merge from gcc
[binutils.git] / bfd / elf32-hppa.c
blobcf6c6303743450b1cddcec95b7dcecde7a025529
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
159 struct elf32_hppa_stub_hash_entry {
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
164 /* The stub section. */
165 asection *stub_sec;
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
175 enum elf32_hppa_stub_type stub_type;
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
185 struct elf32_hppa_link_hash_entry {
187 struct elf_link_hash_entry elf;
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
200 /* The input section of the reloc. */
201 asection *sec;
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
216 struct elf32_hppa_link_hash_table {
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
284 /* Assorted hash table functions. */
286 /* Initialize an entry in the stub hash table. */
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
307 struct elf32_hppa_stub_hash_entry *eh;
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
320 return entry;
323 /* Initialize an entry in the link hash table. */
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
344 struct elf32_hppa_link_hash_entry *eh;
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
353 return entry;
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
372 free (ret);
373 return NULL;
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
399 return &ret->elf.root;
402 /* Free the derived linker hash table. */
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
414 /* Build a name for an entry in the stub hash table. */
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
422 char *stub_name;
423 bfd_size_type len;
425 if (hash)
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
437 else
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
450 return stub_name;
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
477 stub_entry = hash->stub_cache;
479 else
481 char *stub_name;
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
492 free (stub_name);
495 return stub_entry;
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
534 htab->stub_group[section->id].stub_sec = stub_sec;
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
543 bfd_archive_filename (section->owner),
544 stub_name);
545 return NULL;
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
554 /* Determine the type of stub needed, if any, for a call. */
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
595 max_branch_offset = (1 << (17-1)) << 2;
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
599 max_branch_offset = (1 << (12-1)) << 2;
601 else /* R_PARISC_PCREL22F. */
603 max_branch_offset = (1 << (22-1)) << 2;
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
609 return hppa_stub_none;
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->_raw_size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
678 stub_bfd = stub_sec->owner;
680 switch (stub_entry->stub_type)
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
699 size = 8;
700 break;
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
754 if (htab->multi_subspace)
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
765 size = 28;
767 else
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
774 size = 16;
777 break;
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
794 (*_bfd_error_handler)
795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 bfd_archive_filename (stub_entry->target_section->owner),
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
821 size = 24;
822 break;
824 default:
825 BFD_FAIL ();
826 return FALSE;
829 stub_sec->_raw_size += size;
830 return TRUE;
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
882 stub_entry->stub_sec->_raw_size += size;
883 return TRUE;
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
904 else
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
907 return FALSE;
910 flags = i_ehdrp->e_flags;
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
922 return TRUE;
925 /* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
928 static bfd_boolean
929 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
931 struct elf32_hppa_link_hash_table *htab;
933 /* Don't try to create the .plt and .got twice. */
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
936 return TRUE;
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
940 return FALSE;
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
956 return FALSE;
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
961 return TRUE;
964 /* Copy the extra info we tack onto an elf_link_hash_entry. */
966 static void
967 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
971 struct elf32_hppa_link_hash_entry *edir, *eind;
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
976 if (eind->dyn_relocs != NULL)
978 if (edir->dyn_relocs != NULL)
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
983 if (ind->root.type == bfd_link_hash_indirect)
984 abort ();
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
990 struct elf32_hppa_dyn_reloc_entry *q;
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
995 #if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997 #endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1002 if (q == NULL)
1003 pp = &p->next;
1005 *pp = edir->dyn_relocs;
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1027 /* Look through the relocs for a section during the first phase, and
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
1032 static bfd_boolean
1033 elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
1042 struct elf32_hppa_link_hash_table *htab;
1043 asection *sreloc;
1044 asection *stubreloc;
1046 if (info->relocatable)
1047 return TRUE;
1049 htab = hppa_link_hash_table (info);
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 sreloc = NULL;
1053 stubreloc = NULL;
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
1062 PLT_PLABEL = 8
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
1069 r_symndx = ELF32_R_SYM (rel->r_info);
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1077 r_type = ELF32_R_TYPE (rel->r_info);
1079 switch (r_type)
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
1086 break;
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
1091 /* If the addend is non-zero, we break badly. */
1092 if (rel->r_addend != 0)
1093 abort ();
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1112 break;
1114 case R_PARISC_PCREL12F:
1115 htab->has_12bit_branch = 1;
1116 goto branch_common;
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
1120 htab->has_17bit_branch = 1;
1121 goto branch_common;
1123 case R_PARISC_PCREL22F:
1124 htab->has_22bit_branch = 1;
1125 branch_common:
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
1128 if (h == NULL)
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1137 else
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
1144 need_entry = NEED_PLT;
1145 if (h->elf.type == STT_PARISC_MILLI)
1146 need_entry = 0;
1148 break;
1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1156 /* We don't need to propagate the relocation if linking a
1157 shared object since these are section relative. */
1158 continue;
1160 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1161 case R_PARISC_DPREL14R:
1162 case R_PARISC_DPREL21L:
1163 if (info->shared)
1165 (*_bfd_error_handler)
1166 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1167 bfd_archive_filename (abfd),
1168 elf_hppa_howto_table[r_type].name);
1169 bfd_set_error (bfd_error_bad_value);
1170 return FALSE;
1172 /* Fall through. */
1174 case R_PARISC_DIR17F: /* Used for external branches. */
1175 case R_PARISC_DIR17R:
1176 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1177 case R_PARISC_DIR14R:
1178 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1179 #if 0
1180 /* Help debug shared library creation. Any of the above
1181 relocs can be used in shared libs, but they may cause
1182 pages to become unshared. */
1183 if (info->shared)
1185 (*_bfd_error_handler)
1186 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1187 bfd_archive_filename (abfd),
1188 elf_hppa_howto_table[r_type].name);
1190 /* Fall through. */
1191 #endif
1193 case R_PARISC_DIR32: /* .word relocs. */
1194 /* We may want to output a dynamic relocation later. */
1195 need_entry = NEED_DYNREL;
1196 break;
1198 /* This relocation describes the C++ object vtable hierarchy.
1199 Reconstruct it for later use during GC. */
1200 case R_PARISC_GNU_VTINHERIT:
1201 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1202 &h->elf, rel->r_offset))
1203 return FALSE;
1204 continue;
1206 /* This relocation describes which C++ vtable entries are actually
1207 used. Record for later use during GC. */
1208 case R_PARISC_GNU_VTENTRY:
1209 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1210 &h->elf, rel->r_addend))
1211 return FALSE;
1212 continue;
1214 default:
1215 continue;
1218 /* Now carry out our orders. */
1219 if (need_entry & NEED_GOT)
1221 /* Allocate space for a GOT entry, as well as a dynamic
1222 relocation for this entry. */
1223 if (htab->sgot == NULL)
1225 if (htab->elf.dynobj == NULL)
1226 htab->elf.dynobj = abfd;
1227 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1228 return FALSE;
1231 if (h != NULL)
1233 h->elf.got.refcount += 1;
1235 else
1237 bfd_signed_vma *local_got_refcounts;
1239 /* This is a global offset table entry for a local symbol. */
1240 local_got_refcounts = elf_local_got_refcounts (abfd);
1241 if (local_got_refcounts == NULL)
1243 bfd_size_type size;
1245 /* Allocate space for local got offsets and local
1246 plt offsets. Done this way to save polluting
1247 elf_obj_tdata with another target specific
1248 pointer. */
1249 size = symtab_hdr->sh_info;
1250 size *= 2 * sizeof (bfd_signed_vma);
1251 local_got_refcounts = bfd_zalloc (abfd, size);
1252 if (local_got_refcounts == NULL)
1253 return FALSE;
1254 elf_local_got_refcounts (abfd) = local_got_refcounts;
1256 local_got_refcounts[r_symndx] += 1;
1260 if (need_entry & NEED_PLT)
1262 /* If we are creating a shared library, and this is a reloc
1263 against a weak symbol or a global symbol in a dynamic
1264 object, then we will be creating an import stub and a
1265 .plt entry for the symbol. Similarly, on a normal link
1266 to symbols defined in a dynamic object we'll need the
1267 import stub and a .plt entry. We don't know yet whether
1268 the symbol is defined or not, so make an entry anyway and
1269 clean up later in adjust_dynamic_symbol. */
1270 if ((sec->flags & SEC_ALLOC) != 0)
1272 if (h != NULL)
1274 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1275 h->elf.plt.refcount += 1;
1277 /* If this .plt entry is for a plabel, mark it so
1278 that adjust_dynamic_symbol will keep the entry
1279 even if it appears to be local. */
1280 if (need_entry & PLT_PLABEL)
1281 h->plabel = 1;
1283 else if (need_entry & PLT_PLABEL)
1285 bfd_signed_vma *local_got_refcounts;
1286 bfd_signed_vma *local_plt_refcounts;
1288 local_got_refcounts = elf_local_got_refcounts (abfd);
1289 if (local_got_refcounts == NULL)
1291 bfd_size_type size;
1293 /* Allocate space for local got offsets and local
1294 plt offsets. */
1295 size = symtab_hdr->sh_info;
1296 size *= 2 * sizeof (bfd_signed_vma);
1297 local_got_refcounts = bfd_zalloc (abfd, size);
1298 if (local_got_refcounts == NULL)
1299 return FALSE;
1300 elf_local_got_refcounts (abfd) = local_got_refcounts;
1302 local_plt_refcounts = (local_got_refcounts
1303 + symtab_hdr->sh_info);
1304 local_plt_refcounts[r_symndx] += 1;
1309 if (need_entry & NEED_DYNREL)
1311 /* Flag this symbol as having a non-got, non-plt reference
1312 so that we generate copy relocs if it turns out to be
1313 dynamic. */
1314 if (h != NULL && !info->shared)
1315 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1317 /* If we are creating a shared library then we need to copy
1318 the reloc into the shared library. However, if we are
1319 linking with -Bsymbolic, we need only copy absolute
1320 relocs or relocs against symbols that are not defined in
1321 an object we are including in the link. PC- or DP- or
1322 DLT-relative relocs against any local sym or global sym
1323 with DEF_REGULAR set, can be discarded. At this point we
1324 have not seen all the input files, so it is possible that
1325 DEF_REGULAR is not set now but will be set later (it is
1326 never cleared). We account for that possibility below by
1327 storing information in the dyn_relocs field of the
1328 hash table entry.
1330 A similar situation to the -Bsymbolic case occurs when
1331 creating shared libraries and symbol visibility changes
1332 render the symbol local.
1334 As it turns out, all the relocs we will be creating here
1335 are absolute, so we cannot remove them on -Bsymbolic
1336 links or visibility changes anyway. A STUB_REL reloc
1337 is absolute too, as in that case it is the reloc in the
1338 stub we will be creating, rather than copying the PCREL
1339 reloc in the branch.
