7173 return buf;
7175 #endif /* HAVE_PSTATUS_T */
7177 char *
7178 elfcore_write_prfpreg (bfd *abfd,
7179 char *buf,
7180 int *bufsiz,
7181 const void *fpregs,
7182 int size)
7184 char *note_name = "CORE";
7185 return elfcore_write_note (abfd, buf, bufsiz,
7186 note_name, NT_FPREGSET, fpregs, size);
7189 char *
7190 elfcore_write_prxfpreg (bfd *abfd,
7191 char *buf,
7192 int *bufsiz,
7193 const void *xfpregs,
7194 int size)
7196 char *note_name = "LINUX";
7197 return elfcore_write_note (abfd, buf, bufsiz,
7198 note_name, NT_PRXFPREG, xfpregs, size);
7201 static bfd_boolean
7202 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7204 char *buf;
7205 char *p;
7207 if (size <= 0)
7208 return TRUE;
7210 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7211 return FALSE;
7213 buf = bfd_malloc (size);
7214 if (buf == NULL)
7215 return FALSE;
7217 if (bfd_bread (buf, size, abfd) != size)
7219 error:
7220 free (buf);
7221 return FALSE;
7224 p = buf;
7225 while (p < buf + size)
7227 /* FIXME: bad alignment assumption. */
7228 Elf_External_Note *xnp = (Elf_External_Note *) p;
7229 Elf_Internal_Note in;
7231 in.type = H_GET_32 (abfd, xnp->type);
7233 in.namesz = H_GET_32 (abfd, xnp->namesz);
7234 in.namedata = xnp->name;
7236 in.descsz = H_GET_32 (abfd, xnp->descsz);
7237 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7238 in.descpos = offset + (in.descdata - buf);
7240 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7242 if (! elfcore_grok_netbsd_note (abfd, &in))
7243 goto error;
7245 else if (strncmp (in.namedata, "QNX", 3) == 0)
7247 if (! elfcore_grok_nto_note (abfd, &in))
7248 goto error;
7250 else
7252 if (! elfcore_grok_note (abfd, &in))
7253 goto error;
7256 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7259 free (buf);
7260 return TRUE;
7263 /* Providing external access to the ELF program header table. */
7265 /* Return an upper bound on the number of bytes required to store a
7266 copy of ABFD's program header table entries. Return -1 if an error
7267 occurs; bfd_get_error will return an appropriate code. */
7269 long
7270 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7272 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7274 bfd_set_error (bfd_error_wrong_format);
7275 return -1;
7278 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7281 /* Copy ABFD's program header table entries to *PHDRS. The entries
7282 will be stored as an array of Elf_Internal_Phdr structures, as
7283 defined in include/elf/internal.h. To find out how large the
7284 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7286 Return the number of program header table entries read, or -1 if an
7287 error occurs; bfd_get_error will return an appropriate code. */
7290 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7292 int num_phdrs;
7294 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7296 bfd_set_error (bfd_error_wrong_format);
7297 return -1;
7300 num_phdrs = elf_elfheader (abfd)->e_phnum;
7301 memcpy (phdrs, elf_tdata (abfd)->phdr,
7302 num_phdrs * sizeof (Elf_Internal_Phdr));
7304 return num_phdrs;
7307 void
7308 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7310 #ifdef BFD64
7311 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7313 i_ehdrp = elf_elfheader (abfd);
7314 if (i_ehdrp == NULL)
7315 sprintf_vma (buf, value);
7316 else
7318 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7320 #if BFD_HOST_64BIT_LONG
7321 sprintf (buf, "%016lx", value);
7322 #else
7323 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7324 _bfd_int64_low (value));
7325 #endif
7327 else
7328 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7330 #else
7331 sprintf_vma (buf, value);
7332 #endif
7335 void
7336 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7338 #ifdef BFD64
7339 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7341 i_ehdrp = elf_elfheader (abfd);
7342 if (i_ehdrp == NULL)
7343 fprintf_vma ((FILE *) stream, value);
7344 else
7346 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7348 #if BFD_HOST_64BIT_LONG
7349 fprintf ((FILE *) stream, "%016lx", value);
7350 #else
7351 fprintf ((FILE *) stream, "%08lx%08lx",
7352 _bfd_int64_high (value), _bfd_int64_low (value));
7353 #endif
7355 else
7356 fprintf ((FILE *) stream, "%08lx",
7357 (unsigned long) (value & 0xffffffff));
7359 #else
7360 fprintf_vma ((FILE *) stream, value);
7361 #endif
7364 enum elf_reloc_type_class
7365 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7367 return reloc_class_normal;
7370 /* For RELA architectures, return the relocation value for a
7371 relocation against a local symbol. */
7373 bfd_vma
7374 _bfd_elf_rela_local_sym (bfd *abfd,
7375 Elf_Internal_Sym *sym,
7376 asection **psec,
7377 Elf_Internal_Rela *rel)
7379 asection *sec = *psec;
7380 bfd_vma relocation;
7382 relocation = (sec->output_section->vma
7383 + sec->output_offset
7384 + sym->st_value);
7385 if ((sec->flags & SEC_MERGE)
7386 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7387 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7389 rel->r_addend =
7390 _bfd_merged_section_offset (abfd, psec,
7391 elf_section_data (sec)->sec_info,
7392 sym->st_value + rel->r_addend,
7394 sec = *psec;
7395 rel->r_addend -= relocation;
7396 rel->r_addend += sec->output_section->vma + sec->output_offset;
7398 return relocation;
7401 bfd_vma
7402 _bfd_elf_rel_local_sym (bfd *abfd,
7403 Elf_Internal_Sym *sym,
7404 asection **psec,
7405 bfd_vma addend)
7407 asection *sec = *psec;
7409 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7410 return sym->st_value + addend;
7412 return _bfd_merged_section_offset (abfd, psec,
7413 elf_section_data (sec)->sec_info,
7414 sym->st_value + addend, 0);
7417 bfd_vma
7418 _bfd_elf_section_offset (bfd *abfd,
7419 struct bfd_link_info *info,
7420 asection *sec,
7421 bfd_vma offset)
7423 struct bfd_elf_section_data *sec_data;
7425 sec_data = elf_section_data (sec);
7426 switch (sec->sec_info_type)
7428 case ELF_INFO_TYPE_STABS:
7429 return _bfd_stab_section_offset (abfd,
7430 &elf_hash_table (info)->merge_info,
7431 sec, &sec_data->sec_info, offset);
7432 case ELF_INFO_TYPE_EH_FRAME:
7433 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7434 default:
7435 return offset;
7439 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7440 reconstruct an ELF file by reading the segments out of remote memory
7441 based on the ELF file header at EHDR_VMA and the ELF program headers it
7442 points to. If not null, *LOADBASEP is filled in with the difference
7443 between the VMAs from which the segments were read, and the VMAs the
7444 file headers (and hence BFD's idea of each section's VMA) put them at.
7446 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7447 remote memory at target address VMA into the local buffer at MYADDR; it
7448 should return zero on success or an `errno' code on failure. TEMPL must
7449 be a BFD for an ELF target with the word size and byte order found in
7450 the remote memory. */
7452 bfd *
7453 bfd_elf_bfd_from_remote_memory
7454 (bfd *templ,
7455 bfd_vma ehdr_vma,
7456 bfd_vma *loadbasep,
7457 int (*target_read_memory) (bfd_vma, char *, int))
7459 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7460 (templ, ehdr_vma, loadbasep, target_read_memory);