Correct ChangeLog entry.
[binutils.git] / bfd / elfxx-mips.c
blob94d56be9671fbbec110bc188a8d34db8ebc3048e
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
47 #include "hashtab.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
139 /* This structure is used to hold .got information when linking. */
141 struct mips_got_info
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
178 /* Map an input bfd to a got in a multi-got link. */
180 struct mips_elf_bfd2got_hash {
181 bfd *bfd;
182 struct mips_got_info *g;
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
188 struct mips_elf_got_per_bfd_arg
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
215 /* Another structure used to pass arguments for got entries traversal. */
217 struct mips_elf_set_global_got_offset_arg
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
228 struct mips_elf_count_tls_arg
230 struct bfd_link_info *info;
231 unsigned int needed;
234 struct _mips_elf_section_data
236 struct bfd_elf_section_data elf;
237 union
239 bfd_byte *tdata;
240 } u;
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
263 relocations only.
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
268 #define GGA_NORMAL 0
269 #define GGA_RELOC_ONLY 1
270 #define GGA_NONE 2
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
275 lui $25,%hi(func)
276 addiu $25,$25,%lo(func)
278 immediately before a PIC function "func". The second is to add:
280 lui $25,%hi(func)
281 j func
282 addiu $25,$25,%lo(func)
284 to a separate trampoline section.
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub {
290 /* The generated section that contains this stub. */
291 asection *stub_section;
293 /* The offset of the stub from the start of STUB_SECTION. */
294 bfd_vma offset;
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry *h;
301 /* Macros for populating a mips_elf_la25_stub. */
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
310 struct mips_elf_hash_sort_data
312 /* The symbol in the global GOT with the lowest dynamic symbol table
313 index. */
314 struct elf_link_hash_entry *low;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx;
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
330 struct mips_elf_link_hash_entry
332 struct elf_link_hash_entry root;
334 /* External symbol information. */
335 EXTR esym;
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub *la25_stub;
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
341 this symbol. */
342 unsigned int possibly_dynamic_relocs;
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
346 asection *fn_stub;
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
350 asection *call_stub;
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection *call_fp_stub;
356 #define GOT_NORMAL 0
357 #define GOT_TLS_GD 1
358 #define GOT_TLS_LDM 2
359 #define GOT_TLS_IE 4
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type;
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset;
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area : 2;
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc : 1;
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs : 1;
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub : 1;
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub : 1;
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches : 1;
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub : 1;
404 /* MIPS ELF linker hash table. */
406 struct mips_elf_link_hash_table
408 struct elf_link_hash_table root;
409 #if 0
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
413 #endif
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count;
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size;
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head;
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
426 bfd_vma rld_value;
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen;
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs;
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks;
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported;
440 /* Shortcuts to some dynamic sections, or NULL if they are not
441 being used. */
442 asection *srelbss;
443 asection *sdynbss;
444 asection *srelplt;
445 asection *srelplt2;
446 asection *sgotplt;
447 asection *splt;
448 asection *sstubs;
449 asection *sgot;
451 /* The master GOT information. */
452 struct mips_got_info *got_info;
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size;
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size;
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count;
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size;
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno;
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection *strampoline;
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
474 pairs. */
475 htab_t la25_stubs;
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
482 The function returns the new section on success, otherwise it
483 returns null. */
484 asection *(*add_stub_section) (const char *, asection *, asection *);
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info {
489 /* The usual link-wide information. */
490 struct bfd_link_info *info;
491 bfd *output_bfd;
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
494 bfd_boolean error;
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
512 /* Structure used to pass information to mips_elf_output_extsym. */
514 struct extsym_info
516 bfd *abfd;
517 struct bfd_link_info *info;
518 struct ecoff_debug_info *debug;
519 const struct ecoff_debug_swap *swap;
520 bfd_boolean failed;
523 /* The names of the runtime procedure table symbols used on IRIX5. */
525 static const char * const mips_elf_dynsym_rtproc_names[] =
527 "_procedure_table",
528 "_procedure_string_table",
529 "_procedure_table_size",
530 NULL
533 /* These structures are used to generate the .compact_rel section on
534 IRIX5. */
536 typedef struct
538 unsigned long id1; /* Always one? */
539 unsigned long num; /* Number of compact relocation entries. */
540 unsigned long id2; /* Always two? */
541 unsigned long offset; /* The file offset of the first relocation. */
542 unsigned long reserved0; /* Zero? */
543 unsigned long reserved1; /* Zero? */
544 } Elf32_compact_rel;
546 typedef struct
548 bfd_byte id1[4];
549 bfd_byte num[4];
550 bfd_byte id2[4];
551 bfd_byte offset[4];
552 bfd_byte reserved0[4];
553 bfd_byte reserved1[4];
554 } Elf32_External_compact_rel;
556 typedef struct
558 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype : 4; /* Relocation types. See below. */
560 unsigned int dist2to : 8;
561 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst; /* KONST field. See below. */
563 unsigned long vaddr; /* VADDR to be relocated. */
564 } Elf32_crinfo;
566 typedef struct
568 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype : 4; /* Relocation types. See below. */
570 unsigned int dist2to : 8;
571 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst; /* KONST field. See below. */
573 } Elf32_crinfo2;
575 typedef struct
577 bfd_byte info[4];
578 bfd_byte konst[4];
579 bfd_byte vaddr[4];
580 } Elf32_External_crinfo;
582 typedef struct
584 bfd_byte info[4];
585 bfd_byte konst[4];
586 } Elf32_External_crinfo2;
588 /* These are the constants used to swap the bitfields in a crinfo. */
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
608 (type) (konst)
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
628 typedef struct runtime_pdr {
629 bfd_vma adr; /* Memory address of start of procedure. */
630 long regmask; /* Save register mask. */
631 long regoffset; /* Save register offset. */
632 long fregmask; /* Save floating point register mask. */
633 long fregoffset; /* Save floating point register offset. */
634 long frameoffset; /* Frame size. */
635 short framereg; /* Frame pointer register. */
636 short pcreg; /* Offset or reg of return pc. */
637 long irpss; /* Index into the runtime string table. */
638 long reserved;
639 struct exception_info *exception_info;/* Pointer to exception array. */
640 } RPDR, *pRPDR;
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
644 static struct mips_got_entry *mips_elf_create_local_got_entry
645 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
646 struct mips_elf_link_hash_entry *, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry *, void *);
649 static bfd_vma mips_elf_high
650 (bfd_vma);
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
653 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
654 bfd_vma *, asection *);
655 static hashval_t mips_elf_got_entry_hash
656 (const void *);
657 static bfd_vma mips_elf_adjust_gp
658 (bfd *, struct mips_got_info *, bfd *);
659 static struct mips_got_info *mips_elf_got_for_ibfd
660 (struct mips_got_info *, bfd *);
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd *reldyn_sorting_bfd;
665 /* True if ABFD is a PIC object. */
666 #define PIC_OBJECT_P(abfd) \
667 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
669 /* Nonzero if ABFD is using the N32 ABI. */
670 #define ABI_N32_P(abfd) \
671 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
673 /* Nonzero if ABFD is using the N64 ABI. */
674 #define ABI_64_P(abfd) \
675 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
677 /* Nonzero if ABFD is using NewABI conventions. */
678 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
680 /* The IRIX compatibility level we are striving for. */
681 #define IRIX_COMPAT(abfd) \
682 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
684 /* Whether we are trying to be compatible with IRIX at all. */
685 #define SGI_COMPAT(abfd) \
686 (IRIX_COMPAT (abfd) != ict_none)
688 /* The name of the options section. */
689 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
690 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
692 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
693 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
694 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
695 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
697 /* Whether the section is readonly. */
698 #define MIPS_ELF_READONLY_SECTION(sec) \
699 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
700 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
702 /* The name of the stub section. */
703 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
705 /* The size of an external REL relocation. */
706 #define MIPS_ELF_REL_SIZE(abfd) \
707 (get_elf_backend_data (abfd)->s->sizeof_rel)
709 /* The size of an external RELA relocation. */
710 #define MIPS_ELF_RELA_SIZE(abfd) \
711 (get_elf_backend_data (abfd)->s->sizeof_rela)
713 /* The size of an external dynamic table entry. */
714 #define MIPS_ELF_DYN_SIZE(abfd) \
715 (get_elf_backend_data (abfd)->s->sizeof_dyn)
717 /* The size of a GOT entry. */
718 #define MIPS_ELF_GOT_SIZE(abfd) \
719 (get_elf_backend_data (abfd)->s->arch_size / 8)
721 /* The size of a symbol-table entry. */
722 #define MIPS_ELF_SYM_SIZE(abfd) \
723 (get_elf_backend_data (abfd)->s->sizeof_sym)
725 /* The default alignment for sections, as a power of two. */
726 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
727 (get_elf_backend_data (abfd)->s->log_file_align)
729 /* Get word-sized data. */
730 #define MIPS_ELF_GET_WORD(abfd, ptr) \
731 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
733 /* Put out word-sized data. */
734 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
735 (ABI_64_P (abfd) \
736 ? bfd_put_64 (abfd, val, ptr) \
737 : bfd_put_32 (abfd, val, ptr))
739 /* The opcode for word-sized loads (LW or LD). */
740 #define MIPS_ELF_LOAD_WORD(abfd) \
741 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
743 /* Add a dynamic symbol table-entry. */
744 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
745 _bfd_elf_add_dynamic_entry (info, tag, val)
747 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
748 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
750 /* Determine whether the internal relocation of index REL_IDX is REL
751 (zero) or RELA (non-zero). The assumption is that, if there are
752 two relocation sections for this section, one of them is REL and
753 the other is RELA. If the index of the relocation we're testing is
754 in range for the first relocation section, check that the external
755 relocation size is that for RELA. It is also assumed that, if
756 rel_idx is not in range for the first section, and this first
757 section contains REL relocs, then the relocation is in the second
758 section, that is RELA. */
759 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
760 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
761 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
762 > (bfd_vma)(rel_idx)) \
763 == (elf_section_data (sec)->rel_hdr.sh_entsize \
764 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
765 : sizeof (Elf32_External_Rela))))
767 /* The name of the dynamic relocation section. */
768 #define MIPS_ELF_REL_DYN_NAME(INFO) \
769 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
771 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
772 from smaller values. Start with zero, widen, *then* decrement. */
773 #define MINUS_ONE (((bfd_vma)0) - 1)
774 #define MINUS_TWO (((bfd_vma)0) - 2)
776 /* The value to write into got[1] for SVR4 targets, to identify it is
777 a GNU object. The dynamic linker can then use got[1] to store the
778 module pointer. */
779 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
780 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
782 /* The offset of $gp from the beginning of the .got section. */
783 #define ELF_MIPS_GP_OFFSET(INFO) \
784 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
786 /* The maximum size of the GOT for it to be addressable using 16-bit
787 offsets from $gp. */
788 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
790 /* Instructions which appear in a stub. */
791 #define STUB_LW(abfd) \
792 ((ABI_64_P (abfd) \
793 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
794 : 0x8f998010)) /* lw t9,0x8010(gp) */
795 #define STUB_MOVE(abfd) \
796 ((ABI_64_P (abfd) \
797 ? 0x03e0782d /* daddu t7,ra */ \
798 : 0x03e07821)) /* addu t7,ra */
799 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
800 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
801 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
802 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
803 #define STUB_LI16S(abfd, VAL) \
804 ((ABI_64_P (abfd) \
805 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
806 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
808 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
809 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
811 /* The name of the dynamic interpreter. This is put in the .interp
812 section. */
814 #define ELF_DYNAMIC_INTERPRETER(abfd) \
815 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
816 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
817 : "/usr/lib/libc.so.1")
819 #ifdef BFD64
820 #define MNAME(bfd,pre,pos) \
821 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
822 #define ELF_R_SYM(bfd, i) \
823 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
824 #define ELF_R_TYPE(bfd, i) \
825 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
826 #define ELF_R_INFO(bfd, s, t) \
827 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
828 #else
829 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
830 #define ELF_R_SYM(bfd, i) \
831 (ELF32_R_SYM (i))
832 #define ELF_R_TYPE(bfd, i) \
833 (ELF32_R_TYPE (i))
834 #define ELF_R_INFO(bfd, s, t) \
835 (ELF32_R_INFO (s, t))
836 #endif
838 /* The mips16 compiler uses a couple of special sections to handle
839 floating point arguments.
841 Section names that look like .mips16.fn.FNNAME contain stubs that
842 copy floating point arguments from the fp regs to the gp regs and
843 then jump to FNNAME. If any 32 bit function calls FNNAME, the
844 call should be redirected to the stub instead. If no 32 bit
845 function calls FNNAME, the stub should be discarded. We need to
846 consider any reference to the function, not just a call, because
847 if the address of the function is taken we will need the stub,
848 since the address might be passed to a 32 bit function.
850 Section names that look like .mips16.call.FNNAME contain stubs
851 that copy floating point arguments from the gp regs to the fp
852 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
853 then any 16 bit function that calls FNNAME should be redirected
854 to the stub instead. If FNNAME is not a 32 bit function, the
855 stub should be discarded.
857 .mips16.call.fp.FNNAME sections are similar, but contain stubs
858 which call FNNAME and then copy the return value from the fp regs
859 to the gp regs. These stubs store the return value in $18 while
860 calling FNNAME; any function which might call one of these stubs
861 must arrange to save $18 around the call. (This case is not
862 needed for 32 bit functions that call 16 bit functions, because
863 16 bit functions always return floating point values in both
864 $f0/$f1 and $2/$3.)
866 Note that in all cases FNNAME might be defined statically.
867 Therefore, FNNAME is not used literally. Instead, the relocation
868 information will indicate which symbol the section is for.
870 We record any stubs that we find in the symbol table. */
872 #define FN_STUB ".mips16.fn."
873 #define CALL_STUB ".mips16.call."
874 #define CALL_FP_STUB ".mips16.call.fp."
876 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
877 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
878 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
880 /* The format of the first PLT entry in an O32 executable. */
881 static const bfd_vma mips_o32_exec_plt0_entry[] = {
882 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
883 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
884 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
885 0x031cc023, /* subu $24, $24, $28 */
886 0x03e07821, /* move $15, $31 */
887 0x0018c082, /* srl $24, $24, 2 */
888 0x0320f809, /* jalr $25 */
889 0x2718fffe /* subu $24, $24, 2 */
892 /* The format of the first PLT entry in an N32 executable. Different
893 because gp ($28) is not available; we use t2 ($14) instead. */
894 static const bfd_vma mips_n32_exec_plt0_entry[] = {
895 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
896 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
897 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
898 0x030ec023, /* subu $24, $24, $14 */
899 0x03e07821, /* move $15, $31 */
900 0x0018c082, /* srl $24, $24, 2 */
901 0x0320f809, /* jalr $25 */
902 0x2718fffe /* subu $24, $24, 2 */
905 /* The format of the first PLT entry in an N64 executable. Different
906 from N32 because of the increased size of GOT entries. */
907 static const bfd_vma mips_n64_exec_plt0_entry[] = {
908 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
909 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
910 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
911 0x030ec023, /* subu $24, $24, $14 */
912 0x03e07821, /* move $15, $31 */
913 0x0018c0c2, /* srl $24, $24, 3 */
914 0x0320f809, /* jalr $25 */
915 0x2718fffe /* subu $24, $24, 2 */
918 /* The format of subsequent PLT entries. */
919 static const bfd_vma mips_exec_plt_entry[] = {
920 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
921 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
922 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
923 0x03200008 /* jr $25 */
926 /* The format of the first PLT entry in a VxWorks executable. */
927 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
928 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
929 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
930 0x8f390008, /* lw t9, 8(t9) */
931 0x00000000, /* nop */
932 0x03200008, /* jr t9 */
933 0x00000000 /* nop */
936 /* The format of subsequent PLT entries. */
937 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
938 0x10000000, /* b .PLT_resolver */
939 0x24180000, /* li t8, <pltindex> */
940 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
941 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
942 0x8f390000, /* lw t9, 0(t9) */
943 0x00000000, /* nop */
944 0x03200008, /* jr t9 */
945 0x00000000 /* nop */
948 /* The format of the first PLT entry in a VxWorks shared object. */
949 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
950 0x8f990008, /* lw t9, 8(gp) */
951 0x00000000, /* nop */
952 0x03200008, /* jr t9 */
953 0x00000000, /* nop */
954 0x00000000, /* nop */
955 0x00000000 /* nop */
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
960 0x10000000, /* b .PLT_resolver */
961 0x24180000 /* li t8, <pltindex> */
964 /* Look up an entry in a MIPS ELF linker hash table. */
966 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
967 ((struct mips_elf_link_hash_entry *) \
968 elf_link_hash_lookup (&(table)->root, (string), (create), \
969 (copy), (follow)))
971 /* Traverse a MIPS ELF linker hash table. */
973 #define mips_elf_link_hash_traverse(table, func, info) \
974 (elf_link_hash_traverse \
975 (&(table)->root, \
976 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
977 (info)))
979 /* Get the MIPS ELF linker hash table from a link_info structure. */
981 #define mips_elf_hash_table(p) \
982 ((struct mips_elf_link_hash_table *) ((p)->hash))
984 /* Find the base offsets for thread-local storage in this object,
985 for GD/LD and IE/LE respectively. */
987 #define TP_OFFSET 0x7000
988 #define DTP_OFFSET 0x8000
990 static bfd_vma
991 dtprel_base (struct bfd_link_info *info)
993 /* If tls_sec is NULL, we should have signalled an error already. */
994 if (elf_hash_table (info)->tls_sec == NULL)
995 return 0;
996 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
999 static bfd_vma
1000 tprel_base (struct bfd_link_info *info)
1002 /* If tls_sec is NULL, we should have signalled an error already. */
1003 if (elf_hash_table (info)->tls_sec == NULL)
1004 return 0;
1005 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1008 /* Create an entry in a MIPS ELF linker hash table. */
1010 static struct bfd_hash_entry *
1011 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1012 struct bfd_hash_table *table, const char *string)
1014 struct mips_elf_link_hash_entry *ret =
1015 (struct mips_elf_link_hash_entry *) entry;
1017 /* Allocate the structure if it has not already been allocated by a
1018 subclass. */
1019 if (ret == NULL)
1020 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1021 if (ret == NULL)
1022 return (struct bfd_hash_entry *) ret;
1024 /* Call the allocation method of the superclass. */
1025 ret = ((struct mips_elf_link_hash_entry *)
1026 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1027 table, string));
1028 if (ret != NULL)
1030 /* Set local fields. */
1031 memset (&ret->esym, 0, sizeof (EXTR));
1032 /* We use -2 as a marker to indicate that the information has
1033 not been set. -1 means there is no associated ifd. */
1034 ret->esym.ifd = -2;
1035 ret->la25_stub = 0;
1036 ret->possibly_dynamic_relocs = 0;
1037 ret->fn_stub = NULL;
1038 ret->call_stub = NULL;
1039 ret->call_fp_stub = NULL;
1040 ret->tls_type = GOT_NORMAL;
1041 ret->global_got_area = GGA_NONE;
1042 ret->readonly_reloc = FALSE;
1043 ret->has_static_relocs = FALSE;
1044 ret->no_fn_stub = FALSE;
1045 ret->need_fn_stub = FALSE;
1046 ret->has_nonpic_branches = FALSE;
1047 ret->needs_lazy_stub = FALSE;
1050 return (struct bfd_hash_entry *) ret;
1053 bfd_boolean
1054 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1056 if (!sec->used_by_bfd)
1058 struct _mips_elf_section_data *sdata;
1059 bfd_size_type amt = sizeof (*sdata);
1061 sdata = bfd_zalloc (abfd, amt);
1062 if (sdata == NULL)
1063 return FALSE;
1064 sec->used_by_bfd = sdata;
1067 return _bfd_elf_new_section_hook (abfd, sec);
1070 /* Read ECOFF debugging information from a .mdebug section into a
1071 ecoff_debug_info structure. */
1073 bfd_boolean
1074 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1075 struct ecoff_debug_info *debug)
1077 HDRR *symhdr;
1078 const struct ecoff_debug_swap *swap;
1079 char *ext_hdr;
1081 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1082 memset (debug, 0, sizeof (*debug));
1084 ext_hdr = bfd_malloc (swap->external_hdr_size);
1085 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1086 goto error_return;
1088 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1089 swap->external_hdr_size))
1090 goto error_return;
1092 symhdr = &debug->symbolic_header;
1093 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1095 /* The symbolic header contains absolute file offsets and sizes to
1096 read. */
1097 #define READ(ptr, offset, count, size, type) \
1098 if (symhdr->count == 0) \
1099 debug->ptr = NULL; \
1100 else \
1102 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1103 debug->ptr = bfd_malloc (amt); \
1104 if (debug->ptr == NULL) \
1105 goto error_return; \
1106 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1107 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1108 goto error_return; \
1111 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1112 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1113 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1114 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1115 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1116 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1117 union aux_ext *);
1118 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1119 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1120 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1121 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1122 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1123 #undef READ
1125 debug->fdr = NULL;
1127 return TRUE;
1129 error_return:
1130 if (ext_hdr != NULL)
1131 free (ext_hdr);
1132 if (debug->line != NULL)
1133 free (debug->line);
1134 if (debug->external_dnr != NULL)
1135 free (debug->external_dnr);
1136 if (debug->external_pdr != NULL)
1137 free (debug->external_pdr);
1138 if (debug->external_sym != NULL)
1139 free (debug->external_sym);
1140 if (debug->external_opt != NULL)
1141 free (debug->external_opt);
1142 if (debug->external_aux != NULL)
1143 free (debug->external_aux);
1144 if (debug->ss != NULL)
1145 free (debug->ss);
1146 if (debug->ssext != NULL)
1147 free (debug->ssext);
1148 if (debug->external_fdr != NULL)
1149 free (debug->external_fdr);
1150 if (debug->external_rfd != NULL)
1151 free (debug->external_rfd);
1152 if (debug->external_ext != NULL)
1153 free (debug->external_ext);
1154 return FALSE;
1157 /* Swap RPDR (runtime procedure table entry) for output. */
1159 static void
1160 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1162 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1163 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1164 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1165 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1166 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1167 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1169 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1170 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1172 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1175 /* Create a runtime procedure table from the .mdebug section. */
1177 static bfd_boolean
1178 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1179 struct bfd_link_info *info, asection *s,
1180 struct ecoff_debug_info *debug)
1182 const struct ecoff_debug_swap *swap;
1183 HDRR *hdr = &debug->symbolic_header;
1184 RPDR *rpdr, *rp;
1185 struct rpdr_ext *erp;
1186 void *rtproc;
1187 struct pdr_ext *epdr;
1188 struct sym_ext *esym;
1189 char *ss, **sv;
1190 char *str;
1191 bfd_size_type size;
1192 bfd_size_type count;
1193 unsigned long sindex;
1194 unsigned long i;
1195 PDR pdr;
1196 SYMR sym;
1197 const char *no_name_func = _("static procedure (no name)");
1199 epdr = NULL;
1200 rpdr = NULL;
1201 esym = NULL;
1202 ss = NULL;
1203 sv = NULL;
1205 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1207 sindex = strlen (no_name_func) + 1;
1208 count = hdr->ipdMax;
1209 if (count > 0)
1211 size = swap->external_pdr_size;
1213 epdr = bfd_malloc (size * count);
1214 if (epdr == NULL)
1215 goto error_return;
1217 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1218 goto error_return;
1220 size = sizeof (RPDR);
1221 rp = rpdr = bfd_malloc (size * count);
1222 if (rpdr == NULL)
1223 goto error_return;
1225 size = sizeof (char *);
1226 sv = bfd_malloc (size * count);
1227 if (sv == NULL)
1228 goto error_return;
1230 count = hdr->isymMax;
1231 size = swap->external_sym_size;
1232 esym = bfd_malloc (size * count);
1233 if (esym == NULL)
1234 goto error_return;
1236 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1237 goto error_return;
1239 count = hdr->issMax;
1240 ss = bfd_malloc (count);
1241 if (ss == NULL)
1242 goto error_return;
1243 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1244 goto error_return;
1246 count = hdr->ipdMax;
1247 for (i = 0; i < (unsigned long) count; i++, rp++)
1249 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1250 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1251 rp->adr = sym.value;
1252 rp->regmask = pdr.regmask;
1253 rp->regoffset = pdr.regoffset;
1254 rp->fregmask = pdr.fregmask;
1255 rp->fregoffset = pdr.fregoffset;
1256 rp->frameoffset = pdr.frameoffset;
1257 rp->framereg = pdr.framereg;
1258 rp->pcreg = pdr.pcreg;
1259 rp->irpss = sindex;
1260 sv[i] = ss + sym.iss;
1261 sindex += strlen (sv[i]) + 1;
1265 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1266 size = BFD_ALIGN (size, 16);
1267 rtproc = bfd_alloc (abfd, size);
1268 if (rtproc == NULL)
1270 mips_elf_hash_table (info)->procedure_count = 0;
1271 goto error_return;
1274 mips_elf_hash_table (info)->procedure_count = count + 2;
1276 erp = rtproc;
1277 memset (erp, 0, sizeof (struct rpdr_ext));
1278 erp++;
1279 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1280 strcpy (str, no_name_func);
1281 str += strlen (no_name_func) + 1;
1282 for (i = 0; i < count; i++)
1284 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1285 strcpy (str, sv[i]);
1286 str += strlen (sv[i]) + 1;
1288 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1290 /* Set the size and contents of .rtproc section. */
1291 s->size = size;
1292 s->contents = rtproc;
1294 /* Skip this section later on (I don't think this currently
1295 matters, but someday it might). */
1296 s->map_head.link_order = NULL;
1298 if (epdr != NULL)
1299 free (epdr);
1300 if (rpdr != NULL)
1301 free (rpdr);
1302 if (esym != NULL)
1303 free (esym);
1304 if (ss != NULL)
1305 free (ss);
1306 if (sv != NULL)
1307 free (sv);
1309 return TRUE;
1311 error_return:
1312 if (epdr != NULL)
1313 free (epdr);
1314 if (rpdr != NULL)
1315 free (rpdr);
1316 if (esym != NULL)
1317 free (esym);
1318 if (ss != NULL)
1319 free (ss);
1320 if (sv != NULL)
1321 free (sv);
1322 return FALSE;
1325 /* We're going to create a stub for H. Create a symbol for the stub's
1326 value and size, to help make the disassembly easier to read. */
1328 static bfd_boolean
1329 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1330 struct mips_elf_link_hash_entry *h,
1331 const char *prefix, asection *s, bfd_vma value,
1332 bfd_vma size)
1334 struct bfd_link_hash_entry *bh;
1335 struct elf_link_hash_entry *elfh;
1336 const char *name;
1338 /* Create a new symbol. */
1339 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1340 bh = NULL;
1341 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1342 BSF_LOCAL, s, value, NULL,
1343 TRUE, FALSE, &bh))
1344 return FALSE;
1346 /* Make it a local function. */
1347 elfh = (struct elf_link_hash_entry *) bh;
1348 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1349 elfh->size = size;
1350 elfh->forced_local = 1;
1351 return TRUE;
1354 /* We're about to redefine H. Create a symbol to represent H's
1355 current value and size, to help make the disassembly easier
1356 to read. */
1358 static bfd_boolean
1359 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1360 struct mips_elf_link_hash_entry *h,
1361 const char *prefix)
1363 struct bfd_link_hash_entry *bh;
1364 struct elf_link_hash_entry *elfh;
1365 const char *name;
1366 asection *s;
1367 bfd_vma value;
1369 /* Read the symbol's value. */
1370 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1371 || h->root.root.type == bfd_link_hash_defweak);
1372 s = h->root.root.u.def.section;
1373 value = h->root.root.u.def.value;
1375 /* Create a new symbol. */
1376 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1377 bh = NULL;
1378 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1379 BSF_LOCAL, s, value, NULL,
1380 TRUE, FALSE, &bh))
1381 return FALSE;
1383 /* Make it local and copy the other attributes from H. */
1384 elfh = (struct elf_link_hash_entry *) bh;
1385 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1386 elfh->other = h->root.other;
1387 elfh->size = h->root.size;
1388 elfh->forced_local = 1;
1389 return TRUE;
1392 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1393 function rather than to a hard-float stub. */
1395 static bfd_boolean
1396 section_allows_mips16_refs_p (asection *section)
1398 const char *name;
1400 name = bfd_get_section_name (section->owner, section);
1401 return (FN_STUB_P (name)
1402 || CALL_STUB_P (name)
1403 || CALL_FP_STUB_P (name)
1404 || strcmp (name, ".pdr") == 0);
1407 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1408 stub section of some kind. Return the R_SYMNDX of the target
1409 function, or 0 if we can't decide which function that is. */
1411 static unsigned long
1412 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1413 const Elf_Internal_Rela *relocs,
1414 const Elf_Internal_Rela *relend)
1416 const Elf_Internal_Rela *rel;
1418 /* Trust the first R_MIPS_NONE relocation, if any. */
1419 for (rel = relocs; rel < relend; rel++)
1420 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1421 return ELF_R_SYM (sec->owner, rel->r_info);
1423 /* Otherwise trust the first relocation, whatever its kind. This is
1424 the traditional behavior. */
1425 if (relocs < relend)
1426 return ELF_R_SYM (sec->owner, relocs->r_info);
1428 return 0;
1431 /* Check the mips16 stubs for a particular symbol, and see if we can
1432 discard them. */
1434 static void
1435 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1436 struct mips_elf_link_hash_entry *h)
1438 /* Dynamic symbols must use the standard call interface, in case other
1439 objects try to call them. */
1440 if (h->fn_stub != NULL
1441 && h->root.dynindx != -1)
1443 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1444 h->need_fn_stub = TRUE;
1447 if (h->fn_stub != NULL
1448 && ! h->need_fn_stub)
1450 /* We don't need the fn_stub; the only references to this symbol
1451 are 16 bit calls. Clobber the size to 0 to prevent it from
1452 being included in the link. */
1453 h->fn_stub->size = 0;
1454 h->fn_stub->flags &= ~SEC_RELOC;
1455 h->fn_stub->reloc_count = 0;
1456 h->fn_stub->flags |= SEC_EXCLUDE;
1459 if (h->call_stub != NULL
1460 && ELF_ST_IS_MIPS16 (h->root.other))
1462 /* We don't need the call_stub; this is a 16 bit function, so
1463 calls from other 16 bit functions are OK. Clobber the size
1464 to 0 to prevent it from being included in the link. */
1465 h->call_stub->size = 0;
1466 h->call_stub->flags &= ~SEC_RELOC;
1467 h->call_stub->reloc_count = 0;
1468 h->call_stub->flags |= SEC_EXCLUDE;
1471 if (h->call_fp_stub != NULL
1472 && ELF_ST_IS_MIPS16 (h->root.other))
1474 /* We don't need the call_stub; this is a 16 bit function, so
1475 calls from other 16 bit functions are OK. Clobber the size
1476 to 0 to prevent it from being included in the link. */
1477 h->call_fp_stub->size = 0;
1478 h->call_fp_stub->flags &= ~SEC_RELOC;
1479 h->call_fp_stub->reloc_count = 0;
1480 h->call_fp_stub->flags |= SEC_EXCLUDE;
1484 /* Hashtable callbacks for mips_elf_la25_stubs. */
1486 static hashval_t
1487 mips_elf_la25_stub_hash (const void *entry_)
1489 const struct mips_elf_la25_stub *entry;
1491 entry = (struct mips_elf_la25_stub *) entry_;
1492 return entry->h->root.root.u.def.section->id
1493 + entry->h->root.root.u.def.value;
1496 static int
1497 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1499 const struct mips_elf_la25_stub *entry1, *entry2;
1501 entry1 = (struct mips_elf_la25_stub *) entry1_;
1502 entry2 = (struct mips_elf_la25_stub *) entry2_;
1503 return ((entry1->h->root.root.u.def.section
1504 == entry2->h->root.root.u.def.section)
1505 && (entry1->h->root.root.u.def.value
1506 == entry2->h->root.root.u.def.value));
1509 /* Called by the linker to set up the la25 stub-creation code. FN is
1510 the linker's implementation of add_stub_function. Return true on
1511 success. */
1513 bfd_boolean
1514 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1515 asection *(*fn) (const char *, asection *,
1516 asection *))
1518 struct mips_elf_link_hash_table *htab;
1520 htab = mips_elf_hash_table (info);
1521 htab->add_stub_section = fn;
1522 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1523 mips_elf_la25_stub_eq, NULL);
1524 if (htab->la25_stubs == NULL)
1525 return FALSE;
1527 return TRUE;
1530 /* Return true if H is a locally-defined PIC function, in the sense
1531 that it might need $25 to be valid on entry. Note that MIPS16
1532 functions never need $25 to be valid on entry; they set up $gp
1533 using PC-relative instructions instead. */
1535 static bfd_boolean
1536 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1538 return ((h->root.root.type == bfd_link_hash_defined
1539 || h->root.root.type == bfd_link_hash_defweak)
1540 && h->root.def_regular
1541 && !bfd_is_abs_section (h->root.root.u.def.section)
1542 && !ELF_ST_IS_MIPS16 (h->root.other)
1543 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1544 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1547 /* STUB describes an la25 stub that we have decided to implement
1548 by inserting an LUI/ADDIU pair before the target function.
1549 Create the section and redirect the function symbol to it. */
1551 static bfd_boolean
1552 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1553 struct bfd_link_info *info)
1555 struct mips_elf_link_hash_table *htab;
1556 char *name;
1557 asection *s, *input_section;
1558 unsigned int align;
1560 htab = mips_elf_hash_table (info);
1562 /* Create a unique name for the new section. */
1563 name = bfd_malloc (11 + sizeof (".text.stub."));
1564 if (name == NULL)
1565 return FALSE;
1566 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1568 /* Create the section. */
1569 input_section = stub->h->root.root.u.def.section;
1570 s = htab->add_stub_section (name, input_section,
1571 input_section->output_section);
1572 if (s == NULL)
1573 return FALSE;
1575 /* Make sure that any padding goes before the stub. */
1576 align = input_section->alignment_power;
1577 if (!bfd_set_section_alignment (s->owner, s, align))
1578 return FALSE;
1579 if (align > 3)
1580 s->size = (1 << align) - 8;
1582 /* Create a symbol for the stub. */
1583 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1584 stub->stub_section = s;
1585 stub->offset = s->size;
1587 /* Allocate room for it. */
1588 s->size += 8;
1589 return TRUE;
1592 /* STUB describes an la25 stub that we have decided to implement
1593 with a separate trampoline. Allocate room for it and redirect
1594 the function symbol to it. */
1596 static bfd_boolean
1597 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1598 struct bfd_link_info *info)
1600 struct mips_elf_link_hash_table *htab;
1601 asection *s;
1603 htab = mips_elf_hash_table (info);
1605 /* Create a trampoline section, if we haven't already. */
1606 s = htab->strampoline;
1607 if (s == NULL)
1609 asection *input_section = stub->h->root.root.u.def.section;
1610 s = htab->add_stub_section (".text", NULL,
1611 input_section->output_section);
1612 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1613 return FALSE;
1614 htab->strampoline = s;
1617 /* Create a symbol for the stub. */
1618 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1619 stub->stub_section = s;
1620 stub->offset = s->size;
1622 /* Allocate room for it. */
1623 s->size += 16;
1624 return TRUE;
1627 /* H describes a symbol that needs an la25 stub. Make sure that an
1628 appropriate stub exists and point H at it. */
1630 static bfd_boolean
1631 mips_elf_add_la25_stub (struct bfd_link_info *info,
1632 struct mips_elf_link_hash_entry *h)
1634 struct mips_elf_link_hash_table *htab;
1635 struct mips_elf_la25_stub search, *stub;
1636 bfd_boolean use_trampoline_p;
1637 asection *s;
1638 bfd_vma value;
1639 void **slot;
1641 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1642 of the section and if we would need no more than 2 nops. */
1643 s = h->root.root.u.def.section;
1644 value = h->root.root.u.def.value;
1645 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1647 /* Describe the stub we want. */
1648 search.stub_section = NULL;
1649 search.offset = 0;
1650 search.h = h;
1652 /* See if we've already created an equivalent stub. */
1653 htab = mips_elf_hash_table (info);
1654 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1655 if (slot == NULL)
1656 return FALSE;
1658 stub = (struct mips_elf_la25_stub *) *slot;
1659 if (stub != NULL)
1661 /* We can reuse the existing stub. */
1662 h->la25_stub = stub;
1663 return TRUE;
1666 /* Create a permanent copy of ENTRY and add it to the hash table. */
1667 stub = bfd_malloc (sizeof (search));
1668 if (stub == NULL)
1669 return FALSE;
1670 *stub = search;
1671 *slot = stub;
1673 h->la25_stub = stub;
1674 return (use_trampoline_p
1675 ? mips_elf_add_la25_trampoline (stub, info)
1676 : mips_elf_add_la25_intro (stub, info));
1679 /* A mips_elf_link_hash_traverse callback that is called before sizing
1680 sections. DATA points to a mips_htab_traverse_info structure. */
1682 static bfd_boolean
1683 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1685 struct mips_htab_traverse_info *hti;
1687 hti = (struct mips_htab_traverse_info *) data;
1688 if (h->root.root.type == bfd_link_hash_warning)
1689 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1691 if (!hti->info->relocatable)
1692 mips_elf_check_mips16_stubs (hti->info, h);
1694 if (mips_elf_local_pic_function_p (h))
1696 /* H is a function that might need $25 to be valid on entry.
1697 If we're creating a non-PIC relocatable object, mark H as
1698 being PIC. If we're creating a non-relocatable object with
1699 non-PIC branches and jumps to H, make sure that H has an la25
1700 stub. */
1701 if (hti->info->relocatable)
1703 if (!PIC_OBJECT_P (hti->output_bfd))
1704 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1706 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1708 hti->error = TRUE;
1709 return FALSE;
1712 return TRUE;
1715 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1716 Most mips16 instructions are 16 bits, but these instructions
1717 are 32 bits.
1719 The format of these instructions is:
1721 +--------------+--------------------------------+
1722 | JALX | X| Imm 20:16 | Imm 25:21 |
1723 +--------------+--------------------------------+
1724 | Immediate 15:0 |
1725 +-----------------------------------------------+
1727 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1728 Note that the immediate value in the first word is swapped.
1730 When producing a relocatable object file, R_MIPS16_26 is
1731 handled mostly like R_MIPS_26. In particular, the addend is
1732 stored as a straight 26-bit value in a 32-bit instruction.
1733 (gas makes life simpler for itself by never adjusting a
1734 R_MIPS16_26 reloc to be against a section, so the addend is
1735 always zero). However, the 32 bit instruction is stored as 2
1736 16-bit values, rather than a single 32-bit value. In a
1737 big-endian file, the result is the same; in a little-endian
1738 file, the two 16-bit halves of the 32 bit value are swapped.
1739 This is so that a disassembler can recognize the jal
1740 instruction.
1742 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1743 instruction stored as two 16-bit values. The addend A is the
1744 contents of the targ26 field. The calculation is the same as
1745 R_MIPS_26. When storing the calculated value, reorder the
1746 immediate value as shown above, and don't forget to store the
1747 value as two 16-bit values.
1749 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1750 defined as
1752 big-endian:
1753 +--------+----------------------+
1754 | | |
1755 | | targ26-16 |
1756 |31 26|25 0|
1757 +--------+----------------------+
1759 little-endian:
1760 +----------+------+-------------+
1761 | | | |
1762 | sub1 | | sub2 |
1763 |0 9|10 15|16 31|
1764 +----------+--------------------+
1765 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1766 ((sub1 << 16) | sub2)).
1768 When producing a relocatable object file, the calculation is
1769 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1770 When producing a fully linked file, the calculation is
1771 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1772 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1774 The table below lists the other MIPS16 instruction relocations.
1775 Each one is calculated in the same way as the non-MIPS16 relocation
1776 given on the right, but using the extended MIPS16 layout of 16-bit
1777 immediate fields:
1779 R_MIPS16_GPREL R_MIPS_GPREL16
1780 R_MIPS16_GOT16 R_MIPS_GOT16
1781 R_MIPS16_CALL16 R_MIPS_CALL16
1782 R_MIPS16_HI16 R_MIPS_HI16
1783 R_MIPS16_LO16 R_MIPS_LO16
1785 A typical instruction will have a format like this:
1787 +--------------+--------------------------------+
1788 | EXTEND | Imm 10:5 | Imm 15:11 |
1789 +--------------+--------------------------------+
1790 | Major | rx | ry | Imm 4:0 |
1791 +--------------+--------------------------------+
1793 EXTEND is the five bit value 11110. Major is the instruction
1794 opcode.
1796 All we need to do here is shuffle the bits appropriately.
1797 As above, the two 16-bit halves must be swapped on a
1798 little-endian system. */
1800 static inline bfd_boolean
1801 mips16_reloc_p (int r_type)
1803 switch (r_type)
1805 case R_MIPS16_26:
1806 case R_MIPS16_GPREL:
1807 case R_MIPS16_GOT16:
1808 case R_MIPS16_CALL16:
1809 case R_MIPS16_HI16:
1810 case R_MIPS16_LO16:
1811 return TRUE;
1813 default:
1814 return FALSE;
1818 static inline bfd_boolean
1819 got16_reloc_p (int r_type)
1821 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1824 static inline bfd_boolean
1825 call16_reloc_p (int r_type)
1827 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1830 static inline bfd_boolean
1831 hi16_reloc_p (int r_type)
1833 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1836 static inline bfd_boolean
1837 lo16_reloc_p (int r_type)
1839 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1842 static inline bfd_boolean
1843 mips16_call_reloc_p (int r_type)
1845 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1848 void
1849 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1850 bfd_boolean jal_shuffle, bfd_byte *data)
1852 bfd_vma extend, insn, val;
1854 if (!mips16_reloc_p (r_type))
1855 return;
1857 /* Pick up the mips16 extend instruction and the real instruction. */
1858 extend = bfd_get_16 (abfd, data);
1859 insn = bfd_get_16 (abfd, data + 2);
1860 if (r_type == R_MIPS16_26)
1862 if (jal_shuffle)
1863 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1864 | ((extend & 0x1f) << 21) | insn;
1865 else
1866 val = extend << 16 | insn;
1868 else
1869 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1870 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1871 bfd_put_32 (abfd, val, data);
1874 void
1875 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1876 bfd_boolean jal_shuffle, bfd_byte *data)
1878 bfd_vma extend, insn, val;
1880 if (!mips16_reloc_p (r_type))
1881 return;
1883 val = bfd_get_32 (abfd, data);
1884 if (r_type == R_MIPS16_26)
1886 if (jal_shuffle)
1888 insn = val & 0xffff;
1889 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1890 | ((val >> 21) & 0x1f);
1892 else
1894 insn = val & 0xffff;
1895 extend = val >> 16;
1898 else
1900 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1901 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1903 bfd_put_16 (abfd, insn, data + 2);
1904 bfd_put_16 (abfd, extend, data);
1907 bfd_reloc_status_type
1908 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1909 arelent *reloc_entry, asection *input_section,
1910 bfd_boolean relocatable, void *data, bfd_vma gp)
1912 bfd_vma relocation;
1913 bfd_signed_vma val;
1914 bfd_reloc_status_type status;
1916 if (bfd_is_com_section (symbol->section))
1917 relocation = 0;
1918 else
1919 relocation = symbol->value;
1921 relocation += symbol->section->output_section->vma;
1922 relocation += symbol->section->output_offset;
1924 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1925 return bfd_reloc_outofrange;
1927 /* Set val to the offset into the section or symbol. */
1928 val = reloc_entry->addend;
1930 _bfd_mips_elf_sign_extend (val, 16);
1932 /* Adjust val for the final section location and GP value. If we
1933 are producing relocatable output, we don't want to do this for
1934 an external symbol. */
1935 if (! relocatable
1936 || (symbol->flags & BSF_SECTION_SYM) != 0)
1937 val += relocation - gp;
1939 if (reloc_entry->howto->partial_inplace)
1941 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1942 (bfd_byte *) data
1943 + reloc_entry->address);
1944 if (status != bfd_reloc_ok)
1945 return status;
1947 else
1948 reloc_entry->addend = val;
1950 if (relocatable)
1951 reloc_entry->address += input_section->output_offset;
1953 return bfd_reloc_ok;
1956 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1957 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1958 that contains the relocation field and DATA points to the start of
1959 INPUT_SECTION. */
1961 struct mips_hi16
1963 struct mips_hi16 *next;
1964 bfd_byte *data;
1965 asection *input_section;
1966 arelent rel;
1969 /* FIXME: This should not be a static variable. */
1971 static struct mips_hi16 *mips_hi16_list;
1973 /* A howto special_function for REL *HI16 relocations. We can only
1974 calculate the correct value once we've seen the partnering
1975 *LO16 relocation, so just save the information for later.