1341 If on the other hand, we are creating an executable, we
1342 may need to keep relocations for symbols satisfied by a
1343 dynamic library if we manage to avoid copy relocs for the
1344 symbol. */
1345 if ((info->shared
1346 && (sec->flags & SEC_ALLOC) != 0
1347 && (IS_ABSOLUTE_RELOC (r_type)
1348 || (h != NULL
1349 && (!info->symbolic
1350 || h->elf.root.type == bfd_link_hash_defweak
1351 || (h->elf.elf_link_hash_flags
1352 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1353 || (ELIMINATE_COPY_RELOCS
1354 && !info->shared
1355 && (sec->flags & SEC_ALLOC) != 0
1356 && h != NULL
1357 && (h->elf.root.type == bfd_link_hash_defweak
1358 || (h->elf.elf_link_hash_flags
1359 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1361 struct elf32_hppa_dyn_reloc_entry *p;
1362 struct elf32_hppa_dyn_reloc_entry **head;
1364 /* Create a reloc section in dynobj and make room for
1365 this reloc. */
1366 if (sreloc == NULL)
1368 char *name;
1369 bfd *dynobj;
1371 name = (bfd_elf_string_from_elf_section
1372 (abfd,
1373 elf_elfheader (abfd)->e_shstrndx,
1374 elf_section_data (sec)->rel_hdr.sh_name));
1375 if (name == NULL)
1377 (*_bfd_error_handler)
1378 (_("Could not find relocation section for %s"),
1379 sec->name);
1380 bfd_set_error (bfd_error_bad_value);
1381 return FALSE;
1384 if (htab->elf.dynobj == NULL)
1385 htab->elf.dynobj = abfd;
1387 dynobj = htab->elf.dynobj;
1388 sreloc = bfd_get_section_by_name (dynobj, name);
1389 if (sreloc == NULL)
1391 flagword flags;
1393 sreloc = bfd_make_section (dynobj, name);
1394 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1395 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1396 if ((sec->flags & SEC_ALLOC) != 0)
1397 flags |= SEC_ALLOC | SEC_LOAD;
1398 if (sreloc == NULL
1399 || !bfd_set_section_flags (dynobj, sreloc, flags)
1400 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1401 return FALSE;
1404 elf_section_data (sec)->sreloc = sreloc;
1407 /* If this is a global symbol, we count the number of
1408 relocations we need for this symbol. */
1409 if (h != NULL)
1411 head = &h->dyn_relocs;
1413 else
1415 /* Track dynamic relocs needed for local syms too.
1416 We really need local syms available to do this
1417 easily. Oh well. */
1419 asection *s;
1420 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1421 sec, r_symndx);
1422 if (s == NULL)
1423 return FALSE;
1425 head = ((struct elf32_hppa_dyn_reloc_entry **)
1426 &elf_section_data (s)->local_dynrel);
1429 p = *head;
1430 if (p == NULL || p->sec != sec)
1432 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1433 if (p == NULL)
1434 return FALSE;
1435 p->next = *head;
1436 *head = p;
1437 p->sec = sec;
1438 p->count = 0;
1439 #if RELATIVE_DYNRELOCS
1440 p->relative_count = 0;
1441 #endif
1444 p->count += 1;
1445 #if RELATIVE_DYNRELOCS
1446 if (!IS_ABSOLUTE_RELOC (rtype))
1447 p->relative_count += 1;
1448 #endif
1453 return TRUE;
1456 /* Return the section that should be marked against garbage collection
1457 for a given relocation. */
1459 static asection *
1460 elf32_hppa_gc_mark_hook (asection *sec,
1461 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1462 Elf_Internal_Rela *rel,
1463 struct elf_link_hash_entry *h,
1464 Elf_Internal_Sym *sym)
1466 if (h != NULL)
1468 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1470 case R_PARISC_GNU_VTINHERIT:
1471 case R_PARISC_GNU_VTENTRY:
1472 break;
1474 default:
1475 switch (h->root.type)
1477 case bfd_link_hash_defined:
1478 case bfd_link_hash_defweak:
1479 return h->root.u.def.section;
1481 case bfd_link_hash_common:
1482 return h->root.u.c.p->section;
1484 default:
1485 break;
1489 else
1490 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1492 return NULL;
1495 /* Update the got and plt entry reference counts for the section being
1496 removed. */
1498 static bfd_boolean
1499 elf32_hppa_gc_sweep_hook (bfd *abfd,
1500 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1501 asection *sec,
1502 const Elf_Internal_Rela *relocs)
1504 Elf_Internal_Shdr *symtab_hdr;
1505 struct elf_link_hash_entry **sym_hashes;
1506 bfd_signed_vma *local_got_refcounts;
1507 bfd_signed_vma *local_plt_refcounts;
1508 const Elf_Internal_Rela *rel, *relend;
1510 elf_section_data (sec)->local_dynrel = NULL;
1512 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1513 sym_hashes = elf_sym_hashes (abfd);
1514 local_got_refcounts = elf_local_got_refcounts (abfd);
1515 local_plt_refcounts = local_got_refcounts;
1516 if (local_plt_refcounts != NULL)
1517 local_plt_refcounts += symtab_hdr->sh_info;
1519 relend = relocs + sec->reloc_count;
1520 for (rel = relocs; rel < relend; rel++)
1522 unsigned long r_symndx;
1523 unsigned int r_type;
1524 struct elf_link_hash_entry *h = NULL;
1526 r_symndx = ELF32_R_SYM (rel->r_info);
1527 if (r_symndx >= symtab_hdr->sh_info)
1529 struct elf32_hppa_link_hash_entry *eh;
1530 struct elf32_hppa_dyn_reloc_entry **pp;
1531 struct elf32_hppa_dyn_reloc_entry *p;
1533 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1534 eh = (struct elf32_hppa_link_hash_entry *) h;
1536 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1537 if (p->sec == sec)
1539 /* Everything must go for SEC. */
1540 *pp = p->next;
1541 break;
1545 r_type = ELF32_R_TYPE (rel->r_info);
1546 switch (r_type)
1548 case R_PARISC_DLTIND14F:
1549 case R_PARISC_DLTIND14R:
1550 case R_PARISC_DLTIND21L:
1551 if (h != NULL)
1553 if (h->got.refcount > 0)
1554 h->got.refcount -= 1;
1556 else if (local_got_refcounts != NULL)
1558 if (local_got_refcounts[r_symndx] > 0)
1559 local_got_refcounts[r_symndx] -= 1;
1561 break;
1563 case R_PARISC_PCREL12F:
1564 case R_PARISC_PCREL17C:
1565 case R_PARISC_PCREL17F:
1566 case R_PARISC_PCREL22F:
1567 if (h != NULL)
1569 if (h->plt.refcount > 0)
1570 h->plt.refcount -= 1;
1572 break;
1574 case R_PARISC_PLABEL14R:
1575 case R_PARISC_PLABEL21L:
1576 case R_PARISC_PLABEL32:
1577 if (h != NULL)
1579 if (h->plt.refcount > 0)
1580 h->plt.refcount -= 1;
1582 else if (local_plt_refcounts != NULL)
1584 if (local_plt_refcounts[r_symndx] > 0)
1585 local_plt_refcounts[r_symndx] -= 1;
1587 break;
1589 default:
1590 break;
1594 return TRUE;
1597 /* Our own version of hide_symbol, so that we can keep plt entries for
1598 plabels. */
1600 static void
1601 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1602 struct elf_link_hash_entry *h,
1603 bfd_boolean force_local)
1605 if (force_local)
1607 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1608 if (h->dynindx != -1)
1610 h->dynindx = -1;
1611 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1612 h->dynstr_index);
1616 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1618 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1619 h->plt.offset = (bfd_vma) -1;
1623 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1624 will be called from elflink.h. If elflink.h doesn't call our
1625 finish_dynamic_symbol routine, we'll need to do something about
1626 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1627 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1628 ((DYN) \
1629 && ((INFO)->shared \
1630 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1631 && ((H)->dynindx != -1 \
1632 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1634 /* Adjust a symbol defined by a dynamic object and referenced by a
1635 regular object. The current definition is in some section of the
1636 dynamic object, but we're not including those sections. We have to
1637 change the definition to something the rest of the link can
1638 understand. */
1640 static bfd_boolean
1641 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1642 struct elf_link_hash_entry *h)
1644 struct elf32_hppa_link_hash_table *htab;
1645 asection *s;
1646 unsigned int power_of_two;
1648 /* If this is a function, put it in the procedure linkage table. We
1649 will fill in the contents of the procedure linkage table later. */
1650 if (h->type == STT_FUNC
1651 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1653 if (h->plt.refcount <= 0
1654 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1655 && h->root.type != bfd_link_hash_defweak
1656 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1657 && (!info->shared || info->symbolic)))
1659 /* The .plt entry is not needed when:
1660 a) Garbage collection has removed all references to the
1661 symbol, or
1662 b) We know for certain the symbol is defined in this
1663 object, and it's not a weak definition, nor is the symbol
1664 used by a plabel relocation. Either this object is the
1665 application or we are doing a shared symbolic link. */
1667 h->plt.offset = (bfd_vma) -1;
1668 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1671 return TRUE;
1673 else
1674 h->plt.offset = (bfd_vma) -1;
1676 /* If this is a weak symbol, and there is a real definition, the
1677 processor independent code will have arranged for us to see the
1678 real definition first, and we can just use the same value. */
1679 if (h->weakdef != NULL)
1681 if (h->weakdef->root.type != bfd_link_hash_defined
1682 && h->weakdef->root.type != bfd_link_hash_defweak)
1683 abort ();
1684 h->root.u.def.section = h->weakdef->root.u.def.section;
1685 h->root.u.def.value = h->weakdef->root.u.def.value;
1686 if (ELIMINATE_COPY_RELOCS)
1687 h->elf_link_hash_flags
1688 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1689 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1690 return TRUE;
1693 /* This is a reference to a symbol defined by a dynamic object which
1694 is not a function. */
1696 /* If we are creating a shared library, we must presume that the
1697 only references to the symbol are via the global offset table.
1698 For such cases we need not do anything here; the relocations will
1699 be handled correctly by relocate_section. */
1700 if (info->shared)
1701 return TRUE;
1703 /* If there are no references to this symbol that do not use the
1704 GOT, we don't need to generate a copy reloc. */
1705 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1706 return TRUE;
1708 if (ELIMINATE_COPY_RELOCS)
1710 struct elf32_hppa_link_hash_entry *eh;
1711 struct elf32_hppa_dyn_reloc_entry *p;
1713 eh = (struct elf32_hppa_link_hash_entry *) h;
1714 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1716 s = p->sec->output_section;
1717 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1718 break;
1721 /* If we didn't find any dynamic relocs in read-only sections, then
1722 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1723 if (p == NULL)
1725 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1726 return TRUE;
1730 /* We must allocate the symbol in our .dynbss section, which will
1731 become part of the .bss section of the executable. There will be
1732 an entry for this symbol in the .dynsym section. The dynamic
1733 object will contain position independent code, so all references
1734 from the dynamic object to this symbol will go through the global
1735 offset table. The dynamic linker will use the .dynsym entry to
1736 determine the address it must put in the global offset table, so
1737 both the dynamic object and the regular object will refer to the
1738 same memory location for the variable. */
1740 htab = hppa_link_hash_table (info);
1742 /* We must generate a COPY reloc to tell the dynamic linker to
1743 copy the initial value out of the dynamic object and into the
1744 runtime process image. */
1745 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1747 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1748 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1751 /* We need to figure out the alignment required for this symbol. I
1752 have no idea how other ELF linkers handle this. */
1754 power_of_two = bfd_log2 (h->size);
1755 if (power_of_two > 3)
1756 power_of_two = 3;
1758 /* Apply the required alignment. */
1759 s = htab->sdynbss;
1760 s->_raw_size = BFD_ALIGN (s->_raw_size,
1761 (bfd_size_type) (1 << power_of_two));
1762 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1764 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1765 return FALSE;
1768 /* Define the symbol as being at this point in the section. */
1769 h->root.u.def.section = s;
1770 h->root.u.def.value = s->_raw_size;
1772 /* Increment the section size to make room for the symbol. */
1773 s->_raw_size += h->size;
1775 return TRUE;
1778 /* Allocate space in the .plt for entries that won't have relocations.
