1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
54 static bfd_boolean
prep_headers (bfd
*);
55 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
56 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
57 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
64 /* Swap in a Verdef structure. */
67 _bfd_elf_swap_verdef_in (bfd
*abfd
,
68 const Elf_External_Verdef
*src
,
69 Elf_Internal_Verdef
*dst
)
71 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
72 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
73 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
74 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
75 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
76 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
77 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
80 /* Swap out a Verdef structure. */
83 _bfd_elf_swap_verdef_out (bfd
*abfd
,
84 const Elf_Internal_Verdef
*src
,
85 Elf_External_Verdef
*dst
)
87 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
88 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
89 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
90 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
91 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
92 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
93 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
96 /* Swap in a Verdaux structure. */
99 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
100 const Elf_External_Verdaux
*src
,
101 Elf_Internal_Verdaux
*dst
)
103 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
104 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
107 /* Swap out a Verdaux structure. */
110 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
111 const Elf_Internal_Verdaux
*src
,
112 Elf_External_Verdaux
*dst
)
114 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
115 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
118 /* Swap in a Verneed structure. */
121 _bfd_elf_swap_verneed_in (bfd
*abfd
,
122 const Elf_External_Verneed
*src
,
123 Elf_Internal_Verneed
*dst
)
125 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
126 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
127 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
128 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
129 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
132 /* Swap out a Verneed structure. */
135 _bfd_elf_swap_verneed_out (bfd
*abfd
,
136 const Elf_Internal_Verneed
*src
,
137 Elf_External_Verneed
*dst
)
139 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
140 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
141 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
142 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
143 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
146 /* Swap in a Vernaux structure. */
149 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
150 const Elf_External_Vernaux
*src
,
151 Elf_Internal_Vernaux
*dst
)
153 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
154 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
155 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
156 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
157 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
160 /* Swap out a Vernaux structure. */
163 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
164 const Elf_Internal_Vernaux
*src
,
165 Elf_External_Vernaux
*dst
)
167 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
168 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
169 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
170 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
171 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
174 /* Swap in a Versym structure. */
177 _bfd_elf_swap_versym_in (bfd
*abfd
,
178 const Elf_External_Versym
*src
,
179 Elf_Internal_Versym
*dst
)
181 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
184 /* Swap out a Versym structure. */
187 _bfd_elf_swap_versym_out (bfd
*abfd
,
188 const Elf_Internal_Versym
*src
,
189 Elf_External_Versym
*dst
)
191 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
198 bfd_elf_hash (const char *namearg
)
200 const unsigned char *name
= (const unsigned char *) namearg
;
205 while ((ch
= *name
++) != '\0')
208 if ((g
= (h
& 0xf0000000)) != 0)
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
216 return h
& 0xffffffff;
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
223 bfd_elf_gnu_hash (const char *namearg
)
225 const unsigned char *name
= (const unsigned char *) namearg
;
226 unsigned long h
= 5381;
229 while ((ch
= *name
++) != '\0')
230 h
= (h
<< 5) + h
+ ch
;
231 return h
& 0xffffffff;
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_elf_allocate_object (bfd
*abfd
,
239 enum elf_target_id object_id
)
241 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
242 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
243 if (abfd
->tdata
.any
== NULL
)
246 elf_object_id (abfd
) = object_id
;
247 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
253 bfd_elf_make_object (bfd
*abfd
)
255 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
256 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
261 bfd_elf_mkcorefile (bfd
*abfd
)
263 /* I think this can be done just like an object file. */
264 return abfd
->xvec
->_bfd_set_format
[(int) bfd_object
] (abfd
);
268 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
270 Elf_Internal_Shdr
**i_shdrp
;
271 bfd_byte
*shstrtab
= NULL
;
273 bfd_size_type shstrtabsize
;
275 i_shdrp
= elf_elfsections (abfd
);
277 || shindex
>= elf_numsections (abfd
)
278 || i_shdrp
[shindex
] == 0)
281 shstrtab
= i_shdrp
[shindex
]->contents
;
282 if (shstrtab
== NULL
)
284 /* No cached one, attempt to read, and cache what we read. */
285 offset
= i_shdrp
[shindex
]->sh_offset
;
286 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize
+ 1 <= 1
291 || (shstrtab
= (bfd_byte
*) bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
292 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
294 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
296 if (bfd_get_error () != bfd_error_system_call
)
297 bfd_set_error (bfd_error_file_truncated
);
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp
[shindex
]->sh_size
= 0;
305 shstrtab
[shstrtabsize
] = '\0';
306 i_shdrp
[shindex
]->contents
= shstrtab
;
308 return (char *) shstrtab
;
312 bfd_elf_string_from_elf_section (bfd
*abfd
,
313 unsigned int shindex
,
314 unsigned int strindex
)
316 Elf_Internal_Shdr
*hdr
;
321 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
324 hdr
= elf_elfsections (abfd
)[shindex
];
326 if (hdr
->contents
== NULL
327 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
330 if (strindex
>= hdr
->sh_size
)
332 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
333 (*_bfd_error_handler
)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
336 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
338 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
342 return ((char *) hdr
->contents
) + strindex
;
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
354 bfd_elf_get_elf_syms (bfd
*ibfd
,
355 Elf_Internal_Shdr
*symtab_hdr
,
358 Elf_Internal_Sym
*intsym_buf
,
360 Elf_External_Sym_Shndx
*extshndx_buf
)
362 Elf_Internal_Shdr
*shndx_hdr
;
364 const bfd_byte
*esym
;
365 Elf_External_Sym_Shndx
*alloc_extshndx
;
366 Elf_External_Sym_Shndx
*shndx
;
367 Elf_Internal_Sym
*alloc_intsym
;
368 Elf_Internal_Sym
*isym
;
369 Elf_Internal_Sym
*isymend
;
370 const struct elf_backend_data
*bed
;
375 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
381 /* Normal syms might have section extension entries. */
383 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
384 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
386 /* Read the symbols. */
388 alloc_extshndx
= NULL
;
390 bed
= get_elf_backend_data (ibfd
);
391 extsym_size
= bed
->s
->sizeof_sym
;
392 amt
= symcount
* extsym_size
;
393 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
394 if (extsym_buf
== NULL
)
396 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
397 extsym_buf
= alloc_ext
;
399 if (extsym_buf
== NULL
400 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
401 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
407 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
411 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
412 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
413 if (extshndx_buf
== NULL
)
415 alloc_extshndx
= (Elf_External_Sym_Shndx
*)
416 bfd_malloc2 (symcount
, sizeof (Elf_External_Sym_Shndx
));
417 extshndx_buf
= alloc_extshndx
;
419 if (extshndx_buf
== NULL
420 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
421 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
428 if (intsym_buf
== NULL
)
430 alloc_intsym
= (Elf_Internal_Sym
*)
431 bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
432 intsym_buf
= alloc_intsym
;
433 if (intsym_buf
== NULL
)
437 /* Convert the symbols to internal form. */
438 isymend
= intsym_buf
+ symcount
;
439 for (esym
= (const bfd_byte
*) extsym_buf
, isym
= intsym_buf
,
440 shndx
= extshndx_buf
;
442 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
443 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
445 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
446 (*_bfd_error_handler
) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd
, (unsigned long) symoffset
);
449 if (alloc_intsym
!= NULL
)
456 if (alloc_ext
!= NULL
)
458 if (alloc_extshndx
!= NULL
)
459 free (alloc_extshndx
);
464 /* Look up a symbol name. */
466 bfd_elf_sym_name (bfd
*abfd
,
467 Elf_Internal_Shdr
*symtab_hdr
,
468 Elf_Internal_Sym
*isym
,
472 unsigned int iname
= isym
->st_name
;
473 unsigned int shindex
= symtab_hdr
->sh_link
;
475 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym
->st_shndx
< elf_numsections (abfd
))
479 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
480 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
483 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
486 else if (sym_sec
&& *name
== '\0')
487 name
= bfd_section_name (abfd
, sym_sec
);
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
496 typedef union elf_internal_group
{
497 Elf_Internal_Shdr
*shdr
;
499 } Elf_Internal_Group
;
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
505 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
507 Elf_Internal_Shdr
*hdr
;
508 unsigned char esym
[sizeof (Elf64_External_Sym
)];
509 Elf_External_Sym_Shndx eshndx
;
510 Elf_Internal_Sym isym
;
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr
->sh_link
>= elf_numsections (abfd
))
516 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
517 if (hdr
->sh_type
!= SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
521 /* Go read the symbol. */
522 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
523 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
524 &isym
, esym
, &eshndx
) == NULL
)
527 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
533 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
535 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
541 unsigned int i
, shnum
;
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum
= elf_numsections (abfd
);
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
554 for (i
= 0; i
< shnum
; i
++)
556 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
564 num_group
= (unsigned) -1;
565 elf_tdata (abfd
)->num_group
= num_group
;
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
573 elf_tdata (abfd
)->num_group
= num_group
;
574 elf_tdata (abfd
)->group_sect_ptr
= (Elf_Internal_Shdr
**)
575 bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
576 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
580 for (i
= 0; i
< shnum
; i
++)
582 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
587 Elf_Internal_Group
*dest
;
589 /* Add to list of sections. */
590 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest
) >= 4);
595 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
596 shdr
->contents
= (unsigned char *)
597 bfd_alloc2 (abfd
, shdr
->sh_size
, sizeof (*dest
) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr
->contents
== NULL
)
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
603 bfd_set_error (bfd_error_bad_value
);
607 memset (shdr
->contents
, 0, amt
);
609 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
610 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
618 src
= shdr
->contents
+ shdr
->sh_size
;
619 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
626 idx
= H_GET_32 (abfd
, src
);
627 if (src
== shdr
->contents
)
630 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
631 shdr
->bfd_section
->flags
632 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
637 ((*_bfd_error_handler
)
638 (_("%B: invalid SHT_GROUP entry"), abfd
));
641 dest
->shdr
= elf_elfsections (abfd
)[idx
];
648 if (num_group
!= (unsigned) -1)
652 for (i
= 0; i
< num_group
; i
++)
654 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
655 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
656 unsigned int n_elt
= shdr
->sh_size
/ 4;
658 /* Look through this group's sections to see if current
659 section is a member. */
661 if ((++idx
)->shdr
== hdr
)
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
668 idx
= (Elf_Internal_Group
*) shdr
->contents
;
669 n_elt
= shdr
->sh_size
/ 4;
671 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
672 && elf_next_in_group (s
) != NULL
)
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect
) = elf_group_name (s
);
679 elf_next_in_group (newsect
) = elf_next_in_group (s
);
680 elf_next_in_group (s
) = newsect
;
686 gname
= group_signature (abfd
, shdr
);
689 elf_group_name (newsect
) = gname
;
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect
) = newsect
;
695 /* If the group section has been created, point to the
697 if (shdr
->bfd_section
!= NULL
)
698 elf_next_in_group (shdr
->bfd_section
) = newsect
;
706 if (elf_group_name (newsect
) == NULL
)
708 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
715 _bfd_elf_setup_sections (bfd
*abfd
)
718 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
719 bfd_boolean result
= TRUE
;
722 /* Process SHF_LINK_ORDER. */
723 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
725 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
726 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
728 unsigned int elfsec
= this_hdr
->sh_link
;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
734 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
735 if (bed
->link_order_error_handler
)
736 bed
->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
742 asection
*linksec
= NULL
;
744 if (elfsec
< elf_numsections (abfd
))
746 this_hdr
= elf_elfsections (abfd
)[elfsec
];
747 linksec
= this_hdr
->bfd_section
;
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
755 (*_bfd_error_handler
)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s
->owner
, s
, elfsec
);
761 elf_linked_to_section (s
) = linksec
;
766 /* Process section groups. */
767 if (num_group
== (unsigned) -1)
770 for (i
= 0; i
< num_group
; i
++)
772 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
773 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
774 unsigned int n_elt
= shdr
->sh_size
/ 4;
777 if ((++idx
)->shdr
->bfd_section
)
778 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
779 else if (idx
->shdr
->sh_type
== SHT_RELA
780 || idx
->shdr
->sh_type
== SHT_REL
)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
786 shdr
->bfd_section
->size
-= 4;
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler
)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
793 (unsigned int) idx
->shdr
->sh_type
,
794 bfd_elf_string_from_elf_section (abfd
,
795 (elf_elfheader (abfd
)
798 shdr
->bfd_section
->name
);
806 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
808 return elf_next_in_group (sec
) != NULL
;
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
815 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
816 Elf_Internal_Shdr
*hdr
,
822 const struct elf_backend_data
*bed
;
824 if (hdr
->bfd_section
!= NULL
)
827 newsect
= bfd_make_section_anyway (abfd
, name
);
831 hdr
->bfd_section
= newsect
;
832 elf_section_data (newsect
)->this_hdr
= *hdr
;
833 elf_section_data (newsect
)->this_idx
= shindex
;
835 /* Always use the real type/flags. */
836 elf_section_type (newsect
) = hdr
->sh_type
;
837 elf_section_flags (newsect
) = hdr
->sh_flags
;
839 newsect
->filepos
= hdr
->sh_offset
;
841 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
842 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
843 || ! bfd_set_section_alignment (abfd
, newsect
,
844 bfd_log2 (hdr
->sh_addralign
)))
847 flags
= SEC_NO_FLAGS
;
848 if (hdr
->sh_type
!= SHT_NOBITS
)
849 flags
|= SEC_HAS_CONTENTS
;
850 if (hdr
->sh_type
== SHT_GROUP
)
851 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
852 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
855 if (hdr
->sh_type
!= SHT_NOBITS
)
858 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
859 flags
|= SEC_READONLY
;
860 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
862 else if ((flags
& SEC_LOAD
) != 0)
864 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
867 newsect
->entsize
= hdr
->sh_entsize
;
868 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
869 flags
|= SEC_STRINGS
;
871 if (hdr
->sh_flags
& SHF_GROUP
)
872 if (!setup_group (abfd
, hdr
, newsect
))
874 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
875 flags
|= SEC_THREAD_LOCAL
;
876 if ((hdr
->sh_flags
& SHF_EXCLUDE
) != 0)
877 flags
|= SEC_EXCLUDE
;
879 if ((flags
& SEC_ALLOC
) == 0)
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
887 } debug_sections
[] =
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL
, 0 }, /* 'e' */
891 { NULL
, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL
, 0 }, /* 'h' */
894 { NULL
, 0 }, /* 'i' */
895 { NULL
, 0 }, /* 'j' */
896 { NULL
, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL
, 0 }, /* 'm' */
899 { NULL
, 0 }, /* 'n' */
900 { NULL
, 0 }, /* 'o' */
901 { NULL
, 0 }, /* 'p' */
902 { NULL
, 0 }, /* 'q' */
903 { NULL
, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL
, 0 }, /* 't' */
906 { NULL
, 0 }, /* 'u' */
907 { NULL
, 0 }, /* 'v' */
908 { NULL
, 0 }, /* 'w' */
909 { NULL
, 0 }, /* 'x' */
910 { NULL
, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
916 int i
= name
[1] - 'd';
918 && i
< (int) ARRAY_SIZE (debug_sections
)
919 && debug_sections
[i
].name
!= NULL
920 && strncmp (&name
[1], debug_sections
[i
].name
,
921 debug_sections
[i
].len
) == 0)
922 flags
|= SEC_DEBUGGING
;
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name
, ".gnu.linkonce")
933 && elf_next_in_group (newsect
) == NULL
)
934 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
936 bed
= get_elf_backend_data (abfd
);
937 if (bed
->elf_backend_section_flags
)
938 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
941 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr
->sh_type
== SHT_NOTE
)
951 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
954 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
958 if ((flags
& SEC_ALLOC
) != 0)
960 Elf_Internal_Phdr
*phdr
;
961 unsigned int i
, nload
;
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr
= elf_tdata (abfd
)->phdr
;
968 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
969 if (phdr
->p_paddr
!= 0)
971 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
973 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
976 phdr
= elf_tdata (abfd
)->phdr
;
977 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
979 if (phdr
->p_type
== PT_LOAD
980 && ELF_SECTION_IN_SEGMENT (hdr
, phdr
))
982 if ((flags
& SEC_LOAD
) == 0)
983 newsect
->lma
= (phdr
->p_paddr
984 + hdr
->sh_addr
- phdr
->p_vaddr
);
986 /* We used to use the same adjustment for SEC_LOAD
987 sections, but that doesn't work if the segment
988 is packed with code from multiple VMAs.
