1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
213 bfd_elf_gnu_hash (const char *namearg
)
215 const unsigned char *name
= (const unsigned char *) namearg
;
216 unsigned long h
= 5381;
219 while ((ch
= *name
++) != '\0')
220 h
= (h
<< 5) + h
+ ch
;
221 return h
& 0xffffffff;
225 bfd_elf_mkobject (bfd
*abfd
)
227 if (abfd
->tdata
.any
== NULL
)
229 abfd
->tdata
.any
= bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
230 if (abfd
->tdata
.any
== NULL
)
234 elf_tdata (abfd
)->program_header_size
= (bfd_size_type
) -1;
240 bfd_elf_mkcorefile (bfd
*abfd
)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd
);
247 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
249 Elf_Internal_Shdr
**i_shdrp
;
250 bfd_byte
*shstrtab
= NULL
;
252 bfd_size_type shstrtabsize
;
254 i_shdrp
= elf_elfsections (abfd
);
255 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
258 shstrtab
= i_shdrp
[shindex
]->contents
;
259 if (shstrtab
== NULL
)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset
= i_shdrp
[shindex
]->sh_offset
;
263 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize
+ 1 == 0
268 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
269 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
271 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
273 if (bfd_get_error () != bfd_error_system_call
)
274 bfd_set_error (bfd_error_file_truncated
);
278 shstrtab
[shstrtabsize
] = '\0';
279 i_shdrp
[shindex
]->contents
= shstrtab
;
281 return (char *) shstrtab
;
285 bfd_elf_string_from_elf_section (bfd
*abfd
,
286 unsigned int shindex
,
287 unsigned int strindex
)
289 Elf_Internal_Shdr
*hdr
;
294 hdr
= elf_elfsections (abfd
)[shindex
];
296 if (hdr
->contents
== NULL
297 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
300 if (strindex
>= hdr
->sh_size
)
302 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
303 (*_bfd_error_handler
)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
306 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
308 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
312 return ((char *) hdr
->contents
) + strindex
;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
322 bfd_elf_get_elf_syms (bfd
*ibfd
,
323 Elf_Internal_Shdr
*symtab_hdr
,
326 Elf_Internal_Sym
*intsym_buf
,
328 Elf_External_Sym_Shndx
*extshndx_buf
)
330 Elf_Internal_Shdr
*shndx_hdr
;
332 const bfd_byte
*esym
;
333 Elf_External_Sym_Shndx
*alloc_extshndx
;
334 Elf_External_Sym_Shndx
*shndx
;
335 Elf_Internal_Sym
*isym
;
336 Elf_Internal_Sym
*isymend
;
337 const struct elf_backend_data
*bed
;
345 /* Normal syms might have section extension entries. */
347 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
348 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
350 /* Read the symbols. */
352 alloc_extshndx
= NULL
;
353 bed
= get_elf_backend_data (ibfd
);
354 extsym_size
= bed
->s
->sizeof_sym
;
355 amt
= symcount
* extsym_size
;
356 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
357 if (extsym_buf
== NULL
)
359 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
360 extsym_buf
= alloc_ext
;
362 if (extsym_buf
== NULL
363 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
364 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
370 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
374 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
375 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
376 if (extshndx_buf
== NULL
)
378 alloc_extshndx
= bfd_malloc2 (symcount
,
379 sizeof (Elf_External_Sym_Shndx
));
380 extshndx_buf
= alloc_extshndx
;
382 if (extshndx_buf
== NULL
383 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
384 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
391 if (intsym_buf
== NULL
)
393 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
394 if (intsym_buf
== NULL
)
398 /* Convert the symbols to internal form. */
399 isymend
= intsym_buf
+ symcount
;
400 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
402 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
403 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
405 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
406 (*_bfd_error_handler
) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd
, (unsigned long) symoffset
);
414 if (alloc_ext
!= NULL
)
416 if (alloc_extshndx
!= NULL
)
417 free (alloc_extshndx
);
422 /* Look up a symbol name. */
424 bfd_elf_sym_name (bfd
*abfd
,
425 Elf_Internal_Shdr
*symtab_hdr
,
426 Elf_Internal_Sym
*isym
,
430 unsigned int iname
= isym
->st_name
;
431 unsigned int shindex
= symtab_hdr
->sh_link
;
433 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym
->st_shndx
< elf_numsections (abfd
)
436 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
438 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
439 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
442 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
445 else if (sym_sec
&& *name
== '\0')
446 name
= bfd_section_name (abfd
, sym_sec
);
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
455 typedef union elf_internal_group
{
456 Elf_Internal_Shdr
*shdr
;
458 } Elf_Internal_Group
;
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
464 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
466 Elf_Internal_Shdr
*hdr
;
467 unsigned char esym
[sizeof (Elf64_External_Sym
)];
468 Elf_External_Sym_Shndx eshndx
;
469 Elf_Internal_Sym isym
;
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
474 if (hdr
->sh_type
!= SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
478 /* Go read the symbol. */
479 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
480 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
481 &isym
, esym
, &eshndx
) == NULL
)
484 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
490 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
492 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
498 unsigned int i
, shnum
;
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum
= elf_numsections (abfd
);
504 for (i
= 0; i
< shnum
; i
++)
506 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
507 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
513 num_group
= (unsigned) -1;
514 elf_tdata (abfd
)->num_group
= num_group
;
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
522 elf_tdata (abfd
)->num_group
= num_group
;
523 elf_tdata (abfd
)->group_sect_ptr
524 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
525 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
529 for (i
= 0; i
< shnum
; i
++)
531 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
532 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
535 Elf_Internal_Group
*dest
;
537 /* Add to list of sections. */
538 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest
) >= 4);
543 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
544 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
546 if (shdr
->contents
== NULL
547 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
548 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
556 src
= shdr
->contents
+ shdr
->sh_size
;
557 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
564 idx
= H_GET_32 (abfd
, src
);
565 if (src
== shdr
->contents
)
568 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
569 shdr
->bfd_section
->flags
570 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
575 ((*_bfd_error_handler
)
576 (_("%B: invalid SHT_GROUP entry"), abfd
));
579 dest
->shdr
= elf_elfsections (abfd
)[idx
];
586 if (num_group
!= (unsigned) -1)
590 for (i
= 0; i
< num_group
; i
++)
592 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
593 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
594 unsigned int n_elt
= shdr
->sh_size
/ 4;
596 /* Look through this group's sections to see if current
597 section is a member. */
599 if ((++idx
)->shdr
== hdr
)
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
606 idx
= (Elf_Internal_Group
*) shdr
->contents
;
607 n_elt
= shdr
->sh_size
/ 4;
609 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
610 && elf_next_in_group (s
) != NULL
)
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect
) = elf_group_name (s
);
617 elf_next_in_group (newsect
) = elf_next_in_group (s
);
618 elf_next_in_group (s
) = newsect
;
624 gname
= group_signature (abfd
, shdr
);
627 elf_group_name (newsect
) = gname
;
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect
) = newsect
;
633 /* If the group section has been created, point to the
635 if (shdr
->bfd_section
!= NULL
)
636 elf_next_in_group (shdr
->bfd_section
) = newsect
;
644 if (elf_group_name (newsect
) == NULL
)
646 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
653 _bfd_elf_setup_sections (bfd
*abfd
)
656 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
657 bfd_boolean result
= TRUE
;
660 /* Process SHF_LINK_ORDER. */
661 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
663 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
664 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
666 unsigned int elfsec
= this_hdr
->sh_link
;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
672 const struct elf_backend_data
*bed
673 = get_elf_backend_data (abfd
);
674 if (bed
->link_order_error_handler
)
675 bed
->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
683 this_hdr
= elf_elfsections (abfd
)[elfsec
];
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link
= this_hdr
->bfd_section
;
691 (*_bfd_error_handler
)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s
->owner
, s
, elfsec
);
697 elf_linked_to_section (s
) = link
;
702 /* Process section groups. */
703 if (num_group
== (unsigned) -1)
706 for (i
= 0; i
< num_group
; i
++)
708 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
709 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
710 unsigned int n_elt
= shdr
->sh_size
/ 4;
713 if ((++idx
)->shdr
->bfd_section
)
714 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
715 else if (idx
->shdr
->sh_type
== SHT_RELA
716 || idx
->shdr
->sh_type
== SHT_REL
)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
722 shdr
->bfd_section
->size
-= 4;
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler
)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
729 (unsigned int) idx
->shdr
->sh_type
,
730 bfd_elf_string_from_elf_section (abfd
,
731 (elf_elfheader (abfd
)
734 shdr
->bfd_section
->name
);
742 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
744 return elf_next_in_group (sec
) != NULL
;
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
751 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
752 Elf_Internal_Shdr
*hdr
,
758 const struct elf_backend_data
*bed
;
760 if (hdr
->bfd_section
!= NULL
)
762 BFD_ASSERT (strcmp (name
,
763 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
767 newsect
= bfd_make_section_anyway (abfd
, name
);
771 hdr
->bfd_section
= newsect
;
772 elf_section_data (newsect
)->this_hdr
= *hdr
;
773 elf_section_data (newsect
)->this_idx
= shindex
;
775 /* Always use the real type/flags. */
776 elf_section_type (newsect
) = hdr
->sh_type
;
777 elf_section_flags (newsect
) = hdr
->sh_flags
;
779 newsect
->filepos
= hdr
->sh_offset
;
781 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
782 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
783 || ! bfd_set_section_alignment (abfd
, newsect
,
784 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
787 flags
= SEC_NO_FLAGS
;
788 if (hdr
->sh_type
!= SHT_NOBITS
)
789 flags
|= SEC_HAS_CONTENTS
;
790 if (hdr
->sh_type
== SHT_GROUP
)
791 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
792 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
795 if (hdr
->sh_type
!= SHT_NOBITS
)
798 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
799 flags
|= SEC_READONLY
;
800 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
802 else if ((flags
& SEC_LOAD
) != 0)
804 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
807 newsect
->entsize
= hdr
->sh_entsize
;
808 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
809 flags
|= SEC_STRINGS
;
811 if (hdr
->sh_flags
& SHF_GROUP
)
812 if (!setup_group (abfd
, hdr
, newsect
))
814 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
815 flags
|= SEC_THREAD_LOCAL
;
817 if ((flags
& SEC_ALLOC
) == 0)
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
825 } debug_sections
[] =
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL
, 0 }, /* 'e' */
829 { NULL
, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL
, 0 }, /* 'h' */
832 { NULL
, 0 }, /* 'i' */
833 { NULL
, 0 }, /* 'j' */
834 { NULL
, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL
, 0 }, /* 'm' */
837 { NULL
, 0 }, /* 'n' */
838 { NULL
, 0 }, /* 'o' */
839 { NULL
, 0 }, /* 'p' */
840 { NULL
, 0 }, /* 'q' */
841 { NULL
, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
847 int i
= name
[1] - 'd';
849 && i
< (int) ARRAY_SIZE (debug_sections
)
850 && debug_sections
[i
].name
!= NULL
851 && strncmp (&name
[1], debug_sections
[i
].name
,
852 debug_sections
[i
].len
) == 0)
853 flags
|= SEC_DEBUGGING
;
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name
, ".gnu.linkonce")
864 && elf_next_in_group (newsect
) == NULL
)
865 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
867 bed
= get_elf_backend_data (abfd
);
868 if (bed
->elf_backend_section_flags
)
869 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
872 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
875 if ((flags
& SEC_ALLOC
) != 0)
877 Elf_Internal_Phdr
*phdr
;
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr
= elf_tdata (abfd
)->phdr
;
884 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
886 if (phdr
->p_paddr
!= 0)
889 if (i
< elf_elfheader (abfd
)->e_phnum
)
891 phdr
= elf_tdata (abfd
)->phdr
;
892 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr
->p_type
== PT_LOAD
907 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
908 && (hdr
->sh_offset
+ hdr
->sh_size
909 <= phdr
->p_offset
+ phdr
->p_memsz
)
910 && ((flags
& SEC_LOAD
) == 0
911 || (hdr
->sh_offset
+ hdr
->sh_size
912 <= phdr
->p_offset
+ phdr
->p_filesz
)))
914 if ((flags
& SEC_LOAD
) == 0)
915 newsect
->lma
= (phdr
->p_paddr
916 + hdr
->sh_addr
- phdr
->p_vaddr
);
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect
->lma
= (phdr
->p_paddr
926 + hdr
->sh_offset
- phdr
->p_offset
);
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr
->sh_addr
>= phdr
->p_vaddr
933 && (hdr
->sh_addr
+ hdr
->sh_size
934 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
959 struct elf_internal_shdr
*
960 bfd_elf_find_section (bfd
*abfd
, char *name
)
962 Elf_Internal_Shdr
**i_shdrp
;
967 i_shdrp
= elf_elfsections (abfd
);
970 shstrtab
= bfd_elf_get_str_section (abfd
,
971 elf_elfheader (abfd
)->e_shstrndx
);
972 if (shstrtab
!= NULL
)
974 max
= elf_numsections (abfd
);
975 for (i
= 1; i
< max
; i
++)
976 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
983 const char *const bfd_elf_section_type_names
[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1001 arelent
*reloc_entry
,
1003 void *data ATTRIBUTE_UNUSED
,
1004 asection
*input_section
,
1006 char **error_message ATTRIBUTE_UNUSED
)
1008 if (output_bfd
!= NULL
1009 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1010 && (! reloc_entry
->howto
->partial_inplace
1011 || reloc_entry
->addend
== 0))
1013 reloc_entry
->address
+= input_section
->output_offset
;
1014 return bfd_reloc_ok
;
1017 return bfd_reloc_continue
;
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1023 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1026 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1027 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1030 /* Finish SHF_MERGE section merging. */
1033 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1038 if (!is_elf_hash_table (info
->hash
))
1041 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1042 if ((ibfd
->flags
& DYNAMIC
) == 0)
1043 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1044 if ((sec
->flags
& SEC_MERGE
) != 0
1045 && !bfd_is_abs_section (sec
->output_section
))
1047 struct bfd_elf_section_data
*secdata
;
1049 secdata
= elf_section_data (sec
);
1050 if (! _bfd_add_merge_section (abfd
,
1051 &elf_hash_table (info
)->merge_info
,
1052 sec
, &secdata
->sec_info
))
1054 else if (secdata
->sec_info
)
1055 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1058 if (elf_hash_table (info
)->merge_info
!= NULL
)
1059 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1060 merge_sections_remove_hook
);
1065 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1067 sec
->output_section
= bfd_abs_section_ptr
;
1068 sec
->output_offset
= sec
->vma
;
1069 if (!is_elf_hash_table (info
->hash
))
1072 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1075 /* Copy the program header and other data from one object module to
1079 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1081 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1085 BFD_ASSERT (!elf_flags_init (obfd
)
1086 || (elf_elfheader (obfd
)->e_flags
1087 == elf_elfheader (ibfd
)->e_flags
));
1089 elf_gp (obfd
) = elf_gp (ibfd
);
1090 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1091 elf_flags_init (obfd
) = TRUE
;
1096 get_segment_type (unsigned int p_type
)
1101 case PT_NULL
: pt
= "NULL"; break;
1102 case PT_LOAD
: pt
= "LOAD"; break;
1103 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1104 case PT_INTERP
: pt
= "INTERP"; break;
1105 case PT_NOTE
: pt
= "NOTE"; break;
1106 case PT_SHLIB
: pt
= "SHLIB"; break;
1107 case PT_PHDR
: pt
= "PHDR"; break;
1108 case PT_TLS
: pt
= "TLS"; break;
1109 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1110 case PT_GNU_STACK
: pt
= "STACK"; break;
1111 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1112 default: pt
= NULL
; break;
1117 /* Print out the program headers. */
1120 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1123 Elf_Internal_Phdr
*p
;
1125 bfd_byte
*dynbuf
= NULL
;
1127 p
= elf_tdata (abfd
)->phdr
;
1132 fprintf (f
, _("\nProgram Header:\n"));
1133 c
= elf_elfheader (abfd
)->e_phnum
;
1134 for (i
= 0; i
< c
; i
++, p
++)
1136 const char *pt
= get_segment_type (p
->p_type
);
1141 sprintf (buf
, "0x%lx", p
->p_type
);
1144 fprintf (f
, "%8s off 0x", pt
);
1145 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1146 fprintf (f
, " vaddr 0x");
1147 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1148 fprintf (f
, " paddr 0x");
1149 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1150 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1151 fprintf (f
, " filesz 0x");
1152 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1153 fprintf (f
, " memsz 0x");
1154 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1155 fprintf (f
, " flags %c%c%c",
1156 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1157 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1158 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1159 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1160 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1165 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1169 unsigned long shlink
;
1170 bfd_byte
*extdyn
, *extdynend
;
1172 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1174 fprintf (f
, _("\nDynamic Section:\n"));
1176 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1179 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1182 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1184 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1185 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1188 extdynend
= extdyn
+ s
->size
;
1189 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1191 Elf_Internal_Dyn dyn
;
1194 bfd_boolean stringp
;
1196 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1198 if (dyn
.d_tag
== DT_NULL
)
1205 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1209 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1210 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1211 case DT_PLTGOT
: name
= "PLTGOT"; break;
1212 case DT_HASH
: name
= "HASH"; break;
1213 case DT_STRTAB
: name
= "STRTAB"; break;
1214 case DT_SYMTAB
: name
= "SYMTAB"; break;
1215 case DT_RELA
: name
= "RELA"; break;
1216 case DT_RELASZ
: name
= "RELASZ"; break;
1217 case DT_RELAENT
: name
= "RELAENT"; break;
1218 case DT_STRSZ
: name
= "STRSZ"; break;
1219 case DT_SYMENT
: name
= "SYMENT"; break;
1220 case DT_INIT
: name
= "INIT"; break;
1221 case DT_FINI
: name
= "FINI"; break;
1222 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1223 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1224 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1225 case DT_REL
: name
= "REL"; break;
1226 case DT_RELSZ
: name
= "RELSZ"; break;
1227 case DT_RELENT
: name
= "RELENT"; break;
1228 case DT_PLTREL
: name
= "PLTREL"; break;
1229 case DT_DEBUG
: name
= "DEBUG"; break;
1230 case DT_TEXTREL
: name
= "TEXTREL"; break;
1231 case DT_JMPREL
: name
= "JMPREL"; break;
1232 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1233 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1238 case DT_FLAGS
: name
= "FLAGS"; break;
1239 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1242 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1243 case DT_MOVEENT
: name
= "MOVEENT"; break;
1244 case DT_MOVESZ
: name
= "MOVESZ"; break;
1245 case DT_FEATURE
: name
= "FEATURE"; break;
1246 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1247 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1248 case DT_SYMINENT
: name
= "SYMINENT"; break;
1249 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1250 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1251 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1252 case DT_PLTPAD
: name
= "PLTPAD"; break;
1253 case DT_MOVETAB
: name
= "MOVETAB"; break;
1254 case DT_SYMINFO
: name
= "SYMINFO"; break;
1255 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1256 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1257 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1258 case DT_VERSYM
: name
= "VERSYM"; break;
1259 case DT_VERDEF
: name
= "VERDEF"; break;
1260 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1261 case DT_VERNEED
: name
= "VERNEED"; break;
1262 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1263 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1264 case DT_USED
: name
= "USED"; break;
1265 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1266 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1269 fprintf (f
, " %-11s ", name
);
1271 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1275 unsigned int tagv
= dyn
.d_un
.d_val
;
1277 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1280 fprintf (f
, "%s", string
);
1289 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1290 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1292 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1296 if (elf_dynverdef (abfd
) != 0)
1298 Elf_Internal_Verdef
*t
;
1300 fprintf (f
, _("\nVersion definitions:\n"));
1301 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1303 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1304 t
->vd_flags
, t
->vd_hash
,
1305 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1306 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1308 Elf_Internal_Verdaux
*a
;
1311 for (a
= t
->vd_auxptr
->vda_nextptr
;
1315 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1321 if (elf_dynverref (abfd
) != 0)
1323 Elf_Internal_Verneed
*t
;
1325 fprintf (f
, _("\nVersion References:\n"));
1326 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1328 Elf_Internal_Vernaux
*a
;
1330 fprintf (f
, _(" required from %s:\n"),
1331 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1332 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1333 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1334 a
->vna_flags
, a
->vna_other
,
1335 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1347 /* Display ELF-specific fields of a symbol. */
1350 bfd_elf_print_symbol (bfd
*abfd
,
1353 bfd_print_symbol_type how
)
1358 case bfd_print_symbol_name
:
1359 fprintf (file
, "%s", symbol
->name
);
1361 case bfd_print_symbol_more
:
1362 fprintf (file
, "elf ");
1363 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1364 fprintf (file
, " %lx", (long) symbol
->flags
);
1366 case bfd_print_symbol_all
:
1368 const char *section_name
;
1369 const char *name
= NULL
;
1370 const struct elf_backend_data
*bed
;
1371 unsigned char st_other
;
1374 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1376 bed
= get_elf_backend_data (abfd
);
1377 if (bed
->elf_backend_print_symbol_all
)
1378 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1382 name
= symbol
->name
;
1383 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1386 fprintf (file
, " %s\t", section_name
);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol
->section
))
1392 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1394 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1395 bfd_fprintf_vma (abfd
, file
, val
);
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd
)->dynversym_section
!= 0
1399 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1400 || elf_tdata (abfd
)->dynverref_section
!= 0))
1402 unsigned int vernum
;
1403 const char *version_string
;
1405 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1408 version_string
= "";
1409 else if (vernum
== 1)
1410 version_string
= "Base";
1411 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1413 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1416 Elf_Internal_Verneed
*t
;
1418 version_string
= "";
1419 for (t
= elf_tdata (abfd
)->verref
;
1423 Elf_Internal_Vernaux
*a
;
1425 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1427 if (a
->vna_other
== vernum
)
1429 version_string
= a
->vna_nodename
;
1436 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1437 fprintf (file
, " %-11s", version_string
);
1442 fprintf (file
, " (%s)", version_string
);
1443 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1448 /* If the st_other field is not zero, print it. */
1449 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1454 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1455 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1456 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1458 /* Some other non-defined flags are also present, so print
1460 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1463 fprintf (file
, " %s", name
);
1469 /* Create an entry in an ELF linker hash table. */
1471 struct bfd_hash_entry
*
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1473 struct bfd_hash_table
*table
,
1476 /* Allocate the structure if it has not already been allocated by a
1480 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1485 /* Call the allocation method of the superclass. */
1486 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1489 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1490 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1492 /* Set local fields. */
1495 ret
->got
= htab
->init_got_refcount
;
1496 ret
->plt
= htab
->init_plt_refcount
;
1497 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1498 - offsetof (struct elf_link_hash_entry
, size