1779 ie. plabel entries. */
1781 static bfd_boolean
1782 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1784 struct bfd_link_info *info;
1785 struct elf32_hppa_link_hash_table *htab;
1786 asection *s;
1788 if (h->root.type == bfd_link_hash_indirect)
1789 return TRUE;
1791 if (h->root.type == bfd_link_hash_warning)
1792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1794 info = inf;
1795 htab = hppa_link_hash_table (info);
1796 if (htab->elf.dynamic_sections_created
1797 && h->plt.refcount > 0)
1799 /* Make sure this symbol is output as a dynamic symbol.
1800 Undefined weak syms won't yet be marked as dynamic. */
1801 if (h->dynindx == -1
1802 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1803 && h->type != STT_PARISC_MILLI)
1805 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1806 return FALSE;
1809 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1811 /* Allocate these later. From this point on, h->plabel
1812 means that the plt entry is only used by a plabel.
1813 We'll be using a normal plt entry for this symbol, so
1814 clear the plabel indicator. */
1815 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1817 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1819 /* Make an entry in the .plt section for plabel references
1820 that won't have a .plt entry for other reasons. */
1821 s = htab->splt;
1822 h->plt.offset = s->_raw_size;
1823 s->_raw_size += PLT_ENTRY_SIZE;
1825 else
1827 /* No .plt entry needed. */
1828 h->plt.offset = (bfd_vma) -1;
1829 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1832 else
1834 h->plt.offset = (bfd_vma) -1;
1835 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1838 return TRUE;
1841 /* Allocate space in .plt, .got and associated reloc sections for
1842 global syms. */
1844 static bfd_boolean
1845 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1847 struct bfd_link_info *info;
1848 struct elf32_hppa_link_hash_table *htab;
1849 asection *s;
1850 struct elf32_hppa_link_hash_entry *eh;
1851 struct elf32_hppa_dyn_reloc_entry *p;
1853 if (h->root.type == bfd_link_hash_indirect)
1854 return TRUE;
1856 if (h->root.type == bfd_link_hash_warning)
1857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859 info = inf;
1860 htab = hppa_link_hash_table (info);
1861 if (htab->elf.dynamic_sections_created
1862 && h->plt.offset != (bfd_vma) -1
1863 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1865 /* Make an entry in the .plt section. */
1866 s = htab->splt;
1867 h->plt.offset = s->_raw_size;
1868 s->_raw_size += PLT_ENTRY_SIZE;
1870 /* We also need to make an entry in the .rela.plt section. */
1871 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1872 htab->need_plt_stub = 1;
1875 if (h->got.refcount > 0)
1877 /* Make sure this symbol is output as a dynamic symbol.
1878 Undefined weak syms won't yet be marked as dynamic. */
1879 if (h->dynindx == -1
1880 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1881 && h->type != STT_PARISC_MILLI)
1883 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1884 return FALSE;
1887 s = htab->sgot;
1888 h->got.offset = s->_raw_size;
1889 s->_raw_size += GOT_ENTRY_SIZE;
1890 if (htab->elf.dynamic_sections_created
1891 && (info->shared
1892 || (h->dynindx != -1
1893 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1895 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1898 else
1899 h->got.offset = (bfd_vma) -1;
1901 eh = (struct elf32_hppa_link_hash_entry *) h;
1902 if (eh->dyn_relocs == NULL)
1903 return TRUE;
1905 /* If this is a -Bsymbolic shared link, then we need to discard all
1906 space allocated for dynamic pc-relative relocs against symbols
1907 defined in a regular object. For the normal shared case, discard
1908 space for relocs that have become local due to symbol visibility
1909 changes. */
1910 if (info->shared)
1912 #if RELATIVE_DYNRELOCS
1913 if (SYMBOL_CALLS_LOCAL (info, h))
1915 struct elf32_hppa_dyn_reloc_entry **pp;
1917 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1919 p->count -= p->relative_count;
1920 p->relative_count = 0;
1921 if (p->count == 0)
1922 *pp = p->next;
1923 else
1924 pp = &p->next;
1927 #endif
1929 /* Also discard relocs on undefined weak syms with non-default
1930 visibility. */
1931 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1932 && h->root.type == bfd_link_hash_undefweak)
1933 eh->dyn_relocs = NULL;
1935 else
1937 /* For the non-shared case, discard space for relocs against
1938 symbols which turn out to need copy relocs or are not
1939 dynamic. */
1940 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1941 && ((ELIMINATE_COPY_RELOCS
1942 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1943 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1944 || (htab->elf.dynamic_sections_created
1945 && (h->root.type == bfd_link_hash_undefweak
1946 || h->root.type == bfd_link_hash_undefined))))
1948 /* Make sure this symbol is output as a dynamic symbol.
1949 Undefined weak syms won't yet be marked as dynamic. */
1950 if (h->dynindx == -1
1951 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1952 && h->type != STT_PARISC_MILLI)
1954 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1955 return FALSE;
1958 /* If that succeeded, we know we'll be keeping all the
1959 relocs. */
1960 if (h->dynindx != -1)
1961 goto keep;
1964 eh->dyn_relocs = NULL;
1965 return TRUE;
1967 keep: ;
1970 /* Finally, allocate space. */
1971 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1973 asection *sreloc = elf_section_data (p->sec)->sreloc;
1974 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1977 return TRUE;
1980 /* This function is called via elf_link_hash_traverse to force
1981 millicode symbols local so they do not end up as globals in the
1982 dynamic symbol table. We ought to be able to do this in
1983 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1984 for all dynamic symbols. Arguably, this is a bug in
1985 elf_adjust_dynamic_symbol. */
1987 static bfd_boolean
1988 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1989 struct bfd_link_info *info)
1991 if (h->root.type == bfd_link_hash_warning)
1992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1994 if (h->type == STT_PARISC_MILLI
1995 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1997 elf32_hppa_hide_symbol (info, h, TRUE);
1999 return TRUE;
2002 /* Find any dynamic relocs that apply to read-only sections. */
2004 static bfd_boolean
2005 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2007 struct elf32_hppa_link_hash_entry *eh;
2008 struct elf32_hppa_dyn_reloc_entry *p;
2010 if (h->root.type == bfd_link_hash_warning)
2011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2013 eh = (struct elf32_hppa_link_hash_entry *) h;
2014 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2016 asection *s = p->sec->output_section;
2018 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2020 struct bfd_link_info *info = inf;
2022 info->flags |= DF_TEXTREL;
2024 /* Not an error, just cut short the traversal. */
2025 return FALSE;
2028 return TRUE;
2031 /* Set the sizes of the dynamic sections. */
2033 static bfd_boolean
2034 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2035 struct bfd_link_info *info)
2037 struct elf32_hppa_link_hash_table *htab;
2038 bfd *dynobj;
2039 bfd *ibfd;
2040 asection *s;
2041 bfd_boolean relocs;
2043 htab = hppa_link_hash_table (info);
2044 dynobj = htab->elf.dynobj;
2045 if (dynobj == NULL)
2046 abort ();
2048 if (htab->elf.dynamic_sections_created)
2050 /* Set the contents of the .interp section to the interpreter. */
2051 if (info->executable)
2053 s = bfd_get_section_by_name (dynobj, ".interp");
2054 if (s == NULL)
2055 abort ();
2056 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2057 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2060 /* Force millicode symbols local. */
2061 elf_link_hash_traverse (&htab->elf,
2062 clobber_millicode_symbols,
2063 info);
2066 /* Set up .got and .plt offsets for local syms, and space for local
2067 dynamic relocs. */
2068 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2070 bfd_signed_vma *local_got;
2071 bfd_signed_vma *end_local_got;
2072 bfd_signed_vma *local_plt;
2073 bfd_signed_vma *end_local_plt;
2074 bfd_size_type locsymcount;
2075 Elf_Internal_Shdr *symtab_hdr;
2076 asection *srel;
2078 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2079 continue;
2081 for (s = ibfd->sections; s != NULL; s = s->next)
2083 struct elf32_hppa_dyn_reloc_entry *p;
2085 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2086 elf_section_data (s)->local_dynrel);
2087 p != NULL;
2088 p = p->next)
2090 if (!bfd_is_abs_section (p->sec)
2091 && bfd_is_abs_section (p->sec->output_section))
2093 /* Input section has been discarded, either because
2094 it is a copy of a linkonce section or due to
2095 linker script /DISCARD/, so we'll be discarding
2096 the relocs too. */
2098 else if (p->count != 0)
2100 srel = elf_section_data (p->sec)->sreloc;
2101 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2102 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2103 info->flags |= DF_TEXTREL;
2108 local_got = elf_local_got_refcounts (ibfd);
2109 if (!local_got)
2110 continue;
2112 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2113 locsymcount = symtab_hdr->sh_info;
2114 end_local_got = local_got + locsymcount;
2115 s = htab->sgot;
2116 srel = htab->srelgot;
2117 for (; local_got < end_local_got; ++local_got)
2119 if (*local_got > 0)
2121 *local_got = s->_raw_size;
2122 s->_raw_size += GOT_ENTRY_SIZE;
2123 if (info->shared)
2124 srel->_raw_size += sizeof (Elf32_External_Rela);
2126 else
2127 *local_got = (bfd_vma) -1;
2130 local_plt = end_local_got;
2131 end_local_plt = local_plt + locsymcount;
2132 if (! htab->elf.dynamic_sections_created)
2134 /* Won't be used, but be safe. */
2135 for (; local_plt < end_local_plt; ++local_plt)
2136 *local_plt = (bfd_vma) -1;
2138 else
2140 s = htab->splt;
2141 srel = htab->srelplt;
2142 for (; local_plt < end_local_plt; ++local_plt)
2144 if (*local_plt > 0)
2146 *local_plt = s->_raw_size;
2147 s->_raw_size += PLT_ENTRY_SIZE;
2148 if (info->shared)
2149 srel->_raw_size += sizeof (Elf32_External_Rela);
2151 else
2152 *local_plt = (bfd_vma) -1;
2157 /* Do all the .plt entries without relocs first. The dynamic linker
2158 uses the last .plt reloc to find the end of the .plt (and hence
2159 the start of the .got) for lazy linking. */
2160 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2162 /* Allocate global sym .plt and .got entries, and space for global
2163 sym dynamic relocs. */
2164 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2166 /* The check_relocs and adjust_dynamic_symbol entry points have
2167 determined the sizes of the various dynamic sections. Allocate
2168 memory for them. */
2169 relocs = FALSE;
2170 for (s = dynobj->sections; s != NULL; s = s->next)
2172 if ((s->flags & SEC_LINKER_CREATED) == 0)
2173 continue;
2175 if (s == htab->splt)
2177 if (htab->need_plt_stub)
2179 /* Make space for the plt stub at the end of the .plt
2180 section. We want this stub right at the end, up
2181 against the .got section. */
2182 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2183 int pltalign = bfd_section_alignment (dynobj, s);
2184 bfd_size_type mask;
2186 if (gotalign > pltalign)
2187 bfd_set_section_alignment (dynobj, s, gotalign);
2188 mask = ((bfd_size_type) 1 << gotalign) - 1;
2189 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2192 else if (s == htab->sgot)
2194 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2196 if (s->_raw_size != 0)
2198 /* Remember whether there are any reloc sections other
2199 than .rela.plt. */
2200 if (s != htab->srelplt)
2201 relocs = TRUE;
2203 /* We use the reloc_count field as a counter if we need
2204 to copy relocs into the output file. */
2205 s->reloc_count = 0;
2208 else
2210 /* It's not one of our sections, so don't allocate space. */
2211 continue;
2214 if (s->_raw_size == 0)
2216 /* If we don't need this section, strip it from the