989 Instead we calculate the section LMA based on
990 the segment LMA. It is assumed that the
991 segment will contain sections with contiguous
992 LMAs, even if the VMAs are not. */
993 newsect
->lma
= (phdr
->p_paddr
994 + hdr
->sh_offset
- phdr
->p_offset
);
996 /* With contiguous segments, we can't tell from file
997 offsets whether a section with zero size should
998 be placed at the end of one segment or the
999 beginning of the next. Decide based on vaddr. */
1000 if (hdr
->sh_addr
>= phdr
->p_vaddr
1001 && (hdr
->sh_addr
+ hdr
->sh_size
1002 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1008 /* Compress/decompress DWARF debug sections with names: .debug_* and
1009 .zdebug_*, after the section flags is set. */
1010 if ((flags
& SEC_DEBUGGING
)
1011 && ((name
[1] == 'd' && name
[6] == '_')
1012 || (name
[1] == 'z' && name
[7] == '_')))
1014 enum { nothing
, compress
, decompress
} action
= nothing
;
1017 if (bfd_is_section_compressed (abfd
, newsect
))
1019 /* Compressed section. Check if we should decompress. */
1020 if ((abfd
->flags
& BFD_DECOMPRESS
))
1021 action
= decompress
;
1025 /* Normal section. Check if we should compress. */
1026 if ((abfd
->flags
& BFD_COMPRESS
))
1036 if (!bfd_init_section_compress_status (abfd
, newsect
))
1038 (*_bfd_error_handler
)
1039 (_("%B: unable to initialize commpress status for section %s"),
1045 unsigned int len
= strlen (name
);
1047 new_name
= bfd_alloc (abfd
, len
+ 2);
1048 if (new_name
== NULL
)
1052 memcpy (new_name
+ 2, name
+ 1, len
);
1056 if (!bfd_init_section_decompress_status (abfd
, newsect
))
1058 (*_bfd_error_handler
)
1059 (_("%B: unable to initialize decommpress status for section %s"),
1065 unsigned int len
= strlen (name
);
1067 new_name
= bfd_alloc (abfd
, len
);
1068 if (new_name
== NULL
)
1071 memcpy (new_name
+ 1, name
+ 2, len
- 1);
1075 if (new_name
!= NULL
)
1076 bfd_rename_section (abfd
, newsect
, new_name
);
1082 const char *const bfd_elf_section_type_names
[] = {
1083 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1084 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1085 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 /* ELF relocs are against symbols. If we are producing relocatable
1089 output, and the reloc is against an external symbol, and nothing
1090 has given us any additional addend, the resulting reloc will also
1091 be against the same symbol. In such a case, we don't want to
1092 change anything about the way the reloc is handled, since it will
1093 all be done at final link time. Rather than put special case code
1094 into bfd_perform_relocation, all the reloc types use this howto
1095 function. It just short circuits the reloc if producing
1096 relocatable output against an external symbol. */
1098 bfd_reloc_status_type
1099 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1100 arelent
*reloc_entry
,
1102 void *data ATTRIBUTE_UNUSED
,
1103 asection
*input_section
,
1105 char **error_message ATTRIBUTE_UNUSED
)
1107 if (output_bfd
!= NULL
1108 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1109 && (! reloc_entry
->howto
->partial_inplace
1110 || reloc_entry
->addend
== 0))
1112 reloc_entry
->address
+= input_section
->output_offset
;
1113 return bfd_reloc_ok
;
1116 return bfd_reloc_continue
;
1119 /* Copy the program header and other data from one object module to
1123 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1125 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1126 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1129 BFD_ASSERT (!elf_flags_init (obfd
)
1130 || (elf_elfheader (obfd
)->e_flags
1131 == elf_elfheader (ibfd
)->e_flags
));
1133 elf_gp (obfd
) = elf_gp (ibfd
);
1134 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1135 elf_flags_init (obfd
) = TRUE
;
1137 /* Copy object attributes. */
1138 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1143 get_segment_type (unsigned int p_type
)
1148 case PT_NULL
: pt
= "NULL"; break;
1149 case PT_LOAD
: pt
= "LOAD"; break;
1150 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1151 case PT_INTERP
: pt
= "INTERP"; break;
1152 case PT_NOTE
: pt
= "NOTE"; break;
1153 case PT_SHLIB
: pt
= "SHLIB"; break;
1154 case PT_PHDR
: pt
= "PHDR"; break;
1155 case PT_TLS
: pt
= "TLS"; break;
1156 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1157 case PT_GNU_STACK
: pt
= "STACK"; break;
1158 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1159 default: pt
= NULL
; break;
1164 /* Print out the program headers. */
1167 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1169 FILE *f
= (FILE *) farg
;
1170 Elf_Internal_Phdr
*p
;
1172 bfd_byte
*dynbuf
= NULL
;
1174 p
= elf_tdata (abfd
)->phdr
;
1179 fprintf (f
, _("\nProgram Header:\n"));
1180 c
= elf_elfheader (abfd
)->e_phnum
;
1181 for (i
= 0; i
< c
; i
++, p
++)
1183 const char *pt
= get_segment_type (p
->p_type
);
1188 sprintf (buf
, "0x%lx", p
->p_type
);
1191 fprintf (f
, "%8s off 0x", pt
);
1192 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1193 fprintf (f
, " vaddr 0x");
1194 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1195 fprintf (f
, " paddr 0x");
1196 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1197 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1198 fprintf (f
, " filesz 0x");
1199 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1200 fprintf (f
, " memsz 0x");
1201 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1202 fprintf (f
, " flags %c%c%c",
1203 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1204 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1205 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1206 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1207 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1212 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1215 unsigned int elfsec
;
1216 unsigned long shlink
;
1217 bfd_byte
*extdyn
, *extdynend
;
1219 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1221 fprintf (f
, _("\nDynamic Section:\n"));
1223 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1226 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1227 if (elfsec
== SHN_BAD
)
1229 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1231 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1232 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1235 extdynend
= extdyn
+ s
->size
;
1236 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1238 Elf_Internal_Dyn dyn
;
1239 const char *name
= "";
1241 bfd_boolean stringp
;
1242 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1244 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1246 if (dyn
.d_tag
== DT_NULL
)
1253 if (bed
->elf_backend_get_target_dtag
)
1254 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1256 if (!strcmp (name
, ""))
1258 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1263 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1264 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1265 case DT_PLTGOT
: name
= "PLTGOT"; break;
1266 case DT_HASH
: name
= "HASH"; break;
1267 case DT_STRTAB
: name
= "STRTAB"; break;
1268 case DT_SYMTAB
: name
= "SYMTAB"; break;
1269 case DT_RELA
: name
= "RELA"; break;
1270 case DT_RELASZ
: name
= "RELASZ"; break;
1271 case DT_RELAENT
: name
= "RELAENT"; break;
1272 case DT_STRSZ
: name
= "STRSZ"; break;
1273 case DT_SYMENT
: name
= "SYMENT"; break;
1274 case DT_INIT
: name
= "INIT"; break;
1275 case DT_FINI
: name
= "FINI"; break;
1276 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1277 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1278 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1279 case DT_REL
: name
= "REL"; break;
1280 case DT_RELSZ
: name
= "RELSZ"; break;
1281 case DT_RELENT
: name
= "RELENT"; break;
1282 case DT_PLTREL
: name
= "PLTREL"; break;
1283 case DT_DEBUG
: name
= "DEBUG"; break;
1284 case DT_TEXTREL
: name
= "TEXTREL"; break;
1285 case DT_JMPREL
: name
= "JMPREL"; break;
1286 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1287 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1288 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1289 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1290 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1291 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1292 case DT_FLAGS
: name
= "FLAGS"; break;
1293 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1294 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1295 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1296 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1297 case DT_MOVEENT
: name
= "MOVEENT"; break;
1298 case DT_MOVESZ
: name
= "MOVESZ"; break;
1299 case DT_FEATURE
: name
= "FEATURE"; break;
1300 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1301 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1302 case DT_SYMINENT
: name
= "SYMINENT"; break;
1303 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1304 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1305 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1306 case DT_PLTPAD
: name
= "PLTPAD"; break;
1307 case DT_MOVETAB
: name
= "MOVETAB"; break;
1308 case DT_SYMINFO
: name
= "SYMINFO"; break;
1309 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1310 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1311 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1312 case DT_VERSYM
: name
= "VERSYM"; break;
1313 case DT_VERDEF
: name
= "VERDEF"; break;
1314 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1315 case DT_VERNEED
: name
= "VERNEED"; break;
1316 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1317 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1318 case DT_USED
: name
= "USED"; break;
1319 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1320 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1323 fprintf (f
, " %-20s ", name
);
1327 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1332 unsigned int tagv
= dyn
.d_un
.d_val
;
1334 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1337 fprintf (f
, "%s", string
);
1346 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1347 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1349 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1353 if (elf_dynverdef (abfd
) != 0)
1355 Elf_Internal_Verdef
*t
;
1357 fprintf (f
, _("\nVersion definitions:\n"));
1358 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1360 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1361 t
->vd_flags
, t
->vd_hash
,
1362 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1363 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1365 Elf_Internal_Verdaux
*a
;
1368 for (a
= t
->vd_auxptr
->vda_nextptr
;
1372 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1378 if (elf_dynverref (abfd
) != 0)
1380 Elf_Internal_Verneed
*t
;
1382 fprintf (f
, _("\nVersion References:\n"));
1383 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1385 Elf_Internal_Vernaux
*a
;
1387 fprintf (f
, _(" required from %s:\n"),
1388 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1389 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1390 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1391 a
->vna_flags
, a
->vna_other
,
1392 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1404 /* Display ELF-specific fields of a symbol. */
1407 bfd_elf_print_symbol (bfd
*abfd
,
1410 bfd_print_symbol_type how
)
1412 FILE *file
= (FILE *) filep
;
1415 case bfd_print_symbol_name
:
1416 fprintf (file
, "%s", symbol
->name
);
1418 case bfd_print_symbol_more
:
1419 fprintf (file
, "elf ");
1420 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1421 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1423 case bfd_print_symbol_all
:
1425 const char *section_name
;
1426 const char *name
= NULL
;
1427 const struct elf_backend_data
*bed
;
1428 unsigned char st_other
;
1431 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1433 bed
= get_elf_backend_data (abfd
);
1434 if (bed
->elf_backend_print_symbol_all
)
1435 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1439 name
= symbol
->name
;
1440 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1443 fprintf (file
, " %s\t", section_name
);
1444 /* Print the "other" value for a symbol. For common symbols,
1445 we've already printed the size; now print the alignment.