1977 The ABI requires that the *LO16 immediately follow the *HI16.
1978 However, as a GNU extension, we permit an arbitrary number of
1979 *HI16s to be associated with a single *LO16. This significantly
1980 simplies the relocation handling in gcc. */
1982 bfd_reloc_status_type
1983 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1984 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1985 asection *input_section, bfd *output_bfd,
1986 char **error_message ATTRIBUTE_UNUSED)
1988 struct mips_hi16 *n;
1990 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1991 return bfd_reloc_outofrange;
1993 n = bfd_malloc (sizeof *n);
1994 if (n == NULL)
1995 return bfd_reloc_outofrange;
1997 n->next = mips_hi16_list;
1998 n->data = data;
1999 n->input_section = input_section;
2000 n->rel = *reloc_entry;
2001 mips_hi16_list = n;
2003 if (output_bfd != NULL)
2004 reloc_entry->address += input_section->output_offset;
2006 return bfd_reloc_ok;
2009 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2010 like any other 16-bit relocation when applied to global symbols, but is
2011 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2013 bfd_reloc_status_type
2014 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2015 void *data, asection *input_section,
2016 bfd *output_bfd, char **error_message)
2018 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2019 || bfd_is_und_section (bfd_get_section (symbol))
2020 || bfd_is_com_section (bfd_get_section (symbol)))
2021 /* The relocation is against a global symbol. */
2022 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2023 input_section, output_bfd,
2024 error_message);
2026 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2027 input_section, output_bfd, error_message);
2030 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2031 is a straightforward 16 bit inplace relocation, but we must deal with
2032 any partnering high-part relocations as well. */
2034 bfd_reloc_status_type
2035 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2036 void *data, asection *input_section,
2037 bfd *output_bfd, char **error_message)
2039 bfd_vma vallo;
2040 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2042 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2043 return bfd_reloc_outofrange;
2045 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2046 location);
2047 vallo = bfd_get_32 (abfd, location);
2048 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2049 location);
2051 while (mips_hi16_list != NULL)
2053 bfd_reloc_status_type ret;
2054 struct mips_hi16 *hi;
2056 hi = mips_hi16_list;
2058 /* R_MIPS*_GOT16 relocations are something of a special case. We
2059 want to install the addend in the same way as for a R_MIPS*_HI16
2060 relocation (with a rightshift of 16). However, since GOT16
2061 relocations can also be used with global symbols, their howto
2062 has a rightshift of 0. */
2063 if (hi->rel.howto->type == R_MIPS_GOT16)
2064 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2065 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2066 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2068 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2069 carry or borrow will induce a change of +1 or -1 in the high part. */
2070 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2072 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2073 hi->input_section, output_bfd,
2074 error_message);
2075 if (ret != bfd_reloc_ok)
2076 return ret;
2078 mips_hi16_list = hi->next;
2079 free (hi);
2082 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2083 input_section, output_bfd,
2084 error_message);
2087 /* A generic howto special_function. This calculates and installs the
2088 relocation itself, thus avoiding the oft-discussed problems in
2089 bfd_perform_relocation and bfd_install_relocation. */
2091 bfd_reloc_status_type
2092 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2093 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2094 asection *input_section, bfd *output_bfd,
2095 char **error_message ATTRIBUTE_UNUSED)
2097 bfd_signed_vma val;
2098 bfd_reloc_status_type status;
2099 bfd_boolean relocatable;
2101 relocatable = (output_bfd != NULL);
2103 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2104 return bfd_reloc_outofrange;
2106 /* Build up the field adjustment in VAL. */
2107 val = 0;
2108 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2110 /* Either we're calculating the final field value or we have a
2111 relocation against a section symbol. Add in the section's
2112 offset or address. */
2113 val += symbol->section->output_section->vma;
2114 val += symbol->section->output_offset;
2117 if (!relocatable)
2119 /* We're calculating the final field value. Add in the symbol's value
2120 and, if pc-relative, subtract the address of the field itself. */
2121 val += symbol->value;
2122 if (reloc_entry->howto->pc_relative)
2124 val -= input_section->output_section->vma;
2125 val -= input_section->output_offset;
2126 val -= reloc_entry->address;
2130 /* VAL is now the final adjustment. If we're keeping this relocation
2131 in the output file, and if the relocation uses a separate addend,
2132 we just need to add VAL to that addend. Otherwise we need to add
2133 VAL to the relocation field itself. */
2134 if (relocatable && !reloc_entry->howto->partial_inplace)
2135 reloc_entry->addend += val;
2136 else
2138 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2140 /* Add in the separate addend, if any. */
2141 val += reloc_entry->addend;
2143 /* Add VAL to the relocation field. */
2144 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2145 location);
2146 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2147 location);
2148 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2149 location);
2151 if (status != bfd_reloc_ok)
2152 return status;
2155 if (relocatable)
2156 reloc_entry->address += input_section->output_offset;
2158 return bfd_reloc_ok;
2161 /* Swap an entry in a .gptab section. Note that these routines rely
2162 on the equivalence of the two elements of the union. */
2164 static void
2165 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2166 Elf32_gptab *in)
2168 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2169 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2172 static void
2173 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2174 Elf32_External_gptab *ex)
2176 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2177 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2180 static void
2181 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2182 Elf32_External_compact_rel *ex)
2184 H_PUT_32 (abfd, in->id1, ex->id1);
2185 H_PUT_32 (abfd, in->num, ex->num);
2186 H_PUT_32 (abfd, in->id2, ex->id2);
2187 H_PUT_32 (abfd, in->offset, ex->offset);
2188 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2189 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2192 static void
2193 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2194 Elf32_External_crinfo *ex)
2196 unsigned long l;
2198 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2199 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2200 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2201 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2202 H_PUT_32 (abfd, l, ex->info);
2203 H_PUT_32 (abfd, in->konst, ex->konst);
2204 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2207 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2208 routines swap this structure in and out. They are used outside of
2209 BFD, so they are globally visible. */
2211 void
2212 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2213 Elf32_RegInfo *in)
2215 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2216 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2217 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2218 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2219 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2220 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2223 void
2224 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2225 Elf32_External_RegInfo *ex)
2227 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2228 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2229 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2230 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2231 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2232 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2235 /* In the 64 bit ABI, the .MIPS.options section holds register
2236 information in an Elf64_Reginfo structure. These routines swap
2237 them in and out. They are globally visible because they are used
2238 outside of BFD. These routines are here so that gas can call them
2239 without worrying about whether the 64 bit ABI has been included. */
2241 void
2242 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2243 Elf64_Internal_RegInfo *in)
2245 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2246 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2247 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2248 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2249 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2250 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2251 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2254 void
2255 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2256 Elf64_External_RegInfo *ex)
2258 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2259 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2260 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2261 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2262 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2263 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2264 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2267 /* Swap in an options header. */
2269 void
2270 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2271 Elf_Internal_Options *in)
2273 in->kind = H_GET_8 (abfd, ex->kind);
2274 in->size = H_GET_8 (abfd, ex->size);
2275 in->section = H_GET_16 (abfd, ex->section);
2276 in->info = H_GET_32 (abfd, ex->info);
2279 /* Swap out an options header. */
2281 void
2282 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2283 Elf_External_Options *ex)
2285 H_PUT_8 (abfd, in->kind, ex->kind);
2286 H_PUT_8 (abfd, in->size, ex->size);
2287 H_PUT_16 (abfd, in->section, ex->section);
2288 H_PUT_32 (abfd, in->info, ex->info);
2291 /* This function is called via qsort() to sort the dynamic relocation
2292 entries by increasing r_symndx value. */
2294 static int
2295 sort_dynamic_relocs (const void *arg1, const void *arg2)
2297 Elf_Internal_Rela int_reloc1;
2298 Elf_Internal_Rela int_reloc2;
2299 int diff;
2301 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2302 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2304 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2305 if (diff != 0)
2306 return diff;
2308 if (int_reloc1.r_offset < int_reloc2.r_offset)
2309 return -1;
2310 if (int_reloc1.r_offset > int_reloc2.r_offset)
2311 return 1;
2312 return 0;
2315 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2317 static int
2318 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2319 const void *arg2 ATTRIBUTE_UNUSED)
2321 #ifdef BFD64
2322 Elf_Internal_Rela int_reloc1[3];
2323 Elf_Internal_Rela int_reloc2[3];
2325 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2326 (reldyn_sorting_bfd, arg1, int_reloc1);
2327 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2328 (reldyn_sorting_bfd, arg2, int_reloc2);
2330 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2331 return -1;
2332 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2333 return 1;
2335 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2336 return -1;
2337 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2338 return 1;
2339 return 0;
2340 #else
2341 abort ();
2342 #endif
2346 /* This routine is used to write out ECOFF debugging external symbol
2347 information. It is called via mips_elf_link_hash_traverse. The
2348 ECOFF external symbol information must match the ELF external
2349 symbol information. Unfortunately, at this point we don't know
2350 whether a symbol is required by reloc information, so the two
2351 tables may wind up being different. We must sort out the external
2352 symbol information before we can set the final size of the .mdebug
2353 section, and we must set the size of the .mdebug section before we
2354 can relocate any sections, and we can't know which symbols are
2355 required by relocation until we relocate the sections.
2356 Fortunately, it is relatively unlikely that any symbol will be
2357 stripped but required by a reloc. In particular, it can not happen
2358 when generating a final executable. */
2360 static bfd_boolean
2361 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2363 struct extsym_info *einfo = data;
2364 bfd_boolean strip;
2365 asection *sec, *output_section;
2367 if (h->root.root.type == bfd_link_hash_warning)
2368 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2370 if (h->root.indx == -2)
2371 strip = FALSE;
2372 else if ((h->root.def_dynamic
2373 || h->root.ref_dynamic
2374 || h->root.type == bfd_link_hash_new)
2375 && !h->root.def_regular
2376 && !h->root.ref_regular)
2377 strip = TRUE;
2378 else if (einfo->info->strip == strip_all
2379 || (einfo->info->strip == strip_some
2380 && bfd_hash_lookup (einfo->info->keep_hash,
2381 h->root.root.root.string,
2382 FALSE, FALSE) == NULL))
2383 strip = TRUE;
2384 else
2385 strip = FALSE;
2387 if (strip)
2388 return TRUE;
2390 if (h->esym.ifd == -2)
2392 h->esym.jmptbl = 0;
2393 h->esym.cobol_main = 0;
2394 h->esym.weakext = 0;
2395 h->esym.reserved = 0;
2396 h->esym.ifd = ifdNil;
2397 h->esym.asym.value = 0;
2398 h->esym.asym.st = stGlobal;
2400 if (h->root.root.type == bfd_link_hash_undefined
2401 || h->root.root.type == bfd_link_hash_undefweak)
2403 const char *name;
2405 /* Use undefined class. Also, set class and type for some
2406 special symbols. */
2407 name = h->root.root.root.string;
2408 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2409 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2411 h->esym.asym.sc = scData;
2412 h->esym.asym.st = stLabel;
2413 h->esym.asym.value = 0;
2415 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2417 h->esym.asym.sc = scAbs;
2418 h->esym.asym.st = stLabel;
2419 h->esym.asym.value =
2420 mips_elf_hash_table (einfo->info)->procedure_count;
2422 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2424 h->esym.asym.sc = scAbs;
2425 h->esym.asym.st = stLabel;
2426 h->esym.asym.value = elf_gp (einfo->abfd);
2428 else
2429 h->esym.asym.sc = scUndefined;
2431 else if (h->root.root.type != bfd_link_hash_defined
2432 && h->root.root.type != bfd_link_hash_defweak)
2433 h->esym.asym.sc = scAbs;
2434 else
2436 const char *name;
2438 sec = h->root.root.u.def.section;
2439 output_section = sec->output_section;
2441 /* When making a shared library and symbol h is the one from
2442 the another shared library, OUTPUT_SECTION may be null. */
2443 if (output_section == NULL)
2444 h->esym.asym.sc = scUndefined;
2445 else
2447 name = bfd_section_name (output_section->owner, output_section);
2449 if (strcmp (name, ".text") == 0)
2450 h->esym.asym.sc = scText;
2451 else if (strcmp (name, ".data") == 0)
2452 h->esym.asym.sc = scData;
2453 else if (strcmp (name, ".sdata") == 0)
2454 h->esym.asym.sc = scSData;
2455 else if (strcmp (name, ".rodata") == 0
2456 || strcmp (name, ".rdata") == 0)
2457 h->esym.asym.sc = scRData;
2458 else if (strcmp (name, ".bss") == 0)
2459 h->esym.asym.sc = scBss;
2460 else if (strcmp (name, ".sbss") == 0)
2461 h->esym.asym.sc = scSBss;
2462 else if (strcmp (name, ".init") == 0)
2463 h->esym.asym.sc = scInit;
2464 else if (strcmp (name, ".fini") == 0)
2465 h->esym.asym.sc = scFini;
2466 else
2467 h->esym.asym.sc = scAbs;
2471 h->esym.asym.reserved = 0;
2472 h->esym.asym.index = indexNil;
2475 if (h->root.root.type == bfd_link_hash_common)
2476 h->esym.asym.value = h->root.root.u.c.size;
2477 else if (h->root.root.type == bfd_link_hash_defined
2478 || h->root.root.type == bfd_link_hash_defweak)
2480 if (h->esym.asym.sc == scCommon)
2481 h->esym.asym.sc = scBss;
2482 else if (h->esym.asym.sc == scSCommon)
2483 h->esym.asym.sc = scSBss;
2485 sec = h->root.root.u.def.section;
2486 output_section = sec->output_section;
2487 if (output_section != NULL)
2488 h->esym.asym.value = (h->root.root.u.def.value
2489 + sec->output_offset
2490 + output_section->vma);
2491 else
2492 h->esym.asym.value = 0;
2494 else
2496 struct mips_elf_link_hash_entry *hd = h;
2498 while (hd->root.root.type == bfd_link_hash_indirect)
2499 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2501 if (hd->needs_lazy_stub)
2503 /* Set type and value for a symbol with a function stub. */
2504 h->esym.asym.st = stProc;
2505 sec = hd->root.root.u.def.section;
2506 if (sec == NULL)
2507 h->esym.asym.value = 0;
2508 else
2510 output_section = sec->output_section;
2511 if (output_section != NULL)
2512 h->esym.asym.value = (hd->root.plt.offset
2513 + sec->output_offset
2514 + output_section->vma);
2515 else
2516 h->esym.asym.value = 0;
2521 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2522 h->root.root.root.string,
2523 &h->esym))
2525 einfo->failed = TRUE;
2526 return FALSE;
2529 return TRUE;
2532 /* A comparison routine used to sort .gptab entries. */
2534 static int
2535 gptab_compare (const void *p1, const void *p2)
2537 const Elf32_gptab *a1 = p1;
2538 const Elf32_gptab *a2 = p2;
2540 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2543 /* Functions to manage the got entry hash table. */
2545 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2546 hash number. */
2548 static INLINE hashval_t
2549 mips_elf_hash_bfd_vma (bfd_vma addr)
2551 #ifdef BFD64
2552 return addr + (addr >> 32);
2553 #else
2554 return addr;
2555 #endif
2558 /* got_entries only match if they're identical, except for gotidx, so
2559 use all fields to compute the hash, and compare the appropriate
2560 union members. */
2562 static hashval_t
2563 mips_elf_got_entry_hash (const void *entry_)
2565 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2567 return entry->symndx
2568 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2569 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2570 : entry->abfd->id
2571 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2572 : entry->d.h->root.root.root.hash));
2575 static int
2576 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2578 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2579 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2581 /* An LDM entry can only match another LDM entry. */
2582 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2583 return 0;
2585 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2586 && (! e1->abfd ? e1->d.address == e2->d.address
2587 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2588 : e1->d.h == e2->d.h);
2591 /* multi_got_entries are still a match in the case of global objects,
2592 even if the input bfd in which they're referenced differs, so the
2593 hash computation and compare functions are adjusted
2594 accordingly. */
2596 static hashval_t
2597 mips_elf_multi_got_entry_hash (const void *entry_)
2599 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2601 return entry->symndx
2602 + (! entry->abfd
2603 ? mips_elf_hash_bfd_vma (entry->d.address)
2604 : entry->symndx >= 0
2605 ? ((entry->tls_type & GOT_TLS_LDM)
2606 ? (GOT_TLS_LDM << 17)
2607 : (entry->abfd->id
2608 + mips_elf_hash_bfd_vma (entry->d.addend)))
2609 : entry->d.h->root.root.root.hash);
2612 static int
2613 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2615 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2616 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2618 /* Any two LDM entries match. */
2619 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2620 return 1;
2622 /* Nothing else matches an LDM entry. */
2623 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2624 return 0;
2626 return e1->symndx == e2->symndx
2627 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2628 : e1->abfd == NULL || e2->abfd == NULL
2629 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2630 : e1->d.h == e2->d.h);
2633 static hashval_t
2634 mips_got_page_entry_hash (const void *entry_)
2636 const struct mips_got_page_entry *entry;
2638 entry = (const struct mips_got_page_entry *) entry_;
2639 return entry->abfd->id + entry->symndx;
2642 static int
2643 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2645 const struct mips_got_page_entry *entry1, *entry2;
2647 entry1 = (const struct mips_got_page_entry *) entry1_;
2648 entry2 = (const struct mips_got_page_entry *) entry2_;
2649 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2652 /* Return the dynamic relocation section. If it doesn't exist, try to
2653 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2654 if creation fails. */
2656 static asection *
2657 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2659 const char *dname;
2660 asection *sreloc;
2661 bfd *dynobj;
2663 dname = MIPS_ELF_REL_DYN_NAME (info);
2664 dynobj = elf_hash_table (info)->dynobj;
2665 sreloc = bfd_get_section_by_name (dynobj, dname);
2666 if (sreloc == NULL && create_p)
2668 sreloc = bfd_make_section_with_flags (dynobj, dname,
2669 (SEC_ALLOC
2670 | SEC_LOAD
2671 | SEC_HAS_CONTENTS
2672 | SEC_IN_MEMORY
2673 | SEC_LINKER_CREATED
2674 | SEC_READONLY));
2675 if (sreloc == NULL
2676 || ! bfd_set_section_alignment (dynobj, sreloc,
2677 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2678 return NULL;
2680 return sreloc;
2683 /* Count the number of relocations needed for a TLS GOT entry, with
2684 access types from TLS_TYPE, and symbol H (or a local symbol if H
2685 is NULL). */
2687 static int
2688 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2689 struct elf_link_hash_entry *h)
2691 int indx = 0;
2692 int ret = 0;
2693 bfd_boolean need_relocs = FALSE;
2694 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2696 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2697 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2698 indx = h->dynindx;
2700 if ((info->shared || indx != 0)
2701 && (h == NULL
2702 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2703 || h->root.type != bfd_link_hash_undefweak))
2704 need_relocs = TRUE;
2706 if (!need_relocs)
2707 return FALSE;
2709 if (tls_type & GOT_TLS_GD)
2711 ret++;
2712 if (indx != 0)
2713 ret++;
2716 if (tls_type & GOT_TLS_IE)
2717 ret++;
2719 if ((tls_type & GOT_TLS_LDM) && info->shared)
2720 ret++;
2722 return ret;
2725 /* Count the number of TLS relocations required for the GOT entry in
2726 ARG1, if it describes a local symbol. */
2728 static int
2729 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2731 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2732 struct mips_elf_count_tls_arg *arg = arg2;
2734 if (entry->abfd != NULL && entry->symndx != -1)
2735 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2737 return 1;
2740 /* Count the number of TLS GOT entries required for the global (or
2741 forced-local) symbol in ARG1. */
2743 static int
2744 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2746 struct mips_elf_link_hash_entry *hm
2747 = (struct mips_elf_link_hash_entry *) arg1;
2748 struct mips_elf_count_tls_arg *arg = arg2;
2750 if (hm->tls_type & GOT_TLS_GD)
2751 arg->needed += 2;
2752 if (hm->tls_type & GOT_TLS_IE)
2753 arg->needed += 1;
2755 return 1;
2758 /* Count the number of TLS relocations required for the global (or
2759 forced-local) symbol in ARG1. */
2761 static int
2762 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2764 struct mips_elf_link_hash_entry *hm
2765 = (struct mips_elf_link_hash_entry *) arg1;
2766 struct mips_elf_count_tls_arg *arg = arg2;
2768 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2770 return 1;
2773 /* Output a simple dynamic relocation into SRELOC. */
2775 static void
2776 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2777 asection *sreloc,
2778 unsigned long reloc_index,
2779 unsigned long indx,
2780 int r_type,
2781 bfd_vma offset)
2783 Elf_Internal_Rela rel[3];
2785 memset (rel, 0, sizeof (rel));
2787 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2788 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2790 if (ABI_64_P (output_bfd))
2792 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2793 (output_bfd, &rel[0],
2794 (sreloc->contents
2795 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2797 else
2798 bfd_elf32_swap_reloc_out
2799 (output_bfd, &rel[0],
2800 (sreloc->contents
2801 + reloc_index * sizeof (Elf32_External_Rel)));
2804 /* Initialize a set of TLS GOT entries for one symbol. */
2806 static void
2807 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2808 unsigned char *tls_type_p,
2809 struct bfd_link_info *info,
2810 struct mips_elf_link_hash_entry *h,
2811 bfd_vma value)
2813 struct mips_elf_link_hash_table *htab;
2814 int indx;
2815 asection *sreloc, *sgot;
2816 bfd_vma offset, offset2;
2817 bfd_boolean need_relocs = FALSE;
2819 htab = mips_elf_hash_table (info);
2820 sgot = htab->sgot;
2822 indx = 0;
2823 if (h != NULL)
2825 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2827 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2828 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2829 indx = h->root.dynindx;
2832 if (*tls_type_p & GOT_TLS_DONE)
2833 return;
2835 if ((info->shared || indx != 0)
2836 && (h == NULL
2837 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2838 || h->root.type != bfd_link_hash_undefweak))
2839 need_relocs = TRUE;
2841 /* MINUS_ONE means the symbol is not defined in this object. It may not
2842 be defined at all; assume that the value doesn't matter in that
2843 case. Otherwise complain if we would use the value. */
2844 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2845 || h->root.root.type == bfd_link_hash_undefweak);
2847 /* Emit necessary relocations. */
2848 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2850 /* General Dynamic. */
2851 if (*tls_type_p & GOT_TLS_GD)
2853 offset = got_offset;
2854 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2856 if (need_relocs)
2858 mips_elf_output_dynamic_relocation
2859 (abfd, sreloc, sreloc->reloc_count++, indx,
2860 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2861 sgot->output_offset + sgot->output_section->vma + offset);
2863 if (indx)
2864 mips_elf_output_dynamic_relocation
2865 (abfd, sreloc, sreloc->reloc_count++, indx,
2866 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2867 sgot->output_offset + sgot->output_section->vma + offset2);
2868 else
2869 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2870 sgot->contents + offset2);
2872 else
2874 MIPS_ELF_PUT_WORD (abfd, 1,
2875 sgot->contents + offset);
2876 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2877 sgot->contents + offset2);
2880 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2883 /* Initial Exec model. */
2884 if (*tls_type_p & GOT_TLS_IE)
2886 offset = got_offset;
2888 if (need_relocs)
2890 if (indx == 0)
2891 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2892 sgot->contents + offset);
2893 else
2894 MIPS_ELF_PUT_WORD (abfd, 0,
2895 sgot->contents + offset);
2897 mips_elf_output_dynamic_relocation
2898 (abfd, sreloc, sreloc->reloc_count++, indx,
2899 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2900 sgot->output_offset + sgot->output_section->vma + offset);
2902 else
2903 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2904 sgot->contents + offset);
2907 if (*tls_type_p & GOT_TLS_LDM)
2909 /* The initial offset is zero, and the LD offsets will include the
2910 bias by DTP_OFFSET. */
2911 MIPS_ELF_PUT_WORD (abfd, 0,
2912 sgot->contents + got_offset
2913 + MIPS_ELF_GOT_SIZE (abfd));
2915 if (!info->shared)
2916 MIPS_ELF_PUT_WORD (abfd, 1,
2917 sgot->contents + got_offset);
2918 else
2919 mips_elf_output_dynamic_relocation
2920 (abfd, sreloc, sreloc->reloc_count++, indx,
2921 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2922 sgot->output_offset + sgot->output_section->vma + got_offset);
2925 *tls_type_p |= GOT_TLS_DONE;
2928 /* Return the GOT index to use for a relocation of type R_TYPE against
2929 a symbol accessed using TLS_TYPE models. The GOT entries for this
2930 symbol in this GOT start at GOT_INDEX. This function initializes the
2931 GOT entries and corresponding relocations. */
2933 static bfd_vma
2934 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2935 int r_type, struct bfd_link_info *info,
2936 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2938 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2939 || r_type == R_MIPS_TLS_LDM);
2941 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2943 if (r_type == R_MIPS_TLS_GOTTPREL)
2945 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2946 if (*tls_type & GOT_TLS_GD)
2947 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2948 else
2949 return got_index;
2952 if (r_type == R_MIPS_TLS_GD)
2954 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2955 return got_index;
2958 if (r_type == R_MIPS_TLS_LDM)
2960 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2961 return got_index;
2964 return got_index;
2967 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2968 for global symbol H. .got.plt comes before the GOT, so the offset
2969 will be negative. */
2971 static bfd_vma
2972 mips_elf_gotplt_index (struct bfd_link_info *info,
2973 struct elf_link_hash_entry *h)
2975 bfd_vma plt_index, got_address, got_value;
2976 struct mips_elf_link_hash_table *htab;
2978 htab = mips_elf_hash_table (info);
2979 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2981 /* This function only works for VxWorks, because a non-VxWorks .got.plt
2982 section starts with reserved entries. */
2983 BFD_ASSERT (htab->is_vxworks);
2985 /* Calculate the index of the symbol's PLT entry. */
2986 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2988 /* Calculate the address of the associated .got.plt entry. */
2989 got_address = (htab->sgotplt->output_section->vma
2990 + htab->sgotplt->output_offset
2991 + plt_index * 4);
2993 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2994 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2995 + htab->root.hgot->root.u.def.section->output_offset
2996 + htab->root.hgot->root.u.def.value);
2998 return got_address - got_value;
3001 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3002 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3003 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3004 offset can be found. */
3006 static bfd_vma
3007 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3008 bfd_vma value, unsigned long r_symndx,
3009 struct mips_elf_link_hash_entry *h, int r_type)
3011 struct mips_elf_link_hash_table *htab;
3012 struct mips_got_entry *entry;
3014 htab = mips_elf_hash_table (info);
3015 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3016 r_symndx, h, r_type);
3017 if (!entry)
3018 return MINUS_ONE;
3020 if (TLS_RELOC_P (r_type))
3022 if (entry->symndx == -1 && htab->got_info->next == NULL)
3023 /* A type (3) entry in the single-GOT case. We use the symbol's
3024 hash table entry to track the index. */
3025 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3026 r_type, info, h, value);
3027 else
3028 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3029 r_type, info, h, value);
3031 else
3032 return entry->gotidx;
3035 /* Returns the GOT index for the global symbol indicated by H. */
3037 static bfd_vma
3038 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3039 int r_type, struct bfd_link_info *info)
3041 struct mips_elf_link_hash_table *htab;
3042 bfd_vma index;
3043 struct mips_got_info *g, *gg;
3044 long global_got_dynindx = 0;
3046 htab = mips_elf_hash_table (info);
3047 gg = g = htab->got_info;
3048 if (g->bfd2got && ibfd)
3050 struct mips_got_entry e, *p;
3052 BFD_ASSERT (h->dynindx >= 0);
3054 g = mips_elf_got_for_ibfd (g, ibfd);
3055 if (g->next != gg || TLS_RELOC_P (r_type))
3057 e.abfd = ibfd;
3058 e.symndx = -1;
3059 e.d.h = (struct mips_elf_link_hash_entry *)h;
3060 e.tls_type = 0;
3062 p = htab_find (g->got_entries, &e);
3064 BFD_ASSERT (p->gotidx > 0);
3066 if (TLS_RELOC_P (r_type))
3068 bfd_vma value = MINUS_ONE;
3069 if ((h->root.type == bfd_link_hash_defined
3070 || h->root.type == bfd_link_hash_defweak)
3071 && h->root.u.def.section->output_section)
3072 value = (h->root.u.def.value
3073 + h->root.u.def.section->output_offset
3074 + h->root.u.def.section->output_section->vma);
3076 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3077 info, e.d.h, value);
3079 else
3080 return p->gotidx;
3084 if (gg->global_gotsym != NULL)
3085 global_got_dynindx = gg->global_gotsym->dynindx;
3087 if (TLS_RELOC_P (r_type))
3089 struct mips_elf_link_hash_entry *hm
3090 = (struct mips_elf_link_hash_entry *) h;
3091 bfd_vma value = MINUS_ONE;
3093 if ((h->root.type == bfd_link_hash_defined
3094 || h->root.type == bfd_link_hash_defweak)
3095 && h->root.u.def.section->output_section)
3096 value = (h->root.u.def.value
3097 + h->root.u.def.section->output_offset
3098 + h->root.u.def.section->output_section->vma);
3100 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3101 r_type, info, hm, value);
3103 else
3105 /* Once we determine the global GOT entry with the lowest dynamic
3106 symbol table index, we must put all dynamic symbols with greater
3107 indices into the GOT. That makes it easy to calculate the GOT
3108 offset. */
3109 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3110 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3111 * MIPS_ELF_GOT_SIZE (abfd));
3113 BFD_ASSERT (index < htab->sgot->size);
3115 return index;
3118 /* Find a GOT page entry that points to within 32KB of VALUE. These
3119 entries are supposed to be placed at small offsets in the GOT, i.e.,
3120 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3121 entry could be created. If OFFSETP is nonnull, use it to return the
3122 offset of the GOT entry from VALUE. */
3124 static bfd_vma
3125 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3126 bfd_vma value, bfd_vma *offsetp)
3128 bfd_vma page, index;
3129 struct mips_got_entry *entry;
3131 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3132 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3133 NULL, R_MIPS_GOT_PAGE);
3135 if (!entry)
3136 return MINUS_ONE;
3138 index = entry->gotidx;
3140 if (offsetp)
3141 *offsetp = value - entry->d.address;
3143 return index;
3146 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3147 EXTERNAL is true if the relocation was against a global symbol
3148 that has been forced local. */
3150 static bfd_vma
3151 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3152 bfd_vma value, bfd_boolean external)
3154 struct mips_got_entry *entry;
3156 /* GOT16 relocations against local symbols are followed by a LO16
3157 relocation; those against global symbols are not. Thus if the
3158 symbol was originally local, the GOT16 relocation should load the
3159 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3160 if (! external)
3161 value = mips_elf_high (value) << 16;
3163 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3164 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3165 same in all cases. */
3166 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3167 NULL, R_MIPS_GOT16);
3168 if (entry)
3169 return entry->gotidx;
3170 else
3171 return MINUS_ONE;
3174 /* Returns the offset for the entry at the INDEXth position
3175 in the GOT. */
3177 static bfd_vma
3178 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3179 bfd *input_bfd, bfd_vma index)
3181 struct mips_elf_link_hash_table *htab;
3182 asection *sgot;
3183 bfd_vma gp;
3185 htab = mips_elf_hash_table (info);
3186 sgot = htab->sgot;
3187 gp = _bfd_get_gp_value (output_bfd)
3188 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3190 return sgot->output_section->vma + sgot->output_offset + index - gp;
3193 /* Create and return a local GOT entry for VALUE, which was calculated
3194 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3195 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3196 instead. */
3198 static struct mips_got_entry *
3199 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3200 bfd *ibfd, bfd_vma value,
3201 unsigned long r_symndx,
3202 struct mips_elf_link_hash_entry *h,
3203 int r_type)
3205 struct mips_got_entry entry, **loc;
3206 struct mips_got_info *g;
3207 struct mips_elf_link_hash_table *htab;
3209 htab = mips_elf_hash_table (info);
3211 entry.abfd = NULL;
3212 entry.symndx = -1;
3213 entry.d.address = value;
3214 entry.tls_type = 0;
3216 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3217 if (g == NULL)
3219 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3220 BFD_ASSERT (g != NULL);
3223 /* We might have a symbol, H, if it has been forced local. Use the
3224 global entry then. It doesn't matter whether an entry is local
3225 or global for TLS, since the dynamic linker does not
3226 automatically relocate TLS GOT entries. */
3227 BFD_ASSERT (h == NULL || h->root.forced_local);
3228 if (TLS_RELOC_P (r_type))
3230 struct mips_got_entry *p;
3232 entry.abfd = ibfd;
3233 if (r_type == R_MIPS_TLS_LDM)
3235 entry.tls_type = GOT_TLS_LDM;
3236 entry.symndx = 0;
3237 entry.d.addend = 0;
3239 else if (h == NULL)
3241 entry.symndx = r_symndx;
3242 entry.d.addend = 0;
3244 else
3245 entry.d.h = h;
3247 p = (struct mips_got_entry *)
3248 htab_find (g->got_entries, &entry);
3250 BFD_ASSERT (p);
3251 return p;
3254 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3255 INSERT);
3256 if (*loc)
3257 return *loc;
3259 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3260 entry.tls_type = 0;
3262 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3264 if (! *loc)
3265 return NULL;
3267 memcpy (*loc, &entry, sizeof entry);
3269 if (g->assigned_gotno > g->local_gotno)
3271 (*loc)->gotidx = -1;
3272 /* We didn't allocate enough space in the GOT. */
3273 (*_bfd_error_handler)
3274 (_("not enough GOT space for local GOT entries"));
3275 bfd_set_error (bfd_error_bad_value);
3276 return NULL;
3279 MIPS_ELF_PUT_WORD (abfd, value,
3280 (htab->sgot->contents + entry.gotidx));
3282 /* These GOT entries need a dynamic relocation on VxWorks. */
3283 if (htab->is_vxworks)
3285 Elf_Internal_Rela outrel;
3286 asection *s;
3287 bfd_byte *loc;
3288 bfd_vma got_address;
3290 s = mips_elf_rel_dyn_section (info, FALSE);
3291 got_address = (htab->sgot->output_section->vma
3292 + htab->sgot->output_offset
3293 + entry.gotidx);
3295 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3296 outrel.r_offset = got_address;
3297 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3298 outrel.r_addend = value;
3299 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
3302 return *loc;
3305 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3306 The number might be exact or a worst-case estimate, depending on how
3307 much information is available to elf_backend_omit_section_dynsym at
3308 the current linking stage. */
3310 static bfd_size_type
3311 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3313 bfd_size_type count;
3315 count = 0;
3316 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3318 asection *p;
3319 const struct elf_backend_data *bed;
3321 bed = get_elf_backend_data (output_bfd);
3322 for (p = output_bfd->sections; p ; p = p->next)
3323 if ((p->flags & SEC_EXCLUDE) == 0
3324 && (p->flags & SEC_ALLOC) != 0
3325 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3326 ++count;
3328 return count;
3331 /* Sort the dynamic symbol table so that symbols that need GOT entries
3332 appear towards the end. */
3334 static bfd_boolean
3335 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3337 struct mips_elf_link_hash_table *htab;
3338 struct mips_elf_hash_sort_data hsd;
3339 struct mips_got_info *g;
3341 if (elf_hash_table (info)->dynsymcount == 0)
3342 return TRUE;
3344 htab = mips_elf_hash_table (info);
3345 g = htab->got_info;
3346 if (g == NULL)
3347 return TRUE;
3349 hsd.low = NULL;
3350 hsd.max_unref_got_dynindx
3351 = hsd.min_got_dynindx
3352 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3353 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3354 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3355 elf_hash_table (info)),
3356 mips_elf_sort_hash_table_f,
3357 &hsd);
3359 /* There should have been enough room in the symbol table to
3360 accommodate both the GOT and non-GOT symbols. */
3361 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3362 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3363 == elf_hash_table (info)->dynsymcount);
3364 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3365 == g->global_gotno);
3367 /* Now we know which dynamic symbol has the lowest dynamic symbol
3368 table index in the GOT. */
3369 g->global_gotsym = hsd.low;
3371 return TRUE;
3374 /* If H needs a GOT entry, assign it the highest available dynamic
3375 index. Otherwise, assign it the lowest available dynamic
3376 index. */
3378 static bfd_boolean
3379 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3381 struct mips_elf_hash_sort_data *hsd = data;
3383 if (h->root.root.type == bfd_link_hash_warning)
3384 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3386 /* Symbols without dynamic symbol table entries aren't interesting
3387 at all. */
3388 if (h->root.dynindx == -1)
3389 return TRUE;
3391 switch (h->global_got_area)
3393 case GGA_NONE:
3394 h->root.dynindx = hsd->max_non_got_dynindx++;
3395 break;
3397 case GGA_NORMAL:
3398 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3400 h->root.dynindx = --hsd->min_got_dynindx;
3401 hsd->low = (struct elf_link_hash_entry *) h;
3402 break;
3404 case GGA_RELOC_ONLY:
3405 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3407 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3408 hsd->low = (struct elf_link_hash_entry *) h;
3409 h->root.dynindx = hsd->max_unref_got_dynindx++;
3410 break;
3413 return TRUE;
3416 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3417 symbol table index lower than any we've seen to date, record it for
3418 posterity. */
3420 static bfd_boolean
3421 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3422 bfd *abfd, struct bfd_link_info *info,
3423 unsigned char tls_flag)
3425 struct mips_elf_link_hash_table *htab;
3426 struct mips_elf_link_hash_entry *hmips;
3427 struct mips_got_entry entry, **loc;
3428 struct mips_got_info *g;
3430 htab = mips_elf_hash_table (info);
3431 hmips = (struct mips_elf_link_hash_entry *) h;
3433 /* A global symbol in the GOT must also be in the dynamic symbol
3434 table. */
3435 if (h->dynindx == -1)
3437 switch (ELF_ST_VISIBILITY (h->other))
3439 case STV_INTERNAL:
3440 case STV_HIDDEN:
3441 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3442 break;
3444 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3445 return FALSE;
3448 /* Make sure we have a GOT to put this entry into. */
3449 g = htab->got_info;
3450 BFD_ASSERT (g != NULL);
3452 entry.abfd = abfd;
3453 entry.symndx = -1;
3454 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3455 entry.tls_type = 0;
3457 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3458 INSERT);
3460 /* If we've already marked this entry as needing GOT space, we don't
3461 need to do it again. */
3462 if (*loc)
3464 (*loc)->tls_type |= tls_flag;
3465 return TRUE;
3468 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3470 if (! *loc)
3471 return FALSE;
3473 entry.gotidx = -1;
3474 entry.tls_type = tls_flag;
3476 memcpy (*loc, &entry, sizeof entry);
3478 if (tls_flag == 0)
3479 hmips->global_got_area = GGA_NORMAL;
3481 return TRUE;
3484 /* Reserve space in G for a GOT entry containing the value of symbol
3485 SYMNDX in input bfd ABDF, plus ADDEND. */
3487 static bfd_boolean
3488 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3489 struct bfd_link_info *info,
3490 unsigned char tls_flag)
3492 struct mips_elf_link_hash_table *htab;
3493 struct mips_got_info *g;
3494 struct mips_got_entry entry, **loc;
3496 htab = mips_elf_hash_table (info);
3497 g = htab->got_info;
3498 BFD_ASSERT (g != NULL);
3500 entry.abfd = abfd;
3501 entry.symndx = symndx;
3502 entry.d.addend = addend;
3503 entry.tls_type = tls_flag;
3504 loc = (struct mips_got_entry **)
3505 htab_find_slot (g->got_entries, &entry, INSERT);
3507 if (*loc)
3509 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3511 g->tls_gotno += 2;
3512 (*loc)->tls_type |= tls_flag;
3514 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3516 g->tls_gotno += 1;
3517 (*loc)->tls_type |= tls_flag;
3519 return TRUE;
3522 if (tls_flag != 0)
3524 entry.gotidx = -1;
3525 entry.tls_type = tls_flag;
3526 if (tls_flag == GOT_TLS_IE)
3527 g->tls_gotno += 1;
3528 else if (tls_flag == GOT_TLS_GD)
3529 g->tls_gotno += 2;
3530 else if (g->tls_ldm_offset == MINUS_ONE)
3532 g->tls_ldm_offset = MINUS_TWO;
3533 g->tls_gotno += 2;
3536 else
3538 entry.gotidx = g->local_gotno++;
3539 entry.tls_type = 0;
3542 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3544 if (! *loc)
3545 return FALSE;
3547 memcpy (*loc, &entry, sizeof entry);
3549 return TRUE;
3552 /* Return the maximum number of GOT page entries required for RANGE. */
3554 static bfd_vma
3555 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3557 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3560 /* Record that ABFD has a page relocation against symbol SYMNDX and
3561 that ADDEND is the addend for that relocation.