2217 output file. This is mostly to handle .rela.bss and
2218 .rela.plt. We must create both sections in
2219 create_dynamic_sections, because they must be created
2220 before the linker maps input sections to output
2221 sections. The linker does that before
2222 adjust_dynamic_symbol is called, and it is that
2223 function which decides whether anything needs to go
2224 into these sections. */
2225 _bfd_strip_section_from_output (info, s);
2226 continue;
2229 /* Allocate memory for the section contents. Zero it, because
2230 we may not fill in all the reloc sections. */
2231 s->contents = bfd_zalloc (dynobj, s->_raw_size);
2232 if (s->contents == NULL && s->_raw_size != 0)
2233 return FALSE;
2236 if (htab->elf.dynamic_sections_created)
2238 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2239 actually has nothing to do with the PLT, it is how we
2240 communicate the LTP value of a load module to the dynamic
2241 linker. */
2242 #define add_dynamic_entry(TAG, VAL) \
2243 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2245 if (!add_dynamic_entry (DT_PLTGOT, 0))
2246 return FALSE;
2248 /* Add some entries to the .dynamic section. We fill in the
2249 values later, in elf32_hppa_finish_dynamic_sections, but we
2250 must add the entries now so that we get the correct size for
2251 the .dynamic section. The DT_DEBUG entry is filled in by the
2252 dynamic linker and used by the debugger. */
2253 if (!info->shared)
2255 if (!add_dynamic_entry (DT_DEBUG, 0))
2256 return FALSE;
2259 if (htab->srelplt->_raw_size != 0)
2261 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2262 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2263 || !add_dynamic_entry (DT_JMPREL, 0))
2264 return FALSE;
2267 if (relocs)
2269 if (!add_dynamic_entry (DT_RELA, 0)
2270 || !add_dynamic_entry (DT_RELASZ, 0)
2271 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2272 return FALSE;
2274 /* If any dynamic relocs apply to a read-only section,
2275 then we need a DT_TEXTREL entry. */
2276 if ((info->flags & DF_TEXTREL) == 0)
2277 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2279 if ((info->flags & DF_TEXTREL) != 0)
2281 if (!add_dynamic_entry (DT_TEXTREL, 0))
2282 return FALSE;
2286 #undef add_dynamic_entry
2288 return TRUE;
2291 /* External entry points for sizing and building linker stubs. */
2293 /* Set up various things so that we can make a list of input sections
2294 for each output section included in the link. Returns -1 on error,
2295 0 when no stubs will be needed, and 1 on success. */
2298 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2300 bfd *input_bfd;
2301 unsigned int bfd_count;
2302 int top_id, top_index;
2303 asection *section;
2304 asection **input_list, **list;
2305 bfd_size_type amt;
2306 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2308 /* Count the number of input BFDs and find the top input section id. */
2309 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2310 input_bfd != NULL;
2311 input_bfd = input_bfd->link_next)
2313 bfd_count += 1;
2314 for (section = input_bfd->sections;
2315 section != NULL;
2316 section = section->next)
2318 if (top_id < section->id)
2319 top_id = section->id;
2322 htab->bfd_count = bfd_count;
2324 amt = sizeof (struct map_stub) * (top_id + 1);
2325 htab->stub_group = bfd_zmalloc (amt);
2326 if (htab->stub_group == NULL)
2327 return -1;
2329 /* We can't use output_bfd->section_count here to find the top output
2330 section index as some sections may have been removed, and
2331 _bfd_strip_section_from_output doesn't renumber the indices. */
2332 for (section = output_bfd->sections, top_index = 0;
2333 section != NULL;
2334 section = section->next)
2336 if (top_index < section->index)
2337 top_index = section->index;
2340 htab->top_index = top_index;
2341 amt = sizeof (asection *) * (top_index + 1);
2342 input_list = bfd_malloc (amt);
2343 htab->input_list = input_list;
2344 if (input_list == NULL)
2345 return -1;
2347 /* For sections we aren't interested in, mark their entries with a
2348 value we can check later. */
2349 list = input_list + top_index;
2351 *list = bfd_abs_section_ptr;
2352 while (list-- != input_list);
2354 for (section = output_bfd->sections;
2355 section != NULL;
2356 section = section->next)
2358 if ((section->flags & SEC_CODE) != 0)
2359 input_list[section->index] = NULL;
2362 return 1;
2365 /* The linker repeatedly calls this function for each input section,
2366 in the order that input sections are linked into output sections.
2367 Build lists of input sections to determine groupings between which
2368 we may insert linker stubs. */
2370 void
2371 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2373 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2375 if (isec->output_section->index <= htab->top_index)
2377 asection **list = htab->input_list + isec->output_section->index;
2378 if (*list != bfd_abs_section_ptr)
2380 /* Steal the link_sec pointer for our list. */
2381 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2382 /* This happens to make the list in reverse order,
2383 which is what we want. */
2384 PREV_SEC (isec) = *list;
2385 *list = isec;
2390 /* See whether we can group stub sections together. Grouping stub
2391 sections may result in fewer stubs. More importantly, we need to
2392 put all .init* and .fini* stubs at the beginning of the .init or
2393 .fini output sections respectively, because glibc splits the
2394 _init and _fini functions into multiple parts. Putting a stub in
2395 the middle of a function is not a good idea. */
2397 static void
2398 group_sections (struct elf32_hppa_link_hash_table *htab,
2399 bfd_size_type stub_group_size,
2400 bfd_boolean stubs_always_before_branch)
2402 asection **list = htab->input_list + htab->top_index;
2405 asection *tail = *list;
2406 if (tail == bfd_abs_section_ptr)
2407 continue;
2408 while (tail != NULL)
2410 asection *curr;
2411 asection *prev;
2412 bfd_size_type total;
2413 bfd_boolean big_sec;
2415 curr = tail;
2416 if (tail->_cooked_size)
2417 total = tail->_cooked_size;
2418 else
2419 total = tail->_raw_size;
2420 big_sec = total >= stub_group_size;
2422 while ((prev = PREV_SEC (curr)) != NULL
2423 && ((total += curr->output_offset - prev->output_offset)
2424 < stub_group_size))
2425 curr = prev;
2427 /* OK, the size from the start of CURR to the end is less
2428 than 240000 bytes and thus can be handled by one stub
2429 section. (or the tail section is itself larger than
2430 240000 bytes, in which case we may be toast.)
2431 We should really be keeping track of the total size of
2432 stubs added here, as stubs contribute to the final output
2433 section size. That's a little tricky, and this way will
2434 only break if stubs added total more than 22144 bytes, or
2435 2768 long branch stubs. It seems unlikely for more than
2436 2768 different functions to be called, especially from
2437 code only 240000 bytes long. This limit used to be
2438 250000, but c++ code tends to generate lots of little
2439 functions, and sometimes violated the assumption. */
2442 prev = PREV_SEC (tail);
2443 /* Set up this stub group. */
2444 htab->stub_group[tail->id].link_sec = curr;
2446 while (tail != curr && (tail = prev) != NULL);
2448 /* But wait, there's more! Input sections up to 240000
2449 bytes before the stub section can be handled by it too.
2450 Don't do this if we have a really large section after the
2451 stubs, as adding more stubs increases the chance that
2452 branches may not reach into the stub section. */
2453 if (!stubs_always_before_branch && !big_sec)
2455 total = 0;
2456 while (prev != NULL
2457 && ((total += tail->output_offset - prev->output_offset)
2458 < stub_group_size))
2460 tail = prev;
2461 prev = PREV_SEC (tail);
2462 htab->stub_group[tail->id].link_sec = curr;
2465 tail = prev;
2468 while (list-- != htab->input_list);
2469 free (htab->input_list);
2470 #undef PREV_SEC
2473 /* Read in all local syms for all input bfds, and create hash entries
2474 for export stubs if we are building a multi-subspace shared lib.
2475 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2477 static int
2478 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2480 unsigned int bfd_indx;
2481 Elf_Internal_Sym *local_syms, **all_local_syms;
2482 int stub_changed = 0;
2483 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2485 /* We want to read in symbol extension records only once. To do this
2486 we need to read in the local symbols in parallel and save them for
2487 later use; so hold pointers to the local symbols in an array. */
2488 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2489 all_local_syms = bfd_zmalloc (amt);
2490 htab->all_local_syms = all_local_syms;
2491 if (all_local_syms == NULL)
2492 return -1;
2494 /* Walk over all the input BFDs, swapping in local symbols.
2495 If we are creating a shared library, create hash entries for the
2496 export stubs. */
2497 for (bfd_indx = 0;
2498 input_bfd != NULL;
2499 input_bfd = input_bfd->link_next, bfd_indx++)
2501 Elf_Internal_Shdr *symtab_hdr;
2503 /* We'll need the symbol table in a second. */
2504 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2505 if (symtab_hdr->sh_info == 0)
2506 continue;
2508 /* We need an array of the local symbols attached to the input bfd. */
2509 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2510 if (local_syms == NULL)
2512 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2513 symtab_hdr->sh_info, 0,
2514 NULL, NULL, NULL);
2515 /* Cache them for elf_link_input_bfd. */
2516 symtab_hdr->contents = (unsigned char *) local_syms;
2518 if (local_syms == NULL)
2519 return -1;
2521 all_local_syms[bfd_indx] = local_syms;
2523 if (info->shared && htab->multi_subspace)
2525 struct elf_link_hash_entry **sym_hashes;
2526 struct elf_link_hash_entry **end_hashes;
2527 unsigned int symcount;
2529 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2530 - symtab_hdr->sh_info);
2531 sym_hashes = elf_sym_hashes (input_bfd);
2532 end_hashes = sym_hashes + symcount;
2534 /* Look through the global syms for functions; We need to
2535 build export stubs for all globally visible functions. */
2536 for (; sym_hashes < end_hashes; sym_hashes++)
2538 struct elf32_hppa_link_hash_entry *hash;
2540 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2542 while (hash->elf.root.type == bfd_link_hash_indirect
2543 || hash->elf.root.type == bfd_link_hash_warning)
2544 hash = ((struct elf32_hppa_link_hash_entry *)
2545 hash->elf.root.u.i.link);
2547 /* At this point in the link, undefined syms have been
2548 resolved, so we need to check that the symbol was
2549 defined in this BFD. */
2550 if ((hash->elf.root.type == bfd_link_hash_defined
2551 || hash->elf.root.type == bfd_link_hash_defweak)
2552 && hash->elf.type == STT_FUNC
2553 && hash->elf.root.u.def.section->output_section != NULL
2554 && (hash->elf.root.u.def.section->output_section->owner
2555 == output_bfd)
2556 && hash->elf.root.u.def.section->owner == input_bfd
2557 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2558 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2559 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2561 asection *sec;
2562 const char *stub_name;
2563 struct elf32_hppa_stub_hash_entry *stub_entry;
2565 sec = hash->elf.root.u.def.section;
2566 stub_name = hash->elf.root.root.string;
2567 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2568 stub_name,
2569 FALSE, FALSE);
2570 if (stub_entry == NULL)
2572 stub_entry = hppa_add_stub (stub_name, sec, htab);
2573 if (!stub_entry)
2574 return -1;
2576 stub_entry->target_value = hash->elf.root.u.def.value;
2577 stub_entry->target_section = hash->elf.root.u.def.section;
2578 stub_entry->stub_type = hppa_stub_export;
2579 stub_entry->h = hash;
2580 stub_changed = 1;
2582 else
2584 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2585 bfd_archive_filename (input_bfd),
2586 stub_name);
2593 return stub_changed;
2596 /* Determine and set the size of the stub section for a final link.