)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1514 struct elf_link_hash_entry
*dir
,
1515 struct elf_link_hash_entry
*ind
)
1517 struct elf_link_hash_table
*htab
;
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1522 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1523 dir
->ref_regular
|= ind
->ref_regular
;
1524 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1525 dir
->non_got_ref
|= ind
->non_got_ref
;
1526 dir
->needs_plt
|= ind
->needs_plt
;
1527 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1529 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab
= elf_hash_table (info
);
1535 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1537 if (dir
->got
.refcount
< 0)
1538 dir
->got
.refcount
= 0;
1539 dir
->got
.refcount
+= ind
->got
.refcount
;
1540 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1543 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1545 if (dir
->plt
.refcount
< 0)
1546 dir
->plt
.refcount
= 0;
1547 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1548 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1551 if (ind
->dynindx
!= -1)
1553 if (dir
->dynindx
!= -1)
1554 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1555 dir
->dynindx
= ind
->dynindx
;
1556 dir
->dynstr_index
= ind
->dynstr_index
;
1558 ind
->dynstr_index
= 0;
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1564 struct elf_link_hash_entry
*h
,
1565 bfd_boolean force_local
)
1567 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1571 h
->forced_local
= 1;
1572 if (h
->dynindx
!= -1)
1575 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1581 /* Initialize an ELF linker hash table. */
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table
*table
,
1587 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1588 struct bfd_hash_table
*,
1590 unsigned int entsize
)
1593 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1595 table
->dynamic_sections_created
= FALSE
;
1596 table
->dynobj
= NULL
;
1597 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1598 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1599 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1600 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1601 /* The first dynamic symbol is a dummy. */
1602 table
->dynsymcount
= 1;
1603 table
->dynstr
= NULL
;
1604 table
->bucketcount
= 0;
1605 table
->needed
= NULL
;
1608 table
->merge_info
= NULL
;
1609 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1610 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1611 table
->dynlocal
= NULL
;
1612 table
->runpath
= NULL
;
1613 table
->tls_sec
= NULL
;
1614 table
->tls_size
= 0;
1615 table
->loaded
= NULL
;
1616 table
->is_relocatable_executable
= FALSE
;
1618 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1619 table
->root
.type
= bfd_link_elf_hash_table
;
1624 /* Create an ELF linker hash table. */
1626 struct bfd_link_hash_table
*
1627 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1629 struct elf_link_hash_table
*ret
;
1630 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1632 ret
= bfd_malloc (amt
);
1636 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1637 sizeof (struct elf_link_hash_entry
)))
1646 /* This is a hook for the ELF emulation code in the generic linker to
1647 tell the backend linker what file name to use for the DT_NEEDED
1648 entry for a dynamic object. */
1651 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1653 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1654 && bfd_get_format (abfd
) == bfd_object
)
1655 elf_dt_name (abfd
) = name
;
1659 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1662 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1663 && bfd_get_format (abfd
) == bfd_object
)
1664 lib_class
= elf_dyn_lib_class (abfd
);
1671 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
1673 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1674 && bfd_get_format (abfd
) == bfd_object
)
1675 elf_dyn_lib_class (abfd
) = lib_class
;
1678 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1679 the linker ELF emulation code. */
1681 struct bfd_link_needed_list
*
1682 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1683 struct bfd_link_info
*info
)
1685 if (! is_elf_hash_table (info
->hash
))
1687 return elf_hash_table (info
)->needed
;
1690 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1691 hook for the linker ELF emulation code. */
1693 struct bfd_link_needed_list
*
1694 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1695 struct bfd_link_info
*info
)
1697 if (! is_elf_hash_table (info
->hash
))
1699 return elf_hash_table (info
)->runpath
;
1702 /* Get the name actually used for a dynamic object for a link. This
1703 is the SONAME entry if there is one. Otherwise, it is the string
1704 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1707 bfd_elf_get_dt_soname (bfd
*abfd
)
1709 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1710 && bfd_get_format (abfd
) == bfd_object
)
1711 return elf_dt_name (abfd
);
1715 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1716 the ELF linker emulation code. */
1719 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1720 struct bfd_link_needed_list
**pneeded
)
1723 bfd_byte
*dynbuf
= NULL
;
1725 unsigned long shlink
;
1726 bfd_byte
*extdyn
, *extdynend
;
1728 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1732 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1733 || bfd_get_format (abfd
) != bfd_object
)
1736 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1737 if (s
== NULL
|| s
->size
== 0)
1740 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1743 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1747 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1749 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1750 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1753 extdynend
= extdyn
+ s
->size
;
1754 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1756 Elf_Internal_Dyn dyn
;
1758 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1760 if (dyn
.d_tag
== DT_NULL
)
1763 if (dyn
.d_tag
== DT_NEEDED
)
1766 struct bfd_link_needed_list
*l
;
1767 unsigned int tagv
= dyn
.d_un
.d_val
;
1770 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1775 l
= bfd_alloc (abfd
, amt
);
1796 /* Allocate an ELF string table--force the first byte to be zero. */
1798 struct bfd_strtab_hash
*
1799 _bfd_elf_stringtab_init (void)
1801 struct bfd_strtab_hash
*ret
;
1803 ret
= _bfd_stringtab_init ();
1808 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1809 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1810 if (loc
== (bfd_size_type
) -1)
1812 _bfd_stringtab_free (ret
);
1819 /* ELF .o/exec file reading */
1821 /* Create a new bfd section from an ELF section header. */
1824 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1826 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1827 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1828 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1831 name
= bfd_elf_string_from_elf_section (abfd
,
1832 elf_elfheader (abfd
)->e_shstrndx
,
1837 switch (hdr
->sh_type
)
1840 /* Inactive section. Throw it away. */
1843 case SHT_PROGBITS
: /* Normal section with contents. */
1844 case SHT_NOBITS
: /* .bss section. */
1845 case SHT_HASH
: /* .hash section. */
1846 case SHT_NOTE
: /* .note section. */
1847 case SHT_INIT_ARRAY
: /* .init_array section. */
1848 case SHT_FINI_ARRAY
: /* .fini_array section. */
1849 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1850 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1851 case SHT_GNU_HASH
: /* .gnu.hash section. */
1852 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1854 case SHT_DYNAMIC
: /* Dynamic linking information. */
1855 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1857 if (hdr
->sh_link
> elf_numsections (abfd
)
1858 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1860 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1862 Elf_Internal_Shdr
*dynsymhdr
;
1864 /* The shared libraries distributed with hpux11 have a bogus
1865 sh_link field for the ".dynamic" section. Find the
1866 string table for the ".dynsym" section instead. */
1867 if (elf_dynsymtab (abfd
) != 0)
1869 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1870 hdr
->sh_link
= dynsymhdr
->sh_link
;
1874 unsigned int i
, num_sec
;
1876 num_sec
= elf_numsections (abfd
);
1877 for (i
= 1; i
< num_sec
; i
++)
1879 dynsymhdr
= elf_elfsections (abfd
)[i
];
1880 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1882 hdr
->sh_link
= dynsymhdr
->sh_link
;
1890 case SHT_SYMTAB
: /* A symbol table */
1891 if (elf_onesymtab (abfd
) == shindex
)
1894 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1896 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1897 elf_onesymtab (abfd
) = shindex
;
1898 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1899 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1900 abfd
->flags
|= HAS_SYMS
;
1902 /* Sometimes a shared object will map in the symbol table. If
1903 SHF_ALLOC is set, and this is a shared object, then we also
1904 treat this section as a BFD section. We can not base the
1905 decision purely on SHF_ALLOC, because that flag is sometimes
1906 set in a relocatable object file, which would confuse the
1908 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1909 && (abfd
->flags
& DYNAMIC
) != 0
1910 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1914 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1915 can't read symbols without that section loaded as well. It
1916 is most likely specified by the next section header. */
1917 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1919 unsigned int i
, num_sec
;
1921 num_sec
= elf_numsections (abfd
);
1922 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1924 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1925 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1926 && hdr2
->sh_link
== shindex
)
1930 for (i
= 1; i
< shindex
; i
++)
1932 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1933 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1934 && hdr2
->sh_link
== shindex
)
1938 return bfd_section_from_shdr (abfd
, i
);
1942 case SHT_DYNSYM
: /* A dynamic symbol table */
1943 if (elf_dynsymtab (abfd
) == shindex
)
1946 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1948 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1949 elf_dynsymtab (abfd
) = shindex
;
1950 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1951 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1952 abfd
->flags
|= HAS_SYMS
;
1954 /* Besides being a symbol table, we also treat this as a regular
1955 section, so that objcopy can handle it. */
1956 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1958 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1959 if (elf_symtab_shndx (abfd
) == shindex
)
1962 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1963 elf_symtab_shndx (abfd
) = shindex
;
1964 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1965 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1968 case SHT_STRTAB
: /* A string table */
1969 if (hdr
->bfd_section
!= NULL
)
1971 if (ehdr
->e_shstrndx
== shindex
)
1973 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1974 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1977 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1980 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1981 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1984 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1987 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1988 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1989 elf_elfsections (abfd
)[shindex
] = hdr
;
1990 /* We also treat this as a regular section, so that objcopy
1992 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1996 /* If the string table isn't one of the above, then treat it as a
1997 regular section. We need to scan all the headers to be sure,
1998 just in case this strtab section appeared before the above. */
1999 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
2001 unsigned int i
, num_sec
;
2003 num_sec
= elf_numsections (abfd
);
2004 for (i
= 1; i
< num_sec
; i
++)
2006 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
2007 if (hdr2
->sh_link
== shindex
)
2009 /* Prevent endless recursion on broken objects. */
2012 if (! bfd_section_from_shdr (abfd
, i
))
2014 if (elf_onesymtab (abfd
) == i
)
2016 if (elf_dynsymtab (abfd
) == i
)
2017 goto dynsymtab_strtab
;
2021 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2025 /* *These* do a lot of work -- but build no sections! */
2027 asection
*target_sect
;
2028 Elf_Internal_Shdr
*hdr2
;
2029 unsigned int num_sec
= elf_numsections (abfd
);
2032 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2033 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2036 /* Check for a bogus link to avoid crashing. */
2037 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2038 || hdr
->sh_link
>= num_sec
)
2040 ((*_bfd_error_handler
)
2041 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2042 abfd
, hdr
->sh_link
, name
, shindex
));
2043 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2047 /* For some incomprehensible reason Oracle distributes
2048 libraries for Solaris in which some of the objects have
2049 bogus sh_link fields. It would be nice if we could just
2050 reject them, but, unfortunately, some people need to use
2051 them. We scan through the section headers; if we find only
2052 one suitable symbol table, we clobber the sh_link to point
2053 to it. I hope this doesn't break anything. */
2054 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2055 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2061 for (scan
= 1; scan
< num_sec
; scan
++)
2063 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2064 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2075 hdr
->sh_link
= found
;
2078 /* Get the symbol table. */
2079 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2080 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2081 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2084 /* If this reloc section does not use the main symbol table we
2085 don't treat it as a reloc section. BFD can't adequately
2086 represent such a section, so at least for now, we don't
2087 try. We just present it as a normal section. We also
2088 can't use it as a reloc section if it points to the null
2089 section, an invalid section, or another reloc section. */
2090 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2091 || hdr
->sh_info
== SHN_UNDEF
2092 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2093 || hdr
->sh_info
>= num_sec
2094 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2095 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2096 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2099 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2101 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2102 if (target_sect
== NULL
)
2105 if ((target_sect
->flags
& SEC_RELOC
) == 0
2106 || target_sect
->reloc_count
== 0)
2107 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2111 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2112 amt
= sizeof (*hdr2
);
2113 hdr2
= bfd_alloc (abfd
, amt
);
2114 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2117 elf_elfsections (abfd
)[shindex
] = hdr2
;
2118 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2119 target_sect
->flags
|= SEC_RELOC
;
2120 target_sect
->relocation
= NULL
;
2121 target_sect
->rel_filepos
= hdr
->sh_offset
;
2122 /* In the section to which the relocations apply, mark whether
2123 its relocations are of the REL or RELA variety. */
2124 if (hdr
->sh_size
!= 0)
2125 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2126 abfd
->flags
|= HAS_RELOC
;
2131 case SHT_GNU_verdef
:
2132 elf_dynverdef (abfd
) = shindex
;
2133 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2134 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2137 case SHT_GNU_versym
:
2138 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2140 elf_dynversym (abfd
) = shindex
;
2141 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2142 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2144 case SHT_GNU_verneed
:
2145 elf_dynverref (abfd
) = shindex
;
2146 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2147 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2153 /* We need a BFD section for objcopy and relocatable linking,
2154 and it's handy to have the signature available as the section
2156 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2158 name
= group_signature (abfd
, hdr
);
2161 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2163 if (hdr
->contents
!= NULL
)
2165 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2166 unsigned int n_elt
= hdr
->sh_size
/ 4;
2169 if (idx
->flags
& GRP_COMDAT
)
2170 hdr
->bfd_section
->flags
2171 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2173 /* We try to keep the same section order as it comes in. */
2175 while (--n_elt
!= 0)
2176 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2177 && elf_next_in_group (s
) != NULL
)
2179 elf_next_in_group (hdr
->bfd_section
) = s
;
2186 /* Check for any processor-specific section types. */
2187 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2190 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2192 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2193 /* FIXME: How to properly handle allocated section reserved
2194 for applications? */
2195 (*_bfd_error_handler
)
2196 (_("%B: don't know how to handle allocated, application "
2197 "specific section `%s' [0x%8x]"),
2198 abfd
, name
, hdr
->sh_type
);
2200 /* Allow sections reserved for applications. */
2201 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2204 else if (hdr
->sh_type
>= SHT_LOPROC
2205 && hdr
->sh_type
<= SHT_HIPROC
)
2206 /* FIXME: We should handle this section. */
2207 (*_bfd_error_handler
)
2208 (_("%B: don't know how to handle processor specific section "
2210 abfd
, name
, hdr
->sh_type
);
2211 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2213 /* Unrecognised OS-specific sections. */
2214 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
2215 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2216 required to correctly process the section and the file should
2217 be rejected with an error message. */
2218 (*_bfd_error_handler
)
2219 (_("%B: don't know how to handle OS specific section "
2221 abfd
, name
, hdr
->sh_type
);
2223 /* Otherwise it should be processed. */
2224 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2227 /* FIXME: We should handle this section. */
2228 (*_bfd_error_handler
)
2229 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2230 abfd
, name
, hdr
->sh_type
);
2238 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2239 Return SEC for sections that have no elf section, and NULL on error. */
2242 bfd_section_from_r_symndx (bfd
*abfd
,
2243 struct sym_sec_cache
*cache
,
2245 unsigned long r_symndx
)
2247 Elf_Internal_Shdr
*symtab_hdr
;
2248 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2249 Elf_External_Sym_Shndx eshndx
;
2250 Elf_Internal_Sym isym
;
2251 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2253 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2254 return cache
->sec
[ent
];
2256 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2257 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2258 &isym
, esym
, &eshndx
) == NULL
)
2261 if (cache
->abfd
!= abfd
)
2263 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2266 cache
->indx
[ent
] = r_symndx
;
2267 cache
->sec
[ent
] = sec
;
2268 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2269 || isym
.st_shndx
> SHN_HIRESERVE
)
2272 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2274 cache
->sec
[ent
] = s
;
2276 return cache
->sec
[ent
];
2279 /* Given an ELF section number, retrieve the corresponding BFD
2283 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2285 if (index
>= elf_numsections (abfd
))
2287 return elf_elfsections (abfd
)[index
]->bfd_section
;
2290 static const struct bfd_elf_special_section special_sections_b
[] =
2292 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2293 { NULL
, 0, 0, 0, 0 }
2296 static const struct bfd_elf_special_section special_sections_c
[] =
2298 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2299 { NULL
, 0, 0, 0, 0 }
2302 static const struct bfd_elf_special_section special_sections_d
[] =
2304 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2305 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2306 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2307 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2308 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2309 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2310 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2311 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2312 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2313 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2314 { NULL
, 0, 0, 0, 0 }
2317 static const struct bfd_elf_special_section special_sections_f
[] =
2319 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2320 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2321 { NULL
, 0, 0, 0, 0 }
2324 static const struct bfd_elf_special_section special_sections_g
[] =
2326 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2327 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2328 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2329 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2330 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2331 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2332 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2333 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2334 { NULL
, 0, 0, 0, 0 }
2337 static const struct bfd_elf_special_section special_sections_h
[] =
2339 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2340 { NULL
, 0, 0, 0, 0 }
2343 static const struct bfd_elf_special_section special_sections_i
[] =
2345 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2346 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2347 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2348 { NULL
, 0, 0, 0, 0 }
2351 static const struct bfd_elf_special_section special_sections_l
[] =
2353 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2354 { NULL
, 0, 0, 0, 0 }
2357 static const struct bfd_elf_special_section special_sections_n
[] =
2359 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2360 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2361 { NULL
, 0, 0, 0, 0 }
2364 static const struct bfd_elf_special_section special_sections_p
[] =
2366 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2367 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2368 { NULL
, 0, 0, 0, 0 }
2371 static const struct bfd_elf_special_section special_sections_r
[] =
2373 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2374 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2375 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2376 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2377 { NULL
, 0, 0, 0, 0 }
2380 static const struct bfd_elf_special_section special_sections_s
[] =
2382 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2383 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2384 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2385 /* See struct bfd_elf_special_section declaration for the semantics of
2386 this special case where .prefix_length != strlen (.prefix). */
2387 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2388 { NULL
, 0, 0, 0, 0 }
2391 static const struct bfd_elf_special_section special_sections_t
[] =
2393 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2394 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2395 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2396 { NULL
, 0, 0, 0, 0 }
2399 static const struct bfd_elf_special_section
*special_sections
[] =
2401 special_sections_b
, /* 'b' */
2402 special_sections_c
, /* 'b' */
2403 special_sections_d
, /* 'd' */
2405 special_sections_f
, /* 'f' */
2406 special_sections_g
, /* 'g' */
2407 special_sections_h
, /* 'h' */
2408 special_sections_i
, /* 'i' */
2411 special_sections_l
, /* 'l' */
2413 special_sections_n
, /* 'n' */
2415 special_sections_p
, /* 'p' */
2417 special_sections_r
, /* 'r' */
2418 special_sections_s
, /* 's' */
2419 special_sections_t
, /* 't' */
2422 const struct bfd_elf_special_section
*
2423 _bfd_elf_get_special_section (const char *name
,
2424 const struct bfd_elf_special_section
*spec
,
2430 len
= strlen (name
);
2432 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2435 int prefix_len
= spec
[i
].prefix_length
;
2437 if (len
< prefix_len
)
2439 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2442 suffix_len
= spec
[i
].suffix_length
;
2443 if (suffix_len
<= 0)
2445 if (name
[prefix_len
] != 0)
2447 if (suffix_len
== 0)
2449 if (name
[prefix_len
] != '.'
2450 && (suffix_len
== -2
2451 || (rela
&& spec
[i
].type
== SHT_REL
)))
2457 if (len
< prefix_len
+ suffix_len
)
2459 if (memcmp (name
+ len
- suffix_len
,
2460 spec
[i
].prefix
+ prefix_len
,
2470 const struct bfd_elf_special_section
*
2471 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2474 const struct bfd_elf_special_section
*spec
;
2475 const struct elf_backend_data
*bed
;
2477 /* See if this is one of the special sections. */
2478 if (sec
->name
== NULL
)
2481 bed
= get_elf_backend_data (abfd
);
2482 spec
= bed
->special_sections
;
2485 spec
= _bfd_elf_get_special_section (sec
->name
,
2486 bed
->special_sections
,
2492 if (sec
->name
[0] != '.')
2495 i
= sec
->name
[1] - 'b';
2496 if (i
< 0 || i
> 't' - 'b')
2499 spec
= special_sections
[i
];
2504 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2508 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2510 struct bfd_elf_section_data
*sdata
;
2511 const struct elf_backend_data
*bed
;
2512 const struct bfd_elf_special_section
*ssect
;
2514 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2517 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2520 sec
->used_by_bfd
= sdata
;
2523 /* Indicate whether or not this section should use RELA relocations. */
2524 bed
= get_elf_backend_data (abfd
);
2525 sec
->use_rela_p
= bed
->default_use_rela_p
;
2527 /* When we read a file, we don't need to set ELF section type and
2528 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2529 anyway. We will set ELF section type and flags for all linker
2530 created sections. If user specifies BFD section flags, we will
2531 set ELF section type and flags based on BFD section flags in
2532 elf_fake_sections. */
2533 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2534 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2536 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2539 elf_section_type (sec
) = ssect
->type
;
2540 elf_section_flags (sec
) = ssect
->attr
;
2544 return _bfd_generic_new_section_hook (abfd
, sec
);
2547 /* Create a new bfd section from an ELF program header.