3563 This function creates an upper bound on the number of GOT slots
3564 required; no attempt is made to combine references to non-overridable
3565 global symbols across multiple input files. */
3567 static bfd_boolean
3568 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3569 long symndx, bfd_signed_vma addend)
3571 struct mips_elf_link_hash_table *htab;
3572 struct mips_got_info *g;
3573 struct mips_got_page_entry lookup, *entry;
3574 struct mips_got_page_range **range_ptr, *range;
3575 bfd_vma old_pages, new_pages;
3576 void **loc;
3578 htab = mips_elf_hash_table (info);
3579 g = htab->got_info;
3580 BFD_ASSERT (g != NULL);
3582 /* Find the mips_got_page_entry hash table entry for this symbol. */
3583 lookup.abfd = abfd;
3584 lookup.symndx = symndx;
3585 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3586 if (loc == NULL)
3587 return FALSE;
3589 /* Create a mips_got_page_entry if this is the first time we've
3590 seen the symbol. */
3591 entry = (struct mips_got_page_entry *) *loc;
3592 if (!entry)
3594 entry = bfd_alloc (abfd, sizeof (*entry));
3595 if (!entry)
3596 return FALSE;
3598 entry->abfd = abfd;
3599 entry->symndx = symndx;
3600 entry->ranges = NULL;
3601 entry->num_pages = 0;
3602 *loc = entry;
3605 /* Skip over ranges whose maximum extent cannot share a page entry
3606 with ADDEND. */
3607 range_ptr = &entry->ranges;
3608 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3609 range_ptr = &(*range_ptr)->next;
3611 /* If we scanned to the end of the list, or found a range whose
3612 minimum extent cannot share a page entry with ADDEND, create
3613 a new singleton range. */
3614 range = *range_ptr;
3615 if (!range || addend < range->min_addend - 0xffff)
3617 range = bfd_alloc (abfd, sizeof (*range));
3618 if (!range)
3619 return FALSE;
3621 range->next = *range_ptr;
3622 range->min_addend = addend;
3623 range->max_addend = addend;
3625 *range_ptr = range;
3626 entry->num_pages++;
3627 g->page_gotno++;
3628 return TRUE;
3631 /* Remember how many pages the old range contributed. */
3632 old_pages = mips_elf_pages_for_range (range);
3634 /* Update the ranges. */
3635 if (addend < range->min_addend)
3636 range->min_addend = addend;
3637 else if (addend > range->max_addend)
3639 if (range->next && addend >= range->next->min_addend - 0xffff)
3641 old_pages += mips_elf_pages_for_range (range->next);
3642 range->max_addend = range->next->max_addend;
3643 range->next = range->next->next;
3645 else
3646 range->max_addend = addend;
3649 /* Record any change in the total estimate. */
3650 new_pages = mips_elf_pages_for_range (range);
3651 if (old_pages != new_pages)
3653 entry->num_pages += new_pages - old_pages;
3654 g->page_gotno += new_pages - old_pages;
3657 return TRUE;
3660 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3662 static void
3663 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3664 unsigned int n)
3666 asection *s;
3667 struct mips_elf_link_hash_table *htab;
3669 htab = mips_elf_hash_table (info);
3670 s = mips_elf_rel_dyn_section (info, FALSE);
3671 BFD_ASSERT (s != NULL);
3673 if (htab->is_vxworks)
3674 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3675 else
3677 if (s->size == 0)
3679 /* Make room for a null element. */
3680 s->size += MIPS_ELF_REL_SIZE (abfd);
3681 ++s->reloc_count;
3683 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3687 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3688 if the GOT entry is for an indirect or warning symbol. */
3690 static int
3691 mips_elf_check_recreate_got (void **entryp, void *data)
3693 struct mips_got_entry *entry;
3694 bfd_boolean *must_recreate;
3696 entry = (struct mips_got_entry *) *entryp;
3697 must_recreate = (bfd_boolean *) data;
3698 if (entry->abfd != NULL && entry->symndx == -1)
3700 struct mips_elf_link_hash_entry *h;
3702 h = entry->d.h;
3703 if (h->root.root.type == bfd_link_hash_indirect
3704 || h->root.root.type == bfd_link_hash_warning)
3706 *must_recreate = TRUE;
3707 return 0;
3710 return 1;
3713 /* A htab_traverse callback for GOT entries. Add all entries to
3714 hash table *DATA, converting entries for indirect and warning
3715 symbols into entries for the target symbol. Set *DATA to null
3716 on error. */
3718 static int
3719 mips_elf_recreate_got (void **entryp, void *data)
3721 htab_t *new_got;
3722 struct mips_got_entry *entry;
3723 void **slot;
3725 new_got = (htab_t *) data;
3726 entry = (struct mips_got_entry *) *entryp;
3727 if (entry->abfd != NULL && entry->symndx == -1)
3729 struct mips_elf_link_hash_entry *h;
3731 h = entry->d.h;
3732 while (h->root.root.type == bfd_link_hash_indirect
3733 || h->root.root.type == bfd_link_hash_warning)
3735 BFD_ASSERT (h->global_got_area == GGA_NONE);
3736 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3738 entry->d.h = h;
3740 slot = htab_find_slot (*new_got, entry, INSERT);
3741 if (slot == NULL)
3743 *new_got = NULL;
3744 return 0;
3746 if (*slot == NULL)
3747 *slot = entry;
3748 else
3749 free (entry);
3750 return 1;
3753 /* If any entries in G->got_entries are for indirect or warning symbols,
3754 replace them with entries for the target symbol. */
3756 static bfd_boolean
3757 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3759 bfd_boolean must_recreate;
3760 htab_t new_got;
3762 must_recreate = FALSE;
3763 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3764 if (must_recreate)
3766 new_got = htab_create (htab_size (g->got_entries),
3767 mips_elf_got_entry_hash,
3768 mips_elf_got_entry_eq, NULL);
3769 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3770 if (new_got == NULL)
3771 return FALSE;
3773 /* Each entry in g->got_entries has either been copied to new_got
3774 or freed. Now delete the hash table itself. */
3775 htab_delete (g->got_entries);
3776 g->got_entries = new_got;
3778 return TRUE;
3781 /* A mips_elf_link_hash_traverse callback for which DATA points
3782 to a mips_got_info. Count the number of type (3) entries. */
3784 static int
3785 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3787 struct mips_got_info *g;
3789 g = (struct mips_got_info *) data;
3790 if (h->global_got_area != GGA_NONE)
3792 if (h->root.forced_local || h->root.dynindx == -1)
3794 /* We no longer need this entry if it was only used for
3795 relocations; those relocations will be against the
3796 null or section symbol instead of H. */
3797 if (h->global_got_area != GGA_RELOC_ONLY)
3798 g->local_gotno++;
3799 h->global_got_area = GGA_NONE;
3801 else
3803 g->global_gotno++;
3804 if (h->global_got_area == GGA_RELOC_ONLY)
3805 g->reloc_only_gotno++;
3808 return 1;
3811 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3813 static hashval_t
3814 mips_elf_bfd2got_entry_hash (const void *entry_)
3816 const struct mips_elf_bfd2got_hash *entry
3817 = (struct mips_elf_bfd2got_hash *)entry_;
3819 return entry->bfd->id;
3822 /* Check whether two hash entries have the same bfd. */
3824 static int
3825 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3827 const struct mips_elf_bfd2got_hash *e1
3828 = (const struct mips_elf_bfd2got_hash *)entry1;
3829 const struct mips_elf_bfd2got_hash *e2
3830 = (const struct mips_elf_bfd2got_hash *)entry2;
3832 return e1->bfd == e2->bfd;
3835 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3836 be the master GOT data. */
3838 static struct mips_got_info *
3839 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3841 struct mips_elf_bfd2got_hash e, *p;
3843 if (! g->bfd2got)
3844 return g;
3846 e.bfd = ibfd;
3847 p = htab_find (g->bfd2got, &e);
3848 return p ? p->g : NULL;
3851 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3852 Return NULL if an error occured. */
3854 static struct mips_got_info *
3855 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3856 bfd *input_bfd)
3858 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3859 struct mips_got_info *g;
3860 void **bfdgotp;
3862 bfdgot_entry.bfd = input_bfd;
3863 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3864 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3866 if (bfdgot == NULL)
3868 bfdgot = ((struct mips_elf_bfd2got_hash *)
3869 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3870 if (bfdgot == NULL)
3871 return NULL;
3873 *bfdgotp = bfdgot;
3875 g = ((struct mips_got_info *)
3876 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3877 if (g == NULL)
3878 return NULL;
3880 bfdgot->bfd = input_bfd;
3881 bfdgot->g = g;
3883 g->global_gotsym = NULL;
3884 g->global_gotno = 0;
3885 g->reloc_only_gotno = 0;
3886 g->local_gotno = 0;
3887 g->page_gotno = 0;
3888 g->assigned_gotno = -1;
3889 g->tls_gotno = 0;
3890 g->tls_assigned_gotno = 0;
3891 g->tls_ldm_offset = MINUS_ONE;
3892 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3893 mips_elf_multi_got_entry_eq, NULL);
3894 if (g->got_entries == NULL)
3895 return NULL;
3897 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3898 mips_got_page_entry_eq, NULL);
3899 if (g->got_page_entries == NULL)
3900 return NULL;
3902 g->bfd2got = NULL;
3903 g->next = NULL;
3906 return bfdgot->g;
3909 /* A htab_traverse callback for the entries in the master got.
3910 Create one separate got for each bfd that has entries in the global
3911 got, such that we can tell how many local and global entries each
3912 bfd requires. */
3914 static int
3915 mips_elf_make_got_per_bfd (void **entryp, void *p)
3917 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3918 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3919 struct mips_got_info *g;
3921 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3922 if (g == NULL)
3924 arg->obfd = NULL;
3925 return 0;
3928 /* Insert the GOT entry in the bfd's got entry hash table. */
3929 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3930 if (*entryp != NULL)
3931 return 1;
3933 *entryp = entry;
3935 if (entry->tls_type)
3937 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3938 g->tls_gotno += 2;
3939 if (entry->tls_type & GOT_TLS_IE)
3940 g->tls_gotno += 1;
3942 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
3943 ++g->local_gotno;
3944 else
3945 ++g->global_gotno;
3947 return 1;
3950 /* A htab_traverse callback for the page entries in the master got.
3951 Associate each page entry with the bfd's got. */
3953 static int
3954 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3956 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3957 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3958 struct mips_got_info *g;
3960 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3961 if (g == NULL)
3963 arg->obfd = NULL;
3964 return 0;
3967 /* Insert the GOT entry in the bfd's got entry hash table. */
3968 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3969 if (*entryp != NULL)
3970 return 1;
3972 *entryp = entry;
3973 g->page_gotno += entry->num_pages;
3974 return 1;
3977 /* Consider merging the got described by BFD2GOT with TO, using the
3978 information given by ARG. Return -1 if this would lead to overflow,
3979 1 if they were merged successfully, and 0 if a merge failed due to
3980 lack of memory. (These values are chosen so that nonnegative return
3981 values can be returned by a htab_traverse callback.) */
3983 static int
3984 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3985 struct mips_got_info *to,
3986 struct mips_elf_got_per_bfd_arg *arg)
3988 struct mips_got_info *from = bfd2got->g;
3989 unsigned int estimate;
3991 /* Work out how many page entries we would need for the combined GOT. */
3992 estimate = arg->max_pages;
3993 if (estimate >= from->page_gotno + to->page_gotno)
3994 estimate = from->page_gotno + to->page_gotno;
3996 /* And conservatively estimate how many local, global and TLS entries
3997 would be needed. */
3998 estimate += (from->local_gotno
3999 + from->global_gotno
4000 + from->tls_gotno
4001 + to->local_gotno
4002 + to->global_gotno
4003 + to->tls_gotno);
4005 /* Bail out if the combined GOT might be too big. */
4006 if (estimate > arg->max_count)
4007 return -1;
4009 /* Commit to the merge. Record that TO is now the bfd for this got. */
4010 bfd2got->g = to;
4012 /* Transfer the bfd's got information from FROM to TO. */
4013 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4014 if (arg->obfd == NULL)
4015 return 0;
4017 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4018 if (arg->obfd == NULL)
4019 return 0;
4021 /* We don't have to worry about releasing memory of the actual
4022 got entries, since they're all in the master got_entries hash
4023 table anyway. */
4024 htab_delete (from->got_entries);
4025 htab_delete (from->got_page_entries);
4026 return 1;
4029 /* Attempt to merge gots of different input bfds. Try to use as much
4030 as possible of the primary got, since it doesn't require explicit
4031 dynamic relocations, but don't use bfds that would reference global
4032 symbols out of the addressable range. Failing the primary got,
4033 attempt to merge with the current got, or finish the current got
4034 and then make make the new got current. */
4036 static int
4037 mips_elf_merge_gots (void **bfd2got_, void *p)
4039 struct mips_elf_bfd2got_hash *bfd2got
4040 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4041 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4042 struct mips_got_info *g;
4043 unsigned int estimate;
4044 int result;
4046 g = bfd2got->g;
4048 /* Work out the number of page, local and TLS entries. */
4049 estimate = arg->max_pages;
4050 if (estimate > g->page_gotno)
4051 estimate = g->page_gotno;
4052 estimate += g->local_gotno + g->tls_gotno;
4054 /* We place TLS GOT entries after both locals and globals. The globals
4055 for the primary GOT may overflow the normal GOT size limit, so be
4056 sure not to merge a GOT which requires TLS with the primary GOT in that
4057 case. This doesn't affect non-primary GOTs. */
4058 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4060 if (estimate <= arg->max_count)
4062 /* If we don't have a primary GOT, use it as
4063 a starting point for the primary GOT. */
4064 if (!arg->primary)
4066 arg->primary = bfd2got->g;
4067 return 1;
4070 /* Try merging with the primary GOT. */
4071 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4072 if (result >= 0)
4073 return result;
4076 /* If we can merge with the last-created got, do it. */
4077 if (arg->current)
4079 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4080 if (result >= 0)
4081 return result;
4084 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4085 fits; if it turns out that it doesn't, we'll get relocation
4086 overflows anyway. */
4087 g->next = arg->current;
4088 arg->current = g;
4090 return 1;
4093 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4094 is null iff there is just a single GOT. */
4096 static int
4097 mips_elf_initialize_tls_index (void **entryp, void *p)
4099 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4100 struct mips_got_info *g = p;
4101 bfd_vma next_index;
4102 unsigned char tls_type;
4104 /* We're only interested in TLS symbols. */
4105 if (entry->tls_type == 0)
4106 return 1;
4108 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4110 if (entry->symndx == -1 && g->next == NULL)
4112 /* A type (3) got entry in the single-GOT case. We use the symbol's
4113 hash table entry to track its index. */
4114 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4115 return 1;
4116 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4117 entry->d.h->tls_got_offset = next_index;
4118 tls_type = entry->d.h->tls_type;
4120 else
4122 if (entry->tls_type & GOT_TLS_LDM)
4124 /* There are separate mips_got_entry objects for each input bfd
4125 that requires an LDM entry. Make sure that all LDM entries in
4126 a GOT resolve to the same index. */
4127 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4129 entry->gotidx = g->tls_ldm_offset;
4130 return 1;
4132 g->tls_ldm_offset = next_index;
4134 entry->gotidx = next_index;
4135 tls_type = entry->tls_type;
4138 /* Account for the entries we've just allocated. */
4139 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4140 g->tls_assigned_gotno += 2;
4141 if (tls_type & GOT_TLS_IE)
4142 g->tls_assigned_gotno += 1;
4144 return 1;
4147 /* If passed a NULL mips_got_info in the argument, set the marker used
4148 to tell whether a global symbol needs a got entry (in the primary
4149 got) to the given VALUE.
4151 If passed a pointer G to a mips_got_info in the argument (it must
4152 not be the primary GOT), compute the offset from the beginning of
4153 the (primary) GOT section to the entry in G corresponding to the
4154 global symbol. G's assigned_gotno must contain the index of the
4155 first available global GOT entry in G. VALUE must contain the size
4156 of a GOT entry in bytes. For each global GOT entry that requires a
4157 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4158 marked as not eligible for lazy resolution through a function
4159 stub. */
4160 static int
4161 mips_elf_set_global_got_offset (void **entryp, void *p)
4163 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4164 struct mips_elf_set_global_got_offset_arg *arg
4165 = (struct mips_elf_set_global_got_offset_arg *)p;
4166 struct mips_got_info *g = arg->g;
4168 if (g && entry->tls_type != GOT_NORMAL)
4169 arg->needed_relocs +=
4170 mips_tls_got_relocs (arg->info, entry->tls_type,
4171 entry->symndx == -1 ? &entry->d.h->root : NULL);
4173 if (entry->abfd != NULL
4174 && entry->symndx == -1
4175 && entry->d.h->global_got_area != GGA_NONE)
4177 if (g)
4179 BFD_ASSERT (g->global_gotsym == NULL);
4181 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4182 if (arg->info->shared
4183 || (elf_hash_table (arg->info)->dynamic_sections_created
4184 && entry->d.h->root.def_dynamic
4185 && !entry->d.h->root.def_regular))
4186 ++arg->needed_relocs;
4188 else
4189 entry->d.h->global_got_area = arg->value;
4192 return 1;
4195 /* A htab_traverse callback for GOT entries for which DATA is the
4196 bfd_link_info. Forbid any global symbols from having traditional
4197 lazy-binding stubs. */
4199 static int
4200 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4202 struct bfd_link_info *info;
4203 struct mips_elf_link_hash_table *htab;
4204 struct mips_got_entry *entry;
4206 entry = (struct mips_got_entry *) *entryp;
4207 info = (struct bfd_link_info *) data;
4208 htab = mips_elf_hash_table (info);
4209 if (entry->abfd != NULL
4210 && entry->symndx == -1
4211 && entry->d.h->needs_lazy_stub)
4213 entry->d.h->needs_lazy_stub = FALSE;
4214 htab->lazy_stub_count--;
4217 return 1;
4220 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4221 the primary GOT. */
4222 static bfd_vma
4223 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4225 if (g->bfd2got == NULL)
4226 return 0;
4228 g = mips_elf_got_for_ibfd (g, ibfd);
4229 if (! g)
4230 return 0;
4232 BFD_ASSERT (g->next);
4234 g = g->next;
4236 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4237 * MIPS_ELF_GOT_SIZE (abfd);
4240 /* Turn a single GOT that is too big for 16-bit addressing into
4241 a sequence of GOTs, each one 16-bit addressable. */
4243 static bfd_boolean
4244 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4245 asection *got, bfd_size_type pages)
4247 struct mips_elf_link_hash_table *htab;
4248 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4249 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4250 struct mips_got_info *g, *gg;
4251 unsigned int assign, needed_relocs;
4252 bfd *dynobj;
4254 dynobj = elf_hash_table (info)->dynobj;
4255 htab = mips_elf_hash_table (info);
4256 g = htab->got_info;
4257 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4258 mips_elf_bfd2got_entry_eq, NULL);
4259 if (g->bfd2got == NULL)
4260 return FALSE;
4262 got_per_bfd_arg.bfd2got = g->bfd2got;
4263 got_per_bfd_arg.obfd = abfd;
4264 got_per_bfd_arg.info = info;
4266 /* Count how many GOT entries each input bfd requires, creating a
4267 map from bfd to got info while at that. */
4268 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4269 if (got_per_bfd_arg.obfd == NULL)
4270 return FALSE;
4272 /* Also count how many page entries each input bfd requires. */
4273 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4274 &got_per_bfd_arg);
4275 if (got_per_bfd_arg.obfd == NULL)
4276 return FALSE;
4278 got_per_bfd_arg.current = NULL;
4279 got_per_bfd_arg.primary = NULL;
4280 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4281 / MIPS_ELF_GOT_SIZE (abfd))
4282 - htab->reserved_gotno);
4283 got_per_bfd_arg.max_pages = pages;
4284 /* The number of globals that will be included in the primary GOT.
4285 See the calls to mips_elf_set_global_got_offset below for more
4286 information. */
4287 got_per_bfd_arg.global_count = g->global_gotno;
4289 /* Try to merge the GOTs of input bfds together, as long as they
4290 don't seem to exceed the maximum GOT size, choosing one of them
4291 to be the primary GOT. */
4292 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4293 if (got_per_bfd_arg.obfd == NULL)
4294 return FALSE;
4296 /* If we do not find any suitable primary GOT, create an empty one. */
4297 if (got_per_bfd_arg.primary == NULL)
4299 g->next = (struct mips_got_info *)
4300 bfd_alloc (abfd, sizeof (struct mips_got_info));
4301 if (g->next == NULL)
4302 return FALSE;
4304 g->next->global_gotsym = NULL;
4305 g->next->global_gotno = 0;
4306 g->next->reloc_only_gotno = 0;
4307 g->next->local_gotno = 0;
4308 g->next->page_gotno = 0;
4309 g->next->tls_gotno = 0;
4310 g->next->assigned_gotno = 0;
4311 g->next->tls_assigned_gotno = 0;
4312 g->next->tls_ldm_offset = MINUS_ONE;
4313 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4314 mips_elf_multi_got_entry_eq,
4315 NULL);
4316 if (g->next->got_entries == NULL)
4317 return FALSE;
4318 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4319 mips_got_page_entry_eq,
4320 NULL);
4321 if (g->next->got_page_entries == NULL)
4322 return FALSE;
4323 g->next->bfd2got = NULL;
4325 else
4326 g->next = got_per_bfd_arg.primary;
4327 g->next->next = got_per_bfd_arg.current;
4329 /* GG is now the master GOT, and G is the primary GOT. */
4330 gg = g;
4331 g = g->next;
4333 /* Map the output bfd to the primary got. That's what we're going
4334 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4335 didn't mark in check_relocs, and we want a quick way to find it.
4336 We can't just use gg->next because we're going to reverse the
4337 list. */
4339 struct mips_elf_bfd2got_hash *bfdgot;
4340 void **bfdgotp;
4342 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4343 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4345 if (bfdgot == NULL)
4346 return FALSE;
4348 bfdgot->bfd = abfd;
4349 bfdgot->g = g;
4350 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4352 BFD_ASSERT (*bfdgotp == NULL);
4353 *bfdgotp = bfdgot;
4356 /* Every symbol that is referenced in a dynamic relocation must be
4357 present in the primary GOT, so arrange for them to appear after
4358 those that are actually referenced. */
4359 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4360 g->global_gotno = gg->global_gotno;
4362 set_got_offset_arg.g = NULL;
4363 set_got_offset_arg.value = GGA_RELOC_ONLY;
4364 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4365 &set_got_offset_arg);
4366 set_got_offset_arg.value = GGA_NORMAL;
4367 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4368 &set_got_offset_arg);
4370 /* Now go through the GOTs assigning them offset ranges.
4371 [assigned_gotno, local_gotno[ will be set to the range of local
4372 entries in each GOT. We can then compute the end of a GOT by
4373 adding local_gotno to global_gotno. We reverse the list and make
4374 it circular since then we'll be able to quickly compute the
4375 beginning of a GOT, by computing the end of its predecessor. To
4376 avoid special cases for the primary GOT, while still preserving
4377 assertions that are valid for both single- and multi-got links,
4378 we arrange for the main got struct to have the right number of
4379 global entries, but set its local_gotno such that the initial
4380 offset of the primary GOT is zero. Remember that the primary GOT
4381 will become the last item in the circular linked list, so it
4382 points back to the master GOT. */
4383 gg->local_gotno = -g->global_gotno;
4384 gg->global_gotno = g->global_gotno;
4385 gg->tls_gotno = 0;
4386 assign = 0;
4387 gg->next = gg;
4391 struct mips_got_info *gn;
4393 assign += htab->reserved_gotno;
4394 g->assigned_gotno = assign;
4395 g->local_gotno += assign;
4396 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4397 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4399 /* Take g out of the direct list, and push it onto the reversed
4400 list that gg points to. g->next is guaranteed to be nonnull after
4401 this operation, as required by mips_elf_initialize_tls_index. */
4402 gn = g->next;
4403 g->next = gg->next;
4404 gg->next = g;
4406 /* Set up any TLS entries. We always place the TLS entries after
4407 all non-TLS entries. */
4408 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4409 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4411 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4412 g = gn;
4414 /* Forbid global symbols in every non-primary GOT from having
4415 lazy-binding stubs. */
4416 if (g)
4417 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4419 while (g);
4421 got->size = (gg->next->local_gotno
4422 + gg->next->global_gotno
4423 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4425 needed_relocs = 0;
4426 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4427 set_got_offset_arg.info = info;
4428 for (g = gg->next; g && g->next != gg; g = g->next)
4430 unsigned int save_assign;
4432 /* Assign offsets to global GOT entries. */
4433 save_assign = g->assigned_gotno;
4434 g->assigned_gotno = g->local_gotno;
4435 set_got_offset_arg.g = g;
4436 set_got_offset_arg.needed_relocs = 0;
4437 htab_traverse (g->got_entries,
4438 mips_elf_set_global_got_offset,
4439 &set_got_offset_arg);
4440 needed_relocs += set_got_offset_arg.needed_relocs;
4441 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4443 g->assigned_gotno = save_assign;
4444 if (info->shared)
4446 needed_relocs += g->local_gotno - g->assigned_gotno;
4447 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4448 + g->next->global_gotno
4449 + g->next->tls_gotno
4450 + htab->reserved_gotno);
4454 if (needed_relocs)
4455 mips_elf_allocate_dynamic_relocations (dynobj, info,
4456 needed_relocs);
4458 return TRUE;
4462 /* Returns the first relocation of type r_type found, beginning with
4463 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4465 static const Elf_Internal_Rela *
4466 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4467 const Elf_Internal_Rela *relocation,
4468 const Elf_Internal_Rela *relend)
4470 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4472 while (relocation < relend)
4474 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4475 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4476 return relocation;
4478 ++relocation;
4481 /* We didn't find it. */
4482 return NULL;
4485 /* Return whether a relocation is against a local symbol. */
4487 static bfd_boolean
4488 mips_elf_local_relocation_p (bfd *input_bfd,
4489 const Elf_Internal_Rela *relocation,
4490 asection **local_sections,
4491 bfd_boolean check_forced)
4493 unsigned long r_symndx;
4494 Elf_Internal_Shdr *symtab_hdr;
4495 struct mips_elf_link_hash_entry *h;
4496 size_t extsymoff;
4498 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4499 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4500 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4502 if (r_symndx < extsymoff)
4503 return TRUE;
4504 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4505 return TRUE;
4507 if (check_forced)
4509 /* Look up the hash table to check whether the symbol
4510 was forced local. */
4511 h = (struct mips_elf_link_hash_entry *)
4512 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4513 /* Find the real hash-table entry for this symbol. */
4514 while (h->root.root.type == bfd_link_hash_indirect
4515 || h->root.root.type == bfd_link_hash_warning)
4516 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4517 if (h->root.forced_local)
4518 return TRUE;
4521 return FALSE;
4524 /* Sign-extend VALUE, which has the indicated number of BITS. */
4526 bfd_vma
4527 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4529 if (value & ((bfd_vma) 1 << (bits - 1)))
4530 /* VALUE is negative. */
4531 value |= ((bfd_vma) - 1) << bits;
4533 return value;
4536 /* Return non-zero if the indicated VALUE has overflowed the maximum
4537 range expressible by a signed number with the indicated number of
4538 BITS. */
4540 static bfd_boolean
4541 mips_elf_overflow_p (bfd_vma value, int bits)
4543 bfd_signed_vma svalue = (bfd_signed_vma) value;
4545 if (svalue > (1 << (bits - 1)) - 1)
4546 /* The value is too big. */
4547 return TRUE;
4548 else if (svalue < -(1 << (bits - 1)))
4549 /* The value is too small. */
4550 return TRUE;
4552 /* All is well. */
4553 return FALSE;
4556 /* Calculate the %high function. */
4558 static bfd_vma
4559 mips_elf_high (bfd_vma value)
4561 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4564 /* Calculate the %higher function. */
4566 static bfd_vma
4567 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4569 #ifdef BFD64
4570 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4571 #else
4572 abort ();
4573 return MINUS_ONE;
4574 #endif
4577 /* Calculate the %highest function. */
4579 static bfd_vma
4580 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4582 #ifdef BFD64
4583 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4584 #else
4585 abort ();
4586 return MINUS_ONE;
4587 #endif
4590 /* Create the .compact_rel section. */
4592 static bfd_boolean
4593 mips_elf_create_compact_rel_section
4594 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4596 flagword flags;
4597 register asection *s;
4599 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4601 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4602 | SEC_READONLY);
4604 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4605 if (s == NULL
4606 || ! bfd_set_section_alignment (abfd, s,
4607 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4608 return FALSE;
4610 s->size = sizeof (Elf32_External_compact_rel);
4613 return TRUE;
4616 /* Create the .got section to hold the global offset table. */
4618 static bfd_boolean
4619 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4621 flagword flags;
4622 register asection *s;
4623 struct elf_link_hash_entry *h;
4624 struct bfd_link_hash_entry *bh;
4625 struct mips_got_info *g;
4626 bfd_size_type amt;
4627 struct mips_elf_link_hash_table *htab;
4629 htab = mips_elf_hash_table (info);
4631 /* This function may be called more than once. */
4632 if (htab->sgot)
4633 return TRUE;
4635 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4636 | SEC_LINKER_CREATED);
4638 /* We have to use an alignment of 2**4 here because this is hardcoded
4639 in the function stub generation and in the linker script. */
4640 s = bfd_make_section_with_flags (abfd, ".got", flags);
4641 if (s == NULL
4642 || ! bfd_set_section_alignment (abfd, s, 4))
4643 return FALSE;
4644 htab->sgot = s;
4646 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4647 linker script because we don't want to define the symbol if we
4648 are not creating a global offset table. */
4649 bh = NULL;
4650 if (! (_bfd_generic_link_add_one_symbol
4651 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4652 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4653 return FALSE;
4655 h = (struct elf_link_hash_entry *) bh;
4656 h->non_elf = 0;
4657 h->def_regular = 1;
4658 h->type = STT_OBJECT;
4659 elf_hash_table (info)->hgot = h;
4661 if (info->shared
4662 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4663 return FALSE;
4665 amt = sizeof (struct mips_got_info);
4666 g = bfd_alloc (abfd, amt);
4667 if (g == NULL)
4668 return FALSE;
4669 g->global_gotsym = NULL;
4670 g->global_gotno = 0;
4671 g->reloc_only_gotno = 0;
4672 g->tls_gotno = 0;
4673 g->local_gotno = 0;
4674 g->page_gotno = 0;
4675 g->assigned_gotno = 0;
4676 g->bfd2got = NULL;
4677 g->next = NULL;
4678 g->tls_ldm_offset = MINUS_ONE;
4679 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4680 mips_elf_got_entry_eq, NULL);
4681 if (g->got_entries == NULL)
4682 return FALSE;
4683 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4684 mips_got_page_entry_eq, NULL);
4685 if (g->got_page_entries == NULL)
4686 return FALSE;
4687 htab->got_info = g;
4688 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4689 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4691 /* We also need a .got.plt section when generating PLTs. */
4692 s = bfd_make_section_with_flags (abfd, ".got.plt",
4693 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4694 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4695 if (s == NULL)
4696 return FALSE;
4697 htab->sgotplt = s;
4699 return TRUE;
4702 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4703 __GOTT_INDEX__ symbols. These symbols are only special for
4704 shared objects; they are not used in executables. */
4706 static bfd_boolean
4707 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4709 return (mips_elf_hash_table (info)->is_vxworks
4710 && info->shared
4711 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4712 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4715 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4716 require an la25 stub. See also mips_elf_local_pic_function_p,
4717 which determines whether the destination function ever requires a
4718 stub. */
4720 static bfd_boolean
4721 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4723 /* We specifically ignore branches and jumps from EF_PIC objects,
4724 where the onus is on the compiler or programmer to perform any
4725 necessary initialization of $25. Sometimes such initialization
4726 is unnecessary; for example, -mno-shared functions do not use
4727 the incoming value of $25, and may therefore be called directly. */
4728 if (PIC_OBJECT_P (input_bfd))
4729 return FALSE;
4731 switch (r_type)
4733 case R_MIPS_26:
4734 case R_MIPS_PC16:
4735 case R_MIPS16_26:
4736 return TRUE;
4738 default:
4739 return FALSE;
4743 /* Calculate the value produced by the RELOCATION (which comes from
4744 the INPUT_BFD). The ADDEND is the addend to use for this
4745 RELOCATION; RELOCATION->R_ADDEND is ignored.
4747 The result of the relocation calculation is stored in VALUEP.
4748 REQUIRE_JALXP indicates whether or not the opcode used with this
4749 relocation must be JALX.
4751 This function returns bfd_reloc_continue if the caller need take no
4752 further action regarding this relocation, bfd_reloc_notsupported if
4753 something goes dramatically wrong, bfd_reloc_overflow if an
4754 overflow occurs, and bfd_reloc_ok to indicate success. */
4756 static bfd_reloc_status_type
4757 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4758 asection *input_section,
4759 struct bfd_link_info *info,
4760 const Elf_Internal_Rela *relocation,
4761 bfd_vma addend, reloc_howto_type *howto,
4762 Elf_Internal_Sym *local_syms,
4763 asection **local_sections, bfd_vma *valuep,
4764 const char **namep, bfd_boolean *require_jalxp,
4765 bfd_boolean save_addend)
4767 /* The eventual value we will return. */
4768 bfd_vma value;
4769 /* The address of the symbol against which the relocation is
4770 occurring. */
4771 bfd_vma symbol = 0;
4772 /* The final GP value to be used for the relocatable, executable, or
4773 shared object file being produced. */
4774 bfd_vma gp;
4775 /* The place (section offset or address) of the storage unit being
4776 relocated. */
4777 bfd_vma p;
4778 /* The value of GP used to create the relocatable object. */
4779 bfd_vma gp0;
4780 /* The offset into the global offset table at which the address of
4781 the relocation entry symbol, adjusted by the addend, resides
4782 during execution. */
4783 bfd_vma g = MINUS_ONE;
4784 /* The section in which the symbol referenced by the relocation is
4785 located. */
4786 asection *sec = NULL;
4787 struct mips_elf_link_hash_entry *h = NULL;
4788 /* TRUE if the symbol referred to by this relocation is a local
4789 symbol. */
4790 bfd_boolean local_p, was_local_p;
4791 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4792 bfd_boolean gp_disp_p = FALSE;
4793 /* TRUE if the symbol referred to by this relocation is
4794 "__gnu_local_gp". */
4795 bfd_boolean gnu_local_gp_p = FALSE;
4796 Elf_Internal_Shdr *symtab_hdr;
4797 size_t extsymoff;
4798 unsigned long r_symndx;
4799 int r_type;
4800 /* TRUE if overflow occurred during the calculation of the
4801 relocation value. */
4802 bfd_boolean overflowed_p;
4803 /* TRUE if this relocation refers to a MIPS16 function. */
4804 bfd_boolean target_is_16_bit_code_p = FALSE;
4805 struct mips_elf_link_hash_table *htab;
4806 bfd *dynobj;
4808 dynobj = elf_hash_table (info)->dynobj;
4809 htab = mips_elf_hash_table (info);
4811 /* Parse the relocation. */
4812 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4813 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4814 p = (input_section->output_section->vma
4815 + input_section->output_offset
4816 + relocation->r_offset);
4818 /* Assume that there will be no overflow. */
4819 overflowed_p = FALSE;
4821 /* Figure out whether or not the symbol is local, and get the offset
4822 used in the array of hash table entries. */
4823 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4824 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4825 local_sections, FALSE);
4826 was_local_p = local_p;
4827 if (! elf_bad_symtab (input_bfd))
4828 extsymoff = symtab_hdr->sh_info;
4829 else
4831 /* The symbol table does not follow the rule that local symbols
4832 must come before globals. */
4833 extsymoff = 0;
4836 /* Figure out the value of the symbol. */
4837 if (local_p)
4839 Elf_Internal_Sym *sym;
4841 sym = local_syms + r_symndx;
4842 sec = local_sections[r_symndx];
4844 symbol = sec->output_section->vma + sec->output_offset;
4845 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4846 || (sec->flags & SEC_MERGE))
4847 symbol += sym->st_value;
4848 if ((sec->flags & SEC_MERGE)
4849 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4851 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4852 addend -= symbol;
4853 addend += sec->output_section->vma + sec->output_offset;
4856 /* MIPS16 text labels should be treated as odd. */
4857 if (ELF_ST_IS_MIPS16 (sym->st_other))
4858 ++symbol;
4860 /* Record the name of this symbol, for our caller. */
4861 *namep = bfd_elf_string_from_elf_section (input_bfd,
4862 symtab_hdr->sh_link,
4863 sym->st_name);
4864 if (*namep == '\0')
4865 *namep = bfd_section_name (input_bfd, sec);
4867 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4869 else
4871 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4873 /* For global symbols we look up the symbol in the hash-table. */
4874 h = ((struct mips_elf_link_hash_entry *)
4875 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4876 /* Find the real hash-table entry for this symbol. */
4877 while (h->root.root.type == bfd_link_hash_indirect
4878 || h->root.root.type == bfd_link_hash_warning)
4879 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4881 /* Record the name of this symbol, for our caller. */
4882 *namep = h->root.root.root.string;
4884 /* See if this is the special _gp_disp symbol. Note that such a
4885 symbol must always be a global symbol. */
4886 if (strcmp (*namep, "_gp_disp") == 0
4887 && ! NEWABI_P (input_bfd))
4889 /* Relocations against _gp_disp are permitted only with
4890 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4891 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4892 return bfd_reloc_notsupported;
4894 gp_disp_p = TRUE;
4896 /* See if this is the special _gp symbol. Note that such a
4897 symbol must always be a global symbol. */
4898 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4899 gnu_local_gp_p = TRUE;
4902 /* If this symbol is defined, calculate its address. Note that
4903 _gp_disp is a magic symbol, always implicitly defined by the
4904 linker, so it's inappropriate to check to see whether or not
4905 its defined. */
4906 else if ((h->root.root.type == bfd_link_hash_defined
4907 || h->root.root.type == bfd_link_hash_defweak)
4908 && h->root.root.u.def.section)
4910 sec = h->root.root.u.def.section;
4911 if (sec->output_section)
4912 symbol = (h->root.root.u.def.value
4913 + sec->output_section->vma
4914 + sec->output_offset);
4915 else
4916 symbol = h->root.root.u.def.value;
4918 else if (h->root.root.type == bfd_link_hash_undefweak)
4919 /* We allow relocations against undefined weak symbols, giving
4920 it the value zero, so that you can undefined weak functions
4921 and check to see if they exist by looking at their
4922 addresses. */
4923 symbol = 0;
4924 else if (info->unresolved_syms_in_objects == RM_IGNORE
4925 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4926 symbol = 0;
4927 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4928 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4930 /* If this is a dynamic link, we should have created a
4931 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4932 in in _bfd_mips_elf_create_dynamic_sections.
4933 Otherwise, we should define the symbol with a value of 0.
4934 FIXME: It should probably get into the symbol table
4935 somehow as well. */
4936 BFD_ASSERT (! info->shared);
4937 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4938 symbol = 0;
4940 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4942 /* This is an optional symbol - an Irix specific extension to the
4943 ELF spec. Ignore it for now.
4944 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4945 than simply ignoring them, but we do not handle this for now.
4946 For information see the "64-bit ELF Object File Specification"
4947 which is available from here:
4948 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4949 symbol = 0;
4951 else
4953 if (! ((*info->callbacks->undefined_symbol)
4954 (info, h->root.root.root.string, input_bfd,
4955 input_section, relocation->r_offset,
4956 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4957 || ELF_ST_VISIBILITY (h->root.other))))
4958 return bfd_reloc_undefined;
4959 symbol = 0;
4962 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4965 /* If this is a reference to a 16-bit function with a stub, we need
4966 to redirect the relocation to the stub unless:
4968 (a) the relocation is for a MIPS16 JAL;
4970 (b) the relocation is for a MIPS16 PIC call, and there are no
4971 non-MIPS16 uses of the GOT slot; or
4973 (c) the section allows direct references to MIPS16 functions. */
4974 if (r_type != R_MIPS16_26
4975 && !info->relocatable
4976 && ((h != NULL
4977 && h->fn_stub != NULL
4978 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
4979 || (local_p
4980 && elf_tdata (input_bfd)->local_stubs != NULL
4981 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4982 && !section_allows_mips16_refs_p (input_section))
4984 /* This is a 32- or 64-bit call to a 16-bit function. We should
4985 have already noticed that we were going to need the
4986 stub. */
4987 if (local_p)
4988 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4989 else
4991 BFD_ASSERT (h->need_fn_stub);
4992 sec = h->fn_stub;
4995 symbol = sec->output_section->vma + sec->output_offset;
4996 /* The target is 16-bit, but the stub isn't. */
4997 target_is_16_bit_code_p = FALSE;
4999 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5000 need to redirect the call to the stub. Note that we specifically
5001 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5002 use an indirect stub instead. */
5003 else if (r_type == R_MIPS16_26 && !info->relocatable
5004 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5005 || (local_p
5006 && elf_tdata (input_bfd)->local_call_stubs != NULL
5007 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5008 && !target_is_16_bit_code_p)
5010 if (local_p)
5011 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5012 else
5014 /* If both call_stub and call_fp_stub are defined, we can figure
5015 out which one to use by checking which one appears in the input
5016 file. */
5017 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5019 asection *o;
5021 sec = NULL;
5022 for (o = input_bfd->sections; o != NULL; o = o->next)
5024 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5026 sec = h->call_fp_stub;
5027 break;
5030 if (sec == NULL)
5031 sec = h->call_stub;
5033 else if (h->call_stub != NULL)
5034 sec = h->call_stub;
5035 else
5036 sec = h->call_fp_stub;
5039 BFD_ASSERT (sec->size > 0);
5040 symbol = sec->output_section->vma + sec->output_offset;
5042 /* If this is a direct call to a PIC function, redirect to the
5043 non-PIC stub. */
5044 else if (h != NULL && h->la25_stub
5045 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5046 symbol = (h->la25_stub->stub_section->output_section->vma
5047 + h->la25_stub->stub_section->output_offset
5048 + h->la25_stub->offset);
5050 /* Calls from 16-bit code to 32-bit code and vice versa require the
5051 special jalx instruction. */
5052 *require_jalxp = (!info->relocatable
5053 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
5054 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
5056 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5057 local_sections, TRUE);
5059 gp0 = _bfd_get_gp_value (input_bfd);
5060 gp = _bfd_get_gp_value (abfd);
5061 if (htab->got_info)
5062 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5064 if (gnu_local_gp_p)
5065 symbol = gp;
5067 /* If we haven't already determined the GOT offset, oand we're going
5068 to need it, get it now. */
5069 switch (r_type)
5071 case R_MIPS_GOT_PAGE:
5072 case R_MIPS_GOT_OFST:
5073 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5074 bind locally. */
5075 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
5076 if (local_p || r_type == R_MIPS_GOT_OFST)
5077 break;
5078 /* Fall through. */
5080 case R_MIPS16_CALL16:
5081 case R_MIPS16_GOT16:
5082 case R_MIPS_CALL16:
5083 case R_MIPS_GOT16:
5084 case R_MIPS_GOT_DISP:
5085 case R_MIPS_GOT_HI16:
5086 case R_MIPS_CALL_HI16:
5087 case R_MIPS_GOT_LO16:
5088 case R_MIPS_CALL_LO16:
5089 case R_MIPS_TLS_GD:
5090 case R_MIPS_TLS_GOTTPREL:
5091 case R_MIPS_TLS_LDM:
5092 /* Find the index into the GOT where this value is located. */
5093 if (r_type == R_MIPS_TLS_LDM)
5095 g = mips_elf_local_got_index (abfd, input_bfd, info,
5096 0, 0, NULL, r_type);
5097 if (g == MINUS_ONE)
5098 return bfd_reloc_outofrange;
5100 else if (!local_p)
5102 /* On VxWorks, CALL relocations should refer to the .got.plt
5103 entry, which is initialized to point at the PLT stub. */
5104 if (htab->is_vxworks
5105 && (r_type == R_MIPS_CALL_HI16
5106 || r_type == R_MIPS_CALL_LO16
5107 || call16_reloc_p (r_type)))
5109 BFD_ASSERT (addend == 0);
5110 BFD_ASSERT (h->root.needs_plt);
5111 g = mips_elf_gotplt_index (info, &h->root);
5113 else
5115 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5116 GOT_PAGE relocation that decays to GOT_DISP because the
5117 symbol turns out to be global. The addend is then added
5118 as GOT_OFST. */
5119 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5120 g = mips_elf_global_got_index (dynobj, input_bfd,
5121 &h->root, r_type, info);
5122 if (h->tls_type == GOT_NORMAL
5123 && (! elf_hash_table(info)->dynamic_sections_created
5124 || (info->shared
5125 && (info->symbolic || h->root.forced_local)
5126 && h->root.def_regular)))
5127 /* This is a static link or a -Bsymbolic link. The
5128 symbol is defined locally, or was forced to be local.