2598 The basic idea here is to examine all the relocations looking for
2599 PC-relative calls to a target that is unreachable with a "bl"
2600 instruction. */
2602 bfd_boolean
2603 elf32_hppa_size_stubs
2604 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2605 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2606 asection * (*add_stub_section) (const char *, asection *),
2607 void (*layout_sections_again) (void))
2609 bfd_size_type stub_group_size;
2610 bfd_boolean stubs_always_before_branch;
2611 bfd_boolean stub_changed;
2612 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2614 /* Stash our params away. */
2615 htab->stub_bfd = stub_bfd;
2616 htab->multi_subspace = multi_subspace;
2617 htab->add_stub_section = add_stub_section;
2618 htab->layout_sections_again = layout_sections_again;
2619 stubs_always_before_branch = group_size < 0;
2620 if (group_size < 0)
2621 stub_group_size = -group_size;
2622 else
2623 stub_group_size = group_size;
2624 if (stub_group_size == 1)
2626 /* Default values. */
2627 if (stubs_always_before_branch)
2629 stub_group_size = 7680000;
2630 if (htab->has_17bit_branch || htab->multi_subspace)
2631 stub_group_size = 240000;
2632 if (htab->has_12bit_branch)
2633 stub_group_size = 7500;
2635 else
2637 stub_group_size = 6971392;
2638 if (htab->has_17bit_branch || htab->multi_subspace)
2639 stub_group_size = 217856;
2640 if (htab->has_12bit_branch)
2641 stub_group_size = 6808;
2645 group_sections (htab, stub_group_size, stubs_always_before_branch);
2647 switch (get_local_syms (output_bfd, info->input_bfds, info))
2649 default:
2650 if (htab->all_local_syms)
2651 goto error_ret_free_local;
2652 return FALSE;
2654 case 0:
2655 stub_changed = FALSE;
2656 break;
2658 case 1:
2659 stub_changed = TRUE;
2660 break;
2663 while (1)
2665 bfd *input_bfd;
2666 unsigned int bfd_indx;
2667 asection *stub_sec;
2669 for (input_bfd = info->input_bfds, bfd_indx = 0;
2670 input_bfd != NULL;
2671 input_bfd = input_bfd->link_next, bfd_indx++)
2673 Elf_Internal_Shdr *symtab_hdr;
2674 asection *section;
2675 Elf_Internal_Sym *local_syms;
2677 /* We'll need the symbol table in a second. */
2678 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2679 if (symtab_hdr->sh_info == 0)
2680 continue;
2682 local_syms = htab->all_local_syms[bfd_indx];
2684 /* Walk over each section attached to the input bfd. */
2685 for (section = input_bfd->sections;
2686 section != NULL;
2687 section = section->next)
2689 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2691 /* If there aren't any relocs, then there's nothing more
2692 to do. */
2693 if ((section->flags & SEC_RELOC) == 0
2694 || section->reloc_count == 0)
2695 continue;
2697 /* If this section is a link-once section that will be
2698 discarded, then don't create any stubs. */
2699 if (section->output_section == NULL
2700 || section->output_section->owner != output_bfd)
2701 continue;
2703 /* Get the relocs. */
2704 internal_relocs
2705 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2706 info->keep_memory);
2707 if (internal_relocs == NULL)
2708 goto error_ret_free_local;
2710 /* Now examine each relocation. */
2711 irela = internal_relocs;
2712 irelaend = irela + section->reloc_count;
2713 for (; irela < irelaend; irela++)
2715 unsigned int r_type, r_indx;
2716 enum elf32_hppa_stub_type stub_type;
2717 struct elf32_hppa_stub_hash_entry *stub_entry;
2718 asection *sym_sec;
2719 bfd_vma sym_value;
2720 bfd_vma destination;
2721 struct elf32_hppa_link_hash_entry *hash;
2722 char *stub_name;
2723 const asection *id_sec;
2725 r_type = ELF32_R_TYPE (irela->r_info);
2726 r_indx = ELF32_R_SYM (irela->r_info);
2728 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2730 bfd_set_error (bfd_error_bad_value);
2731 error_ret_free_internal:
2732 if (elf_section_data (section)->relocs == NULL)
2733 free (internal_relocs);
2734 goto error_ret_free_local;
2737 /* Only look for stubs on call instructions. */
2738 if (r_type != (unsigned int) R_PARISC_PCREL12F
2739 && r_type != (unsigned int) R_PARISC_PCREL17F
2740 && r_type != (unsigned int) R_PARISC_PCREL22F)
2741 continue;
2743 /* Now determine the call target, its name, value,
2744 section. */
2745 sym_sec = NULL;
2746 sym_value = 0;
2747 destination = 0;
2748 hash = NULL;
2749 if (r_indx < symtab_hdr->sh_info)
2751 /* It's a local symbol. */
2752 Elf_Internal_Sym *sym;
2753 Elf_Internal_Shdr *hdr;
2755 sym = local_syms + r_indx;
2756 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2757 sym_sec = hdr->bfd_section;
2758 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2759 sym_value = sym->st_value;
2760 destination = (sym_value + irela->r_addend
2761 + sym_sec->output_offset
2762 + sym_sec->output_section->vma);
2764 else
2766 /* It's an external symbol. */
2767 int e_indx;
2769 e_indx = r_indx - symtab_hdr->sh_info;
2770 hash = ((struct elf32_hppa_link_hash_entry *)
2771 elf_sym_hashes (input_bfd)[e_indx]);
2773 while (hash->elf.root.type == bfd_link_hash_indirect
2774 || hash->elf.root.type == bfd_link_hash_warning)
2775 hash = ((struct elf32_hppa_link_hash_entry *)
2776 hash->elf.root.u.i.link);
2778 if (hash->elf.root.type == bfd_link_hash_defined
2779 || hash->elf.root.type == bfd_link_hash_defweak)
2781 sym_sec = hash->elf.root.u.def.section;
2782 sym_value = hash->elf.root.u.def.value;
2783 if (sym_sec->output_section != NULL)
2784 destination = (sym_value + irela->r_addend
2785 + sym_sec->output_offset
2786 + sym_sec->output_section->vma);
2788 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2790 if (! info->shared)
2791 continue;
2793 else if (hash->elf.root.type == bfd_link_hash_undefined)
2795 if (! (info->shared
2796 && info->unresolved_syms_in_objects == RM_IGNORE
2797 && (ELF_ST_VISIBILITY (hash->elf.other)
2798 == STV_DEFAULT)
2799 && hash->elf.type != STT_PARISC_MILLI))
2800 continue;
2802 else
2804 bfd_set_error (bfd_error_bad_value);
2805 goto error_ret_free_internal;
2809 /* Determine what (if any) linker stub is needed. */
2810 stub_type = hppa_type_of_stub (section, irela, hash,
2811 destination, info);
2812 if (stub_type == hppa_stub_none)
2813 continue;
2815 /* Support for grouping stub sections. */
2816 id_sec = htab->stub_group[section->id].link_sec;
2818 /* Get the name of this stub. */
2819 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2820 if (!stub_name)
2821 goto error_ret_free_internal;
2823 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2824 stub_name,
2825 FALSE, FALSE);
2826 if (stub_entry != NULL)
2828 /* The proper stub has already been created. */
2829 free (stub_name);
2830 continue;
2833 stub_entry = hppa_add_stub (stub_name, section, htab);
2834 if (stub_entry == NULL)
2836 free (stub_name);
2837 goto error_ret_free_internal;
2840 stub_entry->target_value = sym_value;
2841 stub_entry->target_section = sym_sec;
2842 stub_entry->stub_type = stub_type;
2843 if (info->shared)
2845 if (stub_type == hppa_stub_import)
2846 stub_entry->stub_type = hppa_stub_import_shared;
2847 else if (stub_type == hppa_stub_long_branch)
2848 stub_entry->stub_type = hppa_stub_long_branch_shared;
2850 stub_entry->h = hash;
2851 stub_changed = TRUE;
2854 /* We're done with the internal relocs, free them. */
2855 if (elf_section_data (section)->relocs == NULL)
2856 free (internal_relocs);
2860 if (!stub_changed)
2861 break;
2863 /* OK, we've added some stubs. Find out the new size of the
2864 stub sections. */
2865 for (stub_sec = htab->stub_bfd->sections;
2866 stub_sec != NULL;
2867 stub_sec = stub_sec->next)
2869 stub_sec->_raw_size = 0;
2870 stub_sec->_cooked_size = 0;
2873 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2875 /* Ask the linker to do its stuff. */
2876 (*htab->layout_sections_again) ();
2877 stub_changed = FALSE;
2880 free (htab->all_local_syms);
2881 return TRUE;
2883 error_ret_free_local:
2884 free (htab->all_local_syms);
2885 return FALSE;
2888 /* For a final link, this function is called after we have sized the
2889 stubs to provide a value for __gp. */
2891 bfd_boolean
2892 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2894 struct bfd_link_hash_entry *h;
2895 asection *sec = NULL;
2896 bfd_vma gp_val = 0;
2897 struct elf32_hppa_link_hash_table *htab;
2899 htab = hppa_link_hash_table (info);
2900 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2902 if (h != NULL
2903 && (h->type == bfd_link_hash_defined
2904 || h->type == bfd_link_hash_defweak))
2906 gp_val = h->u.def.value;
2907 sec = h->u.def.section;
2909 else
2911 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2912 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2914 /* Choose to point our LTP at, in this order, one of .plt, .got,
2915 or .data, if these sections exist. In the case of choosing
2916 .plt try to make the LTP ideal for addressing anywhere in the
2917 .plt or .got with a 14 bit signed offset. Typically, the end
2918 of the .plt is the start of the .got, so choose .plt + 0x2000
2919 if either the .plt or .got is larger than 0x2000. If both
2920 the .plt and .got are smaller than 0x2000, choose the end of
2921 the .plt section. */
2922 sec = splt;
2923 if (sec != NULL)
2925 gp_val = sec->_raw_size;
2926 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
2928 gp_val = 0x2000;
2931 else
2933 sec = sgot;
2934 if (sec != NULL)
2936 /* We know we don't have a .plt. If .got is large,
2937 offset our LTP. */
2938 if (sec->_raw_size > 0x2000)
2939 gp_val = 0x2000;
2941 else
2943 /* No .plt or .got. Who cares what the LTP is? */
2944 sec = bfd_get_section_by_name (abfd, ".data");
2948 if (h != NULL)
2950 h->type = bfd_link_hash_defined;
2951 h->u.def.value = gp_val;
2952 if (sec != NULL)
2953 h->u.def.section = sec;
2954 else
2955 h->u.def.section = bfd_abs_section_ptr;
2959 if (sec != NULL && sec->output_section != NULL)
2960 gp_val += sec->output_section->vma + sec->output_offset;
2962 elf_gp (abfd) = gp_val;
2963 return TRUE;
2966 /* Build all the stubs associated with the current output file. The
2967 stubs are kept in a hash table attached to the main linker hash
2968 table. We also set up the .plt entries for statically linked PIC
2969 functions here. This function is called via hppaelf_finish in the
2970 linker. */
2972 bfd_boolean
2973 elf32_hppa_build_stubs (struct bfd_link_info *info)