2549 Since program segments have no names, we generate a synthetic name
2550 of the form segment<NUM>, where NUM is generally the index in the
2551 program header table. For segments that are split (see below) we
2552 generate the names segment<NUM>a and segment<NUM>b.
2554 Note that some program segments may have a file size that is different than
2555 (less than) the memory size. All this means is that at execution the
2556 system must allocate the amount of memory specified by the memory size,
2557 but only initialize it with the first "file size" bytes read from the
2558 file. This would occur for example, with program segments consisting
2559 of combined data+bss.
2561 To handle the above situation, this routine generates TWO bfd sections
2562 for the single program segment. The first has the length specified by
2563 the file size of the segment, and the second has the length specified
2564 by the difference between the two sizes. In effect, the segment is split
2565 into it's initialized and uninitialized parts.
2570 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2571 Elf_Internal_Phdr
*hdr
,
2573 const char *typename
)
2581 split
= ((hdr
->p_memsz
> 0)
2582 && (hdr
->p_filesz
> 0)
2583 && (hdr
->p_memsz
> hdr
->p_filesz
));
2584 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2585 len
= strlen (namebuf
) + 1;
2586 name
= bfd_alloc (abfd
, len
);
2589 memcpy (name
, namebuf
, len
);
2590 newsect
= bfd_make_section (abfd
, name
);
2591 if (newsect
== NULL
)
2593 newsect
->vma
= hdr
->p_vaddr
;
2594 newsect
->lma
= hdr
->p_paddr
;
2595 newsect
->size
= hdr
->p_filesz
;
2596 newsect
->filepos
= hdr
->p_offset
;
2597 newsect
->flags
|= SEC_HAS_CONTENTS
;
2598 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2599 if (hdr
->p_type
== PT_LOAD
)
2601 newsect
->flags
|= SEC_ALLOC
;
2602 newsect
->flags
|= SEC_LOAD
;
2603 if (hdr
->p_flags
& PF_X
)
2605 /* FIXME: all we known is that it has execute PERMISSION,
2607 newsect
->flags
|= SEC_CODE
;
2610 if (!(hdr
->p_flags
& PF_W
))
2612 newsect
->flags
|= SEC_READONLY
;
2617 sprintf (namebuf
, "%s%db", typename
, index
);
2618 len
= strlen (namebuf
) + 1;
2619 name
= bfd_alloc (abfd
, len
);
2622 memcpy (name
, namebuf
, len
);
2623 newsect
= bfd_make_section (abfd
, name
);
2624 if (newsect
== NULL
)
2626 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2627 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2628 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2629 if (hdr
->p_type
== PT_LOAD
)
2631 newsect
->flags
|= SEC_ALLOC
;
2632 if (hdr
->p_flags
& PF_X
)
2633 newsect
->flags
|= SEC_CODE
;
2635 if (!(hdr
->p_flags
& PF_W
))
2636 newsect
->flags
|= SEC_READONLY
;
2643 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2645 const struct elf_backend_data
*bed
;
2647 switch (hdr
->p_type
)
2650 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2653 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2656 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2659 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2662 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2664 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2669 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2672 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2674 case PT_GNU_EH_FRAME
:
2675 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2679 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2682 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2685 /* Check for any processor-specific program segment types. */
2686 bed
= get_elf_backend_data (abfd
);
2687 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2691 /* Initialize REL_HDR, the section-header for new section, containing
2692 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2693 relocations; otherwise, we use REL relocations. */
2696 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2697 Elf_Internal_Shdr
*rel_hdr
,
2699 bfd_boolean use_rela_p
)
2702 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2703 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2705 name
= bfd_alloc (abfd
, amt
);
2708 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2710 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2712 if (rel_hdr
->sh_name
== (unsigned int) -1)
2714 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2715 rel_hdr
->sh_entsize
= (use_rela_p
2716 ? bed
->s
->sizeof_rela
2717 : bed
->s
->sizeof_rel
);
2718 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2719 rel_hdr
->sh_flags
= 0;
2720 rel_hdr
->sh_addr
= 0;
2721 rel_hdr
->sh_size
= 0;
2722 rel_hdr
->sh_offset
= 0;
2727 /* Set up an ELF internal section header for a section. */
2730 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2732 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2733 bfd_boolean
*failedptr
= failedptrarg
;
2734 Elf_Internal_Shdr
*this_hdr
;
2738 /* We already failed; just get out of the bfd_map_over_sections
2743 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2745 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2746 asect
->name
, FALSE
);
2747 if (this_hdr
->sh_name
== (unsigned int) -1)
2753 /* Don't clear sh_flags. Assembler may set additional bits. */
2755 if ((asect
->flags
& SEC_ALLOC
) != 0
2756 || asect
->user_set_vma
)
2757 this_hdr
->sh_addr
= asect
->vma
;
2759 this_hdr
->sh_addr
= 0;
2761 this_hdr
->sh_offset
= 0;
2762 this_hdr
->sh_size
= asect
->size
;
2763 this_hdr
->sh_link
= 0;
2764 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2765 /* The sh_entsize and sh_info fields may have been set already by
2766 copy_private_section_data. */
2768 this_hdr
->bfd_section
= asect
;
2769 this_hdr
->contents
= NULL
;
2771 /* If the section type is unspecified, we set it based on
2773 if (this_hdr
->sh_type
== SHT_NULL
)
2775 if ((asect
->flags
& SEC_GROUP
) != 0)
2776 this_hdr
->sh_type
= SHT_GROUP
;
2777 else if ((asect
->flags
& SEC_ALLOC
) != 0
2778 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2779 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2780 this_hdr
->sh_type
= SHT_NOBITS
;
2782 this_hdr
->sh_type
= SHT_PROGBITS
;
2785 switch (this_hdr
->sh_type
)
2791 case SHT_INIT_ARRAY
:
2792 case SHT_FINI_ARRAY
:
2793 case SHT_PREINIT_ARRAY
:
2800 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2804 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2808 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2812 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2813 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2817 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2818 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2821 case SHT_GNU_versym
:
2822 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2825 case SHT_GNU_verdef
:
2826 this_hdr
->sh_entsize
= 0;
2827 /* objcopy or strip will copy over sh_info, but may not set
2828 cverdefs. The linker will set cverdefs, but sh_info will be
2830 if (this_hdr
->sh_info
== 0)
2831 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2833 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2834 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2837 case SHT_GNU_verneed
:
2838 this_hdr
->sh_entsize
= 0;
2839 /* objcopy or strip will copy over sh_info, but may not set
2840 cverrefs. The linker will set cverrefs, but sh_info will be
2842 if (this_hdr
->sh_info
== 0)
2843 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2845 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2846 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2850 this_hdr
->sh_entsize
= 4;
2854 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2858 if ((asect
->flags
& SEC_ALLOC
) != 0)
2859 this_hdr
->sh_flags
|= SHF_ALLOC
;
2860 if ((asect
->flags
& SEC_READONLY
) == 0)
2861 this_hdr
->sh_flags
|= SHF_WRITE
;
2862 if ((asect
->flags
& SEC_CODE
) != 0)
2863 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2864 if ((asect
->flags
& SEC_MERGE
) != 0)
2866 this_hdr
->sh_flags
|= SHF_MERGE
;
2867 this_hdr
->sh_entsize
= asect
->entsize
;
2868 if ((asect
->flags
& SEC_STRINGS
) != 0)
2869 this_hdr
->sh_flags
|= SHF_STRINGS
;
2871 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2872 this_hdr
->sh_flags
|= SHF_GROUP
;
2873 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2875 this_hdr
->sh_flags
|= SHF_TLS
;
2876 if (asect
->size
== 0
2877 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2879 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2881 this_hdr
->sh_size
= 0;
2884 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2885 if (this_hdr
->sh_size
!= 0)
2886 this_hdr
->sh_type
= SHT_NOBITS
;
2891 /* Check for processor-specific section types. */
2892 if (bed
->elf_backend_fake_sections
2893 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2896 /* If the section has relocs, set up a section header for the
2897 SHT_REL[A] section. If two relocation sections are required for
2898 this section, it is up to the processor-specific back-end to
2899 create the other. */
2900 if ((asect
->flags
& SEC_RELOC
) != 0
2901 && !_bfd_elf_init_reloc_shdr (abfd
,
2902 &elf_section_data (asect
)->rel_hdr
,
2908 /* Fill in the contents of a SHT_GROUP section. */
2911 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2913 bfd_boolean
*failedptr
= failedptrarg
;
2914 unsigned long symindx
;
2915 asection
*elt
, *first
;
2919 /* Ignore linker created group section. See elfNN_ia64_object_p in
2921 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2926 if (elf_group_id (sec
) != NULL
)
2927 symindx
= elf_group_id (sec
)->udata
.i
;
2931 /* If called from the assembler, swap_out_syms will have set up
2932 elf_section_syms; If called for "ld -r", use target_index. */
2933 if (elf_section_syms (abfd
) != NULL
)
2934 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2936 symindx
= sec
->target_index
;
2938 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2940 /* The contents won't be allocated for "ld -r" or objcopy. */
2942 if (sec
->contents
== NULL
)
2945 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2947 /* Arrange for the section to be written out. */
2948 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2949 if (sec
->contents
== NULL
)
2956 loc
= sec
->contents
+ sec
->size
;
2958 /* Get the pointer to the first section in the group that gas
2959 squirreled away here. objcopy arranges for this to be set to the
2960 start of the input section group. */
2961 first
= elt
= elf_next_in_group (sec
);
2963 /* First element is a flag word. Rest of section is elf section
2964 indices for all the sections of the group. Write them backwards
2965 just to keep the group in the same order as given in .section
2966 directives, not that it matters. */
2975 s
= s
->output_section
;
2978 idx
= elf_section_data (s
)->this_idx
;
2979 H_PUT_32 (abfd
, idx
, loc
);
2980 elt
= elf_next_in_group (elt
);
2985 if ((loc
-= 4) != sec
->contents
)
2988 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2991 /* Assign all ELF section numbers. The dummy first section is handled here
2992 too. The link/info pointers for the standard section types are filled
2993 in here too, while we're at it. */
2996 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2998 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
3000 unsigned int section_number
, secn
;
3001 Elf_Internal_Shdr
**i_shdrp
;
3002 struct bfd_elf_section_data
*d
;
3006 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
3008 /* SHT_GROUP sections are in relocatable files only. */
3009 if (link_info
== NULL
|| link_info
->relocatable
)
3011 /* Put SHT_GROUP sections first. */
3012 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3014 d
= elf_section_data (sec
);
3016 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
3018 if (sec
->flags
& SEC_LINKER_CREATED
)
3020 /* Remove the linker created SHT_GROUP sections. */
3021 bfd_section_list_remove (abfd
, sec
);
3022 abfd
->section_count
--;
3026 if (section_number
== SHN_LORESERVE
)
3027 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3028 d
->this_idx
= section_number
++;
3034 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3036 d
= elf_section_data (sec
);
3038 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
3040 if (section_number
== SHN_LORESERVE
)
3041 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3042 d
->this_idx
= section_number
++;
3044 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3045 if ((sec
->flags
& SEC_RELOC
) == 0)
3049 if (section_number
== SHN_LORESERVE
)
3050 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3051 d
->rel_idx
= section_number
++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3057 if (section_number
== SHN_LORESERVE
)
3058 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3059 d
->rel_idx2
= section_number
++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3066 if (section_number
== SHN_LORESERVE
)
3067 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3068 t
->shstrtab_section
= section_number
++;
3069 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3070 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3072 if (bfd_get_symcount (abfd
) > 0)
3074 if (section_number
== SHN_LORESERVE
)
3075 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3076 t
->symtab_section
= section_number
++;
3077 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3078 if (section_number
> SHN_LORESERVE
- 2)
3080 if (section_number
== SHN_LORESERVE
)
3081 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3082 t
->symtab_shndx_section
= section_number
++;
3083 t
->symtab_shndx_hdr
.sh_name
3084 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3085 ".symtab_shndx", FALSE
);
3086 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3089 if (section_number
== SHN_LORESERVE
)
3090 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3091 t
->strtab_section
= section_number
++;
3092 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3095 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3096 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3098 elf_numsections (abfd
) = section_number
;
3099 elf_elfheader (abfd
)->e_shnum
= section_number
;
3100 if (section_number
> SHN_LORESERVE
)
3101 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3103 /* Set up the list of section header pointers, in agreement with the
3105 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3106 if (i_shdrp
== NULL
)
3109 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3110 if (i_shdrp
[0] == NULL
)
3112 bfd_release (abfd
, i_shdrp
);
3116 elf_elfsections (abfd
) = i_shdrp
;
3118 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3119 if (bfd_get_symcount (abfd
) > 0)
3121 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3122 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3124 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3125 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3127 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3128 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3131 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3133 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3137 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3138 if (d
->rel_idx
!= 0)
3139 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3140 if (d
->rel_idx2
!= 0)
3141 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3143 /* Fill in the sh_link and sh_info fields while we're at it. */
3145 /* sh_link of a reloc section is the section index of the symbol
3146 table. sh_info is the section index of the section to which
3147 the relocation entries apply. */
3148 if (d
->rel_idx
!= 0)
3150 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3151 d
->rel_hdr
.sh_info
= d
->this_idx
;
3153 if (d
->rel_idx2
!= 0)
3155 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3156 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3159 /* We need to set up sh_link for SHF_LINK_ORDER. */
3160 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3162 s
= elf_linked_to_section (sec
);
3165 /* elf_linked_to_section points to the input section. */
3166 if (link_info
!= NULL
)
3168 /* Check discarded linkonce section. */
3169 if (elf_discarded_section (s
))
3172 (*_bfd_error_handler
)
3173 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3174 abfd
, d
->this_hdr
.bfd_section
,
3176 /* Point to the kept section if it has the same
3177 size as the discarded one. */
3178 kept
= _bfd_elf_check_kept_section (s
);
3181 bfd_set_error (bfd_error_bad_value
);
3187 s
= s
->output_section
;
3188 BFD_ASSERT (s
!= NULL
);
3192 /* Handle objcopy. */
3193 if (s
->output_section
== NULL
)
3195 (*_bfd_error_handler
)
3196 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3197 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3198 bfd_set_error (bfd_error_bad_value
);
3201 s
= s
->output_section
;
3203 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3208 The Intel C compiler generates SHT_IA_64_UNWIND with
3209 SHF_LINK_ORDER. But it doesn't set the sh_link or
3210 sh_info fields. Hence we could get the situation
3212 const struct elf_backend_data
*bed
3213 = get_elf_backend_data (abfd
);
3214 if (bed
->link_order_error_handler
)
3215 bed
->link_order_error_handler
3216 (_("%B: warning: sh_link not set for section `%A'"),
3221 switch (d
->this_hdr
.sh_type
)
3225 /* A reloc section which we are treating as a normal BFD
3226 section. sh_link is the section index of the symbol
3227 table. sh_info is the section index of the section to
3228 which the relocation entries apply. We assume that an
3229 allocated reloc section uses the dynamic symbol table.
3230 FIXME: How can we be sure? */
3231 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3233 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3235 /* We look up the section the relocs apply to by name. */
3237 if (d
->this_hdr
.sh_type
== SHT_REL
)
3241 s
= bfd_get_section_by_name (abfd
, name
);
3243 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3247 /* We assume that a section named .stab*str is a stabs
3248 string section. We look for a section with the same name
3249 but without the trailing ``str'', and set its sh_link
3250 field to point to this section. */
3251 if (CONST_STRNEQ (sec
->name
, ".stab")
3252 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3257 len
= strlen (sec
->name
);
3258 alc
= bfd_malloc (len
- 2);
3261 memcpy (alc
, sec
->name
, len
- 3);
3262 alc
[len
- 3] = '\0';
3263 s
= bfd_get_section_by_name (abfd
, alc
);
3267 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3269 /* This is a .stab section. */
3270 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3271 elf_section_data (s
)->this_hdr
.sh_entsize
3272 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3279 case SHT_GNU_verneed
:
3280 case SHT_GNU_verdef
:
3281 /* sh_link is the section header index of the string table
3282 used for the dynamic entries, or the symbol table, or the
3284 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3286 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3289 case SHT_GNU_LIBLIST
:
3290 /* sh_link is the section header index of the prelink library
3292 used for the dynamic entries, or the symbol table, or the
3294 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3295 ? ".dynstr" : ".gnu.libstr");
3297 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3302 case SHT_GNU_versym
:
3303 /* sh_link is the section header index of the symbol table
3304 this hash table or version table is for. */
3305 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3307 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3311 d
->this_hdr
.sh_link
= t
->symtab_section
;
3315 for (secn
= 1; secn
< section_number
; ++secn
)
3316 if (i_shdrp
[secn
] == NULL
)
3317 i_shdrp
[secn
] = i_shdrp
[0];
3319 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3320 i_shdrp
[secn
]->sh_name
);
3324 /* Map symbol from it's internal number to the external number, moving
3325 all local symbols to be at the head of the list. */
3328 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3330 /* If the backend has a special mapping, use it. */
3331 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3332 if (bed
->elf_backend_sym_is_global
)
3333 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3335 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3336 || bfd_is_und_section (bfd_get_section (sym
))
3337 || bfd_is_com_section (bfd_get_section (sym
)));
3340 /* Don't output section symbols for sections that are not going to be
3341 output. Also, don't output section symbols for reloc and other
3342 special sections. */
3345 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3347 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3349 || (sym
->section
->owner
!= abfd
3350 && (sym
->section
->output_section
->owner
!= abfd
3351 || sym
->section
->output_offset
!= 0))));
3355 elf_map_symbols (bfd
*abfd
)
3357 unsigned int symcount
= bfd_get_symcount (abfd
);
3358 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3359 asymbol
**sect_syms
;
3360 unsigned int num_locals
= 0;
3361 unsigned int num_globals
= 0;
3362 unsigned int num_locals2
= 0;
3363 unsigned int num_globals2
= 0;
3370 fprintf (stderr
, "elf_map_symbols\n");
3374 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3376 if (max_index
< asect
->index
)
3377 max_index
= asect
->index
;
3381 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3382 if (sect_syms
== NULL
)
3384 elf_section_syms (abfd
) = sect_syms
;
3385 elf_num_section_syms (abfd
) = max_index
;
3387 /* Init sect_syms entries for any section symbols we have already
3388 decided to output. */
3389 for (idx
= 0; idx
< symcount
; idx
++)
3391 asymbol
*sym
= syms
[idx
];
3393 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3394 && !ignore_section_sym (abfd
, sym
))
3396 asection
*sec
= sym
->section
;
3398 if (sec
->owner
!= abfd
)
3399 sec
= sec
->output_section
;
3401 sect_syms
[sec
->index
] = syms
[idx
];
3405 /* Classify all of the symbols. */
3406 for (idx
= 0; idx
< symcount
; idx
++)
3408 if (ignore_section_sym (abfd
, syms
[idx
]))
3410 if (!sym_is_global (abfd
, syms
[idx
]))
3416 /* We will be adding a section symbol for each normal BFD section. Most
3417 sections will already have a section symbol in outsymbols, but
3418 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3419 at least in that case. */
3420 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3422 if (sect_syms
[asect
->index
] == NULL
)
3424 if (!sym_is_global (abfd
, asect
->symbol
))
3431 /* Now sort the symbols so the local symbols are first. */
3432 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3434 if (new_syms
== NULL
)
3437 for (idx
= 0; idx
< symcount
; idx
++)
3439 asymbol
*sym
= syms
[idx
];
3442 if (ignore_section_sym (abfd
, sym
))
3444 if (!sym_is_global (abfd
, sym
))
3447 i
= num_locals
+ num_globals2
++;
3449 sym
->udata
.i
= i
+ 1;
3451 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3453 if (sect_syms
[asect
->index
] == NULL