5129 We must initialize this entry in the GOT. */
5130 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5133 else if (!htab->is_vxworks
5134 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5135 /* The calculation below does not involve "g". */
5136 break;
5137 else
5139 g = mips_elf_local_got_index (abfd, input_bfd, info,
5140 symbol + addend, r_symndx, h, r_type);
5141 if (g == MINUS_ONE)
5142 return bfd_reloc_outofrange;
5145 /* Convert GOT indices to actual offsets. */
5146 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5147 break;
5150 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5151 symbols are resolved by the loader. Add them to .rela.dyn. */
5152 if (h != NULL && is_gott_symbol (info, &h->root))
5154 Elf_Internal_Rela outrel;
5155 bfd_byte *loc;
5156 asection *s;
5158 s = mips_elf_rel_dyn_section (info, FALSE);
5159 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5161 outrel.r_offset = (input_section->output_section->vma
5162 + input_section->output_offset
5163 + relocation->r_offset);
5164 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5165 outrel.r_addend = addend;
5166 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5168 /* If we've written this relocation for a readonly section,
5169 we need to set DF_TEXTREL again, so that we do not delete the
5170 DT_TEXTREL tag. */
5171 if (MIPS_ELF_READONLY_SECTION (input_section))
5172 info->flags |= DF_TEXTREL;
5174 *valuep = 0;
5175 return bfd_reloc_ok;
5178 /* Figure out what kind of relocation is being performed. */
5179 switch (r_type)
5181 case R_MIPS_NONE:
5182 return bfd_reloc_continue;
5184 case R_MIPS_16:
5185 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5186 overflowed_p = mips_elf_overflow_p (value, 16);
5187 break;
5189 case R_MIPS_32:
5190 case R_MIPS_REL32:
5191 case R_MIPS_64:
5192 if ((info->shared
5193 || (htab->root.dynamic_sections_created
5194 && h != NULL
5195 && h->root.def_dynamic
5196 && !h->root.def_regular
5197 && !h->has_static_relocs))
5198 && r_symndx != 0
5199 && (h == NULL
5200 || h->root.root.type != bfd_link_hash_undefweak
5201 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5202 && (input_section->flags & SEC_ALLOC) != 0)
5204 /* If we're creating a shared library, then we can't know
5205 where the symbol will end up. So, we create a relocation
5206 record in the output, and leave the job up to the dynamic
5207 linker. We must do the same for executable references to
5208 shared library symbols, unless we've decided to use copy
5209 relocs or PLTs instead. */
5210 value = addend;
5211 if (!mips_elf_create_dynamic_relocation (abfd,
5212 info,
5213 relocation,
5215 sec,
5216 symbol,
5217 &value,
5218 input_section))
5219 return bfd_reloc_undefined;
5221 else
5223 if (r_type != R_MIPS_REL32)
5224 value = symbol + addend;
5225 else
5226 value = addend;
5228 value &= howto->dst_mask;
5229 break;
5231 case R_MIPS_PC32:
5232 value = symbol + addend - p;
5233 value &= howto->dst_mask;
5234 break;
5236 case R_MIPS16_26:
5237 /* The calculation for R_MIPS16_26 is just the same as for an
5238 R_MIPS_26. It's only the storage of the relocated field into
5239 the output file that's different. That's handled in
5240 mips_elf_perform_relocation. So, we just fall through to the
5241 R_MIPS_26 case here. */
5242 case R_MIPS_26:
5243 if (local_p)
5244 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5245 else
5247 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5248 if (h->root.root.type != bfd_link_hash_undefweak)
5249 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5251 value &= howto->dst_mask;
5252 break;
5254 case R_MIPS_TLS_DTPREL_HI16:
5255 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5256 & howto->dst_mask);
5257 break;
5259 case R_MIPS_TLS_DTPREL_LO16:
5260 case R_MIPS_TLS_DTPREL32:
5261 case R_MIPS_TLS_DTPREL64:
5262 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5263 break;
5265 case R_MIPS_TLS_TPREL_HI16:
5266 value = (mips_elf_high (addend + symbol - tprel_base (info))
5267 & howto->dst_mask);
5268 break;
5270 case R_MIPS_TLS_TPREL_LO16:
5271 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5272 break;
5274 case R_MIPS_HI16:
5275 case R_MIPS16_HI16:
5276 if (!gp_disp_p)
5278 value = mips_elf_high (addend + symbol);
5279 value &= howto->dst_mask;
5281 else
5283 /* For MIPS16 ABI code we generate this sequence
5284 0: li $v0,%hi(_gp_disp)
5285 4: addiupc $v1,%lo(_gp_disp)
5286 8: sll $v0,16
5287 12: addu $v0,$v1
5288 14: move $gp,$v0
5289 So the offsets of hi and lo relocs are the same, but the
5290 $pc is four higher than $t9 would be, so reduce
5291 both reloc addends by 4. */
5292 if (r_type == R_MIPS16_HI16)
5293 value = mips_elf_high (addend + gp - p - 4);
5294 else
5295 value = mips_elf_high (addend + gp - p);
5296 overflowed_p = mips_elf_overflow_p (value, 16);
5298 break;
5300 case R_MIPS_LO16:
5301 case R_MIPS16_LO16:
5302 if (!gp_disp_p)
5303 value = (symbol + addend) & howto->dst_mask;
5304 else
5306 /* See the comment for R_MIPS16_HI16 above for the reason
5307 for this conditional. */
5308 if (r_type == R_MIPS16_LO16)
5309 value = addend + gp - p;
5310 else
5311 value = addend + gp - p + 4;
5312 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5313 for overflow. But, on, say, IRIX5, relocations against
5314 _gp_disp are normally generated from the .cpload
5315 pseudo-op. It generates code that normally looks like
5316 this:
5318 lui $gp,%hi(_gp_disp)
5319 addiu $gp,$gp,%lo(_gp_disp)
5320 addu $gp,$gp,$t9
5322 Here $t9 holds the address of the function being called,
5323 as required by the MIPS ELF ABI. The R_MIPS_LO16
5324 relocation can easily overflow in this situation, but the
5325 R_MIPS_HI16 relocation will handle the overflow.
5326 Therefore, we consider this a bug in the MIPS ABI, and do
5327 not check for overflow here. */
5329 break;
5331 case R_MIPS_LITERAL:
5332 /* Because we don't merge literal sections, we can handle this
5333 just like R_MIPS_GPREL16. In the long run, we should merge
5334 shared literals, and then we will need to additional work
5335 here. */
5337 /* Fall through. */
5339 case R_MIPS16_GPREL:
5340 /* The R_MIPS16_GPREL performs the same calculation as
5341 R_MIPS_GPREL16, but stores the relocated bits in a different
5342 order. We don't need to do anything special here; the
5343 differences are handled in mips_elf_perform_relocation. */
5344 case R_MIPS_GPREL16:
5345 /* Only sign-extend the addend if it was extracted from the
5346 instruction. If the addend was separate, leave it alone,
5347 otherwise we may lose significant bits. */
5348 if (howto->partial_inplace)
5349 addend = _bfd_mips_elf_sign_extend (addend, 16);
5350 value = symbol + addend - gp;
5351 /* If the symbol was local, any earlier relocatable links will
5352 have adjusted its addend with the gp offset, so compensate
5353 for that now. Don't do it for symbols forced local in this
5354 link, though, since they won't have had the gp offset applied
5355 to them before. */
5356 if (was_local_p)
5357 value += gp0;
5358 overflowed_p = mips_elf_overflow_p (value, 16);
5359 break;
5361 case R_MIPS16_GOT16:
5362 case R_MIPS16_CALL16:
5363 case R_MIPS_GOT16:
5364 case R_MIPS_CALL16:
5365 /* VxWorks does not have separate local and global semantics for
5366 R_MIPS*_GOT16; every relocation evaluates to "G". */
5367 if (!htab->is_vxworks && local_p)
5369 bfd_boolean forced;
5371 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
5372 local_sections, FALSE);
5373 value = mips_elf_got16_entry (abfd, input_bfd, info,
5374 symbol + addend, forced);
5375 if (value == MINUS_ONE)
5376 return bfd_reloc_outofrange;
5377 value
5378 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5379 overflowed_p = mips_elf_overflow_p (value, 16);
5380 break;
5383 /* Fall through. */
5385 case R_MIPS_TLS_GD:
5386 case R_MIPS_TLS_GOTTPREL:
5387 case R_MIPS_TLS_LDM:
5388 case R_MIPS_GOT_DISP:
5389 got_disp:
5390 value = g;
5391 overflowed_p = mips_elf_overflow_p (value, 16);
5392 break;
5394 case R_MIPS_GPREL32:
5395 value = (addend + symbol + gp0 - gp);
5396 if (!save_addend)
5397 value &= howto->dst_mask;
5398 break;
5400 case R_MIPS_PC16:
5401 case R_MIPS_GNU_REL16_S2:
5402 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5403 overflowed_p = mips_elf_overflow_p (value, 18);
5404 value >>= howto->rightshift;
5405 value &= howto->dst_mask;
5406 break;
5408 case R_MIPS_GOT_HI16:
5409 case R_MIPS_CALL_HI16:
5410 /* We're allowed to handle these two relocations identically.
5411 The dynamic linker is allowed to handle the CALL relocations
5412 differently by creating a lazy evaluation stub. */
5413 value = g;
5414 value = mips_elf_high (value);
5415 value &= howto->dst_mask;
5416 break;
5418 case R_MIPS_GOT_LO16:
5419 case R_MIPS_CALL_LO16:
5420 value = g & howto->dst_mask;
5421 break;
5423 case R_MIPS_GOT_PAGE:
5424 /* GOT_PAGE relocations that reference non-local symbols decay
5425 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5426 0. */
5427 if (! local_p)
5428 goto got_disp;
5429 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5430 if (value == MINUS_ONE)
5431 return bfd_reloc_outofrange;
5432 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5433 overflowed_p = mips_elf_overflow_p (value, 16);
5434 break;
5436 case R_MIPS_GOT_OFST:
5437 if (local_p)
5438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5439 else
5440 value = addend;
5441 overflowed_p = mips_elf_overflow_p (value, 16);
5442 break;
5444 case R_MIPS_SUB:
5445 value = symbol - addend;
5446 value &= howto->dst_mask;
5447 break;
5449 case R_MIPS_HIGHER:
5450 value = mips_elf_higher (addend + symbol);
5451 value &= howto->dst_mask;
5452 break;
5454 case R_MIPS_HIGHEST:
5455 value = mips_elf_highest (addend + symbol);
5456 value &= howto->dst_mask;
5457 break;
5459 case R_MIPS_SCN_DISP:
5460 value = symbol + addend - sec->output_offset;
5461 value &= howto->dst_mask;
5462 break;
5464 case R_MIPS_JALR:
5465 /* This relocation is only a hint. In some cases, we optimize
5466 it into a bal instruction. But we don't try to optimize
5467 branches to the PLT; that will wind up wasting time. */
5468 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
5469 return bfd_reloc_continue;
5470 value = symbol + addend;
5471 break;
5473 case R_MIPS_PJUMP:
5474 case R_MIPS_GNU_VTINHERIT:
5475 case R_MIPS_GNU_VTENTRY:
5476 /* We don't do anything with these at present. */
5477 return bfd_reloc_continue;
5479 default:
5480 /* An unrecognized relocation type. */
5481 return bfd_reloc_notsupported;
5484 /* Store the VALUE for our caller. */
5485 *valuep = value;
5486 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5489 /* Obtain the field relocated by RELOCATION. */
5491 static bfd_vma
5492 mips_elf_obtain_contents (reloc_howto_type *howto,
5493 const Elf_Internal_Rela *relocation,
5494 bfd *input_bfd, bfd_byte *contents)
5496 bfd_vma x;
5497 bfd_byte *location = contents + relocation->r_offset;
5499 /* Obtain the bytes. */
5500 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5502 return x;
5505 /* It has been determined that the result of the RELOCATION is the
5506 VALUE. Use HOWTO to place VALUE into the output file at the
5507 appropriate position. The SECTION is the section to which the
5508 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5509 for the relocation must be either JAL or JALX, and it is
5510 unconditionally converted to JALX.
5512 Returns FALSE if anything goes wrong. */
5514 static bfd_boolean
5515 mips_elf_perform_relocation (struct bfd_link_info *info,
5516 reloc_howto_type *howto,
5517 const Elf_Internal_Rela *relocation,
5518 bfd_vma value, bfd *input_bfd,
5519 asection *input_section, bfd_byte *contents,
5520 bfd_boolean require_jalx)
5522 bfd_vma x;
5523 bfd_byte *location;
5524 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5526 /* Figure out where the relocation is occurring. */
5527 location = contents + relocation->r_offset;
5529 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5531 /* Obtain the current value. */
5532 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5534 /* Clear the field we are setting. */
5535 x &= ~howto->dst_mask;
5537 /* Set the field. */
5538 x |= (value & howto->dst_mask);
5540 /* If required, turn JAL into JALX. */
5541 if (require_jalx)
5543 bfd_boolean ok;
5544 bfd_vma opcode = x >> 26;
5545 bfd_vma jalx_opcode;
5547 /* Check to see if the opcode is already JAL or JALX. */
5548 if (r_type == R_MIPS16_26)
5550 ok = ((opcode == 0x6) || (opcode == 0x7));
5551 jalx_opcode = 0x7;
5553 else
5555 ok = ((opcode == 0x3) || (opcode == 0x1d));
5556 jalx_opcode = 0x1d;
5559 /* If the opcode is not JAL or JALX, there's a problem. */
5560 if (!ok)
5562 (*_bfd_error_handler)
5563 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5564 input_bfd,
5565 input_section,
5566 (unsigned long) relocation->r_offset);
5567 bfd_set_error (bfd_error_bad_value);
5568 return FALSE;
5571 /* Make this the JALX opcode. */
5572 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5575 /* On the RM9000, bal is faster than jal, because bal uses branch
5576 prediction hardware. If we are linking for the RM9000, and we
5577 see jal, and bal fits, use it instead. Note that this
5578 transformation should be safe for all architectures. */
5579 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
5580 && !info->relocatable
5581 && !require_jalx
5582 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
5583 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
5585 bfd_vma addr;
5586 bfd_vma dest;
5587 bfd_signed_vma off;
5589 addr = (input_section->output_section->vma
5590 + input_section->output_offset
5591 + relocation->r_offset
5592 + 4);
5593 if (r_type == R_MIPS_26)
5594 dest = (value << 2) | ((addr >> 28) << 28);
5595 else
5596 dest = value;
5597 off = dest - addr;
5598 if (off <= 0x1ffff && off >= -0x20000)
5599 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5602 /* Put the value into the output. */
5603 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5605 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5606 location);
5608 return TRUE;
5611 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5612 is the original relocation, which is now being transformed into a
5613 dynamic relocation. The ADDENDP is adjusted if necessary; the
5614 caller should store the result in place of the original addend. */
5616 static bfd_boolean
5617 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5618 struct bfd_link_info *info,
5619 const Elf_Internal_Rela *rel,
5620 struct mips_elf_link_hash_entry *h,
5621 asection *sec, bfd_vma symbol,
5622 bfd_vma *addendp, asection *input_section)
5624 Elf_Internal_Rela outrel[3];
5625 asection *sreloc;
5626 bfd *dynobj;
5627 int r_type;
5628 long indx;
5629 bfd_boolean defined_p;
5630 struct mips_elf_link_hash_table *htab;
5632 htab = mips_elf_hash_table (info);
5633 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5634 dynobj = elf_hash_table (info)->dynobj;
5635 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5636 BFD_ASSERT (sreloc != NULL);
5637 BFD_ASSERT (sreloc->contents != NULL);
5638 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5639 < sreloc->size);
5641 outrel[0].r_offset =
5642 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5643 if (ABI_64_P (output_bfd))
5645 outrel[1].r_offset =
5646 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5647 outrel[2].r_offset =
5648 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5651 if (outrel[0].r_offset == MINUS_ONE)
5652 /* The relocation field has been deleted. */
5653 return TRUE;
5655 if (outrel[0].r_offset == MINUS_TWO)
5657 /* The relocation field has been converted into a relative value of
5658 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5659 the field to be fully relocated, so add in the symbol's value. */
5660 *addendp += symbol;
5661 return TRUE;
5664 /* We must now calculate the dynamic symbol table index to use
5665 in the relocation. */
5666 if (h != NULL
5667 && (!h->root.def_regular
5668 || (info->shared && !info->symbolic && !h->root.forced_local)))
5670 indx = h->root.dynindx;
5671 if (SGI_COMPAT (output_bfd))
5672 defined_p = h->root.def_regular;
5673 else
5674 /* ??? glibc's ld.so just adds the final GOT entry to the
5675 relocation field. It therefore treats relocs against
5676 defined symbols in the same way as relocs against
5677 undefined symbols. */
5678 defined_p = FALSE;
5680 else
5682 if (sec != NULL && bfd_is_abs_section (sec))
5683 indx = 0;
5684 else if (sec == NULL || sec->owner == NULL)
5686 bfd_set_error (bfd_error_bad_value);
5687 return FALSE;
5689 else
5691 indx = elf_section_data (sec->output_section)->dynindx;
5692 if (indx == 0)
5694 asection *osec = htab->root.text_index_section;
5695 indx = elf_section_data (osec)->dynindx;
5697 if (indx == 0)
5698 abort ();
5701 /* Instead of generating a relocation using the section
5702 symbol, we may as well make it a fully relative
5703 relocation. We want to avoid generating relocations to
5704 local symbols because we used to generate them
5705 incorrectly, without adding the original symbol value,
5706 which is mandated by the ABI for section symbols. In
5707 order to give dynamic loaders and applications time to
5708 phase out the incorrect use, we refrain from emitting
5709 section-relative relocations. It's not like they're
5710 useful, after all. This should be a bit more efficient
5711 as well. */
5712 /* ??? Although this behavior is compatible with glibc's ld.so,
5713 the ABI says that relocations against STN_UNDEF should have
5714 a symbol value of 0. Irix rld honors this, so relocations
5715 against STN_UNDEF have no effect. */
5716 if (!SGI_COMPAT (output_bfd))
5717 indx = 0;
5718 defined_p = TRUE;
5721 /* If the relocation was previously an absolute relocation and
5722 this symbol will not be referred to by the relocation, we must
5723 adjust it by the value we give it in the dynamic symbol table.
5724 Otherwise leave the job up to the dynamic linker. */
5725 if (defined_p && r_type != R_MIPS_REL32)
5726 *addendp += symbol;
5728 if (htab->is_vxworks)
5729 /* VxWorks uses non-relative relocations for this. */
5730 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5731 else
5732 /* The relocation is always an REL32 relocation because we don't
5733 know where the shared library will wind up at load-time. */
5734 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5735 R_MIPS_REL32);
5737 /* For strict adherence to the ABI specification, we should
5738 generate a R_MIPS_64 relocation record by itself before the
5739 _REL32/_64 record as well, such that the addend is read in as
5740 a 64-bit value (REL32 is a 32-bit relocation, after all).
5741 However, since none of the existing ELF64 MIPS dynamic
5742 loaders seems to care, we don't waste space with these
5743 artificial relocations. If this turns out to not be true,
5744 mips_elf_allocate_dynamic_relocation() should be tweaked so
5745 as to make room for a pair of dynamic relocations per
5746 invocation if ABI_64_P, and here we should generate an
5747 additional relocation record with R_MIPS_64 by itself for a
5748 NULL symbol before this relocation record. */
5749 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5750 ABI_64_P (output_bfd)
5751 ? R_MIPS_64
5752 : R_MIPS_NONE);
5753 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5755 /* Adjust the output offset of the relocation to reference the
5756 correct location in the output file. */
5757 outrel[0].r_offset += (input_section->output_section->vma
5758 + input_section->output_offset);
5759 outrel[1].r_offset += (input_section->output_section->vma
5760 + input_section->output_offset);
5761 outrel[2].r_offset += (input_section->output_section->vma
5762 + input_section->output_offset);
5764 /* Put the relocation back out. We have to use the special
5765 relocation outputter in the 64-bit case since the 64-bit
5766 relocation format is non-standard. */
5767 if (ABI_64_P (output_bfd))
5769 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5770 (output_bfd, &outrel[0],
5771 (sreloc->contents
5772 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5774 else if (htab->is_vxworks)
5776 /* VxWorks uses RELA rather than REL dynamic relocations. */
5777 outrel[0].r_addend = *addendp;
5778 bfd_elf32_swap_reloca_out
5779 (output_bfd, &outrel[0],
5780 (sreloc->contents
5781 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5783 else
5784 bfd_elf32_swap_reloc_out
5785 (output_bfd, &outrel[0],
5786 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5788 /* We've now added another relocation. */
5789 ++sreloc->reloc_count;
5791 /* Make sure the output section is writable. The dynamic linker
5792 will be writing to it. */
5793 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5794 |= SHF_WRITE;
5796 /* On IRIX5, make an entry of compact relocation info. */
5797 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5799 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5800 bfd_byte *cr;
5802 if (scpt)
5804 Elf32_crinfo cptrel;
5806 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5807 cptrel.vaddr = (rel->r_offset
5808 + input_section->output_section->vma
5809 + input_section->output_offset);
5810 if (r_type == R_MIPS_REL32)
5811 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5812 else
5813 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5814 mips_elf_set_cr_dist2to (cptrel, 0);
5815 cptrel.konst = *addendp;
5817 cr = (scpt->contents
5818 + sizeof (Elf32_External_compact_rel));
5819 mips_elf_set_cr_relvaddr (cptrel, 0);
5820 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5821 ((Elf32_External_crinfo *) cr
5822 + scpt->reloc_count));
5823 ++scpt->reloc_count;
5827 /* If we've written this relocation for a readonly section,
5828 we need to set DF_TEXTREL again, so that we do not delete the
5829 DT_TEXTREL tag. */
5830 if (MIPS_ELF_READONLY_SECTION (input_section))
5831 info->flags |= DF_TEXTREL;
5833 return TRUE;
5836 /* Return the MACH for a MIPS e_flags value. */
5838 unsigned long
5839 _bfd_elf_mips_mach (flagword flags)
5841 switch (flags & EF_MIPS_MACH)
5843 case E_MIPS_MACH_3900:
5844 return bfd_mach_mips3900;
5846 case E_MIPS_MACH_4010:
5847 return bfd_mach_mips4010;
5849 case E_MIPS_MACH_4100:
5850 return bfd_mach_mips4100;
5852 case E_MIPS_MACH_4111:
5853 return bfd_mach_mips4111;
5855 case E_MIPS_MACH_4120:
5856 return bfd_mach_mips4120;
5858 case E_MIPS_MACH_4650:
5859 return bfd_mach_mips4650;
5861 case E_MIPS_MACH_5400:
5862 return bfd_mach_mips5400;
5864 case E_MIPS_MACH_5500:
5865 return bfd_mach_mips5500;
5867 case E_MIPS_MACH_9000:
5868 return bfd_mach_mips9000;
5870 case E_MIPS_MACH_SB1:
5871 return bfd_mach_mips_sb1;
5873 case E_MIPS_MACH_LS2E:
5874 return bfd_mach_mips_loongson_2e;
5876 case E_MIPS_MACH_LS2F:
5877 return bfd_mach_mips_loongson_2f;
5879 case E_MIPS_MACH_OCTEON:
5880 return bfd_mach_mips_octeon;
5882 case E_MIPS_MACH_XLR:
5883 return bfd_mach_mips_xlr;
5885 default:
5886 switch (flags & EF_MIPS_ARCH)
5888 default:
5889 case E_MIPS_ARCH_1:
5890 return bfd_mach_mips3000;
5892 case E_MIPS_ARCH_2:
5893 return bfd_mach_mips6000;
5895 case E_MIPS_ARCH_3:
5896 return bfd_mach_mips4000;
5898 case E_MIPS_ARCH_4:
5899 return bfd_mach_mips8000;
5901 case E_MIPS_ARCH_5:
5902 return bfd_mach_mips5;
5904 case E_MIPS_ARCH_32:
5905 return bfd_mach_mipsisa32;
5907 case E_MIPS_ARCH_64:
5908 return bfd_mach_mipsisa64;
5910 case E_MIPS_ARCH_32R2:
5911 return bfd_mach_mipsisa32r2;
5913 case E_MIPS_ARCH_64R2:
5914 return bfd_mach_mipsisa64r2;
5918 return 0;
5921 /* Return printable name for ABI. */
5923 static INLINE char *
5924 elf_mips_abi_name (bfd *abfd)
5926 flagword flags;
5928 flags = elf_elfheader (abfd)->e_flags;
5929 switch (flags & EF_MIPS_ABI)
5931 case 0:
5932 if (ABI_N32_P (abfd))
5933 return "N32";
5934 else if (ABI_64_P (abfd))
5935 return "64";
5936 else
5937 return "none";
5938 case E_MIPS_ABI_O32:
5939 return "O32";
5940 case E_MIPS_ABI_O64:
5941 return "O64";
5942 case E_MIPS_ABI_EABI32:
5943 return "EABI32";
5944 case E_MIPS_ABI_EABI64:
5945 return "EABI64";
5946 default:
5947 return "unknown abi";
5951 /* MIPS ELF uses two common sections. One is the usual one, and the
5952 other is for small objects. All the small objects are kept
5953 together, and then referenced via the gp pointer, which yields
5954 faster assembler code. This is what we use for the small common
5955 section. This approach is copied from ecoff.c. */
5956 static asection mips_elf_scom_section;
5957 static asymbol mips_elf_scom_symbol;
5958 static asymbol *mips_elf_scom_symbol_ptr;
5960 /* MIPS ELF also uses an acommon section, which represents an
5961 allocated common symbol which may be overridden by a
5962 definition in a shared library. */
5963 static asection mips_elf_acom_section;
5964 static asymbol mips_elf_acom_symbol;
5965 static asymbol *mips_elf_acom_symbol_ptr;
5967 /* This is used for both the 32-bit and the 64-bit ABI. */
5969 void
5970 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5972 elf_symbol_type *elfsym;
5974 /* Handle the special MIPS section numbers that a symbol may use. */
5975 elfsym = (elf_symbol_type *) asym;
5976 switch (elfsym->internal_elf_sym.st_shndx)
5978 case SHN_MIPS_ACOMMON:
5979 /* This section is used in a dynamically linked executable file.
5980 It is an allocated common section. The dynamic linker can
5981 either resolve these symbols to something in a shared
5982 library, or it can just leave them here. For our purposes,
5983 we can consider these symbols to be in a new section. */
5984 if (mips_elf_acom_section.name == NULL)
5986 /* Initialize the acommon section. */
5987 mips_elf_acom_section.name = ".acommon";
5988 mips_elf_acom_section.flags = SEC_ALLOC;
5989 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5990 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5991 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5992 mips_elf_acom_symbol.name = ".acommon";
5993 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5994 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5995 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5997 asym->section = &mips_elf_acom_section;
5998 break;
6000 case SHN_COMMON:
6001 /* Common symbols less than the GP size are automatically
6002 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6003 if (asym->value > elf_gp_size (abfd)
6004 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6005 || IRIX_COMPAT (abfd) == ict_irix6)
6006 break;
6007 /* Fall through. */
6008 case SHN_MIPS_SCOMMON:
6009 if (mips_elf_scom_section.name == NULL)
6011 /* Initialize the small common section. */
6012 mips_elf_scom_section.name = ".scommon";
6013 mips_elf_scom_section.flags = SEC_IS_COMMON;
6014 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6015 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6016 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6017 mips_elf_scom_symbol.name = ".scommon";
6018 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6019 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6020 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6022 asym->section = &mips_elf_scom_section;
6023 asym->value = elfsym->internal_elf_sym.st_size;
6024 break;
6026 case SHN_MIPS_SUNDEFINED:
6027 asym->section = bfd_und_section_ptr;
6028 break;
6030 case SHN_MIPS_TEXT:
6032 asection *section = bfd_get_section_by_name (abfd, ".text");
6034 BFD_ASSERT (SGI_COMPAT (abfd));
6035 if (section != NULL)
6037 asym->section = section;
6038 /* MIPS_TEXT is a bit special, the address is not an offset
6039 to the base of the .text section. So substract the section
6040 base address to make it an offset. */
6041 asym->value -= section->vma;
6044 break;
6046 case SHN_MIPS_DATA:
6048 asection *section = bfd_get_section_by_name (abfd, ".data");
6050 BFD_ASSERT (SGI_COMPAT (abfd));
6051 if (section != NULL)
6053 asym->section = section;
6054 /* MIPS_DATA is a bit special, the address is not an offset
6055 to the base of the .data section. So substract the section
6056 base address to make it an offset. */
6057 asym->value -= section->vma;
6060 break;
6063 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6064 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6065 && (asym->value & 1) != 0)
6067 asym->value--;
6068 elfsym->internal_elf_sym.st_other
6069 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6073 /* Implement elf_backend_eh_frame_address_size. This differs from
6074 the default in the way it handles EABI64.
6076 EABI64 was originally specified as an LP64 ABI, and that is what
6077 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6078 historically accepted the combination of -mabi=eabi and -mlong32,
6079 and this ILP32 variation has become semi-official over time.
6080 Both forms use elf32 and have pointer-sized FDE addresses.
6082 If an EABI object was generated by GCC 4.0 or above, it will have
6083 an empty .gcc_compiled_longXX section, where XX is the size of longs
6084 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6085 have no special marking to distinguish them from LP64 objects.
6087 We don't want users of the official LP64 ABI to be punished for the
6088 existence of the ILP32 variant, but at the same time, we don't want
6089 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6090 We therefore take the following approach:
6092 - If ABFD contains a .gcc_compiled_longXX section, use it to
6093 determine the pointer size.
6095 - Otherwise check the type of the first relocation. Assume that
6096 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6098 - Otherwise punt.
6100 The second check is enough to detect LP64 objects generated by pre-4.0
6101 compilers because, in the kind of output generated by those compilers,
6102 the first relocation will be associated with either a CIE personality
6103 routine or an FDE start address. Furthermore, the compilers never
6104 used a special (non-pointer) encoding for this ABI.
6106 Checking the relocation type should also be safe because there is no
6107 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6108 did so. */
6110 unsigned int
6111 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6113 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6114 return 8;
6115 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6117 bfd_boolean long32_p, long64_p;
6119 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6120 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6121 if (long32_p && long64_p)
6122 return 0;
6123 if (long32_p)
6124 return 4;
6125 if (long64_p)
6126 return 8;
6128 if (sec->reloc_count > 0
6129 && elf_section_data (sec)->relocs != NULL
6130 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6131 == R_MIPS_64))
6132 return 8;
6134 return 0;
6136 return 4;
6139 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6140 relocations against two unnamed section symbols to resolve to the
6141 same address. For example, if we have code like:
6143 lw $4,%got_disp(.data)($gp)
6144 lw $25,%got_disp(.text)($gp)
6145 jalr $25
6147 then the linker will resolve both relocations to .data and the program
6148 will jump there rather than to .text.
6150 We can work around this problem by giving names to local section symbols.
6151 This is also what the MIPSpro tools do. */
6153 bfd_boolean
6154 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6156 return SGI_COMPAT (abfd);
6159 /* Work over a section just before writing it out. This routine is
6160 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6161 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6162 a better way. */
6164 bfd_boolean
6165 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6167 if (hdr->sh_type == SHT_MIPS_REGINFO
6168 && hdr->sh_size > 0)
6170 bfd_byte buf[4];
6172 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6173 BFD_ASSERT (hdr->contents == NULL);
6175 if (bfd_seek (abfd,
6176 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6177 SEEK_SET) != 0)
6178 return FALSE;
6179 H_PUT_32 (abfd, elf_gp (abfd), buf);
6180 if (bfd_bwrite (buf, 4, abfd) != 4)
6181 return FALSE;
6184 if (hdr->sh_type == SHT_MIPS_OPTIONS
6185 && hdr->bfd_section != NULL
6186 && mips_elf_section_data (hdr->bfd_section) != NULL
6187 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6189 bfd_byte *contents, *l, *lend;
6191 /* We stored the section contents in the tdata field in the
6192 set_section_contents routine. We save the section contents
6193 so that we don't have to read them again.
6194 At this point we know that elf_gp is set, so we can look
6195 through the section contents to see if there is an
6196 ODK_REGINFO structure. */
6198 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6199 l = contents;
6200 lend = contents + hdr->sh_size;
6201 while (l + sizeof (Elf_External_Options) <= lend)
6203 Elf_Internal_Options intopt;
6205 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6206 &intopt);
6207 if (intopt.size < sizeof (Elf_External_Options))
6209 (*_bfd_error_handler)
6210 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6211 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6212 break;
6214 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6216 bfd_byte buf[8];
6218 if (bfd_seek (abfd,
6219 (hdr->sh_offset
6220 + (l - contents)
6221 + sizeof (Elf_External_Options)
6222 + (sizeof (Elf64_External_RegInfo) - 8)),
6223 SEEK_SET) != 0)
6224 return FALSE;
6225 H_PUT_64 (abfd, elf_gp (abfd), buf);
6226 if (bfd_bwrite (buf, 8, abfd) != 8)
6227 return FALSE;
6229 else if (intopt.kind == ODK_REGINFO)
6231 bfd_byte buf[4];
6233 if (bfd_seek (abfd,
6234 (hdr->sh_offset
6235 + (l - contents)
6236 + sizeof (Elf_External_Options)
6237 + (sizeof (Elf32_External_RegInfo) - 4)),
6238 SEEK_SET) != 0)
6239 return FALSE;
6240 H_PUT_32 (abfd, elf_gp (abfd), buf);
6241 if (bfd_bwrite (buf, 4, abfd) != 4)
6242 return FALSE;
6244 l += intopt.size;
6248 if (hdr->bfd_section != NULL)
6250 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6252 /* .sbss is not handled specially here because the GNU/Linux
6253 prelinker can convert .sbss from NOBITS to PROGBITS and
6254 changing it back to NOBITS breaks the binary. The entry in
6255 _bfd_mips_elf_special_sections will ensure the correct flags
6256 are set on .sbss if BFD creates it without reading it from an
6257 input file, and without special handling here the flags set
6258 on it in an input file will be followed. */
6259 if (strcmp (name, ".sdata") == 0
6260 || strcmp (name, ".lit8") == 0
6261 || strcmp (name, ".lit4") == 0)
6263 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6264 hdr->sh_type = SHT_PROGBITS;
6266 else if (strcmp (name, ".srdata") == 0)
6268 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6269 hdr->sh_type = SHT_PROGBITS;
6271 else if (strcmp (name, ".compact_rel") == 0)
6273 hdr->sh_flags = 0;
6274 hdr->sh_type = SHT_PROGBITS;
6276 else if (strcmp (name, ".rtproc") == 0)
6278 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6280 unsigned int adjust;
6282 adjust = hdr->sh_size % hdr->sh_addralign;
6283 if (adjust != 0)
6284 hdr->sh_size += hdr->sh_addralign - adjust;
6289 return TRUE;
6292 /* Handle a MIPS specific section when reading an object file. This
6293 is called when elfcode.h finds a section with an unknown type.
6294 This routine supports both the 32-bit and 64-bit ELF ABI.
6296 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6297 how to. */
6299 bfd_boolean
6300 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6301 Elf_Internal_Shdr *hdr,
6302 const char *name,
6303 int shindex)
6305 flagword flags = 0;
6307 /* There ought to be a place to keep ELF backend specific flags, but
6308 at the moment there isn't one. We just keep track of the
6309 sections by their name, instead. Fortunately, the ABI gives
6310 suggested names for all the MIPS specific sections, so we will
6311 probably get away with this. */
6312 switch (hdr->sh_type)
6314 case SHT_MIPS_LIBLIST:
6315 if (strcmp (name, ".liblist") != 0)
6316 return FALSE;
6317 break;
6318 case SHT_MIPS_MSYM:
6319 if (strcmp (name, ".msym") != 0)
6320 return FALSE;
6321 break;
6322 case SHT_MIPS_CONFLICT:
6323 if (strcmp (name, ".conflict") != 0)
6324 return FALSE;
6325 break;
6326 case SHT_MIPS_GPTAB:
6327 if (! CONST_STRNEQ (name, ".gptab."))
6328 return FALSE;
6329 break;
6330 case SHT_MIPS_UCODE:
6331 if (strcmp (name, ".ucode") != 0)
6332 return FALSE;
6333 break;
6334 case SHT_MIPS_DEBUG:
6335 if (strcmp (name, ".mdebug") != 0)
6336 return FALSE;
6337 flags = SEC_DEBUGGING;
6338 break;
6339 case SHT_MIPS_REGINFO:
6340 if (strcmp (name, ".reginfo") != 0
6341 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6342 return FALSE;
6343 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6344 break;
6345 case SHT_MIPS_IFACE:
6346 if (strcmp (name, ".MIPS.interfaces") != 0)
6347 return FALSE;
6348 break;
6349 case SHT_MIPS_CONTENT:
6350 if (! CONST_STRNEQ (name, ".MIPS.content"))
6351 return FALSE;
6352 break;
6353 case SHT_MIPS_OPTIONS:
6354 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6355 return FALSE;
6356 break;
6357 case SHT_MIPS_DWARF:
6358 if (! CONST_STRNEQ (name, ".debug_")
6359 && ! CONST_STRNEQ (name, ".zdebug_"))
6360 return FALSE;
6361 break;
6362 case SHT_MIPS_SYMBOL_LIB:
6363 if (strcmp (name, ".MIPS.symlib") != 0)
6364 return FALSE;
6365 break;
6366 case SHT_MIPS_EVENTS:
6367 if (! CONST_STRNEQ (name, ".MIPS.events")
6368 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6369 return FALSE;
6370 break;
6371 default:
6372 break;
6375 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6376 return FALSE;
6378 if (flags)
6380 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6381 (bfd_get_section_flags (abfd,
6382 hdr->bfd_section)
6383 | flags)))
6384 return FALSE;
6387 /* FIXME: We should record sh_info for a .gptab section. */
6389 /* For a .reginfo section, set the gp value in the tdata information
6390 from the contents of this section. We need the gp value while
6391 processing relocs, so we just get it now. The .reginfo section
6392 is not used in the 64-bit MIPS ELF ABI. */
6393 if (hdr->sh_type == SHT_MIPS_REGINFO)
6395 Elf32_External_RegInfo ext;
6396 Elf32_RegInfo s;
6398 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6399 &ext, 0, sizeof ext))
6400 return FALSE;
6401 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6402 elf_gp (abfd) = s.ri_gp_value;
6405 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6406 set the gp value based on what we find. We may see both
6407 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6408 they should agree. */
6409 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6411 bfd_byte *contents, *l, *lend;
6413 contents = bfd_malloc (hdr->sh_size);
6414 if (contents == NULL)
6415 return FALSE;
6416 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6417 0, hdr->sh_size))
6419 free (contents);
6420 return FALSE;
6422 l = contents;
6423 lend = contents + hdr->sh_size;
6424 while (l + sizeof (Elf_External_Options) <= lend)
6426 Elf_Internal_Options intopt;
6428 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6429 &intopt);
6430 if (intopt.size < sizeof (Elf_External_Options))
6432 (*_bfd_error_handler)
6433 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6434 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6435 break;
6437 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6439 Elf64_Internal_RegInfo intreg;
6441 bfd_mips_elf64_swap_reginfo_in
6442 (abfd,
6443 ((Elf64_External_RegInfo *)
6444 (l + sizeof (Elf_External_Options))),
6445 &intreg);
6446 elf_gp (abfd) = intreg.ri_gp_value;
6448 else if (intopt.kind == ODK_REGINFO)
6450 Elf32_RegInfo intreg;
6452 bfd_mips_elf32_swap_reginfo_in
6453 (abfd,
6454 ((Elf32_External_RegInfo *)
6455 (l + sizeof (Elf_External_Options))),
6456 &intreg);
6457 elf_gp (abfd) = intreg.ri_gp_value;
6459 l += intopt.size;
6461 free (contents);
6464 return TRUE;
6467 /* Set the correct type for a MIPS ELF section. We do this by the
6468 section name, which is a hack, but ought to work. This routine is
6469 used by both the 32-bit and the 64-bit ABI. */
6471 bfd_boolean
6472 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6474 const char *name = bfd_get_section_name (abfd, sec);
6476 if (strcmp (name, ".liblist") == 0)
6478 hdr->sh_type = SHT_MIPS_LIBLIST;
6479 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6480 /* The sh_link field is set in final_write_processing. */
6482 else if (strcmp (name, ".conflict") == 0)
6483 hdr->sh_type = SHT_MIPS_CONFLICT;
6484 else if (CONST_STRNEQ (name, ".gptab."))
6486 hdr->sh_type = SHT_MIPS_GPTAB;
6487 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6488 /* The sh_info field is set in final_write_processing. */
6490 else if (strcmp (name, ".ucode") == 0)
6491 hdr->sh_type = SHT_MIPS_UCODE;
6492 else if (strcmp (name, ".mdebug") == 0)
6494 hdr->sh_type = SHT_MIPS_DEBUG;
6495 /* In a shared object on IRIX 5.3, the .mdebug section has an
6496 entsize of 0. FIXME: Does this matter? */
6497 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6498 hdr->sh_entsize = 0;
6499 else
6500 hdr->sh_entsize = 1;
6502 else if (strcmp (name, ".reginfo") == 0)
6504 hdr->sh_type = SHT_MIPS_REGINFO;
6505 /* In a shared object on IRIX 5.3, the .reginfo section has an
6506 entsize of 0x18. FIXME: Does this matter? */
6507 if (SGI_COMPAT (abfd))
6509 if ((abfd->flags & DYNAMIC) != 0)
6510 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6511 else
6512 hdr->sh_entsize = 1;
6514 else
6515 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6517 else if (SGI_COMPAT (abfd)
6518 && (strcmp (name, ".hash") == 0
6519 || strcmp (name, ".dynamic") == 0
6520 || strcmp (name, ".dynstr") == 0))
6522 if (SGI_COMPAT (abfd))
6523 hdr->sh_entsize = 0;
6524 #if 0
6525 /* This isn't how the IRIX6 linker behaves. */
6526 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6527 #endif
6529 else if (strcmp (name, ".got") == 0
6530 || strcmp (name, ".srdata") == 0
6531 || strcmp (name, ".sdata") == 0
6532 || strcmp (name, ".sbss") == 0
6533 || strcmp (name, ".lit4") == 0
6534 || strcmp (name, ".lit8") == 0)
6535 hdr->sh_flags |= SHF_MIPS_GPREL;
6536 else if (strcmp (name, ".MIPS.interfaces") == 0)
6538 hdr->sh_type = SHT_MIPS_IFACE;
6539 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6541 else if (CONST_STRNEQ (name, ".MIPS.content"))
6543 hdr->sh_type = SHT_MIPS_CONTENT;
6544 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6545 /* The sh_info field is set in final_write_processing. */
6547 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6549 hdr->sh_type = SHT_MIPS_OPTIONS;
6550 hdr->sh_entsize = 1;
6551 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6553 else if (CONST_STRNEQ (name, ".debug_")
6554 || CONST_STRNEQ (name, ".zdebug_"))
6556 hdr->sh_type = SHT_MIPS_DWARF;
6558 /* Irix facilities such as libexc expect a single .debug_frame
6559 per executable, the system ones have NOSTRIP set and the linker
6560 doesn't merge sections with different flags so ... */
6561 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6562 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6564 else if (strcmp (name, ".MIPS.symlib") == 0)
6566 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6567 /* The sh_link and sh_info fields are set in
6568 final_write_processing. */
6570 else if (CONST_STRNEQ (name, ".MIPS.events")
6571 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6573 hdr->sh_type = SHT_MIPS_EVENTS;
6574 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6575 /* The sh_link field is set in final_write_processing. */
6577 else if (strcmp (name, ".msym") == 0)
6579 hdr->sh_type = SHT_MIPS_MSYM;
6580 hdr->sh_flags |= SHF_ALLOC;
6581 hdr->sh_entsize = 8;
6584 /* The generic elf_fake_sections will set up REL_HDR using the default
6585 kind of relocations. We used to set up a second header for the
6586 non-default kind of relocations here, but only NewABI would use
6587 these, and the IRIX ld doesn't like resulting empty RELA sections.