2975 asection *stub_sec;
2976 struct bfd_hash_table *table;
2977 struct elf32_hppa_link_hash_table *htab;
2979 htab = hppa_link_hash_table (info);
2981 for (stub_sec = htab->stub_bfd->sections;
2982 stub_sec != NULL;
2983 stub_sec = stub_sec->next)
2985 bfd_size_type size;
2987 /* Allocate memory to hold the linker stubs. */
2988 size = stub_sec->_raw_size;
2989 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2990 if (stub_sec->contents == NULL && size != 0)
2991 return FALSE;
2992 stub_sec->_raw_size = 0;
2995 /* Build the stubs as directed by the stub hash table. */
2996 table = &htab->stub_hash_table;
2997 bfd_hash_traverse (table, hppa_build_one_stub, info);
2999 return TRUE;
3002 /* Perform a final link. */
3004 static bfd_boolean
3005 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3007 /* Invoke the regular ELF linker to do all the work. */
3008 if (!bfd_elf32_bfd_final_link (abfd, info))
3009 return FALSE;
3011 /* If we're producing a final executable, sort the contents of the
3012 unwind section. */
3013 return elf_hppa_sort_unwind (abfd);
3016 /* Record the lowest address for the data and text segments. */
3018 static void
3019 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3020 asection *section,
3021 void *data)
3023 struct elf32_hppa_link_hash_table *htab;
3025 htab = (struct elf32_hppa_link_hash_table *) data;
3027 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3029 bfd_vma value = section->vma - section->filepos;
3031 if ((section->flags & SEC_READONLY) != 0)
3033 if (value < htab->text_segment_base)
3034 htab->text_segment_base = value;
3036 else
3038 if (value < htab->data_segment_base)
3039 htab->data_segment_base = value;
3044 /* Perform a relocation as part of a final link. */
3046 static bfd_reloc_status_type
3047 final_link_relocate (asection *input_section,
3048 bfd_byte *contents,
3049 const Elf_Internal_Rela *rel,
3050 bfd_vma value,
3051 struct elf32_hppa_link_hash_table *htab,
3052 asection *sym_sec,
3053 struct elf32_hppa_link_hash_entry *h,
3054 struct bfd_link_info *info)
3056 int insn;
3057 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3058 unsigned int orig_r_type = r_type;
3059 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3060 int r_format = howto->bitsize;
3061 enum hppa_reloc_field_selector_type_alt r_field;
3062 bfd *input_bfd = input_section->owner;
3063 bfd_vma offset = rel->r_offset;
3064 bfd_vma max_branch_offset = 0;
3065 bfd_byte *hit_data = contents + offset;
3066 bfd_signed_vma addend = rel->r_addend;
3067 bfd_vma location;
3068 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3069 int val;
3071 if (r_type == R_PARISC_NONE)
3072 return bfd_reloc_ok;
3074 insn = bfd_get_32 (input_bfd, hit_data);
3076 /* Find out where we are and where we're going. */
3077 location = (offset +
3078 input_section->output_offset +
3079 input_section->output_section->vma);
3081 /* If we are not building a shared library, convert DLTIND relocs to
3082 DPREL relocs. */
3083 if (!info->shared)
3085 switch (r_type)
3087 case R_PARISC_DLTIND21L:
3088 r_type = R_PARISC_DPREL21L;
3089 break;
3091 case R_PARISC_DLTIND14R:
3092 r_type = R_PARISC_DPREL14R;
3093 break;
3095 case R_PARISC_DLTIND14F:
3096 r_type = R_PARISC_DPREL14F;
3097 break;
3101 switch (r_type)
3103 case R_PARISC_PCREL12F:
3104 case R_PARISC_PCREL17F:
3105 case R_PARISC_PCREL22F:
3106 /* If this call should go via the plt, find the import stub in
3107 the stub hash. */
3108 if (sym_sec == NULL
3109 || sym_sec->output_section == NULL
3110 || (h != NULL
3111 && h->elf.plt.offset != (bfd_vma) -1
3112 && h->elf.dynindx != -1
3113 && !h->plabel
3114 && (info->shared
3115 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3116 || h->elf.root.type == bfd_link_hash_defweak)))
3118 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3119 h, rel, htab);
3120 if (stub_entry != NULL)
3122 value = (stub_entry->stub_offset
3123 + stub_entry->stub_sec->output_offset
3124 + stub_entry->stub_sec->output_section->vma);
3125 addend = 0;
3127 else if (sym_sec == NULL && h != NULL
3128 && h->elf.root.type == bfd_link_hash_undefweak)
3130 /* It's OK if undefined weak. Calls to undefined weak
3131 symbols behave as if the "called" function
3132 immediately returns. We can thus call to a weak
3133 function without first checking whether the function
3134 is defined. */
3135 value = location;
3136 addend = 8;
3138 else
3139 return bfd_reloc_undefined;
3141 /* Fall thru. */
3143 case R_PARISC_PCREL21L:
3144 case R_PARISC_PCREL17C:
3145 case R_PARISC_PCREL17R:
3146 case R_PARISC_PCREL14R:
3147 case R_PARISC_PCREL14F:
3148 /* Make it a pc relative offset. */
3149 value -= location;
3150 addend -= 8;
3151 break;
3153 case R_PARISC_DPREL21L:
3154 case R_PARISC_DPREL14R:
3155 case R_PARISC_DPREL14F:
3156 /* Convert instructions that use the linkage table pointer (r19) to
3157 instructions that use the global data pointer (dp). This is the
3158 most efficient way of using PIC code in an incomplete executable,
3159 but the user must follow the standard runtime conventions for
3160 accessing data for this to work. */
3161 if (orig_r_type == R_PARISC_DLTIND21L)
3163 /* Convert addil instructions if the original reloc was a
3164 DLTIND21L. GCC sometimes uses a register other than r19 for
3165 the operation, so we must convert any addil instruction
3166 that uses this relocation. */
3167 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3168 insn = ADDIL_DP;
3169 else
3170 /* We must have a ldil instruction. It's too hard to find
3171 and convert the associated add instruction, so issue an
3172 error. */
3173 (*_bfd_error_handler)
3174 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3175 bfd_archive_filename (input_bfd),
3176 input_section->name,
3177 (long) rel->r_offset,
3178 howto->name,
3179 insn);
3181 else if (orig_r_type == R_PARISC_DLTIND14F)
3183 /* This must be a format 1 load/store. Change the base
3184 register to dp. */
3185 insn = (insn & 0xfc1ffff) | (27 << 21);
3188 /* For all the DP relative relocations, we need to examine the symbol's
3189 section. If it has no section or if it's a code section, then
3190 "data pointer relative" makes no sense. In that case we don't
3191 adjust the "value", and for 21 bit addil instructions, we change the
3192 source addend register from %dp to %r0. This situation commonly
3193 arises for undefined weak symbols and when a variable's "constness"
3194 is declared differently from the way the variable is defined. For
3195 instance: "extern int foo" with foo defined as "const int foo". */
3196 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3198 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3199 == (((int) OP_ADDIL << 26) | (27 << 21)))
3201 insn &= ~ (0x1f << 21);
3202 #if 0 /* debug them. */
3203 (*_bfd_error_handler)
3204 (_("%s(%s+0x%lx): fixing %s"),
3205 bfd_archive_filename (input_bfd),
3206 input_section->name,
3207 (long) rel->r_offset,
3208 howto->name);
3209 #endif
3211 /* Now try to make things easy for the dynamic linker. */
3213 break;
3215 /* Fall thru. */
3217 case R_PARISC_DLTIND21L:
3218 case R_PARISC_DLTIND14R:
3219 case R_PARISC_DLTIND14F:
3220 value -= elf_gp (input_section->output_section->owner);
3221 break;
3223 case R_PARISC_SEGREL32:
3224 if ((sym_sec->flags & SEC_CODE) != 0)
3225 value -= htab->text_segment_base;
3226 else
3227 value -= htab->data_segment_base;
3228 break;
3230 default:
3231 break;
3234 switch (r_type)
3236 case R_PARISC_DIR32:
3237 case R_PARISC_DIR14F:
3238 case R_PARISC_DIR17F:
3239 case R_PARISC_PCREL17C:
3240 case R_PARISC_PCREL14F:
3241 case R_PARISC_DPREL14F:
3242 case R_PARISC_PLABEL32:
3243 case R_PARISC_DLTIND14F:
3244 case R_PARISC_SEGBASE:
3245 case R_PARISC_SEGREL32:
3246 r_field = e_fsel;
3247 break;
3249 case R_PARISC_DLTIND21L:
3250 case R_PARISC_PCREL21L:
3251 case R_PARISC_PLABEL21L:
3252 r_field = e_lsel;
3253 break;
3255 case R_PARISC_DIR21L:
3256 case R_PARISC_DPREL21L:
3257 r_field = e_lrsel;
3258 break;
3260 case R_PARISC_PCREL17R:
3261 case R_PARISC_PCREL14R:
3262 case R_PARISC_PLABEL14R:
3263 case R_PARISC_DLTIND14R:
3264 r_field = e_rsel;
3265 break;
3267 case R_PARISC_DIR17R:
3268 case R_PARISC_DIR14R:
3269 case R_PARISC_DPREL14R:
3270 r_field = e_rrsel;
3271 break;
3273 case R_PARISC_PCREL12F:
3274 case R_PARISC_PCREL17F:
3275 case R_PARISC_PCREL22F:
3276 r_field = e_fsel;
3278 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3280 max_branch_offset = (1 << (17-1)) << 2;
3282 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3284 max_branch_offset = (1 << (12-1)) << 2;
3286 else
3288 max_branch_offset = (1 << (22-1)) << 2;
3291 /* sym_sec is NULL on undefined weak syms or when shared on
3292 undefined syms. We've already checked for a stub for the
3293 shared undefined case. */
3294 if (sym_sec == NULL)
3295 break;
3297 /* If the branch is out of reach, then redirect the
3298 call to the local stub for this function. */
3299 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3301 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3302 h, rel, htab);
3303 if (stub_entry == NULL)
3304 return bfd_reloc_undefined;
3306 /* Munge up the value and addend so that we call the stub
3307 rather than the procedure directly. */
3308 value = (stub_entry->stub_offset
3309 + stub_entry->stub_sec->output_offset
3310 + stub_entry->stub_sec->output_section->vma
3311 - location);
3312 addend = -8;
3314 break;
3316 /* Something we don't know how to handle. */
3317 default:
3318 return bfd_reloc_notsupported;
3321 /* Make sure we can reach the stub. */
3322 if (max_branch_offset != 0
3323 && value + addend + max_branch_offset >= 2*max_branch_offset)
3325 (*_bfd_error_handler)
3326 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3327 bfd_archive_filename (input_bfd),
3328 input_section->name,
3329 (long) rel->r_offset,
3330 stub_entry->root.string);
3331 bfd_set_error (bfd_error_bad_value);
3332 return bfd_reloc_notsupported;
3335 val = hppa_field_adjust (value, addend, r_field);
3337 switch (r_type)
3339 case R_PARISC_PCREL12F:
3340 case R_PARISC_PCREL17C:
3341 case R_PARISC_PCREL17F:
3342 case R_PARISC_PCREL17R:
3343 case R_PARISC_PCREL22F:
3344 case R_PARISC_DIR17F:
3345 case R_PARISC_DIR17R:
3346 /* This is a branch. Divide the offset by four.