1446 For other symbols, we have no specified alignment, and
1447 we've printed the address; now print the size. */
1448 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1449 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1451 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1452 bfd_fprintf_vma (abfd
, file
, val
);
1454 /* If we have version information, print it. */
1455 if (elf_tdata (abfd
)->dynversym_section
!= 0
1456 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1457 || elf_tdata (abfd
)->dynverref_section
!= 0))
1459 unsigned int vernum
;
1460 const char *version_string
;
1462 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1465 version_string
= "";
1466 else if (vernum
== 1)
1467 version_string
= "Base";
1468 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1470 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1473 Elf_Internal_Verneed
*t
;
1475 version_string
= "";
1476 for (t
= elf_tdata (abfd
)->verref
;
1480 Elf_Internal_Vernaux
*a
;
1482 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1484 if (a
->vna_other
== vernum
)
1486 version_string
= a
->vna_nodename
;
1493 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1494 fprintf (file
, " %-11s", version_string
);
1499 fprintf (file
, " (%s)", version_string
);
1500 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1505 /* If the st_other field is not zero, print it. */
1506 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1511 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1512 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1513 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1515 /* Some other non-defined flags are also present, so print
1517 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1520 fprintf (file
, " %s", name
);
1526 /* Allocate an ELF string table--force the first byte to be zero. */
1528 struct bfd_strtab_hash
*
1529 _bfd_elf_stringtab_init (void)
1531 struct bfd_strtab_hash
*ret
;
1533 ret
= _bfd_stringtab_init ();
1538 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1539 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1540 if (loc
== (bfd_size_type
) -1)
1542 _bfd_stringtab_free (ret
);
1549 /* ELF .o/exec file reading */
1551 /* Create a new bfd section from an ELF section header. */
1554 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1556 Elf_Internal_Shdr
*hdr
;
1557 Elf_Internal_Ehdr
*ehdr
;
1558 const struct elf_backend_data
*bed
;
1561 if (shindex
>= elf_numsections (abfd
))
1564 hdr
= elf_elfsections (abfd
)[shindex
];
1565 ehdr
= elf_elfheader (abfd
);
1566 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1571 bed
= get_elf_backend_data (abfd
);
1572 switch (hdr
->sh_type
)
1575 /* Inactive section. Throw it away. */
1578 case SHT_PROGBITS
: /* Normal section with contents. */
1579 case SHT_NOBITS
: /* .bss section. */
1580 case SHT_HASH
: /* .hash section. */
1581 case SHT_NOTE
: /* .note section. */
1582 case SHT_INIT_ARRAY
: /* .init_array section. */
1583 case SHT_FINI_ARRAY
: /* .fini_array section. */
1584 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1585 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1586 case SHT_GNU_HASH
: /* .gnu.hash section. */
1587 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1589 case SHT_DYNAMIC
: /* Dynamic linking information. */
1590 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1592 if (hdr
->sh_link
> elf_numsections (abfd
))
1594 /* PR 10478: Accept Solaris binaries with a sh_link
1595 field set to SHN_BEFORE or SHN_AFTER. */
1596 switch (bfd_get_arch (abfd
))
1599 case bfd_arch_sparc
:
1600 if (hdr
->sh_link
== (SHN_LORESERVE
& 0xffff) /* SHN_BEFORE */
1601 || hdr
->sh_link
== ((SHN_LORESERVE
+ 1) & 0xffff) /* SHN_AFTER */)
1603 /* Otherwise fall through. */
1608 else if (elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1610 else if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1612 Elf_Internal_Shdr
*dynsymhdr
;
1614 /* The shared libraries distributed with hpux11 have a bogus
1615 sh_link field for the ".dynamic" section. Find the
1616 string table for the ".dynsym" section instead. */
1617 if (elf_dynsymtab (abfd
) != 0)
1619 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1620 hdr
->sh_link
= dynsymhdr
->sh_link
;
1624 unsigned int i
, num_sec
;
1626 num_sec
= elf_numsections (abfd
);
1627 for (i
= 1; i
< num_sec
; i
++)
1629 dynsymhdr
= elf_elfsections (abfd
)[i
];
1630 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1632 hdr
->sh_link
= dynsymhdr
->sh_link
;
1640 case SHT_SYMTAB
: /* A symbol table */
1641 if (elf_onesymtab (abfd
) == shindex
)
1644 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1646 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1648 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1649 elf_onesymtab (abfd
) = shindex
;
1650 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1651 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1652 abfd
->flags
|= HAS_SYMS
;
1654 /* Sometimes a shared object will map in the symbol table. If
1655 SHF_ALLOC is set, and this is a shared object, then we also
1656 treat this section as a BFD section. We can not base the
1657 decision purely on SHF_ALLOC, because that flag is sometimes
1658 set in a relocatable object file, which would confuse the
1660 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1661 && (abfd
->flags
& DYNAMIC
) != 0
1662 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1666 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1667 can't read symbols without that section loaded as well. It
1668 is most likely specified by the next section header. */
1669 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1671 unsigned int i
, num_sec
;
1673 num_sec
= elf_numsections (abfd
);
1674 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1676 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1677 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1678 && hdr2
->sh_link
== shindex
)
1682 for (i
= 1; i
< shindex
; i
++)
1684 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1685 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1686 && hdr2
->sh_link
== shindex
)
1690 return bfd_section_from_shdr (abfd
, i
);
1694 case SHT_DYNSYM
: /* A dynamic symbol table */
1695 if (elf_dynsymtab (abfd
) == shindex
)
1698 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1700 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1701 elf_dynsymtab (abfd
) = shindex
;
1702 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1703 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1704 abfd
->flags
|= HAS_SYMS
;
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1710 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd
) == shindex
)
1714 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1715 elf_symtab_shndx (abfd
) = shindex
;
1716 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1717 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1720 case SHT_STRTAB
: /* A string table */
1721 if (hdr
->bfd_section
!= NULL
)
1723 if (ehdr
->e_shstrndx
== shindex
)
1725 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1726 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1729 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1732 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1733 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1736 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1739 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1740 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1741 elf_elfsections (abfd
)[shindex
] = hdr
;
1742 /* We also treat this as a regular section, so that objcopy
1744 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1753 unsigned int i
, num_sec
;
1755 num_sec
= elf_numsections (abfd
);
1756 for (i
= 1; i
< num_sec
; i
++)
1758 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1759 if (hdr2
->sh_link
== shindex
)
1761 /* Prevent endless recursion on broken objects. */
1764 if (! bfd_section_from_shdr (abfd
, i
))
1766 if (elf_onesymtab (abfd
) == i
)
1768 if (elf_dynsymtab (abfd
) == i
)
1769 goto dynsymtab_strtab
;
1773 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1777 /* *These* do a lot of work -- but build no sections! */
1779 asection
*target_sect
;
1780 Elf_Internal_Shdr
*hdr2
, **p_hdr
;
1781 unsigned int num_sec
= elf_numsections (abfd
);
1782 struct bfd_elf_section_data
*esdt
;
1786 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1787 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr
->sh_link
>= num_sec
)
1793 ((*_bfd_error_handler
)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd
, hdr
->sh_link
, name
, shindex
));
1796 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1808 Don't do it on executable nor shared library. */
1809 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1810 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1811 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1817 for (scan
= 1; scan
< num_sec
; scan
++)
1819 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1820 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1831 hdr
->sh_link
= found
;
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1836 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1837 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1848 || hdr
->sh_link
== SHN_UNDEF
1849 || hdr
->sh_info
== SHN_UNDEF
1850 || hdr
->sh_info
>= num_sec
1851 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1852 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1853 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1856 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1858 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1859 if (target_sect
== NULL
)
1862 esdt
= elf_section_data (target_sect
);
1863 if (hdr
->sh_type
== SHT_RELA
)
1864 p_hdr
= &esdt
->rela
.hdr
;
1866 p_hdr
= &esdt
->rel
.hdr
;
1868 BFD_ASSERT (*p_hdr
== NULL
);
1869 amt
= sizeof (*hdr2
);
1870 hdr2
= (Elf_Internal_Shdr
*) bfd_alloc (abfd
, amt
);
1875 elf_elfsections (abfd
)[shindex
] = hdr2
;
1876 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1877 target_sect
->flags
|= SEC_RELOC
;
1878 target_sect
->relocation
= NULL
;
1879 target_sect
->rel_filepos
= hdr
->sh_offset
;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr
->sh_size
!= 0)
1884 if (hdr
->sh_type
== SHT_RELA
)
1885 target_sect
->use_rela_p
= 1;
1887 abfd
->flags
|= HAS_RELOC
;
1891 case SHT_GNU_verdef
:
1892 elf_dynverdef (abfd
) = shindex
;
1893 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1894 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1896 case SHT_GNU_versym
:
1897 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1899 elf_dynversym (abfd
) = shindex
;
1900 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1901 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1903 case SHT_GNU_verneed
:
1904 elf_dynverref (abfd
) = shindex
;
1905 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1906 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1914 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1916 if (hdr
->contents
!= NULL
)
1918 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1919 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1922 if (idx
->flags
& GRP_COMDAT
)
1923 hdr
->bfd_section
->flags
1924 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1926 /* We try to keep the same section order as it comes in. */
1928 while (--n_elt
!= 0)
1932 if (idx
->shdr
!= NULL
1933 && (s
= idx
->shdr
->bfd_section
) != NULL
1934 && elf_next_in_group (s
) != NULL
)
1936 elf_next_in_group (hdr
->bfd_section
) = s
;
1944 /* Possibly an attributes section. */
1945 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1946 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1948 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1950 _bfd_elf_parse_attributes (abfd
, hdr
);
1954 /* Check for any processor-specific section types. */
1955 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1958 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1960 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler
)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd
, name
, hdr
->sh_type
);
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1972 else if (hdr
->sh_type
>= SHT_LOPROC
1973 && hdr
->sh_type
<= SHT_HIPROC
)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler
)
1976 (_("%B: don't know how to handle processor specific section "
1978 abfd
, name
, hdr
->sh_type
);
1979 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler
)
1987 (_("%B: don't know how to handle OS specific section "
1989 abfd
, name
, hdr
->sh_type
);
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler
)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd
, name
, hdr
->sh_type
);
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2009 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
2011 unsigned long r_symndx
)
2013 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2015 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
2017 Elf_Internal_Shdr
*symtab_hdr
;
2018 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2019 Elf_External_Sym_Shndx eshndx
;
2021 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2022 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2023 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
2026 if (cache
->abfd
!= abfd
)
2028 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2031 cache
->indx
[ent
] = r_symndx
;
2034 return &cache
->sym
[ent
];
2037 /* Given an ELF section number, retrieve the corresponding BFD
2041 bfd_section_from_elf_index (bfd
*abfd
, unsigned int sec_index
)
2043 if (sec_index
>= elf_numsections (abfd
))
2045 return elf_elfsections (abfd
)[sec_index
]->bfd_section
;
2048 static const struct bfd_elf_special_section special_sections_b
[] =
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2051 { NULL
, 0, 0, 0, 0 }
2054 static const struct bfd_elf_special_section special_sections_c
[] =
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2057 { NULL
, 0, 0, 0, 0 }
2060 static const struct bfd_elf_special_section special_sections_d
[] =
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2064 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2065 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2066 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2067 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2068 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2069 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2070 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2071 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2072 { NULL
, 0, 0, 0, 0 }
2075 static const struct bfd_elf_special_section special_sections_f
[] =
2077 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2078 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2079 { NULL
, 0, 0, 0, 0 }
2082 static const struct bfd_elf_special_section special_sections_g
[] =
2084 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2085 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS
, SHF_EXCLUDE
},
2086 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2087 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2088 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2089 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2090 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2091 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2092 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2093 { NULL
, 0, 0, 0, 0 }
2096 static const struct bfd_elf_special_section special_sections_h
[] =
2098 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2099 { NULL
, 0, 0, 0, 0 }
2102 static const struct bfd_elf_special_section special_sections_i
[] =
2104 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2105 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2106 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2107 { NULL
, 0, 0, 0, 0 }
2110 static const struct bfd_elf_special_section special_sections_l
[] =
2112 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2113 { NULL
, 0, 0, 0, 0 }
2116 static const struct bfd_elf_special_section special_sections_n
[] =
2118 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2119 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2120 { NULL
, 0, 0, 0, 0 }
2123 static const struct bfd_elf_special_section special_sections_p
[] =
2125 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2126 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2127 { NULL
, 0, 0, 0, 0 }
2130 static const struct bfd_elf_special_section special_sections_r
[] =
2132 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2133 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2134 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2135 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2136 { NULL
, 0, 0, 0, 0 }
2139 static const struct bfd_elf_special_section special_sections_s
[] =
2141 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2142 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2143 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2144 /* See struct bfd_elf_special_section declaration for the semantics of
2145 this special case where .prefix_length != strlen (.prefix). */
2146 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2147 { NULL
, 0, 0, 0, 0 }
2150 static const struct bfd_elf_special_section special_sections_t
[] =
2152 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2153 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2154 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2155 { NULL
, 0, 0, 0, 0 }
2158 static const struct bfd_elf_special_section special_sections_z
[] =
2160 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2161 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2162 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2163 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2164 { NULL
, 0, 0, 0, 0 }
2167 static const struct bfd_elf_special_section
*special_sections
[] =
2169 special_sections_b
, /* 'b' */
2170 special_sections_c
, /* 'c' */
2171 special_sections_d
, /* 'd' */
2173 special_sections_f
, /* 'f' */
2174 special_sections_g
, /* 'g' */
2175 special_sections_h
, /* 'h' */
2176 special_sections_i
, /* 'i' */
2179 special_sections_l
, /* 'l' */
2181 special_sections_n
, /* 'n' */
2183 special_sections_p
, /* 'p' */
2185 special_sections_r
, /* 'r' */
2186 special_sections_s
, /* 's' */
2187 special_sections_t
, /* 't' */
2193 special_sections_z
/* 'z' */
2196 const struct bfd_elf_special_section
*
2197 _bfd_elf_get_special_section (const char *name
,
2198 const struct bfd_elf_special_section
*spec
,
2204 len
= strlen (name
);
2206 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2209 int prefix_len
= spec
[i
].prefix_length
;
2211 if (len
< prefix_len
)
2213 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2216 suffix_len
= spec
[i
].suffix_length
;
2217 if (suffix_len
<= 0)
2219 if (name
[prefix_len
] != 0)
2221 if (suffix_len
== 0)
2223 if (name
[prefix_len
] != '.'
2224 && (suffix_len
== -2
2225 || (rela
&& spec
[i
].type
== SHT_REL
)))
2231 if (len
< prefix_len
+ suffix_len
)
2233 if (memcmp (name
+ len
- suffix_len
,
2234 spec
[i
].prefix
+ prefix_len
,
2244 const struct bfd_elf_special_section
*
2245 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2248 const struct bfd_elf_special_section
*spec
;
2249 const struct elf_backend_data
*bed
;
2251 /* See if this is one of the special sections. */
2252 if (sec
->name
== NULL
)
2255 bed
= get_elf_backend_data (abfd
);
2256 spec
= bed
->special_sections
;
2259 spec
= _bfd_elf_get_special_section (sec
->name
,
2260 bed
->special_sections
,
2266 if (sec
->name
[0] != '.')
2269 i
= sec
->name
[1] - 'b';
2270 if (i
< 0 || i
> 'z' - 'b')
2273 spec
= special_sections
[i
];
2278 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2282 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2284 struct bfd_elf_section_data
*sdata
;
2285 const struct elf_backend_data
*bed
;
2286 const struct bfd_elf_special_section
*ssect
;
2288 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2291 sdata
= (struct bfd_elf_section_data
*) bfd_zalloc (abfd
,
2295 sec
->used_by_bfd
= sdata
;
2298 /* Indicate whether or not this section should use RELA relocations. */
2299 bed
= get_elf_backend_data (abfd
);
2300 sec
->use_rela_p
= bed
->default_use_rela_p
;
2302 /* When we read a file, we don't need to set ELF section type and
2303 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2304 anyway. We will set ELF section type and flags for all linker
2305 created sections. If user specifies BFD section flags, we will
2306 set ELF section type and flags based on BFD section flags in
2307 elf_fake_sections. Special handling for .init_array/.fini_array
2308 output sections since they may contain .ctors/.dtors input
2309 sections. We don't want _bfd_elf_init_private_section_data to
2310 copy ELF section type from .ctors/.dtors input sections. */
2311 if (abfd
->direction
!= read_direction
2312 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2314 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2317 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2318 || ssect
->type
== SHT_INIT_ARRAY
2319 || ssect
->type
== SHT_FINI_ARRAY
))
2321 elf_section_type (sec
) = ssect
->type
;
2322 elf_section_flags (sec
) = ssect
->attr
;
2326 return _bfd_generic_new_section_hook (abfd
, sec
);
2329 /* Create a new bfd section from an ELF program header.
2331 Since program segments have no names, we generate a synthetic name
2332 of the form segment<NUM>, where NUM is generally the index in the
2333 program header table. For segments that are split (see below) we
2334 generate the names segment<NUM>a and segment<NUM>b.
2336 Note that some program segments may have a file size that is different than
2337 (less than) the memory size. All this means is that at execution the
2338 system must allocate the amount of memory specified by the memory size,
2339 but only initialize it with the first "file size" bytes read from the
2340 file. This would occur for example, with program segments consisting
2341 of combined data+bss.
2343 To handle the above situation, this routine generates TWO bfd sections
2344 for the single program segment. The first has the length specified by
2345 the file size of the segment, and the second has the length specified
2346 by the difference between the two sizes. In effect, the segment is split
2347 into its initialized and uninitialized parts.