6588 Thus we create those header only on demand now. */
6590 return TRUE;
6593 /* Given a BFD section, try to locate the corresponding ELF section
6594 index. This is used by both the 32-bit and the 64-bit ABI.
6595 Actually, it's not clear to me that the 64-bit ABI supports these,
6596 but for non-PIC objects we will certainly want support for at least
6597 the .scommon section. */
6599 bfd_boolean
6600 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6601 asection *sec, int *retval)
6603 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6605 *retval = SHN_MIPS_SCOMMON;
6606 return TRUE;
6608 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6610 *retval = SHN_MIPS_ACOMMON;
6611 return TRUE;
6613 return FALSE;
6616 /* Hook called by the linker routine which adds symbols from an object
6617 file. We must handle the special MIPS section numbers here. */
6619 bfd_boolean
6620 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6621 Elf_Internal_Sym *sym, const char **namep,
6622 flagword *flagsp ATTRIBUTE_UNUSED,
6623 asection **secp, bfd_vma *valp)
6625 if (SGI_COMPAT (abfd)
6626 && (abfd->flags & DYNAMIC) != 0
6627 && strcmp (*namep, "_rld_new_interface") == 0)
6629 /* Skip IRIX5 rld entry name. */
6630 *namep = NULL;
6631 return TRUE;
6634 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6635 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6636 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6637 a magic symbol resolved by the linker, we ignore this bogus definition
6638 of _gp_disp. New ABI objects do not suffer from this problem so this
6639 is not done for them. */
6640 if (!NEWABI_P(abfd)
6641 && (sym->st_shndx == SHN_ABS)
6642 && (strcmp (*namep, "_gp_disp") == 0))
6644 *namep = NULL;
6645 return TRUE;
6648 switch (sym->st_shndx)
6650 case SHN_COMMON:
6651 /* Common symbols less than the GP size are automatically
6652 treated as SHN_MIPS_SCOMMON symbols. */
6653 if (sym->st_size > elf_gp_size (abfd)
6654 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6655 || IRIX_COMPAT (abfd) == ict_irix6)
6656 break;
6657 /* Fall through. */
6658 case SHN_MIPS_SCOMMON:
6659 *secp = bfd_make_section_old_way (abfd, ".scommon");
6660 (*secp)->flags |= SEC_IS_COMMON;
6661 *valp = sym->st_size;
6662 break;
6664 case SHN_MIPS_TEXT:
6665 /* This section is used in a shared object. */
6666 if (elf_tdata (abfd)->elf_text_section == NULL)
6668 asymbol *elf_text_symbol;
6669 asection *elf_text_section;
6670 bfd_size_type amt = sizeof (asection);
6672 elf_text_section = bfd_zalloc (abfd, amt);
6673 if (elf_text_section == NULL)
6674 return FALSE;
6676 amt = sizeof (asymbol);
6677 elf_text_symbol = bfd_zalloc (abfd, amt);
6678 if (elf_text_symbol == NULL)
6679 return FALSE;
6681 /* Initialize the section. */
6683 elf_tdata (abfd)->elf_text_section = elf_text_section;
6684 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6686 elf_text_section->symbol = elf_text_symbol;
6687 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6689 elf_text_section->name = ".text";
6690 elf_text_section->flags = SEC_NO_FLAGS;
6691 elf_text_section->output_section = NULL;
6692 elf_text_section->owner = abfd;
6693 elf_text_symbol->name = ".text";
6694 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6695 elf_text_symbol->section = elf_text_section;
6697 /* This code used to do *secp = bfd_und_section_ptr if
6698 info->shared. I don't know why, and that doesn't make sense,
6699 so I took it out. */
6700 *secp = elf_tdata (abfd)->elf_text_section;
6701 break;
6703 case SHN_MIPS_ACOMMON:
6704 /* Fall through. XXX Can we treat this as allocated data? */
6705 case SHN_MIPS_DATA:
6706 /* This section is used in a shared object. */
6707 if (elf_tdata (abfd)->elf_data_section == NULL)
6709 asymbol *elf_data_symbol;
6710 asection *elf_data_section;
6711 bfd_size_type amt = sizeof (asection);
6713 elf_data_section = bfd_zalloc (abfd, amt);
6714 if (elf_data_section == NULL)
6715 return FALSE;
6717 amt = sizeof (asymbol);
6718 elf_data_symbol = bfd_zalloc (abfd, amt);
6719 if (elf_data_symbol == NULL)
6720 return FALSE;
6722 /* Initialize the section. */
6724 elf_tdata (abfd)->elf_data_section = elf_data_section;
6725 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6727 elf_data_section->symbol = elf_data_symbol;
6728 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6730 elf_data_section->name = ".data";
6731 elf_data_section->flags = SEC_NO_FLAGS;
6732 elf_data_section->output_section = NULL;
6733 elf_data_section->owner = abfd;
6734 elf_data_symbol->name = ".data";
6735 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6736 elf_data_symbol->section = elf_data_section;
6738 /* This code used to do *secp = bfd_und_section_ptr if
6739 info->shared. I don't know why, and that doesn't make sense,
6740 so I took it out. */
6741 *secp = elf_tdata (abfd)->elf_data_section;
6742 break;
6744 case SHN_MIPS_SUNDEFINED:
6745 *secp = bfd_und_section_ptr;
6746 break;
6749 if (SGI_COMPAT (abfd)
6750 && ! info->shared
6751 && info->output_bfd->xvec == abfd->xvec
6752 && strcmp (*namep, "__rld_obj_head") == 0)
6754 struct elf_link_hash_entry *h;
6755 struct bfd_link_hash_entry *bh;
6757 /* Mark __rld_obj_head as dynamic. */
6758 bh = NULL;
6759 if (! (_bfd_generic_link_add_one_symbol
6760 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6761 get_elf_backend_data (abfd)->collect, &bh)))
6762 return FALSE;
6764 h = (struct elf_link_hash_entry *) bh;
6765 h->non_elf = 0;
6766 h->def_regular = 1;
6767 h->type = STT_OBJECT;
6769 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6770 return FALSE;
6772 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6775 /* If this is a mips16 text symbol, add 1 to the value to make it
6776 odd. This will cause something like .word SYM to come up with
6777 the right value when it is loaded into the PC. */
6778 if (ELF_ST_IS_MIPS16 (sym->st_other))
6779 ++*valp;
6781 return TRUE;
6784 /* This hook function is called before the linker writes out a global
6785 symbol. We mark symbols as small common if appropriate. This is
6786 also where we undo the increment of the value for a mips16 symbol. */
6788 bfd_boolean
6789 _bfd_mips_elf_link_output_symbol_hook
6790 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6791 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6792 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6794 /* If we see a common symbol, which implies a relocatable link, then
6795 if a symbol was small common in an input file, mark it as small
6796 common in the output file. */
6797 if (sym->st_shndx == SHN_COMMON
6798 && strcmp (input_sec->name, ".scommon") == 0)
6799 sym->st_shndx = SHN_MIPS_SCOMMON;
6801 if (ELF_ST_IS_MIPS16 (sym->st_other))
6802 sym->st_value &= ~1;
6804 return TRUE;
6807 /* Functions for the dynamic linker. */
6809 /* Create dynamic sections when linking against a dynamic object. */
6811 bfd_boolean
6812 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6814 struct elf_link_hash_entry *h;
6815 struct bfd_link_hash_entry *bh;
6816 flagword flags;
6817 register asection *s;
6818 const char * const *namep;
6819 struct mips_elf_link_hash_table *htab;
6821 htab = mips_elf_hash_table (info);
6822 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6823 | SEC_LINKER_CREATED | SEC_READONLY);
6825 /* The psABI requires a read-only .dynamic section, but the VxWorks
6826 EABI doesn't. */
6827 if (!htab->is_vxworks)
6829 s = bfd_get_section_by_name (abfd, ".dynamic");
6830 if (s != NULL)
6832 if (! bfd_set_section_flags (abfd, s, flags))
6833 return FALSE;
6837 /* We need to create .got section. */
6838 if (!mips_elf_create_got_section (abfd, info))
6839 return FALSE;
6841 if (! mips_elf_rel_dyn_section (info, TRUE))
6842 return FALSE;
6844 /* Create .stub section. */
6845 s = bfd_make_section_with_flags (abfd,
6846 MIPS_ELF_STUB_SECTION_NAME (abfd),
6847 flags | SEC_CODE);
6848 if (s == NULL
6849 || ! bfd_set_section_alignment (abfd, s,
6850 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6851 return FALSE;
6852 htab->sstubs = s;
6854 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6855 && !info->shared
6856 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6858 s = bfd_make_section_with_flags (abfd, ".rld_map",
6859 flags &~ (flagword) SEC_READONLY);
6860 if (s == NULL
6861 || ! bfd_set_section_alignment (abfd, s,
6862 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6863 return FALSE;
6866 /* On IRIX5, we adjust add some additional symbols and change the
6867 alignments of several sections. There is no ABI documentation
6868 indicating that this is necessary on IRIX6, nor any evidence that
6869 the linker takes such action. */
6870 if (IRIX_COMPAT (abfd) == ict_irix5)
6872 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6874 bh = NULL;
6875 if (! (_bfd_generic_link_add_one_symbol
6876 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6877 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6878 return FALSE;
6880 h = (struct elf_link_hash_entry *) bh;
6881 h->non_elf = 0;
6882 h->def_regular = 1;
6883 h->type = STT_SECTION;
6885 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6886 return FALSE;
6889 /* We need to create a .compact_rel section. */
6890 if (SGI_COMPAT (abfd))
6892 if (!mips_elf_create_compact_rel_section (abfd, info))
6893 return FALSE;
6896 /* Change alignments of some sections. */
6897 s = bfd_get_section_by_name (abfd, ".hash");
6898 if (s != NULL)
6899 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6900 s = bfd_get_section_by_name (abfd, ".dynsym");
6901 if (s != NULL)
6902 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6903 s = bfd_get_section_by_name (abfd, ".dynstr");
6904 if (s != NULL)
6905 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6906 s = bfd_get_section_by_name (abfd, ".reginfo");
6907 if (s != NULL)
6908 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6909 s = bfd_get_section_by_name (abfd, ".dynamic");
6910 if (s != NULL)
6911 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6914 if (!info->shared)
6916 const char *name;
6918 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6919 bh = NULL;
6920 if (!(_bfd_generic_link_add_one_symbol
6921 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6922 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6923 return FALSE;
6925 h = (struct elf_link_hash_entry *) bh;
6926 h->non_elf = 0;
6927 h->def_regular = 1;
6928 h->type = STT_SECTION;
6930 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6931 return FALSE;
6933 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6935 /* __rld_map is a four byte word located in the .data section
6936 and is filled in by the rtld to contain a pointer to
6937 the _r_debug structure. Its symbol value will be set in
6938 _bfd_mips_elf_finish_dynamic_symbol. */
6939 s = bfd_get_section_by_name (abfd, ".rld_map");
6940 BFD_ASSERT (s != NULL);
6942 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6943 bh = NULL;
6944 if (!(_bfd_generic_link_add_one_symbol
6945 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6946 get_elf_backend_data (abfd)->collect, &bh)))
6947 return FALSE;
6949 h = (struct elf_link_hash_entry *) bh;
6950 h->non_elf = 0;
6951 h->def_regular = 1;
6952 h->type = STT_OBJECT;
6954 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6955 return FALSE;
6959 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6960 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6961 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6962 return FALSE;
6964 /* Cache the sections created above. */
6965 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6966 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6967 if (htab->is_vxworks)
6969 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6970 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6972 else
6973 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
6974 if (!htab->sdynbss
6975 || (htab->is_vxworks && !htab->srelbss && !info->shared)
6976 || !htab->srelplt
6977 || !htab->splt)
6978 abort ();
6980 if (htab->is_vxworks)
6982 /* Do the usual VxWorks handling. */
6983 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6984 return FALSE;
6986 /* Work out the PLT sizes. */
6987 if (info->shared)
6989 htab->plt_header_size
6990 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6991 htab->plt_entry_size
6992 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6994 else
6996 htab->plt_header_size
6997 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6998 htab->plt_entry_size
6999 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7002 else if (!info->shared)
7004 /* All variants of the plt0 entry are the same size. */
7005 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7006 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7009 return TRUE;
7012 /* Return true if relocation REL against section SEC is a REL rather than
7013 RELA relocation. RELOCS is the first relocation in the section and
7014 ABFD is the bfd that contains SEC. */
7016 static bfd_boolean
7017 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7018 const Elf_Internal_Rela *relocs,
7019 const Elf_Internal_Rela *rel)
7021 Elf_Internal_Shdr *rel_hdr;
7022 const struct elf_backend_data *bed;
7024 /* To determine which flavor or relocation this is, we depend on the
7025 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7026 rel_hdr = &elf_section_data (sec)->rel_hdr;
7027 bed = get_elf_backend_data (abfd);
7028 if ((size_t) (rel - relocs)
7029 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7030 rel_hdr = elf_section_data (sec)->rel_hdr2;
7031 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7034 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7035 HOWTO is the relocation's howto and CONTENTS points to the contents
7036 of the section that REL is against. */
7038 static bfd_vma
7039 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7040 reloc_howto_type *howto, bfd_byte *contents)
7042 bfd_byte *location;
7043 unsigned int r_type;
7044 bfd_vma addend;
7046 r_type = ELF_R_TYPE (abfd, rel->r_info);
7047 location = contents + rel->r_offset;
7049 /* Get the addend, which is stored in the input file. */
7050 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7051 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7052 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7054 return addend & howto->src_mask;
7057 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7058 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7059 and update *ADDEND with the final addend. Return true on success
7060 or false if the LO16 could not be found. RELEND is the exclusive
7061 upper bound on the relocations for REL's section. */
7063 static bfd_boolean
7064 mips_elf_add_lo16_rel_addend (bfd *abfd,
7065 const Elf_Internal_Rela *rel,
7066 const Elf_Internal_Rela *relend,
7067 bfd_byte *contents, bfd_vma *addend)
7069 unsigned int r_type, lo16_type;
7070 const Elf_Internal_Rela *lo16_relocation;
7071 reloc_howto_type *lo16_howto;
7072 bfd_vma l;
7074 r_type = ELF_R_TYPE (abfd, rel->r_info);
7075 if (mips16_reloc_p (r_type))
7076 lo16_type = R_MIPS16_LO16;
7077 else
7078 lo16_type = R_MIPS_LO16;
7080 /* The combined value is the sum of the HI16 addend, left-shifted by
7081 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7082 code does a `lui' of the HI16 value, and then an `addiu' of the
7083 LO16 value.)
7085 Scan ahead to find a matching LO16 relocation.
7087 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7088 be immediately following. However, for the IRIX6 ABI, the next
7089 relocation may be a composed relocation consisting of several
7090 relocations for the same address. In that case, the R_MIPS_LO16
7091 relocation may occur as one of these. We permit a similar
7092 extension in general, as that is useful for GCC.
7094 In some cases GCC dead code elimination removes the LO16 but keeps
7095 the corresponding HI16. This is strictly speaking a violation of
7096 the ABI but not immediately harmful. */
7097 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7098 if (lo16_relocation == NULL)
7099 return FALSE;
7101 /* Obtain the addend kept there. */
7102 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7103 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7105 l <<= lo16_howto->rightshift;
7106 l = _bfd_mips_elf_sign_extend (l, 16);
7108 *addend <<= 16;
7109 *addend += l;
7110 return TRUE;
7113 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7114 store the contents in *CONTENTS on success. Assume that *CONTENTS
7115 already holds the contents if it is nonull on entry. */
7117 static bfd_boolean
7118 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7120 if (*contents)
7121 return TRUE;
7123 /* Get cached copy if it exists. */
7124 if (elf_section_data (sec)->this_hdr.contents != NULL)
7126 *contents = elf_section_data (sec)->this_hdr.contents;
7127 return TRUE;
7130 return bfd_malloc_and_get_section (abfd, sec, contents);
7133 /* Look through the relocs for a section during the first phase, and
7134 allocate space in the global offset table. */
7136 bfd_boolean
7137 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7138 asection *sec, const Elf_Internal_Rela *relocs)
7140 const char *name;
7141 bfd *dynobj;
7142 Elf_Internal_Shdr *symtab_hdr;
7143 struct elf_link_hash_entry **sym_hashes;
7144 size_t extsymoff;
7145 const Elf_Internal_Rela *rel;
7146 const Elf_Internal_Rela *rel_end;
7147 asection *sreloc;
7148 const struct elf_backend_data *bed;
7149 struct mips_elf_link_hash_table *htab;
7150 bfd_byte *contents;
7151 bfd_vma addend;
7152 reloc_howto_type *howto;
7154 if (info->relocatable)
7155 return TRUE;
7157 htab = mips_elf_hash_table (info);
7158 dynobj = elf_hash_table (info)->dynobj;
7159 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7160 sym_hashes = elf_sym_hashes (abfd);
7161 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7163 bed = get_elf_backend_data (abfd);
7164 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7166 /* Check for the mips16 stub sections. */
7168 name = bfd_get_section_name (abfd, sec);
7169 if (FN_STUB_P (name))
7171 unsigned long r_symndx;
7173 /* Look at the relocation information to figure out which symbol
7174 this is for. */
7176 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7177 if (r_symndx == 0)
7179 (*_bfd_error_handler)
7180 (_("%B: Warning: cannot determine the target function for"
7181 " stub section `%s'"),
7182 abfd, name);
7183 bfd_set_error (bfd_error_bad_value);
7184 return FALSE;
7187 if (r_symndx < extsymoff
7188 || sym_hashes[r_symndx - extsymoff] == NULL)
7190 asection *o;
7192 /* This stub is for a local symbol. This stub will only be
7193 needed if there is some relocation in this BFD, other
7194 than a 16 bit function call, which refers to this symbol. */
7195 for (o = abfd->sections; o != NULL; o = o->next)
7197 Elf_Internal_Rela *sec_relocs;
7198 const Elf_Internal_Rela *r, *rend;
7200 /* We can ignore stub sections when looking for relocs. */
7201 if ((o->flags & SEC_RELOC) == 0
7202 || o->reloc_count == 0
7203 || section_allows_mips16_refs_p (o))
7204 continue;
7206 sec_relocs
7207 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7208 info->keep_memory);
7209 if (sec_relocs == NULL)
7210 return FALSE;
7212 rend = sec_relocs + o->reloc_count;
7213 for (r = sec_relocs; r < rend; r++)
7214 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7215 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7216 break;
7218 if (elf_section_data (o)->relocs != sec_relocs)
7219 free (sec_relocs);
7221 if (r < rend)
7222 break;
7225 if (o == NULL)
7227 /* There is no non-call reloc for this stub, so we do
7228 not need it. Since this function is called before
7229 the linker maps input sections to output sections, we
7230 can easily discard it by setting the SEC_EXCLUDE
7231 flag. */
7232 sec->flags |= SEC_EXCLUDE;
7233 return TRUE;
7236 /* Record this stub in an array of local symbol stubs for
7237 this BFD. */
7238 if (elf_tdata (abfd)->local_stubs == NULL)
7240 unsigned long symcount;
7241 asection **n;
7242 bfd_size_type amt;
7244 if (elf_bad_symtab (abfd))
7245 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7246 else
7247 symcount = symtab_hdr->sh_info;
7248 amt = symcount * sizeof (asection *);
7249 n = bfd_zalloc (abfd, amt);
7250 if (n == NULL)
7251 return FALSE;
7252 elf_tdata (abfd)->local_stubs = n;
7255 sec->flags |= SEC_KEEP;
7256 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7258 /* We don't need to set mips16_stubs_seen in this case.
7259 That flag is used to see whether we need to look through
7260 the global symbol table for stubs. We don't need to set
7261 it here, because we just have a local stub. */
7263 else
7265 struct mips_elf_link_hash_entry *h;
7267 h = ((struct mips_elf_link_hash_entry *)
7268 sym_hashes[r_symndx - extsymoff]);
7270 while (h->root.root.type == bfd_link_hash_indirect
7271 || h->root.root.type == bfd_link_hash_warning)
7272 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7274 /* H is the symbol this stub is for. */
7276 /* If we already have an appropriate stub for this function, we
7277 don't need another one, so we can discard this one. Since
7278 this function is called before the linker maps input sections
7279 to output sections, we can easily discard it by setting the
7280 SEC_EXCLUDE flag. */
7281 if (h->fn_stub != NULL)
7283 sec->flags |= SEC_EXCLUDE;
7284 return TRUE;
7287 sec->flags |= SEC_KEEP;
7288 h->fn_stub = sec;
7289 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7292 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7294 unsigned long r_symndx;
7295 struct mips_elf_link_hash_entry *h;
7296 asection **loc;
7298 /* Look at the relocation information to figure out which symbol
7299 this is for. */
7301 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7302 if (r_symndx == 0)
7304 (*_bfd_error_handler)
7305 (_("%B: Warning: cannot determine the target function for"
7306 " stub section `%s'"),
7307 abfd, name);
7308 bfd_set_error (bfd_error_bad_value);
7309 return FALSE;
7312 if (r_symndx < extsymoff
7313 || sym_hashes[r_symndx - extsymoff] == NULL)
7315 asection *o;
7317 /* This stub is for a local symbol. This stub will only be
7318 needed if there is some relocation (R_MIPS16_26) in this BFD
7319 that refers to this symbol. */
7320 for (o = abfd->sections; o != NULL; o = o->next)
7322 Elf_Internal_Rela *sec_relocs;
7323 const Elf_Internal_Rela *r, *rend;
7325 /* We can ignore stub sections when looking for relocs. */
7326 if ((o->flags & SEC_RELOC) == 0
7327 || o->reloc_count == 0
7328 || section_allows_mips16_refs_p (o))
7329 continue;
7331 sec_relocs
7332 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7333 info->keep_memory);
7334 if (sec_relocs == NULL)
7335 return FALSE;
7337 rend = sec_relocs + o->reloc_count;
7338 for (r = sec_relocs; r < rend; r++)
7339 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7340 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7341 break;
7343 if (elf_section_data (o)->relocs != sec_relocs)
7344 free (sec_relocs);
7346 if (r < rend)
7347 break;
7350 if (o == NULL)
7352 /* There is no non-call reloc for this stub, so we do
7353 not need it. Since this function is called before
7354 the linker maps input sections to output sections, we
7355 can easily discard it by setting the SEC_EXCLUDE
7356 flag. */
7357 sec->flags |= SEC_EXCLUDE;
7358 return TRUE;
7361 /* Record this stub in an array of local symbol call_stubs for
7362 this BFD. */
7363 if (elf_tdata (abfd)->local_call_stubs == NULL)
7365 unsigned long symcount;
7366 asection **n;
7367 bfd_size_type amt;
7369 if (elf_bad_symtab (abfd))
7370 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7371 else
7372 symcount = symtab_hdr->sh_info;
7373 amt = symcount * sizeof (asection *);
7374 n = bfd_zalloc (abfd, amt);
7375 if (n == NULL)
7376 return FALSE;
7377 elf_tdata (abfd)->local_call_stubs = n;
7380 sec->flags |= SEC_KEEP;
7381 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7383 /* We don't need to set mips16_stubs_seen in this case.
7384 That flag is used to see whether we need to look through
7385 the global symbol table for stubs. We don't need to set
7386 it here, because we just have a local stub. */
7388 else
7390 h = ((struct mips_elf_link_hash_entry *)
7391 sym_hashes[r_symndx - extsymoff]);
7393 /* H is the symbol this stub is for. */
7395 if (CALL_FP_STUB_P (name))
7396 loc = &h->call_fp_stub;
7397 else
7398 loc = &h->call_stub;
7400 /* If we already have an appropriate stub for this function, we
7401 don't need another one, so we can discard this one. Since
7402 this function is called before the linker maps input sections
7403 to output sections, we can easily discard it by setting the
7404 SEC_EXCLUDE flag. */
7405 if (*loc != NULL)
7407 sec->flags |= SEC_EXCLUDE;
7408 return TRUE;
7411 sec->flags |= SEC_KEEP;
7412 *loc = sec;
7413 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7417 sreloc = NULL;
7418 contents = NULL;
7419 for (rel = relocs; rel < rel_end; ++rel)
7421 unsigned long r_symndx;
7422 unsigned int r_type;
7423 struct elf_link_hash_entry *h;
7424 bfd_boolean can_make_dynamic_p;
7426 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7427 r_type = ELF_R_TYPE (abfd, rel->r_info);
7429 if (r_symndx < extsymoff)
7430 h = NULL;
7431 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7433 (*_bfd_error_handler)
7434 (_("%B: Malformed reloc detected for section %s"),
7435 abfd, name);
7436 bfd_set_error (bfd_error_bad_value);
7437 return FALSE;
7439 else
7441 h = sym_hashes[r_symndx - extsymoff];
7442 while (h != NULL
7443 && (h->root.type == bfd_link_hash_indirect
7444 || h->root.type == bfd_link_hash_warning))
7445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7448 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7449 relocation into a dynamic one. */
7450 can_make_dynamic_p = FALSE;
7451 switch (r_type)
7453 case R_MIPS16_GOT16:
7454 case R_MIPS16_CALL16:
7455 case R_MIPS_GOT16:
7456 case R_MIPS_CALL16:
7457 case R_MIPS_CALL_HI16:
7458 case R_MIPS_CALL_LO16:
7459 case R_MIPS_GOT_HI16:
7460 case R_MIPS_GOT_LO16:
7461 case R_MIPS_GOT_PAGE:
7462 case R_MIPS_GOT_OFST:
7463 case R_MIPS_GOT_DISP:
7464 case R_MIPS_TLS_GOTTPREL:
7465 case R_MIPS_TLS_GD:
7466 case R_MIPS_TLS_LDM:
7467 if (dynobj == NULL)
7468 elf_hash_table (info)->dynobj = dynobj = abfd;
7469 if (!mips_elf_create_got_section (dynobj, info))
7470 return FALSE;
7471 if (htab->is_vxworks && !info->shared)
7473 (*_bfd_error_handler)
7474 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7475 abfd, (unsigned long) rel->r_offset);
7476 bfd_set_error (bfd_error_bad_value);
7477 return FALSE;
7479 break;
7481 case R_MIPS_32:
7482 case R_MIPS_REL32:
7483 case R_MIPS_64:
7484 /* In VxWorks executables, references to external symbols
7485 must be handled using copy relocs or PLT entries; it is not
7486 possible to convert this relocation into a dynamic one.
7488 For executables that use PLTs and copy-relocs, we have a
7489 choice between converting the relocation into a dynamic
7490 one or using copy relocations or PLT entries. It is
7491 usually better to do the former, unless the relocation is
7492 against a read-only section. */
7493 if ((info->shared
7494 || (h != NULL
7495 && !htab->is_vxworks
7496 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7497 && !(!info->nocopyreloc
7498 && !PIC_OBJECT_P (abfd)
7499 && MIPS_ELF_READONLY_SECTION (sec))))
7500 && (sec->flags & SEC_ALLOC) != 0)
7502 can_make_dynamic_p = TRUE;
7503 if (dynobj == NULL)
7504 elf_hash_table (info)->dynobj = dynobj = abfd;
7505 break;
7507 /* Fall through. */
7509 default:
7510 /* Most static relocations require pointer equality, except
7511 for branches. */
7512 if (h)
7513 h->pointer_equality_needed = TRUE;
7514 /* Fall through. */
7516 case R_MIPS_26:
7517 case R_MIPS_PC16:
7518 case R_MIPS16_26:
7519 if (h)
7520 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7521 break;
7524 if (h)
7526 /* Relocations against the special VxWorks __GOTT_BASE__ and
7527 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7528 room for them in .rela.dyn. */
7529 if (is_gott_symbol (info, h))
7531 if (sreloc == NULL)
7533 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7534 if (sreloc == NULL)
7535 return FALSE;
7537 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7538 if (MIPS_ELF_READONLY_SECTION (sec))
7539 /* We tell the dynamic linker that there are
7540 relocations against the text segment. */
7541 info->flags |= DF_TEXTREL;
7544 else if (r_type == R_MIPS_CALL_LO16
7545 || r_type == R_MIPS_GOT_LO16
7546 || r_type == R_MIPS_GOT_DISP
7547 || (got16_reloc_p (r_type) && htab->is_vxworks))
7549 /* We may need a local GOT entry for this relocation. We
7550 don't count R_MIPS_GOT_PAGE because we can estimate the
7551 maximum number of pages needed by looking at the size of
7552 the segment. Similar comments apply to R_MIPS*_GOT16 and
7553 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7554 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7555 R_MIPS_CALL_HI16 because these are always followed by an
7556 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7557 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7558 rel->r_addend, info, 0))
7559 return FALSE;
7562 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7563 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7565 switch (r_type)
7567 case R_MIPS_CALL16:
7568 case R_MIPS16_CALL16:
7569 if (h == NULL)
7571 (*_bfd_error_handler)
7572 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7573 abfd, (unsigned long) rel->r_offset);
7574 bfd_set_error (bfd_error_bad_value);
7575 return FALSE;
7577 /* Fall through. */
7579 case R_MIPS_CALL_HI16:
7580 case R_MIPS_CALL_LO16:
7581 if (h != NULL)
7583 /* VxWorks call relocations point at the function's .got.plt
7584 entry, which will be allocated by adjust_dynamic_symbol.
7585 Otherwise, this symbol requires a global GOT entry. */
7586 if ((!htab->is_vxworks || h->forced_local)
7587 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7588 return FALSE;
7590 /* We need a stub, not a plt entry for the undefined
7591 function. But we record it as if it needs plt. See
7592 _bfd_elf_adjust_dynamic_symbol. */
7593 h->needs_plt = 1;
7594 h->type = STT_FUNC;
7596 break;
7598 case R_MIPS_GOT_PAGE:
7599 /* If this is a global, overridable symbol, GOT_PAGE will
7600 decay to GOT_DISP, so we'll need a GOT entry for it. */
7601 if (h)
7603 struct mips_elf_link_hash_entry *hmips =
7604 (struct mips_elf_link_hash_entry *) h;
7606 /* This symbol is definitely not overridable. */
7607 if (hmips->root.def_regular
7608 && ! (info->shared && ! info->symbolic
7609 && ! hmips->root.forced_local))
7610 h = NULL;
7612 /* Fall through. */
7614 case R_MIPS16_GOT16:
7615 case R_MIPS_GOT16:
7616 case R_MIPS_GOT_HI16:
7617 case R_MIPS_GOT_LO16:
7618 if (!h || r_type == R_MIPS_GOT_PAGE)
7620 /* This relocation needs (or may need, if h != NULL) a
7621 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7622 know for sure until we know whether the symbol is
7623 preemptible. */
7624 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7626 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7627 return FALSE;
7628 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7629 addend = mips_elf_read_rel_addend (abfd, rel,
7630 howto, contents);
7631 if (r_type == R_MIPS_GOT16)
7632 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7633 contents, &addend);
7634 else
7635 addend <<= howto->rightshift;
7637 else
7638 addend = rel->r_addend;
7639 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7640 addend))
7641 return FALSE;
7642 break;
7644 /* Fall through. */
7646 case R_MIPS_GOT_DISP:
7647 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7648 return FALSE;
7649 break;
7651 case R_MIPS_TLS_GOTTPREL:
7652 if (info->shared)
7653 info->flags |= DF_STATIC_TLS;
7654 /* Fall through */
7656 case R_MIPS_TLS_LDM:
7657 if (r_type == R_MIPS_TLS_LDM)
7659 r_symndx = 0;
7660 h = NULL;
7662 /* Fall through */
7664 case R_MIPS_TLS_GD:
7665 /* This symbol requires a global offset table entry, or two
7666 for TLS GD relocations. */
7668 unsigned char flag = (r_type == R_MIPS_TLS_GD
7669 ? GOT_TLS_GD
7670 : r_type == R_MIPS_TLS_LDM
7671 ? GOT_TLS_LDM
7672 : GOT_TLS_IE);
7673 if (h != NULL)
7675 struct mips_elf_link_hash_entry *hmips =
7676 (struct mips_elf_link_hash_entry *) h;
7677 hmips->tls_type |= flag;
7679 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7680 info, flag))
7681 return FALSE;
7683 else
7685 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7687 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7688 rel->r_addend,
7689 info, flag))
7690 return FALSE;
7693 break;
7695 case R_MIPS_32:
7696 case R_MIPS_REL32:
7697 case R_MIPS_64:
7698 /* In VxWorks executables, references to external symbols
7699 are handled using copy relocs or PLT stubs, so there's
7700 no need to add a .rela.dyn entry for this relocation. */
7701 if (can_make_dynamic_p)
7703 if (sreloc == NULL)
7705 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7706 if (sreloc == NULL)
7707 return FALSE;
7709 if (info->shared && h == NULL)
7711 /* When creating a shared object, we must copy these
7712 reloc types into the output file as R_MIPS_REL32
7713 relocs. Make room for this reloc in .rel(a).dyn. */
7714 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7715 if (MIPS_ELF_READONLY_SECTION (sec))
7716 /* We tell the dynamic linker that there are
7717 relocations against the text segment. */
7718 info->flags |= DF_TEXTREL;
7720 else
7722 struct mips_elf_link_hash_entry *hmips;
7724 /* For a shared object, we must copy this relocation
7725 unless the symbol turns out to be undefined and
7726 weak with non-default visibility, in which case
7727 it will be left as zero.
7729 We could elide R_MIPS_REL32 for locally binding symbols
7730 in shared libraries, but do not yet do so.
7732 For an executable, we only need to copy this
7733 reloc if the symbol is defined in a dynamic
7734 object. */
7735 hmips = (struct mips_elf_link_hash_entry *) h;
7736 ++hmips->possibly_dynamic_relocs;
7737 if (MIPS_ELF_READONLY_SECTION (sec))
7738 /* We need it to tell the dynamic linker if there
7739 are relocations against the text segment. */
7740 hmips->readonly_reloc = TRUE;
7744 if (SGI_COMPAT (abfd))
7745 mips_elf_hash_table (info)->compact_rel_size +=
7746 sizeof (Elf32_External_crinfo);
7747 break;
7749 case R_MIPS_26:
7750 case R_MIPS_GPREL16:
7751 case R_MIPS_LITERAL:
7752 case R_MIPS_GPREL32:
7753 if (SGI_COMPAT (abfd))
7754 mips_elf_hash_table (info)->compact_rel_size +=
7755 sizeof (Elf32_External_crinfo);
7756 break;
7758 /* This relocation describes the C++ object vtable hierarchy.
7759 Reconstruct it for later use during GC. */
7760 case R_MIPS_GNU_VTINHERIT:
7761 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7762 return FALSE;
7763 break;
7765 /* This relocation describes which C++ vtable entries are actually
7766 used. Record for later use during GC. */
7767 case R_MIPS_GNU_VTENTRY:
7768 BFD_ASSERT (h != NULL);
7769 if (h != NULL
7770 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7771 return FALSE;
7772 break;
7774 default:
7775 break;
7778 /* We must not create a stub for a symbol that has relocations
7779 related to taking the function's address. This doesn't apply to
7780 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7781 a normal .got entry. */
7782 if (!htab->is_vxworks && h != NULL)
7783 switch (r_type)
7785 default:
7786 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7787 break;
7788 case R_MIPS16_CALL16:
7789 case R_MIPS_CALL16:
7790 case R_MIPS_CALL_HI16:
7791 case R_MIPS_CALL_LO16:
7792 case R_MIPS_JALR:
7793 break;
7796 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7797 if there is one. We only need to handle global symbols here;
7798 we decide whether to keep or delete stubs for local symbols
7799 when processing the stub's relocations. */
7800 if (h != NULL
7801 && !mips16_call_reloc_p (r_type)
7802 && !section_allows_mips16_refs_p (sec))
7804 struct mips_elf_link_hash_entry *mh;
7806 mh = (struct mips_elf_link_hash_entry *) h;
7807 mh->need_fn_stub = TRUE;
7810 /* Refuse some position-dependent relocations when creating a
7811 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7812 not PIC, but we can create dynamic relocations and the result
7813 will be fine. Also do not refuse R_MIPS_LO16, which can be
7814 combined with R_MIPS_GOT16. */
7815 if (info->shared)
7817 switch (r_type)
7819 case R_MIPS16_HI16:
7820 case R_MIPS_HI16:
7821 case R_MIPS_HIGHER:
7822 case R_MIPS_HIGHEST:
7823 /* Don't refuse a high part relocation if it's against
7824 no symbol (e.g. part of a compound relocation). */
7825 if (r_symndx == 0)
7826 break;
7828 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7829 and has a special meaning. */
7830 if (!NEWABI_P (abfd) && h != NULL
7831 && strcmp (h->root.root.string, "_gp_disp") == 0)
7832 break;
7834 /* FALLTHROUGH */
7836 case R_MIPS16_26:
7837 case R_MIPS_26:
7838 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7839 (*_bfd_error_handler)
7840 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7841 abfd, howto->name,
7842 (h) ? h->root.root.string : "a local symbol");
7843 bfd_set_error (bfd_error_bad_value);
7844 return FALSE;
7845 default:
7846 break;
7851 return TRUE;
7854 bfd_boolean
7855 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7856 struct bfd_link_info *link_info,
7857 bfd_boolean *again)
7859 Elf_Internal_Rela *internal_relocs;
7860 Elf_Internal_Rela *irel, *irelend;
7861 Elf_Internal_Shdr *symtab_hdr;
7862 bfd_byte *contents = NULL;
7863 size_t extsymoff;
7864 bfd_boolean changed_contents = FALSE;
7865 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7866 Elf_Internal_Sym *isymbuf = NULL;
7868 /* We are not currently changing any sizes, so only one pass. */
7869 *again = FALSE;
7871 if (link_info->relocatable)
7872 return TRUE;
7874 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7875 link_info->keep_memory);
7876 if (internal_relocs == NULL)
7877 return TRUE;
7879 irelend = internal_relocs + sec->reloc_count
7880 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7881 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7882 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7884 for (irel = internal_relocs; irel < irelend; irel++)
7886 bfd_vma symval;
7887 bfd_signed_vma sym_offset;
7888 unsigned int r_type;
7889 unsigned long r_symndx;
7890 asection *sym_sec;
7891 unsigned long instruction;
7893 /* Turn jalr into bgezal, and jr into beq, if they're marked
7894 with a JALR relocation, that indicate where they jump to.
7895 This saves some pipeline bubbles. */
7896 r_type = ELF_R_TYPE (abfd, irel->r_info);
7897 if (r_type != R_MIPS_JALR)
7898 continue;
7900 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7901 /* Compute the address of the jump target. */
7902 if (r_symndx >= extsymoff)
7904 struct mips_elf_link_hash_entry *h
7905 = ((struct mips_elf_link_hash_entry *)
7906 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7908 while (h->root.root.type == bfd_link_hash_indirect
7909 || h->root.root.type == bfd_link_hash_warning)
7910 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7912 /* If a symbol is undefined, or if it may be overridden,
7913 skip it. */
7914 if (! ((h->root.root.type == bfd_link_hash_defined
7915 || h->root.root.type == bfd_link_hash_defweak)
7916 && h->root.root.u.def.section)
7917 || (link_info->shared && ! link_info->symbolic
7918 && !h->root.forced_local))
7919 continue;
7921 sym_sec = h->root.root.u.def.section;
7922 if (sym_sec->output_section)
7923 symval = (h->root.root.u.def.value
7924 + sym_sec->output_section->vma
7925 + sym_sec->output_offset);
7926 else
7927 symval = h->root.root.u.def.value;
7929 else
7931 Elf_Internal_Sym *isym;
7933 /* Read this BFD's symbols if we haven't done so already. */
7934 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7936 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7937 if (isymbuf == NULL)
7938 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7939 symtab_hdr->sh_info, 0,
7940 NULL, NULL, NULL);
7941 if (isymbuf == NULL)
7942 goto relax_return;
7945 isym = isymbuf + r_symndx;
7946 if (isym->st_shndx == SHN_UNDEF)
7947 continue;
7948 else if (isym->st_shndx == SHN_ABS)
7949 sym_sec = bfd_abs_section_ptr;
7950 else if (isym->st_shndx == SHN_COMMON)
7951 sym_sec = bfd_com_section_ptr;
7952 else
7953 sym_sec
7954 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7955 symval = isym->st_value
7956 + sym_sec->output_section->vma
7957 + sym_sec->output_offset;
7960 /* Compute branch offset, from delay slot of the jump to the
7961 branch target. */
7962 sym_offset = (symval + irel->r_addend)
7963 - (sec_start + irel->r_offset + 4);
7965 /* Branch offset must be properly aligned. */
7966 if ((sym_offset & 3) != 0)
7967 continue;
7969 sym_offset >>= 2;
7971 /* Check that it's in range. */
7972 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7973 continue;
7975 /* Get the section contents if we haven't done so already. */
7976 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7977 goto relax_return;
7979 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7981 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7982 if ((instruction & 0xfc1fffff) == 0x0000f809)
7983 instruction = 0x04110000;
7984 /* If it was jr <reg>, turn it into b <target>. */
7985 else if ((instruction & 0xfc1fffff) == 0x00000008)
7986 instruction = 0x10000000;
7987 else
7988 continue;
7990 instruction |= (sym_offset & 0xffff);
7991 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7992 changed_contents = TRUE;
7995 if (contents != NULL
7996 && elf_section_data (sec)->this_hdr.contents != contents)
7998 if (!changed_contents && !link_info->keep_memory)
7999 free (contents);
8000 else
8002 /* Cache the section contents for elf_link_input_bfd. */
8003 elf_section_data (sec)->this_hdr.contents = contents;
8006 return TRUE;
8008 relax_return:
8009 if (contents != NULL
8010 && elf_section_data (sec)->this_hdr.contents != contents)
8011 free (contents);
8012 return FALSE;
8015 /* Allocate space for global sym dynamic relocs. */
8017 static bfd_boolean
8018 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8020 struct bfd_link_info *info = inf;
8021 bfd *dynobj;
8022 struct mips_elf_link_hash_entry *hmips;
8023 struct mips_elf_link_hash_table *htab;
8025 htab = mips_elf_hash_table (info);
8026 dynobj = elf_hash_table (info)->dynobj;
8027 hmips = (struct mips_elf_link_hash_entry *) h;
8029 /* VxWorks executables are handled elsewhere; we only need to
8030 allocate relocations in shared objects. */
8031 if (htab->is_vxworks && !info->shared)
8032 return TRUE;
8034 /* Ignore indirect and warning symbols. All relocations against
8035 such symbols will be redirected to the target symbol. */
8036 if (h->root.type == bfd_link_hash_indirect
8037 || h->root.type == bfd_link_hash_warning)
8038 return TRUE;
8040 /* If this symbol is defined in a dynamic object, or we are creating
8041 a shared library, we will need to copy any R_MIPS_32 or
8042 R_MIPS_REL32 relocs against it into the output file. */
8043 if (! info->relocatable
8044 && hmips->possibly_dynamic_relocs != 0
8045 && (h->root.type == bfd_link_hash_defweak
8046 || !h->def_regular
8047 || info->shared))
8049 bfd_boolean do_copy = TRUE;
8051 if (h->root.type == bfd_link_hash_undefweak)
8053 /* Do not copy relocations for undefined weak symbols with
8054 non-default visibility. */
8055 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8056 do_copy = FALSE;
8058 /* Make sure undefined weak symbols are output as a dynamic
8059 symbol in PIEs. */
8060 else if (h->dynindx == -1 && !h->forced_local)
8062 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8063 return FALSE;
8067 if (do_copy)
8069 /* Even though we don't directly need a GOT entry for this symbol,
8070 a symbol must have a dynamic symbol table index greater that
8071 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8072 if (hmips->global_got_area > GGA_RELOC_ONLY)
8073 hmips->global_got_area = GGA_RELOC_ONLY;
8075 mips_elf_allocate_dynamic_relocations
8076 (dynobj, info, hmips->possibly_dynamic_relocs);
8077 if (hmips->readonly_reloc)
8078 /* We tell the dynamic linker that there are relocations
8079 against the text segment. */
8080 info->flags |= DF_TEXTREL;
8084 return TRUE;
8087 /* Adjust a symbol defined by a dynamic object and referenced by a
8088 regular object. The current definition is in some section of the
8089 dynamic object, but we're not including those sections. We have to
8090 change the definition to something the rest of the link can
8091 understand. */
8093 bfd_boolean
8094 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8095 struct elf_link_hash_entry *h)
8097 bfd *dynobj;
8098 struct mips_elf_link_hash_entry *hmips;
8099 struct mips_elf_link_hash_table *htab;
8101 htab = mips_elf_hash_table (info);
8102 dynobj = elf_hash_table (info)->dynobj;
8103 hmips = (struct mips_elf_link_hash_entry *) h;
8105 /* Make sure we know what is going on here. */
8106 BFD_ASSERT (dynobj != NULL
8107 && (h->needs_plt
8108 || h->u.weakdef != NULL
8109 || (h->def_dynamic
8110 && h->ref_regular
8111 && !h->def_regular)));
8113 hmips = (struct mips_elf_link_hash_entry *) h;
8115 /* If there are call relocations against an externally-defined symbol,
8116 see whether we can create a MIPS lazy-binding stub for it. We can
8117 only do this if all references to the function are through call
8118 relocations, and in that case, the traditional lazy-binding stubs
8119 are much more efficient than PLT entries.