)
3455 asymbol
*sym
= asect
->symbol
;
3458 sect_syms
[asect
->index
] = sym
;
3459 if (!sym_is_global (abfd
, sym
))
3462 i
= num_locals
+ num_globals2
++;
3464 sym
->udata
.i
= i
+ 1;
3468 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3470 elf_num_locals (abfd
) = num_locals
;
3471 elf_num_globals (abfd
) = num_globals
;
3475 /* Align to the maximum file alignment that could be required for any
3476 ELF data structure. */
3478 static inline file_ptr
3479 align_file_position (file_ptr off
, int align
)
3481 return (off
+ align
- 1) & ~(align
- 1);
3484 /* Assign a file position to a section, optionally aligning to the
3485 required section alignment. */
3488 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3496 al
= i_shdrp
->sh_addralign
;
3498 offset
= BFD_ALIGN (offset
, al
);
3500 i_shdrp
->sh_offset
= offset
;
3501 if (i_shdrp
->bfd_section
!= NULL
)
3502 i_shdrp
->bfd_section
->filepos
= offset
;
3503 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3504 offset
+= i_shdrp
->sh_size
;
3508 /* Compute the file positions we are going to put the sections at, and
3509 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3510 is not NULL, this is being called by the ELF backend linker. */
3513 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3514 struct bfd_link_info
*link_info
)
3516 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3518 struct bfd_strtab_hash
*strtab
= NULL
;
3519 Elf_Internal_Shdr
*shstrtab_hdr
;
3521 if (abfd
->output_has_begun
)
3524 /* Do any elf backend specific processing first. */
3525 if (bed
->elf_backend_begin_write_processing
)
3526 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3528 if (! prep_headers (abfd
))
3531 /* Post process the headers if necessary. */
3532 if (bed
->elf_backend_post_process_headers
)
3533 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3536 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3540 if (!assign_section_numbers (abfd
, link_info
))
3543 /* The backend linker builds symbol table information itself. */
3544 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3546 /* Non-zero if doing a relocatable link. */
3547 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3549 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3553 if (link_info
== NULL
)
3555 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3560 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3561 /* sh_name was set in prep_headers. */
3562 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3563 shstrtab_hdr
->sh_flags
= 0;
3564 shstrtab_hdr
->sh_addr
= 0;
3565 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3566 shstrtab_hdr
->sh_entsize
= 0;
3567 shstrtab_hdr
->sh_link
= 0;
3568 shstrtab_hdr
->sh_info
= 0;
3569 /* sh_offset is set in assign_file_positions_except_relocs. */
3570 shstrtab_hdr
->sh_addralign
= 1;
3572 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3575 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3578 Elf_Internal_Shdr
*hdr
;
3580 off
= elf_tdata (abfd
)->next_file_pos
;
3582 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3583 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3585 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3586 if (hdr
->sh_size
!= 0)
3587 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3589 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3590 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3592 elf_tdata (abfd
)->next_file_pos
= off
;
3594 /* Now that we know where the .strtab section goes, write it
3596 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3597 || ! _bfd_stringtab_emit (abfd
, strtab
))
3599 _bfd_stringtab_free (strtab
);
3602 abfd
->output_has_begun
= TRUE
;
3607 /* Make an initial estimate of the size of the program header. If we
3608 get the number wrong here, we'll redo section placement. */
3610 static bfd_size_type
3611 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3615 const struct elf_backend_data
*bed
;
3617 /* Assume we will need exactly two PT_LOAD segments: one for text
3618 and one for data. */
3621 s
= bfd_get_section_by_name (abfd
, ".interp");
3622 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3624 /* If we have a loadable interpreter section, we need a
3625 PT_INTERP segment. In this case, assume we also need a
3626 PT_PHDR segment, although that may not be true for all
3631 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3633 /* We need a PT_DYNAMIC segment. */
3636 if (elf_tdata (abfd
)->relro
)
3638 /* We need a PT_GNU_RELRO segment only when there is a
3639 PT_DYNAMIC segment. */
3644 if (elf_tdata (abfd
)->eh_frame_hdr
)
3646 /* We need a PT_GNU_EH_FRAME segment. */
3650 if (elf_tdata (abfd
)->stack_flags
)
3652 /* We need a PT_GNU_STACK segment. */
3656 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3658 if ((s
->flags
& SEC_LOAD
) != 0
3659 && CONST_STRNEQ (s
->name
, ".note"))
3661 /* We need a PT_NOTE segment. */
3666 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3668 if (s
->flags
& SEC_THREAD_LOCAL
)
3670 /* We need a PT_TLS segment. */
3676 /* Let the backend count up any program headers it might need. */
3677 bed
= get_elf_backend_data (abfd
);
3678 if (bed
->elf_backend_additional_program_headers
)
3682 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3688 return segs
* bed
->s
->sizeof_phdr
;
3691 /* Create a mapping from a set of sections to a program segment. */
3693 static struct elf_segment_map
*
3694 make_mapping (bfd
*abfd
,
3695 asection
**sections
,
3700 struct elf_segment_map
*m
;
3705 amt
= sizeof (struct elf_segment_map
);
3706 amt
+= (to
- from
- 1) * sizeof (asection
*);
3707 m
= bfd_zalloc (abfd
, amt
);
3711 m
->p_type
= PT_LOAD
;
3712 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3713 m
->sections
[i
- from
] = *hdrpp
;
3714 m
->count
= to
- from
;
3716 if (from
== 0 && phdr
)
3718 /* Include the headers in the first PT_LOAD segment. */
3719 m
->includes_filehdr
= 1;
3720 m
->includes_phdrs
= 1;
3726 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3729 struct elf_segment_map
*
3730 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3732 struct elf_segment_map
*m
;
3734 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3738 m
->p_type
= PT_DYNAMIC
;
3740 m
->sections
[0] = dynsec
;
3745 /* Possibly add or remove segments from the segment map. */
3748 elf_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
3750 struct elf_segment_map
**m
;
3751 const struct elf_backend_data
*bed
;
3753 /* The placement algorithm assumes that non allocated sections are
3754 not in PT_LOAD segments. We ensure this here by removing such
3755 sections from the segment map. We also remove excluded
3756 sections. Finally, any PT_LOAD segment without sections is
3758 m
= &elf_tdata (abfd
)->segment_map
;
3761 unsigned int i
, new_count
;
3763 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3765 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3766 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3767 || (*m
)->p_type
!= PT_LOAD
))
3769 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3773 (*m
)->count
= new_count
;
3775 if ((*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3781 bed
= get_elf_backend_data (abfd
);
3782 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3784 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3791 /* Set up a mapping from BFD sections to program segments. */
3794 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3797 struct elf_segment_map
*m
;
3798 asection
**sections
= NULL
;
3799 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3801 if (elf_tdata (abfd
)->segment_map
== NULL
3802 && bfd_count_sections (abfd
) != 0)
3806 struct elf_segment_map
*mfirst
;
3807 struct elf_segment_map
**pm
;
3810 unsigned int phdr_index
;
3811 bfd_vma maxpagesize
;
3813 bfd_boolean phdr_in_segment
= TRUE
;
3814 bfd_boolean writable
;
3816 asection
*first_tls
= NULL
;
3817 asection
*dynsec
, *eh_frame_hdr
;
3820 /* Select the allocated sections, and sort them. */
3822 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3823 if (sections
== NULL
)
3827 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3829 if ((s
->flags
& SEC_ALLOC
) != 0)
3835 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3838 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3840 /* Build the mapping. */
3845 /* If we have a .interp section, then create a PT_PHDR segment for
3846 the program headers and a PT_INTERP segment for the .interp
3848 s
= bfd_get_section_by_name (abfd
, ".interp");
3849 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3851 amt
= sizeof (struct elf_segment_map
);
3852 m
= bfd_zalloc (abfd
, amt
);
3856 m
->p_type
= PT_PHDR
;
3857 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3858 m
->p_flags
= PF_R
| PF_X
;
3859 m
->p_flags_valid
= 1;
3860 m
->includes_phdrs
= 1;
3865 amt
= sizeof (struct elf_segment_map
);
3866 m
= bfd_zalloc (abfd
, amt
);
3870 m
->p_type
= PT_INTERP
;
3878 /* Look through the sections. We put sections in the same program
3879 segment when the start of the second section can be placed within
3880 a few bytes of the end of the first section. */
3884 maxpagesize
= bed
->maxpagesize
;
3886 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3888 && (dynsec
->flags
& SEC_LOAD
) == 0)
3891 /* Deal with -Ttext or something similar such that the first section
3892 is not adjacent to the program headers. This is an
3893 approximation, since at this point we don't know exactly how many
3894 program headers we will need. */
3897 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3899 if (phdr_size
== (bfd_size_type
) -1)
3900 phdr_size
= get_program_header_size (abfd
, info
);
3901 if ((abfd
->flags
& D_PAGED
) == 0
3902 || sections
[0]->lma
< phdr_size
3903 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3904 phdr_in_segment
= FALSE
;
3907 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3910 bfd_boolean new_segment
;
3914 /* See if this section and the last one will fit in the same
3917 if (last_hdr
== NULL
)
3919 /* If we don't have a segment yet, then we don't need a new
3920 one (we build the last one after this loop). */
3921 new_segment
= FALSE
;
3923 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3925 /* If this section has a different relation between the
3926 virtual address and the load address, then we need a new
3930 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3931 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3933 /* If putting this section in this segment would force us to
3934 skip a page in the segment, then we need a new segment. */
3937 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3938 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3940 /* We don't want to put a loadable section after a
3941 nonloadable section in the same segment.
3942 Consider .tbss sections as loadable for this purpose. */
3945 else if ((abfd
->flags
& D_PAGED
) == 0)
3947 /* If the file is not demand paged, which means that we
3948 don't require the sections to be correctly aligned in the
3949 file, then there is no other reason for a new segment. */
3950 new_segment
= FALSE
;
3953 && (hdr
->flags
& SEC_READONLY
) == 0
3954 && (((last_hdr
->lma
+ last_size
- 1)
3955 & ~(maxpagesize
- 1))
3956 != (hdr
->lma
& ~(maxpagesize
- 1))))
3958 /* We don't want to put a writable section in a read only
3959 segment, unless they are on the same page in memory
3960 anyhow. We already know that the last section does not
3961 bring us past the current section on the page, so the
3962 only case in which the new section is not on the same
3963 page as the previous section is when the previous section
3964 ends precisely on a page boundary. */
3969 /* Otherwise, we can use the same segment. */
3970 new_segment
= FALSE
;
3975 if ((hdr
->flags
& SEC_READONLY
) == 0)
3978 /* .tbss sections effectively have zero size. */
3979 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3980 != SEC_THREAD_LOCAL
)
3981 last_size
= hdr
->size
;
3987 /* We need a new program segment. We must create a new program
3988 header holding all the sections from phdr_index until hdr. */
3990 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3997 if ((hdr
->flags
& SEC_READONLY
) == 0)
4003 /* .tbss sections effectively have zero size. */
4004 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
4005 last_size
= hdr
->size
;
4009 phdr_in_segment
= FALSE
;
4012 /* Create a final PT_LOAD program segment. */
4013 if (last_hdr
!= NULL
)
4015 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4023 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4026 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4033 /* For each loadable .note section, add a PT_NOTE segment. We don't
4034 use bfd_get_section_by_name, because if we link together
4035 nonloadable .note sections and loadable .note sections, we will
4036 generate two .note sections in the output file. FIXME: Using
4037 names for section types is bogus anyhow. */
4038 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4040 if ((s
->flags
& SEC_LOAD
) != 0
4041 && CONST_STRNEQ (s
->name
, ".note"))
4043 amt
= sizeof (struct elf_segment_map
);
4044 m
= bfd_zalloc (abfd
, amt
);
4048 m
->p_type
= PT_NOTE
;
4055 if (s
->flags
& SEC_THREAD_LOCAL
)
4063 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4068 amt
= sizeof (struct elf_segment_map
);
4069 amt
+= (tls_count
- 1) * sizeof (asection
*);
4070 m
= bfd_zalloc (abfd
, amt
);
4075 m
->count
= tls_count
;
4076 /* Mandated PF_R. */
4078 m
->p_flags_valid
= 1;
4079 for (i
= 0; i
< tls_count
; ++i
)
4081 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4082 m
->sections
[i
] = first_tls
;
4083 first_tls
= first_tls
->next
;
4090 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4092 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4093 if (eh_frame_hdr
!= NULL
4094 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4096 amt
= sizeof (struct elf_segment_map
);
4097 m
= bfd_zalloc (abfd
, amt
);
4101 m
->p_type
= PT_GNU_EH_FRAME
;
4103 m
->sections
[0] = eh_frame_hdr
->output_section
;
4109 if (elf_tdata (abfd
)->stack_flags
)
4111 amt
= sizeof (struct elf_segment_map
);
4112 m
= bfd_zalloc (abfd
, amt
);
4116 m
->p_type
= PT_GNU_STACK
;
4117 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4118 m
->p_flags_valid
= 1;
4124 if (dynsec
!= NULL
&& elf_tdata (abfd
)->relro
)
4126 /* We make a PT_GNU_RELRO segment only when there is a
4127 PT_DYNAMIC segment. */
4128 amt
= sizeof (struct elf_segment_map
);
4129 m
= bfd_zalloc (abfd
, amt
);
4133 m
->p_type
= PT_GNU_RELRO
;
4135 m
->p_flags_valid
= 1;
4142 elf_tdata (abfd
)->segment_map
= mfirst
;
4145 if (!elf_modify_segment_map (abfd
, info
))
4148 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4150 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4155 if (sections
!= NULL
)
4160 /* Sort sections by address. */
4163 elf_sort_sections (const void *arg1
, const void *arg2
)
4165 const asection
*sec1
= *(const asection
**) arg1
;
4166 const asection
*sec2
= *(const asection
**) arg2
;
4167 bfd_size_type size1
, size2
;
4169 /* Sort by LMA first, since this is the address used to
4170 place the section into a segment. */
4171 if (sec1
->lma
< sec2
->lma
)
4173 else if (sec1
->lma
> sec2
->lma
)
4176 /* Then sort by VMA. Normally the LMA and the VMA will be
4177 the same, and this will do nothing. */
4178 if (sec1
->vma
< sec2
->vma
)
4180 else if (sec1
->vma
> sec2
->vma
)
4183 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4185 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4191 /* If the indicies are the same, do not return 0
4192 here, but continue to try the next comparison. */
4193 if (sec1
->target_index
- sec2
->target_index
!= 0)
4194 return sec1
->target_index
- sec2
->target_index
;
4199 else if (TOEND (sec2
))
4204 /* Sort by size, to put zero sized sections
4205 before others at the same address. */
4207 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4208 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4215 return sec1
->target_index
- sec2
->target_index
;
4218 /* Ian Lance Taylor writes:
4220 We shouldn't be using % with a negative signed number. That's just
4221 not good. We have to make sure either that the number is not
4222 negative, or that the number has an unsigned type. When the types
4223 are all the same size they wind up as unsigned. When file_ptr is a
4224 larger signed type, the arithmetic winds up as signed long long,
4227 What we're trying to say here is something like ``increase OFF by
4228 the least amount that will cause it to be equal to the VMA modulo
4230 /* In other words, something like:
4232 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4233 off_offset = off % bed->maxpagesize;
4234 if (vma_offset < off_offset)
4235 adjustment = vma_offset + bed->maxpagesize - off_offset;
4237 adjustment = vma_offset - off_offset;
4239 which can can be collapsed into the expression below. */
4242 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4244 return ((vma
- off
) % maxpagesize
);
4247 /* Assign file positions to the sections based on the mapping from
4248 sections to segments. This function also sets up some fields in
4252 assign_file_positions_for_load_sections (bfd
*abfd
,
4253 struct bfd_link_info
*link_info
)
4255 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4256 struct elf_segment_map
*m
;
4257 Elf_Internal_Phdr
*phdrs
;
4258 Elf_Internal_Phdr
*p
;
4260 bfd_size_type maxpagesize
;
4264 if (link_info
== NULL
4265 && !elf_modify_segment_map (abfd
, link_info
))
4269 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4272 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4273 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4274 elf_elfheader (abfd
)->e_phnum
= alloc
;
4276 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4277 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4279 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4280 == alloc
* bed
->s
->sizeof_phdr
);
4284 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4288 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4289 elf_tdata (abfd
)->phdr
= phdrs
;
4294 if ((abfd
->flags
& D_PAGED
) != 0)
4295 maxpagesize
= bed
->maxpagesize
;
4297 off
= bed
->s
->sizeof_ehdr
;
4298 off
+= alloc
* bed
->s
->sizeof_phdr
;
4300 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4306 /* If elf_segment_map is not from map_sections_to_segments, the
4307 sections may not be correctly ordered. NOTE: sorting should
4308 not be done to the PT_NOTE section of a corefile, which may
4309 contain several pseudo-sections artificially created by bfd.
4310 Sorting these pseudo-sections breaks things badly. */
4312 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4313 && m
->p_type
== PT_NOTE
))
4314 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4317 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4318 number of sections with contents contributing to both p_filesz
4319 and p_memsz, followed by a number of sections with no contents
4320 that just contribute to p_memsz. In this loop, OFF tracks next
4321 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4322 an adjustment we use for segments that have no file contents
4323 but need zero filled memory allocation. */
4325 p
->p_type
= m
->p_type
;
4326 p
->p_flags
= m
->p_flags
;
4331 p
->p_vaddr
= m
->sections
[0]->vma
;
4333 if (m
->p_paddr_valid
)
4334 p
->p_paddr
= m
->p_paddr
;
4335 else if (m
->count
== 0)
4338 p
->p_paddr
= m
->sections
[0]->lma
;
4340 if (p
->p_type
== PT_LOAD
4341 && (abfd
->flags
& D_PAGED
) != 0)
4343 /* p_align in demand paged PT_LOAD segments effectively stores
4344 the maximum page size. When copying an executable with
4345 objcopy, we set m->p_align from the input file. Use this
4346 value for maxpagesize rather than bed->maxpagesize, which
4347 may be different. Note that we use maxpagesize for PT_TLS
4348 segment alignment later in this function, so we are relying
4349 on at least one PT_LOAD segment appearing before a PT_TLS
4351 if (m
->p_align_valid
)
4352 maxpagesize
= m
->p_align
;
4354 p
->p_align
= maxpagesize
;
4356 else if (m
->count
== 0)
4357 p
->p_align
= 1 << bed
->s
->log_file_align
;
4361 if (p
->p_type
== PT_LOAD
4364 bfd_size_type align
;
4366 unsigned int align_power
= 0;
4368 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4370 unsigned int secalign
;
4372 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4373 if (secalign
> align_power
)
4374 align_power
= secalign
;
4376 align
= (bfd_size_type
) 1 << align_power
;
4378 if (align
< maxpagesize
)
4379 align
= maxpagesize
;
4381 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4384 && !m
->includes_filehdr
4385 && !m
->includes_phdrs
4386 && (ufile_ptr
) off
>= align
)
4388 /* If the first section isn't loadable, the same holds for
4389 any other sections. Since the segment won't need file
4390 space, we can make p_offset overlap some prior segment.
4391 However, .tbss is special. If a segment starts with
4392 .tbss, we need to look at the next section to decide
4393 whether the segment has any loadable sections. */
4395 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0
4396 && (m
->sections
[i
]->flags
& SEC_HAS_CONTENTS
) == 0)
4398 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4402 voff
= adjust
- align
;
4408 /* Make sure the .dynamic section is the first section in the
4409 PT_DYNAMIC segment. */
4410 else if (p
->p_type
== PT_DYNAMIC
4412 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4415 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4417 bfd_set_error (bfd_error_bad_value
);
4425 if (m
->includes_filehdr
)
4427 if (! m
->p_flags_valid
)
4430 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4431 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4434 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4436 if (p
->p_vaddr
< (bfd_vma
) off
)
4438 (*_bfd_error_handler
)
4439 (_("%B: Not enough room for program headers, try linking with -N"),
4441 bfd_set_error (bfd_error_bad_value
);
4446 if (! m
->p_paddr_valid
)
4451 if (m
->includes_phdrs
)
4453 if (! m
->p_flags_valid
)
4456 if (!m
->includes_filehdr
)
4458 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4462 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4463 p
->p_vaddr
-= off
- p
->p_offset
;
4464 if (! m
->p_paddr_valid
)
4465 p
->p_paddr
-= off
- p
->p_offset
;
4469 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4470 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4473 if (p
->p_type
== PT_LOAD
4474 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4476 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4477 p
->p_offset
= off
+ voff
;
4482 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4483 p
->p_filesz
+= adjust
;
4484 p
->p_memsz
+= adjust
;
4488 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4489 maps. Set filepos for sections in PT_LOAD segments, and in
4490 core files, for sections in PT_NOTE segments.
