1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
33 /* For sparc64-cross-sparc32. */
41 #include "libiberty.h"
43 static int elf_sort_sections (const void *, const void *);
44 static bfd_boolean
assign_file_positions_except_relocs (bfd
*);
45 static bfd_boolean
prep_headers (bfd
*);
46 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
47 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
49 /* Swap version information in and out. The version information is
50 currently size independent. If that ever changes, this code will
51 need to move into elfcode.h. */
53 /* Swap in a Verdef structure. */
56 _bfd_elf_swap_verdef_in (bfd
*abfd
,
57 const Elf_External_Verdef
*src
,
58 Elf_Internal_Verdef
*dst
)
60 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
61 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
62 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
63 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
64 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
65 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
66 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
69 /* Swap out a Verdef structure. */
72 _bfd_elf_swap_verdef_out (bfd
*abfd
,
73 const Elf_Internal_Verdef
*src
,
74 Elf_External_Verdef
*dst
)
76 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
77 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
78 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
79 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
80 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
81 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
82 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
85 /* Swap in a Verdaux structure. */
88 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
89 const Elf_External_Verdaux
*src
,
90 Elf_Internal_Verdaux
*dst
)
92 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
93 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
96 /* Swap out a Verdaux structure. */
99 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
100 const Elf_Internal_Verdaux
*src
,
101 Elf_External_Verdaux
*dst
)
103 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
104 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
107 /* Swap in a Verneed structure. */
110 _bfd_elf_swap_verneed_in (bfd
*abfd
,
111 const Elf_External_Verneed
*src
,
112 Elf_Internal_Verneed
*dst
)
114 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
115 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
116 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
117 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
118 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
121 /* Swap out a Verneed structure. */
124 _bfd_elf_swap_verneed_out (bfd
*abfd
,
125 const Elf_Internal_Verneed
*src
,
126 Elf_External_Verneed
*dst
)
128 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
129 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
130 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
131 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
132 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
135 /* Swap in a Vernaux structure. */
138 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
139 const Elf_External_Vernaux
*src
,
140 Elf_Internal_Vernaux
*dst
)
142 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
143 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
144 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
145 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
146 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
149 /* Swap out a Vernaux structure. */
152 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
153 const Elf_Internal_Vernaux
*src
,
154 Elf_External_Vernaux
*dst
)
156 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
157 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
158 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
159 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
160 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
163 /* Swap in a Versym structure. */
166 _bfd_elf_swap_versym_in (bfd
*abfd
,
167 const Elf_External_Versym
*src
,
168 Elf_Internal_Versym
*dst
)
170 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
173 /* Swap out a Versym structure. */
176 _bfd_elf_swap_versym_out (bfd
*abfd
,
177 const Elf_Internal_Versym
*src
,
178 Elf_External_Versym
*dst
)
180 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
183 /* Standard ELF hash function. Do not change this function; you will
184 cause invalid hash tables to be generated. */
187 bfd_elf_hash (const char *namearg
)
189 const unsigned char *name
= (const unsigned char *) namearg
;
194 while ((ch
= *name
++) != '\0')
197 if ((g
= (h
& 0xf0000000)) != 0)
200 /* The ELF ABI says `h &= ~g', but this is equivalent in
201 this case and on some machines one insn instead of two. */
205 return h
& 0xffffffff;
208 /* Read a specified number of bytes at a specified offset in an ELF
209 file, into a newly allocated buffer, and return a pointer to the
213 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
217 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
219 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
221 if (bfd_bread (buf
, size
, abfd
) != size
)
223 if (bfd_get_error () != bfd_error_system_call
)
224 bfd_set_error (bfd_error_file_truncated
);
231 bfd_elf_mkobject (bfd
*abfd
)
233 /* This just does initialization. */
234 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
235 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
236 if (elf_tdata (abfd
) == 0)
238 /* Since everything is done at close time, do we need any
245 bfd_elf_mkcorefile (bfd
*abfd
)
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd
);
252 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
254 Elf_Internal_Shdr
**i_shdrp
;
255 char *shstrtab
= NULL
;
257 bfd_size_type shstrtabsize
;
259 i_shdrp
= elf_elfsections (abfd
);
260 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
263 shstrtab
= (char *) i_shdrp
[shindex
]->contents
;
264 if (shstrtab
== NULL
)
266 /* No cached one, attempt to read, and cache what we read. */
267 offset
= i_shdrp
[shindex
]->sh_offset
;
268 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
269 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
270 i_shdrp
[shindex
]->contents
= shstrtab
;
276 bfd_elf_string_from_elf_section (bfd
*abfd
,
277 unsigned int shindex
,
278 unsigned int strindex
)
280 Elf_Internal_Shdr
*hdr
;
285 hdr
= elf_elfsections (abfd
)[shindex
];
287 if (hdr
->contents
== NULL
288 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
291 if (strindex
>= hdr
->sh_size
)
293 (*_bfd_error_handler
)
294 (_("%s: invalid string offset %u >= %lu for section `%s'"),
295 bfd_archive_filename (abfd
), strindex
, (unsigned long) hdr
->sh_size
,
296 ((shindex
== elf_elfheader(abfd
)->e_shstrndx
297 && strindex
== hdr
->sh_name
)
299 : elf_string_from_elf_strtab (abfd
, hdr
->sh_name
)));
303 return ((char *) hdr
->contents
) + strindex
;
306 /* Read and convert symbols to internal format.
307 SYMCOUNT specifies the number of symbols to read, starting from
308 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
309 are non-NULL, they are used to store the internal symbols, external
310 symbols, and symbol section index extensions, respectively. */
313 bfd_elf_get_elf_syms (bfd
*ibfd
,
314 Elf_Internal_Shdr
*symtab_hdr
,
317 Elf_Internal_Sym
*intsym_buf
,
319 Elf_External_Sym_Shndx
*extshndx_buf
)
321 Elf_Internal_Shdr
*shndx_hdr
;
323 const bfd_byte
*esym
;
324 Elf_External_Sym_Shndx
*alloc_extshndx
;
325 Elf_External_Sym_Shndx
*shndx
;
326 Elf_Internal_Sym
*isym
;
327 Elf_Internal_Sym
*isymend
;
328 const struct elf_backend_data
*bed
;
336 /* Normal syms might have section extension entries. */
338 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
339 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
341 /* Read the symbols. */
343 alloc_extshndx
= NULL
;
344 bed
= get_elf_backend_data (ibfd
);
345 extsym_size
= bed
->s
->sizeof_sym
;
346 amt
= symcount
* extsym_size
;
347 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
348 if (extsym_buf
== NULL
)
350 alloc_ext
= bfd_malloc (amt
);
351 extsym_buf
= alloc_ext
;
353 if (extsym_buf
== NULL
354 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
355 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
361 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
365 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
366 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
367 if (extshndx_buf
== NULL
)
369 alloc_extshndx
= bfd_malloc (amt
);
370 extshndx_buf
= alloc_extshndx
;
372 if (extshndx_buf
== NULL
373 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
374 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
381 if (intsym_buf
== NULL
)
383 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
384 intsym_buf
= bfd_malloc (amt
);
385 if (intsym_buf
== NULL
)
389 /* Convert the symbols to internal form. */
390 isymend
= intsym_buf
+ symcount
;
391 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
393 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
394 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
397 if (alloc_ext
!= NULL
)
399 if (alloc_extshndx
!= NULL
)
400 free (alloc_extshndx
);
405 /* Look up a symbol name. */
407 bfd_elf_local_sym_name (bfd
*abfd
, Elf_Internal_Sym
*isym
)
409 unsigned int iname
= isym
->st_name
;
410 unsigned int shindex
= elf_tdata (abfd
)->symtab_hdr
.sh_link
;
411 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
413 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
414 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
417 return bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
420 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
421 sections. The first element is the flags, the rest are section
424 typedef union elf_internal_group
{
425 Elf_Internal_Shdr
*shdr
;
427 } Elf_Internal_Group
;
429 /* Return the name of the group signature symbol. Why isn't the
430 signature just a string? */
433 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
435 Elf_Internal_Shdr
*hdr
;
436 unsigned char esym
[sizeof (Elf64_External_Sym
)];
437 Elf_External_Sym_Shndx eshndx
;
438 Elf_Internal_Sym isym
;
440 /* First we need to ensure the symbol table is available. */
441 if (! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
444 /* Go read the symbol. */
445 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
446 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
447 &isym
, esym
, &eshndx
) == NULL
)
450 return bfd_elf_local_sym_name (abfd
, &isym
);
453 /* Set next_in_group list pointer, and group name for NEWSECT. */
456 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
458 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
460 /* If num_group is zero, read in all SHT_GROUP sections. The count
461 is set to -1 if there are no SHT_GROUP sections. */
464 unsigned int i
, shnum
;
466 /* First count the number of groups. If we have a SHT_GROUP
467 section with just a flag word (ie. sh_size is 4), ignore it. */
468 shnum
= elf_numsections (abfd
);
470 for (i
= 0; i
< shnum
; i
++)
472 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
473 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
478 num_group
= (unsigned) -1;
479 elf_tdata (abfd
)->num_group
= num_group
;
483 /* We keep a list of elf section headers for group sections,
484 so we can find them quickly. */
485 bfd_size_type amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
486 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
487 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
491 for (i
= 0; i
< shnum
; i
++)
493 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
494 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
497 Elf_Internal_Group
*dest
;
499 /* Add to list of sections. */
500 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
503 /* Read the raw contents. */
504 BFD_ASSERT (sizeof (*dest
) >= 4);
505 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
506 shdr
->contents
= bfd_alloc (abfd
, amt
);
507 if (shdr
->contents
== NULL
508 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
509 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
513 /* Translate raw contents, a flag word followed by an
514 array of elf section indices all in target byte order,
515 to the flag word followed by an array of elf section
517 src
= shdr
->contents
+ shdr
->sh_size
;
518 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
525 idx
= H_GET_32 (abfd
, src
);
526 if (src
== shdr
->contents
)
529 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
530 shdr
->bfd_section
->flags
531 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
536 ((*_bfd_error_handler
)
537 (_("%s: invalid SHT_GROUP entry"),
538 bfd_archive_filename (abfd
)));
541 dest
->shdr
= elf_elfsections (abfd
)[idx
];
548 if (num_group
!= (unsigned) -1)
552 for (i
= 0; i
< num_group
; i
++)
554 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
555 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
556 unsigned int n_elt
= shdr
->sh_size
/ 4;
558 /* Look through this group's sections to see if current
559 section is a member. */
561 if ((++idx
)->shdr
== hdr
)
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
568 idx
= (Elf_Internal_Group
*) shdr
->contents
;
569 n_elt
= shdr
->sh_size
/ 4;
571 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
572 && elf_next_in_group (s
) != NULL
)
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect
) = elf_group_name (s
);
579 elf_next_in_group (newsect
) = elf_next_in_group (s
);
580 elf_next_in_group (s
) = newsect
;
586 gname
= group_signature (abfd
, shdr
);
589 elf_group_name (newsect
) = gname
;
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect
) = newsect
;
595 /* If the group section has been created, point to the
597 if (shdr
->bfd_section
!= NULL
)
598 elf_next_in_group (shdr
->bfd_section
) = newsect
;
606 if (elf_group_name (newsect
) == NULL
)
608 (*_bfd_error_handler
) (_("%s: no group info for section %s"),
609 bfd_archive_filename (abfd
), newsect
->name
);
615 bfd_elf_discard_group (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*group
)
617 asection
*first
= elf_next_in_group (group
);
622 s
->output_section
= bfd_abs_section_ptr
;
623 s
= elf_next_in_group (s
);
624 /* These lists are circular. */
631 /* Make a BFD section from an ELF section. We store a pointer to the
632 BFD section in the bfd_section field of the header. */
635 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
636 Elf_Internal_Shdr
*hdr
,
641 const struct elf_backend_data
*bed
;
643 if (hdr
->bfd_section
!= NULL
)
645 BFD_ASSERT (strcmp (name
,
646 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
650 newsect
= bfd_make_section_anyway (abfd
, name
);
654 /* Always use the real type/flags. */
655 elf_section_type (newsect
) = hdr
->sh_type
;
656 elf_section_flags (newsect
) = hdr
->sh_flags
;
658 newsect
->filepos
= hdr
->sh_offset
;
660 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
661 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
662 || ! bfd_set_section_alignment (abfd
, newsect
,
663 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
666 flags
= SEC_NO_FLAGS
;
667 if (hdr
->sh_type
!= SHT_NOBITS
)
668 flags
|= SEC_HAS_CONTENTS
;
669 if (hdr
->sh_type
== SHT_GROUP
)
670 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
671 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
674 if (hdr
->sh_type
!= SHT_NOBITS
)
677 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
678 flags
|= SEC_READONLY
;
679 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
681 else if ((flags
& SEC_LOAD
) != 0)
683 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
686 newsect
->entsize
= hdr
->sh_entsize
;
687 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
688 flags
|= SEC_STRINGS
;
690 if (hdr
->sh_flags
& SHF_GROUP
)
691 if (!setup_group (abfd
, hdr
, newsect
))
693 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
694 flags
|= SEC_THREAD_LOCAL
;
696 /* The debugging sections appear to be recognized only by name, not
699 static const char *debug_sec_names
[] =
708 for (i
= ARRAY_SIZE (debug_sec_names
); i
--;)
709 if (strncmp (name
, debug_sec_names
[i
], strlen (debug_sec_names
[i
])) == 0)
713 flags
|= SEC_DEBUGGING
;
716 /* As a GNU extension, if the name begins with .gnu.linkonce, we
717 only link a single copy of the section. This is used to support
718 g++. g++ will emit each template expansion in its own section.
719 The symbols will be defined as weak, so that multiple definitions
720 are permitted. The GNU linker extension is to actually discard
721 all but one of the sections. */
722 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
723 && elf_next_in_group (newsect
) == NULL
)
724 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
726 bed
= get_elf_backend_data (abfd
);
727 if (bed
->elf_backend_section_flags
)
728 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
731 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
734 if ((flags
& SEC_ALLOC
) != 0)
736 Elf_Internal_Phdr
*phdr
;
739 /* Look through the phdrs to see if we need to adjust the lma.
740 If all the p_paddr fields are zero, we ignore them, since
741 some ELF linkers produce such output. */
742 phdr
= elf_tdata (abfd
)->phdr
;
743 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
745 if (phdr
->p_paddr
!= 0)
748 if (i
< elf_elfheader (abfd
)->e_phnum
)
750 phdr
= elf_tdata (abfd
)->phdr
;
751 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
753 /* This section is part of this segment if its file
754 offset plus size lies within the segment's memory
755 span and, if the section is loaded, the extent of the
756 loaded data lies within the extent of the segment.
758 Note - we used to check the p_paddr field as well, and
759 refuse to set the LMA if it was 0. This is wrong
760 though, as a perfectly valid initialised segment can
761 have a p_paddr of zero. Some architectures, eg ARM,
762 place special significance on the address 0 and
763 executables need to be able to have a segment which
764 covers this address. */
765 if (phdr
->p_type
== PT_LOAD
766 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
767 && (hdr
->sh_offset
+ hdr
->sh_size
768 <= phdr
->p_offset
+ phdr
->p_memsz
)
769 && ((flags
& SEC_LOAD
) == 0
770 || (hdr
->sh_offset
+ hdr
->sh_size
771 <= phdr
->p_offset
+ phdr
->p_filesz
)))
773 if ((flags
& SEC_LOAD
) == 0)
774 newsect
->lma
= (phdr
->p_paddr
775 + hdr
->sh_addr
- phdr
->p_vaddr
);
777 /* We used to use the same adjustment for SEC_LOAD
778 sections, but that doesn't work if the segment
779 is packed with code from multiple VMAs.
780 Instead we calculate the section LMA based on
781 the segment LMA. It is assumed that the
782 segment will contain sections with contiguous
783 LMAs, even if the VMAs are not. */
784 newsect
->lma
= (phdr
->p_paddr
785 + hdr
->sh_offset
- phdr
->p_offset
);
787 /* With contiguous segments, we can't tell from file
788 offsets whether a section with zero size should
789 be placed at the end of one segment or the
790 beginning of the next. Decide based on vaddr. */
791 if (hdr
->sh_addr
>= phdr
->p_vaddr
792 && (hdr
->sh_addr
+ hdr
->sh_size
793 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
800 hdr
->bfd_section
= newsect
;
801 elf_section_data (newsect
)->this_hdr
= *hdr
;
811 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
814 Helper functions for GDB to locate the string tables.
815 Since BFD hides string tables from callers, GDB needs to use an
816 internal hook to find them. Sun's .stabstr, in particular,
817 isn't even pointed to by the .stab section, so ordinary
818 mechanisms wouldn't work to find it, even if we had some.