3347 Note that we need to decide whether it's a branch or
3348 otherwise by inspecting the reloc. Inspecting insn won't
3349 work as insn might be from a .word directive. */
3350 val >>= 2;
3351 break;
3353 default:
3354 break;
3357 insn = hppa_rebuild_insn (insn, val, r_format);
3359 /* Update the instruction word. */
3360 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3361 return bfd_reloc_ok;
3364 /* Relocate an HPPA ELF section. */
3366 static bfd_boolean
3367 elf32_hppa_relocate_section (bfd *output_bfd,
3368 struct bfd_link_info *info,
3369 bfd *input_bfd,
3370 asection *input_section,
3371 bfd_byte *contents,
3372 Elf_Internal_Rela *relocs,
3373 Elf_Internal_Sym *local_syms,
3374 asection **local_sections)
3376 bfd_vma *local_got_offsets;
3377 struct elf32_hppa_link_hash_table *htab;
3378 Elf_Internal_Shdr *symtab_hdr;
3379 Elf_Internal_Rela *rel;
3380 Elf_Internal_Rela *relend;
3382 if (info->relocatable)
3383 return TRUE;
3385 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3387 htab = hppa_link_hash_table (info);
3388 local_got_offsets = elf_local_got_offsets (input_bfd);
3390 rel = relocs;
3391 relend = relocs + input_section->reloc_count;
3392 for (; rel < relend; rel++)
3394 unsigned int r_type;
3395 reloc_howto_type *howto;
3396 unsigned int r_symndx;
3397 struct elf32_hppa_link_hash_entry *h;
3398 Elf_Internal_Sym *sym;
3399 asection *sym_sec;
3400 bfd_vma relocation;
3401 bfd_reloc_status_type r;
3402 const char *sym_name;
3403 bfd_boolean plabel;
3404 bfd_boolean warned_undef;
3406 r_type = ELF32_R_TYPE (rel->r_info);
3407 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3409 bfd_set_error (bfd_error_bad_value);
3410 return FALSE;
3412 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3413 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3414 continue;
3416 /* This is a final link. */
3417 r_symndx = ELF32_R_SYM (rel->r_info);
3418 h = NULL;
3419 sym = NULL;
3420 sym_sec = NULL;
3421 warned_undef = FALSE;
3422 if (r_symndx < symtab_hdr->sh_info)
3424 /* This is a local symbol, h defaults to NULL. */
3425 sym = local_syms + r_symndx;
3426 sym_sec = local_sections[r_symndx];
3427 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3429 else
3431 struct elf_link_hash_entry *hh;
3432 bfd_boolean unresolved_reloc;
3434 RELOC_FOR_GLOBAL_SYMBOL (hh, elf_sym_hashes (input_bfd), r_symndx, symtab_hdr,
3435 relocation, sym_sec, unresolved_reloc, info,
3436 warned_undef);
3438 if (relocation == 0
3439 && hh->root.type != bfd_link_hash_defined
3440 && hh->root.type != bfd_link_hash_defweak
3441 && hh->root.type != bfd_link_hash_undefweak)
3443 if (!info->executable
3444 && info->unresolved_syms_in_objects == RM_IGNORE
3445 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3446 && hh->type == STT_PARISC_MILLI)
3448 if (! info->callbacks->undefined_symbol
3449 (info, hh->root.root.string, input_bfd,
3450 input_section, rel->r_offset,
3451 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3452 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR))))
3453 return FALSE;
3454 warned_undef = TRUE;
3457 h = (struct elf32_hppa_link_hash_entry *) hh;
3460 /* Do any required modifications to the relocation value, and
3461 determine what types of dynamic info we need to output, if
3462 any. */
3463 plabel = 0;
3464 switch (r_type)
3466 case R_PARISC_DLTIND14F:
3467 case R_PARISC_DLTIND14R:
3468 case R_PARISC_DLTIND21L:
3470 bfd_vma off;
3471 bfd_boolean do_got = 0;
3473 /* Relocation is to the entry for this symbol in the
3474 global offset table. */
3475 if (h != NULL)
3477 bfd_boolean dyn;
3479 off = h->elf.got.offset;
3480 dyn = htab->elf.dynamic_sections_created;
3481 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3483 /* If we aren't going to call finish_dynamic_symbol,
3484 then we need to handle initialisation of the .got
3485 entry and create needed relocs here. Since the
3486 offset must always be a multiple of 4, we use the
3487 least significant bit to record whether we have
3488 initialised it already. */
3489 if ((off & 1) != 0)
3490 off &= ~1;
3491 else
3493 h->elf.got.offset |= 1;
3494 do_got = 1;
3498 else
3500 /* Local symbol case. */
3501 if (local_got_offsets == NULL)
3502 abort ();
3504 off = local_got_offsets[r_symndx];
3506 /* The offset must always be a multiple of 4. We use
3507 the least significant bit to record whether we have
3508 already generated the necessary reloc. */
3509 if ((off & 1) != 0)
3510 off &= ~1;
3511 else
3513 local_got_offsets[r_symndx] |= 1;
3514 do_got = 1;
3518 if (do_got)
3520 if (info->shared)
3522 /* Output a dynamic relocation for this GOT entry.
3523 In this case it is relative to the base of the
3524 object because the symbol index is zero. */
3525 Elf_Internal_Rela outrel;
3526 bfd_byte *loc;
3527 asection *s = htab->srelgot;
3529 outrel.r_offset = (off
3530 + htab->sgot->output_offset
3531 + htab->sgot->output_section->vma);
3532 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3533 outrel.r_addend = relocation;
3534 loc = s->contents;
3535 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3536 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3538 else
3539 bfd_put_32 (output_bfd, relocation,
3540 htab->sgot->contents + off);
3543 if (off >= (bfd_vma) -2)
3544 abort ();
3546 /* Add the base of the GOT to the relocation value. */
3547 relocation = (off
3548 + htab->sgot->output_offset
3549 + htab->sgot->output_section->vma);
3551 break;
3553 case R_PARISC_SEGREL32:
3554 /* If this is the first SEGREL relocation, then initialize
3555 the segment base values. */
3556 if (htab->text_segment_base == (bfd_vma) -1)
3557 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3558 break;
3560 case R_PARISC_PLABEL14R:
3561 case R_PARISC_PLABEL21L:
3562 case R_PARISC_PLABEL32:
3563 if (htab->elf.dynamic_sections_created)
3565 bfd_vma off;
3566 bfd_boolean do_plt = 0;
3568 /* If we have a global symbol with a PLT slot, then
3569 redirect this relocation to it. */
3570 if (h != NULL)
3572 off = h->elf.plt.offset;
3573 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3575 /* In a non-shared link, adjust_dynamic_symbols
3576 isn't called for symbols forced local. We
3577 need to write out the plt entry here. */
3578 if ((off & 1) != 0)
3579 off &= ~1;
3580 else
3582 h->elf.plt.offset |= 1;
3583 do_plt = 1;
3587 else
3589 bfd_vma *local_plt_offsets;
3591 if (local_got_offsets == NULL)
3592 abort ();
3594 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3595 off = local_plt_offsets[r_symndx];
3597 /* As for the local .got entry case, we use the last
3598 bit to record whether we've already initialised
3599 this local .plt entry. */
3600 if ((off & 1) != 0)
3601 off &= ~1;
3602 else
3604 local_plt_offsets[r_symndx] |= 1;
3605 do_plt = 1;
3609 if (do_plt)
3611 if (info->shared)
3613 /* Output a dynamic IPLT relocation for this
3614 PLT entry. */
3615 Elf_Internal_Rela outrel;
3616 bfd_byte *loc;
3617 asection *s = htab->srelplt;
3619 outrel.r_offset = (off
3620 + htab->splt->output_offset
3621 + htab->splt->output_section->vma);
3622 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3623 outrel.r_addend = relocation;
3624 loc = s->contents;
3625 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3626 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3628 else
3630 bfd_put_32 (output_bfd,
3631 relocation,
3632 htab->splt->contents + off);
3633 bfd_put_32 (output_bfd,
3634 elf_gp (htab->splt->output_section->owner),
3635 htab->splt->contents + off + 4);
3639 if (off >= (bfd_vma) -2)
3640 abort ();
3642 /* PLABELs contain function pointers. Relocation is to
3643 the entry for the function in the .plt. The magic +2
3644 offset signals to $$dyncall that the function pointer
3645 is in the .plt and thus has a gp pointer too.
3646 Exception: Undefined PLABELs should have a value of
3647 zero. */
3648 if (h == NULL
3649 || (h->elf.root.type != bfd_link_hash_undefweak
3650 && h->elf.root.type != bfd_link_hash_undefined))
3652 relocation = (off
3653 + htab->splt->output_offset
3654 + htab->splt->output_section->vma
3655 + 2);
3657 plabel = 1;
3659 /* Fall through and possibly emit a dynamic relocation. */
3661 case R_PARISC_DIR17F:
3662 case R_PARISC_DIR17R:
3663 case R_PARISC_DIR14F:
3664 case R_PARISC_DIR14R:
3665 case R_PARISC_DIR21L:
3666 case R_PARISC_DPREL14F:
3667 case R_PARISC_DPREL14R:
3668 case R_PARISC_DPREL21L:
3669 case R_PARISC_DIR32:
3670 /* r_symndx will be zero only for relocs against symbols
3671 from removed linkonce sections, or sections discarded by
3672 a linker script. */
3673 if (r_symndx == 0
3674 || (input_section->flags & SEC_ALLOC) == 0)
3675 break;
3677 /* The reloc types handled here and this conditional
3678 expression must match the code in ..check_relocs and
3679 allocate_dynrelocs. ie. We need exactly the same condition
3680 as in ..check_relocs, with some extra conditions (dynindx
3681 test in this case) to cater for relocs removed by
3682 allocate_dynrelocs. If you squint, the non-shared test
3683 here does indeed match the one in ..check_relocs, the
3684 difference being that here we test DEF_DYNAMIC as well as
3685 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3686 which is why we can't use just that test here.
3687 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3688 there all files have not been loaded. */
3689 if ((info->shared
3690 && (h == NULL
3691 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3692 || h->elf.root.type != bfd_link_hash_undefweak)
3693 && (IS_ABSOLUTE_RELOC (r_type)
3694 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3695 || (!info->shared
3696 && h != NULL
3697 && h->elf.dynindx != -1
3698 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3699 && ((ELIMINATE_COPY_RELOCS
3700 && (h->elf.elf_link_hash_flags
3701 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3702 && (h->elf.elf_link_hash_flags
3703 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3704 || h->elf.root.type == bfd_link_hash_undefweak
3705 || h->elf.root.type == bfd_link_hash_undefined)))
3707 Elf_Internal_Rela outrel;
3708 bfd_boolean skip;
3709 asection *sreloc;
3710 bfd_byte *loc;
3712 /* When generating a shared object, these relocations
3713 are copied into the output file to be resolved at run
3714 time. */
3716 outrel.r_addend = rel->r_addend;
3717 outrel.r_offset =
3718 _bfd_elf_section_offset (output_bfd, info, input_section,
3719 rel->r_offset);
3720 skip = (outrel.r_offset == (bfd_vma) -1
3721 || outrel.r_offset == (bfd_vma) -2);
3722 outrel.r_offset += (input_section->output_offset
3723 + input_section->output_section->vma);
3725 if (skip)
3727 memset (&outrel, 0, sizeof (outrel));
3729 else if (h != NULL
3730 && h->elf.dynindx != -1
3731 && (plabel
3732 || !IS_ABSOLUTE_RELOC (r_type)
3733 || !info->shared
3734 || !info->symbolic
3735 || (h->elf.elf_link_hash_flags
3736 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3738 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3740 else /* It's a local symbol, or one marked to become local. */
3742 int indx = 0;
3744 /* Add the absolute offset of the symbol. */
3745 outrel.r_addend += relocation;
3747 /* Global plabels need to be processed by the
3748 dynamic linker so that functions have at most one
3749 fptr. For this reason, we need to differentiate
3750 between global and local plabels, which we do by
3751 providing the function symbol for a global plabel
3752 reloc, and no symbol for local plabels. */
3753 if (! plabel
3754 && sym_sec != NULL
3755 && sym_sec->output_section != NULL
3756 && ! bfd_is_abs_section (sym_sec))
3758 /* Skip this relocation if the output section has
3759 been discarded. */
3760 if (bfd_is_abs_section (sym_sec->output_section))
3761 break;
3763 indx = elf_section_data (sym_sec->output_section)->dynindx;
3764 /* We are turning this relocation into one
3765 against a section symbol, so subtract out the
3766 output section's address but not the offset
3767 of the input section in the output section. */
3768 outrel.r_addend -= sym_sec->output_section->vma;
3771 outrel.r_info = ELF32_R_INFO (indx, r_type);
3773 #if 0
3774 /* EH info can cause unaligned DIR32 relocs.