4491 assign_file_positions_for_non_load_sections will set filepos
4492 for other sections and update p_filesz for other segments. */
4493 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4497 bfd_size_type align
;
4501 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4503 if (p
->p_type
== PT_LOAD
4504 || p
->p_type
== PT_TLS
)
4506 bfd_signed_vma adjust
;
4508 if ((flags
& SEC_LOAD
) != 0)
4510 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4513 (*_bfd_error_handler
)
4514 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4515 abfd
, sec
, (unsigned long) sec
->lma
);
4519 p
->p_filesz
+= adjust
;
4520 p
->p_memsz
+= adjust
;
4522 /* .tbss is special. It doesn't contribute to p_memsz of
4524 else if ((flags
& SEC_ALLOC
) != 0
4525 && ((flags
& SEC_THREAD_LOCAL
) == 0
4526 || p
->p_type
== PT_TLS
))
4528 /* The section VMA must equal the file position
4529 modulo the page size. */
4530 bfd_size_type page
= align
;
4531 if (page
< maxpagesize
)
4533 adjust
= vma_page_aligned_bias (sec
->vma
,
4534 p
->p_vaddr
+ p
->p_memsz
,
4536 p
->p_memsz
+= adjust
;
4540 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4542 /* The section at i == 0 is the one that actually contains
4548 p
->p_filesz
= sec
->size
;
4554 /* The rest are fake sections that shouldn't be written. */
4563 if (p
->p_type
== PT_LOAD
)
4565 sec
->filepos
= off
+ voff
;
4566 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4567 1997, and the exact reason for it isn't clear. One
4568 plausible explanation is that it is to work around
4569 a problem we have with linker scripts using data
4570 statements in NOLOAD sections. I don't think it
4571 makes a great deal of sense to have such a section
4572 assigned to a PT_LOAD segment, but apparently
4573 people do this. The data statement results in a
4574 bfd_data_link_order being built, and these need
4575 section contents to write into. Eventually, we get
4576 to _bfd_elf_write_object_contents which writes any
4577 section with contents to the output. Make room
4578 here for the write, so that following segments are
4580 if ((flags
& SEC_LOAD
) != 0
4581 || (flags
& SEC_HAS_CONTENTS
) != 0)
4585 if ((flags
& SEC_LOAD
) != 0)
4587 p
->p_filesz
+= sec
->size
;
4588 p
->p_memsz
+= sec
->size
;
4591 /* .tbss is special. It doesn't contribute to p_memsz of
4593 else if ((flags
& SEC_ALLOC
) != 0
4594 && ((flags
& SEC_THREAD_LOCAL
) == 0
4595 || p
->p_type
== PT_TLS
))
4596 p
->p_memsz
+= sec
->size
;
4598 if (p
->p_type
== PT_TLS
4600 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4602 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4604 p
->p_memsz
+= o
->offset
+ o
->size
;
4607 if (p
->p_type
== PT_GNU_RELRO
)
4609 else if (align
> p
->p_align
4610 && (p
->p_type
!= PT_LOAD
4611 || (abfd
->flags
& D_PAGED
) == 0))
4615 if (! m
->p_flags_valid
)
4618 if ((flags
& SEC_CODE
) != 0)
4620 if ((flags
& SEC_READONLY
) == 0)
4626 elf_tdata (abfd
)->next_file_pos
= off
;
4630 /* Assign file positions for the other sections. */
4633 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4634 struct bfd_link_info
*link_info
)
4636 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4637 Elf_Internal_Shdr
**i_shdrpp
;
4638 Elf_Internal_Shdr
**hdrpp
;
4639 Elf_Internal_Phdr
*phdrs
;
4640 Elf_Internal_Phdr
*p
;
4641 struct elf_segment_map
*m
;
4642 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4643 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4645 unsigned int num_sec
;
4649 i_shdrpp
= elf_elfsections (abfd
);
4650 num_sec
= elf_numsections (abfd
);
4651 off
= elf_tdata (abfd
)->next_file_pos
;
4652 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4654 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4655 Elf_Internal_Shdr
*hdr
;
4658 if (hdr
->bfd_section
!= NULL
4659 && (hdr
->bfd_section
->filepos
!= 0
4660 || (hdr
->sh_type
== SHT_NOBITS
4661 && hdr
->contents
== NULL
)))
4662 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4663 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4665 if (hdr
->sh_size
!= 0)
4666 ((*_bfd_error_handler
)
4667 (_("%B: warning: allocated section `%s' not in segment"),
4669 (hdr
->bfd_section
== NULL
4671 : hdr
->bfd_section
->name
)));
4672 /* We don't need to page align empty sections. */
4673 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4674 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4677 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4679 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4682 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4683 && hdr
->bfd_section
== NULL
)
4684 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4685 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4686 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4687 hdr
->sh_offset
= -1;
4689 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4691 if (i
== SHN_LORESERVE
- 1)
4693 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4694 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4698 /* Now that we have set the section file positions, we can set up
4699 the file positions for the non PT_LOAD segments. */
4703 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4705 phdrs
= elf_tdata (abfd
)->phdr
;
4706 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4711 if (p
->p_type
!= PT_LOAD
)
4714 if (m
->includes_filehdr
)
4716 filehdr_vaddr
= p
->p_vaddr
;
4717 filehdr_paddr
= p
->p_paddr
;
4719 if (m
->includes_phdrs
)
4721 phdrs_vaddr
= p
->p_vaddr
;
4722 phdrs_paddr
= p
->p_paddr
;
4723 if (m
->includes_filehdr
)
4725 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4726 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4731 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4737 if (p
->p_type
!= PT_LOAD
4738 && (p
->p_type
!= PT_NOTE
|| bfd_get_format (abfd
) != bfd_core
))
4740 Elf_Internal_Shdr
*hdr
;
4741 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4743 hdr
= &elf_section_data (m
->sections
[m
->count
- 1])->this_hdr
;
4744 p
->p_filesz
= (m
->sections
[m
->count
- 1]->filepos
4745 - m
->sections
[0]->filepos
);
4746 if (hdr
->sh_type
!= SHT_NOBITS
)
4747 p
->p_filesz
+= hdr
->sh_size
;
4749 p
->p_offset
= m
->sections
[0]->filepos
;
4754 if (m
->includes_filehdr
)
4756 p
->p_vaddr
= filehdr_vaddr
;
4757 if (! m
->p_paddr_valid
)
4758 p
->p_paddr
= filehdr_paddr
;
4760 else if (m
->includes_phdrs
)
4762 p
->p_vaddr
= phdrs_vaddr
;
4763 if (! m
->p_paddr_valid
)
4764 p
->p_paddr
= phdrs_paddr
;
4766 else if (p
->p_type
== PT_GNU_RELRO
)
4768 Elf_Internal_Phdr
*lp
;
4770 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4772 if (lp
->p_type
== PT_LOAD
4773 && lp
->p_vaddr
<= link_info
->relro_end
4774 && lp
->p_vaddr
>= link_info
->relro_start
4775 && (lp
->p_vaddr
+ lp
->p_filesz
4776 >= link_info
->relro_end
))
4780 if (lp
< phdrs
+ count
4781 && link_info
->relro_end
> lp
->p_vaddr
)
4783 p
->p_vaddr
= lp
->p_vaddr
;
4784 p
->p_paddr
= lp
->p_paddr
;
4785 p
->p_offset
= lp
->p_offset
;
4786 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4787 p
->p_memsz
= p
->p_filesz
;
4789 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4793 memset (p
, 0, sizeof *p
);
4794 p
->p_type
= PT_NULL
;
4800 elf_tdata (abfd
)->next_file_pos
= off
;
4805 /* Work out the file positions of all the sections. This is called by
4806 _bfd_elf_compute_section_file_positions. All the section sizes and
4807 VMAs must be known before this is called.
4809 Reloc sections come in two flavours: Those processed specially as
4810 "side-channel" data attached to a section to which they apply, and
4811 those that bfd doesn't process as relocations. The latter sort are
4812 stored in a normal bfd section by bfd_section_from_shdr. We don't
4813 consider the former sort here, unless they form part of the loadable
4814 image. Reloc sections not assigned here will be handled later by
4815 assign_file_positions_for_relocs.
4817 We also don't set the positions of the .symtab and .strtab here. */
4820 assign_file_positions_except_relocs (bfd
*abfd
,
4821 struct bfd_link_info
*link_info
)
4823 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4824 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4826 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4828 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4829 && bfd_get_format (abfd
) != bfd_core
)
4831 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4832 unsigned int num_sec
= elf_numsections (abfd
);
4833 Elf_Internal_Shdr
**hdrpp
;
4836 /* Start after the ELF header. */
4837 off
= i_ehdrp
->e_ehsize
;
4839 /* We are not creating an executable, which means that we are
4840 not creating a program header, and that the actual order of
4841 the sections in the file is unimportant. */
4842 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4844 Elf_Internal_Shdr
*hdr
;
4847 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4848 && hdr
->bfd_section
== NULL
)
4849 || i
== tdata
->symtab_section
4850 || i
== tdata
->symtab_shndx_section
4851 || i
== tdata
->strtab_section
)
4853 hdr
->sh_offset
= -1;
4856 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4858 if (i
== SHN_LORESERVE
- 1)
4860 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4861 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4869 /* Assign file positions for the loaded sections based on the
4870 assignment of sections to segments. */
4871 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4874 /* And for non-load sections. */
4875 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4878 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4880 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4884 /* Write out the program headers. */
4885 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4886 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4887 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4890 off
= tdata
->next_file_pos
;
4893 /* Place the section headers. */
4894 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4895 i_ehdrp
->e_shoff
= off
;
4896 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4898 tdata
->next_file_pos
= off
;
4904 prep_headers (bfd
*abfd
)
4906 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4907 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4908 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4909 struct elf_strtab_hash
*shstrtab
;
4910 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4912 i_ehdrp
= elf_elfheader (abfd
);
4913 i_shdrp
= elf_elfsections (abfd
);
4915 shstrtab
= _bfd_elf_strtab_init ();
4916 if (shstrtab
== NULL
)
4919 elf_shstrtab (abfd
) = shstrtab
;
4921 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4922 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4923 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4924 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4926 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4927 i_ehdrp
->e_ident
[EI_DATA
] =
4928 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4929 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4931 if ((abfd
->flags
& DYNAMIC
) != 0)
4932 i_ehdrp
->e_type
= ET_DYN
;
4933 else if ((abfd
->flags
& EXEC_P
) != 0)
4934 i_ehdrp
->e_type
= ET_EXEC
;
4935 else if (bfd_get_format (abfd
) == bfd_core
)
4936 i_ehdrp
->e_type
= ET_CORE
;
4938 i_ehdrp
->e_type
= ET_REL
;
4940 switch (bfd_get_arch (abfd
))
4942 case bfd_arch_unknown
:
4943 i_ehdrp
->e_machine
= EM_NONE
;
4946 /* There used to be a long list of cases here, each one setting
4947 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4948 in the corresponding bfd definition. To avoid duplication,
4949 the switch was removed. Machines that need special handling
4950 can generally do it in elf_backend_final_write_processing(),
4951 unless they need the information earlier than the final write.
4952 Such need can generally be supplied by replacing the tests for
4953 e_machine with the conditions used to determine it. */
4955 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4958 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4959 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4961 /* No program header, for now. */
4962 i_ehdrp
->e_phoff
= 0;
4963 i_ehdrp
->e_phentsize
= 0;
4964 i_ehdrp
->e_phnum
= 0;
4966 /* Each bfd section is section header entry. */
4967 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4968 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4970 /* If we're building an executable, we'll need a program header table. */
4971 if (abfd
->flags
& EXEC_P
)
4972 /* It all happens later. */
4976 i_ehdrp
->e_phentsize
= 0;
4978 i_ehdrp
->e_phoff
= 0;
4981 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4983 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4984 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4985 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4986 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4987 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4988 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4989 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4995 /* Assign file positions for all the reloc sections which are not part
4996 of the loadable file image. */
4999 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
5002 unsigned int i
, num_sec
;
5003 Elf_Internal_Shdr
**shdrpp
;
5005 off
= elf_tdata (abfd
)->next_file_pos
;
5007 num_sec
= elf_numsections (abfd
);
5008 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5010 Elf_Internal_Shdr
*shdrp
;
5013 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5014 && shdrp
->sh_offset
== -1)
5015 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5018 elf_tdata (abfd
)->next_file_pos
= off
;
5022 _bfd_elf_write_object_contents (bfd
*abfd
)
5024 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5025 Elf_Internal_Ehdr
*i_ehdrp
;
5026 Elf_Internal_Shdr
**i_shdrp
;
5028 unsigned int count
, num_sec
;
5030 if (! abfd
->output_has_begun
5031 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5034 i_shdrp
= elf_elfsections (abfd
);
5035 i_ehdrp
= elf_elfheader (abfd
);
5038 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5042 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5044 /* After writing the headers, we need to write the sections too... */
5045 num_sec
= elf_numsections (abfd
);
5046 for (count
= 1; count
< num_sec
; count
++)
5048 if (bed
->elf_backend_section_processing
)
5049 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5050 if (i_shdrp
[count
]->contents
)
5052 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5054 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5055 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5058 if (count
== SHN_LORESERVE
- 1)
5059 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5062 /* Write out the section header names. */
5063 if (elf_shstrtab (abfd
) != NULL
5064 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5065 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5068 if (bed
->elf_backend_final_write_processing
)
5069 (*bed
->elf_backend_final_write_processing
) (abfd
,
5070 elf_tdata (abfd
)->linker
);
5072 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5076 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5078 /* Hopefully this can be done just like an object file. */
5079 return _bfd_elf_write_object_contents (abfd
);
5082 /* Given a section, search the header to find them. */
5085 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5087 const struct elf_backend_data
*bed
;
5090 if (elf_section_data (asect
) != NULL
5091 && elf_section_data (asect
)->this_idx
!= 0)
5092 return elf_section_data (asect
)->this_idx
;
5094 if (bfd_is_abs_section (asect
))
5096 else if (bfd_is_com_section (asect
))
5098 else if (bfd_is_und_section (asect
))
5103 bed
= get_elf_backend_data (abfd
);
5104 if (bed
->elf_backend_section_from_bfd_section
)
5108 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5113 bfd_set_error (bfd_error_nonrepresentable_section
);
5118 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5122 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5124 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5126 flagword flags
= asym_ptr
->flags
;
5128 /* When gas creates relocations against local labels, it creates its
5129 own symbol for the section, but does put the symbol into the
5130 symbol chain, so udata is 0. When the linker is generating
5131 relocatable output, this section symbol may be for one of the
5132 input sections rather than the output section. */
5133 if (asym_ptr
->udata
.i
== 0
5134 && (flags
& BSF_SECTION_SYM
)
5135 && asym_ptr
->section
)
5140 sec
= asym_ptr
->section
;
5141 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5142 sec
= sec
->output_section
;
5143 if (sec
->owner
== abfd
5144 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5145 && elf_section_syms (abfd
)[indx
] != NULL
)
5146 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5149 idx
= asym_ptr
->udata
.i
;
5153 /* This case can occur when using --strip-symbol on a symbol
5154 which is used in a relocation entry. */
5155 (*_bfd_error_handler
)
5156 (_("%B: symbol `%s' required but not present"),
5157 abfd
, bfd_asymbol_name (asym_ptr
));
5158 bfd_set_error (bfd_error_no_symbols
);
5165 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5166 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5167 elf_symbol_flags (flags
));
5175 /* Rewrite program header information. */
5178 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5180 Elf_Internal_Ehdr
*iehdr
;
5181 struct elf_segment_map
*map
;
5182 struct elf_segment_map
*map_first
;
5183 struct elf_segment_map
**pointer_to_map
;
5184 Elf_Internal_Phdr
*segment
;
5187 unsigned int num_segments
;
5188 bfd_boolean phdr_included
= FALSE
;
5189 bfd_vma maxpagesize
;
5190 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5191 unsigned int phdr_adjust_num
= 0;
5192 const struct elf_backend_data
*bed
;
5194 bed
= get_elf_backend_data (ibfd
);
5195 iehdr
= elf_elfheader (ibfd
);
5198 pointer_to_map
= &map_first
;
5200 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5201 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5203 /* Returns the end address of the segment + 1. */
5204 #define SEGMENT_END(segment, start) \
5205 (start + (segment->p_memsz > segment->p_filesz \
5206 ? segment->p_memsz : segment->p_filesz))
5208 #define SECTION_SIZE(section, segment) \
5209 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5210 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5211 ? section->size : 0)
5213 /* Returns TRUE if the given section is contained within
5214 the given segment. VMA addresses are compared. */
5215 #define IS_CONTAINED_BY_VMA(section, segment) \
5216 (section->vma >= segment->p_vaddr \
5217 && (section->vma + SECTION_SIZE (section, segment) \
5218 <= (SEGMENT_END (segment, segment->p_vaddr))))
5220 /* Returns TRUE if the given section is contained within
5221 the given segment. LMA addresses are compared. */
5222 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5223 (section->lma >= base \
5224 && (section->lma + SECTION_SIZE (section, segment) \
5225 <= SEGMENT_END (segment, base)))
5227 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5228 #define IS_COREFILE_NOTE(p, s) \
5229 (p->p_type == PT_NOTE \
5230 && bfd_get_format (ibfd) == bfd_core \
5231 && s->vma == 0 && s->lma == 0 \
5232 && (bfd_vma) s->filepos >= p->p_offset \
5233 && ((bfd_vma) s->filepos + s->size \
5234 <= p->p_offset + p->p_filesz))
5236 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5237 linker, which generates a PT_INTERP section with p_vaddr and
5238 p_memsz set to 0. */
5239 #define IS_SOLARIS_PT_INTERP(p, s) \
5241 && p->p_paddr == 0 \
5242 && p->p_memsz == 0 \
5243 && p->p_filesz > 0 \
5244 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5246 && (bfd_vma) s->filepos >= p->p_offset \
5247 && ((bfd_vma) s->filepos + s->size \
5248 <= p->p_offset + p->p_filesz))
5250 /* Decide if the given section should be included in the given segment.
5251 A section will be included if:
5252 1. It is within the address space of the segment -- we use the LMA
5253 if that is set for the segment and the VMA otherwise,
5254 2. It is an allocated segment,
5255 3. There is an output section associated with it,
5256 4. The section has not already been allocated to a previous segment.
5257 5. PT_GNU_STACK segments do not include any sections.
5258 6. PT_TLS segment includes only SHF_TLS sections.
5259 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5260 8. PT_DYNAMIC should not contain empty sections at the beginning
5261 (with the possible exception of .dynamic). */
5262 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5263 ((((segment->p_paddr \
5264 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5265 : IS_CONTAINED_BY_VMA (section, segment)) \
5266 && (section->flags & SEC_ALLOC) != 0) \
5267 || IS_COREFILE_NOTE (segment, section)) \
5268 && section->output_section != NULL \
5269 && segment->p_type != PT_GNU_STACK \
5270 && (segment->p_type != PT_TLS \
5271 || (section->flags & SEC_THREAD_LOCAL)) \
5272 && (segment->p_type == PT_LOAD \
5273 || segment->p_type == PT_TLS \
5274 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5275 && (segment->p_type != PT_DYNAMIC \
5276 || SECTION_SIZE (section, segment) > 0 \
5277 || (segment->p_paddr \
5278 ? segment->p_paddr != section->lma \
5279 : segment->p_vaddr != section->vma) \
5280 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5282 && ! section->segment_mark)
5284 /* Returns TRUE iff seg1 starts after the end of seg2. */
5285 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5286 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5288 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5289 their VMA address ranges and their LMA address ranges overlap.
5290 It is possible to have overlapping VMA ranges without overlapping LMA
5291 ranges. RedBoot images for example can have both .data and .bss mapped
5292 to the same VMA range, but with the .data section mapped to a different
5294 #define SEGMENT_OVERLAPS(seg1, seg2) \
5295 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5296 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5297 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5298 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5300 /* Initialise the segment mark field. */
5301 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5302 section
->segment_mark
= FALSE
;
5304 /* Scan through the segments specified in the program header
5305 of the input BFD. For this first scan we look for overlaps
5306 in the loadable segments. These can be created by weird
5307 parameters to objcopy. Also, fix some solaris weirdness. */
5308 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5313 Elf_Internal_Phdr
*segment2
;
5315 if (segment
->p_type
== PT_INTERP
)
5316 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5317 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5319 /* Mininal change so that the normal section to segment
5320 assignment code will work. */
5321 segment
->p_vaddr
= section
->vma
;
5325 if (segment
->p_type
!= PT_LOAD
)
5328 /* Determine if this segment overlaps any previous segments. */
5329 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5331 bfd_signed_vma extra_length
;
5333 if (segment2
->p_type
!= PT_LOAD
5334 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5337 /* Merge the two segments together. */
5338 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5340 /* Extend SEGMENT2 to include SEGMENT and then delete
5343 SEGMENT_END (segment
, segment
->p_vaddr
)
5344 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5346 if (extra_length
> 0)
5348 segment2
->p_memsz
+= extra_length
;
5349 segment2
->p_filesz
+= extra_length
;
5352 segment
->p_type
= PT_NULL
;
5354 /* Since we have deleted P we must restart the outer loop. */
5356 segment
= elf_tdata (ibfd
)->phdr
;
5361 /* Extend SEGMENT to include SEGMENT2 and then delete
5364 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5365 - SEGMENT_END (segment
, segment
->p_vaddr
);
5367 if (extra_length
> 0)
5369 segment
->p_memsz
+= extra_length
;
5370 segment
->p_filesz
+= extra_length
;
5373 segment2
->p_type
= PT_NULL
;
5378 /* The second scan attempts to assign sections to segments. */
5379 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5383 unsigned int section_count
;
5384 asection
** sections
;
5385 asection
* output_section
;
5387 bfd_vma matching_lma
;
5388 bfd_vma suggested_lma
;
5392 if (segment
->p_type
== PT_NULL
)
5395 /* Compute how many sections might be placed into this segment. */
5396 for (section
= ibfd
->sections
, section_count
= 0;
5398 section
= section
->next
)
5399 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5402 /* Allocate a segment map big enough to contain
5403 all of the sections we have selected. */
5404 amt
= sizeof (struct elf_segment_map
);
5405 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5406 map
= bfd_zalloc (obfd
, amt
);
5410 /* Initialise the fields of the segment map. Default to
5411 using the physical address of the segment in the input BFD. */
5413 map
->p_type
= segment
->p_type
;
5414 map
->p_flags
= segment
->p_flags
;
5415 map
->p_flags_valid
= 1;
5416 map
->p_paddr
= segment
->p_paddr
;
5417 map
->p_paddr_valid
= 1;
5419 /* Determine if this segment contains the ELF file header
5420 and if it contains the program headers themselves. */
5421 map
->includes_filehdr
= (segment
->p_offset
== 0
5422 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5424 map
->includes_phdrs
= 0;
5426 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5428 map
->includes_phdrs
=
5429 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5430 && (segment
->p_offset
+ segment
->p_filesz
5431 >= ((bfd_vma
) iehdr
->e_phoff
5432 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5434 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5435 phdr_included
= TRUE
;
5438 if (section_count
== 0)
5440 /* Special segments, such as the PT_PHDR segment, may contain
5441 no sections, but ordinary, loadable segments should contain
5442 something. They are allowed by the ELF spec however, so only
5443 a warning is produced. */
5444 if (segment
->p_type
== PT_LOAD
)
5445 (*_bfd_error_handler
)
5446 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5450 *pointer_to_map
= map
;
5451 pointer_to_map
= &map
->next
;
5456 /* Now scan the sections in the input BFD again and attempt
5457 to add their corresponding output sections to the segment map.
5458 The problem here is how to handle an output section which has
5459 been moved (ie had its LMA changed). There are four possibilities:
5461 1. None of the sections have been moved.
5462 In this case we can continue to use the segment LMA from the
5465 2. All of the sections have been moved by the same amount.
5466 In this case we can change the segment's LMA to match the LMA
5467 of the first section.
5469 3. Some of the sections have been moved, others have not.
5470 In this case those sections which have not been moved can be
5471 placed in the current segment which will have to have its size,
5472 and possibly its LMA changed, and a new segment or segments will
5473 have to be created to contain the other sections.
5475 4. The sections have been moved, but not by the same amount.
5476 In this case we can change the segment's LMA to match the LMA
5477 of the first section and we will have to create a new segment
5478 or segments to contain the other sections.
5480 In order to save time, we allocate an array to hold the section
5481 pointers that we are interested in. As these sections get assigned
5482 to a segment, they are removed from this array. */
5484 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5485 to work around this long long bug. */
5486 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5487 if (sections
== NULL
)
5490 /* Step One: Scan for segment vs section LMA conflicts.