821 struct elf_internal_shdr
*
822 bfd_elf_find_section (bfd
*abfd
, char *name
)
824 Elf_Internal_Shdr
**i_shdrp
;
829 i_shdrp
= elf_elfsections (abfd
);
832 shstrtab
= bfd_elf_get_str_section (abfd
,
833 elf_elfheader (abfd
)->e_shstrndx
);
834 if (shstrtab
!= NULL
)
836 max
= elf_numsections (abfd
);
837 for (i
= 1; i
< max
; i
++)
838 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
845 const char *const bfd_elf_section_type_names
[] = {
846 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
847 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
848 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
851 /* ELF relocs are against symbols. If we are producing relocatable
852 output, and the reloc is against an external symbol, and nothing
853 has given us any additional addend, the resulting reloc will also
854 be against the same symbol. In such a case, we don't want to
855 change anything about the way the reloc is handled, since it will
856 all be done at final link time. Rather than put special case code
857 into bfd_perform_relocation, all the reloc types use this howto
858 function. It just short circuits the reloc if producing
859 relocatable output against an external symbol. */
861 bfd_reloc_status_type
862 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
863 arelent
*reloc_entry
,
865 void *data ATTRIBUTE_UNUSED
,
866 asection
*input_section
,
868 char **error_message ATTRIBUTE_UNUSED
)
870 if (output_bfd
!= NULL
871 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
872 && (! reloc_entry
->howto
->partial_inplace
873 || reloc_entry
->addend
== 0))
875 reloc_entry
->address
+= input_section
->output_offset
;
879 return bfd_reloc_continue
;
882 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
885 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
888 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
889 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
892 /* Finish SHF_MERGE section merging. */
895 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
897 if (!is_elf_hash_table (info
))
899 if (elf_hash_table (info
)->merge_info
)
900 _bfd_merge_sections (abfd
, elf_hash_table (info
)->merge_info
,
901 merge_sections_remove_hook
);
906 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
908 sec
->output_section
= bfd_abs_section_ptr
;
909 sec
->output_offset
= sec
->vma
;
910 if (!is_elf_hash_table (info
))
913 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
916 /* Copy the program header and other data from one object module to
920 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
922 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
923 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
926 BFD_ASSERT (!elf_flags_init (obfd
)
927 || (elf_elfheader (obfd
)->e_flags
928 == elf_elfheader (ibfd
)->e_flags
));
930 elf_gp (obfd
) = elf_gp (ibfd
);
931 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
932 elf_flags_init (obfd
) = TRUE
;
936 /* Print out the program headers. */
939 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
942 Elf_Internal_Phdr
*p
;
944 bfd_byte
*dynbuf
= NULL
;
946 p
= elf_tdata (abfd
)->phdr
;
951 fprintf (f
, _("\nProgram Header:\n"));
952 c
= elf_elfheader (abfd
)->e_phnum
;
953 for (i
= 0; i
< c
; i
++, p
++)
960 case PT_NULL
: pt
= "NULL"; break;
961 case PT_LOAD
: pt
= "LOAD"; break;
962 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
963 case PT_INTERP
: pt
= "INTERP"; break;
964 case PT_NOTE
: pt
= "NOTE"; break;
965 case PT_SHLIB
: pt
= "SHLIB"; break;
966 case PT_PHDR
: pt
= "PHDR"; break;
967 case PT_TLS
: pt
= "TLS"; break;
968 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
969 case PT_GNU_STACK
: pt
= "STACK"; break;
970 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
972 fprintf (f
, "%8s off 0x", pt
);
973 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
974 fprintf (f
, " vaddr 0x");
975 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
976 fprintf (f
, " paddr 0x");
977 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
978 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
979 fprintf (f
, " filesz 0x");
980 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
981 fprintf (f
, " memsz 0x");
982 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
983 fprintf (f
, " flags %c%c%c",
984 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
985 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
986 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
987 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
988 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
993 s
= bfd_get_section_by_name (abfd
, ".dynamic");
997 unsigned long shlink
;
998 bfd_byte
*extdyn
, *extdynend
;
1000 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1002 fprintf (f
, _("\nDynamic Section:\n"));
1004 dynbuf
= bfd_malloc (s
->_raw_size
);
1007 if (! bfd_get_section_contents (abfd
, s
, dynbuf
, 0, s
->_raw_size
))
1010 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1013 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1015 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1016 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1019 extdynend
= extdyn
+ s
->_raw_size
;
1020 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1022 Elf_Internal_Dyn dyn
;
1025 bfd_boolean stringp
;
1027 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1029 if (dyn
.d_tag
== DT_NULL
)
1036 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1040 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1041 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1042 case DT_PLTGOT
: name
= "PLTGOT"; break;
1043 case DT_HASH
: name
= "HASH"; break;
1044 case DT_STRTAB
: name
= "STRTAB"; break;
1045 case DT_SYMTAB
: name
= "SYMTAB"; break;
1046 case DT_RELA
: name
= "RELA"; break;
1047 case DT_RELASZ
: name
= "RELASZ"; break;
1048 case DT_RELAENT
: name
= "RELAENT"; break;
1049 case DT_STRSZ
: name
= "STRSZ"; break;
1050 case DT_SYMENT
: name
= "SYMENT"; break;
1051 case DT_INIT
: name
= "INIT"; break;
1052 case DT_FINI
: name
= "FINI"; break;
1053 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1054 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1055 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1056 case DT_REL
: name
= "REL"; break;
1057 case DT_RELSZ
: name
= "RELSZ"; break;
1058 case DT_RELENT
: name
= "RELENT"; break;
1059 case DT_PLTREL
: name
= "PLTREL"; break;
1060 case DT_DEBUG
: name
= "DEBUG"; break;
1061 case DT_TEXTREL
: name
= "TEXTREL"; break;
1062 case DT_JMPREL
: name
= "JMPREL"; break;
1063 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1064 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1065 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1066 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1067 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1068 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1069 case DT_FLAGS
: name
= "FLAGS"; break;
1070 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1071 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1072 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1073 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1074 case DT_MOVEENT
: name
= "MOVEENT"; break;
1075 case DT_MOVESZ
: name
= "MOVESZ"; break;
1076 case DT_FEATURE
: name
= "FEATURE"; break;
1077 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1078 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1079 case DT_SYMINENT
: name
= "SYMINENT"; break;
1080 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1081 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1082 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1083 case DT_PLTPAD
: name
= "PLTPAD"; break;
1084 case DT_MOVETAB
: name
= "MOVETAB"; break;
1085 case DT_SYMINFO
: name
= "SYMINFO"; break;
1086 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1087 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1088 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1089 case DT_VERSYM
: name
= "VERSYM"; break;
1090 case DT_VERDEF
: name
= "VERDEF"; break;
1091 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1092 case DT_VERNEED
: name
= "VERNEED"; break;
1093 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1094 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1095 case DT_USED
: name
= "USED"; break;
1096 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1099 fprintf (f
, " %-11s ", name
);
1101 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1105 unsigned int tagv
= dyn
.d_un
.d_val
;
1107 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1110 fprintf (f
, "%s", string
);
1119 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1120 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1122 if (! _bfd_elf_slurp_version_tables (abfd
))
1126 if (elf_dynverdef (abfd
) != 0)
1128 Elf_Internal_Verdef
*t
;
1130 fprintf (f
, _("\nVersion definitions:\n"));
1131 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1133 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1134 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1135 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1137 Elf_Internal_Verdaux
*a
;
1140 for (a
= t
->vd_auxptr
->vda_nextptr
;
1143 fprintf (f
, "%s ", a
->vda_nodename
);
1149 if (elf_dynverref (abfd
) != 0)
1151 Elf_Internal_Verneed
*t
;
1153 fprintf (f
, _("\nVersion References:\n"));
1154 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1156 Elf_Internal_Vernaux
*a
;
1158 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1159 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1160 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1161 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1173 /* Display ELF-specific fields of a symbol. */
1176 bfd_elf_print_symbol (bfd
*abfd
,
1179 bfd_print_symbol_type how
)
1184 case bfd_print_symbol_name
:
1185 fprintf (file
, "%s", symbol
->name
);
1187 case bfd_print_symbol_more
:
1188 fprintf (file
, "elf ");
1189 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1190 fprintf (file
, " %lx", (long) symbol
->flags
);
1192 case bfd_print_symbol_all
:
1194 const char *section_name
;
1195 const char *name
= NULL
;
1196 const struct elf_backend_data
*bed
;
1197 unsigned char st_other
;
1200 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1202 bed
= get_elf_backend_data (abfd
);
1203 if (bed
->elf_backend_print_symbol_all
)
1204 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1208 name
= symbol
->name
;
1209 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1212 fprintf (file
, " %s\t", section_name
);
1213 /* Print the "other" value for a symbol. For common symbols,
1214 we've already printed the size; now print the alignment.
1215 For other symbols, we have no specified alignment, and
1216 we've printed the address; now print the size. */
1217 if (bfd_is_com_section (symbol
->section
))
1218 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1220 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1221 bfd_fprintf_vma (abfd
, file
, val
);
1223 /* If we have version information, print it. */
1224 if (elf_tdata (abfd
)->dynversym_section
!= 0
1225 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1226 || elf_tdata (abfd
)->dynverref_section
!= 0))
1228 unsigned int vernum
;
1229 const char *version_string
;
1231 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1234 version_string
= "";
1235 else if (vernum
== 1)
1236 version_string
= "Base";
1237 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1239 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1242 Elf_Internal_Verneed
*t
;
1244 version_string
= "";
1245 for (t
= elf_tdata (abfd
)->verref
;
1249 Elf_Internal_Vernaux
*a
;
1251 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1253 if (a
->vna_other
== vernum
)
1255 version_string
= a
->vna_nodename
;
1262 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1263 fprintf (file
, " %-11s", version_string
);
1268 fprintf (file
, " (%s)", version_string
);
1269 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1274 /* If the st_other field is not zero, print it. */
1275 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1280 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1281 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1282 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1284 /* Some other non-defined flags are also present, so print
1286 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1289 fprintf (file
, " %s", name
);
1295 /* Create an entry in an ELF linker hash table. */
1297 struct bfd_hash_entry
*
1298 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1299 struct bfd_hash_table
*table
,
1302 /* Allocate the structure if it has not already been allocated by a
1306 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1311 /* Call the allocation method of the superclass. */
1312 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1315 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1316 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1318 /* Set local fields. */
1321 ret
->dynstr_index
= 0;
1322 ret
->elf_hash_value
= 0;
1323 ret
->weakdef
= NULL
;
1324 ret
->verinfo
.verdef
= NULL
;
1325 ret
->vtable_entries_size
= 0;
1326 ret
->vtable_entries_used
= NULL
;
1327 ret
->vtable_parent
= NULL
;
1328 ret
->got
= htab
->init_refcount
;
1329 ret
->plt
= htab
->init_refcount
;
1331 ret
->type
= STT_NOTYPE
;
1333 /* Assume that we have been called by a non-ELF symbol reader.
1334 This flag is then reset by the code which reads an ELF input
1335 file. This ensures that a symbol created by a non-ELF symbol
1336 reader will have the flag set correctly. */
1337 ret
->elf_link_hash_flags
= ELF_LINK_NON_ELF
;
1343 /* Copy data from an indirect symbol to its direct symbol, hiding the
1344 old indirect symbol. Also used for copying flags to a weakdef. */
1347 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1348 struct elf_link_hash_entry
*dir
,
1349 struct elf_link_hash_entry
*ind
)
1352 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1354 /* Copy down any references that we may have already seen to the
1355 symbol which just became indirect. */
1357 dir
->elf_link_hash_flags
|=
1358 (ind
->elf_link_hash_flags
1359 & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF
));
1364 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1367 /* Copy over the global and procedure linkage table refcount entries.
1368 These may have been already set up by a check_relocs routine. */
1369 tmp
= dir
->got
.refcount
;
1370 if (tmp
< lowest_valid
)
1372 dir
->got
.refcount
= ind
->got
.refcount
;
1373 ind
->got
.refcount
= tmp
;
1376 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1378 tmp
= dir
->plt
.refcount
;
1379 if (tmp
< lowest_valid
)
1381 dir
->plt
.refcount
= ind
->plt
.refcount
;
1382 ind
->plt
.refcount
= tmp
;
1385 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1387 if (dir
->dynindx
== -1)
1389 dir
->dynindx
= ind
->dynindx
;
1390 dir
->dynstr_index
= ind
->dynstr_index
;
1392 ind
->dynstr_index
= 0;
1395 BFD_ASSERT (ind
->dynindx
== -1);
1399 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1400 struct elf_link_hash_entry
*h
,
1401 bfd_boolean force_local
)
1403 h
->plt
= elf_hash_table (info
)->init_offset
;
1404 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1407 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
1408 if (h
->dynindx
!= -1)
1411 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1417 /* Initialize an ELF linker hash table. */
1420 _bfd_elf_link_hash_table_init
1421 (struct elf_link_hash_table
*table
,
1423 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1424 struct bfd_hash_table
*,
1429 table
->dynamic_sections_created
= FALSE
;
1430 table
->dynobj
= NULL
;
1431 /* Make sure can_refcount is extended to the width and signedness of
1432 init_refcount before we subtract one from it. */
1433 table
->init_refcount
.refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1434 table
->init_refcount
.refcount
-= 1;
1435 table
->init_offset
.offset
= -(bfd_vma
) 1;
1436 /* The first dynamic symbol is a dummy. */
1437 table
->dynsymcount
= 1;
1438 table
->dynstr
= NULL
;
1439 table
->bucketcount
= 0;
1440 table
->needed
= NULL
;
1442 table
->stab_info
= NULL
;
1443 table
->merge_info
= NULL
;
1444 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1445 table
->dynlocal
= NULL
;
1446 table
->runpath
= NULL
;
1447 table
->tls_segment
= NULL
;
1448 table
->loaded
= NULL
;
1450 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1451 table
->root
.type
= bfd_link_elf_hash_table
;
1456 /* Create an ELF linker hash table. */
1458 struct bfd_link_hash_table
*
1459 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1461 struct elf_link_hash_table
*ret
;
1462 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1464 ret
= bfd_malloc (amt
);
1468 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1477 /* This is a hook for the ELF emulation code in the generic linker to
1478 tell the backend linker what file name to use for the DT_NEEDED
1479 entry for a dynamic object. The generic linker passes name as an
1480 empty string to indicate that no DT_NEEDED entry should be made. */
1483 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1485 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1486 && bfd_get_format (abfd
) == bfd_object
)
1487 elf_dt_name (abfd
) = name
;
1491 bfd_elf_set_dt_needed_soname (bfd
*abfd
, const char *name
)
1493 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1494 && bfd_get_format (abfd
) == bfd_object
)
1495 elf_dt_soname (abfd
) = name
;
1498 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1499 the linker ELF emulation code. */
1501 struct bfd_link_needed_list
*
1502 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1503 struct bfd_link_info
*info
)
1505 if (! is_elf_hash_table (info
))
1507 return elf_hash_table (info
)->needed
;
1510 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1511 hook for the linker ELF emulation code. */
1513 struct bfd_link_needed_list
*
1514 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1515 struct bfd_link_info
*info
)
1517 if (! is_elf_hash_table (info
))
1519 return elf_hash_table (info
)->runpath
;
1522 /* Get the name actually used for a dynamic object for a link. This
1523 is the SONAME entry if there is one. Otherwise, it is the string
1524 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1527 bfd_elf_get_dt_soname (bfd
*abfd
)
1529 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1530 && bfd_get_format (abfd
) == bfd_object
)
1531 return elf_dt_name (abfd
);
1535 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1536 the ELF linker emulation code. */
1539 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1540 struct bfd_link_needed_list
**pneeded
)
1543 bfd_byte
*dynbuf
= NULL
;
1545 unsigned long shlink
;
1546 bfd_byte
*extdyn
, *extdynend
;
1548 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1552 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1553 || bfd_get_format (abfd
) != bfd_object
)
1556 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1557 if (s
== NULL
|| s
->_raw_size
== 0)
1560 dynbuf
= bfd_malloc (s
->_raw_size
);
1564 if (! bfd_get_section_contents (abfd
, s
, dynbuf
, 0, s
->_raw_size
))
1567 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1571 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1573 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1574 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1577 extdynend
= extdyn
+ s
->_raw_size
;
1578 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1580 Elf_Internal_Dyn dyn
;
1582 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1584 if (dyn
.d_tag
== DT_NULL
)
1587 if (dyn
.d_tag
== DT_NEEDED
)
1590 struct bfd_link_needed_list
*l
;
1591 unsigned int tagv
= dyn
.d_un
.d_val
;
1594 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1599 l
= bfd_alloc (abfd
, amt
);
1620 /* Allocate an ELF string table--force the first byte to be zero. */
1622 struct bfd_strtab_hash
*
1623 _bfd_elf_stringtab_init (void)
1625 struct bfd_strtab_hash
*ret
;
1627 ret
= _bfd_stringtab_init ();
1632 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1633 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1634 if (loc
== (bfd_size_type
) -1)
1636 _bfd_stringtab_free (ret
);
1643 /* ELF .o/exec file reading */
1645 /* Create a new bfd section from an ELF section header. */
1648 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1650 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1651 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1652 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1655 name
= elf_string_from_elf_strtab (abfd
, hdr
->sh_name
);
1657 switch (hdr
->sh_type
)
1660 /* Inactive section. Throw it away. */
1663 case SHT_PROGBITS
: /* Normal section with contents. */
1664 case SHT_NOBITS
: /* .bss section. */
1665 case SHT_HASH
: /* .hash section. */
1666 case SHT_NOTE
: /* .note section. */
1667 case SHT_INIT_ARRAY
: /* .init_array section. */
1668 case SHT_FINI_ARRAY
: /* .fini_array section. */
1669 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1670 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1672 case SHT_DYNAMIC
: /* Dynamic linking information. */
1673 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1675 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1677 Elf_Internal_Shdr
*dynsymhdr
;
1679 /* The shared libraries distributed with hpux11 have a bogus
1680 sh_link field for the ".dynamic" section. Find the
1681 string table for the ".dynsym" section instead. */
1682 if (elf_dynsymtab (abfd
) != 0)
1684 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1685 hdr
->sh_link
= dynsymhdr
->sh_link
;
1689 unsigned int i
, num_sec
;
1691 num_sec
= elf_numsections (abfd
);
1692 for (i
= 1; i
< num_sec
; i
++)
1694 dynsymhdr
= elf_elfsections (abfd
)[i
];
1695 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1697 hdr
->sh_link
= dynsymhdr
->sh_link
;
1705 case SHT_SYMTAB
: /* A symbol table */
1706 if (elf_onesymtab (abfd
) == shindex
)
1709 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1710 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1711 elf_onesymtab (abfd
) = shindex
;
1712 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1713 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1714 abfd
->flags
|= HAS_SYMS
;
1716 /* Sometimes a shared object will map in the symbol table. If
1717 SHF_ALLOC is set, and this is a shared object, then we also
1718 treat this section as a BFD section. We can not base the
1719 decision purely on SHF_ALLOC, because that flag is sometimes
1720 set in a relocatable object file, which would confuse the
1722 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1723 && (abfd
->flags
& DYNAMIC
) != 0
1724 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1729 case SHT_DYNSYM
: /* A dynamic symbol table */
1730 if (elf_dynsymtab (abfd
) == shindex
)
1733 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1734 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1735 elf_dynsymtab (abfd
) = shindex
;
1736 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1737 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1738 abfd
->flags
|= HAS_SYMS
;
1740 /* Besides being a symbol table, we also treat this as a regular
1741 section, so that objcopy can handle it. */
1742 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1744 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1745 if (elf_symtab_shndx (abfd
) == shindex
)
1748 /* Get the associated symbol table. */
1749 if (! bfd_section_from_shdr (abfd
, hdr
->sh_link
)
1750 || hdr
->sh_link
!= elf_onesymtab (abfd
))
1753 elf_symtab_shndx (abfd
) = shindex
;
1754 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1755 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1758 case SHT_STRTAB
: /* A string table */
1759 if (hdr
->bfd_section
!= NULL
)
1761 if (ehdr
->e_shstrndx
== shindex
)
1763 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1764 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1768 unsigned int i
, num_sec
;
1770 num_sec
= elf_numsections (abfd
);
1771 for (i
= 1; i
< num_sec
; i
++)
1773 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1774 if (hdr2
->sh_link
== shindex
)
1776 if (! bfd_section_from_shdr (abfd
, i
))
1778 if (elf_onesymtab (abfd
) == i
)
1780 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1781 elf_elfsections (abfd
)[shindex
] =
1782 &elf_tdata (abfd
)->strtab_hdr
;
1785 if (elf_dynsymtab (abfd
) == i
)
1787 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1788 elf_elfsections (abfd
)[shindex
] = hdr
=
1789 &elf_tdata (abfd
)->dynstrtab_hdr
;
1790 /* We also treat this as a regular section, so
1791 that objcopy can handle it. */
1794 #if 0 /* Not handling other string tables specially right now. */
1795 hdr2
= elf_elfsections (abfd
)[i
]; /* in case it moved */
1796 /* We have a strtab for some random other section. */
1797 newsect
= (asection
*) hdr2
->bfd_section
;
1800 hdr
->bfd_section
= newsect
;
1801 hdr2
= &elf_section_data (newsect
)->str_hdr
;
1803 elf_elfsections (abfd
)[shindex
] = hdr2
;
1809 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1813 /* *These* do a lot of work -- but build no sections! */
1815 asection
*target_sect
;
1816 Elf_Internal_Shdr
*hdr2
;
1817 unsigned int num_sec
= elf_numsections (abfd
);
1819 /* Check for a bogus link to avoid crashing. */
1820 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1821 || hdr
->sh_link
>= num_sec
)
1823 ((*_bfd_error_handler
)
1824 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1825 bfd_archive_filename (abfd
), hdr
->sh_link
, name
, shindex
));
1826 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1829 /* For some incomprehensible reason Oracle distributes
1830 libraries for Solaris in which some of the objects have
1831 bogus sh_link fields. It would be nice if we could just
1832 reject them, but, unfortunately, some people need to use
1833 them. We scan through the section headers; if we find only
1834 one suitable symbol table, we clobber the sh_link to point
1835 to it. I hope this doesn't break anything. */
1836 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1837 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1843 for (scan
= 1; scan
< num_sec
; scan
++)
1845 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1846 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1857 hdr
->sh_link
= found
;
1860 /* Get the symbol table. */
1861 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1862 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1865 /* If this reloc section does not use the main symbol table we
1866 don't treat it as a reloc section. BFD can't adequately
1867 represent such a section, so at least for now, we don't
1868 try. We just present it as a normal section. We also
1869 can't use it as a reloc section if it points to the null
1871 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1872 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1874 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1876 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1877 if (target_sect
== NULL
)
1880 if ((target_sect
->flags
& SEC_RELOC
) == 0
1881 || target_sect
->reloc_count
== 0)
1882 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1886 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1887 amt
= sizeof (*hdr2
);
1888 hdr2
= bfd_alloc (abfd
, amt
);
1889 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1892 elf_elfsections (abfd
)[shindex
] = hdr2
;
1893 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1894 target_sect
->flags
|= SEC_RELOC
;
1895 target_sect
->relocation
= NULL
;
1896 target_sect
->rel_filepos
= hdr
->sh_offset
;
1897 /* In the section to which the relocations apply, mark whether
1898 its relocations are of the REL or RELA variety. */
1899 if (hdr
->sh_size
!= 0)
1900 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1901 abfd
->flags
|= HAS_RELOC
;
1906 case SHT_GNU_verdef
:
1907 elf_dynverdef (abfd
) = shindex
;
1908 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1909 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1912 case SHT_GNU_versym
:
1913 elf_dynversym (abfd
) = shindex
;
1914 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1915 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1918 case SHT_GNU_verneed
:
1919 elf_dynverref (abfd
) = shindex
;
1920 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1921 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1928 /* We need a BFD section for objcopy and relocatable linking,
1929 and it's handy to have the signature available as the section
1931 name
= group_signature (abfd
, hdr
);
1934 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1936 if (hdr
->contents
!= NULL
)
1938 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1939 unsigned int n_elt
= hdr
->sh_size
/ 4;
1942 if (idx
->flags
& GRP_COMDAT
)
1943 hdr
->bfd_section
->flags
1944 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1946 while (--n_elt
!= 0)
1947 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
1948 && elf_next_in_group (s
) != NULL
)
1950 elf_next_in_group (hdr
->bfd_section
) = s
;
1957 /* Check for any processor-specific section types. */
1959 if (bed
->elf_backend_section_from_shdr
)
1960 (*bed
->elf_backend_section_from_shdr
) (abfd
, hdr
, name
);
1968 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1969 Return SEC for sections that have no elf section, and NULL on error. */
1972 bfd_section_from_r_symndx (bfd
*abfd
,
1973 struct sym_sec_cache
*cache
,
1975 unsigned long r_symndx
)
1977 Elf_Internal_Shdr
*symtab_hdr
;
1978 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1979 Elf_External_Sym_Shndx eshndx
;
1980 Elf_Internal_Sym isym
;
1981 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1983 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
1984 return cache
->sec
[ent
];
1986 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1987 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1988 &isym
, esym
, &eshndx
) == NULL
)
1991 if (cache
->abfd
!= abfd
)
1993 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1996 cache
->indx
[ent
] = r_symndx
;
1997 cache
->sec
[ent
] = sec
;
1998 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
1999 || isym
.st_shndx
> SHN_HIRESERVE
)
2002 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2004 cache
->sec
[ent
] = s
;
2006 return cache
->sec
[ent
];
2009 /* Given an ELF section number, retrieve the corresponding BFD
2013 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2015 if (index
>= elf_numsections (abfd
))
2017 return elf_elfsections (abfd
)[index
]->bfd_section
;
2020 static struct bfd_elf_special_section
const special_sections
[] =
2022 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2023 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2024 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2025 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2026 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2027 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2028 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2029 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2030 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2031 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2032 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2033 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2034 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2035 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2036 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2037 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2038 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2039 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2040 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2041 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2042 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2043 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2044 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2045 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2046 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2047 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2048 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2049 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2050 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2051 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2052 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2053 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2054 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2055 { ".note", 5, -1, SHT_NOTE
, 0 },
2056 { ".rela", 5, -1, SHT_RELA
, 0 },
2057 { ".rel", 4, -1, SHT_REL
, 0 },
2058 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2059 { NULL
, 0, 0, 0, 0 }
2062 static const struct bfd_elf_special_section
*
2063 get_special_section (const char *name
,
2064 const struct bfd_elf_special_section
*special_sections
,
2068 int len
= strlen (name
);
2070 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2073 int prefix_len
= special_sections
[i
].prefix_length
;
2075 if (len
< prefix_len
)
2077 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2080 suffix_len
= special_sections
[i
].suffix_length
;
2081 if (suffix_len
<= 0)
2083 if (name
[prefix_len
] != 0)
2085 if (suffix_len
== 0)
2087 if (name
[prefix_len
] != '.'