2352 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2353 Elf_Internal_Phdr
*hdr
,
2355 const char *type_name
)
2363 split
= ((hdr
->p_memsz
> 0)
2364 && (hdr
->p_filesz
> 0)
2365 && (hdr
->p_memsz
> hdr
->p_filesz
));
2367 if (hdr
->p_filesz
> 0)
2369 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "a" : "");
2370 len
= strlen (namebuf
) + 1;
2371 name
= (char *) bfd_alloc (abfd
, len
);
2374 memcpy (name
, namebuf
, len
);
2375 newsect
= bfd_make_section (abfd
, name
);
2376 if (newsect
== NULL
)
2378 newsect
->vma
= hdr
->p_vaddr
;
2379 newsect
->lma
= hdr
->p_paddr
;
2380 newsect
->size
= hdr
->p_filesz
;
2381 newsect
->filepos
= hdr
->p_offset
;
2382 newsect
->flags
|= SEC_HAS_CONTENTS
;
2383 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2384 if (hdr
->p_type
== PT_LOAD
)
2386 newsect
->flags
|= SEC_ALLOC
;
2387 newsect
->flags
|= SEC_LOAD
;
2388 if (hdr
->p_flags
& PF_X
)
2390 /* FIXME: all we known is that it has execute PERMISSION,
2392 newsect
->flags
|= SEC_CODE
;
2395 if (!(hdr
->p_flags
& PF_W
))
2397 newsect
->flags
|= SEC_READONLY
;
2401 if (hdr
->p_memsz
> hdr
->p_filesz
)
2405 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "b" : "");
2406 len
= strlen (namebuf
) + 1;
2407 name
= (char *) bfd_alloc (abfd
, len
);
2410 memcpy (name
, namebuf
, len
);
2411 newsect
= bfd_make_section (abfd
, name
);
2412 if (newsect
== NULL
)
2414 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2415 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2416 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2417 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2418 align
= newsect
->vma
& -newsect
->vma
;
2419 if (align
== 0 || align
> hdr
->p_align
)
2420 align
= hdr
->p_align
;
2421 newsect
->alignment_power
= bfd_log2 (align
);
2422 if (hdr
->p_type
== PT_LOAD
)
2424 /* Hack for gdb. Segments that have not been modified do
2425 not have their contents written to a core file, on the
2426 assumption that a debugger can find the contents in the
2427 executable. We flag this case by setting the fake
2428 section size to zero. Note that "real" bss sections will
2429 always have their contents dumped to the core file. */
2430 if (bfd_get_format (abfd
) == bfd_core
)
2432 newsect
->flags
|= SEC_ALLOC
;
2433 if (hdr
->p_flags
& PF_X
)
2434 newsect
->flags
|= SEC_CODE
;
2436 if (!(hdr
->p_flags
& PF_W
))
2437 newsect
->flags
|= SEC_READONLY
;
2444 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int hdr_index
)
2446 const struct elf_backend_data
*bed
;
2448 switch (hdr
->p_type
)
2451 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "null");
2454 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "load");
2457 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "dynamic");
2460 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "interp");
2463 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "note"))
2465 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2470 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "shlib");
2473 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "phdr");
2475 case PT_GNU_EH_FRAME
:
2476 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
,
2480 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "stack");
2483 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "relro");
2486 /* Check for any processor-specific program segment types. */
2487 bed
= get_elf_backend_data (abfd
);
2488 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, hdr_index
, "proc");
2492 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2496 _bfd_elf_single_rel_hdr (asection
*sec
)
2498 if (elf_section_data (sec
)->rel
.hdr
)
2500 BFD_ASSERT (elf_section_data (sec
)->rela
.hdr
== NULL
);
2501 return elf_section_data (sec
)->rel
.hdr
;
2504 return elf_section_data (sec
)->rela
.hdr
;
2507 /* Allocate and initialize a section-header for a new reloc section,
2508 containing relocations against ASECT. It is stored in RELDATA. If
2509 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2513 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2514 struct bfd_elf_section_reloc_data
*reldata
,
2516 bfd_boolean use_rela_p
)
2518 Elf_Internal_Shdr
*rel_hdr
;
2520 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2523 amt
= sizeof (Elf_Internal_Shdr
);
2524 BFD_ASSERT (reldata
->hdr
== NULL
);
2525 rel_hdr
= bfd_zalloc (abfd
, amt
);
2526 reldata
->hdr
= rel_hdr
;
2528 amt
= sizeof ".rela" + strlen (asect
->name
);
2529 name
= (char *) bfd_alloc (abfd
, amt
);
2532 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2534 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2536 if (rel_hdr
->sh_name
== (unsigned int) -1)
2538 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2539 rel_hdr
->sh_entsize
= (use_rela_p
2540 ? bed
->s
->sizeof_rela
2541 : bed
->s
->sizeof_rel
);
2542 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2543 rel_hdr
->sh_flags
= 0;
2544 rel_hdr
->sh_addr
= 0;
2545 rel_hdr
->sh_size
= 0;
2546 rel_hdr
->sh_offset
= 0;
2551 /* Return the default section type based on the passed in section flags. */
2554 bfd_elf_get_default_section_type (flagword flags
)
2556 if ((flags
& SEC_ALLOC
) != 0
2557 && (flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2559 return SHT_PROGBITS
;
2562 struct fake_section_arg
2564 struct bfd_link_info
*link_info
;
2568 /* Set up an ELF internal section header for a section. */
2571 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *fsarg
)
2573 struct fake_section_arg
*arg
= (struct fake_section_arg
*)fsarg
;
2574 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2575 struct bfd_elf_section_data
*esd
= elf_section_data (asect
);
2576 Elf_Internal_Shdr
*this_hdr
;
2577 unsigned int sh_type
;
2581 /* We already failed; just get out of the bfd_map_over_sections
2586 this_hdr
= &esd
->this_hdr
;
2588 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2589 asect
->name
, FALSE
);
2590 if (this_hdr
->sh_name
== (unsigned int) -1)
2596 /* Don't clear sh_flags. Assembler may set additional bits. */
2598 if ((asect
->flags
& SEC_ALLOC
) != 0
2599 || asect
->user_set_vma
)
2600 this_hdr
->sh_addr
= asect
->vma
;
2602 this_hdr
->sh_addr
= 0;
2604 this_hdr
->sh_offset
= 0;
2605 this_hdr
->sh_size
= asect
->size
;
2606 this_hdr
->sh_link
= 0;
2607 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2608 /* The sh_entsize and sh_info fields may have been set already by
2609 copy_private_section_data. */
2611 this_hdr
->bfd_section
= asect
;
2612 this_hdr
->contents
= NULL
;
2614 /* If the section type is unspecified, we set it based on
2616 if ((asect
->flags
& SEC_GROUP
) != 0)
2617 sh_type
= SHT_GROUP
;
2619 sh_type
= bfd_elf_get_default_section_type (asect
->flags
);
2621 if (this_hdr
->sh_type
== SHT_NULL
)
2622 this_hdr
->sh_type
= sh_type
;
2623 else if (this_hdr
->sh_type
== SHT_NOBITS
2624 && sh_type
== SHT_PROGBITS
2625 && (asect
->flags
& SEC_ALLOC
) != 0)
2627 /* Warn if we are changing a NOBITS section to PROGBITS, but
2628 allow the link to proceed. This can happen when users link
2629 non-bss input sections to bss output sections, or emit data
2630 to a bss output section via a linker script. */
2631 (*_bfd_error_handler
)
2632 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2633 this_hdr
->sh_type
= sh_type
;
2636 switch (this_hdr
->sh_type
)
2642 case SHT_INIT_ARRAY
:
2643 case SHT_FINI_ARRAY
:
2644 case SHT_PREINIT_ARRAY
:
2651 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2655 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2659 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2663 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2664 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2668 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2669 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2672 case SHT_GNU_versym
:
2673 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2676 case SHT_GNU_verdef
:
2677 this_hdr
->sh_entsize
= 0;
2678 /* objcopy or strip will copy over sh_info, but may not set
2679 cverdefs. The linker will set cverdefs, but sh_info will be
2681 if (this_hdr
->sh_info
== 0)
2682 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2684 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2685 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2688 case SHT_GNU_verneed
:
2689 this_hdr
->sh_entsize
= 0;
2690 /* objcopy or strip will copy over sh_info, but may not set
2691 cverrefs. The linker will set cverrefs, but sh_info will be
2693 if (this_hdr
->sh_info
== 0)
2694 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2696 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2697 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2701 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2705 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2709 if ((asect
->flags
& SEC_ALLOC
) != 0)
2710 this_hdr
->sh_flags
|= SHF_ALLOC
;
2711 if ((asect
->flags
& SEC_READONLY
) == 0)
2712 this_hdr
->sh_flags
|= SHF_WRITE
;
2713 if ((asect
->flags
& SEC_CODE
) != 0)
2714 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2715 if ((asect
->flags
& SEC_MERGE
) != 0)
2717 this_hdr
->sh_flags
|= SHF_MERGE
;
2718 this_hdr
->sh_entsize
= asect
->entsize
;
2719 if ((asect
->flags
& SEC_STRINGS
) != 0)
2720 this_hdr
->sh_flags
|= SHF_STRINGS
;
2722 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2723 this_hdr
->sh_flags
|= SHF_GROUP
;
2724 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2726 this_hdr
->sh_flags
|= SHF_TLS
;
2727 if (asect
->size
== 0
2728 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2730 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2732 this_hdr
->sh_size
= 0;
2735 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2736 if (this_hdr
->sh_size
!= 0)
2737 this_hdr
->sh_type
= SHT_NOBITS
;
2741 if ((asect
->flags
& (SEC_GROUP
| SEC_EXCLUDE
)) == SEC_EXCLUDE
)
2742 this_hdr
->sh_flags
|= SHF_EXCLUDE
;
2744 /* If the section has relocs, set up a section header for the
2745 SHT_REL[A] section. If two relocation sections are required for
2746 this section, it is up to the processor-specific back-end to
2747 create the other. */
2748 if ((asect
->flags
& SEC_RELOC
) != 0)
2750 /* When doing a relocatable link, create both REL and RELA sections if
2753 /* Do the normal setup if we wouldn't create any sections here. */
2754 && esd
->rel
.count
+ esd
->rela
.count
> 0
2755 && (arg
->link_info
->relocatable
|| arg
->link_info
->emitrelocations
))
2757 if (esd
->rel
.count
&& esd
->rel
.hdr
== NULL
2758 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rel
, asect
, FALSE
))
2763 if (esd
->rela
.count
&& esd
->rela
.hdr
== NULL
2764 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rela
, asect
, TRUE
))
2770 else if (!_bfd_elf_init_reloc_shdr (abfd
,
2772 ? &esd
->rela
: &esd
->rel
),
2778 /* Check for processor-specific section types. */
2779 sh_type
= this_hdr
->sh_type
;
2780 if (bed
->elf_backend_fake_sections
2781 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2784 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2786 /* Don't change the header type from NOBITS if we are being
2787 called for objcopy --only-keep-debug. */
2788 this_hdr
->sh_type
= sh_type
;
2792 /* Fill in the contents of a SHT_GROUP section. Called from
2793 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2794 when ELF targets use the generic linker, ld. Called for ld -r
2795 from bfd_elf_final_link. */
2798 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2800 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2801 asection
*elt
, *first
;
2805 /* Ignore linker created group section. See elfNN_ia64_object_p in
2807 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2811 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2813 unsigned long symindx
= 0;
2815 /* elf_group_id will have been set up by objcopy and the
2817 if (elf_group_id (sec
) != NULL
)
2818 symindx
= elf_group_id (sec
)->udata
.i
;
2822 /* If called from the assembler, swap_out_syms will have set up
2823 elf_section_syms. */
2824 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2825 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2827 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2829 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2831 /* The ELF backend linker sets sh_info to -2 when the group
2832 signature symbol is global, and thus the index can't be
2833 set until all local symbols are output. */
2834 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2835 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2836 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2837 unsigned long extsymoff
= 0;
2838 struct elf_link_hash_entry
*h
;
2840 if (!elf_bad_symtab (igroup
->owner
))
2842 Elf_Internal_Shdr
*symtab_hdr
;
2844 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2845 extsymoff
= symtab_hdr
->sh_info
;
2847 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2848 while (h
->root
.type
== bfd_link_hash_indirect
2849 || h
->root
.type
== bfd_link_hash_warning
)
2850 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2852 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2855 /* The contents won't be allocated for "ld -r" or objcopy. */
2857 if (sec
->contents
== NULL
)
2860 sec
->contents
= (unsigned char *) bfd_alloc (abfd
, sec
->size
);
2862 /* Arrange for the section to be written out. */
2863 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2864 if (sec
->contents
== NULL
)
2871 loc
= sec
->contents
+ sec
->size
;
2873 /* Get the pointer to the first section in the group that gas
2874 squirreled away here. objcopy arranges for this to be set to the
2875 start of the input section group. */
2876 first
= elt
= elf_next_in_group (sec
);
2878 /* First element is a flag word. Rest of section is elf section
2879 indices for all the sections of the group. Write them backwards
2880 just to keep the group in the same order as given in .section
2881 directives, not that it matters. */
2888 s
= s
->output_section
;
2890 && !bfd_is_abs_section (s
))
2892 unsigned int idx
= elf_section_data (s
)->this_idx
;
2895 H_PUT_32 (abfd
, idx
, loc
);
2897 elt
= elf_next_in_group (elt
);
2902 if ((loc
-= 4) != sec
->contents
)
2905 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2908 /* Assign all ELF section numbers. The dummy first section is handled here
2909 too. The link/info pointers for the standard section types are filled
2910 in here too, while we're at it. */
2913 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2915 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2917 unsigned int section_number
, secn
;
2918 Elf_Internal_Shdr
**i_shdrp
;
2919 struct bfd_elf_section_data
*d
;
2920 bfd_boolean need_symtab
;
2924 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2926 /* SHT_GROUP sections are in relocatable files only. */
2927 if (link_info
== NULL
|| link_info
->relocatable
)
2929 /* Put SHT_GROUP sections first. */
2930 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2932 d
= elf_section_data (sec
);
2934 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2936 if (sec
->flags
& SEC_LINKER_CREATED
)
2938 /* Remove the linker created SHT_GROUP sections. */
2939 bfd_section_list_remove (abfd
, sec
);
2940 abfd
->section_count
--;
2943 d
->this_idx
= section_number
++;
2948 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2950 d
= elf_section_data (sec
);
2952 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2953 d
->this_idx
= section_number
++;
2954 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2957 d
->rel
.idx
= section_number
++;
2958 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel
.hdr
->sh_name
);
2965 d
->rela
.idx
= section_number
++;
2966 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rela
.hdr
->sh_name
);
2972 t
->shstrtab_section
= section_number
++;
2973 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2974 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2976 need_symtab
= (bfd_get_symcount (abfd
) > 0
2977 || (link_info
== NULL
2978 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2982 t
->symtab_section
= section_number
++;
2983 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2984 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2986 t
->symtab_shndx_section
= section_number
++;
2987 t
->symtab_shndx_hdr
.sh_name
2988 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2989 ".symtab_shndx", FALSE
);
2990 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2993 t
->strtab_section
= section_number
++;
2994 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2997 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2998 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3000 elf_numsections (abfd
) = section_number
;
3001 elf_elfheader (abfd
)->e_shnum
= section_number
;
3003 /* Set up the list of section header pointers, in agreement with the
3005 i_shdrp
= (Elf_Internal_Shdr
**) bfd_zalloc2 (abfd
, section_number
,
3006 sizeof (Elf_Internal_Shdr
*));
3007 if (i_shdrp
== NULL
)
3010 i_shdrp
[0] = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
,
3011 sizeof (Elf_Internal_Shdr
));
3012 if (i_shdrp
[0] == NULL
)
3014 bfd_release (abfd
, i_shdrp
);
3018 elf_elfsections (abfd
) = i_shdrp
;
3020 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3023 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3024 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
3026 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3027 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3029 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3030 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3033 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3038 d
= elf_section_data (sec
);
3040 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3041 if (d
->rel
.idx
!= 0)
3042 i_shdrp
[d
->rel
.idx
] = d
->rel
.hdr
;
3043 if (d
->rela
.idx
!= 0)
3044 i_shdrp
[d
->rela
.idx
] = d
->rela
.hdr
;
3046 /* Fill in the sh_link and sh_info fields while we're at it. */
3048 /* sh_link of a reloc section is the section index of the symbol
3049 table. sh_info is the section index of the section to which
3050 the relocation entries apply. */
3051 if (d
->rel
.idx
!= 0)
3053 d
->rel
.hdr
->sh_link
= t
->symtab_section
;
3054 d
->rel
.hdr
->sh_info
= d
->this_idx
;
3056 if (d
->rela
.idx
!= 0)
3058 d
->rela
.hdr
->sh_link
= t
->symtab_section
;
3059 d
->rela
.hdr
->sh_info
= d
->this_idx
;
3062 /* We need to set up sh_link for SHF_LINK_ORDER. */
3063 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3065 s
= elf_linked_to_section (sec
);
3068 /* elf_linked_to_section points to the input section. */
3069 if (link_info
!= NULL
)
3071 /* Check discarded linkonce section. */
3072 if (elf_discarded_section (s
))
3075 (*_bfd_error_handler
)
3076 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3077 abfd
, d
->this_hdr
.bfd_section
,
3079 /* Point to the kept section if it has the same
3080 size as the discarded one. */
3081 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3084 bfd_set_error (bfd_error_bad_value
);
3090 s
= s
->output_section
;
3091 BFD_ASSERT (s
!= NULL
);
3095 /* Handle objcopy. */
3096 if (s
->output_section
== NULL
)
3098 (*_bfd_error_handler
)
3099 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3100 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3101 bfd_set_error (bfd_error_bad_value
);
3104 s
= s
->output_section
;
3106 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3111 The Intel C compiler generates SHT_IA_64_UNWIND with
3112 SHF_LINK_ORDER. But it doesn't set the sh_link or
3113 sh_info fields. Hence we could get the situation
3115 const struct elf_backend_data
*bed
3116 = get_elf_backend_data (abfd
);
3117 if (bed
->link_order_error_handler
)
3118 bed
->link_order_error_handler
3119 (_("%B: warning: sh_link not set for section `%A'"),
3124 switch (d
->this_hdr
.sh_type
)
3128 /* A reloc section which we are treating as a normal BFD
3129 section. sh_link is the section index of the symbol
3130 table. sh_info is the section index of the section to
3131 which the relocation entries apply. We assume that an
3132 allocated reloc section uses the dynamic symbol table.