5491 Also add the sections to the section array allocated above.
5492 Also add the sections to the current segment. In the common
5493 case, where the sections have not been moved, this means that
5494 we have completely filled the segment, and there is nothing
5500 for (j
= 0, section
= ibfd
->sections
;
5502 section
= section
->next
)
5504 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5506 output_section
= section
->output_section
;
5508 sections
[j
++] = section
;
5510 /* The Solaris native linker always sets p_paddr to 0.
5511 We try to catch that case here, and set it to the
5512 correct value. Note - some backends require that
5513 p_paddr be left as zero. */
5514 if (segment
->p_paddr
== 0
5515 && segment
->p_vaddr
!= 0
5516 && (! bed
->want_p_paddr_set_to_zero
)
5518 && output_section
->lma
!= 0
5519 && (output_section
->vma
== (segment
->p_vaddr
5520 + (map
->includes_filehdr
5523 + (map
->includes_phdrs
5525 * iehdr
->e_phentsize
)
5527 map
->p_paddr
= segment
->p_vaddr
;
5529 /* Match up the physical address of the segment with the
5530 LMA address of the output section. */
5531 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5532 || IS_COREFILE_NOTE (segment
, section
)
5533 || (bed
->want_p_paddr_set_to_zero
&&
5534 IS_CONTAINED_BY_VMA (output_section
, segment
))
5537 if (matching_lma
== 0)
5538 matching_lma
= output_section
->lma
;
5540 /* We assume that if the section fits within the segment
5541 then it does not overlap any other section within that
5543 map
->sections
[isec
++] = output_section
;
5545 else if (suggested_lma
== 0)
5546 suggested_lma
= output_section
->lma
;
5550 BFD_ASSERT (j
== section_count
);
5552 /* Step Two: Adjust the physical address of the current segment,
5554 if (isec
== section_count
)
5556 /* All of the sections fitted within the segment as currently
5557 specified. This is the default case. Add the segment to
5558 the list of built segments and carry on to process the next
5559 program header in the input BFD. */
5560 map
->count
= section_count
;
5561 *pointer_to_map
= map
;
5562 pointer_to_map
= &map
->next
;
5569 if (matching_lma
!= 0)
5571 /* At least one section fits inside the current segment.
5572 Keep it, but modify its physical address to match the
5573 LMA of the first section that fitted. */
5574 map
->p_paddr
= matching_lma
;
5578 /* None of the sections fitted inside the current segment.
5579 Change the current segment's physical address to match
5580 the LMA of the first section. */
5581 map
->p_paddr
= suggested_lma
;
5584 /* Offset the segment physical address from the lma
5585 to allow for space taken up by elf headers. */
5586 if (map
->includes_filehdr
)
5587 map
->p_paddr
-= iehdr
->e_ehsize
;
5589 if (map
->includes_phdrs
)
5591 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5593 /* iehdr->e_phnum is just an estimate of the number
5594 of program headers that we will need. Make a note
5595 here of the number we used and the segment we chose
5596 to hold these headers, so that we can adjust the
5597 offset when we know the correct value. */
5598 phdr_adjust_num
= iehdr
->e_phnum
;
5599 phdr_adjust_seg
= map
;
5603 /* Step Three: Loop over the sections again, this time assigning
5604 those that fit to the current segment and removing them from the
5605 sections array; but making sure not to leave large gaps. Once all
5606 possible sections have been assigned to the current segment it is
5607 added to the list of built segments and if sections still remain
5608 to be assigned, a new segment is constructed before repeating
5616 /* Fill the current segment with sections that fit. */
5617 for (j
= 0; j
< section_count
; j
++)
5619 section
= sections
[j
];
5621 if (section
== NULL
)
5624 output_section
= section
->output_section
;
5626 BFD_ASSERT (output_section
!= NULL
);
5628 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5629 || IS_COREFILE_NOTE (segment
, section
))
5631 if (map
->count
== 0)
5633 /* If the first section in a segment does not start at
5634 the beginning of the segment, then something is
5636 if (output_section
->lma
!=
5638 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5639 + (map
->includes_phdrs
5640 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5646 asection
* prev_sec
;
5648 prev_sec
= map
->sections
[map
->count
- 1];
5650 /* If the gap between the end of the previous section
5651 and the start of this section is more than
5652 maxpagesize then we need to start a new segment. */
5653 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5655 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5656 || ((prev_sec
->lma
+ prev_sec
->size
)
5657 > output_section
->lma
))
5659 if (suggested_lma
== 0)
5660 suggested_lma
= output_section
->lma
;
5666 map
->sections
[map
->count
++] = output_section
;
5669 section
->segment_mark
= TRUE
;
5671 else if (suggested_lma
== 0)
5672 suggested_lma
= output_section
->lma
;
5675 BFD_ASSERT (map
->count
> 0);
5677 /* Add the current segment to the list of built segments. */
5678 *pointer_to_map
= map
;
5679 pointer_to_map
= &map
->next
;
5681 if (isec
< section_count
)
5683 /* We still have not allocated all of the sections to
5684 segments. Create a new segment here, initialise it
5685 and carry on looping. */
5686 amt
= sizeof (struct elf_segment_map
);
5687 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5688 map
= bfd_alloc (obfd
, amt
);
5695 /* Initialise the fields of the segment map. Set the physical
5696 physical address to the LMA of the first section that has
5697 not yet been assigned. */
5699 map
->p_type
= segment
->p_type
;
5700 map
->p_flags
= segment
->p_flags
;
5701 map
->p_flags_valid
= 1;
5702 map
->p_paddr
= suggested_lma
;
5703 map
->p_paddr_valid
= 1;
5704 map
->includes_filehdr
= 0;
5705 map
->includes_phdrs
= 0;
5708 while (isec
< section_count
);
5713 /* The Solaris linker creates program headers in which all the
5714 p_paddr fields are zero. When we try to objcopy or strip such a
5715 file, we get confused. Check for this case, and if we find it
5716 reset the p_paddr_valid fields. */
5717 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5718 if (map
->p_paddr
!= 0)
5721 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5722 map
->p_paddr_valid
= 0;
5724 elf_tdata (obfd
)->segment_map
= map_first
;
5726 /* If we had to estimate the number of program headers that were
5727 going to be needed, then check our estimate now and adjust
5728 the offset if necessary. */
5729 if (phdr_adjust_seg
!= NULL
)
5733 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5736 if (count
> phdr_adjust_num
)
5737 phdr_adjust_seg
->p_paddr
5738 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5743 #undef IS_CONTAINED_BY_VMA
5744 #undef IS_CONTAINED_BY_LMA
5745 #undef IS_COREFILE_NOTE
5746 #undef IS_SOLARIS_PT_INTERP
5747 #undef INCLUDE_SECTION_IN_SEGMENT
5748 #undef SEGMENT_AFTER_SEGMENT
5749 #undef SEGMENT_OVERLAPS
5753 /* Copy ELF program header information. */
5756 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5758 Elf_Internal_Ehdr
*iehdr
;
5759 struct elf_segment_map
*map
;
5760 struct elf_segment_map
*map_first
;
5761 struct elf_segment_map
**pointer_to_map
;
5762 Elf_Internal_Phdr
*segment
;
5764 unsigned int num_segments
;
5765 bfd_boolean phdr_included
= FALSE
;
5767 iehdr
= elf_elfheader (ibfd
);
5770 pointer_to_map
= &map_first
;
5772 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5773 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5778 unsigned int section_count
;
5780 Elf_Internal_Shdr
*this_hdr
;
5782 /* FIXME: Do we need to copy PT_NULL segment? */
5783 if (segment
->p_type
== PT_NULL
)
5786 /* Compute how many sections are in this segment. */
5787 for (section
= ibfd
->sections
, section_count
= 0;
5789 section
= section
->next
)
5791 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5792 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5796 /* Allocate a segment map big enough to contain
5797 all of the sections we have selected. */
5798 amt
= sizeof (struct elf_segment_map
);
5799 if (section_count
!= 0)
5800 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5801 map
= bfd_zalloc (obfd
, amt
);
5805 /* Initialize the fields of the output segment map with the
5808 map
->p_type
= segment
->p_type
;
5809 map
->p_flags
= segment
->p_flags
;
5810 map
->p_flags_valid
= 1;
5811 map
->p_paddr
= segment
->p_paddr
;
5812 map
->p_paddr_valid
= 1;
5813 map
->p_align
= segment
->p_align
;
5814 map
->p_align_valid
= 1;
5816 /* Determine if this segment contains the ELF file header
5817 and if it contains the program headers themselves. */
5818 map
->includes_filehdr
= (segment
->p_offset
== 0
5819 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5821 map
->includes_phdrs
= 0;
5822 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5824 map
->includes_phdrs
=
5825 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5826 && (segment
->p_offset
+ segment
->p_filesz
5827 >= ((bfd_vma
) iehdr
->e_phoff
5828 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5830 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5831 phdr_included
= TRUE
;
5834 if (section_count
!= 0)
5836 unsigned int isec
= 0;
5838 for (section
= ibfd
->sections
;
5840 section
= section
->next
)
5842 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5843 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5844 map
->sections
[isec
++] = section
->output_section
;
5848 map
->count
= section_count
;
5849 *pointer_to_map
= map
;
5850 pointer_to_map
= &map
->next
;
5853 elf_tdata (obfd
)->segment_map
= map_first
;
5857 /* Copy private BFD data. This copies or rewrites ELF program header
5861 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5863 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5864 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5867 if (elf_tdata (ibfd
)->phdr
== NULL
)
5870 if (ibfd
->xvec
== obfd
->xvec
)
5872 /* Check if any sections in the input BFD covered by ELF program
5873 header are changed. */
5874 Elf_Internal_Phdr
*segment
;
5875 asection
*section
, *osec
;
5876 unsigned int i
, num_segments
;
5877 Elf_Internal_Shdr
*this_hdr
;
5879 /* Initialize the segment mark field. */
5880 for (section
= obfd
->sections
; section
!= NULL
;
5881 section
= section
->next
)
5882 section
->segment_mark
= FALSE
;
5884 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5885 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5889 for (section
= ibfd
->sections
;
5890 section
!= NULL
; section
= section
->next
)
5892 /* We mark the output section so that we know it comes
5893 from the input BFD. */
5894 osec
= section
->output_section
;
5896 osec
->segment_mark
= TRUE
;
5898 /* Check if this section is covered by the segment. */
5899 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5900 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5902 /* FIXME: Check if its output section is changed or
5903 removed. What else do we need to check? */
5905 || section
->flags
!= osec
->flags
5906 || section
->lma
!= osec
->lma
5907 || section
->vma
!= osec
->vma
5908 || section
->size
!= osec
->size
5909 || section
->rawsize
!= osec
->rawsize
5910 || section
->alignment_power
!= osec
->alignment_power
)
5916 /* Check to see if any output section doesn't come from the
5918 for (section
= obfd
->sections
; section
!= NULL
;
5919 section
= section
->next
)
5921 if (section
->segment_mark
== FALSE
)
5924 section
->segment_mark
= FALSE
;
5927 return copy_elf_program_header (ibfd
, obfd
);
5931 return rewrite_elf_program_header (ibfd
, obfd
);
5934 /* Initialize private output section information from input section. */
5937 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5941 struct bfd_link_info
*link_info
)
5944 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5945 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5947 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5948 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5951 /* Don't copy the output ELF section type from input if the
5952 output BFD section flags have been set to something different.
5953 elf_fake_sections will set ELF section type based on BFD
5955 if (osec
->flags
== isec
->flags
5956 || (osec
->flags
== 0 && elf_section_type (osec
) == SHT_NULL
))
5957 elf_section_type (osec
) = elf_section_type (isec
);
5959 /* Set things up for objcopy and relocatable link. The output
5960 SHT_GROUP section will have its elf_next_in_group pointing back
5961 to the input group members. Ignore linker created group section.
5962 See elfNN_ia64_object_p in elfxx-ia64.c. */
5965 if (elf_sec_group (isec
) == NULL
5966 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5968 if (elf_section_flags (isec
) & SHF_GROUP
)
5969 elf_section_flags (osec
) |= SHF_GROUP
;
5970 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5971 elf_group_name (osec
) = elf_group_name (isec
);
5975 ihdr
= &elf_section_data (isec
)->this_hdr
;
5977 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5978 don't use the output section of the linked-to section since it
5979 may be NULL at this point. */
5980 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5982 ohdr
= &elf_section_data (osec
)->this_hdr
;
5983 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5984 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5987 osec
->use_rela_p
= isec
->use_rela_p
;
5992 /* Copy private section information. This copies over the entsize
5993 field, and sometimes the info field. */
5996 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6001 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6003 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6004 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6007 ihdr
= &elf_section_data (isec
)->this_hdr
;
6008 ohdr
= &elf_section_data (osec
)->this_hdr
;
6010 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6012 if (ihdr
->sh_type
== SHT_SYMTAB
6013 || ihdr
->sh_type
== SHT_DYNSYM
6014 || ihdr
->sh_type
== SHT_GNU_verneed
6015 || ihdr
->sh_type
== SHT_GNU_verdef
)
6016 ohdr
->sh_info
= ihdr
->sh_info
;
6018 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6022 /* Copy private header information. */
6025 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6029 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6030 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6033 /* Copy over private BFD data if it has not already been copied.
6034 This must be done here, rather than in the copy_private_bfd_data
6035 entry point, because the latter is called after the section
6036 contents have been set, which means that the program headers have
6037 already been worked out. */
6038 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6040 if (! copy_private_bfd_data (ibfd
, obfd
))
6044 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6045 but this might be wrong if we deleted the group section. */
6046 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6047 if (elf_section_type (isec
) == SHT_GROUP
6048 && isec
->output_section
== NULL
)
6050 asection
*first
= elf_next_in_group (isec
);
6051 asection
*s
= first
;
6054 if (s
->output_section
!= NULL
)
6056 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6057 elf_group_name (s
->output_section
) = NULL
;
6059 s
= elf_next_in_group (s
);
6068 /* Copy private symbol information. If this symbol is in a section
6069 which we did not map into a BFD section, try to map the section
6070 index correctly. We use special macro definitions for the mapped
6071 section indices; these definitions are interpreted by the
6072 swap_out_syms function. */
6074 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6075 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6076 #define MAP_STRTAB (SHN_HIOS + 3)
6077 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6078 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6081 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6086 elf_symbol_type
*isym
, *osym
;
6088 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6089 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6092 isym
= elf_symbol_from (ibfd
, isymarg
);
6093 osym
= elf_symbol_from (obfd
, osymarg
);
6097 && bfd_is_abs_section (isym
->symbol
.section
))
6101 shndx
= isym
->internal_elf_sym
.st_shndx
;
6102 if (shndx
== elf_onesymtab (ibfd
))
6103 shndx
= MAP_ONESYMTAB
;
6104 else if (shndx
== elf_dynsymtab (ibfd
))
6105 shndx
= MAP_DYNSYMTAB
;
6106 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6108 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6109 shndx
= MAP_SHSTRTAB
;
6110 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6111 shndx
= MAP_SYM_SHNDX
;
6112 osym
->internal_elf_sym
.st_shndx
= shndx
;
6118 /* Swap out the symbols. */
6121 swap_out_syms (bfd
*abfd
,
6122 struct bfd_strtab_hash
**sttp
,
6125 const struct elf_backend_data
*bed
;
6128 struct bfd_strtab_hash
*stt
;
6129 Elf_Internal_Shdr
*symtab_hdr
;
6130 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6131 Elf_Internal_Shdr
*symstrtab_hdr
;
6132 bfd_byte
*outbound_syms
;
6133 bfd_byte
*outbound_shndx
;
6136 bfd_boolean name_local_sections
;
6138 if (!elf_map_symbols (abfd
))
6141 /* Dump out the symtabs. */
6142 stt
= _bfd_elf_stringtab_init ();
6146 bed
= get_elf_backend_data (abfd
);
6147 symcount
= bfd_get_symcount (abfd
);
6148 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6149 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6150 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6151 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6152 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6153 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6155 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6156 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6158 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6159 if (outbound_syms
== NULL
)
6161 _bfd_stringtab_free (stt
);
6164 symtab_hdr
->contents
= outbound_syms
;
6166 outbound_shndx
= NULL
;
6167 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6168 if (symtab_shndx_hdr
->sh_name
!= 0)
6170 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6171 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6172 sizeof (Elf_External_Sym_Shndx
));
6173 if (outbound_shndx
== NULL
)
6175 _bfd_stringtab_free (stt
);
6179 symtab_shndx_hdr
->contents
= outbound_shndx
;
6180 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6181 symtab_shndx_hdr
->sh_size
= amt
;
6182 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6183 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6186 /* Now generate the data (for "contents"). */
6188 /* Fill in zeroth symbol and swap it out. */
6189 Elf_Internal_Sym sym
;
6195 sym
.st_shndx
= SHN_UNDEF
;
6196 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6197 outbound_syms
+= bed
->s
->sizeof_sym
;
6198 if (outbound_shndx
!= NULL
)
6199 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6203 = (bed
->elf_backend_name_local_section_symbols
6204 && bed
->elf_backend_name_local_section_symbols (abfd
));
6206 syms
= bfd_get_outsymbols (abfd
);
6207 for (idx
= 0; idx
< symcount
; idx
++)
6209 Elf_Internal_Sym sym
;
6210 bfd_vma value
= syms
[idx
]->value
;
6211 elf_symbol_type
*type_ptr
;
6212 flagword flags
= syms
[idx
]->flags
;
6215 if (!name_local_sections
6216 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6218 /* Local section symbols have no name. */
6223 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6226 if (sym
.st_name
== (unsigned long) -1)
6228 _bfd_stringtab_free (stt
);
6233 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6235 if ((flags
& BSF_SECTION_SYM
) == 0
6236 && bfd_is_com_section (syms
[idx
]->section
))
6238 /* ELF common symbols put the alignment into the `value' field,
6239 and the size into the `size' field. This is backwards from
6240 how BFD handles it, so reverse it here. */
6241 sym
.st_size
= value
;
6242 if (type_ptr
== NULL
6243 || type_ptr
->internal_elf_sym
.st_value
== 0)
6244 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6246 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6247 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6248 (abfd
, syms
[idx
]->section
);
6252 asection
*sec
= syms
[idx
]->section
;
6255 if (sec
->output_section
)
6257 value
+= sec
->output_offset
;
6258 sec
= sec
->output_section
;
6261 /* Don't add in the section vma for relocatable output. */
6262 if (! relocatable_p
)
6264 sym
.st_value
= value
;
6265 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6267 if (bfd_is_abs_section (sec
)
6269 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6271 /* This symbol is in a real ELF section which we did
6272 not create as a BFD section. Undo the mapping done
6273 by copy_private_symbol_data. */
6274 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6278 shndx
= elf_onesymtab (abfd
);
6281 shndx
= elf_dynsymtab (abfd
);
6284 shndx
= elf_tdata (abfd
)->strtab_section
;
6287 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6290 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6298 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6304 /* Writing this would be a hell of a lot easier if
6305 we had some decent documentation on bfd, and
6306 knew what to expect of the library, and what to
6307 demand of applications. For example, it
6308 appears that `objcopy' might not set the
6309 section of a symbol to be a section that is
6310 actually in the output file. */
6311 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6314 _bfd_error_handler (_("\
6315 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6316 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6318 bfd_set_error (bfd_error_invalid_operation
);
6319 _bfd_stringtab_free (stt
);
6323 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6324 BFD_ASSERT (shndx
!= -1);
6328 sym
.st_shndx
= shndx
;
6331 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6333 else if ((flags
& BSF_FUNCTION
) != 0)
6335 else if ((flags
& BSF_OBJECT
) != 0)
6340 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6343 /* Processor-specific types. */
6344 if (type_ptr
!= NULL
6345 && bed
->elf_backend_get_symbol_type
)
6346 type
= ((*bed
->elf_backend_get_symbol_type
)
6347 (&type_ptr
->internal_elf_sym
, type
));
6349 if (flags
& BSF_SECTION_SYM
)
6351 if (flags
& BSF_GLOBAL
)
6352 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6354 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6356 else if (bfd_is_com_section (syms
[idx
]->section
))
6357 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6358 else if (bfd_is_und_section (syms
[idx
]->section
))
6359 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6363 else if (flags
& BSF_FILE
)
6364 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6367 int bind
= STB_LOCAL
;
6369 if (flags
& BSF_LOCAL
)
6371 else if (flags
& BSF_WEAK
)
6373 else if (flags
& BSF_GLOBAL
)
6376 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6379 if (type_ptr
!= NULL
)
6380 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6384 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6385 outbound_syms
+= bed
->s
->sizeof_sym
;
6386 if (outbound_shndx
!= NULL
)
6387 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6391 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6392 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6394 symstrtab_hdr
->sh_flags
= 0;
6395 symstrtab_hdr
->sh_addr
= 0;
6396 symstrtab_hdr
->sh_entsize
= 0;
6397 symstrtab_hdr
->sh_link
= 0;
6398 symstrtab_hdr
->sh_info
= 0;
6399 symstrtab_hdr
->sh_addralign
= 1;
6404 /* Return the number of bytes required to hold the symtab vector.