2088 && (suffix_len
== -2
2089 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2095 if (len
< prefix_len
+ suffix_len
)
2097 if (memcmp (name
+ len
- suffix_len
,
2098 special_sections
[i
].prefix
+ prefix_len
,
2102 return &special_sections
[i
];
2108 const struct bfd_elf_special_section
*
2109 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2111 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2112 const struct bfd_elf_special_section
*ssect
= NULL
;
2114 /* See if this is one of the special sections. */
2117 unsigned int rela
= bed
->default_use_rela_p
;
2119 if (bed
->special_sections
)
2120 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2123 ssect
= get_special_section (name
, special_sections
, rela
);
2130 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2132 struct bfd_elf_section_data
*sdata
;
2133 const struct bfd_elf_special_section
*ssect
;
2135 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2138 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2141 sec
->used_by_bfd
= sdata
;
2144 elf_section_type (sec
) = SHT_NULL
;
2145 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2148 elf_section_type (sec
) = ssect
->type
;
2149 elf_section_flags (sec
) = ssect
->attr
;
2152 /* Indicate whether or not this section should use RELA relocations. */
2153 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2158 /* Create a new bfd section from an ELF program header.
2160 Since program segments have no names, we generate a synthetic name
2161 of the form segment<NUM>, where NUM is generally the index in the
2162 program header table. For segments that are split (see below) we
2163 generate the names segment<NUM>a and segment<NUM>b.
2165 Note that some program segments may have a file size that is different than
2166 (less than) the memory size. All this means is that at execution the
2167 system must allocate the amount of memory specified by the memory size,
2168 but only initialize it with the first "file size" bytes read from the
2169 file. This would occur for example, with program segments consisting
2170 of combined data+bss.
2172 To handle the above situation, this routine generates TWO bfd sections
2173 for the single program segment. The first has the length specified by
2174 the file size of the segment, and the second has the length specified
2175 by the difference between the two sizes. In effect, the segment is split
2176 into it's initialized and uninitialized parts.
2181 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2182 Elf_Internal_Phdr
*hdr
,
2184 const char *typename
)
2192 split
= ((hdr
->p_memsz
> 0)
2193 && (hdr
->p_filesz
> 0)
2194 && (hdr
->p_memsz
> hdr
->p_filesz
));
2195 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2196 len
= strlen (namebuf
) + 1;
2197 name
= bfd_alloc (abfd
, len
);
2200 memcpy (name
, namebuf
, len
);
2201 newsect
= bfd_make_section (abfd
, name
);
2202 if (newsect
== NULL
)
2204 newsect
->vma
= hdr
->p_vaddr
;
2205 newsect
->lma
= hdr
->p_paddr
;
2206 newsect
->_raw_size
= hdr
->p_filesz
;
2207 newsect
->filepos
= hdr
->p_offset
;
2208 newsect
->flags
|= SEC_HAS_CONTENTS
;
2209 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2210 if (hdr
->p_type
== PT_LOAD
)
2212 newsect
->flags
|= SEC_ALLOC
;
2213 newsect
->flags
|= SEC_LOAD
;
2214 if (hdr
->p_flags
& PF_X
)
2216 /* FIXME: all we known is that it has execute PERMISSION,
2218 newsect
->flags
|= SEC_CODE
;
2221 if (!(hdr
->p_flags
& PF_W
))
2223 newsect
->flags
|= SEC_READONLY
;
2228 sprintf (namebuf
, "%s%db", typename
, index
);
2229 len
= strlen (namebuf
) + 1;
2230 name
= bfd_alloc (abfd
, len
);
2233 memcpy (name
, namebuf
, len
);
2234 newsect
= bfd_make_section (abfd
, name
);
2235 if (newsect
== NULL
)
2237 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2238 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2239 newsect
->_raw_size
= hdr
->p_memsz
- hdr
->p_filesz
;
2240 if (hdr
->p_type
== PT_LOAD
)
2242 newsect
->flags
|= SEC_ALLOC
;
2243 if (hdr
->p_flags
& PF_X
)
2244 newsect
->flags
|= SEC_CODE
;
2246 if (!(hdr
->p_flags
& PF_W
))
2247 newsect
->flags
|= SEC_READONLY
;
2254 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2256 const struct elf_backend_data
*bed
;
2258 switch (hdr
->p_type
)
2261 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2264 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2267 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2270 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2273 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2275 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2280 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2283 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2285 case PT_GNU_EH_FRAME
:
2286 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2290 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2293 /* Check for any processor-specific program segment types.
2294 If no handler for them, default to making "segment" sections. */
2295 bed
= get_elf_backend_data (abfd
);
2296 if (bed
->elf_backend_section_from_phdr
)
2297 return (*bed
->elf_backend_section_from_phdr
) (abfd
, hdr
, index
);
2299 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "segment");
2303 /* Initialize REL_HDR, the section-header for new section, containing
2304 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2305 relocations; otherwise, we use REL relocations. */
2308 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2309 Elf_Internal_Shdr
*rel_hdr
,
2311 bfd_boolean use_rela_p
)
2314 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2315 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2317 name
= bfd_alloc (abfd
, amt
);
2320 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2322 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2324 if (rel_hdr
->sh_name
== (unsigned int) -1)
2326 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2327 rel_hdr
->sh_entsize
= (use_rela_p
2328 ? bed
->s
->sizeof_rela
2329 : bed
->s
->sizeof_rel
);
2330 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2331 rel_hdr
->sh_flags
= 0;
2332 rel_hdr
->sh_addr
= 0;
2333 rel_hdr
->sh_size
= 0;
2334 rel_hdr
->sh_offset
= 0;
2339 /* Set up an ELF internal section header for a section. */
2342 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2344 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2345 bfd_boolean
*failedptr
= failedptrarg
;
2346 Elf_Internal_Shdr
*this_hdr
;
2350 /* We already failed; just get out of the bfd_map_over_sections
2355 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2357 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2358 asect
->name
, FALSE
);
2359 if (this_hdr
->sh_name
== (unsigned int) -1)
2365 this_hdr
->sh_flags
= 0;
2367 if ((asect
->flags
& SEC_ALLOC
) != 0
2368 || asect
->user_set_vma
)
2369 this_hdr
->sh_addr
= asect
->vma
;
2371 this_hdr
->sh_addr
= 0;
2373 this_hdr
->sh_offset
= 0;
2374 this_hdr
->sh_size
= asect
->_raw_size
;
2375 this_hdr
->sh_link
= 0;
2376 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2377 /* The sh_entsize and sh_info fields may have been set already by
2378 copy_private_section_data. */
2380 this_hdr
->bfd_section
= asect
;
2381 this_hdr
->contents
= NULL
;
2383 /* If the section type is unspecified, we set it based on
2385 if (this_hdr
->sh_type
== SHT_NULL
)
2387 if ((asect
->flags
& SEC_ALLOC
) != 0
2388 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2389 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2390 this_hdr
->sh_type
= SHT_NOBITS
;
2392 this_hdr
->sh_type
= SHT_PROGBITS
;
2395 switch (this_hdr
->sh_type
)
2401 case SHT_INIT_ARRAY
:
2402 case SHT_FINI_ARRAY
:
2403 case SHT_PREINIT_ARRAY
:
2410 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2414 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2418 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2422 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2423 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2427 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2428 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2431 case SHT_GNU_versym
:
2432 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2435 case SHT_GNU_verdef
:
2436 this_hdr
->sh_entsize
= 0;
2437 /* objcopy or strip will copy over sh_info, but may not set
2438 cverdefs. The linker will set cverdefs, but sh_info will be
2440 if (this_hdr
->sh_info
== 0)
2441 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2443 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2444 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2447 case SHT_GNU_verneed
:
2448 this_hdr
->sh_entsize
= 0;
2449 /* objcopy or strip will copy over sh_info, but may not set
2450 cverrefs. The linker will set cverrefs, but sh_info will be
2452 if (this_hdr
->sh_info
== 0)
2453 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2455 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2456 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2460 this_hdr
->sh_entsize
= 4;
2464 if ((asect
->flags
& SEC_ALLOC
) != 0)
2465 this_hdr
->sh_flags
|= SHF_ALLOC
;
2466 if ((asect
->flags
& SEC_READONLY
) == 0)
2467 this_hdr
->sh_flags
|= SHF_WRITE
;
2468 if ((asect
->flags
& SEC_CODE
) != 0)
2469 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2470 if ((asect
->flags
& SEC_MERGE
) != 0)
2472 this_hdr
->sh_flags
|= SHF_MERGE
;
2473 this_hdr
->sh_entsize
= asect
->entsize
;
2474 if ((asect
->flags
& SEC_STRINGS
) != 0)
2475 this_hdr
->sh_flags
|= SHF_STRINGS
;
2477 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2478 this_hdr
->sh_flags
|= SHF_GROUP
;
2479 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2481 this_hdr
->sh_flags
|= SHF_TLS
;
2482 if (asect
->_raw_size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2484 struct bfd_link_order
*o
;
2486 this_hdr
->sh_size
= 0;
2487 for (o
= asect
->link_order_head
; o
!= NULL
; o
= o
->next
)
2488 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2489 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2490 if (this_hdr
->sh_size
)
2491 this_hdr
->sh_type
= SHT_NOBITS
;
2495 /* Check for processor-specific section types. */
2496 if (bed
->elf_backend_fake_sections
2497 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2500 /* If the section has relocs, set up a section header for the
2501 SHT_REL[A] section. If two relocation sections are required for
2502 this section, it is up to the processor-specific back-end to
2503 create the other. */
2504 if ((asect
->flags
& SEC_RELOC
) != 0
2505 && !_bfd_elf_init_reloc_shdr (abfd
,
2506 &elf_section_data (asect
)->rel_hdr
,
2512 /* Fill in the contents of a SHT_GROUP section. */
2515 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2517 bfd_boolean
*failedptr
= failedptrarg
;
2518 unsigned long symindx
;
2519 asection
*elt
, *first
;
2521 struct bfd_link_order
*l
;
2524 if (elf_section_data (sec
)->this_hdr
.sh_type
!= SHT_GROUP
2529 if (elf_group_id (sec
) != NULL
)
2530 symindx
= elf_group_id (sec
)->udata
.i
;
2534 /* If called from the assembler, swap_out_syms will have set up
2535 elf_section_syms; If called for "ld -r", use target_index. */
2536 if (elf_section_syms (abfd
) != NULL
)
2537 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2539 symindx
= sec
->target_index
;
2541 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2543 /* The contents won't be allocated for "ld -r" or objcopy. */
2545 if (sec
->contents
== NULL
)
2548 sec
->contents
= bfd_alloc (abfd
, sec
->_raw_size
);
2550 /* Arrange for the section to be written out. */
2551 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2552 if (sec
->contents
== NULL
)
2559 loc
= sec
->contents
+ sec
->_raw_size
;
2561 /* Get the pointer to the first section in the group that gas
2562 squirreled away here. objcopy arranges for this to be set to the
2563 start of the input section group. */
2564 first
= elt
= elf_next_in_group (sec
);
2566 /* First element is a flag word. Rest of section is elf section
2567 indices for all the sections of the group. Write them backwards
2568 just to keep the group in the same order as given in .section
2569 directives, not that it matters. */
2578 s
= s
->output_section
;
2581 idx
= elf_section_data (s
)->this_idx
;
2582 H_PUT_32 (abfd
, idx
, loc
);
2583 elt
= elf_next_in_group (elt
);
2588 /* If this is a relocatable link, then the above did nothing because
2589 SEC is the output section. Look through the input sections
2591 for (l
= sec
->link_order_head
; l
!= NULL
; l
= l
->next
)
2592 if (l
->type
== bfd_indirect_link_order
2593 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2598 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2599 elt
= elf_next_in_group (elt
);
2600 /* During a relocatable link, the lists are circular. */
2602 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2604 /* With ld -r, merging SHT_GROUP sections results in wasted space
2605 due to allowing for the flag word on each input. We may well
2606 duplicate entries too. */
2607 while ((loc
-= 4) > sec
->contents
)
2608 H_PUT_32 (abfd
, 0, loc
);
2610 if (loc
!= sec
->contents
)
2613 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2616 /* Assign all ELF section numbers. The dummy first section is handled here
2617 too. The link/info pointers for the standard section types are filled
2618 in here too, while we're at it. */
2621 assign_section_numbers (bfd
*abfd
)
2623 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2625 unsigned int section_number
, secn
;
2626 Elf_Internal_Shdr
**i_shdrp
;
2631 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2633 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2635 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2637 if (section_number
== SHN_LORESERVE
)
2638 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2639 d
->this_idx
= section_number
++;
2640 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2641 if ((sec
->flags
& SEC_RELOC
) == 0)
2645 if (section_number
== SHN_LORESERVE
)
2646 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2647 d
->rel_idx
= section_number
++;
2648 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2653 if (section_number
== SHN_LORESERVE
)
2654 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2655 d
->rel_idx2
= section_number
++;
2656 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2662 if (section_number
== SHN_LORESERVE
)
2663 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2664 t
->shstrtab_section
= section_number
++;
2665 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2666 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2668 if (bfd_get_symcount (abfd
) > 0)
2670 if (section_number
== SHN_LORESERVE
)
2671 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2672 t
->symtab_section
= section_number
++;
2673 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2674 if (section_number
> SHN_LORESERVE
- 2)
2676 if (section_number
== SHN_LORESERVE
)
2677 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2678 t
->symtab_shndx_section
= section_number
++;
2679 t
->symtab_shndx_hdr
.sh_name
2680 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2681 ".symtab_shndx", FALSE
);
2682 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2685 if (section_number
== SHN_LORESERVE
)
2686 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2687 t
->strtab_section
= section_number
++;
2688 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2691 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2692 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2694 elf_numsections (abfd
) = section_number
;
2695 elf_elfheader (abfd
)->e_shnum
= section_number
;
2696 if (section_number
> SHN_LORESERVE
)
2697 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2699 /* Set up the list of section header pointers, in agreement with the
2701 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2702 i_shdrp
= bfd_zalloc (abfd
, amt
);
2703 if (i_shdrp
== NULL
)
2706 amt
= sizeof (Elf_Internal_Shdr
);
2707 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
2708 if (i_shdrp
[0] == NULL
)
2710 bfd_release (abfd
, i_shdrp
);
2714 elf_elfsections (abfd
) = i_shdrp
;
2716 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2717 if (bfd_get_symcount (abfd
) > 0)
2719 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2720 if (elf_numsections (abfd
) > SHN_LORESERVE
)
2722 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2723 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2725 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2726 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2728 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2730 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2734 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2735 if (d
->rel_idx
!= 0)
2736 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2737 if (d
->rel_idx2
!= 0)
2738 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2740 /* Fill in the sh_link and sh_info fields while we're at it. */
2742 /* sh_link of a reloc section is the section index of the symbol
2743 table. sh_info is the section index of the section to which
2744 the relocation entries apply. */
2745 if (d
->rel_idx
!= 0)
2747 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2748 d
->rel_hdr
.sh_info
= d
->this_idx
;
2750 if (d
->rel_idx2
!= 0)
2752 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2753 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2756 switch (d
->this_hdr
.sh_type
)
2760 /* A reloc section which we are treating as a normal BFD
2761 section. sh_link is the section index of the symbol
2762 table. sh_info is the section index of the section to
2763 which the relocation entries apply. We assume that an
2764 allocated reloc section uses the dynamic symbol table.