8121 Traditional stubs are only available on SVR4 psABI-based systems;
8122 VxWorks always uses PLTs instead. */
8123 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8125 if (! elf_hash_table (info)->dynamic_sections_created)
8126 return TRUE;
8128 /* If this symbol is not defined in a regular file, then set
8129 the symbol to the stub location. This is required to make
8130 function pointers compare as equal between the normal
8131 executable and the shared library. */
8132 if (!h->def_regular)
8134 hmips->needs_lazy_stub = TRUE;
8135 htab->lazy_stub_count++;
8136 return TRUE;
8139 /* As above, VxWorks requires PLT entries for externally-defined
8140 functions that are only accessed through call relocations.
8142 Both VxWorks and non-VxWorks targets also need PLT entries if there
8143 are static-only relocations against an externally-defined function.
8144 This can technically occur for shared libraries if there are
8145 branches to the symbol, although it is unlikely that this will be
8146 used in practice due to the short ranges involved. It can occur
8147 for any relative or absolute relocation in executables; in that
8148 case, the PLT entry becomes the function's canonical address. */
8149 else if (((h->needs_plt && !hmips->no_fn_stub)
8150 || (h->type == STT_FUNC && hmips->has_static_relocs))
8151 && htab->use_plts_and_copy_relocs
8152 && !SYMBOL_CALLS_LOCAL (info, h)
8153 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8154 && h->root.type == bfd_link_hash_undefweak))
8156 /* If this is the first symbol to need a PLT entry, allocate room
8157 for the header. */
8158 if (htab->splt->size == 0)
8160 BFD_ASSERT (htab->sgotplt->size == 0);
8162 /* If we're using the PLT additions to the psABI, each PLT
8163 entry is 16 bytes and the PLT0 entry is 32 bytes.
8164 Encourage better cache usage by aligning. We do this
8165 lazily to avoid pessimizing traditional objects. */
8166 if (!htab->is_vxworks
8167 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8168 return FALSE;
8170 /* Make sure that .got.plt is word-aligned. We do this lazily
8171 for the same reason as above. */
8172 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8173 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8174 return FALSE;
8176 htab->splt->size += htab->plt_header_size;
8178 /* On non-VxWorks targets, the first two entries in .got.plt
8179 are reserved. */
8180 if (!htab->is_vxworks)
8181 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8183 /* On VxWorks, also allocate room for the header's
8184 .rela.plt.unloaded entries. */
8185 if (htab->is_vxworks && !info->shared)
8186 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8189 /* Assign the next .plt entry to this symbol. */
8190 h->plt.offset = htab->splt->size;
8191 htab->splt->size += htab->plt_entry_size;
8193 /* If the output file has no definition of the symbol, set the
8194 symbol's value to the address of the stub. */
8195 if (!info->shared && !h->def_regular)
8197 h->root.u.def.section = htab->splt;
8198 h->root.u.def.value = h->plt.offset;
8199 /* For VxWorks, point at the PLT load stub rather than the
8200 lazy resolution stub; this stub will become the canonical
8201 function address. */
8202 if (htab->is_vxworks)
8203 h->root.u.def.value += 8;
8206 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8207 relocation. */
8208 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8209 htab->srelplt->size += (htab->is_vxworks
8210 ? MIPS_ELF_RELA_SIZE (dynobj)
8211 : MIPS_ELF_REL_SIZE (dynobj));
8213 /* Make room for the .rela.plt.unloaded relocations. */
8214 if (htab->is_vxworks && !info->shared)
8215 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8217 /* All relocations against this symbol that could have been made
8218 dynamic will now refer to the PLT entry instead. */
8219 hmips->possibly_dynamic_relocs = 0;
8221 return TRUE;
8224 /* If this is a weak symbol, and there is a real definition, the
8225 processor independent code will have arranged for us to see the
8226 real definition first, and we can just use the same value. */
8227 if (h->u.weakdef != NULL)
8229 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8230 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8231 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8232 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8233 return TRUE;
8236 /* Otherwise, there is nothing further to do for symbols defined
8237 in regular objects. */
8238 if (h->def_regular)
8239 return TRUE;
8241 /* There's also nothing more to do if we'll convert all relocations
8242 against this symbol into dynamic relocations. */
8243 if (!hmips->has_static_relocs)
8244 return TRUE;
8246 /* We're now relying on copy relocations. Complain if we have
8247 some that we can't convert. */
8248 if (!htab->use_plts_and_copy_relocs || info->shared)
8250 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8251 "dynamic symbol %s"),
8252 h->root.root.string);
8253 bfd_set_error (bfd_error_bad_value);
8254 return FALSE;
8257 /* We must allocate the symbol in our .dynbss section, which will
8258 become part of the .bss section of the executable. There will be
8259 an entry for this symbol in the .dynsym section. The dynamic
8260 object will contain position independent code, so all references
8261 from the dynamic object to this symbol will go through the global
8262 offset table. The dynamic linker will use the .dynsym entry to
8263 determine the address it must put in the global offset table, so
8264 both the dynamic object and the regular object will refer to the
8265 same memory location for the variable. */
8267 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8269 if (htab->is_vxworks)
8270 htab->srelbss->size += sizeof (Elf32_External_Rela);
8271 else
8272 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8273 h->needs_copy = 1;
8276 /* All relocations against this symbol that could have been made
8277 dynamic will now refer to the local copy instead. */
8278 hmips->possibly_dynamic_relocs = 0;
8280 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8283 /* This function is called after all the input files have been read,
8284 and the input sections have been assigned to output sections. We
8285 check for any mips16 stub sections that we can discard. */
8287 bfd_boolean
8288 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8289 struct bfd_link_info *info)
8291 asection *ri;
8292 struct mips_elf_link_hash_table *htab;
8293 struct mips_htab_traverse_info hti;
8295 htab = mips_elf_hash_table (info);
8297 /* The .reginfo section has a fixed size. */
8298 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8299 if (ri != NULL)
8300 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8302 hti.info = info;
8303 hti.output_bfd = output_bfd;
8304 hti.error = FALSE;
8305 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8306 mips_elf_check_symbols, &hti);
8307 if (hti.error)
8308 return FALSE;
8310 return TRUE;
8313 /* If the link uses a GOT, lay it out and work out its size. */
8315 static bfd_boolean
8316 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8318 bfd *dynobj;
8319 asection *s;
8320 struct mips_got_info *g;
8321 bfd_size_type loadable_size = 0;
8322 bfd_size_type page_gotno;
8323 bfd *sub;
8324 struct mips_elf_count_tls_arg count_tls_arg;
8325 struct mips_elf_link_hash_table *htab;
8327 htab = mips_elf_hash_table (info);
8328 s = htab->sgot;
8329 if (s == NULL)
8330 return TRUE;
8332 dynobj = elf_hash_table (info)->dynobj;
8333 g = htab->got_info;
8335 /* Allocate room for the reserved entries. VxWorks always reserves
8336 3 entries; other objects only reserve 2 entries. */
8337 BFD_ASSERT (g->assigned_gotno == 0);
8338 if (htab->is_vxworks)
8339 htab->reserved_gotno = 3;
8340 else
8341 htab->reserved_gotno = 2;
8342 g->local_gotno += htab->reserved_gotno;
8343 g->assigned_gotno = htab->reserved_gotno;
8345 /* Replace entries for indirect and warning symbols with entries for
8346 the target symbol. */
8347 if (!mips_elf_resolve_final_got_entries (g))
8348 return FALSE;
8350 /* Count the number of GOT symbols. */
8351 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
8353 /* Calculate the total loadable size of the output. That
8354 will give us the maximum number of GOT_PAGE entries
8355 required. */
8356 for (sub = info->input_bfds; sub; sub = sub->link_next)
8358 asection *subsection;
8360 for (subsection = sub->sections;
8361 subsection;
8362 subsection = subsection->next)
8364 if ((subsection->flags & SEC_ALLOC) == 0)
8365 continue;
8366 loadable_size += ((subsection->size + 0xf)
8367 &~ (bfd_size_type) 0xf);
8371 if (htab->is_vxworks)
8372 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8373 relocations against local symbols evaluate to "G", and the EABI does
8374 not include R_MIPS_GOT_PAGE. */
8375 page_gotno = 0;
8376 else
8377 /* Assume there are two loadable segments consisting of contiguous
8378 sections. Is 5 enough? */
8379 page_gotno = (loadable_size >> 16) + 5;
8381 /* Choose the smaller of the two estimates; both are intended to be
8382 conservative. */
8383 if (page_gotno > g->page_gotno)
8384 page_gotno = g->page_gotno;
8386 g->local_gotno += page_gotno;
8387 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8388 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8390 /* We need to calculate tls_gotno for global symbols at this point
8391 instead of building it up earlier, to avoid doublecounting
8392 entries for one global symbol from multiple input files. */
8393 count_tls_arg.info = info;
8394 count_tls_arg.needed = 0;
8395 elf_link_hash_traverse (elf_hash_table (info),
8396 mips_elf_count_global_tls_entries,
8397 &count_tls_arg);
8398 g->tls_gotno += count_tls_arg.needed;
8399 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8401 /* VxWorks does not support multiple GOTs. It initializes $gp to
8402 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8403 dynamic loader. */
8404 if (htab->is_vxworks)
8406 /* VxWorks executables do not need a GOT. */
8407 if (info->shared)
8409 /* Each VxWorks GOT entry needs an explicit relocation. */
8410 unsigned int count;
8412 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8413 if (count)
8414 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8417 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8419 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8420 return FALSE;
8422 else
8424 struct mips_elf_count_tls_arg arg;
8426 /* Set up TLS entries. */
8427 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8428 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8430 /* Allocate room for the TLS relocations. */
8431 arg.info = info;
8432 arg.needed = 0;
8433 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8434 elf_link_hash_traverse (elf_hash_table (info),
8435 mips_elf_count_global_tls_relocs,
8436 &arg);
8437 if (arg.needed)
8438 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8441 return TRUE;
8444 /* Estimate the size of the .MIPS.stubs section. */
8446 static void
8447 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8449 struct mips_elf_link_hash_table *htab;
8450 bfd_size_type dynsymcount;
8452 htab = mips_elf_hash_table (info);
8453 if (htab->lazy_stub_count == 0)
8454 return;
8456 /* IRIX rld assumes that a function stub isn't at the end of the .text
8457 section, so add a dummy entry to the end. */
8458 htab->lazy_stub_count++;
8460 /* Get a worst-case estimate of the number of dynamic symbols needed.
8461 At this point, dynsymcount does not account for section symbols
8462 and count_section_dynsyms may overestimate the number that will
8463 be needed. */
8464 dynsymcount = (elf_hash_table (info)->dynsymcount
8465 + count_section_dynsyms (output_bfd, info));
8467 /* Determine the size of one stub entry. */
8468 htab->function_stub_size = (dynsymcount > 0x10000
8469 ? MIPS_FUNCTION_STUB_BIG_SIZE
8470 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8472 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8475 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8476 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8477 allocate an entry in the stubs section. */
8479 static bfd_boolean
8480 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8482 struct mips_elf_link_hash_table *htab;
8484 htab = (struct mips_elf_link_hash_table *) data;
8485 if (h->needs_lazy_stub)
8487 h->root.root.u.def.section = htab->sstubs;
8488 h->root.root.u.def.value = htab->sstubs->size;
8489 h->root.plt.offset = htab->sstubs->size;
8490 htab->sstubs->size += htab->function_stub_size;
8492 return TRUE;
8495 /* Allocate offsets in the stubs section to each symbol that needs one.
8496 Set the final size of the .MIPS.stub section. */
8498 static void
8499 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8501 struct mips_elf_link_hash_table *htab;
8503 htab = mips_elf_hash_table (info);
8504 if (htab->lazy_stub_count == 0)
8505 return;
8507 htab->sstubs->size = 0;
8508 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8509 mips_elf_allocate_lazy_stub, htab);
8510 htab->sstubs->size += htab->function_stub_size;
8511 BFD_ASSERT (htab->sstubs->size
8512 == htab->lazy_stub_count * htab->function_stub_size);
8515 /* Set the sizes of the dynamic sections. */
8517 bfd_boolean
8518 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8519 struct bfd_link_info *info)
8521 bfd *dynobj;
8522 asection *s, *sreldyn;
8523 bfd_boolean reltext;
8524 struct mips_elf_link_hash_table *htab;
8526 htab = mips_elf_hash_table (info);
8527 dynobj = elf_hash_table (info)->dynobj;
8528 BFD_ASSERT (dynobj != NULL);
8530 if (elf_hash_table (info)->dynamic_sections_created)
8532 /* Set the contents of the .interp section to the interpreter. */
8533 if (info->executable)
8535 s = bfd_get_section_by_name (dynobj, ".interp");
8536 BFD_ASSERT (s != NULL);
8537 s->size
8538 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8539 s->contents
8540 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8543 /* Create a symbol for the PLT, if we know that we are using it. */
8544 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8546 struct elf_link_hash_entry *h;
8548 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8550 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8551 "_PROCEDURE_LINKAGE_TABLE_");
8552 htab->root.hplt = h;
8553 if (h == NULL)
8554 return FALSE;
8555 h->type = STT_FUNC;
8559 /* Allocate space for global sym dynamic relocs. */
8560 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8562 mips_elf_estimate_stub_size (output_bfd, info);
8564 if (!mips_elf_lay_out_got (output_bfd, info))
8565 return FALSE;
8567 mips_elf_lay_out_lazy_stubs (info);
8569 /* The check_relocs and adjust_dynamic_symbol entry points have
8570 determined the sizes of the various dynamic sections. Allocate
8571 memory for them. */
8572 reltext = FALSE;
8573 for (s = dynobj->sections; s != NULL; s = s->next)
8575 const char *name;
8577 /* It's OK to base decisions on the section name, because none
8578 of the dynobj section names depend upon the input files. */
8579 name = bfd_get_section_name (dynobj, s);
8581 if ((s->flags & SEC_LINKER_CREATED) == 0)
8582 continue;
8584 if (CONST_STRNEQ (name, ".rel"))
8586 if (s->size != 0)
8588 const char *outname;
8589 asection *target;
8591 /* If this relocation section applies to a read only
8592 section, then we probably need a DT_TEXTREL entry.
8593 If the relocation section is .rel(a).dyn, we always
8594 assert a DT_TEXTREL entry rather than testing whether
8595 there exists a relocation to a read only section or
8596 not. */
8597 outname = bfd_get_section_name (output_bfd,
8598 s->output_section);
8599 target = bfd_get_section_by_name (output_bfd, outname + 4);
8600 if ((target != NULL
8601 && (target->flags & SEC_READONLY) != 0
8602 && (target->flags & SEC_ALLOC) != 0)
8603 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8604 reltext = TRUE;
8606 /* We use the reloc_count field as a counter if we need
8607 to copy relocs into the output file. */
8608 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8609 s->reloc_count = 0;
8611 /* If combreloc is enabled, elf_link_sort_relocs() will
8612 sort relocations, but in a different way than we do,
8613 and before we're done creating relocations. Also, it
8614 will move them around between input sections'
8615 relocation's contents, so our sorting would be
8616 broken, so don't let it run. */
8617 info->combreloc = 0;
8620 else if (! info->shared
8621 && ! mips_elf_hash_table (info)->use_rld_obj_head
8622 && CONST_STRNEQ (name, ".rld_map"))
8624 /* We add a room for __rld_map. It will be filled in by the
8625 rtld to contain a pointer to the _r_debug structure. */
8626 s->size += 4;
8628 else if (SGI_COMPAT (output_bfd)
8629 && CONST_STRNEQ (name, ".compact_rel"))
8630 s->size += mips_elf_hash_table (info)->compact_rel_size;
8631 else if (s == htab->splt)
8633 /* If the last PLT entry has a branch delay slot, allocate
8634 room for an extra nop to fill the delay slot. */
8635 if (!htab->is_vxworks && s->size > 0)
8636 s->size += 4;
8638 else if (! CONST_STRNEQ (name, ".init")
8639 && s != htab->sgot
8640 && s != htab->sgotplt
8641 && s != htab->sstubs
8642 && s != htab->sdynbss)
8644 /* It's not one of our sections, so don't allocate space. */
8645 continue;
8648 if (s->size == 0)
8650 s->flags |= SEC_EXCLUDE;
8651 continue;
8654 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8655 continue;
8657 /* Allocate memory for the section contents. */
8658 s->contents = bfd_zalloc (dynobj, s->size);
8659 if (s->contents == NULL)
8661 bfd_set_error (bfd_error_no_memory);
8662 return FALSE;
8666 if (elf_hash_table (info)->dynamic_sections_created)
8668 /* Add some entries to the .dynamic section. We fill in the
8669 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8670 must add the entries now so that we get the correct size for
8671 the .dynamic section. */
8673 /* SGI object has the equivalence of DT_DEBUG in the
8674 DT_MIPS_RLD_MAP entry. This must come first because glibc
8675 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8676 looks at the first one it sees. */
8677 if (!info->shared
8678 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8679 return FALSE;
8681 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8682 used by the debugger. */
8683 if (info->executable
8684 && !SGI_COMPAT (output_bfd)
8685 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8686 return FALSE;
8688 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8689 info->flags |= DF_TEXTREL;
8691 if ((info->flags & DF_TEXTREL) != 0)
8693 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8694 return FALSE;
8696 /* Clear the DF_TEXTREL flag. It will be set again if we
8697 write out an actual text relocation; we may not, because
8698 at this point we do not know whether e.g. any .eh_frame
8699 absolute relocations have been converted to PC-relative. */
8700 info->flags &= ~DF_TEXTREL;
8703 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8704 return FALSE;
8706 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8707 if (htab->is_vxworks)
8709 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8710 use any of the DT_MIPS_* tags. */
8711 if (sreldyn && sreldyn->size > 0)
8713 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8714 return FALSE;
8716 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8717 return FALSE;
8719 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8720 return FALSE;
8723 else
8725 if (sreldyn && sreldyn->size > 0)
8727 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8728 return FALSE;
8730 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8731 return FALSE;
8733 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8734 return FALSE;
8737 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8738 return FALSE;
8740 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8741 return FALSE;
8743 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8744 return FALSE;
8746 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8747 return FALSE;
8749 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8750 return FALSE;
8752 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8753 return FALSE;
8755 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8756 return FALSE;
8758 if (IRIX_COMPAT (dynobj) == ict_irix5
8759 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8760 return FALSE;
8762 if (IRIX_COMPAT (dynobj) == ict_irix6
8763 && (bfd_get_section_by_name
8764 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8765 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8766 return FALSE;
8768 if (htab->splt->size > 0)
8770 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8771 return FALSE;
8773 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8774 return FALSE;
8776 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8777 return FALSE;
8779 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8780 return FALSE;
8782 if (htab->is_vxworks
8783 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8784 return FALSE;
8787 return TRUE;
8790 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8791 Adjust its R_ADDEND field so that it is correct for the output file.
8792 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8793 and sections respectively; both use symbol indexes. */
8795 static void
8796 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8797 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8798 asection **local_sections, Elf_Internal_Rela *rel)
8800 unsigned int r_type, r_symndx;
8801 Elf_Internal_Sym *sym;
8802 asection *sec;
8804 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8806 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8807 if (r_type == R_MIPS16_GPREL
8808 || r_type == R_MIPS_GPREL16
8809 || r_type == R_MIPS_GPREL32
8810 || r_type == R_MIPS_LITERAL)
8812 rel->r_addend += _bfd_get_gp_value (input_bfd);
8813 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8816 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8817 sym = local_syms + r_symndx;
8819 /* Adjust REL's addend to account for section merging. */
8820 if (!info->relocatable)
8822 sec = local_sections[r_symndx];
8823 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8826 /* This would normally be done by the rela_normal code in elflink.c. */
8827 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8828 rel->r_addend += local_sections[r_symndx]->output_offset;
8832 /* Relocate a MIPS ELF section. */
8834 bfd_boolean
8835 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8836 bfd *input_bfd, asection *input_section,
8837 bfd_byte *contents, Elf_Internal_Rela *relocs,
8838 Elf_Internal_Sym *local_syms,
8839 asection **local_sections)
8841 Elf_Internal_Rela *rel;
8842 const Elf_Internal_Rela *relend;
8843 bfd_vma addend = 0;
8844 bfd_boolean use_saved_addend_p = FALSE;
8845 const struct elf_backend_data *bed;
8847 bed = get_elf_backend_data (output_bfd);
8848 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8849 for (rel = relocs; rel < relend; ++rel)
8851 const char *name;
8852 bfd_vma value = 0;
8853 reloc_howto_type *howto;
8854 bfd_boolean require_jalx;
8855 /* TRUE if the relocation is a RELA relocation, rather than a
8856 REL relocation. */
8857 bfd_boolean rela_relocation_p = TRUE;
8858 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8859 const char *msg;
8860 unsigned long r_symndx;
8861 asection *sec;
8862 Elf_Internal_Shdr *symtab_hdr;
8863 struct elf_link_hash_entry *h;
8865 /* Find the relocation howto for this relocation. */
8866 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8867 NEWABI_P (input_bfd)
8868 && (MIPS_RELOC_RELA_P
8869 (input_bfd, input_section,
8870 rel - relocs)));
8872 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8873 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8874 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8876 sec = local_sections[r_symndx];
8877 h = NULL;
8879 else
8881 unsigned long extsymoff;
8883 extsymoff = 0;
8884 if (!elf_bad_symtab (input_bfd))
8885 extsymoff = symtab_hdr->sh_info;
8886 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8887 while (h->root.type == bfd_link_hash_indirect
8888 || h->root.type == bfd_link_hash_warning)
8889 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8891 sec = NULL;
8892 if (h->root.type == bfd_link_hash_defined
8893 || h->root.type == bfd_link_hash_defweak)
8894 sec = h->root.u.def.section;
8897 if (sec != NULL && elf_discarded_section (sec))
8899 /* For relocs against symbols from removed linkonce sections,
8900 or sections discarded by a linker script, we just want the
8901 section contents zeroed. Avoid any special processing. */
8902 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8903 rel->r_info = 0;
8904 rel->r_addend = 0;
8905 continue;
8908 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8910 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8911 64-bit code, but make sure all their addresses are in the
8912 lowermost or uppermost 32-bit section of the 64-bit address
8913 space. Thus, when they use an R_MIPS_64 they mean what is
8914 usually meant by R_MIPS_32, with the exception that the
8915 stored value is sign-extended to 64 bits. */
8916 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8918 /* On big-endian systems, we need to lie about the position
8919 of the reloc. */
8920 if (bfd_big_endian (input_bfd))
8921 rel->r_offset += 4;
8924 if (!use_saved_addend_p)
8926 /* If these relocations were originally of the REL variety,
8927 we must pull the addend out of the field that will be
8928 relocated. Otherwise, we simply use the contents of the
8929 RELA relocation. */
8930 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8931 relocs, rel))
8933 rela_relocation_p = FALSE;
8934 addend = mips_elf_read_rel_addend (input_bfd, rel,
8935 howto, contents);
8936 if (hi16_reloc_p (r_type)
8937 || (got16_reloc_p (r_type)
8938 && mips_elf_local_relocation_p (input_bfd, rel,
8939 local_sections, FALSE)))
8941 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8942 contents, &addend))
8944 const char *name;
8946 if (h)
8947 name = h->root.root.string;
8948 else
8949 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8950 local_syms + r_symndx,
8951 sec);
8952 (*_bfd_error_handler)
8953 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8954 input_bfd, input_section, name, howto->name,
8955 rel->r_offset);
8958 else
8959 addend <<= howto->rightshift;
8961 else
8962 addend = rel->r_addend;
8963 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8964 local_syms, local_sections, rel);
8967 if (info->relocatable)
8969 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8970 && bfd_big_endian (input_bfd))
8971 rel->r_offset -= 4;
8973 if (!rela_relocation_p && rel->r_addend)
8975 addend += rel->r_addend;
8976 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
8977 addend = mips_elf_high (addend);
8978 else if (r_type == R_MIPS_HIGHER)
8979 addend = mips_elf_higher (addend);
8980 else if (r_type == R_MIPS_HIGHEST)
8981 addend = mips_elf_highest (addend);
8982 else
8983 addend >>= howto->rightshift;
8985 /* We use the source mask, rather than the destination
8986 mask because the place to which we are writing will be
8987 source of the addend in the final link. */
8988 addend &= howto->src_mask;
8990 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8991 /* See the comment above about using R_MIPS_64 in the 32-bit
8992 ABI. Here, we need to update the addend. It would be
8993 possible to get away with just using the R_MIPS_32 reloc
8994 but for endianness. */
8996 bfd_vma sign_bits;
8997 bfd_vma low_bits;
8998 bfd_vma high_bits;
9000 if (addend & ((bfd_vma) 1 << 31))
9001 #ifdef BFD64
9002 sign_bits = ((bfd_vma) 1 << 32) - 1;
9003 #else
9004 sign_bits = -1;
9005 #endif
9006 else
9007 sign_bits = 0;
9009 /* If we don't know that we have a 64-bit type,
9010 do two separate stores. */
9011 if (bfd_big_endian (input_bfd))
9013 /* Store the sign-bits (which are most significant)
9014 first. */
9015 low_bits = sign_bits;
9016 high_bits = addend;
9018 else
9020 low_bits = addend;
9021 high_bits = sign_bits;
9023 bfd_put_32 (input_bfd, low_bits,
9024 contents + rel->r_offset);
9025 bfd_put_32 (input_bfd, high_bits,
9026 contents + rel->r_offset + 4);
9027 continue;
9030 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9031 input_bfd, input_section,
9032 contents, FALSE))
9033 return FALSE;
9036 /* Go on to the next relocation. */
9037 continue;
9040 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9041 relocations for the same offset. In that case we are
9042 supposed to treat the output of each relocation as the addend
9043 for the next. */
9044 if (rel + 1 < relend
9045 && rel->r_offset == rel[1].r_offset
9046 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9047 use_saved_addend_p = TRUE;
9048 else
9049 use_saved_addend_p = FALSE;
9051 /* Figure out what value we are supposed to relocate. */
9052 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9053 input_section, info, rel,
9054 addend, howto, local_syms,
9055 local_sections, &value,
9056 &name, &require_jalx,
9057 use_saved_addend_p))
9059 case bfd_reloc_continue:
9060 /* There's nothing to do. */
9061 continue;
9063 case bfd_reloc_undefined:
9064 /* mips_elf_calculate_relocation already called the
9065 undefined_symbol callback. There's no real point in
9066 trying to perform the relocation at this point, so we
9067 just skip ahead to the next relocation. */
9068 continue;
9070 case bfd_reloc_notsupported:
9071 msg = _("internal error: unsupported relocation error");
9072 info->callbacks->warning
9073 (info, msg, name, input_bfd, input_section, rel->r_offset);
9074 return FALSE;
9076 case bfd_reloc_overflow:
9077 if (use_saved_addend_p)
9078 /* Ignore overflow until we reach the last relocation for
9079 a given location. */
9081 else
9083 struct mips_elf_link_hash_table *htab;
9085 htab = mips_elf_hash_table (info);
9086 BFD_ASSERT (name != NULL);
9087 if (!htab->small_data_overflow_reported
9088 && (howto->type == R_MIPS_GPREL16
9089 || howto->type == R_MIPS_LITERAL))
9091 const char *msg =
9092 _("small-data section exceeds 64KB;"
9093 " lower small-data size limit (see option -G)");
9095 htab->small_data_overflow_reported = TRUE;
9096 (*info->callbacks->einfo) ("%P: %s\n", msg);
9098 if (! ((*info->callbacks->reloc_overflow)
9099 (info, NULL, name, howto->name, (bfd_vma) 0,
9100 input_bfd, input_section, rel->r_offset)))
9101 return FALSE;
9103 break;
9105 case bfd_reloc_ok:
9106 break;
9108 default:
9109 abort ();
9110 break;
9113 /* If we've got another relocation for the address, keep going
9114 until we reach the last one. */
9115 if (use_saved_addend_p)
9117 addend = value;
9118 continue;
9121 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9122 /* See the comment above about using R_MIPS_64 in the 32-bit
9123 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9124 that calculated the right value. Now, however, we
9125 sign-extend the 32-bit result to 64-bits, and store it as a
9126 64-bit value. We are especially generous here in that we
9127 go to extreme lengths to support this usage on systems with
9128 only a 32-bit VMA. */
9130 bfd_vma sign_bits;
9131 bfd_vma low_bits;
9132 bfd_vma high_bits;
9134 if (value & ((bfd_vma) 1 << 31))
9135 #ifdef BFD64
9136 sign_bits = ((bfd_vma) 1 << 32) - 1;
9137 #else
9138 sign_bits = -1;
9139 #endif
9140 else
9141 sign_bits = 0;
9143 /* If we don't know that we have a 64-bit type,
9144 do two separate stores. */
9145 if (bfd_big_endian (input_bfd))
9147 /* Undo what we did above. */
9148 rel->r_offset -= 4;
9149 /* Store the sign-bits (which are most significant)
9150 first. */
9151 low_bits = sign_bits;
9152 high_bits = value;
9154 else
9156 low_bits = value;
9157 high_bits = sign_bits;
9159 bfd_put_32 (input_bfd, low_bits,
9160 contents + rel->r_offset);
9161 bfd_put_32 (input_bfd, high_bits,
9162 contents + rel->r_offset + 4);
9163 continue;
9166 /* Actually perform the relocation. */
9167 if (! mips_elf_perform_relocation (info, howto, rel, value,
9168 input_bfd, input_section,
9169 contents, require_jalx))
9170 return FALSE;
9173 return TRUE;
9176 /* A function that iterates over each entry in la25_stubs and fills
9177 in the code for each one. DATA points to a mips_htab_traverse_info. */
9179 static int
9180 mips_elf_create_la25_stub (void **slot, void *data)
9182 struct mips_htab_traverse_info *hti;
9183 struct mips_elf_link_hash_table *htab;
9184 struct mips_elf_la25_stub *stub;
9185 asection *s;
9186 bfd_byte *loc;
9187 bfd_vma offset, target, target_high, target_low;
9189 stub = (struct mips_elf_la25_stub *) *slot;
9190 hti = (struct mips_htab_traverse_info *) data;
9191 htab = mips_elf_hash_table (hti->info);
9193 /* Create the section contents, if we haven't already. */
9194 s = stub->stub_section;
9195 loc = s->contents;
9196 if (loc == NULL)
9198 loc = bfd_malloc (s->size);
9199 if (loc == NULL)
9201 hti->error = TRUE;
9202 return FALSE;
9204 s->contents = loc;
9207 /* Work out where in the section this stub should go. */
9208 offset = stub->offset;
9210 /* Work out the target address. */
9211 target = (stub->h->root.root.u.def.section->output_section->vma
9212 + stub->h->root.root.u.def.section->output_offset
9213 + stub->h->root.root.u.def.value);
9214 target_high = ((target + 0x8000) >> 16) & 0xffff;
9215 target_low = (target & 0xffff);
9217 if (stub->stub_section != htab->strampoline)
9219 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9220 of the section and write the two instructions at the end. */
9221 memset (loc, 0, offset);
9222 loc += offset;
9223 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9224 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9226 else
9228 /* This is trampoline. */
9229 loc += offset;
9230 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9231 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9232 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9233 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9235 return TRUE;
9238 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9239 adjust it appropriately now. */
9241 static void
9242 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9243 const char *name, Elf_Internal_Sym *sym)
9245 /* The linker script takes care of providing names and values for
9246 these, but we must place them into the right sections. */
9247 static const char* const text_section_symbols[] = {
9248 "_ftext",
9249 "_etext",
9250 "__dso_displacement",
9251 "__elf_header",
9252 "__program_header_table",
9253 NULL
9256 static const char* const data_section_symbols[] = {
9257 "_fdata",
9258 "_edata",
9259 "_end",
9260 "_fbss",
9261 NULL
9264 const char* const *p;
9265 int i;
9267 for (i = 0; i < 2; ++i)
9268 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9270 ++p)
9271 if (strcmp (*p, name) == 0)
9273 /* All of these symbols are given type STT_SECTION by the
9274 IRIX6 linker. */
9275 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9276 sym->st_other = STO_PROTECTED;
9278 /* The IRIX linker puts these symbols in special sections. */
9279 if (i == 0)
9280 sym->st_shndx = SHN_MIPS_TEXT;
9281 else
9282 sym->st_shndx = SHN_MIPS_DATA;
9284 break;
9288 /* Finish up dynamic symbol handling. We set the contents of various
9289 dynamic sections here. */
9291 bfd_boolean
9292 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9293 struct bfd_link_info *info,
9294 struct elf_link_hash_entry *h,
9295 Elf_Internal_Sym *sym)
9297 bfd *dynobj;
9298 asection *sgot;
9299 struct mips_got_info *g, *gg;
9300 const char *name;
9301 int idx;
9302 struct mips_elf_link_hash_table *htab;
9303 struct mips_elf_link_hash_entry *hmips;
9305 htab = mips_elf_hash_table (info);
9306 dynobj = elf_hash_table (info)->dynobj;
9307 hmips = (struct mips_elf_link_hash_entry *) h;
9309 BFD_ASSERT (!htab->is_vxworks);
9311 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9313 /* We've decided to create a PLT entry for this symbol. */
9314 bfd_byte *loc;
9315 bfd_vma header_address, plt_index, got_address;
9316 bfd_vma got_address_high, got_address_low, load;
9317 const bfd_vma *plt_entry;
9319 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9320 BFD_ASSERT (h->dynindx != -1);
9321 BFD_ASSERT (htab->splt != NULL);
9322 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9323 BFD_ASSERT (!h->def_regular);
9325 /* Calculate the address of the PLT header. */
9326 header_address = (htab->splt->output_section->vma
9327 + htab->splt->output_offset);
9329 /* Calculate the index of the entry. */
9330 plt_index = ((h->plt.offset - htab->plt_header_size)
9331 / htab->plt_entry_size);
9333 /* Calculate the address of the .got.plt entry. */
9334 got_address = (htab->sgotplt->output_section->vma
9335 + htab->sgotplt->output_offset
9336 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9337 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9338 got_address_low = got_address & 0xffff;
9340 /* Initially point the .got.plt entry at the PLT header. */
9341 loc = (htab->sgotplt->contents
9342 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9343 if (ABI_64_P (output_bfd))
9344 bfd_put_64 (output_bfd, header_address, loc);
9345 else
9346 bfd_put_32 (output_bfd, header_address, loc);
9348 /* Find out where the .plt entry should go. */
9349 loc = htab->splt->contents + h->plt.offset;
9351 /* Pick the load opcode. */
9352 load = MIPS_ELF_LOAD_WORD (output_bfd);
9354 /* Fill in the PLT entry itself. */
9355 plt_entry = mips_exec_plt_entry;
9356 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9357 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9358 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9359 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9361 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9362 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9363 plt_index, h->dynindx,
9364 R_MIPS_JUMP_SLOT, got_address);
9366 /* We distinguish between PLT entries and lazy-binding stubs by
9367 giving the former an st_other value of STO_MIPS_PLT. Set the
9368 flag and leave the value if there are any relocations in the
9369 binary where pointer equality matters. */
9370 sym->st_shndx = SHN_UNDEF;
9371 if (h->pointer_equality_needed)
9372 sym->st_other = STO_MIPS_PLT;
9373 else
9374 sym->st_value = 0;
9376 else if (h->plt.offset != MINUS_ONE)
9378 /* We've decided to create a lazy-binding stub. */
9379 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9381 /* This symbol has a stub. Set it up. */
9383 BFD_ASSERT (h->dynindx != -1);
9385 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9386 || (h->dynindx <= 0xffff));
9388 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9389 sign extension at runtime in the stub, resulting in a negative
9390 index value. */
9391 if (h->dynindx & ~0x7fffffff)
9392 return FALSE;
9394 /* Fill the stub. */
9395 idx = 0;
9396 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9397 idx += 4;
9398 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9399 idx += 4;
9400 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9402 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9403 stub + idx);
9404 idx += 4;
9406 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9407 idx += 4;
9409 /* If a large stub is not required and sign extension is not a
9410 problem, then use legacy code in the stub. */
9411 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9412 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9413 else if (h->dynindx & ~0x7fff)
9414 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9415 else
9416 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9417 stub + idx);
9419 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9420 memcpy (htab->sstubs->contents + h->plt.offset,
9421 stub, htab->function_stub_size);
9423 /* Mark the symbol as undefined. plt.offset != -1 occurs
9424 only for the referenced symbol. */
9425 sym->st_shndx = SHN_UNDEF;
9427 /* The run-time linker uses the st_value field of the symbol
9428 to reset the global offset table entry for this external
9429 to its stub address when unlinking a shared object. */
9430 sym->st_value = (htab->sstubs->output_section->vma
9431 + htab->sstubs->output_offset
9432 + h->plt.offset);
9435 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9436 refer to the stub, since only the stub uses the standard calling
9437 conventions. */
9438 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9440 BFD_ASSERT (hmips->need_fn_stub);
9441 sym->st_value = (hmips->fn_stub->output_section->vma
9442 + hmips->fn_stub->output_offset);
9443 sym->st_size = hmips->fn_stub->size;
9444 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9447 BFD_ASSERT (h->dynindx != -1
9448 || h->forced_local);
9450 sgot = htab->sgot;
9451 g = htab->got_info;
9452 BFD_ASSERT (g != NULL);
9454 /* Run through the global symbol table, creating GOT entries for all
9455 the symbols that need them. */
9456 if (g->global_gotsym != NULL
9457 && h->dynindx >= g->global_gotsym->dynindx)
9459 bfd_vma offset;
9460 bfd_vma value;
9462 value = sym->st_value;
9463 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9464 R_MIPS_GOT16, info);
9465 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9468 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
9470 struct mips_got_entry e, *p;
9471 bfd_vma entry;
9472 bfd_vma offset;
9474 gg = g;
9476 e.abfd = output_bfd;
9477 e.symndx = -1;
9478 e.d.h = hmips;
9479 e.tls_type = 0;
9481 for (g = g->next; g->next != gg; g = g->next)
9483 if (g->got_entries
9484 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9485 &e)))
9487 offset = p->gotidx;
9488 if (info->shared
9489 || (elf_hash_table (info)->dynamic_sections_created
9490 && p->d.h != NULL
9491 && p->d.h->root.def_dynamic
9492 && !p->d.h->root.def_regular))
9494 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9495 the various compatibility problems, it's easier to mock
9496 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9497 mips_elf_create_dynamic_relocation to calculate the
9498 appropriate addend. */
9499 Elf_Internal_Rela rel[3];
9501 memset (rel, 0, sizeof (rel));
9502 if (ABI_64_P (output_bfd))
9503 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9504 else
9505 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9506 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9508 entry = 0;
9509 if (! (mips_elf_create_dynamic_relocation
9510 (output_bfd, info, rel,
9511 e.d.h, NULL, sym->st_value, &entry, sgot)))
9512 return FALSE;
9514 else
9515 entry = sym->st_value;
9516 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9521 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9522 name = h->root.root.string;
9523 if (strcmp (name, "_DYNAMIC") == 0
9524 || h == elf_hash_table (info)->hgot)
9525 sym->st_shndx = SHN_ABS;
9526 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9527 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9529 sym->st_shndx = SHN_ABS;
9530 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9531 sym->st_value = 1;
9533 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9535 sym->st_shndx = SHN_ABS;
9536 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9537 sym->st_value = elf_gp (output_bfd);
9539 else if (SGI_COMPAT (output_bfd))
9541 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9542 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9544 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9545 sym->st_other = STO_PROTECTED;
9546 sym->st_value = 0;
9547 sym->st_shndx = SHN_MIPS_DATA;
9549 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9551 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9552 sym->st_other = STO_PROTECTED;
9553 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9554 sym->st_shndx = SHN_ABS;
9556 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9558 if (h->type == STT_FUNC)
9559 sym->st_shndx = SHN_MIPS_TEXT;
9560 else if (h->type == STT_OBJECT)
9561 sym->st_shndx = SHN_MIPS_DATA;
9565 /* Emit a copy reloc, if needed. */
9566 if (h->needs_copy)
9568 asection *s;
9569 bfd_vma symval;
9571 BFD_ASSERT (h->dynindx != -1);
9572 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9574 s = mips_elf_rel_dyn_section (info, FALSE);
9575 symval = (h->root.u.def.section->output_section->vma
9576 + h->root.u.def.section->output_offset
9577 + h->root.u.def.value);
9578 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9579 h->dynindx, R_MIPS_COPY, symval);
9582 /* Handle the IRIX6-specific symbols. */
9583 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9584 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9586 if (! info->shared)
9588 if (! mips_elf_hash_table (info)->use_rld_obj_head