6406 Note that we base it on the count plus 1, since we will null terminate
6407 the vector allocated based on this size. However, the ELF symbol table
6408 always has a dummy entry as symbol #0, so it ends up even. */
6411 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6415 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6417 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6418 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6420 symtab_size
-= sizeof (asymbol
*);
6426 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6430 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6432 if (elf_dynsymtab (abfd
) == 0)
6434 bfd_set_error (bfd_error_invalid_operation
);
6438 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6439 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6441 symtab_size
-= sizeof (asymbol
*);
6447 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6450 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6453 /* Canonicalize the relocs. */
6456 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6463 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6465 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6468 tblptr
= section
->relocation
;
6469 for (i
= 0; i
< section
->reloc_count
; i
++)
6470 *relptr
++ = tblptr
++;
6474 return section
->reloc_count
;
6478 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6480 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6481 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6484 bfd_get_symcount (abfd
) = symcount
;
6489 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6490 asymbol
**allocation
)
6492 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6493 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6496 bfd_get_dynamic_symcount (abfd
) = symcount
;
6500 /* Return the size required for the dynamic reloc entries. Any loadable
6501 section that was actually installed in the BFD, and has type SHT_REL
6502 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6503 dynamic reloc section. */
6506 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6511 if (elf_dynsymtab (abfd
) == 0)
6513 bfd_set_error (bfd_error_invalid_operation
);
6517 ret
= sizeof (arelent
*);
6518 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6519 if ((s
->flags
& SEC_LOAD
) != 0
6520 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6521 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6522 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6523 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6524 * sizeof (arelent
*));
6529 /* Canonicalize the dynamic relocation entries. Note that we return the
6530 dynamic relocations as a single block, although they are actually
6531 associated with particular sections; the interface, which was
6532 designed for SunOS style shared libraries, expects that there is only
6533 one set of dynamic relocs. Any loadable section that was actually
6534 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6535 dynamic symbol table, is considered to be a dynamic reloc section. */
6538 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6542 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6546 if (elf_dynsymtab (abfd
) == 0)
6548 bfd_set_error (bfd_error_invalid_operation
);
6552 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6554 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6556 if ((s
->flags
& SEC_LOAD
) != 0
6557 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6558 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6559 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6564 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6566 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6568 for (i
= 0; i
< count
; i
++)
6579 /* Read in the version information. */
6582 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6584 bfd_byte
*contents
= NULL
;
6585 unsigned int freeidx
= 0;
6587 if (elf_dynverref (abfd
) != 0)
6589 Elf_Internal_Shdr
*hdr
;
6590 Elf_External_Verneed
*everneed
;
6591 Elf_Internal_Verneed
*iverneed
;
6593 bfd_byte
*contents_end
;
6595 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6597 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6598 sizeof (Elf_Internal_Verneed
));
6599 if (elf_tdata (abfd
)->verref
== NULL
)
6602 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6604 contents
= bfd_malloc (hdr
->sh_size
);
6605 if (contents
== NULL
)
6607 error_return_verref
:
6608 elf_tdata (abfd
)->verref
= NULL
;
6609 elf_tdata (abfd
)->cverrefs
= 0;
6612 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6613 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6614 goto error_return_verref
;
6616 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6617 goto error_return_verref
;
6619 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6620 == sizeof (Elf_External_Vernaux
));
6621 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6622 everneed
= (Elf_External_Verneed
*) contents
;
6623 iverneed
= elf_tdata (abfd
)->verref
;
6624 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6626 Elf_External_Vernaux
*evernaux
;
6627 Elf_Internal_Vernaux
*ivernaux
;
6630 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6632 iverneed
->vn_bfd
= abfd
;
6634 iverneed
->vn_filename
=
6635 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6637 if (iverneed
->vn_filename
== NULL
)
6638 goto error_return_verref
;
6640 if (iverneed
->vn_cnt
== 0)
6641 iverneed
->vn_auxptr
= NULL
;
6644 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6645 sizeof (Elf_Internal_Vernaux
));
6646 if (iverneed
->vn_auxptr
== NULL
)
6647 goto error_return_verref
;
6650 if (iverneed
->vn_aux
6651 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6652 goto error_return_verref
;
6654 evernaux
= ((Elf_External_Vernaux
*)
6655 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6656 ivernaux
= iverneed
->vn_auxptr
;
6657 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6659 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6661 ivernaux
->vna_nodename
=
6662 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6663 ivernaux
->vna_name
);
6664 if (ivernaux
->vna_nodename
== NULL
)
6665 goto error_return_verref
;
6667 if (j
+ 1 < iverneed
->vn_cnt
)
6668 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6670 ivernaux
->vna_nextptr
= NULL
;
6672 if (ivernaux
->vna_next
6673 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6674 goto error_return_verref
;
6676 evernaux
= ((Elf_External_Vernaux
*)
6677 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6679 if (ivernaux
->vna_other
> freeidx
)
6680 freeidx
= ivernaux
->vna_other
;
6683 if (i
+ 1 < hdr
->sh_info
)
6684 iverneed
->vn_nextref
= iverneed
+ 1;
6686 iverneed
->vn_nextref
= NULL
;
6688 if (iverneed
->vn_next
6689 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6690 goto error_return_verref
;
6692 everneed
= ((Elf_External_Verneed
*)
6693 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6700 if (elf_dynverdef (abfd
) != 0)
6702 Elf_Internal_Shdr
*hdr
;
6703 Elf_External_Verdef
*everdef
;
6704 Elf_Internal_Verdef
*iverdef
;
6705 Elf_Internal_Verdef
*iverdefarr
;
6706 Elf_Internal_Verdef iverdefmem
;
6708 unsigned int maxidx
;
6709 bfd_byte
*contents_end_def
, *contents_end_aux
;
6711 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6713 contents
= bfd_malloc (hdr
->sh_size
);
6714 if (contents
== NULL
)
6716 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6717 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6720 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6723 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6724 >= sizeof (Elf_External_Verdaux
));
6725 contents_end_def
= contents
+ hdr
->sh_size
6726 - sizeof (Elf_External_Verdef
);
6727 contents_end_aux
= contents
+ hdr
->sh_size
6728 - sizeof (Elf_External_Verdaux
);
6730 /* We know the number of entries in the section but not the maximum
6731 index. Therefore we have to run through all entries and find
6733 everdef
= (Elf_External_Verdef
*) contents
;
6735 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6737 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6739 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6740 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6742 if (iverdefmem
.vd_next
6743 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6746 everdef
= ((Elf_External_Verdef
*)
6747 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6750 if (default_imported_symver
)
6752 if (freeidx
> maxidx
)
6757 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6758 sizeof (Elf_Internal_Verdef
));
6759 if (elf_tdata (abfd
)->verdef
== NULL
)
6762 elf_tdata (abfd
)->cverdefs
= maxidx
;
6764 everdef
= (Elf_External_Verdef
*) contents
;
6765 iverdefarr
= elf_tdata (abfd
)->verdef
;
6766 for (i
= 0; i
< hdr
->sh_info
; i
++)
6768 Elf_External_Verdaux
*everdaux
;
6769 Elf_Internal_Verdaux
*iverdaux
;
6772 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6774 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6776 error_return_verdef
:
6777 elf_tdata (abfd
)->verdef
= NULL
;
6778 elf_tdata (abfd
)->cverdefs
= 0;
6782 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6783 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6785 iverdef
->vd_bfd
= abfd
;
6787 if (iverdef
->vd_cnt
== 0)
6788 iverdef
->vd_auxptr
= NULL
;
6791 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6792 sizeof (Elf_Internal_Verdaux
));
6793 if (iverdef
->vd_auxptr
== NULL
)
6794 goto error_return_verdef
;
6798 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6799 goto error_return_verdef
;
6801 everdaux
= ((Elf_External_Verdaux
*)
6802 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6803 iverdaux
= iverdef
->vd_auxptr
;
6804 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6806 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6808 iverdaux
->vda_nodename
=
6809 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6810 iverdaux
->vda_name
);
6811 if (iverdaux
->vda_nodename
== NULL
)
6812 goto error_return_verdef
;
6814 if (j
+ 1 < iverdef
->vd_cnt
)
6815 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6817 iverdaux
->vda_nextptr
= NULL
;
6819 if (iverdaux
->vda_next
6820 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6821 goto error_return_verdef
;
6823 everdaux
= ((Elf_External_Verdaux
*)
6824 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6827 if (iverdef
->vd_cnt
)
6828 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6830 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6831 iverdef
->vd_nextdef
= iverdef
+ 1;
6833 iverdef
->vd_nextdef
= NULL
;
6835 everdef
= ((Elf_External_Verdef
*)
6836 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6842 else if (default_imported_symver
)
6849 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6850 sizeof (Elf_Internal_Verdef
));
6851 if (elf_tdata (abfd
)->verdef
== NULL
)
6854 elf_tdata (abfd
)->cverdefs
= freeidx
;
6857 /* Create a default version based on the soname. */
6858 if (default_imported_symver
)
6860 Elf_Internal_Verdef
*iverdef
;
6861 Elf_Internal_Verdaux
*iverdaux
;
6863 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6865 iverdef
->vd_version
= VER_DEF_CURRENT
;
6866 iverdef
->vd_flags
= 0;
6867 iverdef
->vd_ndx
= freeidx
;
6868 iverdef
->vd_cnt
= 1;
6870 iverdef
->vd_bfd
= abfd
;
6872 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6873 if (iverdef
->vd_nodename
== NULL
)
6874 goto error_return_verdef
;
6875 iverdef
->vd_nextdef
= NULL
;
6876 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6877 if (iverdef
->vd_auxptr
== NULL
)
6878 goto error_return_verdef
;
6880 iverdaux
= iverdef
->vd_auxptr
;
6881 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6882 iverdaux
->vda_nextptr
= NULL
;
6888 if (contents
!= NULL
)
6894 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6896 elf_symbol_type
*newsym
;
6897 bfd_size_type amt
= sizeof (elf_symbol_type
);
6899 newsym
= bfd_zalloc (abfd
, amt
);
6904 newsym
->symbol
.the_bfd
= abfd
;
6905 return &newsym
->symbol
;
6910 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6914 bfd_symbol_info (symbol
, ret
);
6917 /* Return whether a symbol name implies a local symbol. Most targets
6918 use this function for the is_local_label_name entry point, but some
6922 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6925 /* Normal local symbols start with ``.L''. */
6926 if (name
[0] == '.' && name
[1] == 'L')
6929 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6930 DWARF debugging symbols starting with ``..''. */
6931 if (name
[0] == '.' && name
[1] == '.')
6934 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6935 emitting DWARF debugging output. I suspect this is actually a
6936 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6937 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6938 underscore to be emitted on some ELF targets). For ease of use,
6939 we treat such symbols as local. */
6940 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6947 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6948 asymbol
*symbol ATTRIBUTE_UNUSED
)
6955 _bfd_elf_set_arch_mach (bfd
*abfd
,
6956 enum bfd_architecture arch
,
6957 unsigned long machine
)
6959 /* If this isn't the right architecture for this backend, and this
6960 isn't the generic backend, fail. */
6961 if (arch
!= get_elf_backend_data (abfd
)->arch
6962 && arch
!= bfd_arch_unknown
6963 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6966 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6969 /* Find the function to a particular section and offset,
6970 for error reporting. */
6973 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6977 const char **filename_ptr
,
6978 const char **functionname_ptr
)
6980 const char *filename
;
6981 asymbol
*func
, *file
;
6984 /* ??? Given multiple file symbols, it is impossible to reliably
6985 choose the right file name for global symbols. File symbols are
6986 local symbols, and thus all file symbols must sort before any
6987 global symbols. The ELF spec may be interpreted to say that a
6988 file symbol must sort before other local symbols, but currently
6989 ld -r doesn't do this. So, for ld -r output, it is possible to
6990 make a better choice of file name for local symbols by ignoring
6991 file symbols appearing after a given local symbol. */
6992 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6998 state
= nothing_seen
;
7000 for (p
= symbols
; *p
!= NULL
; p
++)
7004 q
= (elf_symbol_type
*) *p
;
7006 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7012 if (state
== symbol_seen
)
7013 state
= file_after_symbol_seen
;
7017 if (bfd_get_section (&q
->symbol
) == section
7018 && q
->symbol
.value
>= low_func
7019 && q
->symbol
.value
<= offset
)
7021 func
= (asymbol
*) q
;
7022 low_func
= q
->symbol
.value
;
7025 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7026 || state
!= file_after_symbol_seen
))
7027 filename
= bfd_asymbol_name (file
);
7031 if (state
== nothing_seen
)
7032 state
= symbol_seen
;
7039 *filename_ptr
= filename
;
7040 if (functionname_ptr
)
7041 *functionname_ptr
= bfd_asymbol_name (func
);
7046 /* Find the nearest line to a particular section and offset,
7047 for error reporting. */
7050 _bfd_elf_find_nearest_line (bfd
*abfd
,
7054 const char **filename_ptr
,
7055 const char **functionname_ptr
,
7056 unsigned int *line_ptr
)
7060 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7061 filename_ptr
, functionname_ptr
,
7064 if (!*functionname_ptr
)
7065 elf_find_function (abfd
, section
, symbols
, offset
,
7066 *filename_ptr
? NULL
: filename_ptr
,
7072 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7073 filename_ptr
, functionname_ptr
,
7075 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7077 if (!*functionname_ptr
)
7078 elf_find_function (abfd
, section
, symbols
, offset
,
7079 *filename_ptr
? NULL
: filename_ptr
,
7085 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7086 &found
, filename_ptr
,
7087 functionname_ptr
, line_ptr
,
7088 &elf_tdata (abfd
)->line_info
))
7090 if (found
&& (*functionname_ptr
|| *line_ptr
))
7093 if (symbols
== NULL
)
7096 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7097 filename_ptr
, functionname_ptr
))
7104 /* Find the line for a symbol. */
7107 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7108 const char **filename_ptr
, unsigned int *line_ptr
)
7110 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7111 filename_ptr
, line_ptr
, 0,
7112 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7115 /* After a call to bfd_find_nearest_line, successive calls to
7116 bfd_find_inliner_info can be used to get source information about
7117 each level of function inlining that terminated at the address
7118 passed to bfd_find_nearest_line. Currently this is only supported
7119 for DWARF2 with appropriate DWARF3 extensions. */
7122 _bfd_elf_find_inliner_info (bfd
*abfd
,
7123 const char **filename_ptr
,
7124 const char **functionname_ptr
,
7125 unsigned int *line_ptr
)
7128 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7129 functionname_ptr
, line_ptr
,
7130 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7135 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7137 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7138 int ret
= bed
->s
->sizeof_ehdr
;
7140 if (!info
->relocatable
)
7142 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7144 if (phdr_size
== (bfd_size_type
) -1)
7146 struct elf_segment_map
*m
;
7149 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7150 phdr_size
+= bed
->s
->sizeof_phdr
;
7153 phdr_size
= get_program_header_size (abfd
, info
);
7156 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7164 _bfd_elf_set_section_contents (bfd
*abfd
,
7166 const void *location
,
7168 bfd_size_type count
)
7170 Elf_Internal_Shdr
*hdr
;
7173 if (! abfd
->output_has_begun
7174 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7177 hdr
= &elf_section_data (section
)->this_hdr
;
7178 pos
= hdr
->sh_offset
+ offset
;
7179 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7180 || bfd_bwrite (location
, count
, abfd
) != count
)
7187 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7188 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7189 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7194 /* Try to convert a non-ELF reloc into an ELF one. */
7197 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7199 /* Check whether we really have an ELF howto. */
7201 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7203 bfd_reloc_code_real_type code
;
7204 reloc_howto_type
*howto
;
7206 /* Alien reloc: Try to determine its type to replace it with an
7207 equivalent ELF reloc. */
7209 if (areloc
->howto
->pc_relative
)
7211 switch (areloc
->howto
->bitsize
)
7214 code
= BFD_RELOC_8_PCREL
;
7217 code
= BFD_RELOC_12_PCREL
;
7220 code
= BFD_RELOC_16_PCREL
;
7223 code
= BFD_RELOC_24_PCREL
;
7226 code
= BFD_RELOC_32_PCREL
;
7229 code
= BFD_RELOC_64_PCREL
;
7235 howto
= bfd_reloc_type_lookup (abfd
, code
);
7237 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7239 if (howto
->pcrel_offset
)
7240 areloc
->addend
+= areloc
->address
;
7242 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7247 switch (areloc
->howto
->bitsize
)
7253 code
= BFD_RELOC_14
;
7256 code
= BFD_RELOC_16
;
7259 code
= BFD_RELOC_26
;
7262 code
= BFD_RELOC_32
;
7265 code
= BFD_RELOC_64
;
7271 howto
= bfd_reloc_type_lookup (abfd
, code
);
7275 areloc
->howto
= howto
;
7283 (*_bfd_error_handler
)
7284 (_("%B: unsupported relocation type %s"),
7285 abfd
, areloc
->howto
->name
);
7286 bfd_set_error (bfd_error_bad_value
);
7291 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7293 if (bfd_get_format (abfd
) == bfd_object
)
7295 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7296 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7297 _bfd_dwarf2_cleanup_debug_info (abfd
);
7300 return _bfd_generic_close_and_cleanup (abfd
);
7303 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7304 in the relocation's offset. Thus we cannot allow any sort of sanity
7305 range-checking to interfere. There is nothing else to do in processing
7308 bfd_reloc_status_type
7309 _bfd_elf_rel_vtable_reloc_fn
7310 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7311 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7312 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7313 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7315 return bfd_reloc_ok
;
7318 /* Elf core file support. Much of this only works on native
7319 toolchains, since we rely on knowing the
7320 machine-dependent procfs structure in order to pick
7321 out details about the corefile. */
7323 #ifdef HAVE_SYS_PROCFS_H
7324 # include <sys/procfs.h>
7327 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7330 elfcore_make_pid (bfd
*abfd
)
7332 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7333 + (elf_tdata (abfd
)->core_pid
));
7336 /* If there isn't a section called NAME, make one, using
7337 data from SECT. Note, this function will generate a
7338 reference to NAME, so you shouldn't deallocate or
7342 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7346 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7349 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7353 sect2
->size
= sect
->size
;
7354 sect2
->filepos
= sect
->filepos
;
7355 sect2
->alignment_power
= sect
->alignment_power
;
7359 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7360 actually creates up to two pseudosections:
7361 - For the single-threaded case, a section named NAME, unless
7362 such a section already exists.
7363 - For the multi-threaded case, a section named "NAME/PID", where
7364 PID is elfcore_make_pid (abfd).
7365 Both pseudosections have identical contents. */
7367 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7373 char *threaded_name
;
7377 /* Build the section name. */
7379 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7380 len
= strlen (buf
) + 1;
7381 threaded_name
= bfd_alloc (abfd
, len
);
7382 if (threaded_name
== NULL
)
7384 memcpy (threaded_name
, buf
, len
);
7386 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7391 sect
->filepos
= filepos
;
7392 sect
->alignment_power
= 2;
7394 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7397 /* prstatus_t exists on:
7399 linux 2.[01] + glibc
7403 #if defined (HAVE_PRSTATUS_T)
7406 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7411 if (note
->descsz
== sizeof (prstatus_t
))
7415 size
= sizeof (prstat
.pr_reg
);
7416 offset
= offsetof (prstatus_t
, pr_reg
);
7417 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7419 /* Do not overwrite the core signal if it
7420 has already been set by another thread. */
7421 if (elf_tdata (abfd
)->core_signal
== 0)
7422 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7423 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7425 /* pr_who exists on:
7428 pr_who doesn't exist on:
7431 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7432 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7435 #if defined (HAVE_PRSTATUS32_T)
7436 else if (note
->descsz
== sizeof (prstatus32_t
))
7438 /* 64-bit host, 32-bit corefile */
7439 prstatus32_t prstat
;
7441 size
= sizeof (prstat
.pr_reg
);
7442 offset
= offsetof (prstatus32_t
, pr_reg
);
7443 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7445 /* Do not overwrite the core signal if it
7446 has already been set by another thread. */
7447 if (elf_tdata (abfd
)->core_signal
== 0)
7448 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7449 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7451 /* pr_who exists on:
7454 pr_who doesn't exist on:
7457 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7458 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7461 #endif /* HAVE_PRSTATUS32_T */
7464 /* Fail - we don't know how to handle any other
7465 note size (ie. data object type). */
7469 /* Make a ".reg/999" section and a ".reg" section. */
7470 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7471 size
, note
->descpos
+ offset
);
7473 #endif /* defined (HAVE_PRSTATUS_T) */
7475 /* Create a pseudosection containing the exact contents of NOTE. */
7477 elfcore_make_note_pseudosection (bfd
*abfd
,
7479 Elf_Internal_Note
*note
)
7481 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7482 note
->descsz
, note
->descpos
);
7485 /* There isn't a consistent prfpregset_t across platforms,
7486 but it doesn't matter, because we don't have to pick this
7487 data structure apart. */
7490 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7492 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7495 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7496 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7500 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7502 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7505 #if defined (HAVE_PRPSINFO_T)
7506 typedef prpsinfo_t elfcore_psinfo_t
;
7507 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7508 typedef prpsinfo32_t elfcore_psinfo32_t
;
7512 #if defined (HAVE_PSINFO_T)
7513 typedef psinfo_t elfcore_psinfo_t
;
7514 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7515 typedef psinfo32_t elfcore_psinfo32_t
;
7519 /* return a malloc'ed copy of a string at START which is at
7520 most MAX bytes long, possibly without a terminating '\0'.