3133 FIXME: How can we be sure? */
3134 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3136 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3138 /* We look up the section the relocs apply to by name. */
3140 if (d
->this_hdr
.sh_type
== SHT_REL
)
3144 s
= bfd_get_section_by_name (abfd
, name
);
3146 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3150 /* We assume that a section named .stab*str is a stabs
3151 string section. We look for a section with the same name
3152 but without the trailing ``str'', and set its sh_link
3153 field to point to this section. */
3154 if (CONST_STRNEQ (sec
->name
, ".stab")
3155 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3160 len
= strlen (sec
->name
);
3161 alc
= (char *) bfd_malloc (len
- 2);
3164 memcpy (alc
, sec
->name
, len
- 3);
3165 alc
[len
- 3] = '\0';
3166 s
= bfd_get_section_by_name (abfd
, alc
);
3170 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3172 /* This is a .stab section. */
3173 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3174 elf_section_data (s
)->this_hdr
.sh_entsize
3175 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3182 case SHT_GNU_verneed
:
3183 case SHT_GNU_verdef
:
3184 /* sh_link is the section header index of the string table
3185 used for the dynamic entries, or the symbol table, or the
3187 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3189 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3192 case SHT_GNU_LIBLIST
:
3193 /* sh_link is the section header index of the prelink library
3194 list used for the dynamic entries, or the symbol table, or
3195 the version strings. */
3196 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3197 ? ".dynstr" : ".gnu.libstr");
3199 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3204 case SHT_GNU_versym
:
3205 /* sh_link is the section header index of the symbol table
3206 this hash table or version table is for. */
3207 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3209 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3213 d
->this_hdr
.sh_link
= t
->symtab_section
;
3217 for (secn
= 1; secn
< section_number
; ++secn
)
3218 if (i_shdrp
[secn
] == NULL
)
3219 i_shdrp
[secn
] = i_shdrp
[0];
3221 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3222 i_shdrp
[secn
]->sh_name
);
3226 /* Map symbol from it's internal number to the external number, moving
3227 all local symbols to be at the head of the list. */
3230 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3232 /* If the backend has a special mapping, use it. */
3233 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3234 if (bed
->elf_backend_sym_is_global
)
3235 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3237 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3238 || bfd_is_und_section (bfd_get_section (sym
))
3239 || bfd_is_com_section (bfd_get_section (sym
)));
3242 /* Don't output section symbols for sections that are not going to be
3246 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3248 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3249 && !(sym
->section
->owner
== abfd
3250 || (sym
->section
->output_section
->owner
== abfd
3251 && sym
->section
->output_offset
== 0)));
3255 elf_map_symbols (bfd
*abfd
)
3257 unsigned int symcount
= bfd_get_symcount (abfd
);
3258 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3259 asymbol
**sect_syms
;
3260 unsigned int num_locals
= 0;
3261 unsigned int num_globals
= 0;
3262 unsigned int num_locals2
= 0;
3263 unsigned int num_globals2
= 0;
3270 fprintf (stderr
, "elf_map_symbols\n");
3274 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3276 if (max_index
< asect
->index
)
3277 max_index
= asect
->index
;
3281 sect_syms
= (asymbol
**) bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3282 if (sect_syms
== NULL
)
3284 elf_section_syms (abfd
) = sect_syms
;
3285 elf_num_section_syms (abfd
) = max_index
;
3287 /* Init sect_syms entries for any section symbols we have already
3288 decided to output. */
3289 for (idx
= 0; idx
< symcount
; idx
++)
3291 asymbol
*sym
= syms
[idx
];
3293 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3295 && !ignore_section_sym (abfd
, sym
))
3297 asection
*sec
= sym
->section
;
3299 if (sec
->owner
!= abfd
)
3300 sec
= sec
->output_section
;
3302 sect_syms
[sec
->index
] = syms
[idx
];
3306 /* Classify all of the symbols. */
3307 for (idx
= 0; idx
< symcount
; idx
++)
3309 if (ignore_section_sym (abfd
, syms
[idx
]))
3311 if (!sym_is_global (abfd
, syms
[idx
]))
3317 /* We will be adding a section symbol for each normal BFD section. Most
3318 sections will already have a section symbol in outsymbols, but
3319 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3320 at least in that case. */
3321 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3323 if (sect_syms
[asect
->index
] == NULL
)
3325 if (!sym_is_global (abfd
, asect
->symbol
))
3332 /* Now sort the symbols so the local symbols are first. */
3333 new_syms
= (asymbol
**) bfd_alloc2 (abfd
, num_locals
+ num_globals
,
3334 sizeof (asymbol
*));
3336 if (new_syms
== NULL
)
3339 for (idx
= 0; idx
< symcount
; idx
++)
3341 asymbol
*sym
= syms
[idx
];
3344 if (ignore_section_sym (abfd
, sym
))
3346 if (!sym_is_global (abfd
, sym
))
3349 i
= num_locals
+ num_globals2
++;
3351 sym
->udata
.i
= i
+ 1;
3353 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3355 if (sect_syms
[asect
->index
] == NULL
)
3357 asymbol
*sym
= asect
->symbol
;
3360 sect_syms
[asect
->index
] = sym
;
3361 if (!sym_is_global (abfd
, sym
))
3364 i
= num_locals
+ num_globals2
++;
3366 sym
->udata
.i
= i
+ 1;
3370 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3372 elf_num_locals (abfd
) = num_locals
;
3373 elf_num_globals (abfd
) = num_globals
;
3377 /* Align to the maximum file alignment that could be required for any
3378 ELF data structure. */
3380 static inline file_ptr
3381 align_file_position (file_ptr off
, int align
)
3383 return (off
+ align
- 1) & ~(align
- 1);
3386 /* Assign a file position to a section, optionally aligning to the
3387 required section alignment. */
3390 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3394 if (align
&& i_shdrp
->sh_addralign
> 1)
3395 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3396 i_shdrp
->sh_offset
= offset
;
3397 if (i_shdrp
->bfd_section
!= NULL
)
3398 i_shdrp
->bfd_section
->filepos
= offset
;
3399 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3400 offset
+= i_shdrp
->sh_size
;
3404 /* Compute the file positions we are going to put the sections at, and
3405 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3406 is not NULL, this is being called by the ELF backend linker. */
3409 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3410 struct bfd_link_info
*link_info
)
3412 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3413 struct fake_section_arg fsargs
;
3415 struct bfd_strtab_hash
*strtab
= NULL
;
3416 Elf_Internal_Shdr
*shstrtab_hdr
;
3417 bfd_boolean need_symtab
;
3419 if (abfd
->output_has_begun
)
3422 /* Do any elf backend specific processing first. */
3423 if (bed
->elf_backend_begin_write_processing
)
3424 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3426 if (! prep_headers (abfd
))
3429 /* Post process the headers if necessary. */
3430 if (bed
->elf_backend_post_process_headers
)
3431 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3433 fsargs
.failed
= FALSE
;
3434 fsargs
.link_info
= link_info
;
3435 bfd_map_over_sections (abfd
, elf_fake_sections
, &fsargs
);
3439 if (!assign_section_numbers (abfd
, link_info
))
3442 /* The backend linker builds symbol table information itself. */
3443 need_symtab
= (link_info
== NULL
3444 && (bfd_get_symcount (abfd
) > 0
3445 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3449 /* Non-zero if doing a relocatable link. */
3450 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3452 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3457 if (link_info
== NULL
)
3459 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3464 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3465 /* sh_name was set in prep_headers. */
3466 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3467 shstrtab_hdr
->sh_flags
= 0;
3468 shstrtab_hdr
->sh_addr
= 0;
3469 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3470 shstrtab_hdr
->sh_entsize
= 0;
3471 shstrtab_hdr
->sh_link
= 0;
3472 shstrtab_hdr
->sh_info
= 0;
3473 /* sh_offset is set in assign_file_positions_except_relocs. */
3474 shstrtab_hdr
->sh_addralign
= 1;
3476 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3482 Elf_Internal_Shdr
*hdr
;
3484 off
= elf_tdata (abfd
)->next_file_pos
;
3486 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3487 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3489 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3490 if (hdr
->sh_size
!= 0)
3491 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3493 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3494 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3496 elf_tdata (abfd
)->next_file_pos
= off
;
3498 /* Now that we know where the .strtab section goes, write it
3500 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3501 || ! _bfd_stringtab_emit (abfd
, strtab
))
3503 _bfd_stringtab_free (strtab
);
3506 abfd
->output_has_begun
= TRUE
;
3511 /* Make an initial estimate of the size of the program header. If we
3512 get the number wrong here, we'll redo section placement. */
3514 static bfd_size_type
3515 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3519 const struct elf_backend_data
*bed
;
3521 /* Assume we will need exactly two PT_LOAD segments: one for text
3522 and one for data. */
3525 s
= bfd_get_section_by_name (abfd
, ".interp");
3526 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3528 /* If we have a loadable interpreter section, we need a
3529 PT_INTERP segment. In this case, assume we also need a
3530 PT_PHDR segment, although that may not be true for all
3535 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3537 /* We need a PT_DYNAMIC segment. */
3541 if (info
!= NULL
&& info
->relro
)
3543 /* We need a PT_GNU_RELRO segment. */
3547 if (elf_tdata (abfd
)->eh_frame_hdr
)
3549 /* We need a PT_GNU_EH_FRAME segment. */
3553 if (elf_tdata (abfd
)->stack_flags
)
3555 /* We need a PT_GNU_STACK segment. */
3559 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3561 if ((s
->flags
& SEC_LOAD
) != 0
3562 && CONST_STRNEQ (s
->name
, ".note"))
3564 /* We need a PT_NOTE segment. */
3566 /* Try to create just one PT_NOTE segment
3567 for all adjacent loadable .note* sections.
3568 gABI requires that within a PT_NOTE segment
3569 (and also inside of each SHT_NOTE section)
3570 each note is padded to a multiple of 4 size,
3571 so we check whether the sections are correctly
3573 if (s
->alignment_power
== 2)
3574 while (s
->next
!= NULL
3575 && s
->next
->alignment_power
== 2
3576 && (s
->next
->flags
& SEC_LOAD
) != 0
3577 && CONST_STRNEQ (s
->next
->name
, ".note"))
3582 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3584 if (s
->flags
& SEC_THREAD_LOCAL
)
3586 /* We need a PT_TLS segment. */
3592 /* Let the backend count up any program headers it might need. */
3593 bed
= get_elf_backend_data (abfd
);
3594 if (bed
->elf_backend_additional_program_headers
)
3598 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3604 return segs
* bed
->s
->sizeof_phdr
;
3607 /* Find the segment that contains the output_section of section. */
3610 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3612 struct elf_segment_map
*m
;
3613 Elf_Internal_Phdr
*p
;
3615 for (m
= elf_tdata (abfd
)->segment_map
,
3616 p
= elf_tdata (abfd
)->phdr
;
3622 for (i
= m
->count
- 1; i
>= 0; i
--)
3623 if (m
->sections
[i
] == section
)
3630 /* Create a mapping from a set of sections to a program segment. */
3632 static struct elf_segment_map
*
3633 make_mapping (bfd
*abfd
,
3634 asection
**sections
,
3639 struct elf_segment_map
*m
;
3644 amt
= sizeof (struct elf_segment_map
);
3645 amt
+= (to
- from
- 1) * sizeof (asection
*);
3646 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3650 m
->p_type
= PT_LOAD
;
3651 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3652 m
->sections
[i
- from
] = *hdrpp
;
3653 m
->count
= to
- from
;
3655 if (from
== 0 && phdr
)
3657 /* Include the headers in the first PT_LOAD segment. */
3658 m
->includes_filehdr
= 1;
3659 m
->includes_phdrs
= 1;
3665 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 struct elf_segment_map
*
3669 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3671 struct elf_segment_map
*m
;
3673 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
,
3674 sizeof (struct elf_segment_map
));
3678 m
->p_type
= PT_DYNAMIC
;
3680 m
->sections
[0] = dynsec
;
3685 /* Possibly add or remove segments from the segment map. */
3688 elf_modify_segment_map (bfd
*abfd
,
3689 struct bfd_link_info
*info
,
3690 bfd_boolean remove_empty_load
)
3692 struct elf_segment_map
**m
;
3693 const struct elf_backend_data
*bed
;
3695 /* The placement algorithm assumes that non allocated sections are
3696 not in PT_LOAD segments. We ensure this here by removing such
3697 sections from the segment map. We also remove excluded
3698 sections. Finally, any PT_LOAD segment without sections is
3700 m
= &elf_tdata (abfd
)->segment_map
;
3703 unsigned int i
, new_count
;
3705 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3707 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3708 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3709 || (*m
)->p_type
!= PT_LOAD
))
3711 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3715 (*m
)->count
= new_count
;
3717 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3723 bed
= get_elf_backend_data (abfd
);
3724 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3726 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3733 /* Set up a mapping from BFD sections to program segments. */
3736 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3739 struct elf_segment_map
*m
;
3740 asection
**sections
= NULL
;
3741 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3742 bfd_boolean no_user_phdrs
;
3744 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3745 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3749 struct elf_segment_map
*mfirst
;
3750 struct elf_segment_map
**pm
;
3753 unsigned int phdr_index
;
3754 bfd_vma maxpagesize
;
3756 bfd_boolean phdr_in_segment
= TRUE
;
3757 bfd_boolean writable
;
3759 asection
*first_tls
= NULL
;
3760 asection
*dynsec
, *eh_frame_hdr
;
3762 bfd_vma addr_mask
, wrap_to
= 0;
3764 /* Select the allocated sections, and sort them. */
3766 sections
= (asection
**) bfd_malloc2 (bfd_count_sections (abfd
),
3767 sizeof (asection
*));
3768 if (sections
== NULL
)
3771 /* Calculate top address, avoiding undefined behaviour of shift
3772 left operator when shift count is equal to size of type
3774 addr_mask
= ((bfd_vma
) 1 << (bfd_arch_bits_per_address (abfd
) - 1)) - 1;
3775 addr_mask
= (addr_mask
<< 1) + 1;
3778 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3780 if ((s
->flags
& SEC_ALLOC
) != 0)
3784 /* A wrapping section potentially clashes with header. */
3785 if (((s
->lma
+ s
->size
) & addr_mask
) < (s
->lma
& addr_mask
))
3786 wrap_to
= (s
->lma
+ s
->size
) & addr_mask
;
3789 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3792 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3794 /* Build the mapping. */
3799 /* If we have a .interp section, then create a PT_PHDR segment for
3800 the program headers and a PT_INTERP segment for the .interp
3802 s
= bfd_get_section_by_name (abfd
, ".interp");
3803 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3805 amt
= sizeof (struct elf_segment_map
);
3806 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3810 m
->p_type
= PT_PHDR
;
3811 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3812 m
->p_flags
= PF_R
| PF_X
;
3813 m
->p_flags_valid
= 1;
3814 m
->includes_phdrs
= 1;
3819 amt
= sizeof (struct elf_segment_map
);
3820 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3824 m
->p_type
= PT_INTERP
;
3832 /* Look through the sections. We put sections in the same program
3833 segment when the start of the second section can be placed within
3834 a few bytes of the end of the first section. */
3838 maxpagesize
= bed
->maxpagesize
;
3840 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3842 && (dynsec
->flags
& SEC_LOAD
) == 0)
3845 /* Deal with -Ttext or something similar such that the first section
3846 is not adjacent to the program headers. This is an
3847 approximation, since at this point we don't know exactly how many
3848 program headers we will need. */
3851 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3853 if (phdr_size
== (bfd_size_type
) -1)
3854 phdr_size
= get_program_header_size (abfd
, info
);
3855 if ((abfd
->flags
& D_PAGED
) == 0
3856 || (sections
[0]->lma
& addr_mask
) < phdr_size
3857 || ((sections
[0]->lma
& addr_mask
) % maxpagesize
3858 < phdr_size
% maxpagesize
)
3859 || (sections
[0]->lma
& addr_mask
& -maxpagesize
) < wrap_to
)
3860 phdr_in_segment
= FALSE
;
3863 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3866 bfd_boolean new_segment
;
3870 /* See if this section and the last one will fit in the same
3873 if (last_hdr
== NULL
)
3875 /* If we don't have a segment yet, then we don't need a new
3876 one (we build the last one after this loop). */
3877 new_segment
= FALSE
;
3879 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3881 /* If this section has a different relation between the
3882 virtual address and the load address, then we need a new
3886 else if (hdr
->lma
< last_hdr
->lma
+ last_size
3887 || last_hdr
->lma
+ last_size
< last_hdr
->lma
)
3889 /* If this section has a load address that makes it overlap
3890 the previous section, then we need a new segment. */
3893 /* In the next test we have to be careful when last_hdr->lma is close
3894 to the end of the address space. If the aligned address wraps
3895 around to the start of the address space, then there are no more
3896 pages left in memory and it is OK to assume that the current
3897 section can be included in the current segment. */
3898 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3900 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3903 /* If putting this section in this segment would force us to
3904 skip a page in the segment, then we need a new segment. */
3907 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3908 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3910 /* We don't want to put a loadable section after a
3911 nonloadable section in the same segment.