2765 FIXME: How can we be sure? */
2766 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2768 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2770 /* We look up the section the relocs apply to by name. */
2772 if (d
->this_hdr
.sh_type
== SHT_REL
)
2776 s
= bfd_get_section_by_name (abfd
, name
);
2778 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
2782 /* We assume that a section named .stab*str is a stabs
2783 string section. We look for a section with the same name
2784 but without the trailing ``str'', and set its sh_link
2785 field to point to this section. */
2786 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
2787 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
2792 len
= strlen (sec
->name
);
2793 alc
= bfd_malloc (len
- 2);
2796 memcpy (alc
, sec
->name
, len
- 3);
2797 alc
[len
- 3] = '\0';
2798 s
= bfd_get_section_by_name (abfd
, alc
);
2802 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
2804 /* This is a .stab section. */
2805 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
2806 elf_section_data (s
)->this_hdr
.sh_entsize
2807 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
2814 case SHT_GNU_verneed
:
2815 case SHT_GNU_verdef
:
2816 /* sh_link is the section header index of the string table
2817 used for the dynamic entries, or the symbol table, or the
2819 s
= bfd_get_section_by_name (abfd
, ".dynstr");
2821 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2825 case SHT_GNU_versym
:
2826 /* sh_link is the section header index of the symbol table
2827 this hash table or version table is for. */
2828 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2830 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2834 d
->this_hdr
.sh_link
= t
->symtab_section
;
2838 for (secn
= 1; secn
< section_number
; ++secn
)
2839 if (i_shdrp
[secn
] == NULL
)
2840 i_shdrp
[secn
] = i_shdrp
[0];
2842 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
2843 i_shdrp
[secn
]->sh_name
);
2847 /* Map symbol from it's internal number to the external number, moving
2848 all local symbols to be at the head of the list. */
2851 sym_is_global (bfd
*abfd
, asymbol
*sym
)
2853 /* If the backend has a special mapping, use it. */
2854 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2855 if (bed
->elf_backend_sym_is_global
)
2856 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
2858 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2859 || bfd_is_und_section (bfd_get_section (sym
))
2860 || bfd_is_com_section (bfd_get_section (sym
)));
2864 elf_map_symbols (bfd
*abfd
)
2866 unsigned int symcount
= bfd_get_symcount (abfd
);
2867 asymbol
**syms
= bfd_get_outsymbols (abfd
);
2868 asymbol
**sect_syms
;
2869 unsigned int num_locals
= 0;
2870 unsigned int num_globals
= 0;
2871 unsigned int num_locals2
= 0;
2872 unsigned int num_globals2
= 0;
2880 fprintf (stderr
, "elf_map_symbols\n");
2884 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
2886 if (max_index
< asect
->index
)
2887 max_index
= asect
->index
;
2891 amt
= max_index
* sizeof (asymbol
*);
2892 sect_syms
= bfd_zalloc (abfd
, amt
);
2893 if (sect_syms
== NULL
)
2895 elf_section_syms (abfd
) = sect_syms
;
2896 elf_num_section_syms (abfd
) = max_index
;
2898 /* Init sect_syms entries for any section symbols we have already
2899 decided to output. */
2900 for (idx
= 0; idx
< symcount
; idx
++)
2902 asymbol
*sym
= syms
[idx
];
2904 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
2911 if (sec
->owner
!= NULL
)
2913 if (sec
->owner
!= abfd
)
2915 if (sec
->output_offset
!= 0)
2918 sec
= sec
->output_section
;
2920 /* Empty sections in the input files may have had a
2921 section symbol created for them. (See the comment
2922 near the end of _bfd_generic_link_output_symbols in
2923 linker.c). If the linker script discards such
2924 sections then we will reach this point. Since we know
2925 that we cannot avoid this case, we detect it and skip
2926 the abort and the assignment to the sect_syms array.
2927 To reproduce this particular case try running the
2928 linker testsuite test ld-scripts/weak.exp for an ELF
2929 port that uses the generic linker. */
2930 if (sec
->owner
== NULL
)
2933 BFD_ASSERT (sec
->owner
== abfd
);
2935 sect_syms
[sec
->index
] = syms
[idx
];
2940 /* Classify all of the symbols. */
2941 for (idx
= 0; idx
< symcount
; idx
++)
2943 if (!sym_is_global (abfd
, syms
[idx
]))
2949 /* We will be adding a section symbol for each BFD section. Most normal
2950 sections will already have a section symbol in outsymbols, but
2951 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2952 at least in that case. */
2953 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
2955 if (sect_syms
[asect
->index
] == NULL
)
2957 if (!sym_is_global (abfd
, asect
->symbol
))
2964 /* Now sort the symbols so the local symbols are first. */
2965 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
2966 new_syms
= bfd_alloc (abfd
, amt
);
2968 if (new_syms
== NULL
)
2971 for (idx
= 0; idx
< symcount
; idx
++)
2973 asymbol
*sym
= syms
[idx
];
2976 if (!sym_is_global (abfd
, sym
))
2979 i
= num_locals
+ num_globals2
++;
2981 sym
->udata
.i
= i
+ 1;
2983 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
2985 if (sect_syms
[asect
->index
] == NULL
)
2987 asymbol
*sym
= asect
->symbol
;
2990 sect_syms
[asect
->index
] = sym
;
2991 if (!sym_is_global (abfd
, sym
))
2994 i
= num_locals
+ num_globals2
++;
2996 sym
->udata
.i
= i
+ 1;
3000 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3002 elf_num_locals (abfd
) = num_locals
;
3003 elf_num_globals (abfd
) = num_globals
;
3007 /* Align to the maximum file alignment that could be required for any
3008 ELF data structure. */
3010 static inline file_ptr
3011 align_file_position (file_ptr off
, int align
)
3013 return (off
+ align
- 1) & ~(align
- 1);
3016 /* Assign a file position to a section, optionally aligning to the
3017 required section alignment. */
3020 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3028 al
= i_shdrp
->sh_addralign
;
3030 offset
= BFD_ALIGN (offset
, al
);
3032 i_shdrp
->sh_offset
= offset
;
3033 if (i_shdrp
->bfd_section
!= NULL
)
3034 i_shdrp
->bfd_section
->filepos
= offset
;
3035 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3036 offset
+= i_shdrp
->sh_size
;
3040 /* Compute the file positions we are going to put the sections at, and
3041 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3042 is not NULL, this is being called by the ELF backend linker. */
3045 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3046 struct bfd_link_info
*link_info
)
3048 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3050 struct bfd_strtab_hash
*strtab
;
3051 Elf_Internal_Shdr
*shstrtab_hdr
;
3053 if (abfd
->output_has_begun
)
3056 /* Do any elf backend specific processing first. */
3057 if (bed
->elf_backend_begin_write_processing
)
3058 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3060 if (! prep_headers (abfd
))
3063 /* Post process the headers if necessary. */
3064 if (bed
->elf_backend_post_process_headers
)
3065 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3068 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3072 if (!assign_section_numbers (abfd
))
3075 /* The backend linker builds symbol table information itself. */
3076 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3078 /* Non-zero if doing a relocatable link. */
3079 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3081 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3085 if (link_info
== NULL
)
3087 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3092 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3093 /* sh_name was set in prep_headers. */
3094 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3095 shstrtab_hdr
->sh_flags
= 0;
3096 shstrtab_hdr
->sh_addr
= 0;
3097 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3098 shstrtab_hdr
->sh_entsize
= 0;
3099 shstrtab_hdr
->sh_link
= 0;
3100 shstrtab_hdr
->sh_info
= 0;
3101 /* sh_offset is set in assign_file_positions_except_relocs. */
3102 shstrtab_hdr
->sh_addralign
= 1;
3104 if (!assign_file_positions_except_relocs (abfd
))
3107 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3110 Elf_Internal_Shdr
*hdr
;
3112 off
= elf_tdata (abfd
)->next_file_pos
;
3114 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3115 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3117 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3118 if (hdr
->sh_size
!= 0)
3119 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3121 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3122 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3124 elf_tdata (abfd
)->next_file_pos
= off
;
3126 /* Now that we know where the .strtab section goes, write it
3128 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3129 || ! _bfd_stringtab_emit (abfd
, strtab
))
3131 _bfd_stringtab_free (strtab
);
3134 abfd
->output_has_begun
= TRUE
;
3139 /* Create a mapping from a set of sections to a program segment. */
3141 static struct elf_segment_map
*
3142 make_mapping (bfd
*abfd
,
3143 asection
**sections
,
3148 struct elf_segment_map
*m
;
3153 amt
= sizeof (struct elf_segment_map
);
3154 amt
+= (to
- from
- 1) * sizeof (asection
*);
3155 m
= bfd_zalloc (abfd
, amt
);
3159 m
->p_type
= PT_LOAD
;
3160 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3161 m
->sections
[i
- from
] = *hdrpp
;
3162 m
->count
= to
- from
;
3164 if (from
== 0 && phdr
)
3166 /* Include the headers in the first PT_LOAD segment. */
3167 m
->includes_filehdr
= 1;
3168 m
->includes_phdrs
= 1;
3174 /* Set up a mapping from BFD sections to program segments. */
3177 map_sections_to_segments (bfd
*abfd
)
3179 asection
**sections
= NULL
;
3183 struct elf_segment_map
*mfirst
;
3184 struct elf_segment_map
**pm
;
3185 struct elf_segment_map
*m
;
3187 unsigned int phdr_index
;
3188 bfd_vma maxpagesize
;
3190 bfd_boolean phdr_in_segment
= TRUE
;
3191 bfd_boolean writable
;
3193 asection
*first_tls
= NULL
;
3194 asection
*dynsec
, *eh_frame_hdr
;
3197 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3200 if (bfd_count_sections (abfd
) == 0)
3203 /* Select the allocated sections, and sort them. */
3205 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3206 sections
= bfd_malloc (amt
);
3207 if (sections
== NULL
)
3211 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3213 if ((s
->flags
& SEC_ALLOC
) != 0)
3219 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3222 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3224 /* Build the mapping. */
3229 /* If we have a .interp section, then create a PT_PHDR segment for
3230 the program headers and a PT_INTERP segment for the .interp
3232 s
= bfd_get_section_by_name (abfd
, ".interp");
3233 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3235 amt
= sizeof (struct elf_segment_map
);
3236 m
= bfd_zalloc (abfd
, amt
);
3240 m
->p_type
= PT_PHDR
;
3241 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3242 m
->p_flags
= PF_R
| PF_X
;
3243 m
->p_flags_valid
= 1;
3244 m
->includes_phdrs
= 1;
3249 amt
= sizeof (struct elf_segment_map
);
3250 m
= bfd_zalloc (abfd
, amt
);
3254 m
->p_type
= PT_INTERP
;
3262 /* Look through the sections. We put sections in the same program
3263 segment when the start of the second section can be placed within
3264 a few bytes of the end of the first section. */
3267 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3269 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3271 && (dynsec
->flags
& SEC_LOAD
) == 0)
3274 /* Deal with -Ttext or something similar such that the first section
3275 is not adjacent to the program headers. This is an
3276 approximation, since at this point we don't know exactly how many
3277 program headers we will need. */
3280 bfd_size_type phdr_size
;
3282 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3284 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3285 if ((abfd
->flags
& D_PAGED
) == 0
3286 || sections
[0]->lma
< phdr_size
3287 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3288 phdr_in_segment
= FALSE
;
3291 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3294 bfd_boolean new_segment
;
3298 /* See if this section and the last one will fit in the same
3301 if (last_hdr
== NULL
)
3303 /* If we don't have a segment yet, then we don't need a new
3304 one (we build the last one after this loop). */
3305 new_segment
= FALSE
;
3307 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3309 /* If this section has a different relation between the
3310 virtual address and the load address, then we need a new
3314 else if (BFD_ALIGN (last_hdr
->lma
+ last_hdr
->_raw_size
, maxpagesize
)
3315 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3317 /* If putting this section in this segment would force us to
3318 skip a page in the segment, then we need a new segment. */
3321 else if ((last_hdr
->flags
& SEC_LOAD
) == 0
3322 && (hdr
->flags
& SEC_LOAD
) != 0)
3324 /* We don't want to put a loadable section after a
3325 nonloadable section in the same segment. */
3328 else if ((abfd
->flags
& D_PAGED
) == 0)
3330 /* If the file is not demand paged, which means that we
3331 don't require the sections to be correctly aligned in the
3332 file, then there is no other reason for a new segment. */
3333 new_segment
= FALSE
;
3336 && (hdr
->flags
& SEC_READONLY
) == 0
3337 && (((last_hdr
->lma
+ last_hdr
->_raw_size
- 1)
3338 & ~(maxpagesize
- 1))
3339 != (hdr
->lma
& ~(maxpagesize
- 1))))
3341 /* We don't want to put a writable section in a read only
3342 segment, unless they are on the same page in memory
3343 anyhow. We already know that the last section does not
3344 bring us past the current section on the page, so the
3345 only case in which the new section is not on the same
3346 page as the previous section is when the previous section
3347 ends precisely on a page boundary. */
3352 /* Otherwise, we can use the same segment. */
3353 new_segment
= FALSE
;
3358 if ((hdr
->flags
& SEC_READONLY
) == 0)
3364 /* We need a new program segment. We must create a new program
3365 header holding all the sections from phdr_index until hdr. */
3367 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3374 if ((hdr
->flags
& SEC_READONLY
) == 0)
3381 phdr_in_segment
= FALSE
;
3384 /* Create a final PT_LOAD program segment. */
3385 if (last_hdr
!= NULL
)
3387 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3395 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3398 amt
= sizeof (struct elf_segment_map
);
3399 m
= bfd_zalloc (abfd
, amt
);
3403 m
->p_type
= PT_DYNAMIC
;
3405 m
->sections
[0] = dynsec
;
3411 /* For each loadable .note section, add a PT_NOTE segment. We don't
3412 use bfd_get_section_by_name, because if we link together
3413 nonloadable .note sections and loadable .note sections, we will
3414 generate two .note sections in the output file. FIXME: Using
3415 names for section types is bogus anyhow. */
3416 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3418 if ((s
->flags
& SEC_LOAD
) != 0
3419 && strncmp (s
->name
, ".note", 5) == 0)
3421 amt
= sizeof (struct elf_segment_map
);
3422 m
= bfd_zalloc (abfd
, amt
);
3426 m
->p_type
= PT_NOTE
;
3433 if (s
->flags
& SEC_THREAD_LOCAL
)
3441 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3446 amt
= sizeof (struct elf_segment_map
);
3447 amt
+= (tls_count
- 1) * sizeof (asection
*);
3448 m
= bfd_zalloc (abfd
, amt
);
3453 m
->count
= tls_count
;
3454 /* Mandated PF_R. */
3456 m
->p_flags_valid
= 1;
3457 for (i
= 0; i
< tls_count
; ++i
)
3459 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3460 m
->sections
[i
] = first_tls
;
3461 first_tls
= first_tls
->next
;
3468 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3470 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3471 if (eh_frame_hdr
!= NULL
3472 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3474 amt
= sizeof (struct elf_segment_map
);
3475 m
= bfd_zalloc (abfd
, amt
);
3479 m
->p_type
= PT_GNU_EH_FRAME
;
3481 m
->sections
[0] = eh_frame_hdr
->output_section
;
3487 if (elf_tdata (abfd
)->stack_flags
)
3489 amt
= sizeof (struct elf_segment_map
);
3490 m
= bfd_zalloc (abfd
, amt
);
3494 m
->p_type
= PT_GNU_STACK
;
3495 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3496 m
->p_flags_valid
= 1;
3505 elf_tdata (abfd
)->segment_map
= mfirst
;
3509 if (sections
!= NULL
)
3514 /* Sort sections by address. */
3517 elf_sort_sections (const void *arg1
, const void *arg2
)
3519 const asection
*sec1
= *(const asection
**) arg1
;
3520 const asection
*sec2
= *(const asection
**) arg2
;
3521 bfd_size_type size1
, size2
;
3523 /* Sort by LMA first, since this is the address used to
3524 place the section into a segment. */
3525 if (sec1
->lma
< sec2
->lma
)
3527 else if (sec1
->lma
> sec2
->lma
)
3530 /* Then sort by VMA. Normally the LMA and the VMA will be
3531 the same, and this will do nothing. */
3532 if (sec1
->vma
< sec2
->vma
)
3534 else if (sec1
->vma
> sec2
->vma
)
3537 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3539 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3545 /* If the indicies are the same, do not return 0
3546 here, but continue to try the next comparison. */
3547 if (sec1
->target_index
- sec2
->target_index
!= 0)
3548 return sec1
->target_index
- sec2
->target_index
;
3553 else if (TOEND (sec2
))
3558 /* Sort by size, to put zero sized sections
3559 before others at the same address. */
3561 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->_raw_size
: 0;
3562 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->_raw_size
: 0;
3569 return sec1
->target_index
- sec2
->target_index
;
3572 /* Assign file positions to the sections based on the mapping from
3573 sections to segments. This function also sets up some fields in
3574 the file header, and writes out the program headers. */
3577 assign_file_positions_for_segments (bfd
*abfd
)
3579 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3581 struct elf_segment_map
*m
;
3583 Elf_Internal_Phdr
*phdrs
;
3585 bfd_vma filehdr_vaddr
, filehdr_paddr
;
3586 bfd_vma phdrs_vaddr
, phdrs_paddr
;
3587 Elf_Internal_Phdr
*p
;
3590 if (elf_tdata (abfd
)->segment_map
== NULL
)
3592 if (! map_sections_to_segments (abfd
))
3597 /* The placement algorithm assumes that non allocated sections are
3598 not in PT_LOAD segments. We ensure this here by removing such
3599 sections from the segment map. */
3600 for (m
= elf_tdata (abfd
)->segment_map
;
3604 unsigned int new_count
;
3607 if (m
->p_type
!= PT_LOAD
)
3611 for (i
= 0; i
< m
->count
; i
++)
3613 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
3616 m
->sections
[new_count
] = m
->sections
[i
];
3622 if (new_count
!= m
->count
)
3623 m
->count
= new_count
;
3627 if (bed
->elf_backend_modify_segment_map
)
3629 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
))
3634 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3637 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
3638 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
3639 elf_elfheader (abfd
)->e_phnum
= count
;
3644 /* If we already counted the number of program segments, make sure
3645 that we allocated enough space. This happens when SIZEOF_HEADERS
3646 is used in a linker script. */
3647 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
3648 if (alloc
!= 0 && count
> alloc
)
3650 ((*_bfd_error_handler
)
3651 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3652 bfd_get_filename (abfd
), alloc
, count
));
3653 bfd_set_error (bfd_error_bad_value
);
3660 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
3661 phdrs
= bfd_alloc (abfd
, amt
);
3665 off
= bed
->s
->sizeof_ehdr
;
3666 off
+= alloc
* bed
->s
->sizeof_phdr
;
3673 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3680 /* If elf_segment_map is not from map_sections_to_segments, the
3681 sections may not be correctly ordered. NOTE: sorting should
3682 not be done to the PT_NOTE section of a corefile, which may
3683 contain several pseudo-sections artificially created by bfd.