3775 Tweak the reloc type for the dynamic linker. */
3776 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3777 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3778 R_PARISC_DIR32U);
3779 #endif
3780 sreloc = elf_section_data (input_section)->sreloc;
3781 if (sreloc == NULL)
3782 abort ();
3784 loc = sreloc->contents;
3785 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3786 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3788 break;
3790 default:
3791 break;
3794 r = final_link_relocate (input_section, contents, rel, relocation,
3795 htab, sym_sec, h, info);
3797 if (r == bfd_reloc_ok)
3798 continue;
3800 if (h != NULL)
3801 sym_name = h->elf.root.root.string;
3802 else
3804 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3805 symtab_hdr->sh_link,
3806 sym->st_name);
3807 if (sym_name == NULL)
3808 return FALSE;
3809 if (*sym_name == '\0')
3810 sym_name = bfd_section_name (input_bfd, sym_sec);
3813 howto = elf_hppa_howto_table + r_type;
3815 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3817 if (r == bfd_reloc_notsupported || !warned_undef)
3819 (*_bfd_error_handler)
3820 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3821 bfd_archive_filename (input_bfd),
3822 input_section->name,
3823 (long) rel->r_offset,
3824 howto->name,
3825 sym_name);
3826 bfd_set_error (bfd_error_bad_value);
3827 return FALSE;
3830 else
3832 if (!((*info->callbacks->reloc_overflow)
3833 (info, sym_name, howto->name, 0, input_bfd, input_section,
3834 rel->r_offset)))
3835 return FALSE;
3839 return TRUE;
3842 /* Finish up dynamic symbol handling. We set the contents of various
3843 dynamic sections here. */
3845 static bfd_boolean
3846 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3847 struct bfd_link_info *info,
3848 struct elf_link_hash_entry *h,
3849 Elf_Internal_Sym *sym)
3851 struct elf32_hppa_link_hash_table *htab;
3852 Elf_Internal_Rela rel;
3853 bfd_byte *loc;
3855 htab = hppa_link_hash_table (info);
3857 if (h->plt.offset != (bfd_vma) -1)
3859 bfd_vma value;
3861 if (h->plt.offset & 1)
3862 abort ();
3864 /* This symbol has an entry in the procedure linkage table. Set
3865 it up.
3867 The format of a plt entry is
3868 <funcaddr>
3869 <__gp>
3871 value = 0;
3872 if (h->root.type == bfd_link_hash_defined
3873 || h->root.type == bfd_link_hash_defweak)
3875 value = h->root.u.def.value;
3876 if (h->root.u.def.section->output_section != NULL)
3877 value += (h->root.u.def.section->output_offset
3878 + h->root.u.def.section->output_section->vma);
3881 /* Create a dynamic IPLT relocation for this entry. */
3882 rel.r_offset = (h->plt.offset
3883 + htab->splt->output_offset
3884 + htab->splt->output_section->vma);
3885 if (h->dynindx != -1)
3887 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3888 rel.r_addend = 0;
3890 else
3892 /* This symbol has been marked to become local, and is
3893 used by a plabel so must be kept in the .plt. */
3894 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3895 rel.r_addend = value;
3898 loc = htab->srelplt->contents;
3899 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3900 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3902 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3904 /* Mark the symbol as undefined, rather than as defined in
3905 the .plt section. Leave the value alone. */
3906 sym->st_shndx = SHN_UNDEF;
3910 if (h->got.offset != (bfd_vma) -1)
3912 /* This symbol has an entry in the global offset table. Set it
3913 up. */
3915 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3916 + htab->sgot->output_offset
3917 + htab->sgot->output_section->vma);
3919 /* If this is a -Bsymbolic link and the symbol is defined
3920 locally or was forced to be local because of a version file,
3921 we just want to emit a RELATIVE reloc. The entry in the
3922 global offset table will already have been initialized in the
3923 relocate_section function. */
3924 if (info->shared
3925 && (info->symbolic || h->dynindx == -1)
3926 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3928 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3929 rel.r_addend = (h->root.u.def.value
3930 + h->root.u.def.section->output_offset
3931 + h->root.u.def.section->output_section->vma);
3933 else
3935 if ((h->got.offset & 1) != 0)
3936 abort ();
3937 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3938 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3939 rel.r_addend = 0;
3942 loc = htab->srelgot->contents;
3943 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3944 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3947 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3949 asection *s;
3951 /* This symbol needs a copy reloc. Set it up. */
3953 if (! (h->dynindx != -1
3954 && (h->root.type == bfd_link_hash_defined
3955 || h->root.type == bfd_link_hash_defweak)))
3956 abort ();
3958 s = htab->srelbss;
3960 rel.r_offset = (h->root.u.def.value
3961 + h->root.u.def.section->output_offset
3962 + h->root.u.def.section->output_section->vma);
3963 rel.r_addend = 0;
3964 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3965 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3966 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3969 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3970 if (h->root.root.string[0] == '_'
3971 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3972 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3974 sym->st_shndx = SHN_ABS;
3977 return TRUE;
3980 /* Used to decide how to sort relocs in an optimal manner for the
3981 dynamic linker, before writing them out. */
3983 static enum elf_reloc_type_class
3984 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
3986 if (ELF32_R_SYM (rela->r_info) == 0)
3987 return reloc_class_relative;
3989 switch ((int) ELF32_R_TYPE (rela->r_info))
3991 case R_PARISC_IPLT:
3992 return reloc_class_plt;
3993 case R_PARISC_COPY:
3994 return reloc_class_copy;
3995 default:
3996 return reloc_class_normal;
4000 /* Finish up the dynamic sections. */
4002 static bfd_boolean
4003 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4004 struct bfd_link_info *info)
4006 bfd *dynobj;
4007 struct elf32_hppa_link_hash_table *htab;
4008 asection *sdyn;
4010 htab = hppa_link_hash_table (info);
4011 dynobj = htab->elf.dynobj;
4013 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4015 if (htab->elf.dynamic_sections_created)
4017 Elf32_External_Dyn *dyncon, *dynconend;
4019 if (sdyn == NULL)
4020 abort ();
4022 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4023 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4024 for (; dyncon < dynconend; dyncon++)
4026 Elf_Internal_Dyn dyn;
4027 asection *s;
4029 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4031 switch (dyn.d_tag)
4033 default:
4034 continue;
4036 case DT_PLTGOT:
4037 /* Use PLTGOT to set the GOT register. */
4038 dyn.d_un.d_ptr = elf_gp (output_bfd);
4039 break;
4041 case DT_JMPREL:
4042 s = htab->srelplt;
4043 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4044 break;
4046 case DT_PLTRELSZ:
4047 s = htab->srelplt;
4048 dyn.d_un.d_val = s->_raw_size;
4049 break;
4051 case DT_RELASZ:
4052 /* Don't count procedure linkage table relocs in the
4053 overall reloc count. */
4054 s = htab->srelplt;
4055 if (s == NULL)
4056 continue;
4057 dyn.d_un.d_val -= s->_raw_size;
4058 break;
4060 case DT_RELA:
4061 /* We may not be using the standard ELF linker script.
4062 If .rela.plt is the first .rela section, we adjust
4063 DT_RELA to not include it. */
4064 s = htab->srelplt;
4065 if (s == NULL)
4066 continue;
4067 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4068 continue;
4069 dyn.d_un.d_ptr += s->_raw_size;
4070 break;
4073 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4077 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4079 /* Fill in the first entry in the global offset table.
4080 We use it to point to our dynamic section, if we have one. */
4081 bfd_put_32 (output_bfd,
4082 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4083 htab->sgot->contents);
4085 /* The second entry is reserved for use by the dynamic linker. */
4086 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4088 /* Set .got entry size. */
4089 elf_section_data (htab->sgot->output_section)
4090 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4093 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4095 /* Set plt entry size. */
4096 elf_section_data (htab->splt->output_section)
4097 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4099 if (htab->need_plt_stub)
4101 /* Set up the .plt stub. */
4102 memcpy (htab->splt->contents
4103 + htab->splt->_raw_size - sizeof (plt_stub),
4104 plt_stub, sizeof (plt_stub));
4106 if ((htab->splt->output_offset
4107 + htab->splt->output_section->vma
4108 + htab->splt->_raw_size)
4109 != (htab->sgot->output_offset
4110 + htab->sgot->output_section->vma))
4112 (*_bfd_error_handler)
4113 (_(".got section not immediately after .plt section"));
4114 return FALSE;
4119 return TRUE;
4122 /* Tweak the OSABI field of the elf header. */
4124 static void
4125 elf32_hppa_post_process_headers (bfd *abfd,
4126 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4128 Elf_Internal_Ehdr * i_ehdrp;
4130 i_ehdrp = elf_elfheader (abfd);
4132 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4134 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4136 else
4138 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4142 /* Called when writing out an object file to decide the type of a
4143 symbol. */
4144 static int
4145 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4147 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4148 return STT_PARISC_MILLI;
4149 else
4150 return type;
4153 /* Misc BFD support code. */
4154 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4155 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4156 #define elf_info_to_howto elf_hppa_info_to_howto
4157 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4159 /* Stuff for the BFD linker. */
4160 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4161 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4162 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4163 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4164 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4165 #define elf_backend_check_relocs elf32_hppa_check_relocs
4166 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4167 #define elf_backend_fake_sections elf_hppa_fake_sections
4168 #define elf_backend_relocate_section elf32_hppa_relocate_section
4169 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4170 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4171 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4172 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4173 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4174 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4175 #define elf_backend_object_p elf32_hppa_object_p
4176 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4177 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4178 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4179 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4181 #define elf_backend_can_gc_sections 1
4182 #define elf_backend_can_refcount 1
4183 #define elf_backend_plt_alignment 2
4184 #define elf_backend_want_got_plt 0
4185 #define elf_backend_plt_readonly 0
4186 #define elf_backend_want_plt_sym 0
4187 #define elf_backend_got_header_size 8
4188 #define elf_backend_rela_normal 1
4190 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4191 #define TARGET_BIG_NAME "elf32-hppa"
4192 #define ELF_ARCH bfd_arch_hppa
4193 #define ELF_MACHINE_CODE EM_PARISC
4194 #define ELF_MAXPAGESIZE 0x1000
4196 #include "elf32-target.h"
4198 #undef TARGET_BIG_SYM
4199 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4200 #undef TARGET_BIG_NAME
4201 #define TARGET_BIG_NAME "elf32-hppa-linux"
4203 #define INCLUDED_TARGET_FILE 1
4204 #include "elf32-target.h"