3912 Consider .tbss sections as loadable for this purpose. */
3915 else if ((abfd
->flags
& D_PAGED
) == 0)
3917 /* If the file is not demand paged, which means that we
3918 don't require the sections to be correctly aligned in the
3919 file, then there is no other reason for a new segment. */
3920 new_segment
= FALSE
;
3923 && (hdr
->flags
& SEC_READONLY
) == 0
3924 && (((last_hdr
->lma
+ last_size
- 1) & -maxpagesize
)
3925 != (hdr
->lma
& -maxpagesize
)))
3927 /* We don't want to put a writable section in a read only
3928 segment, unless they are on the same page in memory
3929 anyhow. We already know that the last section does not
3930 bring us past the current section on the page, so the
3931 only case in which the new section is not on the same
3932 page as the previous section is when the previous section
3933 ends precisely on a page boundary. */
3938 /* Otherwise, we can use the same segment. */
3939 new_segment
= FALSE
;
3942 /* Allow interested parties a chance to override our decision. */
3943 if (last_hdr
!= NULL
3945 && info
->callbacks
->override_segment_assignment
!= NULL
)
3947 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3953 if ((hdr
->flags
& SEC_READONLY
) == 0)
3956 /* .tbss sections effectively have zero size. */
3957 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3958 != SEC_THREAD_LOCAL
)
3959 last_size
= hdr
->size
;
3965 /* We need a new program segment. We must create a new program
3966 header holding all the sections from phdr_index until hdr. */
3968 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3975 if ((hdr
->flags
& SEC_READONLY
) == 0)
3981 /* .tbss sections effectively have zero size. */
3982 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3983 last_size
= hdr
->size
;
3987 phdr_in_segment
= FALSE
;
3990 /* Create a final PT_LOAD program segment. */
3991 if (last_hdr
!= NULL
)
3993 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4001 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4004 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4011 /* For each batch of consecutive loadable .note sections,
4012 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4013 because if we link together nonloadable .note sections and
4014 loadable .note sections, we will generate two .note sections
4015 in the output file. FIXME: Using names for section types is
4017 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4019 if ((s
->flags
& SEC_LOAD
) != 0
4020 && CONST_STRNEQ (s
->name
, ".note"))
4025 amt
= sizeof (struct elf_segment_map
);
4026 if (s
->alignment_power
== 2)
4027 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
4029 if (s2
->next
->alignment_power
== 2
4030 && (s2
->next
->flags
& SEC_LOAD
) != 0
4031 && CONST_STRNEQ (s2
->next
->name
, ".note")
4032 && align_power (s2
->lma
+ s2
->size
, 2)
4038 amt
+= (count
- 1) * sizeof (asection
*);
4039 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4043 m
->p_type
= PT_NOTE
;
4047 m
->sections
[m
->count
- count
--] = s
;
4048 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4051 m
->sections
[m
->count
- 1] = s
;
4052 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4056 if (s
->flags
& SEC_THREAD_LOCAL
)
4064 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4067 amt
= sizeof (struct elf_segment_map
);
4068 amt
+= (tls_count
- 1) * sizeof (asection
*);
4069 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4074 m
->count
= tls_count
;
4075 /* Mandated PF_R. */
4077 m
->p_flags_valid
= 1;
4078 for (i
= 0; i
< (unsigned int) tls_count
; ++i
)
4080 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4081 m
->sections
[i
] = first_tls
;
4082 first_tls
= first_tls
->next
;
4089 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4091 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4092 if (eh_frame_hdr
!= NULL
4093 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4095 amt
= sizeof (struct elf_segment_map
);
4096 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4100 m
->p_type
= PT_GNU_EH_FRAME
;
4102 m
->sections
[0] = eh_frame_hdr
->output_section
;
4108 if (elf_tdata (abfd
)->stack_flags
)
4110 amt
= sizeof (struct elf_segment_map
);
4111 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4115 m
->p_type
= PT_GNU_STACK
;
4116 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4117 m
->p_flags_valid
= 1;
4123 if (info
!= NULL
&& info
->relro
)
4125 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
4127 if (m
->p_type
== PT_LOAD
)
4129 asection
*last
= m
->sections
[m
->count
- 1];
4130 bfd_vma vaddr
= m
->sections
[0]->vma
;
4131 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
4133 if (vaddr
< info
->relro_end
4134 && vaddr
>= info
->relro_start
4135 && (vaddr
+ filesz
) >= info
->relro_end
)
4140 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4143 amt
= sizeof (struct elf_segment_map
);
4144 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4148 m
->p_type
= PT_GNU_RELRO
;
4150 m
->p_flags_valid
= 1;
4158 elf_tdata (abfd
)->segment_map
= mfirst
;
4161 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4164 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4166 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4171 if (sections
!= NULL
)
4176 /* Sort sections by address. */
4179 elf_sort_sections (const void *arg1
, const void *arg2
)
4181 const asection
*sec1
= *(const asection
**) arg1
;
4182 const asection
*sec2
= *(const asection
**) arg2
;
4183 bfd_size_type size1
, size2
;
4185 /* Sort by LMA first, since this is the address used to
4186 place the section into a segment. */
4187 if (sec1
->lma
< sec2
->lma
)
4189 else if (sec1
->lma
> sec2
->lma
)
4192 /* Then sort by VMA. Normally the LMA and the VMA will be
4193 the same, and this will do nothing. */
4194 if (sec1
->vma
< sec2
->vma
)
4196 else if (sec1
->vma
> sec2
->vma
)
4199 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4201 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4207 /* If the indicies are the same, do not return 0
4208 here, but continue to try the next comparison. */
4209 if (sec1
->target_index
- sec2
->target_index
!= 0)
4210 return sec1
->target_index
- sec2
->target_index
;
4215 else if (TOEND (sec2
))
4220 /* Sort by size, to put zero sized sections
4221 before others at the same address. */
4223 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4224 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4231 return sec1
->target_index
- sec2
->target_index
;
4234 /* Ian Lance Taylor writes:
4236 We shouldn't be using % with a negative signed number. That's just
4237 not good. We have to make sure either that the number is not
4238 negative, or that the number has an unsigned type. When the types
4239 are all the same size they wind up as unsigned. When file_ptr is a
4240 larger signed type, the arithmetic winds up as signed long long,
4243 What we're trying to say here is something like ``increase OFF by
4244 the least amount that will cause it to be equal to the VMA modulo
4246 /* In other words, something like:
4248 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4249 off_offset = off % bed->maxpagesize;
4250 if (vma_offset < off_offset)
4251 adjustment = vma_offset + bed->maxpagesize - off_offset;
4253 adjustment = vma_offset - off_offset;
4255 which can can be collapsed into the expression below. */
4258 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4260 return ((vma
- off
) % maxpagesize
);
4264 print_segment_map (const struct elf_segment_map
*m
)
4267 const char *pt
= get_segment_type (m
->p_type
);
4272 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4273 sprintf (buf
, "LOPROC+%7.7x",
4274 (unsigned int) (m
->p_type
- PT_LOPROC
));
4275 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4276 sprintf (buf
, "LOOS+%7.7x",
4277 (unsigned int) (m
->p_type
- PT_LOOS
));
4279 snprintf (buf
, sizeof (buf
), "%8.8x",
4280 (unsigned int) m
->p_type
);
4284 fprintf (stderr
, "%s:", pt
);
4285 for (j
= 0; j
< m
->count
; j
++)
4286 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4292 write_zeros (bfd
*abfd
, file_ptr pos
, bfd_size_type len
)
4297 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0)
4299 buf
= bfd_zmalloc (len
);
4302 ret
= bfd_bwrite (buf
, len
, abfd
) == len
;
4307 /* Assign file positions to the sections based on the mapping from
4308 sections to segments. This function also sets up some fields in
4312 assign_file_positions_for_load_sections (bfd
*abfd
,
4313 struct bfd_link_info
*link_info
)
4315 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4316 struct elf_segment_map
*m
;
4317 Elf_Internal_Phdr
*phdrs
;
4318 Elf_Internal_Phdr
*p
;
4320 bfd_size_type maxpagesize
;
4323 bfd_vma header_pad
= 0;
4325 if (link_info
== NULL
4326 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4330 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4334 header_pad
= m
->header_size
;
4337 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4338 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4339 elf_elfheader (abfd
)->e_phnum
= alloc
;
4341 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4342 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4344 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4345 >= alloc
* bed
->s
->sizeof_phdr
);
4349 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4353 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4354 see assign_file_positions_except_relocs, so make sure we have
4355 that amount allocated, with trailing space cleared.
4356 The variable alloc contains the computed need, while elf_tdata
4357 (abfd)->program_header_size contains the size used for the
4359 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4360 where the layout is forced to according to a larger size in the
4361 last iterations for the testcase ld-elf/header. */
4362 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4364 phdrs
= (Elf_Internal_Phdr
*)
4366 (elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
),
4367 sizeof (Elf_Internal_Phdr
));
4368 elf_tdata (abfd
)->phdr
= phdrs
;
4373 if ((abfd
->flags
& D_PAGED
) != 0)
4374 maxpagesize
= bed
->maxpagesize
;
4376 off
= bed
->s
->sizeof_ehdr
;
4377 off
+= alloc
* bed
->s
->sizeof_phdr
;
4378 if (header_pad
< (bfd_vma
) off
)
4384 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4386 m
= m
->next
, p
++, j
++)
4390 bfd_boolean no_contents
;
4392 /* If elf_segment_map is not from map_sections_to_segments, the
4393 sections may not be correctly ordered. NOTE: sorting should
4394 not be done to the PT_NOTE section of a corefile, which may
4395 contain several pseudo-sections artificially created by bfd.
4396 Sorting these pseudo-sections breaks things badly. */
4398 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4399 && m
->p_type
== PT_NOTE
))
4400 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4403 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4404 number of sections with contents contributing to both p_filesz
4405 and p_memsz, followed by a number of sections with no contents
4406 that just contribute to p_memsz. In this loop, OFF tracks next
4407 available file offset for PT_LOAD and PT_NOTE segments. */
4408 p
->p_type
= m
->p_type
;
4409 p
->p_flags
= m
->p_flags
;
4414 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4416 if (m
->p_paddr_valid
)
4417 p
->p_paddr
= m
->p_paddr
;
4418 else if (m
->count
== 0)
4421 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4423 if (p
->p_type
== PT_LOAD
4424 && (abfd
->flags
& D_PAGED
) != 0)
4426 /* p_align in demand paged PT_LOAD segments effectively stores
4427 the maximum page size. When copying an executable with
4428 objcopy, we set m->p_align from the input file. Use this
4429 value for maxpagesize rather than bed->maxpagesize, which
4430 may be different. Note that we use maxpagesize for PT_TLS
4431 segment alignment later in this function, so we are relying
4432 on at least one PT_LOAD segment appearing before a PT_TLS
4434 if (m
->p_align_valid
)
4435 maxpagesize
= m
->p_align
;
4437 p
->p_align
= maxpagesize
;
4439 else if (m
->p_align_valid
)
4440 p
->p_align
= m
->p_align
;
4441 else if (m
->count
== 0)
4442 p
->p_align
= 1 << bed
->s
->log_file_align
;
4446 no_contents
= FALSE
;
4448 if (p
->p_type
== PT_LOAD
4451 bfd_size_type align
;
4452 unsigned int align_power
= 0;
4454 if (m
->p_align_valid
)
4458 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4460 unsigned int secalign
;
4462 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4463 if (secalign
> align_power
)
4464 align_power
= secalign
;
4466 align
= (bfd_size_type
) 1 << align_power
;
4467 if (align
< maxpagesize
)
4468 align
= maxpagesize
;
4471 for (i
= 0; i
< m
->count
; i
++)
4472 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4473 /* If we aren't making room for this section, then
4474 it must be SHT_NOBITS regardless of what we've
4475 set via struct bfd_elf_special_section. */
4476 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4478 /* Find out whether this segment contains any loadable
4481 for (i
= 0; i
< m
->count
; i
++)
4482 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4484 no_contents
= FALSE
;
4488 off_adjust
= vma_page_aligned_bias (p
->p_vaddr
, off
, align
);
4492 /* We shouldn't need to align the segment on disk since
4493 the segment doesn't need file space, but the gABI
4494 arguably requires the alignment and glibc ld.so
4495 checks it. So to comply with the alignment
4496 requirement but not waste file space, we adjust
4497 p_offset for just this segment. (OFF_ADJUST is
4498 subtracted from OFF later.) This may put p_offset
4499 past the end of file, but that shouldn't matter. */
4504 /* Make sure the .dynamic section is the first section in the
4505 PT_DYNAMIC segment. */
4506 else if (p
->p_type
== PT_DYNAMIC
4508 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4511 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4513 bfd_set_error (bfd_error_bad_value
);
4516 /* Set the note section type to SHT_NOTE. */
4517 else if (p
->p_type
== PT_NOTE
)
4518 for (i
= 0; i
< m
->count
; i
++)
4519 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4525 if (m
->includes_filehdr
)
4527 if (!m
->p_flags_valid
)
4529 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4530 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4533 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4535 if (p
->p_vaddr
< (bfd_vma
) off
)
4537 (*_bfd_error_handler
)
4538 (_("%B: Not enough room for program headers, try linking with -N"),
4540 bfd_set_error (bfd_error_bad_value
);
4545 if (!m
->p_paddr_valid
)
4550 if (m
->includes_phdrs
)
4552 if (!m
->p_flags_valid
)
4555 if (!m
->includes_filehdr
)
4557 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4561 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4562 p
->p_vaddr
-= off
- p
->p_offset
;
4563 if (!m
->p_paddr_valid
)
4564 p
->p_paddr
-= off
- p
->p_offset
;
4568 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4569 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4572 p
->p_filesz
+= header_pad
;
4573 p
->p_memsz
+= header_pad
;
4577 if (p
->p_type
== PT_LOAD
4578 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4580 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4586 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4588 p
->p_filesz
+= adjust
;
4589 p
->p_memsz
+= adjust
;
4593 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4594 maps. Set filepos for sections in PT_LOAD segments, and in
4595 core files, for sections in PT_NOTE segments.