7521 the copy will always have a terminating '\0'. */
7524 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7527 char *end
= memchr (start
, '\0', max
);
7535 dups
= bfd_alloc (abfd
, len
+ 1);
7539 memcpy (dups
, start
, len
);
7545 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7547 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7549 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7551 elfcore_psinfo_t psinfo
;
7553 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7555 elf_tdata (abfd
)->core_program
7556 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7557 sizeof (psinfo
.pr_fname
));
7559 elf_tdata (abfd
)->core_command
7560 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7561 sizeof (psinfo
.pr_psargs
));
7563 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7564 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7566 /* 64-bit host, 32-bit corefile */
7567 elfcore_psinfo32_t psinfo
;
7569 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7571 elf_tdata (abfd
)->core_program
7572 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7573 sizeof (psinfo
.pr_fname
));
7575 elf_tdata (abfd
)->core_command
7576 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7577 sizeof (psinfo
.pr_psargs
));
7583 /* Fail - we don't know how to handle any other
7584 note size (ie. data object type). */
7588 /* Note that for some reason, a spurious space is tacked
7589 onto the end of the args in some (at least one anyway)
7590 implementations, so strip it off if it exists. */
7593 char *command
= elf_tdata (abfd
)->core_command
;
7594 int n
= strlen (command
);
7596 if (0 < n
&& command
[n
- 1] == ' ')
7597 command
[n
- 1] = '\0';
7602 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7604 #if defined (HAVE_PSTATUS_T)
7606 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7608 if (note
->descsz
== sizeof (pstatus_t
)
7609 #if defined (HAVE_PXSTATUS_T)
7610 || note
->descsz
== sizeof (pxstatus_t
)
7616 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7618 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7620 #if defined (HAVE_PSTATUS32_T)
7621 else if (note
->descsz
== sizeof (pstatus32_t
))
7623 /* 64-bit host, 32-bit corefile */
7626 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7628 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7631 /* Could grab some more details from the "representative"
7632 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7633 NT_LWPSTATUS note, presumably. */
7637 #endif /* defined (HAVE_PSTATUS_T) */
7639 #if defined (HAVE_LWPSTATUS_T)
7641 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7643 lwpstatus_t lwpstat
;
7649 if (note
->descsz
!= sizeof (lwpstat
)
7650 #if defined (HAVE_LWPXSTATUS_T)
7651 && note
->descsz
!= sizeof (lwpxstatus_t
)
7656 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7658 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7659 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7661 /* Make a ".reg/999" section. */
7663 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7664 len
= strlen (buf
) + 1;
7665 name
= bfd_alloc (abfd
, len
);
7668 memcpy (name
, buf
, len
);
7670 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7674 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7675 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7676 sect
->filepos
= note
->descpos
7677 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7680 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7681 sect
->size
= sizeof (lwpstat
.pr_reg
);
7682 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7685 sect
->alignment_power
= 2;
7687 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7690 /* Make a ".reg2/999" section */
7692 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7693 len
= strlen (buf
) + 1;
7694 name
= bfd_alloc (abfd
, len
);
7697 memcpy (name
, buf
, len
);
7699 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7703 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7704 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7705 sect
->filepos
= note
->descpos
7706 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7709 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7710 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7711 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7714 sect
->alignment_power
= 2;
7716 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7718 #endif /* defined (HAVE_LWPSTATUS_T) */
7720 #if defined (HAVE_WIN32_PSTATUS_T)
7722 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7728 win32_pstatus_t pstatus
;
7730 if (note
->descsz
< sizeof (pstatus
))
7733 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7735 switch (pstatus
.data_type
)
7737 case NOTE_INFO_PROCESS
:
7738 /* FIXME: need to add ->core_command. */
7739 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7740 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7743 case NOTE_INFO_THREAD
:
7744 /* Make a ".reg/999" section. */
7745 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7747 len
= strlen (buf
) + 1;
7748 name
= bfd_alloc (abfd
, len
);
7752 memcpy (name
, buf
, len
);
7754 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7758 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7759 sect
->filepos
= (note
->descpos
7760 + offsetof (struct win32_pstatus
,
7761 data
.thread_info
.thread_context
));
7762 sect
->alignment_power
= 2;
7764 if (pstatus
.data
.thread_info
.is_active_thread
)
7765 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7769 case NOTE_INFO_MODULE
:
7770 /* Make a ".module/xxxxxxxx" section. */
7771 sprintf (buf
, ".module/%08lx",
7772 (long) pstatus
.data
.module_info
.base_address
);
7774 len
= strlen (buf
) + 1;
7775 name
= bfd_alloc (abfd
, len
);
7779 memcpy (name
, buf
, len
);
7781 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7786 sect
->size
= note
->descsz
;
7787 sect
->filepos
= note
->descpos
;
7788 sect
->alignment_power
= 2;
7797 #endif /* HAVE_WIN32_PSTATUS_T */
7800 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7802 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7810 if (bed
->elf_backend_grok_prstatus
)
7811 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7813 #if defined (HAVE_PRSTATUS_T)
7814 return elfcore_grok_prstatus (abfd
, note
);
7819 #if defined (HAVE_PSTATUS_T)
7821 return elfcore_grok_pstatus (abfd
, note
);
7824 #if defined (HAVE_LWPSTATUS_T)
7826 return elfcore_grok_lwpstatus (abfd
, note
);
7829 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7830 return elfcore_grok_prfpreg (abfd
, note
);
7832 #if defined (HAVE_WIN32_PSTATUS_T)
7833 case NT_WIN32PSTATUS
:
7834 return elfcore_grok_win32pstatus (abfd
, note
);
7837 case NT_PRXFPREG
: /* Linux SSE extension */
7838 if (note
->namesz
== 6
7839 && strcmp (note
->namedata
, "LINUX") == 0)
7840 return elfcore_grok_prxfpreg (abfd
, note
);
7846 if (bed
->elf_backend_grok_psinfo
)
7847 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7849 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7850 return elfcore_grok_psinfo (abfd
, note
);
7857 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7862 sect
->size
= note
->descsz
;
7863 sect
->filepos
= note
->descpos
;
7864 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7872 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7876 cp
= strchr (note
->namedata
, '@');
7879 *lwpidp
= atoi(cp
+ 1);
7886 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7889 /* Signal number at offset 0x08. */
7890 elf_tdata (abfd
)->core_signal
7891 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7893 /* Process ID at offset 0x50. */
7894 elf_tdata (abfd
)->core_pid
7895 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7897 /* Command name at 0x7c (max 32 bytes, including nul). */
7898 elf_tdata (abfd
)->core_command
7899 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7901 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7906 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7910 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7911 elf_tdata (abfd
)->core_lwpid
= lwp
;
7913 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7915 /* NetBSD-specific core "procinfo". Note that we expect to
7916 find this note before any of the others, which is fine,
7917 since the kernel writes this note out first when it
7918 creates a core file. */
7920 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7923 /* As of Jan 2002 there are no other machine-independent notes
7924 defined for NetBSD core files. If the note type is less
7925 than the start of the machine-dependent note types, we don't
7928 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7932 switch (bfd_get_arch (abfd
))
7934 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7935 PT_GETFPREGS == mach+2. */
7937 case bfd_arch_alpha
:
7938 case bfd_arch_sparc
:
7941 case NT_NETBSDCORE_FIRSTMACH
+0:
7942 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7944 case NT_NETBSDCORE_FIRSTMACH
+2:
7945 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7951 /* On all other arch's, PT_GETREGS == mach+1 and
7952 PT_GETFPREGS == mach+3. */
7957 case NT_NETBSDCORE_FIRSTMACH
+1:
7958 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7960 case NT_NETBSDCORE_FIRSTMACH
+3:
7961 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7971 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
7973 void *ddata
= note
->descdata
;
7980 /* nto_procfs_status 'pid' field is at offset 0. */
7981 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7983 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7984 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7986 /* nto_procfs_status 'flags' field is at offset 8. */
7987 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7989 /* nto_procfs_status 'what' field is at offset 14. */
7990 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7992 elf_tdata (abfd
)->core_signal
= sig
;
7993 elf_tdata (abfd
)->core_lwpid
= *tid
;
7996 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7997 do not come from signals so we make sure we set the current
7998 thread just in case. */
7999 if (flags
& 0x00000080)
8000 elf_tdata (abfd
)->core_lwpid
= *tid
;
8002 /* Make a ".qnx_core_status/%d" section. */
8003 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8005 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8010 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8014 sect
->size
= note
->descsz
;
8015 sect
->filepos
= note
->descpos
;
8016 sect
->alignment_power
= 2;
8018 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8022 elfcore_grok_nto_regs (bfd
*abfd
,
8023 Elf_Internal_Note
*note
,
8031 /* Make a "(base)/%d" section. */
8032 sprintf (buf
, "%s/%ld", base
, tid
);
8034 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8039 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8043 sect
->size
= note
->descsz
;
8044 sect
->filepos
= note
->descpos
;
8045 sect
->alignment_power
= 2;
8047 /* This is the current thread. */
8048 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8049 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8054 #define BFD_QNT_CORE_INFO 7
8055 #define BFD_QNT_CORE_STATUS 8
8056 #define BFD_QNT_CORE_GREG 9
8057 #define BFD_QNT_CORE_FPREG 10
8060 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8062 /* Every GREG section has a STATUS section before it. Store the
8063 tid from the previous call to pass down to the next gregs
8065 static long tid
= 1;
8069 case BFD_QNT_CORE_INFO
:
8070 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8071 case BFD_QNT_CORE_STATUS
:
8072 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8073 case BFD_QNT_CORE_GREG
:
8074 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8075 case BFD_QNT_CORE_FPREG
:
8076 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8082 /* Function: elfcore_write_note
8089 size of data for note
8092 End of buffer containing note. */
8095 elfcore_write_note (bfd
*abfd
,
8103 Elf_External_Note
*xnp
;
8113 const struct elf_backend_data
*bed
;
8115 namesz
= strlen (name
) + 1;
8116 bed
= get_elf_backend_data (abfd
);
8117 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
8120 newspace
= 12 + namesz
+ pad
+ size
;
8122 p
= realloc (buf
, *bufsiz
+ newspace
);
8124 *bufsiz
+= newspace
;
8125 xnp
= (Elf_External_Note
*) dest
;
8126 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8127 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8128 H_PUT_32 (abfd
, type
, xnp
->type
);
8132 memcpy (dest
, name
, namesz
);
8140 memcpy (dest
, input
, size
);
8144 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8146 elfcore_write_prpsinfo (bfd
*abfd
,
8153 char *note_name
= "CORE";
8155 #if defined (HAVE_PSINFO_T)
8157 note_type
= NT_PSINFO
;
8160 note_type
= NT_PRPSINFO
;
8163 memset (&data
, 0, sizeof (data
));
8164 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8165 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8166 return elfcore_write_note (abfd
, buf
, bufsiz
,
8167 note_name
, note_type
, &data
, sizeof (data
));
8169 #endif /* PSINFO_T or PRPSINFO_T */
8171 #if defined (HAVE_PRSTATUS_T)
8173 elfcore_write_prstatus (bfd
*abfd
,
8181 char *note_name
= "CORE";
8183 memset (&prstat
, 0, sizeof (prstat
));
8184 prstat
.pr_pid
= pid
;
8185 prstat
.pr_cursig
= cursig
;
8186 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8187 return elfcore_write_note (abfd
, buf
, bufsiz
,
8188 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8190 #endif /* HAVE_PRSTATUS_T */
8192 #if defined (HAVE_LWPSTATUS_T)
8194 elfcore_write_lwpstatus (bfd
*abfd
,
8201 lwpstatus_t lwpstat
;
8202 char *note_name
= "CORE";
8204 memset (&lwpstat
, 0, sizeof (lwpstat
));
8205 lwpstat
.pr_lwpid
= pid
>> 16;
8206 lwpstat
.pr_cursig
= cursig
;
8207 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8208 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8209 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8211 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8212 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8214 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8215 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8218 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8219 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8221 #endif /* HAVE_LWPSTATUS_T */
8223 #if defined (HAVE_PSTATUS_T)
8225 elfcore_write_pstatus (bfd
*abfd
,
8229 int cursig ATTRIBUTE_UNUSED
,
8230 const void *gregs ATTRIBUTE_UNUSED
)
8233 char *note_name
= "CORE";
8235 memset (&pstat
, 0, sizeof (pstat
));
8236 pstat
.pr_pid
= pid
& 0xffff;
8237 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8238 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8241 #endif /* HAVE_PSTATUS_T */
8244 elfcore_write_prfpreg (bfd
*abfd
,
8250 char *note_name
= "CORE";
8251 return elfcore_write_note (abfd
, buf
, bufsiz
,
8252 note_name
, NT_FPREGSET
, fpregs
, size
);
8256 elfcore_write_prxfpreg (bfd
*abfd
,
8259 const void *xfpregs
,
8262 char *note_name
= "LINUX";
8263 return elfcore_write_note (abfd
, buf
, bufsiz
,
8264 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8268 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8276 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8279 buf
= bfd_malloc (size
);
8283 if (bfd_bread (buf
, size
, abfd
) != size
)
8291 while (p
< buf
+ size
)
8293 /* FIXME: bad alignment assumption. */
8294 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8295 Elf_Internal_Note in
;
8297 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8299 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8300 in
.namedata
= xnp
->name
;
8302 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8303 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8304 in
.descpos
= offset
+ (in
.descdata
- buf
);
8306 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8308 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8311 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8313 if (! elfcore_grok_nto_note (abfd
, &in
))
8318 if (! elfcore_grok_note (abfd
, &in
))
8322 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8329 /* Providing external access to the ELF program header table. */
8331 /* Return an upper bound on the number of bytes required to store a
8332 copy of ABFD's program header table entries. Return -1 if an error
8333 occurs; bfd_get_error will return an appropriate code. */
8336 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8338 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8340 bfd_set_error (bfd_error_wrong_format
);
8344 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8347 /* Copy ABFD's program header table entries to *PHDRS. The entries
8348 will be stored as an array of Elf_Internal_Phdr structures, as
8349 defined in include/elf/internal.h. To find out how large the
8350 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8352 Return the number of program header table entries read, or -1 if an
8353 error occurs; bfd_get_error will return an appropriate code. */
8356 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8360 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8362 bfd_set_error (bfd_error_wrong_format
);
8366 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8367 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8368 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8374 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8377 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8379 i_ehdrp
= elf_elfheader (abfd
);
8380 if (i_ehdrp
== NULL
)
8381 sprintf_vma (buf
, value
);
8384 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8386 #if BFD_HOST_64BIT_LONG
8387 sprintf (buf
, "%016lx", value
);
8389 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8390 _bfd_int64_low (value
));
8394 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8397 sprintf_vma (buf
, value
);
8402 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8405 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8407 i_ehdrp
= elf_elfheader (abfd
);
8408 if (i_ehdrp
== NULL
)
8409 fprintf_vma ((FILE *) stream
, value
);
8412 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8414 #if BFD_HOST_64BIT_LONG
8415 fprintf ((FILE *) stream
, "%016lx", value
);
8417 fprintf ((FILE *) stream
, "%08lx%08lx",
8418 _bfd_int64_high (value
), _bfd_int64_low (value
));
8422 fprintf ((FILE *) stream
, "%08lx",
8423 (unsigned long) (value
& 0xffffffff));
8426 fprintf_vma ((FILE *) stream
, value
);
8430 enum elf_reloc_type_class
8431 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8433 return reloc_class_normal
;
8436 /* For RELA architectures, return the relocation value for a
8437 relocation against a local symbol. */
8440 _bfd_elf_rela_local_sym (bfd
*abfd
,
8441 Elf_Internal_Sym
*sym
,
8443 Elf_Internal_Rela
*rel
)
8445 asection
*sec
= *psec
;
8448 relocation
= (sec
->output_section
->vma
8449 + sec
->output_offset
8451 if ((sec
->flags
& SEC_MERGE
)
8452 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8453 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8456 _bfd_merged_section_offset (abfd
, psec
,
8457 elf_section_data (sec
)->sec_info
,
8458 sym
->st_value
+ rel
->r_addend
);
8461 /* If we have changed the section, and our original section is
8462 marked with SEC_EXCLUDE, it means that the original
8463 SEC_MERGE section has been completely subsumed in some
8464 other SEC_MERGE section. In this case, we need to leave
8465 some info around for --emit-relocs. */
8466 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8467 sec
->kept_section
= *psec
;
8470 rel
->r_addend
-= relocation
;
8471 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8477 _bfd_elf_rel_local_sym (bfd
*abfd
,
8478 Elf_Internal_Sym
*sym
,
8482 asection
*sec
= *psec
;
8484 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8485 return sym
->st_value
+ addend
;
8487 return _bfd_merged_section_offset (abfd
, psec
,
8488 elf_section_data (sec
)->sec_info
,
8489 sym
->st_value
+ addend
);
8493 _bfd_elf_section_offset (bfd
*abfd
,
8494 struct bfd_link_info
*info
,
8498 switch (sec
->sec_info_type
)
8500 case ELF_INFO_TYPE_STABS
:
8501 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8503 case ELF_INFO_TYPE_EH_FRAME
:
8504 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8510 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8511 reconstruct an ELF file by reading the segments out of remote memory
8512 based on the ELF file header at EHDR_VMA and the ELF program headers it
8513 points to. If not null, *LOADBASEP is filled in with the difference
8514 between the VMAs from which the segments were read, and the VMAs the
8515 file headers (and hence BFD's idea of each section's VMA) put them at.
8517 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8518 remote memory at target address VMA into the local buffer at MYADDR; it
8519 should return zero on success or an `errno' code on failure. TEMPL must
8520 be a BFD for an ELF target with the word size and byte order found in
8521 the remote memory. */
8524 bfd_elf_bfd_from_remote_memory
8528 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8530 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8531 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8535 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8536 long symcount ATTRIBUTE_UNUSED
,
8537 asymbol
**syms ATTRIBUTE_UNUSED
,
8542 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8545 const char *relplt_name
;
8546 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8550 Elf_Internal_Shdr
*hdr
;
8556 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8559 if (dynsymcount
<= 0)
8562 if (!bed
->plt_sym_val
)
8565 relplt_name
= bed
->relplt_name
;
8566 if (relplt_name
== NULL
)
8567 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8568 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8572 hdr
= &elf_section_data (relplt
)->this_hdr
;
8573 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8574 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8577 plt
= bfd_get_section_by_name (abfd
, ".plt");
8581 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8582 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8585 count
= relplt
->size
/ hdr
->sh_entsize
;
8586 size
= count
* sizeof (asymbol
);
8587 p
= relplt
->relocation
;
8588 for (i
= 0; i
< count
; i
++, s
++, p
++)
8589 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8591 s
= *ret
= bfd_malloc (size
);
8595 names
= (char *) (s
+ count
);
8596 p
= relplt
->relocation
;
8598 for (i
= 0; i
< count
; i
++, s
++, p
++)
8603 addr
= bed
->plt_sym_val (i
, plt
, p
);
8604 if (addr
== (bfd_vma
) -1)
8607 *s
= **p
->sym_ptr_ptr
;
8608 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8609 we are defining a symbol, ensure one of them is set. */
8610 if ((s
->flags
& BSF_LOCAL
) == 0)
8611 s
->flags
|= BSF_GLOBAL
;
8613 s
->value
= addr
- plt
->vma
;
8615 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8616 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8618 memcpy (names
, "@plt", sizeof ("@plt"));
8619 names
+= sizeof ("@plt");
8626 /* Sort symbol by binding and section. We want to put definitions
8627 sorted by section at the beginning. */
8630 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8632 const Elf_Internal_Sym
*s1
;
8633 const Elf_Internal_Sym
*s2
;
8636 /* Make sure that undefined symbols are at the end. */
8637 s1
= (const Elf_Internal_Sym
*) arg1
;
8638 if (s1
->st_shndx
== SHN_UNDEF
)
8640 s2
= (const Elf_Internal_Sym
*) arg2
;
8641 if (s2
->st_shndx
== SHN_UNDEF
)
8644 /* Sorted by section index. */
8645 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8649 /* Sorted by binding. */
8650 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8655 Elf_Internal_Sym
*sym
;
8660 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8662 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8663 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8664 return strcmp (s1
->name
, s2
->name
);
8667 /* Check if 2 sections define the same set of local and global
8671 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8674 const struct elf_backend_data
*bed1
, *bed2
;
8675 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8676 bfd_size_type symcount1
, symcount2
;
8677 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8678 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8679 Elf_Internal_Sym
*isymend
;
8680 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8681 bfd_size_type count1
, count2
, i
;
8688 /* If both are .gnu.linkonce sections, they have to have the same
8690 if (CONST_STRNEQ (sec1
->name
, ".gnu.linkonce")
8691 && CONST_STRNEQ (sec2
->name
, ".gnu.linkonce"))
8692 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8693 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8695 /* Both sections have to be in ELF. */
8696 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8697 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8700 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8703 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8704 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8706 /* If both are members of section groups, they have to have the
8708 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8712 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8713 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8714 if (shndx1
== -1 || shndx2
== -1)
8717 bed1
= get_elf_backend_data (bfd1
);
8718 bed2
= get_elf_backend_data (bfd2
);
8719 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8720 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8721 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8722 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8724 if (symcount1
== 0 || symcount2
== 0)
8727 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8729 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8733 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8736 /* Sort symbols by binding and section. Global definitions are at
8738 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8739 elf_sort_elf_symbol
);
8740 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8741 elf_sort_elf_symbol
);
8743 /* Count definitions in the section. */
8745 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8746 isym
< isymend
; isym
++)
8748 if (isym
->st_shndx
== (unsigned int) shndx1
)
8755 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8760 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8761 isym
< isymend
; isym
++)
8763 if (isym
->st_shndx
== (unsigned int) shndx2
)
8770 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8774 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8777 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8778 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8780 if (symtable1
== NULL
|| symtable2
== NULL
)
8784 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8785 isym
< isymend
; isym
++)
8788 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8795 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8796 isym
< isymend
; isym
++)
8799 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8805 /* Sort symbol by name. */
8806 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8807 elf_sym_name_compare
);
8808 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8809 elf_sym_name_compare
);
8811 for (i
= 0; i
< count1
; i
++)
8812 /* Two symbols must have the same binding, type and name. */
8813 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8814 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8815 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8833 /* It is only used by x86-64 so far. */
8834 asection _bfd_elf_large_com_section
8835 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8836 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8838 /* Return TRUE if 2 section types are compatible. */
8841 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8842 bfd
*bbfd
, const asection
*bsec
)
8846 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8847 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8850 return elf_section_type (asec
) == elf_section_type (bsec
);