3684 Sorting these pseudo-sections breaks things badly. */
3686 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
3687 && m
->p_type
== PT_NOTE
))
3688 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
3691 p
->p_type
= m
->p_type
;
3692 p
->p_flags
= m
->p_flags
;
3694 if (p
->p_type
== PT_LOAD
3696 && (m
->sections
[0]->flags
& SEC_ALLOC
) != 0)
3698 if ((abfd
->flags
& D_PAGED
) != 0)
3699 off
+= (m
->sections
[0]->vma
- off
) % bed
->maxpagesize
;
3702 bfd_size_type align
;
3705 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3707 bfd_size_type secalign
;
3709 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
3710 if (secalign
> align
)
3714 off
+= (m
->sections
[0]->vma
- off
) % (1 << align
);
3721 p
->p_vaddr
= m
->sections
[0]->vma
;
3723 if (m
->p_paddr_valid
)
3724 p
->p_paddr
= m
->p_paddr
;
3725 else if (m
->count
== 0)
3728 p
->p_paddr
= m
->sections
[0]->lma
;
3730 if (p
->p_type
== PT_LOAD
3731 && (abfd
->flags
& D_PAGED
) != 0)
3732 p
->p_align
= bed
->maxpagesize
;
3733 else if (m
->count
== 0)
3734 p
->p_align
= 1 << bed
->s
->log_file_align
;
3742 if (m
->includes_filehdr
)
3744 if (! m
->p_flags_valid
)
3747 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
3748 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
3751 BFD_ASSERT (p
->p_type
== PT_LOAD
);
3753 if (p
->p_vaddr
< (bfd_vma
) off
)
3755 (*_bfd_error_handler
)
3756 (_("%s: Not enough room for program headers, try linking with -N"),
3757 bfd_get_filename (abfd
));
3758 bfd_set_error (bfd_error_bad_value
);
3763 if (! m
->p_paddr_valid
)
3766 if (p
->p_type
== PT_LOAD
)
3768 filehdr_vaddr
= p
->p_vaddr
;
3769 filehdr_paddr
= p
->p_paddr
;
3773 if (m
->includes_phdrs
)
3775 if (! m
->p_flags_valid
)
3778 if (m
->includes_filehdr
)
3780 if (p
->p_type
== PT_LOAD
)
3782 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
3783 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
3788 p
->p_offset
= bed
->s
->sizeof_ehdr
;
3792 BFD_ASSERT (p
->p_type
== PT_LOAD
);
3793 p
->p_vaddr
-= off
- p
->p_offset
;
3794 if (! m
->p_paddr_valid
)
3795 p
->p_paddr
-= off
- p
->p_offset
;
3798 if (p
->p_type
== PT_LOAD
)
3800 phdrs_vaddr
= p
->p_vaddr
;
3801 phdrs_paddr
= p
->p_paddr
;
3804 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
3807 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
3808 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
3811 if (p
->p_type
== PT_LOAD
3812 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
3814 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
3820 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
3821 p
->p_filesz
+= adjust
;
3822 p
->p_memsz
+= adjust
;
3828 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3832 bfd_size_type align
;
3836 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
3838 /* The section may have artificial alignment forced by a
3839 link script. Notice this case by the gap between the
3840 cumulative phdr lma and the section's lma. */
3841 if (p
->p_paddr
+ p
->p_memsz
< sec
->lma
)
3843 bfd_vma adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_memsz
);
3845 p
->p_memsz
+= adjust
;
3846 if (p
->p_type
== PT_LOAD
3847 || (p
->p_type
== PT_NOTE
3848 && bfd_get_format (abfd
) == bfd_core
))
3853 if ((flags
& SEC_LOAD
) != 0
3854 || (flags
& SEC_THREAD_LOCAL
) != 0)
3855 p
->p_filesz
+= adjust
;
3858 if (p
->p_type
== PT_LOAD
)
3860 bfd_signed_vma adjust
;
3862 if ((flags
& SEC_LOAD
) != 0)
3864 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_memsz
);
3868 else if ((flags
& SEC_ALLOC
) != 0)
3870 /* The section VMA must equal the file position
3871 modulo the page size. FIXME: I'm not sure if
3872 this adjustment is really necessary. We used to
3873 not have the SEC_LOAD case just above, and then
3874 this was necessary, but now I'm not sure. */
3875 if ((abfd
->flags
& D_PAGED
) != 0)
3876 adjust
= (sec
->vma
- voff
) % bed
->maxpagesize
;
3878 adjust
= (sec
->vma
- voff
) % align
;
3887 (* _bfd_error_handler
) (_("\
3888 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3889 bfd_section_name (abfd
, sec
),
3894 p
->p_memsz
+= adjust
;
3897 if ((flags
& SEC_LOAD
) != 0)
3898 p
->p_filesz
+= adjust
;
3903 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3904 used in a linker script we may have a section with
3905 SEC_LOAD clear but which is supposed to have
3907 if ((flags
& SEC_LOAD
) != 0
3908 || (flags
& SEC_HAS_CONTENTS
) != 0)
3909 off
+= sec
->_raw_size
;
3911 if ((flags
& SEC_ALLOC
) != 0
3912 && ((flags
& SEC_LOAD
) != 0
3913 || (flags
& SEC_THREAD_LOCAL
) == 0))
3914 voff
+= sec
->_raw_size
;
3917 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
3919 /* The actual "note" segment has i == 0.
3920 This is the one that actually contains everything. */
3924 p
->p_filesz
= sec
->_raw_size
;
3925 off
+= sec
->_raw_size
;
3930 /* Fake sections -- don't need to be written. */
3933 flags
= sec
->flags
= 0;
3940 if ((sec
->flags
& SEC_LOAD
) != 0
3941 || (sec
->flags
& SEC_THREAD_LOCAL
) == 0
3942 || p
->p_type
== PT_TLS
)
3943 p
->p_memsz
+= sec
->_raw_size
;
3945 if ((flags
& SEC_LOAD
) != 0)
3946 p
->p_filesz
+= sec
->_raw_size
;
3948 if (p
->p_type
== PT_TLS
3949 && sec
->_raw_size
== 0
3950 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
3952 struct bfd_link_order
*o
;
3953 bfd_vma tbss_size
= 0;
3955 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
3956 if (tbss_size
< o
->offset
+ o
->size
)
3957 tbss_size
= o
->offset
+ o
->size
;
3959 p
->p_memsz
+= tbss_size
;
3962 if (align
> p
->p_align
3963 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
3967 if (! m
->p_flags_valid
)
3970 if ((flags
& SEC_CODE
) != 0)
3972 if ((flags
& SEC_READONLY
) == 0)
3978 /* Now that we have set the section file positions, we can set up
3979 the file positions for the non PT_LOAD segments. */
3980 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3984 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
3986 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
3987 p
->p_offset
= m
->sections
[0]->filepos
;
3991 if (m
->includes_filehdr
)
3993 p
->p_vaddr
= filehdr_vaddr
;
3994 if (! m
->p_paddr_valid
)
3995 p
->p_paddr
= filehdr_paddr
;
3997 else if (m
->includes_phdrs
)
3999 p
->p_vaddr
= phdrs_vaddr
;
4000 if (! m
->p_paddr_valid
)
4001 p
->p_paddr
= phdrs_paddr
;
4006 /* Clear out any program headers we allocated but did not use. */
4007 for (; count
< alloc
; count
++, p
++)
4009 memset (p
, 0, sizeof *p
);
4010 p
->p_type
= PT_NULL
;
4013 elf_tdata (abfd
)->phdr
= phdrs
;
4015 elf_tdata (abfd
)->next_file_pos
= off
;
4017 /* Write out the program headers. */
4018 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4019 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4025 /* Get the size of the program header.
4027 If this is called by the linker before any of the section VMA's are set, it
4028 can't calculate the correct value for a strange memory layout. This only
4029 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4030 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4031 data segment (exclusive of .interp and .dynamic).
4033 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4034 will be two segments. */
4036 static bfd_size_type
4037 get_program_header_size (bfd
*abfd
)
4041 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4043 /* We can't return a different result each time we're called. */
4044 if (elf_tdata (abfd
)->program_header_size
!= 0)
4045 return elf_tdata (abfd
)->program_header_size
;
4047 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4049 struct elf_segment_map
*m
;
4052 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4054 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4055 return elf_tdata (abfd
)->program_header_size
;
4058 /* Assume we will need exactly two PT_LOAD segments: one for text
4059 and one for data. */
4062 s
= bfd_get_section_by_name (abfd
, ".interp");
4063 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4065 /* If we have a loadable interpreter section, we need a
4066 PT_INTERP segment. In this case, assume we also need a
4067 PT_PHDR segment, although that may not be true for all
4072 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4074 /* We need a PT_DYNAMIC segment. */
4078 if (elf_tdata (abfd
)->eh_frame_hdr
)
4080 /* We need a PT_GNU_EH_FRAME segment. */
4084 if (elf_tdata (abfd
)->stack_flags
)
4086 /* We need a PT_GNU_STACK segment. */
4090 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4092 if ((s
->flags
& SEC_LOAD
) != 0
4093 && strncmp (s
->name
, ".note", 5) == 0)
4095 /* We need a PT_NOTE segment. */
4100 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4102 if (s
->flags
& SEC_THREAD_LOCAL
)
4104 /* We need a PT_TLS segment. */
4110 /* Let the backend count up any program headers it might need. */
4111 if (bed
->elf_backend_additional_program_headers
)
4115 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4121 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4122 return elf_tdata (abfd
)->program_header_size
;
4125 /* Work out the file positions of all the sections. This is called by
4126 _bfd_elf_compute_section_file_positions. All the section sizes and
4127 VMAs must be known before this is called.
4129 We do not consider reloc sections at this point, unless they form
4130 part of the loadable image. Reloc sections are assigned file
4131 positions in assign_file_positions_for_relocs, which is called by
4132 write_object_contents and final_link.
4134 We also don't set the positions of the .symtab and .strtab here. */
4137 assign_file_positions_except_relocs (bfd
*abfd
)
4139 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4140 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4141 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4142 unsigned int num_sec
= elf_numsections (abfd
);
4144 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4146 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4147 && bfd_get_format (abfd
) != bfd_core
)
4149 Elf_Internal_Shdr
**hdrpp
;
4152 /* Start after the ELF header. */
4153 off
= i_ehdrp
->e_ehsize
;
4155 /* We are not creating an executable, which means that we are
4156 not creating a program header, and that the actual order of
4157 the sections in the file is unimportant. */
4158 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4160 Elf_Internal_Shdr
*hdr
;
4163 if (hdr
->sh_type
== SHT_REL
4164 || hdr
->sh_type
== SHT_RELA
4165 || i
== tdata
->symtab_section
4166 || i
== tdata
->symtab_shndx_section
4167 || i
== tdata
->strtab_section
)
4169 hdr
->sh_offset
= -1;
4172 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4174 if (i
== SHN_LORESERVE
- 1)
4176 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4177 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4184 Elf_Internal_Shdr
**hdrpp
;
4186 /* Assign file positions for the loaded sections based on the
4187 assignment of sections to segments. */
4188 if (! assign_file_positions_for_segments (abfd
))
4191 /* Assign file positions for the other sections. */
4193 off
= elf_tdata (abfd
)->next_file_pos
;
4194 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4196 Elf_Internal_Shdr
*hdr
;
4199 if (hdr
->bfd_section
!= NULL
4200 && hdr
->bfd_section
->filepos
!= 0)
4201 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4202 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4204 ((*_bfd_error_handler
)
4205 (_("%s: warning: allocated section `%s' not in segment"),
4206 bfd_get_filename (abfd
),
4207 (hdr
->bfd_section
== NULL
4209 : hdr
->bfd_section
->name
)));
4210 if ((abfd
->flags
& D_PAGED
) != 0)
4211 off
+= (hdr
->sh_addr
- off
) % bed
->maxpagesize
;
4213 off
+= (hdr
->sh_addr
- off
) % hdr
->sh_addralign
;
4214 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4217 else if (hdr
->sh_type
== SHT_REL
4218 || hdr
->sh_type
== SHT_RELA
4219 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4220 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4221 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4222 hdr
->sh_offset
= -1;
4224 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4226 if (i
== SHN_LORESERVE
- 1)
4228 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4229 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4234 /* Place the section headers. */
4235 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4236 i_ehdrp
->e_shoff
= off
;
4237 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4239 elf_tdata (abfd
)->next_file_pos
= off
;
4245 prep_headers (bfd
*abfd
)
4247 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4248 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4249 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4250 struct elf_strtab_hash
*shstrtab
;
4251 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4253 i_ehdrp
= elf_elfheader (abfd
);
4254 i_shdrp
= elf_elfsections (abfd
);
4256 shstrtab
= _bfd_elf_strtab_init ();
4257 if (shstrtab
== NULL
)
4260 elf_shstrtab (abfd
) = shstrtab
;
4262 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4263 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4264 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4265 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4267 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4268 i_ehdrp
->e_ident
[EI_DATA
] =
4269 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4270 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4272 if ((abfd
->flags
& DYNAMIC
) != 0)
4273 i_ehdrp
->e_type
= ET_DYN
;
4274 else if ((abfd
->flags
& EXEC_P
) != 0)
4275 i_ehdrp
->e_type
= ET_EXEC
;
4276 else if (bfd_get_format (abfd
) == bfd_core
)
4277 i_ehdrp
->e_type
= ET_CORE
;
4279 i_ehdrp
->e_type
= ET_REL
;
4281 switch (bfd_get_arch (abfd
))
4283 case bfd_arch_unknown
:
4284 i_ehdrp
->e_machine
= EM_NONE
;
4287 /* There used to be a long list of cases here, each one setting
4288 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4289 in the corresponding bfd definition. To avoid duplication,
4290 the switch was removed. Machines that need special handling
4291 can generally do it in elf_backend_final_write_processing(),
4292 unless they need the information earlier than the final write.
4293 Such need can generally be supplied by replacing the tests for
4294 e_machine with the conditions used to determine it. */
4296 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4299 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4300 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4302 /* No program header, for now. */
4303 i_ehdrp
->e_phoff
= 0;
4304 i_ehdrp
->e_phentsize
= 0;
4305 i_ehdrp
->e_phnum
= 0;
4307 /* Each bfd section is section header entry. */
4308 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4309 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4311 /* If we're building an executable, we'll need a program header table. */
4312 if (abfd
->flags
& EXEC_P
)
4314 /* It all happens later. */
4316 i_ehdrp
->e_phentsize
= sizeof (Elf_External_Phdr
);
4318 /* elf_build_phdrs() returns a (NULL-terminated) array of
4319 Elf_Internal_Phdrs. */
4320 i_phdrp
= elf_build_phdrs (abfd
, i_ehdrp
, i_shdrp
, &i_ehdrp
->e_phnum
);
4321 i_ehdrp
->e_phoff
= outbase
;
4322 outbase
+= i_ehdrp
->e_phentsize
* i_ehdrp
->e_phnum
;
4327 i_ehdrp
->e_phentsize
= 0;
4329 i_ehdrp
->e_phoff
= 0;
4332 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4333 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4334 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4335 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4336 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4337 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4338 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4339 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4340 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4346 /* Assign file positions for all the reloc sections which are not part
4347 of the loadable file image. */
4350 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4353 unsigned int i
, num_sec
;
4354 Elf_Internal_Shdr
**shdrpp
;
4356 off
= elf_tdata (abfd
)->next_file_pos
;
4358 num_sec
= elf_numsections (abfd
);
4359 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4361 Elf_Internal_Shdr
*shdrp
;
4364 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4365 && shdrp
->sh_offset
== -1)
4366 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4369 elf_tdata (abfd
)->next_file_pos
= off
;
4373 _bfd_elf_write_object_contents (bfd
*abfd
)
4375 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4376 Elf_Internal_Ehdr
*i_ehdrp
;
4377 Elf_Internal_Shdr
**i_shdrp
;
4379 unsigned int count
, num_sec
;
4381 if (! abfd
->output_has_begun
4382 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4385 i_shdrp
= elf_elfsections (abfd
);
4386 i_ehdrp
= elf_elfheader (abfd
);
4389 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4393 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4395 /* After writing the headers, we need to write the sections too... */
4396 num_sec
= elf_numsections (abfd
);
4397 for (count
= 1; count
< num_sec
; count
++)
4399 if (bed
->elf_backend_section_processing
)
4400 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4401 if (i_shdrp
[count
]->contents
)
4403 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4405 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4406 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4409 if (count
== SHN_LORESERVE
- 1)
4410 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4413 /* Write out the section header names. */
4414 if (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4415 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
)))
4418 if (bed
->elf_backend_final_write_processing
)
4419 (*bed
->elf_backend_final_write_processing
) (abfd
,
4420 elf_tdata (abfd
)->linker
);
4422 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4426 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4428 /* Hopefully this can be done just like an object file. */
4429 return _bfd_elf_write_object_contents (abfd
);
4432 /* Given a section, search the header to find them. */
4435 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4437 const struct elf_backend_data
*bed
;
4440 if (elf_section_data (asect
) != NULL
4441 && elf_section_data (asect
)->this_idx
!= 0)
4442 return elf_section_data (asect
)->this_idx
;
4444 if (bfd_is_abs_section (asect
))
4446 else if (bfd_is_com_section (asect
))
4448 else if (bfd_is_und_section (asect
))
4452 Elf_Internal_Shdr
**i_shdrp
= elf_elfsections (abfd
);
4453 int maxindex
= elf_numsections (abfd
);
4455 for (index
= 1; index
< maxindex
; index
++)
4457 Elf_Internal_Shdr
*hdr
= i_shdrp
[index
];
4459 if (hdr
!= NULL
&& hdr
->bfd_section
== asect
)
4465 bed
= get_elf_backend_data (abfd
);
4466 if (bed
->elf_backend_section_from_bfd_section
)
4470 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4475 bfd_set_error (bfd_error_nonrepresentable_section
);
4480 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4484 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4486 asymbol
*asym_ptr
= *asym_ptr_ptr
;
4488 flagword flags
= asym_ptr
->flags
;
4490 /* When gas creates relocations against local labels, it creates its
4491 own symbol for the section, but does put the symbol into the
4492 symbol chain, so udata is 0. When the linker is generating
4493 relocatable output, this section symbol may be for one of the
4494 input sections rather than the output section. */
4495 if (asym_ptr
->udata
.i
== 0
4496 && (flags
& BSF_SECTION_SYM
)
4497 && asym_ptr
->section
)
4501 if (asym_ptr
->section
->output_section
!= NULL
)
4502 indx
= asym_ptr
->section
->output_section
->index
;
4504 indx
= asym_ptr
->section
->index
;
4505 if (indx
< elf_num_section_syms (abfd
)
4506 && elf_section_syms (abfd
)[indx
] != NULL
)
4507 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
4510 idx
= asym_ptr
->udata
.i
;
4514 /* This case can occur when using --strip-symbol on a symbol
4515 which is used in a relocation entry. */
4516 (*_bfd_error_handler
)
4517 (_("%s: symbol `%s' required but not present"),
4518 bfd_archive_filename (abfd
), bfd_asymbol_name (asym_ptr
));
4519 bfd_set_error (bfd_error_no_symbols
);
4526 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4527 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
4528 elf_symbol_flags (flags
));
4536 /* Copy private BFD data. This copies any program header information. */
4539 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4541 Elf_Internal_Ehdr
*iehdr
;
4542 struct elf_segment_map
*map
;
4543 struct elf_segment_map
*map_first
;
4544 struct elf_segment_map
**pointer_to_map
;
4545 Elf_Internal_Phdr
*segment
;
4548 unsigned int num_segments
;
4549 bfd_boolean phdr_included
= FALSE
;
4550 bfd_vma maxpagesize
;
4551 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
4552 unsigned int phdr_adjust_num
= 0;
4553 const struct elf_backend_data
*bed
;
4555 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
4556 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
4559 if (elf_tdata (ibfd
)->phdr
== NULL
)
4562 bed
= get_elf_backend_data (ibfd
);
4563 iehdr
= elf_elfheader (ibfd
);
4566 pointer_to_map
= &map_first
;
4568 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
4569 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
4571 /* Returns the end address of the segment + 1. */
4572 #define SEGMENT_END(segment, start) \
4573 (start + (segment->p_memsz > segment->p_filesz \
4574 ? segment->p_memsz : segment->p_filesz))
4576 #define SECTION_SIZE(section, segment) \
4577 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4578 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4579 ? section->_raw_size : 0)
4581 /* Returns TRUE if the given section is contained within
4582 the given segment. VMA addresses are compared. */
4583 #define IS_CONTAINED_BY_VMA(section, segment) \
4584 (section->vma >= segment->p_vaddr \
4585 && (section->vma + SECTION_SIZE (section, segment) \
4586 <= (SEGMENT_END (segment, segment->p_vaddr))))
4588 /* Returns TRUE if the given section is contained within
4589 the given segment. LMA addresses are compared. */
4590 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4591 (section->lma >= base \
4592 && (section->lma + SECTION_SIZE (section, segment) \
4593 <= SEGMENT_END (segment, base)))
4595 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4596 #define IS_COREFILE_NOTE(p, s) \
4597 (p->p_type == PT_NOTE \
4598 && bfd_get_format (ibfd) == bfd_core \
4599 && s->vma == 0 && s->lma == 0 \
4600 && (bfd_vma) s->filepos >= p->p_offset \
4601 && ((bfd_vma) s->filepos + s->_raw_size \
4602 <= p->p_offset + p->p_filesz))
4604 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4605 linker, which generates a PT_INTERP section with p_vaddr and
4606 p_memsz set to 0. */
4607 #define IS_SOLARIS_PT_INTERP(p, s) \
4609 && p->p_paddr == 0 \
4610 && p->p_memsz == 0 \
4611 && p->p_filesz > 0 \
4612 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4613 && s->_raw_size > 0 \
4614 && (bfd_vma) s->filepos >= p->p_offset \
4615 && ((bfd_vma) s->filepos + s->_raw_size \
4616 <= p->p_offset + p->p_filesz))
4618 /* Decide if the given section should be included in the given segment.