4596 assign_file_positions_for_non_load_sections will set filepos
4597 for other sections and update p_filesz for other segments. */
4598 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4601 bfd_size_type align
;
4602 Elf_Internal_Shdr
*this_hdr
;
4605 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4606 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4608 if ((p
->p_type
== PT_LOAD
4609 || p
->p_type
== PT_TLS
)
4610 && (this_hdr
->sh_type
!= SHT_NOBITS
4611 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4612 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4613 || p
->p_type
== PT_TLS
))))
4615 bfd_vma p_start
= p
->p_paddr
;
4616 bfd_vma p_end
= p_start
+ p
->p_memsz
;
4617 bfd_vma s_start
= sec
->lma
;
4618 bfd_vma adjust
= s_start
- p_end
;
4622 || p_end
< p_start
))
4624 (*_bfd_error_handler
)
4625 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd
, sec
,
4626 (unsigned long) s_start
, (unsigned long) p_end
);
4630 p
->p_memsz
+= adjust
;
4632 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4634 if (p
->p_filesz
+ adjust
< p
->p_memsz
)
4636 /* We have a PROGBITS section following NOBITS ones.
4637 Allocate file space for the NOBITS section(s) and
4639 adjust
= p
->p_memsz
- p
->p_filesz
;
4640 if (!write_zeros (abfd
, off
, adjust
))
4644 p
->p_filesz
+= adjust
;
4648 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4650 /* The section at i == 0 is the one that actually contains
4654 this_hdr
->sh_offset
= sec
->filepos
= off
;
4655 off
+= this_hdr
->sh_size
;
4656 p
->p_filesz
= this_hdr
->sh_size
;
4662 /* The rest are fake sections that shouldn't be written. */
4671 if (p
->p_type
== PT_LOAD
)
4673 this_hdr
->sh_offset
= sec
->filepos
= off
;
4674 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4675 off
+= this_hdr
->sh_size
;
4678 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4680 p
->p_filesz
+= this_hdr
->sh_size
;
4681 /* A load section without SHF_ALLOC is something like
4682 a note section in a PT_NOTE segment. These take
4683 file space but are not loaded into memory. */
4684 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4685 p
->p_memsz
+= this_hdr
->sh_size
;
4687 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4689 if (p
->p_type
== PT_TLS
)
4690 p
->p_memsz
+= this_hdr
->sh_size
;
4692 /* .tbss is special. It doesn't contribute to p_memsz of
4694 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4695 p
->p_memsz
+= this_hdr
->sh_size
;
4698 if (align
> p
->p_align
4699 && !m
->p_align_valid
4700 && (p
->p_type
!= PT_LOAD
4701 || (abfd
->flags
& D_PAGED
) == 0))
4705 if (!m
->p_flags_valid
)
4708 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4710 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4716 /* Check that all sections are in a PT_LOAD segment.
4717 Don't check funky gdb generated core files. */
4718 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4720 bfd_boolean check_vma
= TRUE
;
4722 for (i
= 1; i
< m
->count
; i
++)
4723 if (m
->sections
[i
]->vma
== m
->sections
[i
- 1]->vma
4724 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
])
4725 ->this_hdr
), p
) != 0
4726 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
- 1])
4727 ->this_hdr
), p
) != 0)
4729 /* Looks like we have overlays packed into the segment. */
4734 for (i
= 0; i
< m
->count
; i
++)
4736 Elf_Internal_Shdr
*this_hdr
;
4739 sec
= m
->sections
[i
];
4740 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4741 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr
, p
, check_vma
, 0))
4743 (*_bfd_error_handler
)
4744 (_("%B: section `%A' can't be allocated in segment %d"),
4746 print_segment_map (m
);
4752 elf_tdata (abfd
)->next_file_pos
= off
;
4756 /* Assign file positions for the other sections. */
4759 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4760 struct bfd_link_info
*link_info
)
4762 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4763 Elf_Internal_Shdr
**i_shdrpp
;
4764 Elf_Internal_Shdr
**hdrpp
;
4765 Elf_Internal_Phdr
*phdrs
;
4766 Elf_Internal_Phdr
*p
;
4767 struct elf_segment_map
*m
;
4768 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4769 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4771 unsigned int num_sec
;
4775 i_shdrpp
= elf_elfsections (abfd
);
4776 num_sec
= elf_numsections (abfd
);
4777 off
= elf_tdata (abfd
)->next_file_pos
;
4778 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4780 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4781 Elf_Internal_Shdr
*hdr
;
4784 if (hdr
->bfd_section
!= NULL
4785 && (hdr
->bfd_section
->filepos
!= 0
4786 || (hdr
->sh_type
== SHT_NOBITS
4787 && hdr
->contents
== NULL
)))
4788 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4789 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4791 (*_bfd_error_handler
)
4792 (_("%B: warning: allocated section `%s' not in segment"),
4794 (hdr
->bfd_section
== NULL
4796 : hdr
->bfd_section
->name
));
4797 /* We don't need to page align empty sections. */
4798 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4799 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4802 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4804 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4807 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4808 && hdr
->bfd_section
== NULL
)
4809 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4810 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4811 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4812 hdr
->sh_offset
= -1;
4814 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4817 /* Now that we have set the section file positions, we can set up
4818 the file positions for the non PT_LOAD segments. */
4822 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4824 phdrs
= elf_tdata (abfd
)->phdr
;
4825 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4830 if (p
->p_type
!= PT_LOAD
)
4833 if (m
->includes_filehdr
)
4835 filehdr_vaddr
= p
->p_vaddr
;
4836 filehdr_paddr
= p
->p_paddr
;
4838 if (m
->includes_phdrs
)
4840 phdrs_vaddr
= p
->p_vaddr
;
4841 phdrs_paddr
= p
->p_paddr
;
4842 if (m
->includes_filehdr
)
4844 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4845 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4850 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4854 if (p
->p_type
== PT_GNU_RELRO
)
4856 const Elf_Internal_Phdr
*lp
;
4858 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4860 if (link_info
!= NULL
)
4862 /* During linking the range of the RELRO segment is passed
4864 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4866 if (lp
->p_type
== PT_LOAD
4867 && lp
->p_vaddr
>= link_info
->relro_start
4868 && lp
->p_vaddr
< link_info
->relro_end
4869 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4875 /* Otherwise we are copying an executable or shared
4876 library, but we need to use the same linker logic. */
4877 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4879 if (lp
->p_type
== PT_LOAD
4880 && lp
->p_paddr
== p
->p_paddr
)
4885 if (lp
< phdrs
+ count
)
4887 p
->p_vaddr
= lp
->p_vaddr
;
4888 p
->p_paddr
= lp
->p_paddr
;
4889 p
->p_offset
= lp
->p_offset
;
4890 if (link_info
!= NULL
)
4891 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4892 else if (m
->p_size_valid
)
4893 p
->p_filesz
= m
->p_size
;
4896 p
->p_memsz
= p
->p_filesz
;
4898 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4902 memset (p
, 0, sizeof *p
);
4903 p
->p_type
= PT_NULL
;
4906 else if (m
->count
!= 0)
4908 if (p
->p_type
!= PT_LOAD
4909 && (p
->p_type
!= PT_NOTE
4910 || bfd_get_format (abfd
) != bfd_core
))
4912 Elf_Internal_Shdr
*hdr
;
4915 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4917 sect
= m
->sections
[m
->count
- 1];
4918 hdr
= &elf_section_data (sect
)->this_hdr
;
4919 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4920 if (hdr
->sh_type
!= SHT_NOBITS
)
4921 p
->p_filesz
+= hdr
->sh_size
;
4922 p
->p_offset
= m
->sections
[0]->filepos
;
4925 else if (m
->includes_filehdr
)
4927 p
->p_vaddr
= filehdr_vaddr
;
4928 if (! m
->p_paddr_valid
)
4929 p
->p_paddr
= filehdr_paddr
;
4931 else if (m
->includes_phdrs
)
4933 p
->p_vaddr
= phdrs_vaddr
;
4934 if (! m
->p_paddr_valid
)
4935 p
->p_paddr
= phdrs_paddr
;
4939 elf_tdata (abfd
)->next_file_pos
= off
;
4944 /* Work out the file positions of all the sections. This is called by
4945 _bfd_elf_compute_section_file_positions. All the section sizes and
4946 VMAs must be known before this is called.
4948 Reloc sections come in two flavours: Those processed specially as
4949 "side-channel" data attached to a section to which they apply, and
4950 those that bfd doesn't process as relocations. The latter sort are
4951 stored in a normal bfd section by bfd_section_from_shdr. We don't
4952 consider the former sort here, unless they form part of the loadable
4953 image. Reloc sections not assigned here will be handled later by
4954 assign_file_positions_for_relocs.
4956 We also don't set the positions of the .symtab and .strtab here. */
4959 assign_file_positions_except_relocs (bfd
*abfd
,
4960 struct bfd_link_info
*link_info
)
4962 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4963 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4965 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4967 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4968 && bfd_get_format (abfd
) != bfd_core
)
4970 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4971 unsigned int num_sec
= elf_numsections (abfd
);
4972 Elf_Internal_Shdr
**hdrpp
;
4975 /* Start after the ELF header. */
4976 off
= i_ehdrp
->e_ehsize
;
4978 /* We are not creating an executable, which means that we are
4979 not creating a program header, and that the actual order of
4980 the sections in the file is unimportant. */
4981 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4983 Elf_Internal_Shdr
*hdr
;
4986 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4987 && hdr
->bfd_section
== NULL
)
4988 || i
== tdata
->symtab_section
4989 || i
== tdata
->symtab_shndx_section
4990 || i
== tdata
->strtab_section
)
4992 hdr
->sh_offset
= -1;
4995 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
5002 /* Assign file positions for the loaded sections based on the
5003 assignment of sections to segments. */
5004 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
5007 /* And for non-load sections. */
5008 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
5011 if (bed
->elf_backend_modify_program_headers
!= NULL
)
5013 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
5017 /* Write out the program headers. */
5018 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
5019 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
5020 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
5023 off
= tdata
->next_file_pos
;
5026 /* Place the section headers. */
5027 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
5028 i_ehdrp
->e_shoff
= off
;
5029 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
5031 tdata
->next_file_pos
= off
;
5037 prep_headers (bfd
*abfd
)
5039 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form. */
5040 struct elf_strtab_hash
*shstrtab
;
5041 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5043 i_ehdrp
= elf_elfheader (abfd
);
5045 shstrtab
= _bfd_elf_strtab_init ();
5046 if (shstrtab
== NULL
)
5049 elf_shstrtab (abfd
) = shstrtab
;
5051 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
5052 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
5053 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
5054 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
5056 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
5057 i_ehdrp
->e_ident
[EI_DATA
] =
5058 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
5059 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
5061 if ((abfd
->flags
& DYNAMIC
) != 0)
5062 i_ehdrp
->e_type
= ET_DYN
;
5063 else if ((abfd
->flags
& EXEC_P
) != 0)
5064 i_ehdrp
->e_type
= ET_EXEC
;
5065 else if (bfd_get_format (abfd
) == bfd_core
)
5066 i_ehdrp
->e_type
= ET_CORE
;
5068 i_ehdrp
->e_type
= ET_REL
;
5070 switch (bfd_get_arch (abfd
))
5072 case bfd_arch_unknown
:
5073 i_ehdrp
->e_machine
= EM_NONE
;
5076 /* There used to be a long list of cases here, each one setting
5077 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5078 in the corresponding bfd definition. To avoid duplication,
5079 the switch was removed. Machines that need special handling
5080 can generally do it in elf_backend_final_write_processing(),
5081 unless they need the information earlier than the final write.