9589 && (strcmp (name, "__rld_map") == 0
9590 || strcmp (name, "__RLD_MAP") == 0))
9592 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9593 BFD_ASSERT (s != NULL);
9594 sym->st_value = s->output_section->vma + s->output_offset;
9595 bfd_put_32 (output_bfd, 0, s->contents);
9596 if (mips_elf_hash_table (info)->rld_value == 0)
9597 mips_elf_hash_table (info)->rld_value = sym->st_value;
9599 else if (mips_elf_hash_table (info)->use_rld_obj_head
9600 && strcmp (name, "__rld_obj_head") == 0)
9602 /* IRIX6 does not use a .rld_map section. */
9603 if (IRIX_COMPAT (output_bfd) == ict_irix5
9604 || IRIX_COMPAT (output_bfd) == ict_none)
9605 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9606 != NULL);
9607 mips_elf_hash_table (info)->rld_value = sym->st_value;
9611 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9612 treat MIPS16 symbols like any other. */
9613 if (ELF_ST_IS_MIPS16 (sym->st_other))
9615 BFD_ASSERT (sym->st_value & 1);
9616 sym->st_other -= STO_MIPS16;
9619 return TRUE;
9622 /* Likewise, for VxWorks. */
9624 bfd_boolean
9625 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9626 struct bfd_link_info *info,
9627 struct elf_link_hash_entry *h,
9628 Elf_Internal_Sym *sym)
9630 bfd *dynobj;
9631 asection *sgot;
9632 struct mips_got_info *g;
9633 struct mips_elf_link_hash_table *htab;
9635 htab = mips_elf_hash_table (info);
9636 dynobj = elf_hash_table (info)->dynobj;
9638 if (h->plt.offset != (bfd_vma) -1)
9640 bfd_byte *loc;
9641 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9642 Elf_Internal_Rela rel;
9643 static const bfd_vma *plt_entry;
9645 BFD_ASSERT (h->dynindx != -1);
9646 BFD_ASSERT (htab->splt != NULL);
9647 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9649 /* Calculate the address of the .plt entry. */
9650 plt_address = (htab->splt->output_section->vma
9651 + htab->splt->output_offset
9652 + h->plt.offset);
9654 /* Calculate the index of the entry. */
9655 plt_index = ((h->plt.offset - htab->plt_header_size)
9656 / htab->plt_entry_size);
9658 /* Calculate the address of the .got.plt entry. */
9659 got_address = (htab->sgotplt->output_section->vma
9660 + htab->sgotplt->output_offset
9661 + plt_index * 4);
9663 /* Calculate the offset of the .got.plt entry from
9664 _GLOBAL_OFFSET_TABLE_. */
9665 got_offset = mips_elf_gotplt_index (info, h);
9667 /* Calculate the offset for the branch at the start of the PLT
9668 entry. The branch jumps to the beginning of .plt. */
9669 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9671 /* Fill in the initial value of the .got.plt entry. */
9672 bfd_put_32 (output_bfd, plt_address,
9673 htab->sgotplt->contents + plt_index * 4);
9675 /* Find out where the .plt entry should go. */
9676 loc = htab->splt->contents + h->plt.offset;
9678 if (info->shared)
9680 plt_entry = mips_vxworks_shared_plt_entry;
9681 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9682 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9684 else
9686 bfd_vma got_address_high, got_address_low;
9688 plt_entry = mips_vxworks_exec_plt_entry;
9689 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9690 got_address_low = got_address & 0xffff;
9692 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9693 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9694 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9695 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9696 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9697 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9698 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9699 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9701 loc = (htab->srelplt2->contents
9702 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9704 /* Emit a relocation for the .got.plt entry. */
9705 rel.r_offset = got_address;
9706 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9707 rel.r_addend = h->plt.offset;
9708 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9710 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9711 loc += sizeof (Elf32_External_Rela);
9712 rel.r_offset = plt_address + 8;
9713 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9714 rel.r_addend = got_offset;
9715 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9717 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9718 loc += sizeof (Elf32_External_Rela);
9719 rel.r_offset += 4;
9720 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9721 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9724 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9725 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9726 rel.r_offset = got_address;
9727 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9728 rel.r_addend = 0;
9729 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9731 if (!h->def_regular)
9732 sym->st_shndx = SHN_UNDEF;
9735 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9737 sgot = htab->sgot;
9738 g = htab->got_info;
9739 BFD_ASSERT (g != NULL);
9741 /* See if this symbol has an entry in the GOT. */
9742 if (g->global_gotsym != NULL
9743 && h->dynindx >= g->global_gotsym->dynindx)
9745 bfd_vma offset;
9746 Elf_Internal_Rela outrel;
9747 bfd_byte *loc;
9748 asection *s;
9750 /* Install the symbol value in the GOT. */
9751 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9752 R_MIPS_GOT16, info);
9753 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9755 /* Add a dynamic relocation for it. */
9756 s = mips_elf_rel_dyn_section (info, FALSE);
9757 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9758 outrel.r_offset = (sgot->output_section->vma
9759 + sgot->output_offset
9760 + offset);
9761 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9762 outrel.r_addend = 0;
9763 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9766 /* Emit a copy reloc, if needed. */
9767 if (h->needs_copy)
9769 Elf_Internal_Rela rel;
9771 BFD_ASSERT (h->dynindx != -1);
9773 rel.r_offset = (h->root.u.def.section->output_section->vma
9774 + h->root.u.def.section->output_offset
9775 + h->root.u.def.value);
9776 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9777 rel.r_addend = 0;
9778 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9779 htab->srelbss->contents
9780 + (htab->srelbss->reloc_count
9781 * sizeof (Elf32_External_Rela)));
9782 ++htab->srelbss->reloc_count;
9785 /* If this is a mips16 symbol, force the value to be even. */
9786 if (ELF_ST_IS_MIPS16 (sym->st_other))
9787 sym->st_value &= ~1;
9789 return TRUE;
9792 /* Write out a plt0 entry to the beginning of .plt. */
9794 static void
9795 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9797 bfd_byte *loc;
9798 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9799 static const bfd_vma *plt_entry;
9800 struct mips_elf_link_hash_table *htab;
9802 htab = mips_elf_hash_table (info);
9803 if (ABI_64_P (output_bfd))
9804 plt_entry = mips_n64_exec_plt0_entry;
9805 else if (ABI_N32_P (output_bfd))
9806 plt_entry = mips_n32_exec_plt0_entry;
9807 else
9808 plt_entry = mips_o32_exec_plt0_entry;
9810 /* Calculate the value of .got.plt. */
9811 gotplt_value = (htab->sgotplt->output_section->vma
9812 + htab->sgotplt->output_offset);
9813 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9814 gotplt_value_low = gotplt_value & 0xffff;
9816 /* The PLT sequence is not safe for N64 if .got.plt's address can
9817 not be loaded in two instructions. */
9818 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9819 || ~(gotplt_value | 0x7fffffff) == 0);
9821 /* Install the PLT header. */
9822 loc = htab->splt->contents;
9823 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9824 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9825 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9826 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9827 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9828 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9829 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9830 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9833 /* Install the PLT header for a VxWorks executable and finalize the
9834 contents of .rela.plt.unloaded. */
9836 static void
9837 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9839 Elf_Internal_Rela rela;
9840 bfd_byte *loc;
9841 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9842 static const bfd_vma *plt_entry;
9843 struct mips_elf_link_hash_table *htab;
9845 htab = mips_elf_hash_table (info);
9846 plt_entry = mips_vxworks_exec_plt0_entry;
9848 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9849 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9850 + htab->root.hgot->root.u.def.section->output_offset
9851 + htab->root.hgot->root.u.def.value);
9853 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9854 got_value_low = got_value & 0xffff;
9856 /* Calculate the address of the PLT header. */
9857 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9859 /* Install the PLT header. */
9860 loc = htab->splt->contents;
9861 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9862 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9863 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9864 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9865 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9866 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9868 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9869 loc = htab->srelplt2->contents;
9870 rela.r_offset = plt_address;
9871 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9872 rela.r_addend = 0;
9873 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9874 loc += sizeof (Elf32_External_Rela);
9876 /* Output the relocation for the following addiu of
9877 %lo(_GLOBAL_OFFSET_TABLE_). */
9878 rela.r_offset += 4;
9879 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9880 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9881 loc += sizeof (Elf32_External_Rela);
9883 /* Fix up the remaining relocations. They may have the wrong
9884 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9885 in which symbols were output. */
9886 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9888 Elf_Internal_Rela rel;
9890 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9891 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9892 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9893 loc += sizeof (Elf32_External_Rela);
9895 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9896 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9897 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9898 loc += sizeof (Elf32_External_Rela);
9900 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9901 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9902 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9903 loc += sizeof (Elf32_External_Rela);
9907 /* Install the PLT header for a VxWorks shared library. */
9909 static void
9910 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9912 unsigned int i;
9913 struct mips_elf_link_hash_table *htab;
9915 htab = mips_elf_hash_table (info);
9917 /* We just need to copy the entry byte-by-byte. */
9918 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9919 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9920 htab->splt->contents + i * 4);
9923 /* Finish up the dynamic sections. */
9925 bfd_boolean
9926 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9927 struct bfd_link_info *info)
9929 bfd *dynobj;
9930 asection *sdyn;
9931 asection *sgot;
9932 struct mips_got_info *gg, *g;
9933 struct mips_elf_link_hash_table *htab;
9935 htab = mips_elf_hash_table (info);
9936 dynobj = elf_hash_table (info)->dynobj;
9938 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9940 sgot = htab->sgot;
9941 gg = htab->got_info;
9943 if (elf_hash_table (info)->dynamic_sections_created)
9945 bfd_byte *b;
9946 int dyn_to_skip = 0, dyn_skipped = 0;
9948 BFD_ASSERT (sdyn != NULL);
9949 BFD_ASSERT (gg != NULL);
9951 g = mips_elf_got_for_ibfd (gg, output_bfd);
9952 BFD_ASSERT (g != NULL);
9954 for (b = sdyn->contents;
9955 b < sdyn->contents + sdyn->size;
9956 b += MIPS_ELF_DYN_SIZE (dynobj))
9958 Elf_Internal_Dyn dyn;
9959 const char *name;
9960 size_t elemsize;
9961 asection *s;
9962 bfd_boolean swap_out_p;
9964 /* Read in the current dynamic entry. */
9965 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9967 /* Assume that we're going to modify it and write it out. */
9968 swap_out_p = TRUE;
9970 switch (dyn.d_tag)
9972 case DT_RELENT:
9973 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9974 break;
9976 case DT_RELAENT:
9977 BFD_ASSERT (htab->is_vxworks);
9978 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9979 break;
9981 case DT_STRSZ:
9982 /* Rewrite DT_STRSZ. */
9983 dyn.d_un.d_val =
9984 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9985 break;
9987 case DT_PLTGOT:
9988 s = htab->sgot;
9989 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9990 break;
9992 case DT_MIPS_PLTGOT:
9993 s = htab->sgotplt;
9994 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9995 break;
9997 case DT_MIPS_RLD_VERSION:
9998 dyn.d_un.d_val = 1; /* XXX */
9999 break;
10001 case DT_MIPS_FLAGS:
10002 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10003 break;
10005 case DT_MIPS_TIME_STAMP:
10007 time_t t;
10008 time (&t);
10009 dyn.d_un.d_val = t;
10011 break;
10013 case DT_MIPS_ICHECKSUM:
10014 /* XXX FIXME: */
10015 swap_out_p = FALSE;
10016 break;
10018 case DT_MIPS_IVERSION:
10019 /* XXX FIXME: */
10020 swap_out_p = FALSE;
10021 break;
10023 case DT_MIPS_BASE_ADDRESS:
10024 s = output_bfd->sections;
10025 BFD_ASSERT (s != NULL);
10026 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10027 break;
10029 case DT_MIPS_LOCAL_GOTNO:
10030 dyn.d_un.d_val = g->local_gotno;
10031 break;
10033 case DT_MIPS_UNREFEXTNO:
10034 /* The index into the dynamic symbol table which is the
10035 entry of the first external symbol that is not
10036 referenced within the same object. */
10037 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10038 break;
10040 case DT_MIPS_GOTSYM:
10041 if (gg->global_gotsym)
10043 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10044 break;
10046 /* In case if we don't have global got symbols we default
10047 to setting DT_MIPS_GOTSYM to the same value as
10048 DT_MIPS_SYMTABNO, so we just fall through. */
10050 case DT_MIPS_SYMTABNO:
10051 name = ".dynsym";
10052 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10053 s = bfd_get_section_by_name (output_bfd, name);
10054 BFD_ASSERT (s != NULL);
10056 dyn.d_un.d_val = s->size / elemsize;
10057 break;
10059 case DT_MIPS_HIPAGENO:
10060 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10061 break;
10063 case DT_MIPS_RLD_MAP:
10064 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10065 break;
10067 case DT_MIPS_OPTIONS:
10068 s = (bfd_get_section_by_name
10069 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10070 dyn.d_un.d_ptr = s->vma;
10071 break;
10073 case DT_RELASZ:
10074 BFD_ASSERT (htab->is_vxworks);
10075 /* The count does not include the JUMP_SLOT relocations. */
10076 if (htab->srelplt)
10077 dyn.d_un.d_val -= htab->srelplt->size;
10078 break;
10080 case DT_PLTREL:
10081 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10082 if (htab->is_vxworks)
10083 dyn.d_un.d_val = DT_RELA;
10084 else
10085 dyn.d_un.d_val = DT_REL;
10086 break;
10088 case DT_PLTRELSZ:
10089 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10090 dyn.d_un.d_val = htab->srelplt->size;
10091 break;
10093 case DT_JMPREL:
10094 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10095 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10096 + htab->srelplt->output_offset);
10097 break;
10099 case DT_TEXTREL:
10100 /* If we didn't need any text relocations after all, delete
10101 the dynamic tag. */
10102 if (!(info->flags & DF_TEXTREL))
10104 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10105 swap_out_p = FALSE;
10107 break;
10109 case DT_FLAGS:
10110 /* If we didn't need any text relocations after all, clear
10111 DF_TEXTREL from DT_FLAGS. */
10112 if (!(info->flags & DF_TEXTREL))
10113 dyn.d_un.d_val &= ~DF_TEXTREL;
10114 else
10115 swap_out_p = FALSE;
10116 break;
10118 default:
10119 swap_out_p = FALSE;
10120 if (htab->is_vxworks
10121 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10122 swap_out_p = TRUE;
10123 break;
10126 if (swap_out_p || dyn_skipped)
10127 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10128 (dynobj, &dyn, b - dyn_skipped);
10130 if (dyn_to_skip)
10132 dyn_skipped += dyn_to_skip;
10133 dyn_to_skip = 0;
10137 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10138 if (dyn_skipped > 0)
10139 memset (b - dyn_skipped, 0, dyn_skipped);
10142 if (sgot != NULL && sgot->size > 0
10143 && !bfd_is_abs_section (sgot->output_section))
10145 if (htab->is_vxworks)
10147 /* The first entry of the global offset table points to the
10148 ".dynamic" section. The second is initialized by the
10149 loader and contains the shared library identifier.
10150 The third is also initialized by the loader and points
10151 to the lazy resolution stub. */
10152 MIPS_ELF_PUT_WORD (output_bfd,
10153 sdyn->output_offset + sdyn->output_section->vma,
10154 sgot->contents);
10155 MIPS_ELF_PUT_WORD (output_bfd, 0,
10156 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10157 MIPS_ELF_PUT_WORD (output_bfd, 0,
10158 sgot->contents
10159 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10161 else
10163 /* The first entry of the global offset table will be filled at
10164 runtime. The second entry will be used by some runtime loaders.
10165 This isn't the case of IRIX rld. */
10166 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10167 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10168 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10171 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10172 = MIPS_ELF_GOT_SIZE (output_bfd);
10175 /* Generate dynamic relocations for the non-primary gots. */
10176 if (gg != NULL && gg->next)
10178 Elf_Internal_Rela rel[3];
10179 bfd_vma addend = 0;
10181 memset (rel, 0, sizeof (rel));
10182 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10184 for (g = gg->next; g->next != gg; g = g->next)
10186 bfd_vma index = g->next->local_gotno + g->next->global_gotno
10187 + g->next->tls_gotno;
10189 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10190 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10191 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10192 sgot->contents
10193 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10195 if (! info->shared)
10196 continue;
10198 while (index < g->assigned_gotno)
10200 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10201 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10202 if (!(mips_elf_create_dynamic_relocation
10203 (output_bfd, info, rel, NULL,
10204 bfd_abs_section_ptr,
10205 0, &addend, sgot)))
10206 return FALSE;
10207 BFD_ASSERT (addend == 0);
10212 /* The generation of dynamic relocations for the non-primary gots
10213 adds more dynamic relocations. We cannot count them until
10214 here. */
10216 if (elf_hash_table (info)->dynamic_sections_created)
10218 bfd_byte *b;
10219 bfd_boolean swap_out_p;
10221 BFD_ASSERT (sdyn != NULL);
10223 for (b = sdyn->contents;
10224 b < sdyn->contents + sdyn->size;
10225 b += MIPS_ELF_DYN_SIZE (dynobj))
10227 Elf_Internal_Dyn dyn;
10228 asection *s;
10230 /* Read in the current dynamic entry. */
10231 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10233 /* Assume that we're going to modify it and write it out. */
10234 swap_out_p = TRUE;
10236 switch (dyn.d_tag)
10238 case DT_RELSZ:
10239 /* Reduce DT_RELSZ to account for any relocations we
10240 decided not to make. This is for the n64 irix rld,
10241 which doesn't seem to apply any relocations if there
10242 are trailing null entries. */
10243 s = mips_elf_rel_dyn_section (info, FALSE);
10244 dyn.d_un.d_val = (s->reloc_count
10245 * (ABI_64_P (output_bfd)
10246 ? sizeof (Elf64_Mips_External_Rel)
10247 : sizeof (Elf32_External_Rel)));
10248 /* Adjust the section size too. Tools like the prelinker
10249 can reasonably expect the values to the same. */
10250 elf_section_data (s->output_section)->this_hdr.sh_size
10251 = dyn.d_un.d_val;
10252 break;
10254 default:
10255 swap_out_p = FALSE;
10256 break;
10259 if (swap_out_p)
10260 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10261 (dynobj, &dyn, b);
10266 asection *s;
10267 Elf32_compact_rel cpt;
10269 if (SGI_COMPAT (output_bfd))
10271 /* Write .compact_rel section out. */
10272 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10273 if (s != NULL)
10275 cpt.id1 = 1;
10276 cpt.num = s->reloc_count;
10277 cpt.id2 = 2;
10278 cpt.offset = (s->output_section->filepos
10279 + sizeof (Elf32_External_compact_rel));
10280 cpt.reserved0 = 0;
10281 cpt.reserved1 = 0;
10282 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10283 ((Elf32_External_compact_rel *)
10284 s->contents));
10286 /* Clean up a dummy stub function entry in .text. */
10287 if (htab->sstubs != NULL)
10289 file_ptr dummy_offset;
10291 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10292 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10293 memset (htab->sstubs->contents + dummy_offset, 0,
10294 htab->function_stub_size);
10299 /* The psABI says that the dynamic relocations must be sorted in
10300 increasing order of r_symndx. The VxWorks EABI doesn't require
10301 this, and because the code below handles REL rather than RELA
10302 relocations, using it for VxWorks would be outright harmful. */
10303 if (!htab->is_vxworks)
10305 s = mips_elf_rel_dyn_section (info, FALSE);
10306 if (s != NULL
10307 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10309 reldyn_sorting_bfd = output_bfd;
10311 if (ABI_64_P (output_bfd))
10312 qsort ((Elf64_External_Rel *) s->contents + 1,
10313 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10314 sort_dynamic_relocs_64);
10315 else
10316 qsort ((Elf32_External_Rel *) s->contents + 1,
10317 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10318 sort_dynamic_relocs);
10323 if (htab->splt && htab->splt->size > 0)
10325 if (htab->is_vxworks)
10327 if (info->shared)
10328 mips_vxworks_finish_shared_plt (output_bfd, info);
10329 else
10330 mips_vxworks_finish_exec_plt (output_bfd, info);
10332 else
10334 BFD_ASSERT (!info->shared);
10335 mips_finish_exec_plt (output_bfd, info);
10338 return TRUE;
10342 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10344 static void
10345 mips_set_isa_flags (bfd *abfd)
10347 flagword val;
10349 switch (bfd_get_mach (abfd))
10351 default:
10352 case bfd_mach_mips3000:
10353 val = E_MIPS_ARCH_1;
10354 break;
10356 case bfd_mach_mips3900:
10357 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10358 break;
10360 case bfd_mach_mips6000:
10361 val = E_MIPS_ARCH_2;
10362 break;
10364 case bfd_mach_mips4000:
10365 case bfd_mach_mips4300:
10366 case bfd_mach_mips4400:
10367 case bfd_mach_mips4600:
10368 val = E_MIPS_ARCH_3;
10369 break;
10371 case bfd_mach_mips4010:
10372 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10373 break;
10375 case bfd_mach_mips4100:
10376 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10377 break;
10379 case bfd_mach_mips4111:
10380 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10381 break;
10383 case bfd_mach_mips4120:
10384 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10385 break;
10387 case bfd_mach_mips4650:
10388 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10389 break;
10391 case bfd_mach_mips5400:
10392 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10393 break;
10395 case bfd_mach_mips5500:
10396 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10397 break;
10399 case bfd_mach_mips9000:
10400 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10401 break;
10403 case bfd_mach_mips5000:
10404 case bfd_mach_mips7000:
10405 case bfd_mach_mips8000:
10406 case bfd_mach_mips10000:
10407 case bfd_mach_mips12000:
10408 case bfd_mach_mips14000:
10409 case bfd_mach_mips16000:
10410 val = E_MIPS_ARCH_4;
10411 break;
10413 case bfd_mach_mips5:
10414 val = E_MIPS_ARCH_5;
10415 break;
10417 case bfd_mach_mips_loongson_2e:
10418 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10419 break;
10421 case bfd_mach_mips_loongson_2f:
10422 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10423 break;
10425 case bfd_mach_mips_sb1:
10426 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10427 break;
10429 case bfd_mach_mips_octeon:
10430 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10431 break;
10433 case bfd_mach_mips_xlr:
10434 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10435 break;
10437 case bfd_mach_mipsisa32:
10438 val = E_MIPS_ARCH_32;
10439 break;
10441 case bfd_mach_mipsisa64:
10442 val = E_MIPS_ARCH_64;
10443 break;
10445 case bfd_mach_mipsisa32r2:
10446 val = E_MIPS_ARCH_32R2;
10447 break;
10449 case bfd_mach_mipsisa64r2:
10450 val = E_MIPS_ARCH_64R2;
10451 break;
10453 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10454 elf_elfheader (abfd)->e_flags |= val;
10459 /* The final processing done just before writing out a MIPS ELF object
10460 file. This gets the MIPS architecture right based on the machine
10461 number. This is used by both the 32-bit and the 64-bit ABI. */
10463 void
10464 _bfd_mips_elf_final_write_processing (bfd *abfd,
10465 bfd_boolean linker ATTRIBUTE_UNUSED)
10467 unsigned int i;
10468 Elf_Internal_Shdr **hdrpp;
10469 const char *name;
10470 asection *sec;
10472 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10473 is nonzero. This is for compatibility with old objects, which used
10474 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10475 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10476 mips_set_isa_flags (abfd);
10478 /* Set the sh_info field for .gptab sections and other appropriate
10479 info for each special section. */
10480 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10481 i < elf_numsections (abfd);
10482 i++, hdrpp++)
10484 switch ((*hdrpp)->sh_type)
10486 case SHT_MIPS_MSYM:
10487 case SHT_MIPS_LIBLIST:
10488 sec = bfd_get_section_by_name (abfd, ".dynstr");
10489 if (sec != NULL)
10490 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10491 break;
10493 case SHT_MIPS_GPTAB:
10494 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10495 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10496 BFD_ASSERT (name != NULL
10497 && CONST_STRNEQ (name, ".gptab."));
10498 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10499 BFD_ASSERT (sec != NULL);
10500 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10501 break;
10503 case SHT_MIPS_CONTENT:
10504 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10505 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10506 BFD_ASSERT (name != NULL
10507 && CONST_STRNEQ (name, ".MIPS.content"));
10508 sec = bfd_get_section_by_name (abfd,
10509 name + sizeof ".MIPS.content" - 1);
10510 BFD_ASSERT (sec != NULL);
10511 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10512 break;
10514 case SHT_MIPS_SYMBOL_LIB:
10515 sec = bfd_get_section_by_name (abfd, ".dynsym");
10516 if (sec != NULL)
10517 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10518 sec = bfd_get_section_by_name (abfd, ".liblist");
10519 if (sec != NULL)
10520 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10521 break;
10523 case SHT_MIPS_EVENTS:
10524 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10525 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10526 BFD_ASSERT (name != NULL);
10527 if (CONST_STRNEQ (name, ".MIPS.events"))
10528 sec = bfd_get_section_by_name (abfd,
10529 name + sizeof ".MIPS.events" - 1);
10530 else
10532 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10533 sec = bfd_get_section_by_name (abfd,
10534 (name
10535 + sizeof ".MIPS.post_rel" - 1));
10537 BFD_ASSERT (sec != NULL);
10538 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10539 break;
10545 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10546 segments. */
10549 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10550 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10552 asection *s;
10553 int ret = 0;
10555 /* See if we need a PT_MIPS_REGINFO segment. */
10556 s = bfd_get_section_by_name (abfd, ".reginfo");
10557 if (s && (s->flags & SEC_LOAD))
10558 ++ret;
10560 /* See if we need a PT_MIPS_OPTIONS segment. */
10561 if (IRIX_COMPAT (abfd) == ict_irix6
10562 && bfd_get_section_by_name (abfd,
10563 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10564 ++ret;
10566 /* See if we need a PT_MIPS_RTPROC segment. */
10567 if (IRIX_COMPAT (abfd) == ict_irix5
10568 && bfd_get_section_by_name (abfd, ".dynamic")
10569 && bfd_get_section_by_name (abfd, ".mdebug"))
10570 ++ret;
10572 /* Allocate a PT_NULL header in dynamic objects. See
10573 _bfd_mips_elf_modify_segment_map for details. */
10574 if (!SGI_COMPAT (abfd)
10575 && bfd_get_section_by_name (abfd, ".dynamic"))
10576 ++ret;
10578 return ret;
10581 /* Modify the segment map for an IRIX5 executable. */
10583 bfd_boolean
10584 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10585 struct bfd_link_info *info)
10587 asection *s;
10588 struct elf_segment_map *m, **pm;
10589 bfd_size_type amt;
10591 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10592 segment. */
10593 s = bfd_get_section_by_name (abfd, ".reginfo");
10594 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10596 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10597 if (m->p_type == PT_MIPS_REGINFO)
10598 break;
10599 if (m == NULL)
10601 amt = sizeof *m;
10602 m = bfd_zalloc (abfd, amt);
10603 if (m == NULL)
10604 return FALSE;
10606 m->p_type = PT_MIPS_REGINFO;
10607 m->count = 1;
10608 m->sections[0] = s;
10610 /* We want to put it after the PHDR and INTERP segments. */
10611 pm = &elf_tdata (abfd)->segment_map;
10612 while (*pm != NULL
10613 && ((*pm)->p_type == PT_PHDR
10614 || (*pm)->p_type == PT_INTERP))
10615 pm = &(*pm)->next;
10617 m->next = *pm;
10618 *pm = m;
10622 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10623 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10624 PT_MIPS_OPTIONS segment immediately following the program header
10625 table. */
10626 if (NEWABI_P (abfd)
10627 /* On non-IRIX6 new abi, we'll have already created a segment
10628 for this section, so don't create another. I'm not sure this
10629 is not also the case for IRIX 6, but I can't test it right
10630 now. */
10631 && IRIX_COMPAT (abfd) == ict_irix6)
10633 for (s = abfd->sections; s; s = s->next)
10634 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10635 break;
10637 if (s)
10639 struct elf_segment_map *options_segment;
10641 pm = &elf_tdata (abfd)->segment_map;
10642 while (*pm != NULL
10643 && ((*pm)->p_type == PT_PHDR
10644 || (*pm)->p_type == PT_INTERP))
10645 pm = &(*pm)->next;
10647 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10649 amt = sizeof (struct elf_segment_map);
10650 options_segment = bfd_zalloc (abfd, amt);
10651 options_segment->next = *pm;
10652 options_segment->p_type = PT_MIPS_OPTIONS;
10653 options_segment->p_flags = PF_R;
10654 options_segment->p_flags_valid = TRUE;
10655 options_segment->count = 1;
10656 options_segment->sections[0] = s;
10657 *pm = options_segment;
10661 else
10663 if (IRIX_COMPAT (abfd) == ict_irix5)
10665 /* If there are .dynamic and .mdebug sections, we make a room
10666 for the RTPROC header. FIXME: Rewrite without section names. */
10667 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10668 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10669 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10671 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10672 if (m->p_type == PT_MIPS_RTPROC)
10673 break;
10674 if (m == NULL)
10676 amt = sizeof *m;
10677 m = bfd_zalloc (abfd, amt);
10678 if (m == NULL)
10679 return FALSE;
10681 m->p_type = PT_MIPS_RTPROC;
10683 s = bfd_get_section_by_name (abfd, ".rtproc");
10684 if (s == NULL)
10686 m->count = 0;
10687 m->p_flags = 0;
10688 m->p_flags_valid = 1;
10690 else
10692 m->count = 1;
10693 m->sections[0] = s;
10696 /* We want to put it after the DYNAMIC segment. */
10697 pm = &elf_tdata (abfd)->segment_map;
10698 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10699 pm = &(*pm)->next;
10700 if (*pm != NULL)
10701 pm = &(*pm)->next;
10703 m->next = *pm;
10704 *pm = m;
10708 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10709 .dynstr, .dynsym, and .hash sections, and everything in
10710 between. */
10711 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10712 pm = &(*pm)->next)
10713 if ((*pm)->p_type == PT_DYNAMIC)
10714 break;
10715 m = *pm;
10716 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10718 /* For a normal mips executable the permissions for the PT_DYNAMIC
10719 segment are read, write and execute. We do that here since
10720 the code in elf.c sets only the read permission. This matters
10721 sometimes for the dynamic linker. */
10722 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10724 m->p_flags = PF_R | PF_W | PF_X;
10725 m->p_flags_valid = 1;
10728 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10729 glibc's dynamic linker has traditionally derived the number of
10730 tags from the p_filesz field, and sometimes allocates stack
10731 arrays of that size. An overly-big PT_DYNAMIC segment can
10732 be actively harmful in such cases. Making PT_DYNAMIC contain
10733 other sections can also make life hard for the prelinker,
10734 which might move one of the other sections to a different
10735 PT_LOAD segment. */
10736 if (SGI_COMPAT (abfd)
10737 && m != NULL
10738 && m->count == 1
10739 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10741 static const char *sec_names[] =
10743 ".dynamic", ".dynstr", ".dynsym", ".hash"
10745 bfd_vma low, high;
10746 unsigned int i, c;
10747 struct elf_segment_map *n;
10749 low = ~(bfd_vma) 0;
10750 high = 0;
10751 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10753 s = bfd_get_section_by_name (abfd, sec_names[i]);
10754 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10756 bfd_size_type sz;
10758 if (low > s->vma)
10759 low = s->vma;
10760 sz = s->size;
10761 if (high < s->vma + sz)
10762 high = s->vma + sz;
10766 c = 0;
10767 for (s = abfd->sections; s != NULL; s = s->next)
10768 if ((s->flags & SEC_LOAD) != 0
10769 && s->vma >= low
10770 && s->vma + s->size <= high)
10771 ++c;
10773 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10774 n = bfd_zalloc (abfd, amt);
10775 if (n == NULL)
10776 return FALSE;
10777 *n = *m;
10778 n->count = c;
10780 i = 0;
10781 for (s = abfd->sections; s != NULL; s = s->next)
10783 if ((s->flags & SEC_LOAD) != 0
10784 && s->vma >= low
10785 && s->vma + s->size <= high)
10787 n->sections[i] = s;
10788 ++i;
10792 *pm = n;
10796 /* Allocate a spare program header in dynamic objects so that tools
10797 like the prelinker can add an extra PT_LOAD entry.
10799 If the prelinker needs to make room for a new PT_LOAD entry, its
10800 standard procedure is to move the first (read-only) sections into
10801 the new (writable) segment. However, the MIPS ABI requires
10802 .dynamic to be in a read-only segment, and the section will often
10803 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10805 Although the prelinker could in principle move .dynamic to a
10806 writable segment, it seems better to allocate a spare program
10807 header instead, and avoid the need to move any sections.
10808 There is a long tradition of allocating spare dynamic tags,
10809 so allocating a spare program header seems like a natural
10810 extension.
10812 If INFO is NULL, we may be copying an already prelinked binary
10813 with objcopy or strip, so do not add this header. */
10814 if (info != NULL
10815 && !SGI_COMPAT (abfd)
10816 && bfd_get_section_by_name (abfd, ".dynamic"))
10818 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10819 if ((*pm)->p_type == PT_NULL)
10820 break;
10821 if (*pm == NULL)
10823 m = bfd_zalloc (abfd, sizeof (*m));
10824 if (m == NULL)
10825 return FALSE;
10827 m->p_type = PT_NULL;
10828 *pm = m;
10832 return TRUE;
10835 /* Return the section that should be marked against GC for a given
10836 relocation. */
10838 asection *
10839 _bfd_mips_elf_gc_mark_hook (asection *sec,
10840 struct bfd_link_info *info,
10841 Elf_Internal_Rela *rel,
10842 struct elf_link_hash_entry *h,
10843 Elf_Internal_Sym *sym)
10845 /* ??? Do mips16 stub sections need to be handled special? */
10847 if (h != NULL)
10848 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10850 case R_MIPS_GNU_VTINHERIT:
10851 case R_MIPS_GNU_VTENTRY:
10852 return NULL;
10855 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10858 /* Update the got entry reference counts for the section being removed. */
10860 bfd_boolean
10861 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10862 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10863 asection *sec ATTRIBUTE_UNUSED,
10864 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10866 #if 0
10867 Elf_Internal_Shdr *symtab_hdr;
10868 struct elf_link_hash_entry **sym_hashes;
10869 bfd_signed_vma *local_got_refcounts;
10870 const Elf_Internal_Rela *rel, *relend;
10871 unsigned long r_symndx;
10872 struct elf_link_hash_entry *h;
10874 if (info->relocatable)
10875 return TRUE;
10877 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10878 sym_hashes = elf_sym_hashes (abfd);
10879 local_got_refcounts = elf_local_got_refcounts (abfd);
10881 relend = relocs + sec->reloc_count;
10882 for (rel = relocs; rel < relend; rel++)
10883 switch (ELF_R_TYPE (abfd, rel->r_info))
10885 case R_MIPS16_GOT16:
10886 case R_MIPS16_CALL16:
10887 case R_MIPS_GOT16:
10888 case R_MIPS_CALL16:
10889 case R_MIPS_CALL_HI16:
10890 case R_MIPS_CALL_LO16:
10891 case R_MIPS_GOT_HI16:
10892 case R_MIPS_GOT_LO16:
10893 case R_MIPS_GOT_DISP:
10894 case R_MIPS_GOT_PAGE:
10895 case R_MIPS_GOT_OFST:
10896 /* ??? It would seem that the existing MIPS code does no sort
10897 of reference counting or whatnot on its GOT and PLT entries,
10898 so it is not possible to garbage collect them at this time. */
10899 break;
10901 default:
10902 break;
10904 #endif
10906 return TRUE;
10909 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10910 hiding the old indirect symbol. Process additional relocation
10911 information. Also called for weakdefs, in which case we just let
10912 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10914 void
10915 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
10916 struct elf_link_hash_entry *dir,
10917 struct elf_link_hash_entry *ind)
10919 struct mips_elf_link_hash_entry *dirmips, *indmips;
10921 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
10923 dirmips = (struct mips_elf_link_hash_entry *) dir;
10924 indmips = (struct mips_elf_link_hash_entry *) ind;
10925 /* Any absolute non-dynamic relocations against an indirect or weak
10926 definition will be against the target symbol. */
10927 if (indmips->has_static_relocs)
10928 dirmips->has_static_relocs = TRUE;
10930 if (ind->root.type != bfd_link_hash_indirect)
10931 return;
10933 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10934 if (indmips->readonly_reloc)
10935 dirmips->readonly_reloc = TRUE;
10936 if (indmips->no_fn_stub)
10937 dirmips->no_fn_stub = TRUE;
10938 if (indmips->fn_stub)
10940 dirmips->fn_stub = indmips->fn_stub;
10941 indmips->fn_stub = NULL;
10943 if (indmips->need_fn_stub)
10945 dirmips->need_fn_stub = TRUE;
10946 indmips->need_fn_stub = FALSE;
10948 if (indmips->call_stub)
10950 dirmips->call_stub = indmips->call_stub;
10951 indmips->call_stub = NULL;
10953 if (indmips->call_fp_stub)
10955 dirmips->call_fp_stub = indmips->call_fp_stub;
10956 indmips->call_fp_stub = NULL;
10958 if (indmips->global_got_area < dirmips->global_got_area)
10959 dirmips->global_got_area = indmips->global_got_area;
10960 if (indmips->global_got_area < GGA_NONE)
10961 indmips->global_got_area = GGA_NONE;
10962 if (indmips->has_nonpic_branches)
10963 dirmips->has_nonpic_branches = TRUE;
10965 if (dirmips->tls_type == 0)
10966 dirmips->tls_type = indmips->tls_type;
10969 #define PDR_SIZE 32
10971 bfd_boolean
10972 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10973 struct bfd_link_info *info)
10975 asection *o;
10976 bfd_boolean ret = FALSE;
10977 unsigned char *tdata;
10978 size_t i, skip;
10980 o = bfd_get_section_by_name (abfd, ".pdr");
10981 if (! o)
10982 return FALSE;
10983 if (o->size == 0)
10984 return FALSE;
10985 if (o->size % PDR_SIZE != 0)
10986 return FALSE;
10987 if (o->output_section != NULL
10988 && bfd_is_abs_section (o->output_section))
10989 return FALSE;
10991 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10992 if (! tdata)
10993 return FALSE;
10995 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10996 info->keep_memory);
10997 if (!cookie->rels)
10999 free (tdata);
11000 return FALSE;
11003 cookie->rel = cookie->rels;
11004 cookie->relend = cookie->rels + o->reloc_count;
11006 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11008 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11010 tdata[i] = 1;
11011 skip ++;
11015 if (skip != 0)
11017 mips_elf_section_data (o)->u.tdata = tdata;
11018 o->size -= skip * PDR_SIZE;
11019 ret = TRUE;
11021 else
11022 free (tdata);
11024 if (! info->keep_memory)
11025 free (cookie->rels);
11027 return ret;
11030 bfd_boolean
11031 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11033 if (strcmp (sec->name, ".pdr") == 0)
11034 return TRUE;
11035 return FALSE;
11038 bfd_boolean
11039 _bfd_mips_elf_write_section (bfd *output_bfd,
11040 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11041 asection *sec, bfd_byte *contents)
11043 bfd_byte *to, *from, *end;
11044 int i;
11046 if (strcmp (sec->name, ".pdr") != 0)
11047 return FALSE;
11049 if (mips_elf_section_data (sec)->u.tdata == NULL)
11050 return FALSE;
11052 to = contents;
11053 end = contents + sec->size;
11054 for (from = contents, i = 0;
11055 from < end;
11056 from += PDR_SIZE, i++)
11058 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11059 continue;
11060 if (to != from)
11061 memcpy (to, from, PDR_SIZE);
11062 to += PDR_SIZE;
11064 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11065 sec->output_offset, sec->size);
11066 return TRUE;
11069 /* MIPS ELF uses a special find_nearest_line routine in order the
11070 handle the ECOFF debugging information. */
11072 struct mips_elf_find_line
11074 struct ecoff_debug_info d;
11075 struct ecoff_find_line i;
11078 bfd_boolean
11079 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11080 asymbol **symbols, bfd_vma offset,
11081 const char **filename_ptr,
11082 const char **functionname_ptr,
11083 unsigned int *line_ptr)
11085 asection *msec;
11087 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11088 filename_ptr, functionname_ptr,
11089 line_ptr))
11090 return TRUE;
11092 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11093 filename_ptr, functionname_ptr,
11094 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11095 &elf_tdata (abfd)->dwarf2_find_line_info))
11096 return TRUE;
11098 msec = bfd_get_section_by_name (abfd, ".mdebug");
11099 if (msec != NULL)
11101 flagword origflags;
11102 struct mips_elf_find_line *fi;
11103 const struct ecoff_debug_swap * const swap =
11104 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11106 /* If we are called during a link, mips_elf_final_link may have
11107 cleared the SEC_HAS_CONTENTS field. We force it back on here
11108 if appropriate (which it normally will be). */
11109 origflags = msec->flags;
11110 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11111 msec->flags |= SEC_HAS_CONTENTS;
11113 fi = elf_tdata (abfd)->find_line_info;
11114 if (fi == NULL)
11116 bfd_size_type external_fdr_size;
11117 char *fraw_src;
11118 char *fraw_end;
11119 struct fdr *fdr_ptr;
11120 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11122 fi = bfd_zalloc (abfd, amt);
11123 if (fi == NULL)
11125 msec->flags = origflags;
11126 return FALSE;
11129 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11131 msec->flags = origflags;
11132 return FALSE;
11135 /* Swap in the FDR information. */
11136 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11137 fi->d.fdr = bfd_alloc (abfd, amt);
11138 if (fi->d.fdr == NULL)
11140 msec->flags = origflags;
11141 return FALSE;
11143 external_fdr_size = swap->external_fdr_size;
11144 fdr_ptr = fi->d.fdr;
11145 fraw_src = (char *) fi->d.external_fdr;
11146 fraw_end = (fraw_src
11147 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11148 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11149 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11151 elf_tdata (abfd)->find_line_info = fi;
11153 /* Note that we don't bother to ever free this information.