4619 A section will be included if:
4620 1. It is within the address space of the segment -- we use the LMA
4621 if that is set for the segment and the VMA otherwise,
4622 2. It is an allocated segment,
4623 3. There is an output section associated with it,
4624 4. The section has not already been allocated to a previous segment.
4625 5. PT_TLS segment includes only SHF_TLS sections.
4626 6. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4627 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4628 ((((segment->p_paddr \
4629 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4630 : IS_CONTAINED_BY_VMA (section, segment)) \
4631 && (section->flags & SEC_ALLOC) != 0) \
4632 || IS_COREFILE_NOTE (segment, section)) \
4633 && section->output_section != NULL \
4634 && (segment->p_type != PT_TLS \
4635 || (section->flags & SEC_THREAD_LOCAL)) \
4636 && (segment->p_type == PT_LOAD \
4637 || segment->p_type == PT_TLS \
4638 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4639 && ! section->segment_mark)
4641 /* Returns TRUE iff seg1 starts after the end of seg2. */
4642 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4643 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4645 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4646 their VMA address ranges and their LMA address ranges overlap.
4647 It is possible to have overlapping VMA ranges without overlapping LMA
4648 ranges. RedBoot images for example can have both .data and .bss mapped
4649 to the same VMA range, but with the .data section mapped to a different
4651 #define SEGMENT_OVERLAPS(seg1, seg2) \
4652 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4653 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4654 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4655 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4657 /* Initialise the segment mark field. */
4658 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
4659 section
->segment_mark
= FALSE
;
4661 /* Scan through the segments specified in the program header
4662 of the input BFD. For this first scan we look for overlaps
4663 in the loadable segments. These can be created by weird
4664 parameters to objcopy. Also, fix some solaris weirdness. */
4665 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
4670 Elf_Internal_Phdr
*segment2
;
4672 if (segment
->p_type
== PT_INTERP
)
4673 for (section
= ibfd
->sections
; section
; section
= section
->next
)
4674 if (IS_SOLARIS_PT_INTERP (segment
, section
))
4676 /* Mininal change so that the normal section to segment
4677 assigment code will work. */
4678 segment
->p_vaddr
= section
->vma
;
4682 if (segment
->p_type
!= PT_LOAD
)
4685 /* Determine if this segment overlaps any previous segments. */
4686 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
4688 bfd_signed_vma extra_length
;
4690 if (segment2
->p_type
!= PT_LOAD
4691 || ! SEGMENT_OVERLAPS (segment
, segment2
))
4694 /* Merge the two segments together. */
4695 if (segment2
->p_vaddr
< segment
->p_vaddr
)
4697 /* Extend SEGMENT2 to include SEGMENT and then delete
4700 SEGMENT_END (segment
, segment
->p_vaddr
)
4701 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
4703 if (extra_length
> 0)
4705 segment2
->p_memsz
+= extra_length
;
4706 segment2
->p_filesz
+= extra_length
;
4709 segment
->p_type
= PT_NULL
;
4711 /* Since we have deleted P we must restart the outer loop. */
4713 segment
= elf_tdata (ibfd
)->phdr
;
4718 /* Extend SEGMENT to include SEGMENT2 and then delete
4721 SEGMENT_END (segment2
, segment2
->p_vaddr
)
4722 - SEGMENT_END (segment
, segment
->p_vaddr
);
4724 if (extra_length
> 0)
4726 segment
->p_memsz
+= extra_length
;
4727 segment
->p_filesz
+= extra_length
;
4730 segment2
->p_type
= PT_NULL
;
4735 /* The second scan attempts to assign sections to segments. */
4736 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
4740 unsigned int section_count
;
4741 asection
** sections
;
4742 asection
* output_section
;
4744 bfd_vma matching_lma
;
4745 bfd_vma suggested_lma
;
4749 if (segment
->p_type
== PT_NULL
)
4752 /* Compute how many sections might be placed into this segment. */
4753 for (section
= ibfd
->sections
, section_count
= 0;
4755 section
= section
->next
)
4756 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
4759 /* Allocate a segment map big enough to contain
4760 all of the sections we have selected. */
4761 amt
= sizeof (struct elf_segment_map
);
4762 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
4763 map
= bfd_alloc (obfd
, amt
);
4767 /* Initialise the fields of the segment map. Default to
4768 using the physical address of the segment in the input BFD. */
4770 map
->p_type
= segment
->p_type
;
4771 map
->p_flags
= segment
->p_flags
;
4772 map
->p_flags_valid
= 1;
4773 map
->p_paddr
= segment
->p_paddr
;
4774 map
->p_paddr_valid
= 1;
4776 /* Determine if this segment contains the ELF file header
4777 and if it contains the program headers themselves. */
4778 map
->includes_filehdr
= (segment
->p_offset
== 0
4779 && segment
->p_filesz
>= iehdr
->e_ehsize
);
4781 map
->includes_phdrs
= 0;
4783 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
4785 map
->includes_phdrs
=
4786 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
4787 && (segment
->p_offset
+ segment
->p_filesz
4788 >= ((bfd_vma
) iehdr
->e_phoff
4789 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
4791 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
4792 phdr_included
= TRUE
;
4795 if (section_count
== 0)
4797 /* Special segments, such as the PT_PHDR segment, may contain
4798 no sections, but ordinary, loadable segments should contain
4799 something. They are allowed by the ELF spec however, so only
4800 a warning is produced. */
4801 if (segment
->p_type
== PT_LOAD
)
4802 (*_bfd_error_handler
)
4803 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4804 bfd_archive_filename (ibfd
));
4807 *pointer_to_map
= map
;
4808 pointer_to_map
= &map
->next
;
4813 /* Now scan the sections in the input BFD again and attempt
4814 to add their corresponding output sections to the segment map.
4815 The problem here is how to handle an output section which has
4816 been moved (ie had its LMA changed). There are four possibilities:
4818 1. None of the sections have been moved.
4819 In this case we can continue to use the segment LMA from the
4822 2. All of the sections have been moved by the same amount.
4823 In this case we can change the segment's LMA to match the LMA
4824 of the first section.
4826 3. Some of the sections have been moved, others have not.
4827 In this case those sections which have not been moved can be
4828 placed in the current segment which will have to have its size,
4829 and possibly its LMA changed, and a new segment or segments will
4830 have to be created to contain the other sections.
4832 4. The sections have been moved, but not by the same amount.
4833 In this case we can change the segment's LMA to match the LMA
4834 of the first section and we will have to create a new segment
4835 or segments to contain the other sections.
4837 In order to save time, we allocate an array to hold the section
4838 pointers that we are interested in. As these sections get assigned
4839 to a segment, they are removed from this array. */
4841 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4842 to work around this long long bug. */
4843 amt
= section_count
* sizeof (asection
*);
4844 sections
= bfd_malloc (amt
);
4845 if (sections
== NULL
)
4848 /* Step One: Scan for segment vs section LMA conflicts.
4849 Also add the sections to the section array allocated above.
4850 Also add the sections to the current segment. In the common
4851 case, where the sections have not been moved, this means that
4852 we have completely filled the segment, and there is nothing
4858 for (j
= 0, section
= ibfd
->sections
;
4860 section
= section
->next
)
4862 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
4864 output_section
= section
->output_section
;
4866 sections
[j
++] = section
;
4868 /* The Solaris native linker always sets p_paddr to 0.
4869 We try to catch that case here, and set it to the
4870 correct value. Note - some backends require that
4871 p_paddr be left as zero. */
4872 if (segment
->p_paddr
== 0
4873 && segment
->p_vaddr
!= 0
4874 && (! bed
->want_p_paddr_set_to_zero
)
4876 && output_section
->lma
!= 0
4877 && (output_section
->vma
== (segment
->p_vaddr
4878 + (map
->includes_filehdr
4881 + (map
->includes_phdrs
4883 * iehdr
->e_phentsize
)
4885 map
->p_paddr
= segment
->p_vaddr
;
4887 /* Match up the physical address of the segment with the
4888 LMA address of the output section. */
4889 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
4890 || IS_COREFILE_NOTE (segment
, section
)
4891 || (bed
->want_p_paddr_set_to_zero
&&
4892 IS_CONTAINED_BY_VMA (output_section
, segment
))
4895 if (matching_lma
== 0)
4896 matching_lma
= output_section
->lma
;
4898 /* We assume that if the section fits within the segment
4899 then it does not overlap any other section within that
4901 map
->sections
[isec
++] = output_section
;
4903 else if (suggested_lma
== 0)
4904 suggested_lma
= output_section
->lma
;
4908 BFD_ASSERT (j
== section_count
);
4910 /* Step Two: Adjust the physical address of the current segment,
4912 if (isec
== section_count
)
4914 /* All of the sections fitted within the segment as currently
4915 specified. This is the default case. Add the segment to
4916 the list of built segments and carry on to process the next
4917 program header in the input BFD. */
4918 map
->count
= section_count
;
4919 *pointer_to_map
= map
;
4920 pointer_to_map
= &map
->next
;
4927 if (matching_lma
!= 0)
4929 /* At least one section fits inside the current segment.
4930 Keep it, but modify its physical address to match the
4931 LMA of the first section that fitted. */
4932 map
->p_paddr
= matching_lma
;
4936 /* None of the sections fitted inside the current segment.
4937 Change the current segment's physical address to match
4938 the LMA of the first section. */
4939 map
->p_paddr
= suggested_lma
;
4942 /* Offset the segment physical address from the lma
4943 to allow for space taken up by elf headers. */
4944 if (map
->includes_filehdr
)
4945 map
->p_paddr
-= iehdr
->e_ehsize
;
4947 if (map
->includes_phdrs
)
4949 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
4951 /* iehdr->e_phnum is just an estimate of the number
4952 of program headers that we will need. Make a note
4953 here of the number we used and the segment we chose
4954 to hold these headers, so that we can adjust the
4955 offset when we know the correct value. */
4956 phdr_adjust_num
= iehdr
->e_phnum
;
4957 phdr_adjust_seg
= map
;
4961 /* Step Three: Loop over the sections again, this time assigning
4962 those that fit to the current segment and removing them from the
4963 sections array; but making sure not to leave large gaps. Once all
4964 possible sections have been assigned to the current segment it is
4965 added to the list of built segments and if sections still remain
4966 to be assigned, a new segment is constructed before repeating
4974 /* Fill the current segment with sections that fit. */
4975 for (j
= 0; j
< section_count
; j
++)
4977 section
= sections
[j
];
4979 if (section
== NULL
)
4982 output_section
= section
->output_section
;
4984 BFD_ASSERT (output_section
!= NULL
);
4986 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
4987 || IS_COREFILE_NOTE (segment
, section
))
4989 if (map
->count
== 0)
4991 /* If the first section in a segment does not start at
4992 the beginning of the segment, then something is
4994 if (output_section
->lma
!=
4996 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
4997 + (map
->includes_phdrs
4998 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5004 asection
* prev_sec
;
5006 prev_sec
= map
->sections
[map
->count
- 1];
5008 /* If the gap between the end of the previous section
5009 and the start of this section is more than
5010 maxpagesize then we need to start a new segment. */
5011 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->_raw_size
,
5013 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5014 || ((prev_sec
->lma
+ prev_sec
->_raw_size
)
5015 > output_section
->lma
))
5017 if (suggested_lma
== 0)
5018 suggested_lma
= output_section
->lma
;
5024 map
->sections
[map
->count
++] = output_section
;
5027 section
->segment_mark
= TRUE
;
5029 else if (suggested_lma
== 0)
5030 suggested_lma
= output_section
->lma
;
5033 BFD_ASSERT (map
->count
> 0);
5035 /* Add the current segment to the list of built segments. */
5036 *pointer_to_map
= map
;
5037 pointer_to_map
= &map
->next
;
5039 if (isec
< section_count
)
5041 /* We still have not allocated all of the sections to
5042 segments. Create a new segment here, initialise it
5043 and carry on looping. */
5044 amt
= sizeof (struct elf_segment_map
);
5045 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5046 map
= bfd_alloc (obfd
, amt
);
5053 /* Initialise the fields of the segment map. Set the physical
5054 physical address to the LMA of the first section that has
5055 not yet been assigned. */
5057 map
->p_type
= segment
->p_type
;
5058 map
->p_flags
= segment
->p_flags
;
5059 map
->p_flags_valid
= 1;
5060 map
->p_paddr
= suggested_lma
;
5061 map
->p_paddr_valid
= 1;
5062 map
->includes_filehdr
= 0;
5063 map
->includes_phdrs
= 0;
5066 while (isec
< section_count
);
5071 /* The Solaris linker creates program headers in which all the
5072 p_paddr fields are zero. When we try to objcopy or strip such a
5073 file, we get confused. Check for this case, and if we find it
5074 reset the p_paddr_valid fields. */
5075 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5076 if (map
->p_paddr
!= 0)
5079 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5080 map
->p_paddr_valid
= 0;
5082 elf_tdata (obfd
)->segment_map
= map_first
;
5084 /* If we had to estimate the number of program headers that were
5085 going to be needed, then check our estimate now and adjust
5086 the offset if necessary. */
5087 if (phdr_adjust_seg
!= NULL
)
5091 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5094 if (count
> phdr_adjust_num
)
5095 phdr_adjust_seg
->p_paddr
5096 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5100 /* Final Step: Sort the segments into ascending order of physical
5102 if (map_first
!= NULL
)
5104 struct elf_segment_map
*prev
;
5107 for (map
= map_first
->next
; map
!= NULL
; prev
= map
, map
= map
->next
)
5109 /* Yes I know - its a bubble sort.... */
5110 if (map
->next
!= NULL
&& (map
->next
->p_paddr
< map
->p_paddr
))
5112 /* Swap map and map->next. */
5113 prev
->next
= map
->next
;
5114 map
->next
= map
->next
->next
;
5115 prev
->next
->next
= map
;
5126 #undef IS_CONTAINED_BY_VMA
5127 #undef IS_CONTAINED_BY_LMA
5128 #undef IS_COREFILE_NOTE
5129 #undef IS_SOLARIS_PT_INTERP
5130 #undef INCLUDE_SECTION_IN_SEGMENT
5131 #undef SEGMENT_AFTER_SEGMENT
5132 #undef SEGMENT_OVERLAPS
5136 /* Copy private section information. This copies over the entsize
5137 field, and sometimes the info field. */
5140 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5145 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5147 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5148 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5151 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5155 /* Only set up the segments if there are no more SEC_ALLOC
5156 sections. FIXME: This won't do the right thing if objcopy is
5157 used to remove the last SEC_ALLOC section, since objcopy
5158 won't call this routine in that case. */
5159 for (s
= isec
->next
; s
!= NULL
; s
= s
->next
)
5160 if ((s
->flags
& SEC_ALLOC
) != 0)
5164 if (! copy_private_bfd_data (ibfd
, obfd
))
5169 ihdr
= &elf_section_data (isec
)->this_hdr
;
5170 ohdr
= &elf_section_data (osec
)->this_hdr
;
5172 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5174 if (ihdr
->sh_type
== SHT_SYMTAB
5175 || ihdr
->sh_type
== SHT_DYNSYM
5176 || ihdr
->sh_type
== SHT_GNU_verneed
5177 || ihdr
->sh_type
== SHT_GNU_verdef
)
5178 ohdr
->sh_info
= ihdr
->sh_info
;
5180 /* Set things up for objcopy. The output SHT_GROUP section will
5181 have its elf_next_in_group pointing back to the input group
5183 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5184 elf_group_name (osec
) = elf_group_name (isec
);
5186 osec
->use_rela_p
= isec
->use_rela_p
;
5191 /* Copy private symbol information. If this symbol is in a section
5192 which we did not map into a BFD section, try to map the section
5193 index correctly. We use special macro definitions for the mapped
5194 section indices; these definitions are interpreted by the
5195 swap_out_syms function. */
5197 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5198 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5199 #define MAP_STRTAB (SHN_HIOS + 3)
5200 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5201 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5204 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5209 elf_symbol_type
*isym
, *osym
;
5211 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5212 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5215 isym
= elf_symbol_from (ibfd
, isymarg
);
5216 osym
= elf_symbol_from (obfd
, osymarg
);
5220 && bfd_is_abs_section (isym
->symbol
.section
))
5224 shndx
= isym
->internal_elf_sym
.st_shndx
;
5225 if (shndx
== elf_onesymtab (ibfd
))
5226 shndx
= MAP_ONESYMTAB
;
5227 else if (shndx
== elf_dynsymtab (ibfd
))
5228 shndx
= MAP_DYNSYMTAB
;
5229 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5231 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5232 shndx
= MAP_SHSTRTAB
;
5233 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5234 shndx
= MAP_SYM_SHNDX
;
5235 osym
->internal_elf_sym
.st_shndx
= shndx
;
5241 /* Swap out the symbols. */
5244 swap_out_syms (bfd
*abfd
,
5245 struct bfd_strtab_hash
**sttp
,
5248 const struct elf_backend_data
*bed
;
5251 struct bfd_strtab_hash
*stt
;
5252 Elf_Internal_Shdr
*symtab_hdr
;
5253 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5254 Elf_Internal_Shdr
*symstrtab_hdr
;
5255 char *outbound_syms
;
5256 char *outbound_shndx
;
5260 if (!elf_map_symbols (abfd
))
5263 /* Dump out the symtabs. */
5264 stt
= _bfd_elf_stringtab_init ();
5268 bed
= get_elf_backend_data (abfd
);
5269 symcount
= bfd_get_symcount (abfd
);
5270 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5271 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5272 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5273 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5274 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5275 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5277 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5278 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5280 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5281 outbound_syms
= bfd_alloc (abfd
, amt
);
5282 if (outbound_syms
== NULL
)
5284 _bfd_stringtab_free (stt
);
5287 symtab_hdr
->contents
= outbound_syms
;
5289 outbound_shndx
= NULL
;
5290 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5291 if (symtab_shndx_hdr
->sh_name
!= 0)
5293 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5294 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5295 if (outbound_shndx
== NULL
)
5297 _bfd_stringtab_free (stt
);
5301 symtab_shndx_hdr
->contents
= outbound_shndx
;
5302 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5303 symtab_shndx_hdr
->sh_size
= amt
;
5304 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5305 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5308 /* Now generate the data (for "contents"). */
5310 /* Fill in zeroth symbol and swap it out. */
5311 Elf_Internal_Sym sym
;
5317 sym
.st_shndx
= SHN_UNDEF
;
5318 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5319 outbound_syms
+= bed
->s
->sizeof_sym
;
5320 if (outbound_shndx
!= NULL
)
5321 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5324 syms
= bfd_get_outsymbols (abfd
);
5325 for (idx
= 0; idx
< symcount
; idx
++)
5327 Elf_Internal_Sym sym
;
5328 bfd_vma value
= syms
[idx
]->value
;
5329 elf_symbol_type
*type_ptr
;
5330 flagword flags
= syms
[idx
]->flags
;
5333 if ((flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5335 /* Local section symbols have no name. */
5340 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5343 if (sym
.st_name
== (unsigned long) -1)
5345 _bfd_stringtab_free (stt
);
5350 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5352 if ((flags
& BSF_SECTION_SYM
) == 0
5353 && bfd_is_com_section (syms
[idx
]->section
))
5355 /* ELF common symbols put the alignment into the `value' field,
5356 and the size into the `size' field. This is backwards from
5357 how BFD handles it, so reverse it here. */
5358 sym
.st_size
= value
;
5359 if (type_ptr
== NULL
5360 || type_ptr
->internal_elf_sym
.st_value
== 0)
5361 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5363 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5364 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5365 (abfd
, syms
[idx
]->section
);
5369 asection
*sec
= syms
[idx
]->section
;
5372 if (sec
->output_section
)
5374 value
+= sec
->output_offset
;
5375 sec
= sec
->output_section
;
5378 /* Don't add in the section vma for relocatable output. */
5379 if (! relocatable_p
)
5381 sym
.st_value
= value
;
5382 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5384 if (bfd_is_abs_section (sec
)
5386 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5388 /* This symbol is in a real ELF section which we did
5389 not create as a BFD section. Undo the mapping done
5390 by copy_private_symbol_data. */
5391 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5395 shndx
= elf_onesymtab (abfd
);
5398 shndx
= elf_dynsymtab (abfd
);
5401 shndx
= elf_tdata (abfd
)->strtab_section
;
5404 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5407 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5415 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5421 /* Writing this would be a hell of a lot easier if
5422 we had some decent documentation on bfd, and
5423 knew what to expect of the library, and what to
5424 demand of applications. For example, it
5425 appears that `objcopy' might not set the
5426 section of a symbol to be a section that is
5427 actually in the output file. */
5428 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5431 _bfd_error_handler (_("\
5432 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5433 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5435 bfd_set_error (bfd_error_invalid_operation
);
5436 _bfd_stringtab_free (stt
);
5440 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5441 BFD_ASSERT (shndx
!= -1);
5445 sym
.st_shndx
= shndx
;
5448 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5450 else if ((flags
& BSF_FUNCTION
) != 0)
5452 else if ((flags
& BSF_OBJECT
) != 0)
5457 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5460 /* Processor-specific types. */
5461 if (type_ptr
!= NULL
5462 && bed
->elf_backend_get_symbol_type
)
5463 type
= ((*bed
->elf_backend_get_symbol_type
)
5464 (&type_ptr
->internal_elf_sym
, type
));
5466 if (flags
& BSF_SECTION_SYM
)
5468 if (flags
& BSF_GLOBAL
)
5469 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5471 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5473 else if (bfd_is_com_section (syms
[idx
]->section
))
5474 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5475 else if (bfd_is_und_section (syms
[idx
]->section
))
5476 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5480 else if (flags
& BSF_FILE
)
5481 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5484 int bind
= STB_LOCAL
;
5486 if (flags
& BSF_LOCAL
)
5488 else if (flags
& BSF_WEAK
)
5490 else if (flags
& BSF_GLOBAL
)
5493 sym
.st_info
= ELF_ST_INFO (bind
, type
);
5496 if (type_ptr
!= NULL
)
5497 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
5501 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5502 outbound_syms
+= bed
->s
->sizeof_sym
;
5503 if (outbound_shndx
!= NULL
)
5504 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5508 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
5509 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5511 symstrtab_hdr
->sh_flags
= 0;
5512 symstrtab_hdr
->sh_addr
= 0;
5513 symstrtab_hdr
->sh_entsize
= 0;
5514 symstrtab_hdr
->sh_link
= 0;
5515 symstrtab_hdr
->sh_info
= 0;
5516 symstrtab_hdr
->sh_addralign
= 1;
5521 /* Return the number of bytes required to hold the symtab vector.