11154 find_nearest_line is either called all the time, as in
11155 objdump -l, so the information should be saved, or it is
11156 rarely called, as in ld error messages, so the memory
11157 wasted is unimportant. Still, it would probably be a
11158 good idea for free_cached_info to throw it away. */
11161 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11162 &fi->i, filename_ptr, functionname_ptr,
11163 line_ptr))
11165 msec->flags = origflags;
11166 return TRUE;
11169 msec->flags = origflags;
11172 /* Fall back on the generic ELF find_nearest_line routine. */
11174 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11175 filename_ptr, functionname_ptr,
11176 line_ptr);
11179 bfd_boolean
11180 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11181 const char **filename_ptr,
11182 const char **functionname_ptr,
11183 unsigned int *line_ptr)
11185 bfd_boolean found;
11186 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11187 functionname_ptr, line_ptr,
11188 & elf_tdata (abfd)->dwarf2_find_line_info);
11189 return found;
11193 /* When are writing out the .options or .MIPS.options section,
11194 remember the bytes we are writing out, so that we can install the
11195 GP value in the section_processing routine. */
11197 bfd_boolean
11198 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11199 const void *location,
11200 file_ptr offset, bfd_size_type count)
11202 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11204 bfd_byte *c;
11206 if (elf_section_data (section) == NULL)
11208 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11209 section->used_by_bfd = bfd_zalloc (abfd, amt);
11210 if (elf_section_data (section) == NULL)
11211 return FALSE;
11213 c = mips_elf_section_data (section)->u.tdata;
11214 if (c == NULL)
11216 c = bfd_zalloc (abfd, section->size);
11217 if (c == NULL)
11218 return FALSE;
11219 mips_elf_section_data (section)->u.tdata = c;
11222 memcpy (c + offset, location, count);
11225 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11226 count);
11229 /* This is almost identical to bfd_generic_get_... except that some
11230 MIPS relocations need to be handled specially. Sigh. */
11232 bfd_byte *
11233 _bfd_elf_mips_get_relocated_section_contents
11234 (bfd *abfd,
11235 struct bfd_link_info *link_info,
11236 struct bfd_link_order *link_order,
11237 bfd_byte *data,
11238 bfd_boolean relocatable,
11239 asymbol **symbols)
11241 /* Get enough memory to hold the stuff */
11242 bfd *input_bfd = link_order->u.indirect.section->owner;
11243 asection *input_section = link_order->u.indirect.section;
11244 bfd_size_type sz;
11246 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11247 arelent **reloc_vector = NULL;
11248 long reloc_count;
11250 if (reloc_size < 0)
11251 goto error_return;
11253 reloc_vector = bfd_malloc (reloc_size);
11254 if (reloc_vector == NULL && reloc_size != 0)
11255 goto error_return;
11257 /* read in the section */
11258 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11259 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11260 goto error_return;
11262 reloc_count = bfd_canonicalize_reloc (input_bfd,
11263 input_section,
11264 reloc_vector,
11265 symbols);
11266 if (reloc_count < 0)
11267 goto error_return;
11269 if (reloc_count > 0)
11271 arelent **parent;
11272 /* for mips */
11273 int gp_found;
11274 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11277 struct bfd_hash_entry *h;
11278 struct bfd_link_hash_entry *lh;
11279 /* Skip all this stuff if we aren't mixing formats. */
11280 if (abfd && input_bfd
11281 && abfd->xvec == input_bfd->xvec)
11282 lh = 0;
11283 else
11285 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11286 lh = (struct bfd_link_hash_entry *) h;
11288 lookup:
11289 if (lh)
11291 switch (lh->type)
11293 case bfd_link_hash_undefined:
11294 case bfd_link_hash_undefweak:
11295 case bfd_link_hash_common:
11296 gp_found = 0;
11297 break;
11298 case bfd_link_hash_defined:
11299 case bfd_link_hash_defweak:
11300 gp_found = 1;
11301 gp = lh->u.def.value;
11302 break;
11303 case bfd_link_hash_indirect:
11304 case bfd_link_hash_warning:
11305 lh = lh->u.i.link;
11306 /* @@FIXME ignoring warning for now */
11307 goto lookup;
11308 case bfd_link_hash_new:
11309 default:
11310 abort ();
11313 else
11314 gp_found = 0;
11316 /* end mips */
11317 for (parent = reloc_vector; *parent != NULL; parent++)
11319 char *error_message = NULL;
11320 bfd_reloc_status_type r;
11322 /* Specific to MIPS: Deal with relocation types that require
11323 knowing the gp of the output bfd. */
11324 asymbol *sym = *(*parent)->sym_ptr_ptr;
11326 /* If we've managed to find the gp and have a special
11327 function for the relocation then go ahead, else default
11328 to the generic handling. */
11329 if (gp_found
11330 && (*parent)->howto->special_function
11331 == _bfd_mips_elf32_gprel16_reloc)
11332 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11333 input_section, relocatable,
11334 data, gp);
11335 else
11336 r = bfd_perform_relocation (input_bfd, *parent, data,
11337 input_section,
11338 relocatable ? abfd : NULL,
11339 &error_message);
11341 if (relocatable)
11343 asection *os = input_section->output_section;
11345 /* A partial link, so keep the relocs */
11346 os->orelocation[os->reloc_count] = *parent;
11347 os->reloc_count++;
11350 if (r != bfd_reloc_ok)
11352 switch (r)
11354 case bfd_reloc_undefined:
11355 if (!((*link_info->callbacks->undefined_symbol)
11356 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11357 input_bfd, input_section, (*parent)->address, TRUE)))
11358 goto error_return;
11359 break;
11360 case bfd_reloc_dangerous:
11361 BFD_ASSERT (error_message != NULL);
11362 if (!((*link_info->callbacks->reloc_dangerous)
11363 (link_info, error_message, input_bfd, input_section,
11364 (*parent)->address)))
11365 goto error_return;
11366 break;
11367 case bfd_reloc_overflow:
11368 if (!((*link_info->callbacks->reloc_overflow)
11369 (link_info, NULL,
11370 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11371 (*parent)->howto->name, (*parent)->addend,
11372 input_bfd, input_section, (*parent)->address)))
11373 goto error_return;
11374 break;
11375 case bfd_reloc_outofrange:
11376 default:
11377 abort ();
11378 break;
11384 if (reloc_vector != NULL)
11385 free (reloc_vector);
11386 return data;
11388 error_return:
11389 if (reloc_vector != NULL)
11390 free (reloc_vector);
11391 return NULL;
11394 /* Allocate ABFD's target-dependent data. */
11396 bfd_boolean
11397 _bfd_mips_elf_mkobject (bfd *abfd)
11399 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
11400 MIPS_ELF_TDATA);
11403 /* Create a MIPS ELF linker hash table. */
11405 struct bfd_link_hash_table *
11406 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11408 struct mips_elf_link_hash_table *ret;
11409 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11411 ret = bfd_malloc (amt);
11412 if (ret == NULL)
11413 return NULL;
11415 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11416 mips_elf_link_hash_newfunc,
11417 sizeof (struct mips_elf_link_hash_entry)))
11419 free (ret);
11420 return NULL;
11423 #if 0
11424 /* We no longer use this. */
11425 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11426 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11427 #endif
11428 ret->procedure_count = 0;
11429 ret->compact_rel_size = 0;
11430 ret->use_rld_obj_head = FALSE;
11431 ret->rld_value = 0;
11432 ret->mips16_stubs_seen = FALSE;
11433 ret->use_plts_and_copy_relocs = FALSE;
11434 ret->is_vxworks = FALSE;
11435 ret->small_data_overflow_reported = FALSE;
11436 ret->srelbss = NULL;
11437 ret->sdynbss = NULL;
11438 ret->srelplt = NULL;
11439 ret->srelplt2 = NULL;
11440 ret->sgotplt = NULL;
11441 ret->splt = NULL;
11442 ret->sstubs = NULL;
11443 ret->sgot = NULL;
11444 ret->got_info = NULL;
11445 ret->plt_header_size = 0;
11446 ret->plt_entry_size = 0;
11447 ret->lazy_stub_count = 0;
11448 ret->function_stub_size = 0;
11449 ret->strampoline = NULL;
11450 ret->la25_stubs = NULL;
11451 ret->add_stub_section = NULL;
11453 return &ret->root.root;
11456 /* Likewise, but indicate that the target is VxWorks. */
11458 struct bfd_link_hash_table *
11459 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11461 struct bfd_link_hash_table *ret;
11463 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11464 if (ret)
11466 struct mips_elf_link_hash_table *htab;
11468 htab = (struct mips_elf_link_hash_table *) ret;
11469 htab->use_plts_and_copy_relocs = TRUE;
11470 htab->is_vxworks = TRUE;
11472 return ret;
11475 /* A function that the linker calls if we are allowed to use PLTs
11476 and copy relocs. */
11478 void
11479 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11481 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11484 /* We need to use a special link routine to handle the .reginfo and
11485 the .mdebug sections. We need to merge all instances of these
11486 sections together, not write them all out sequentially. */
11488 bfd_boolean
11489 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11491 asection *o;
11492 struct bfd_link_order *p;
11493 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11494 asection *rtproc_sec;
11495 Elf32_RegInfo reginfo;
11496 struct ecoff_debug_info debug;
11497 struct mips_htab_traverse_info hti;
11498 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11499 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11500 HDRR *symhdr = &debug.symbolic_header;
11501 void *mdebug_handle = NULL;
11502 asection *s;
11503 EXTR esym;
11504 unsigned int i;
11505 bfd_size_type amt;
11506 struct mips_elf_link_hash_table *htab;
11508 static const char * const secname[] =
11510 ".text", ".init", ".fini", ".data",
11511 ".rodata", ".sdata", ".sbss", ".bss"
11513 static const int sc[] =
11515 scText, scInit, scFini, scData,
11516 scRData, scSData, scSBss, scBss
11519 /* Sort the dynamic symbols so that those with GOT entries come after
11520 those without. */
11521 htab = mips_elf_hash_table (info);
11522 if (!mips_elf_sort_hash_table (abfd, info))
11523 return FALSE;
11525 /* Create any scheduled LA25 stubs. */
11526 hti.info = info;
11527 hti.output_bfd = abfd;
11528 hti.error = FALSE;
11529 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11530 if (hti.error)
11531 return FALSE;
11533 /* Get a value for the GP register. */
11534 if (elf_gp (abfd) == 0)
11536 struct bfd_link_hash_entry *h;
11538 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11539 if (h != NULL && h->type == bfd_link_hash_defined)
11540 elf_gp (abfd) = (h->u.def.value
11541 + h->u.def.section->output_section->vma
11542 + h->u.def.section->output_offset);
11543 else if (htab->is_vxworks
11544 && (h = bfd_link_hash_lookup (info->hash,
11545 "_GLOBAL_OFFSET_TABLE_",
11546 FALSE, FALSE, TRUE))
11547 && h->type == bfd_link_hash_defined)
11548 elf_gp (abfd) = (h->u.def.section->output_section->vma
11549 + h->u.def.section->output_offset
11550 + h->u.def.value);
11551 else if (info->relocatable)
11553 bfd_vma lo = MINUS_ONE;
11555 /* Find the GP-relative section with the lowest offset. */
11556 for (o = abfd->sections; o != NULL; o = o->next)
11557 if (o->vma < lo
11558 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11559 lo = o->vma;
11561 /* And calculate GP relative to that. */
11562 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11564 else
11566 /* If the relocate_section function needs to do a reloc
11567 involving the GP value, it should make a reloc_dangerous
11568 callback to warn that GP is not defined. */
11572 /* Go through the sections and collect the .reginfo and .mdebug
11573 information. */
11574 reginfo_sec = NULL;
11575 mdebug_sec = NULL;
11576 gptab_data_sec = NULL;
11577 gptab_bss_sec = NULL;
11578 for (o = abfd->sections; o != NULL; o = o->next)
11580 if (strcmp (o->name, ".reginfo") == 0)
11582 memset (&reginfo, 0, sizeof reginfo);
11584 /* We have found the .reginfo section in the output file.
11585 Look through all the link_orders comprising it and merge
11586 the information together. */
11587 for (p = o->map_head.link_order; p != NULL; p = p->next)
11589 asection *input_section;
11590 bfd *input_bfd;
11591 Elf32_External_RegInfo ext;
11592 Elf32_RegInfo sub;
11594 if (p->type != bfd_indirect_link_order)
11596 if (p->type == bfd_data_link_order)
11597 continue;
11598 abort ();
11601 input_section = p->u.indirect.section;
11602 input_bfd = input_section->owner;
11604 if (! bfd_get_section_contents (input_bfd, input_section,
11605 &ext, 0, sizeof ext))
11606 return FALSE;
11608 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11610 reginfo.ri_gprmask |= sub.ri_gprmask;
11611 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11612 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11613 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11614 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11616 /* ri_gp_value is set by the function
11617 mips_elf32_section_processing when the section is
11618 finally written out. */
11620 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11621 elf_link_input_bfd ignores this section. */
11622 input_section->flags &= ~SEC_HAS_CONTENTS;
11625 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11626 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11628 /* Skip this section later on (I don't think this currently
11629 matters, but someday it might). */
11630 o->map_head.link_order = NULL;
11632 reginfo_sec = o;
11635 if (strcmp (o->name, ".mdebug") == 0)
11637 struct extsym_info einfo;
11638 bfd_vma last;
11640 /* We have found the .mdebug section in the output file.
11641 Look through all the link_orders comprising it and merge
11642 the information together. */
11643 symhdr->magic = swap->sym_magic;
11644 /* FIXME: What should the version stamp be? */
11645 symhdr->vstamp = 0;
11646 symhdr->ilineMax = 0;
11647 symhdr->cbLine = 0;
11648 symhdr->idnMax = 0;
11649 symhdr->ipdMax = 0;
11650 symhdr->isymMax = 0;
11651 symhdr->ioptMax = 0;
11652 symhdr->iauxMax = 0;
11653 symhdr->issMax = 0;
11654 symhdr->issExtMax = 0;
11655 symhdr->ifdMax = 0;
11656 symhdr->crfd = 0;
11657 symhdr->iextMax = 0;
11659 /* We accumulate the debugging information itself in the
11660 debug_info structure. */
11661 debug.line = NULL;
11662 debug.external_dnr = NULL;
11663 debug.external_pdr = NULL;
11664 debug.external_sym = NULL;
11665 debug.external_opt = NULL;
11666 debug.external_aux = NULL;
11667 debug.ss = NULL;
11668 debug.ssext = debug.ssext_end = NULL;
11669 debug.external_fdr = NULL;
11670 debug.external_rfd = NULL;
11671 debug.external_ext = debug.external_ext_end = NULL;
11673 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11674 if (mdebug_handle == NULL)
11675 return FALSE;
11677 esym.jmptbl = 0;
11678 esym.cobol_main = 0;
11679 esym.weakext = 0;
11680 esym.reserved = 0;
11681 esym.ifd = ifdNil;
11682 esym.asym.iss = issNil;
11683 esym.asym.st = stLocal;
11684 esym.asym.reserved = 0;
11685 esym.asym.index = indexNil;
11686 last = 0;
11687 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11689 esym.asym.sc = sc[i];
11690 s = bfd_get_section_by_name (abfd, secname[i]);
11691 if (s != NULL)
11693 esym.asym.value = s->vma;
11694 last = s->vma + s->size;
11696 else
11697 esym.asym.value = last;
11698 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11699 secname[i], &esym))
11700 return FALSE;
11703 for (p = o->map_head.link_order; p != NULL; p = p->next)
11705 asection *input_section;
11706 bfd *input_bfd;
11707 const struct ecoff_debug_swap *input_swap;
11708 struct ecoff_debug_info input_debug;
11709 char *eraw_src;
11710 char *eraw_end;
11712 if (p->type != bfd_indirect_link_order)
11714 if (p->type == bfd_data_link_order)
11715 continue;
11716 abort ();
11719 input_section = p->u.indirect.section;
11720 input_bfd = input_section->owner;
11722 if (!is_mips_elf (input_bfd))
11724 /* I don't know what a non MIPS ELF bfd would be
11725 doing with a .mdebug section, but I don't really
11726 want to deal with it. */
11727 continue;
11730 input_swap = (get_elf_backend_data (input_bfd)
11731 ->elf_backend_ecoff_debug_swap);
11733 BFD_ASSERT (p->size == input_section->size);
11735 /* The ECOFF linking code expects that we have already
11736 read in the debugging information and set up an
11737 ecoff_debug_info structure, so we do that now. */
11738 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11739 &input_debug))
11740 return FALSE;
11742 if (! (bfd_ecoff_debug_accumulate
11743 (mdebug_handle, abfd, &debug, swap, input_bfd,
11744 &input_debug, input_swap, info)))
11745 return FALSE;
11747 /* Loop through the external symbols. For each one with
11748 interesting information, try to find the symbol in
11749 the linker global hash table and save the information
11750 for the output external symbols. */
11751 eraw_src = input_debug.external_ext;
11752 eraw_end = (eraw_src
11753 + (input_debug.symbolic_header.iextMax
11754 * input_swap->external_ext_size));
11755 for (;
11756 eraw_src < eraw_end;
11757 eraw_src += input_swap->external_ext_size)
11759 EXTR ext;
11760 const char *name;
11761 struct mips_elf_link_hash_entry *h;
11763 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11764 if (ext.asym.sc == scNil
11765 || ext.asym.sc == scUndefined
11766 || ext.asym.sc == scSUndefined)
11767 continue;
11769 name = input_debug.ssext + ext.asym.iss;
11770 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11771 name, FALSE, FALSE, TRUE);
11772 if (h == NULL || h->esym.ifd != -2)
11773 continue;
11775 if (ext.ifd != -1)
11777 BFD_ASSERT (ext.ifd
11778 < input_debug.symbolic_header.ifdMax);
11779 ext.ifd = input_debug.ifdmap[ext.ifd];
11782 h->esym = ext;
11785 /* Free up the information we just read. */
11786 free (input_debug.line);
11787 free (input_debug.external_dnr);
11788 free (input_debug.external_pdr);
11789 free (input_debug.external_sym);
11790 free (input_debug.external_opt);
11791 free (input_debug.external_aux);
11792 free (input_debug.ss);
11793 free (input_debug.ssext);
11794 free (input_debug.external_fdr);
11795 free (input_debug.external_rfd);
11796 free (input_debug.external_ext);
11798 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11799 elf_link_input_bfd ignores this section. */
11800 input_section->flags &= ~SEC_HAS_CONTENTS;
11803 if (SGI_COMPAT (abfd) && info->shared)
11805 /* Create .rtproc section. */
11806 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11807 if (rtproc_sec == NULL)
11809 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11810 | SEC_LINKER_CREATED | SEC_READONLY);
11812 rtproc_sec = bfd_make_section_with_flags (abfd,
11813 ".rtproc",
11814 flags);
11815 if (rtproc_sec == NULL
11816 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11817 return FALSE;
11820 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11821 info, rtproc_sec,
11822 &debug))
11823 return FALSE;
11826 /* Build the external symbol information. */
11827 einfo.abfd = abfd;
11828 einfo.info = info;
11829 einfo.debug = &debug;
11830 einfo.swap = swap;
11831 einfo.failed = FALSE;
11832 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11833 mips_elf_output_extsym, &einfo);
11834 if (einfo.failed)
11835 return FALSE;
11837 /* Set the size of the .mdebug section. */
11838 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11840 /* Skip this section later on (I don't think this currently
11841 matters, but someday it might). */
11842 o->map_head.link_order = NULL;
11844 mdebug_sec = o;
11847 if (CONST_STRNEQ (o->name, ".gptab."))
11849 const char *subname;
11850 unsigned int c;
11851 Elf32_gptab *tab;
11852 Elf32_External_gptab *ext_tab;
11853 unsigned int j;
11855 /* The .gptab.sdata and .gptab.sbss sections hold
11856 information describing how the small data area would
11857 change depending upon the -G switch. These sections
11858 not used in executables files. */
11859 if (! info->relocatable)
11861 for (p = o->map_head.link_order; p != NULL; p = p->next)
11863 asection *input_section;
11865 if (p->type != bfd_indirect_link_order)
11867 if (p->type == bfd_data_link_order)
11868 continue;
11869 abort ();
11872 input_section = p->u.indirect.section;
11874 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11875 elf_link_input_bfd ignores this section. */
11876 input_section->flags &= ~SEC_HAS_CONTENTS;
11879 /* Skip this section later on (I don't think this
11880 currently matters, but someday it might). */
11881 o->map_head.link_order = NULL;
11883 /* Really remove the section. */
11884 bfd_section_list_remove (abfd, o);
11885 --abfd->section_count;
11887 continue;
11890 /* There is one gptab for initialized data, and one for
11891 uninitialized data. */
11892 if (strcmp (o->name, ".gptab.sdata") == 0)
11893 gptab_data_sec = o;
11894 else if (strcmp (o->name, ".gptab.sbss") == 0)
11895 gptab_bss_sec = o;
11896 else
11898 (*_bfd_error_handler)
11899 (_("%s: illegal section name `%s'"),
11900 bfd_get_filename (abfd), o->name);
11901 bfd_set_error (bfd_error_nonrepresentable_section);
11902 return FALSE;
11905 /* The linker script always combines .gptab.data and
11906 .gptab.sdata into .gptab.sdata, and likewise for
11907 .gptab.bss and .gptab.sbss. It is possible that there is
11908 no .sdata or .sbss section in the output file, in which
11909 case we must change the name of the output section. */
11910 subname = o->name + sizeof ".gptab" - 1;
11911 if (bfd_get_section_by_name (abfd, subname) == NULL)
11913 if (o == gptab_data_sec)
11914 o->name = ".gptab.data";
11915 else
11916 o->name = ".gptab.bss";
11917 subname = o->name + sizeof ".gptab" - 1;
11918 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11921 /* Set up the first entry. */
11922 c = 1;
11923 amt = c * sizeof (Elf32_gptab);
11924 tab = bfd_malloc (amt);
11925 if (tab == NULL)
11926 return FALSE;
11927 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11928 tab[0].gt_header.gt_unused = 0;
11930 /* Combine the input sections. */
11931 for (p = o->map_head.link_order; p != NULL; p = p->next)
11933 asection *input_section;
11934 bfd *input_bfd;
11935 bfd_size_type size;
11936 unsigned long last;
11937 bfd_size_type gpentry;
11939 if (p->type != bfd_indirect_link_order)
11941 if (p->type == bfd_data_link_order)
11942 continue;
11943 abort ();
11946 input_section = p->u.indirect.section;
11947 input_bfd = input_section->owner;
11949 /* Combine the gptab entries for this input section one
11950 by one. We know that the input gptab entries are
11951 sorted by ascending -G value. */
11952 size = input_section->size;
11953 last = 0;
11954 for (gpentry = sizeof (Elf32_External_gptab);
11955 gpentry < size;
11956 gpentry += sizeof (Elf32_External_gptab))
11958 Elf32_External_gptab ext_gptab;
11959 Elf32_gptab int_gptab;
11960 unsigned long val;
11961 unsigned long add;
11962 bfd_boolean exact;
11963 unsigned int look;
11965 if (! (bfd_get_section_contents
11966 (input_bfd, input_section, &ext_gptab, gpentry,
11967 sizeof (Elf32_External_gptab))))
11969 free (tab);
11970 return FALSE;
11973 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11974 &int_gptab);
11975 val = int_gptab.gt_entry.gt_g_value;
11976 add = int_gptab.gt_entry.gt_bytes - last;
11978 exact = FALSE;
11979 for (look = 1; look < c; look++)
11981 if (tab[look].gt_entry.gt_g_value >= val)
11982 tab[look].gt_entry.gt_bytes += add;
11984 if (tab[look].gt_entry.gt_g_value == val)
11985 exact = TRUE;
11988 if (! exact)
11990 Elf32_gptab *new_tab;
11991 unsigned int max;
11993 /* We need a new table entry. */
11994 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11995 new_tab = bfd_realloc (tab, amt);
11996 if (new_tab == NULL)
11998 free (tab);
11999 return FALSE;
12001 tab = new_tab;
12002 tab[c].gt_entry.gt_g_value = val;
12003 tab[c].gt_entry.gt_bytes = add;
12005 /* Merge in the size for the next smallest -G
12006 value, since that will be implied by this new
12007 value. */
12008 max = 0;
12009 for (look = 1; look < c; look++)
12011 if (tab[look].gt_entry.gt_g_value < val
12012 && (max == 0
12013 || (tab[look].gt_entry.gt_g_value
12014 > tab[max].gt_entry.gt_g_value)))
12015 max = look;
12017 if (max != 0)
12018 tab[c].gt_entry.gt_bytes +=
12019 tab[max].gt_entry.gt_bytes;
12021 ++c;
12024 last = int_gptab.gt_entry.gt_bytes;
12027 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12028 elf_link_input_bfd ignores this section. */
12029 input_section->flags &= ~SEC_HAS_CONTENTS;
12032 /* The table must be sorted by -G value. */
12033 if (c > 2)
12034 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12036 /* Swap out the table. */
12037 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12038 ext_tab = bfd_alloc (abfd, amt);
12039 if (ext_tab == NULL)
12041 free (tab);
12042 return FALSE;
12045 for (j = 0; j < c; j++)
12046 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12047 free (tab);
12049 o->size = c * sizeof (Elf32_External_gptab);
12050 o->contents = (bfd_byte *) ext_tab;
12052 /* Skip this section later on (I don't think this currently
12053 matters, but someday it might). */
12054 o->map_head.link_order = NULL;
12058 /* Invoke the regular ELF backend linker to do all the work. */
12059 if (!bfd_elf_final_link (abfd, info))
12060 return FALSE;
12062 /* Now write out the computed sections. */
12064 if (reginfo_sec != NULL)
12066 Elf32_External_RegInfo ext;
12068 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12069 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12070 return FALSE;
12073 if (mdebug_sec != NULL)
12075 BFD_ASSERT (abfd->output_has_begun);
12076 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12077 swap, info,
12078 mdebug_sec->filepos))
12079 return FALSE;
12081 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12084 if (gptab_data_sec != NULL)
12086 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12087 gptab_data_sec->contents,
12088 0, gptab_data_sec->size))
12089 return FALSE;
12092 if (gptab_bss_sec != NULL)
12094 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12095 gptab_bss_sec->contents,
12096 0, gptab_bss_sec->size))
12097 return FALSE;
12100 if (SGI_COMPAT (abfd))
12102 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12103 if (rtproc_sec != NULL)
12105 if (! bfd_set_section_contents (abfd, rtproc_sec,
12106 rtproc_sec->contents,
12107 0, rtproc_sec->size))
12108 return FALSE;
12112 return TRUE;
12115 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12117 struct mips_mach_extension {
12118 unsigned long extension, base;
12122 /* An array describing how BFD machines relate to one another. The entries
12123 are ordered topologically with MIPS I extensions listed last. */
12125 static const struct mips_mach_extension mips_mach_extensions[] = {
12126 /* MIPS64r2 extensions. */
12127 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12129 /* MIPS64 extensions. */
12130 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12131 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12132 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12134 /* MIPS V extensions. */
12135 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12137 /* R10000 extensions. */
12138 { bfd_mach_mips12000, bfd_mach_mips10000 },
12139 { bfd_mach_mips14000, bfd_mach_mips10000 },
12140 { bfd_mach_mips16000, bfd_mach_mips10000 },
12142 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12143 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12144 better to allow vr5400 and vr5500 code to be merged anyway, since
12145 many libraries will just use the core ISA. Perhaps we could add
12146 some sort of ASE flag if this ever proves a problem. */
12147 { bfd_mach_mips5500, bfd_mach_mips5400 },
12148 { bfd_mach_mips5400, bfd_mach_mips5000 },
12150 /* MIPS IV extensions. */
12151 { bfd_mach_mips5, bfd_mach_mips8000 },
12152 { bfd_mach_mips10000, bfd_mach_mips8000 },
12153 { bfd_mach_mips5000, bfd_mach_mips8000 },
12154 { bfd_mach_mips7000, bfd_mach_mips8000 },
12155 { bfd_mach_mips9000, bfd_mach_mips8000 },
12157 /* VR4100 extensions. */
12158 { bfd_mach_mips4120, bfd_mach_mips4100 },
12159 { bfd_mach_mips4111, bfd_mach_mips4100 },
12161 /* MIPS III extensions. */
12162 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12163 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12164 { bfd_mach_mips8000, bfd_mach_mips4000 },
12165 { bfd_mach_mips4650, bfd_mach_mips4000 },
12166 { bfd_mach_mips4600, bfd_mach_mips4000 },
12167 { bfd_mach_mips4400, bfd_mach_mips4000 },
12168 { bfd_mach_mips4300, bfd_mach_mips4000 },
12169 { bfd_mach_mips4100, bfd_mach_mips4000 },
12170 { bfd_mach_mips4010, bfd_mach_mips4000 },
12172 /* MIPS32 extensions. */
12173 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12175 /* MIPS II extensions. */
12176 { bfd_mach_mips4000, bfd_mach_mips6000 },
12177 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12179 /* MIPS I extensions. */
12180 { bfd_mach_mips6000, bfd_mach_mips3000 },
12181 { bfd_mach_mips3900, bfd_mach_mips3000 }
12185 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12187 static bfd_boolean
12188 mips_mach_extends_p (unsigned long base, unsigned long extension)
12190 size_t i;
12192 if (extension == base)
12193 return TRUE;
12195 if (base == bfd_mach_mipsisa32
12196 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12197 return TRUE;
12199 if (base == bfd_mach_mipsisa32r2
12200 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12201 return TRUE;
12203 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12204 if (extension == mips_mach_extensions[i].extension)
12206 extension = mips_mach_extensions[i].base;
12207 if (extension == base)
12208 return TRUE;
12211 return FALSE;
12215 /* Return true if the given ELF header flags describe a 32-bit binary. */
12217 static bfd_boolean
12218 mips_32bit_flags_p (flagword flags)
12220 return ((flags & EF_MIPS_32BITMODE) != 0
12221 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12222 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12223 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12224 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12225 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12226 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12230 /* Merge object attributes from IBFD into OBFD. Raise an error if
12231 there are conflicting attributes. */
12232 static bfd_boolean
12233 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12235 obj_attribute *in_attr;
12236 obj_attribute *out_attr;
12238 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12240 /* This is the first object. Copy the attributes. */
12241 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12243 /* Use the Tag_null value to indicate the attributes have been
12244 initialized. */
12245 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12247 return TRUE;
12250 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12251 non-conflicting ones. */
12252 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12253 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12254 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12256 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12257 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12258 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12259 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12261 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12262 _bfd_error_handler
12263 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12264 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12265 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12266 _bfd_error_handler
12267 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12268 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12269 else
12270 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12272 case 1:
12273 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12275 case 2:
12276 _bfd_error_handler
12277 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12278 obfd, ibfd);
12279 break;
12281 case 3:
12282 _bfd_error_handler
12283 (_("Warning: %B uses hard float, %B uses soft float"),
12284 obfd, ibfd);
12285 break;
12287 case 4:
12288 _bfd_error_handler
12289 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12290 obfd, ibfd);
12291 break;
12293 default:
12294 abort ();
12296 break;
12298 case 2:
12299 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12301 case 1:
12302 _bfd_error_handler
12303 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12304 ibfd, obfd);
12305 break;
12307 case 3:
12308 _bfd_error_handler
12309 (_("Warning: %B uses hard float, %B uses soft float"),
12310 obfd, ibfd);
12311 break;
12313 case 4:
12314 _bfd_error_handler
12315 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12316 obfd, ibfd);
12317 break;
12319 default:
12320 abort ();
12322 break;
12324 case 3:
12325 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12327 case 1:
12328 case 2:
12329 case 4:
12330 _bfd_error_handler
12331 (_("Warning: %B uses hard float, %B uses soft float"),
12332 ibfd, obfd);
12333 break;
12335 default:
12336 abort ();
12338 break;
12340 case 4:
12341 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12343 case 1:
12344 _bfd_error_handler
12345 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12346 ibfd, obfd);
12347 break;
12349 case 2:
12350 _bfd_error_handler
12351 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12352 ibfd, obfd);
12353 break;
12355 case 3:
12356 _bfd_error_handler
12357 (_("Warning: %B uses hard float, %B uses soft float"),
12358 obfd, ibfd);
12359 break;
12361 default:
12362 abort ();
12364 break;
12366 default:
12367 abort ();
12371 /* Merge Tag_compatibility attributes and any common GNU ones. */
12372 _bfd_elf_merge_object_attributes (ibfd, obfd);
12374 return TRUE;
12377 /* Merge backend specific data from an object file to the output
12378 object file when linking. */
12380 bfd_boolean
12381 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12383 flagword old_flags;
12384 flagword new_flags;
12385 bfd_boolean ok;
12386 bfd_boolean null_input_bfd = TRUE;
12387 asection *sec;
12389 /* Check if we have the same endianess */
12390 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12392 (*_bfd_error_handler)
12393 (_("%B: endianness incompatible with that of the selected emulation"),
12394 ibfd);
12395 return FALSE;
12398 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12399 return TRUE;
12401 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12403 (*_bfd_error_handler)
12404 (_("%B: ABI is incompatible with that of the selected emulation"),
12405 ibfd);
12406 return FALSE;
12409 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12410 return FALSE;
12412 new_flags = elf_elfheader (ibfd)->e_flags;
12413 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12414 old_flags = elf_elfheader (obfd)->e_flags;
12416 if (! elf_flags_init (obfd))
12418 elf_flags_init (obfd) = TRUE;
12419 elf_elfheader (obfd)->e_flags = new_flags;
12420 elf_elfheader (obfd)->e_ident[EI_CLASS]
12421 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12423 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12424 && (bfd_get_arch_info (obfd)->the_default
12425 || mips_mach_extends_p (bfd_get_mach (obfd),
12426 bfd_get_mach (ibfd))))
12428 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12429 bfd_get_mach (ibfd)))
12430 return FALSE;
12433 return TRUE;
12436 /* Check flag compatibility. */
12438 new_flags &= ~EF_MIPS_NOREORDER;
12439 old_flags &= ~EF_MIPS_NOREORDER;
12441 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12442 doesn't seem to matter. */
12443 new_flags &= ~EF_MIPS_XGOT;
12444 old_flags &= ~EF_MIPS_XGOT;
12446 /* MIPSpro generates ucode info in n64 objects. Again, we should
12447 just be able to ignore this. */
12448 new_flags &= ~EF_MIPS_UCODE;
12449 old_flags &= ~EF_MIPS_UCODE;
12451 /* DSOs should only be linked with CPIC code. */
12452 if ((ibfd->flags & DYNAMIC) != 0)
12453 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12455 if (new_flags == old_flags)
12456 return TRUE;
12458 /* Check to see if the input BFD actually contains any sections.
12459 If not, its flags may not have been initialised either, but it cannot
12460 actually cause any incompatibility. */
12461 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12463 /* Ignore synthetic sections and empty .text, .data and .bss sections
12464 which are automatically generated by gas. */
12465 if (strcmp (sec->name, ".reginfo")
12466 && strcmp (sec->name, ".mdebug")
12467 && (sec->size != 0
12468 || (strcmp (sec->name, ".text")
12469 && strcmp (sec->name, ".data")
12470 && strcmp (sec->name, ".bss"))))
12472 null_input_bfd = FALSE;
12473 break;
12476 if (null_input_bfd)
12477 return TRUE;
12479 ok = TRUE;
12481 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12482 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12484 (*_bfd_error_handler)
12485 (_("%B: warning: linking abicalls files with non-abicalls files"),
12486 ibfd);
12487 ok = TRUE;
12490 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12491 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12492 if (! (new_flags & EF_MIPS_PIC))
12493 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12495 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12496 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12498 /* Compare the ISAs. */
12499 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12501 (*_bfd_error_handler)
12502 (_("%B: linking 32-bit code with 64-bit code"),
12503 ibfd);
12504 ok = FALSE;
12506 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12508 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12509 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12511 /* Copy the architecture info from IBFD to OBFD. Also copy
12512 the 32-bit flag (if set) so that we continue to recognise
12513 OBFD as a 32-bit binary. */
12514 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12515 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12516 elf_elfheader (obfd)->e_flags
12517 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12519 /* Copy across the ABI flags if OBFD doesn't use them
12520 and if that was what caused us to treat IBFD as 32-bit. */
12521 if ((old_flags & EF_MIPS_ABI) == 0
12522 && mips_32bit_flags_p (new_flags)
12523 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12524 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12526 else
12528 /* The ISAs aren't compatible. */
12529 (*_bfd_error_handler)
12530 (_("%B: linking %s module with previous %s modules"),
12531 ibfd,
12532 bfd_printable_name (ibfd),
12533 bfd_printable_name (obfd));
12534 ok = FALSE;
12538 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12539 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12541 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12542 does set EI_CLASS differently from any 32-bit ABI. */
12543 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12544 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12545 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12547 /* Only error if both are set (to different values). */
12548 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12549 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12550 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12552 (*_bfd_error_handler)
12553 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12554 ibfd,
12555 elf_mips_abi_name (ibfd),
12556 elf_mips_abi_name (obfd));
12557 ok = FALSE;
12559 new_flags &= ~EF_MIPS_ABI;
12560 old_flags &= ~EF_MIPS_ABI;
12563 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12564 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12566 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12568 new_flags &= ~ EF_MIPS_ARCH_ASE;
12569 old_flags &= ~ EF_MIPS_ARCH_ASE;
12572 /* Warn about any other mismatches */
12573 if (new_flags != old_flags)
12575 (*_bfd_error_handler)
12576 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12577 ibfd, (unsigned long) new_flags,
12578 (unsigned long) old_flags);
12579 ok = FALSE;
12582 if (! ok)
12584 bfd_set_error (bfd_error_bad_value);
12585 return FALSE;
12588 return TRUE;
12591 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12593 bfd_boolean
12594 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12596 BFD_ASSERT (!elf_flags_init (abfd)
12597 || elf_elfheader (abfd)->e_flags == flags);
12599 elf_elfheader (abfd)->e_flags = flags;
12600 elf_flags_init (abfd) = TRUE;
12601 return TRUE;
12604 char *
12605 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12607 switch (dtag)
12609 default: return "";
12610 case DT_MIPS_RLD_VERSION:
12611 return "MIPS_RLD_VERSION";
12612 case DT_MIPS_TIME_STAMP:
12613 return "MIPS_TIME_STAMP";
12614 case DT_MIPS_ICHECKSUM:
12615 return "MIPS_ICHECKSUM";
12616 case DT_MIPS_IVERSION:
12617 return "MIPS_IVERSION";
12618 case DT_MIPS_FLAGS:
12619 return "MIPS_FLAGS";
12620 case DT_MIPS_BASE_ADDRESS:
12621 return "MIPS_BASE_ADDRESS";
12622 case DT_MIPS_MSYM:
12623 return "MIPS_MSYM";
12624 case DT_MIPS_CONFLICT:
12625 return "MIPS_CONFLICT";
12626 case DT_MIPS_LIBLIST:
12627 return "MIPS_LIBLIST";
12628 case DT_MIPS_LOCAL_GOTNO:
12629 return "MIPS_LOCAL_GOTNO";
12630 case DT_MIPS_CONFLICTNO:
12631 return "MIPS_CONFLICTNO";
12632 case DT_MIPS_LIBLISTNO:
12633 return "MIPS_LIBLISTNO";
12634 case DT_MIPS_SYMTABNO:
12635 return "MIPS_SYMTABNO";
12636 case DT_MIPS_UNREFEXTNO:
12637 return "MIPS_UNREFEXTNO";
12638 case DT_MIPS_GOTSYM:
12639 return "MIPS_GOTSYM";
12640 case DT_MIPS_HIPAGENO:
12641 return "MIPS_HIPAGENO";
12642 case DT_MIPS_RLD_MAP:
12643 return "MIPS_RLD_MAP";
12644 case DT_MIPS_DELTA_CLASS:
12645 return "MIPS_DELTA_CLASS";
12646 case DT_MIPS_DELTA_CLASS_NO:
12647 return "MIPS_DELTA_CLASS_NO";
12648 case DT_MIPS_DELTA_INSTANCE:
12649 return "MIPS_DELTA_INSTANCE";
12650 case DT_MIPS_DELTA_INSTANCE_NO:
12651 return "MIPS_DELTA_INSTANCE_NO";
12652 case DT_MIPS_DELTA_RELOC:
12653 return "MIPS_DELTA_RELOC";
12654 case DT_MIPS_DELTA_RELOC_NO:
12655 return "MIPS_DELTA_RELOC_NO";
12656 case DT_MIPS_DELTA_SYM:
12657 return "MIPS_DELTA_SYM";
12658 case DT_MIPS_DELTA_SYM_NO:
12659 return "MIPS_DELTA_SYM_NO";
12660 case DT_MIPS_DELTA_CLASSSYM:
12661 return "MIPS_DELTA_CLASSSYM";
12662 case DT_MIPS_DELTA_CLASSSYM_NO:
12663 return "MIPS_DELTA_CLASSSYM_NO";
12664 case DT_MIPS_CXX_FLAGS:
12665 return "MIPS_CXX_FLAGS";
12666 case DT_MIPS_PIXIE_INIT:
12667 return "MIPS_PIXIE_INIT";
12668 case DT_MIPS_SYMBOL_LIB:
12669 return "MIPS_SYMBOL_LIB";
12670 case DT_MIPS_LOCALPAGE_GOTIDX:
12671 return "MIPS_LOCALPAGE_GOTIDX";
12672 case DT_MIPS_LOCAL_GOTIDX:
12673 return "MIPS_LOCAL_GOTIDX";
12674 case DT_MIPS_HIDDEN_GOTIDX:
12675 return "MIPS_HIDDEN_GOTIDX";
12676 case DT_MIPS_PROTECTED_GOTIDX:
12677 return "MIPS_PROTECTED_GOT_IDX";
12678 case DT_MIPS_OPTIONS:
12679 return "MIPS_OPTIONS";
12680 case DT_MIPS_INTERFACE:
12681 return "MIPS_INTERFACE";
12682 case DT_MIPS_DYNSTR_ALIGN:
12683 return "DT_MIPS_DYNSTR_ALIGN";
12684 case DT_MIPS_INTERFACE_SIZE:
12685 return "DT_MIPS_INTERFACE_SIZE";
12686 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12687 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12688 case DT_MIPS_PERF_SUFFIX:
12689 return "DT_MIPS_PERF_SUFFIX";
12690 case DT_MIPS_COMPACT_SIZE:
12691 return "DT_MIPS_COMPACT_SIZE";
12692 case DT_MIPS_GP_VALUE:
12693 return "DT_MIPS_GP_VALUE";
12694 case DT_MIPS_AUX_DYNAMIC:
12695 return "DT_MIPS_AUX_DYNAMIC";
12696 case DT_MIPS_PLTGOT:
12697 return "DT_MIPS_PLTGOT";
12698 case DT_MIPS_RWPLT:
12699 return "DT_MIPS_RWPLT";
12703 bfd_boolean
12704 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12706 FILE *file = ptr;
12708 BFD_ASSERT (abfd != NULL && ptr != NULL);
12710 /* Print normal ELF private data. */
12711 _bfd_elf_print_private_bfd_data (abfd, ptr);
12713 /* xgettext:c-format */
12714 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12716 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12717 fprintf (file, _(" [abi=O32]"));
12718 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12719 fprintf (file, _(" [abi=O64]"));
12720 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12721 fprintf (file, _(" [abi=EABI32]"));
12722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12723 fprintf (file, _(" [abi=EABI64]"));
12724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12725 fprintf (file, _(" [abi unknown]"));
12726 else if (ABI_N32_P (abfd))
12727 fprintf (file, _(" [abi=N32]"));
12728 else if (ABI_64_P (abfd))
12729 fprintf (file, _(" [abi=64]"));
12730 else
12731 fprintf (file, _(" [no abi set]"));
12733 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12734 fprintf (file, " [mips1]");
12735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12736 fprintf (file, " [mips2]");
12737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12738 fprintf (file, " [mips3]");
12739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12740 fprintf (file, " [mips4]");
12741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12742 fprintf (file, " [mips5]");
12743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12744 fprintf (file, " [mips32]");
12745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12746 fprintf (file, " [mips64]");
12747 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12748 fprintf (file, " [mips32r2]");
12749 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12750 fprintf (file, " [mips64r2]");
12751 else
12752 fprintf (file, _(" [unknown ISA]"));
12754 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12755 fprintf (file, " [mdmx]");
12757 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12758 fprintf (file, " [mips16]");
12760 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12761 fprintf (file, " [32bitmode]");
12762 else
12763 fprintf (file, _(" [not 32bitmode]"));
12765 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12766 fprintf (file, " [noreorder]");
12768 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12769 fprintf (file, " [PIC]");
12771 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12772 fprintf (file, " [CPIC]");
12774 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12775 fprintf (file, " [XGOT]");
12777 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12778 fprintf (file, " [UCODE]");
12780 fputc ('\n', file);
12782 return TRUE;
12785 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12787 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12788 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12789 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12790 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12791 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12792 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12793 { NULL, 0, 0, 0, 0 }
12796 /* Merge non visibility st_other attributes. Ensure that the
12797 STO_OPTIONAL flag is copied into h->other, even if this is not a
12798 definiton of the symbol. */
12799 void
12800 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12801 const Elf_Internal_Sym *isym,
12802 bfd_boolean definition,
12803 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12805 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12807 unsigned char other;
12809 other = (definition ? isym->st_other : h->other);
12810 other &= ~ELF_ST_VISIBILITY (-1);
12811 h->other = other | ELF_ST_VISIBILITY (h->other);
12814 if (!definition
12815 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12816 h->other |= STO_OPTIONAL;
12819 /* Decide whether an undefined symbol is special and can be ignored.
12820 This is the case for OPTIONAL symbols on IRIX. */
12821 bfd_boolean
12822 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12824 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12827 bfd_boolean
12828 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12830 return (sym->st_shndx == SHN_COMMON
12831 || sym->st_shndx == SHN_MIPS_ACOMMON
12832 || sym->st_shndx == SHN_MIPS_SCOMMON);
12835 /* Return address for Ith PLT stub in section PLT, for relocation REL
12836 or (bfd_vma) -1 if it should not be included. */
12838 bfd_vma
12839 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12840 const arelent *rel ATTRIBUTE_UNUSED)
12842 return (plt->vma
12843 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12844 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12847 void
12848 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12850 struct mips_elf_link_hash_table *htab;
12851 Elf_Internal_Ehdr *i_ehdrp;
12853 i_ehdrp = elf_elfheader (abfd);
12854 if (link_info)
12856 htab = mips_elf_hash_table (link_info);
12857 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12858 i_ehdrp->e_ident[EI_ABIVERSION] = 1;