5523 Note that we base it on the count plus 1, since we will null terminate
5524 the vector allocated based on this size. However, the ELF symbol table
5525 always has a dummy entry as symbol #0, so it ends up even. */
5528 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
5532 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5534 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5535 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5537 symtab_size
-= sizeof (asymbol
*);
5543 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
5547 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
5549 if (elf_dynsymtab (abfd
) == 0)
5551 bfd_set_error (bfd_error_invalid_operation
);
5555 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5556 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5558 symtab_size
-= sizeof (asymbol
*);
5564 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
5567 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
5570 /* Canonicalize the relocs. */
5573 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
5580 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5582 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
5585 tblptr
= section
->relocation
;
5586 for (i
= 0; i
< section
->reloc_count
; i
++)
5587 *relptr
++ = tblptr
++;
5591 return section
->reloc_count
;
5595 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
5597 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5598 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
5601 bfd_get_symcount (abfd
) = symcount
;
5606 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
5607 asymbol
**allocation
)
5609 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5610 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
5613 bfd_get_dynamic_symcount (abfd
) = symcount
;
5617 /* Return the size required for the dynamic reloc entries. Any
5618 section that was actually installed in the BFD, and has type
5619 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5620 considered to be a dynamic reloc section. */
5623 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
5628 if (elf_dynsymtab (abfd
) == 0)
5630 bfd_set_error (bfd_error_invalid_operation
);
5634 ret
= sizeof (arelent
*);
5635 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5636 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5637 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5638 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5639 ret
+= ((s
->_raw_size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
5640 * sizeof (arelent
*));
5645 /* Canonicalize the dynamic relocation entries. Note that we return
5646 the dynamic relocations as a single block, although they are
5647 actually associated with particular sections; the interface, which
5648 was designed for SunOS style shared libraries, expects that there
5649 is only one set of dynamic relocs. Any section that was actually
5650 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5651 the dynamic symbol table, is considered to be a dynamic reloc
5655 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
5659 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
5663 if (elf_dynsymtab (abfd
) == 0)
5665 bfd_set_error (bfd_error_invalid_operation
);
5669 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
5671 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5673 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5674 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5675 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5680 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
5682 count
= s
->_raw_size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
5684 for (i
= 0; i
< count
; i
++)
5695 /* Read in the version information. */
5698 _bfd_elf_slurp_version_tables (bfd
*abfd
)
5700 bfd_byte
*contents
= NULL
;
5703 if (elf_dynverdef (abfd
) != 0)
5705 Elf_Internal_Shdr
*hdr
;
5706 Elf_External_Verdef
*everdef
;
5707 Elf_Internal_Verdef
*iverdef
;
5708 Elf_Internal_Verdef
*iverdefarr
;
5709 Elf_Internal_Verdef iverdefmem
;
5711 unsigned int maxidx
;
5713 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
5715 contents
= bfd_malloc (hdr
->sh_size
);
5716 if (contents
== NULL
)
5718 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
5719 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
5722 /* We know the number of entries in the section but not the maximum
5723 index. Therefore we have to run through all entries and find
5725 everdef
= (Elf_External_Verdef
*) contents
;
5727 for (i
= 0; i
< hdr
->sh_info
; ++i
)
5729 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
5731 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
5732 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
5734 everdef
= ((Elf_External_Verdef
*)
5735 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
5738 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
5739 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
5740 if (elf_tdata (abfd
)->verdef
== NULL
)
5743 elf_tdata (abfd
)->cverdefs
= maxidx
;
5745 everdef
= (Elf_External_Verdef
*) contents
;
5746 iverdefarr
= elf_tdata (abfd
)->verdef
;
5747 for (i
= 0; i
< hdr
->sh_info
; i
++)
5749 Elf_External_Verdaux
*everdaux
;
5750 Elf_Internal_Verdaux
*iverdaux
;
5753 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
5755 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
5756 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
5758 iverdef
->vd_bfd
= abfd
;
5760 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
5761 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
5762 if (iverdef
->vd_auxptr
== NULL
)
5765 everdaux
= ((Elf_External_Verdaux
*)
5766 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
5767 iverdaux
= iverdef
->vd_auxptr
;
5768 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
5770 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
5772 iverdaux
->vda_nodename
=
5773 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
5774 iverdaux
->vda_name
);
5775 if (iverdaux
->vda_nodename
== NULL
)
5778 if (j
+ 1 < iverdef
->vd_cnt
)
5779 iverdaux
->vda_nextptr
= iverdaux
+ 1;
5781 iverdaux
->vda_nextptr
= NULL
;
5783 everdaux
= ((Elf_External_Verdaux
*)
5784 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
5787 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
5789 if (i
+ 1 < hdr
->sh_info
)
5790 iverdef
->vd_nextdef
= iverdef
+ 1;
5792 iverdef
->vd_nextdef
= NULL
;
5794 everdef
= ((Elf_External_Verdef
*)
5795 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
5802 if (elf_dynverref (abfd
) != 0)
5804 Elf_Internal_Shdr
*hdr
;
5805 Elf_External_Verneed
*everneed
;
5806 Elf_Internal_Verneed
*iverneed
;
5809 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
5811 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
5812 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
5813 if (elf_tdata (abfd
)->verref
== NULL
)
5816 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
5818 contents
= bfd_malloc (hdr
->sh_size
);
5819 if (contents
== NULL
)
5821 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
5822 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
5825 everneed
= (Elf_External_Verneed
*) contents
;
5826 iverneed
= elf_tdata (abfd
)->verref
;
5827 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
5829 Elf_External_Vernaux
*evernaux
;
5830 Elf_Internal_Vernaux
*ivernaux
;
5833 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
5835 iverneed
->vn_bfd
= abfd
;
5837 iverneed
->vn_filename
=
5838 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
5840 if (iverneed
->vn_filename
== NULL
)
5843 amt
= iverneed
->vn_cnt
;
5844 amt
*= sizeof (Elf_Internal_Vernaux
);
5845 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
5847 evernaux
= ((Elf_External_Vernaux
*)
5848 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
5849 ivernaux
= iverneed
->vn_auxptr
;
5850 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
5852 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
5854 ivernaux
->vna_nodename
=
5855 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
5856 ivernaux
->vna_name
);
5857 if (ivernaux
->vna_nodename
== NULL
)
5860 if (j
+ 1 < iverneed
->vn_cnt
)
5861 ivernaux
->vna_nextptr
= ivernaux
+ 1;
5863 ivernaux
->vna_nextptr
= NULL
;
5865 evernaux
= ((Elf_External_Vernaux
*)
5866 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
5869 if (i
+ 1 < hdr
->sh_info
)
5870 iverneed
->vn_nextref
= iverneed
+ 1;
5872 iverneed
->vn_nextref
= NULL
;
5874 everneed
= ((Elf_External_Verneed
*)
5875 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
5885 if (contents
!= NULL
)
5891 _bfd_elf_make_empty_symbol (bfd
*abfd
)
5893 elf_symbol_type
*newsym
;
5894 bfd_size_type amt
= sizeof (elf_symbol_type
);
5896 newsym
= bfd_zalloc (abfd
, amt
);
5901 newsym
->symbol
.the_bfd
= abfd
;
5902 return &newsym
->symbol
;
5907 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
5911 bfd_symbol_info (symbol
, ret
);
5914 /* Return whether a symbol name implies a local symbol. Most targets
5915 use this function for the is_local_label_name entry point, but some
5919 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
5922 /* Normal local symbols start with ``.L''. */
5923 if (name
[0] == '.' && name
[1] == 'L')
5926 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5927 DWARF debugging symbols starting with ``..''. */
5928 if (name
[0] == '.' && name
[1] == '.')
5931 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5932 emitting DWARF debugging output. I suspect this is actually a
5933 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5934 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5935 underscore to be emitted on some ELF targets). For ease of use,
5936 we treat such symbols as local. */
5937 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
5944 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
5945 asymbol
*symbol ATTRIBUTE_UNUSED
)
5952 _bfd_elf_set_arch_mach (bfd
*abfd
,
5953 enum bfd_architecture arch
,
5954 unsigned long machine
)
5956 /* If this isn't the right architecture for this backend, and this
5957 isn't the generic backend, fail. */
5958 if (arch
!= get_elf_backend_data (abfd
)->arch
5959 && arch
!= bfd_arch_unknown
5960 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
5963 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
5966 /* Find the function to a particular section and offset,
5967 for error reporting. */
5970 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
5974 const char **filename_ptr
,
5975 const char **functionname_ptr
)
5977 const char *filename
;
5986 for (p
= symbols
; *p
!= NULL
; p
++)
5990 q
= (elf_symbol_type
*) *p
;
5992 if (bfd_get_section (&q
->symbol
) != section
)
5995 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6000 filename
= bfd_asymbol_name (&q
->symbol
);
6004 if (q
->symbol
.section
== section
6005 && q
->symbol
.value
>= low_func
6006 && q
->symbol
.value
<= offset
)
6008 func
= (asymbol
*) q
;
6009 low_func
= q
->symbol
.value
;
6019 *filename_ptr
= filename
;
6020 if (functionname_ptr
)
6021 *functionname_ptr
= bfd_asymbol_name (func
);
6026 /* Find the nearest line to a particular section and offset,
6027 for error reporting. */
6030 _bfd_elf_find_nearest_line (bfd
*abfd
,
6034 const char **filename_ptr
,
6035 const char **functionname_ptr
,
6036 unsigned int *line_ptr
)
6040 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6041 filename_ptr
, functionname_ptr
,
6044 if (!*functionname_ptr
)
6045 elf_find_function (abfd
, section
, symbols
, offset
,
6046 *filename_ptr
? NULL
: filename_ptr
,
6052 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6053 filename_ptr
, functionname_ptr
,
6055 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6057 if (!*functionname_ptr
)
6058 elf_find_function (abfd
, section
, symbols
, offset
,
6059 *filename_ptr
? NULL
: filename_ptr
,
6065 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6066 &found
, filename_ptr
,
6067 functionname_ptr
, line_ptr
,
6068 &elf_tdata (abfd
)->line_info
))
6070 if (found
&& (*functionname_ptr
|| *line_ptr
))
6073 if (symbols
== NULL
)
6076 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6077 filename_ptr
, functionname_ptr
))
6085 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6089 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6091 ret
+= get_program_header_size (abfd
);
6096 _bfd_elf_set_section_contents (bfd
*abfd
,
6100 bfd_size_type count
)
6102 Elf_Internal_Shdr
*hdr
;
6105 if (! abfd
->output_has_begun
6106 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6109 hdr
= &elf_section_data (section
)->this_hdr
;
6110 pos
= hdr
->sh_offset
+ offset
;
6111 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6112 || bfd_bwrite (location
, count
, abfd
) != count
)
6119 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6120 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6121 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6126 /* Try to convert a non-ELF reloc into an ELF one. */
6129 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6131 /* Check whether we really have an ELF howto. */
6133 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6135 bfd_reloc_code_real_type code
;
6136 reloc_howto_type
*howto
;
6138 /* Alien reloc: Try to determine its type to replace it with an
6139 equivalent ELF reloc. */
6141 if (areloc
->howto
->pc_relative
)
6143 switch (areloc
->howto
->bitsize
)
6146 code
= BFD_RELOC_8_PCREL
;
6149 code
= BFD_RELOC_12_PCREL
;
6152 code
= BFD_RELOC_16_PCREL
;
6155 code
= BFD_RELOC_24_PCREL
;
6158 code
= BFD_RELOC_32_PCREL
;
6161 code
= BFD_RELOC_64_PCREL
;
6167 howto
= bfd_reloc_type_lookup (abfd
, code
);
6169 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6171 if (howto
->pcrel_offset
)
6172 areloc
->addend
+= areloc
->address
;
6174 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6179 switch (areloc
->howto
->bitsize
)
6185 code
= BFD_RELOC_14
;
6188 code
= BFD_RELOC_16
;
6191 code
= BFD_RELOC_26
;
6194 code
= BFD_RELOC_32
;
6197 code
= BFD_RELOC_64
;
6203 howto
= bfd_reloc_type_lookup (abfd
, code
);
6207 areloc
->howto
= howto
;
6215 (*_bfd_error_handler
)
6216 (_("%s: unsupported relocation type %s"),
6217 bfd_archive_filename (abfd
), areloc
->howto
->name
);
6218 bfd_set_error (bfd_error_bad_value
);
6223 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6225 if (bfd_get_format (abfd
) == bfd_object
)
6227 if (elf_shstrtab (abfd
) != NULL
)
6228 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6231 return _bfd_generic_close_and_cleanup (abfd
);
6234 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6235 in the relocation's offset. Thus we cannot allow any sort of sanity
6236 range-checking to interfere. There is nothing else to do in processing
6239 bfd_reloc_status_type
6240 _bfd_elf_rel_vtable_reloc_fn
6241 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6242 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6243 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6244 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6246 return bfd_reloc_ok
;
6249 /* Elf core file support. Much of this only works on native
6250 toolchains, since we rely on knowing the
6251 machine-dependent procfs structure in order to pick
6252 out details about the corefile. */
6254 #ifdef HAVE_SYS_PROCFS_H
6255 # include <sys/procfs.h>
6258 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6261 elfcore_make_pid (bfd
*abfd
)
6263 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6264 + (elf_tdata (abfd
)->core_pid
));
6267 /* If there isn't a section called NAME, make one, using
6268 data from SECT. Note, this function will generate a
6269 reference to NAME, so you shouldn't deallocate or
6273 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6277 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6280 sect2
= bfd_make_section (abfd
, name
);
6284 sect2
->_raw_size
= sect
->_raw_size
;
6285 sect2
->filepos
= sect
->filepos
;
6286 sect2
->flags
= sect
->flags
;
6287 sect2
->alignment_power
= sect
->alignment_power
;
6291 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6292 actually creates up to two pseudosections:
6293 - For the single-threaded case, a section named NAME, unless
6294 such a section already exists.
6295 - For the multi-threaded case, a section named "NAME/PID", where
6296 PID is elfcore_make_pid (abfd).
6297 Both pseudosections have identical contents. */
6299 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6305 char *threaded_name
;
6309 /* Build the section name. */
6311 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6312 len
= strlen (buf
) + 1;
6313 threaded_name
= bfd_alloc (abfd
, len
);
6314 if (threaded_name
== NULL
)
6316 memcpy (threaded_name
, buf
, len
);
6318 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6321 sect
->_raw_size
= size
;
6322 sect
->filepos
= filepos
;
6323 sect
->flags
= SEC_HAS_CONTENTS
;
6324 sect
->alignment_power
= 2;
6326 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6329 /* prstatus_t exists on:
6331 linux 2.[01] + glibc
6335 #if defined (HAVE_PRSTATUS_T)
6338 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6343 if (note
->descsz
== sizeof (prstatus_t
))
6347 raw_size
= sizeof (prstat
.pr_reg
);
6348 offset
= offsetof (prstatus_t
, pr_reg
);
6349 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6351 /* Do not overwrite the core signal if it
6352 has already been set by another thread. */
6353 if (elf_tdata (abfd
)->core_signal
== 0)
6354 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6355 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6357 /* pr_who exists on:
6360 pr_who doesn't exist on:
6363 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6364 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6367 #if defined (HAVE_PRSTATUS32_T)
6368 else if (note
->descsz
== sizeof (prstatus32_t
))
6370 /* 64-bit host, 32-bit corefile */
6371 prstatus32_t prstat
;
6373 raw_size
= sizeof (prstat
.pr_reg
);
6374 offset
= offsetof (prstatus32_t
, pr_reg
);
6375 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6377 /* Do not overwrite the core signal if it
6378 has already been set by another thread. */
6379 if (elf_tdata (abfd
)->core_signal
== 0)
6380 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6381 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6383 /* pr_who exists on:
6386 pr_who doesn't exist on:
6389 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6390 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6393 #endif /* HAVE_PRSTATUS32_T */
6396 /* Fail - we don't know how to handle any other
6397 note size (ie. data object type). */
6401 /* Make a ".reg/999" section and a ".reg" section. */
6402 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6403 raw_size
, note
->descpos
+ offset
);
6405 #endif /* defined (HAVE_PRSTATUS_T) */
6407 /* Create a pseudosection containing the exact contents of NOTE. */
6409 elfcore_make_note_pseudosection (bfd
*abfd
,
6411 Elf_Internal_Note
*note
)
6413 return _bfd_elfcore_make_pseudosection (abfd
, name
,
6414 note
->descsz
, note
->descpos
);
6417 /* There isn't a consistent prfpregset_t across platforms,
6418 but it doesn't matter, because we don't have to pick this
6419 data structure apart. */
6422 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6424 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6427 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6428 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6432 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6434 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
6437 #if defined (HAVE_PRPSINFO_T)
6438 typedef prpsinfo_t elfcore_psinfo_t
;
6439 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6440 typedef prpsinfo32_t elfcore_psinfo32_t
;
6444 #if defined (HAVE_PSINFO_T)
6445 typedef psinfo_t elfcore_psinfo_t
;
6446 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6447 typedef psinfo32_t elfcore_psinfo32_t
;
6451 /* return a malloc'ed copy of a string at START which is at
6452 most MAX bytes long, possibly without a terminating '\0'.
6453 the copy will always have a terminating '\0'. */
6456 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
6459 char *end
= memchr (start
, '\0', max
);
6467 dups
= bfd_alloc (abfd
, len
+ 1);
6471 memcpy (dups
, start
, len
);
6477 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6479 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6481 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
6483 elfcore_psinfo_t psinfo
;
6485 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6487 elf_tdata (abfd
)->core_program
6488 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6489 sizeof (psinfo
.pr_fname
));
6491 elf_tdata (abfd
)->core_command
6492 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6493 sizeof (psinfo
.pr_psargs
));
6495 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6496 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
6498 /* 64-bit host, 32-bit corefile */
6499 elfcore_psinfo32_t psinfo
;
6501 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6503 elf_tdata (abfd
)->core_program
6504 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6505 sizeof (psinfo
.pr_fname
));
6507 elf_tdata (abfd
)->core_command
6508 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6509 sizeof (psinfo
.pr_psargs
));
6515 /* Fail - we don't know how to handle any other
6516 note size (ie. data object type). */
6520 /* Note that for some reason, a spurious space is tacked
6521 onto the end of the args in some (at least one anyway)
6522 implementations, so strip it off if it exists. */
6525 char *command
= elf_tdata (abfd
)->core_command
;
6526 int n
= strlen (command
);
6528 if (0 < n
&& command
[n
- 1] == ' ')
6529 command
[n
- 1] = '\0';
6534 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6536 #if defined (HAVE_PSTATUS_T)
6538 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6540 if (note
->descsz
== sizeof (pstatus_t
)
6541 #if defined (HAVE_PXSTATUS_T)
6542 || note
->descsz
== sizeof (pxstatus_t
)
6548 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6550 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6552 #if defined (HAVE_PSTATUS32_T)
6553 else if (note
->descsz
== sizeof (pstatus32_t
))
6555 /* 64-bit host, 32-bit corefile */
6558 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6560 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6563 /* Could grab some more details from the "representative"
6564 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6565 NT_LWPSTATUS note, presumably. */
6569 #endif /* defined (HAVE_PSTATUS_T) */
6571 #if defined (HAVE_LWPSTATUS_T)
6573 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6575 lwpstatus_t lwpstat
;
6581 if (note
->descsz
!= sizeof (lwpstat
)
6582 #if defined (HAVE_LWPXSTATUS_T)
6583 && note
->descsz
!= sizeof (lwpxstatus_t
)
6588 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
6590 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
6591 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
6593 /* Make a ".reg/999" section. */
6595 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
6596 len
= strlen (buf
) + 1;
6597 name
= bfd_alloc (abfd
, len
);
6600 memcpy (name
, buf
, len
);
6602 sect
= bfd_make_section_anyway (abfd
, name
);
6606 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6607 sect
->_raw_size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
6608 sect
->filepos
= note
->descpos
6609 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
6612 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6613 sect
->_raw_size
= sizeof (lwpstat
.pr_reg
);
6614 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
6617 sect
->flags
= SEC_HAS_CONTENTS
;
6618 sect
->alignment_power
= 2;
6620 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6623 /* Make a ".reg2/999" section */
6625 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
6626 len
= strlen (buf
) + 1;
6627 name
= bfd_alloc (abfd
, len
);
6630 memcpy (name
, buf
, len
);
6632 sect
= bfd_make_section_anyway (abfd
, name
);
6636 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6637 sect
->_raw_size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
6638 sect
->filepos
= note
->descpos
6639 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
6642 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6643 sect
->_raw_size
= sizeof (lwpstat
.pr_fpreg
);
6644 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
6647 sect
->flags
= SEC_HAS_CONTENTS
;
6648 sect
->alignment_power
= 2;
6650 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
6652 #endif /* defined (HAVE_LWPSTATUS_T) */
6654 #if defined (HAVE_WIN32_PSTATUS_T)
6656 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6662 win32_pstatus_t pstatus
;
6664 if (note
->descsz
< sizeof (pstatus
))
6667 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
6669 switch (pstatus
.data_type
)
6671 case NOTE_INFO_PROCESS
:
6672 /* FIXME: need to add ->core_command. */
6673 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
6674 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
6677 case NOTE_INFO_THREAD
:
6678 /* Make a ".reg/999" section. */
6679 sprintf (buf
, ".reg/%d", pstatus
.data
.thread_info
.tid
);
6681 len
= strlen (buf
) + 1;
6682 name
= bfd_alloc (abfd
, len
);
6686 memcpy (name
, buf
, len
);
6688 sect
= bfd_make_section_anyway (abfd
, name
);
6692 sect
->_raw_size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
6693 sect
->filepos
= (note
->descpos
6694 + offsetof (struct win32_pstatus
,
6695 data
.thread_info
.thread_context
));
6696 sect
->flags
= SEC_HAS_CONTENTS
;
6697 sect
->alignment_power
= 2;
6699 if (pstatus
.data
.thread_info
.is_active_thread
)
6700 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6704 case NOTE_INFO_MODULE
:
6705 /* Make a ".module/xxxxxxxx" section. */
6706 sprintf (buf
, ".module/%08x", pstatus
.data
.module_info
.base_address
);
6708 len
= strlen (buf
) + 1;
6709 name
= bfd_alloc (abfd
, len
);
6713 memcpy (name
, buf
, len
);
6715 sect
= bfd_make_section_anyway (abfd
, name
);
6720 sect
->_raw_size
= note
->descsz
;
6721 sect
->filepos
= note
->descpos
;
6722 sect
->flags
= SEC_HAS_CONTENTS
;
6723 sect
->alignment_power
= 2;
6732 #endif /* HAVE_WIN32_PSTATUS_T */
6735 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
6737 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6745 if (bed
->elf_backend_grok_prstatus
)
6746 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
6748 #if defined (HAVE_PRSTATUS_T)
6749 return elfcore_grok_prstatus (abfd
, note
);
6754 #if defined (HAVE_PSTATUS_T)
6756 return elfcore_grok_pstatus (abfd
, note
);
6759 #if defined (HAVE_LWPSTATUS_T)
6761 return elfcore_grok_lwpstatus (abfd
, note
);
6764 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
6765 return elfcore_grok_prfpreg (abfd
, note
);
6767 #if defined (HAVE_WIN32_PSTATUS_T)
6768 case NT_WIN32PSTATUS
:
6769 return elfcore_grok_win32pstatus (abfd
, note
);
6772 case NT_PRXFPREG
: /* Linux SSE extension */
6773 if (note
->namesz
== 6
6774 && strcmp (note
->namedata
, "LINUX") == 0)
6775 return elfcore_grok_prxfpreg (abfd
, note
);
6781 if (bed
->elf_backend_grok_psinfo
)
6782 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
6784 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6785 return elfcore_grok_psinfo (abfd
, note
);
6792 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
6796 sect
->_raw_size
= note
->descsz
;
6797 sect
->filepos
= note
->descpos
;
6798 sect
->flags
= SEC_HAS_CONTENTS
;
6799 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
6807 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
6811 cp
= strchr (note
->namedata
, '@');
6814 *lwpidp
= atoi(cp
+ 1);
6821 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6824 /* Signal number at offset 0x08. */
6825 elf_tdata (abfd
)->core_signal
6826 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
6828 /* Process ID at offset 0x50. */
6829 elf_tdata (abfd
)->core_pid
6830 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
6832 /* Command name at 0x7c (max 32 bytes, including nul). */
6833 elf_tdata (abfd
)->core_command
6834 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
6840 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
6844 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
6845 elf_tdata (abfd
)->core_lwpid
= lwp
;
6847 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
6849 /* NetBSD-specific core "procinfo". Note that we expect to
6850 find this note before any of the others, which is fine,
6851 since the kernel writes this note out first when it
6852 creates a core file. */
6854 return elfcore_grok_netbsd_procinfo (abfd
, note
);
6857 /* As of Jan 2002 there are no other machine-independent notes
6858 defined for NetBSD core files. If the note type is less
6859 than the start of the machine-dependent note types, we don't
6862 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
6866 switch (bfd_get_arch (abfd
))
6868 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6869 PT_GETFPREGS == mach+2. */
6871 case bfd_arch_alpha
:
6872 case bfd_arch_sparc
:
6875 case NT_NETBSDCORE_FIRSTMACH
+0:
6876 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
6878 case NT_NETBSDCORE_FIRSTMACH
+2:
6879 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6885 /* On all other arch's, PT_GETREGS == mach+1 and
6886 PT_GETFPREGS == mach+3. */
6891 case NT_NETBSDCORE_FIRSTMACH
+1:
6892 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
6894 case NT_NETBSDCORE_FIRSTMACH
+3:
6895 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6905 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
6907 void *ddata
= note
->descdata
;
6914 /* nto_procfs_status 'pid' field is at offset 0. */
6915 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
6917 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6918 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
6920 /* nto_procfs_status 'flags' field is at offset 8. */
6921 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
6923 /* nto_procfs_status 'what' field is at offset 14. */
6924 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
6926 elf_tdata (abfd
)->core_signal
= sig
;
6927 elf_tdata (abfd
)->core_lwpid
= *tid
;
6930 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6931 do not come from signals so we make sure we set the current
6932 thread just in case. */
6933 if (flags
& 0x00000080)
6934 elf_tdata (abfd
)->core_lwpid
= *tid
;
6936 /* Make a ".qnx_core_status/%d" section. */
6937 sprintf (buf
, ".qnx_core_status/%d", *tid
);
6939 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
6944 sect
= bfd_make_section_anyway (abfd
, name
);
6948 sect
->_raw_size
= note
->descsz
;
6949 sect
->filepos
= note
->descpos
;
6950 sect
->flags
= SEC_HAS_CONTENTS
;
6951 sect
->alignment_power
= 2;
6953 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
6957 elfcore_grok_nto_gregs (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t tid
)
6963 /* Make a ".reg/%d" section. */
6964 sprintf (buf
, ".reg/%d", tid
);
6966 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
6971 sect
= bfd_make_section_anyway (abfd
, name
);
6975 sect
->_raw_size
= note
->descsz
;
6976 sect
->filepos
= note
->descpos
;
6977 sect
->flags
= SEC_HAS_CONTENTS
;
6978 sect
->alignment_power
= 2;
6980 /* This is the current thread. */
6981 if (elf_tdata (abfd
)->core_lwpid
== tid
)
6982 return elfcore_maybe_make_sect (abfd
, ".reg", sect
);
6987 #define BFD_QNT_CORE_INFO 7
6988 #define BFD_QNT_CORE_STATUS 8
6989 #define BFD_QNT_CORE_GREG 9
6990 #define BFD_QNT_CORE_FPREG 10
6993 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
6995 /* Every GREG section has a STATUS section before it. Store the
6996 tid from the previous call to pass down to the next gregs
6998 static pid_t tid
= 1;
7002 case BFD_QNT_CORE_INFO
: return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7003 case BFD_QNT_CORE_STATUS
: return elfcore_grok_nto_status (abfd
, note
, &tid
);
7004 case BFD_QNT_CORE_GREG
: return elfcore_grok_nto_gregs (abfd
, note
, tid
);
7005 case BFD_QNT_CORE_FPREG
: return elfcore_grok_prfpreg (abfd
, note
);
7006 default: return TRUE
;
7010 /* Function: elfcore_write_note
7017 size of data for note
7020 End of buffer containing note. */
7023 elfcore_write_note (bfd
*abfd
,
7031 Elf_External_Note
*xnp
;
7041 const struct elf_backend_data
*bed
;
7043 namesz
= strlen (name
) + 1;
7044 bed
= get_elf_backend_data (abfd
);
7045 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7048 newspace
= 12 + namesz
+ pad
+ size
;
7050 p
= realloc (buf
, *bufsiz
+ newspace
);
7052 *bufsiz
+= newspace
;
7053 xnp
= (Elf_External_Note
*) dest
;
7054 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7055 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7056 H_PUT_32 (abfd
, type
, xnp
->type
);
7060 memcpy (dest
, name
, namesz
);
7068 memcpy (dest
, input
, size
);
7072 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7074 elfcore_write_prpsinfo (bfd
*abfd
,
7081 char *note_name
= "CORE";
7083 #if defined (HAVE_PSINFO_T)
7085 note_type
= NT_PSINFO
;
7088 note_type
= NT_PRPSINFO
;
7091 memset (&data
, 0, sizeof (data
));
7092 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7093 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7094 return elfcore_write_note (abfd
, buf
, bufsiz
,
7095 note_name
, note_type
, &data
, sizeof (data
));
7097 #endif /* PSINFO_T or PRPSINFO_T */
7099 #if defined (HAVE_PRSTATUS_T)
7101 elfcore_write_prstatus (bfd
*abfd
,
7109 char *note_name
= "CORE";
7111 memset (&prstat
, 0, sizeof (prstat
));
7112 prstat
.pr_pid
= pid
;
7113 prstat
.pr_cursig
= cursig
;
7114 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7115 return elfcore_write_note (abfd
, buf
, bufsiz
,
7116 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7118 #endif /* HAVE_PRSTATUS_T */
7120 #if defined (HAVE_LWPSTATUS_T)
7122 elfcore_write_lwpstatus (bfd
*abfd
,
7129 lwpstatus_t lwpstat
;
7130 char *note_name
= "CORE";
7132 memset (&lwpstat
, 0, sizeof (lwpstat
));
7133 lwpstat
.pr_lwpid
= pid
>> 16;
7134 lwpstat
.pr_cursig
= cursig
;
7135 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7136 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7137 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7139 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7140 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7142 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7143 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7146 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7147 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7149 #endif /* HAVE_LWPSTATUS_T */
7151 #if defined (HAVE_PSTATUS_T)
7153 elfcore_write_pstatus (bfd
*abfd
,
7161 char *note_name
= "CORE";
7163 memset (&pstat
, 0, sizeof (pstat
));
7164 pstat
.pr_pid
= pid
& 0xffff;
7165 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7166 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7169 #endif /* HAVE_PSTATUS_T */
7172 elfcore_write_prfpreg (bfd
*abfd
,
7178 char *note_name
= "CORE";
7179 return elfcore_write_note (abfd
, buf
, bufsiz
,
7180 note_name
, NT_FPREGSET
, fpregs
, size
);
7184 elfcore_write_prxfpreg (bfd
*abfd
,
7187 const void *xfpregs
,
7190 char *note_name
= "LINUX";
7191 return elfcore_write_note (abfd
, buf
, bufsiz
,
7192 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7196 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7204 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7207 buf
= bfd_malloc (size
);
7211 if (bfd_bread (buf
, size
, abfd
) != size
)
7219 while (p
< buf
+ size
)
7221 /* FIXME: bad alignment assumption. */
7222 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7223 Elf_Internal_Note in
;
7225 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7227 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7228 in
.namedata
= xnp
->name
;
7230 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7231 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7232 in
.descpos
= offset
+ (in
.descdata
- buf
);
7234 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7236 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7239 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7241 if (! elfcore_grok_nto_note (abfd
, &in
))
7246 if (! elfcore_grok_note (abfd
, &in
))
7250 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7257 /* Providing external access to the ELF program header table. */
7259 /* Return an upper bound on the number of bytes required to store a
7260 copy of ABFD's program header table entries. Return -1 if an error
7261 occurs; bfd_get_error will return an appropriate code. */
7264 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7266 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7268 bfd_set_error (bfd_error_wrong_format
);
7272 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7275 /* Copy ABFD's program header table entries to *PHDRS. The entries
7276 will be stored as an array of Elf_Internal_Phdr structures, as
7277 defined in include/elf/internal.h. To find out how large the
7278 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7280 Return the number of program header table entries read, or -1 if an
7281 error occurs; bfd_get_error will return an appropriate code. */
7284 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7288 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7290 bfd_set_error (bfd_error_wrong_format
);
7294 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7295 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7296 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7302 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7305 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7307 i_ehdrp
= elf_elfheader (abfd
);
7308 if (i_ehdrp
== NULL
)
7309 sprintf_vma (buf
, value
);
7312 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7314 #if BFD_HOST_64BIT_LONG
7315 sprintf (buf
, "%016lx", value
);
7317 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7318 _bfd_int64_low (value
));
7322 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7325 sprintf_vma (buf
, value
);
7330 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7333 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7335 i_ehdrp
= elf_elfheader (abfd
);
7336 if (i_ehdrp
== NULL
)
7337 fprintf_vma ((FILE *) stream
, value
);
7340 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7342 #if BFD_HOST_64BIT_LONG
7343 fprintf ((FILE *) stream
, "%016lx", value
);
7345 fprintf ((FILE *) stream
, "%08lx%08lx",
7346 _bfd_int64_high (value
), _bfd_int64_low (value
));
7350 fprintf ((FILE *) stream
, "%08lx",
7351 (unsigned long) (value
& 0xffffffff));
7354 fprintf_vma ((FILE *) stream
, value
);
7358 enum elf_reloc_type_class
7359 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7361 return reloc_class_normal
;
7364 /* For RELA architectures, return the relocation value for a
7365 relocation against a local symbol. */
7368 _bfd_elf_rela_local_sym (bfd
*abfd
,
7369 Elf_Internal_Sym
*sym
,
7371 Elf_Internal_Rela
*rel
)
7375 relocation
= (sec
->output_section
->vma
7376 + sec
->output_offset
7378 if ((sec
->flags
& SEC_MERGE
)
7379 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7380 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7386 _bfd_merged_section_offset (abfd
, &msec
,
7387 elf_section_data (sec
)->sec_info
,
7388 sym
->st_value
+ rel
->r_addend
,
7391 rel
->r_addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
7397 _bfd_elf_rel_local_sym (bfd
*abfd
,
7398 Elf_Internal_Sym
*sym
,
7402 asection
*sec
= *psec
;
7404 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
7405 return sym
->st_value
+ addend
;
7407 return _bfd_merged_section_offset (abfd
, psec
,
7408 elf_section_data (sec
)->sec_info
,
7409 sym
->st_value
+ addend
, 0);
7413 _bfd_elf_section_offset (bfd
*abfd
,
7414 struct bfd_link_info
*info
,
7418 struct bfd_elf_section_data
*sec_data
;
7420 sec_data
= elf_section_data (sec
);
7421 switch (sec
->sec_info_type
)
7423 case ELF_INFO_TYPE_STABS
:
7424 return _bfd_stab_section_offset (abfd
,
7425 &elf_hash_table (info
)->merge_info
,
7426 sec
, &sec_data
->sec_info
, offset
);
7427 case ELF_INFO_TYPE_EH_FRAME
:
7428 return _bfd_elf_eh_frame_section_offset (abfd
, sec
, offset
);
7434 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7435 reconstruct an ELF file by reading the segments out of remote memory
7436 based on the ELF file header at EHDR_VMA and the ELF program headers it
7437 points to. If not null, *LOADBASEP is filled in with the difference
7438 between the VMAs from which the segments were read, and the VMAs the
7439 file headers (and hence BFD's idea of each section's VMA) put them at.
7441 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7442 remote memory at target address VMA into the local buffer at MYADDR; it
7443 should return zero on success or an `errno' code on failure. TEMPL must
7444 be a BFD for an ELF target with the word size and byte order found in
7445 the remote memory. */
7448 bfd_elf_bfd_from_remote_memory
7452 int (*target_read_memory
) (bfd_vma
, char *, int))
7454 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
7455 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);