5082 Such need can generally be supplied by replacing the tests for
5083 e_machine with the conditions used to determine it. */
5085 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
5088 i_ehdrp
->e_version
= bed
->s
->ev_current
;
5089 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
5091 /* No program header, for now. */
5092 i_ehdrp
->e_phoff
= 0;
5093 i_ehdrp
->e_phentsize
= 0;
5094 i_ehdrp
->e_phnum
= 0;
5096 /* Each bfd section is section header entry. */
5097 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
5098 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
5100 /* If we're building an executable, we'll need a program header table. */
5101 if (abfd
->flags
& EXEC_P
)
5102 /* It all happens later. */
5106 i_ehdrp
->e_phentsize
= 0;
5107 i_ehdrp
->e_phoff
= 0;
5110 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
5111 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
5112 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
5113 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
5114 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
5115 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
5116 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5117 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5118 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
5124 /* Assign file positions for all the reloc sections which are not part
5125 of the loadable file image. */
5128 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
5131 unsigned int i
, num_sec
;
5132 Elf_Internal_Shdr
**shdrpp
;
5134 off
= elf_tdata (abfd
)->next_file_pos
;
5136 num_sec
= elf_numsections (abfd
);
5137 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5139 Elf_Internal_Shdr
*shdrp
;
5142 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5143 && shdrp
->sh_offset
== -1)
5144 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5147 elf_tdata (abfd
)->next_file_pos
= off
;
5151 _bfd_elf_write_object_contents (bfd
*abfd
)
5153 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5154 Elf_Internal_Shdr
**i_shdrp
;
5156 unsigned int count
, num_sec
;
5158 if (! abfd
->output_has_begun
5159 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5162 i_shdrp
= elf_elfsections (abfd
);
5165 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5169 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5171 /* After writing the headers, we need to write the sections too... */
5172 num_sec
= elf_numsections (abfd
);
5173 for (count
= 1; count
< num_sec
; count
++)
5175 if (bed
->elf_backend_section_processing
)
5176 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5177 if (i_shdrp
[count
]->contents
)
5179 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5181 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5182 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5187 /* Write out the section header names. */
5188 if (elf_shstrtab (abfd
) != NULL
5189 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5190 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5193 if (bed
->elf_backend_final_write_processing
)
5194 (*bed
->elf_backend_final_write_processing
) (abfd
,
5195 elf_tdata (abfd
)->linker
);
5197 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
5200 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5201 if (elf_tdata (abfd
)->after_write_object_contents
)
5202 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5208 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5210 /* Hopefully this can be done just like an object file. */
5211 return _bfd_elf_write_object_contents (abfd
);
5214 /* Given a section, search the header to find them. */
5217 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5219 const struct elf_backend_data
*bed
;
5220 unsigned int sec_index
;
5222 if (elf_section_data (asect
) != NULL
5223 && elf_section_data (asect
)->this_idx
!= 0)
5224 return elf_section_data (asect
)->this_idx
;
5226 if (bfd_is_abs_section (asect
))
5227 sec_index
= SHN_ABS
;
5228 else if (bfd_is_com_section (asect
))
5229 sec_index
= SHN_COMMON
;
5230 else if (bfd_is_und_section (asect
))
5231 sec_index
= SHN_UNDEF
;
5233 sec_index
= SHN_BAD
;
5235 bed
= get_elf_backend_data (abfd
);
5236 if (bed
->elf_backend_section_from_bfd_section
)
5238 int retval
= sec_index
;
5240 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5244 if (sec_index
== SHN_BAD
)
5245 bfd_set_error (bfd_error_nonrepresentable_section
);
5250 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5254 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5256 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5258 flagword flags
= asym_ptr
->flags
;
5260 /* When gas creates relocations against local labels, it creates its
5261 own symbol for the section, but does put the symbol into the
5262 symbol chain, so udata is 0. When the linker is generating
5263 relocatable output, this section symbol may be for one of the
5264 input sections rather than the output section. */
5265 if (asym_ptr
->udata
.i
== 0
5266 && (flags
& BSF_SECTION_SYM
)
5267 && asym_ptr
->section
)
5272 sec
= asym_ptr
->section
;
5273 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5274 sec
= sec
->output_section
;
5275 if (sec
->owner
== abfd
5276 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5277 && elf_section_syms (abfd
)[indx
] != NULL
)
5278 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5281 idx
= asym_ptr
->udata
.i
;
5285 /* This case can occur when using --strip-symbol on a symbol
5286 which is used in a relocation entry. */
5287 (*_bfd_error_handler
)
5288 (_("%B: symbol `%s' required but not present"),
5289 abfd
, bfd_asymbol_name (asym_ptr
));
5290 bfd_set_error (bfd_error_no_symbols
);
5297 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5298 (long) asym_ptr
, asym_ptr
->name
, idx
, (long) flags
);
5306 /* Rewrite program header information. */
5309 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5311 Elf_Internal_Ehdr
*iehdr
;
5312 struct elf_segment_map
*map
;
5313 struct elf_segment_map
*map_first
;
5314 struct elf_segment_map
**pointer_to_map
;
5315 Elf_Internal_Phdr
*segment
;
5318 unsigned int num_segments
;
5319 bfd_boolean phdr_included
= FALSE
;
5320 bfd_boolean p_paddr_valid
;
5321 bfd_vma maxpagesize
;
5322 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5323 unsigned int phdr_adjust_num
= 0;
5324 const struct elf_backend_data
*bed
;
5326 bed
= get_elf_backend_data (ibfd
);
5327 iehdr
= elf_elfheader (ibfd
);
5330 pointer_to_map
= &map_first
;
5332 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5333 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5335 /* Returns the end address of the segment + 1. */
5336 #define SEGMENT_END(segment, start) \
5337 (start + (segment->p_memsz > segment->p_filesz \
5338 ? segment->p_memsz : segment->p_filesz))
5340 #define SECTION_SIZE(section, segment) \
5341 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5342 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5343 ? section->size : 0)
5345 /* Returns TRUE if the given section is contained within
5346 the given segment. VMA addresses are compared. */
5347 #define IS_CONTAINED_BY_VMA(section, segment) \
5348 (section->vma >= segment->p_vaddr \
5349 && (section->vma + SECTION_SIZE (section, segment) \
5350 <= (SEGMENT_END (segment, segment->p_vaddr))))
5352 /* Returns TRUE if the given section is contained within
5353 the given segment. LMA addresses are compared. */
5354 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5355 (section->lma >= base \
5356 && (section->lma + SECTION_SIZE (section, segment) \
5357 <= SEGMENT_END (segment, base)))
5359 /* Handle PT_NOTE segment. */
5360 #define IS_NOTE(p, s) \
5361 (p->p_type == PT_NOTE \
5362 && elf_section_type (s) == SHT_NOTE \
5363 && (bfd_vma) s->filepos >= p->p_offset \
5364 && ((bfd_vma) s->filepos + s->size \
5365 <= p->p_offset + p->p_filesz))
5367 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5369 #define IS_COREFILE_NOTE(p, s) \
5371 && bfd_get_format (ibfd) == bfd_core \
5375 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5376 linker, which generates a PT_INTERP section with p_vaddr and
5377 p_memsz set to 0. */
5378 #define IS_SOLARIS_PT_INTERP(p, s) \
5380 && p->p_paddr == 0 \
5381 && p->p_memsz == 0 \
5382 && p->p_filesz > 0 \
5383 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5385 && (bfd_vma) s->filepos >= p->p_offset \
5386 && ((bfd_vma) s->filepos + s->size \
5387 <= p->p_offset + p->p_filesz))
5389 /* Decide if the given section should be included in the given segment.
5390 A section will be included if:
5391 1. It is within the address space of the segment -- we use the LMA
5392 if that is set for the segment and the VMA otherwise,
5393 2. It is an allocated section or a NOTE section in a PT_NOTE
5395 3. There is an output section associated with it,
5396 4. The section has not already been allocated to a previous segment.
5397 5. PT_GNU_STACK segments do not include any sections.
5398 6. PT_TLS segment includes only SHF_TLS sections.
5399 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5400 8. PT_DYNAMIC should not contain empty sections at the beginning
5401 (with the possible exception of .dynamic). */
5402 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5403 ((((segment->p_paddr \
5404 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5405 : IS_CONTAINED_BY_VMA (section, segment)) \
5406 && (section->flags & SEC_ALLOC) != 0) \
5407 || IS_NOTE (segment, section)) \
5408 && segment->p_type != PT_GNU_STACK \
5409 && (segment->p_type != PT_TLS \
5410 || (section->flags & SEC_THREAD_LOCAL)) \
5411 && (segment->p_type == PT_LOAD \
5412 || segment->p_type == PT_TLS \
5413 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5414 && (segment->p_type != PT_DYNAMIC \
5415 || SECTION_SIZE (section, segment) > 0 \
5416 || (segment->p_paddr \
5417 ? segment->p_paddr != section->lma \
5418 : segment->p_vaddr != section->vma) \
5419 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5421 && !section->segment_mark)
5423 /* If the output section of a section in the input segment is NULL,
5424 it is removed from the corresponding output segment. */
5425 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5426 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5427 && section->output_section != NULL)
5429 /* Returns TRUE iff seg1 starts after the end of seg2. */
5430 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5431 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5433 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5434 their VMA address ranges and their LMA address ranges overlap.
5435 It is possible to have overlapping VMA ranges without overlapping LMA
5436 ranges. RedBoot images for example can have both .data and .bss mapped
5437 to the same VMA range, but with the .data section mapped to a different
5439 #define SEGMENT_OVERLAPS(seg1, seg2) \
5440 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5441 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5442 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5443 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5445 /* Initialise the segment mark field. */
5446 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5447 section
->segment_mark
= FALSE
;
5449 /* The Solaris linker creates program headers in which all the
5450 p_paddr fields are zero. When we try to objcopy or strip such a
5451 file, we get confused. Check for this case, and if we find it
5452 don't set the p_paddr_valid fields. */
5453 p_paddr_valid
= FALSE
;
5454 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5457 if (segment
->p_paddr
!= 0)
5459 p_paddr_valid
= TRUE
;
5463 /* Scan through the segments specified in the program header
5464 of the input BFD. For this first scan we look for overlaps
5465 in the loadable segments. These can be created by weird
5466 parameters to objcopy. Also, fix some solaris weirdness. */
5467 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5472 Elf_Internal_Phdr
*segment2
;
5474 if (segment
->p_type
== PT_INTERP
)
5475 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5476 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5478 /* Mininal change so that the normal section to segment
5479 assignment code will work. */
5480 segment
->p_vaddr
= section
->vma
;
5484 if (segment
->p_type
!= PT_LOAD
)
5486 /* Remove PT_GNU_RELRO segment. */
5487 if (segment
->p_type
== PT_GNU_RELRO
)
5488 segment
->p_type
= PT_NULL
;
5492 /* Determine if this segment overlaps any previous segments. */
5493 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5495 bfd_signed_vma extra_length
;
5497 if (segment2
->p_type
!= PT_LOAD
5498 || !SEGMENT_OVERLAPS (segment
, segment2
))
5501 /* Merge the two segments together. */
5502 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5504 /* Extend SEGMENT2 to include SEGMENT and then delete
5506 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5507 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5509 if (extra_length
> 0)
5511 segment2
->p_memsz
+= extra_length
;
5512 segment2
->p_filesz
+= extra_length
;
5515 segment
->p_type
= PT_NULL
;
5517 /* Since we have deleted P we must restart the outer loop. */
5519 segment
= elf_tdata (ibfd
)->phdr
;
5524 /* Extend SEGMENT to include SEGMENT2 and then delete
5526 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5527 - SEGMENT_END (segment
, segment
->p_vaddr
));
5529 if (extra_length
> 0)
5531 segment
->p_memsz
+= extra_length
;
5532 segment
->p_filesz
+= extra_length
;
5535 segment2
->p_type
= PT_NULL
;
5540 /* The second scan attempts to assign sections to segments. */
5541 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5545 unsigned int section_count
;
5546 asection
**sections
;
5547 asection
*output_section
;
5549 bfd_vma matching_lma
;
5550 bfd_vma suggested_lma
;
5553 asection
*first_section
;
5554 bfd_boolean first_matching_lma
;
5555 bfd_boolean first_suggested_lma
;
5557 if (segment
->p_type
== PT_NULL
)
5560 first_section
= NULL
;
5561 /* Compute how many sections might be placed into this segment. */
5562 for (section
= ibfd
->sections
, section_count
= 0;
5564 section
= section
->next
)
5566 /* Find the first section in the input segment, which may be
5567 removed from the corresponding output segment. */
5568 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5570 if (first_section
== NULL
)
5571 first_section
= section
;
5572 if (section
->output_section
!= NULL
)
5577 /* Allocate a segment map big enough to contain
5578 all of the sections we have selected. */
5579 amt
= sizeof (struct elf_segment_map
);
5580 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5581 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5585 /* Initialise the fields of the segment map. Default to
5586 using the physical address of the segment in the input BFD. */
5588 map
->p_type
= segment
->p_type
;
5589 map
->p_flags
= segment
->p_flags
;
5590 map
->p_flags_valid
= 1;
5592 /* If the first section in the input segment is removed, there is
5593 no need to preserve segment physical address in the corresponding
5595 if (!first_section
|| first_section
->output_section
!= NULL
)
5597 map
->p_paddr
= segment
->p_paddr
;
5598 map
->p_paddr_valid
= p_paddr_valid
;
5601 /* Determine if this segment contains the ELF file header
5602 and if it contains the program headers themselves. */
5603 map
->includes_filehdr
= (segment
->p_offset
== 0
5604 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5605 map
->includes_phdrs
= 0;
5607 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5609 map
->includes_phdrs
=
5610 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5611 && (segment
->p_offset
+ segment
->p_filesz
5612 >= ((bfd_vma
) iehdr
->e_phoff
5613 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5615 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5616 phdr_included
= TRUE
;
5619 if (section_count
== 0)
5621 /* Special segments, such as the PT_PHDR segment, may contain
5622 no sections, but ordinary, loadable segments should contain
5623 something. They are allowed by the ELF spec however, so only
5624 a warning is produced. */
5625 if (segment
->p_type
== PT_LOAD
)
5626 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5627 " detected, is this intentional ?\n"),
5631 *pointer_to_map
= map
;
5632 pointer_to_map
= &map
->next
;
5637 /* Now scan the sections in the input BFD again and attempt
5638 to add their corresponding output sections to the segment map.
5639 The problem here is how to handle an output section which has
5640 been moved (ie had its LMA changed). There are four possibilities:
5642 1. None of the sections have been moved.
5643 In this case we can continue to use the segment LMA from the
5646 2. All of the sections have been moved by the same amount.
5647 In this case we can change the segment's LMA to match the LMA
5648 of the first section.
5650 3. Some of the sections have been moved, others have not.
5651 In this case those sections which have not been moved can be
5652 placed in the current segment which will have to have its size,
5653 and possibly its LMA changed, and a new segment or segments will
5654 have to be created to contain the other sections.
5656 4. The sections have been moved, but not by the same amount.
5657 In this case we can change the segment's LMA to match the LMA
5658 of the first section and we will have to create a new segment
5659 or segments to contain the other sections.
5661 In order to save time, we allocate an array to hold the section
5662 pointers that we are interested in. As these sections get assigned
5663 to a segment, they are removed from this array. */
5665 sections
= (asection
**) bfd_malloc2 (section_count
, sizeof (asection
*));
5666 if (sections
== NULL
)
5669 /* Step One: Scan for segment vs section LMA conflicts.
5670 Also add the sections to the section array allocated above.
5671 Also add the sections to the current segment. In the common
5672 case, where the sections have not been moved, this means that
5673 we have completely filled the segment, and there is nothing
5678 first_matching_lma
= TRUE
;
5679 first_suggested_lma
= TRUE
;
5681 for (section
= ibfd
->sections
;
5683 section
= section
->next
)
5684 if (section
== first_section
)
5687 for (j
= 0; section
!= NULL
; section
= section
->next
)
5689 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5691 output_section
= section
->output_section
;
5693 sections
[j
++] = section
;
5695 /* The Solaris native linker always sets p_paddr to 0.
5696 We try to catch that case here, and set it to the
5697 correct value. Note - some backends require that
5698 p_paddr be left as zero. */
5700 && segment
->p_vaddr
!= 0
5701 && !bed
->want_p_paddr_set_to_zero
5703 && output_section
->lma
!= 0
5704 && output_section
->vma
== (segment
->p_vaddr
5705 + (map
->includes_filehdr
5708 + (map
->includes_phdrs
5710 * iehdr
->e_phentsize
)
5712 map
->p_paddr
= segment
->p_vaddr
;
5714 /* Match up the physical address of the segment with the
5715 LMA address of the output section. */
5716 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5717 || IS_COREFILE_NOTE (segment
, section
)
5718 || (bed
->want_p_paddr_set_to_zero
5719 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5721 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5723 matching_lma
= output_section
->lma
;
5724 first_matching_lma
= FALSE
;
5727 /* We assume that if the section fits within the segment
5728 then it does not overlap any other section within that
5730 map
->sections
[isec
++] = output_section
;
5732 else if (first_suggested_lma
)
5734 suggested_lma
= output_section
->lma
;
5735 first_suggested_lma
= FALSE
;
5738 if (j
== section_count
)
5743 BFD_ASSERT (j
== section_count
);
5745 /* Step Two: Adjust the physical address of the current segment,
5747 if (isec
== section_count
)
5749 /* All of the sections fitted within the segment as currently
5750 specified. This is the default case. Add the segment to
5751 the list of built segments and carry on to process the next
5752 program header in the input BFD. */
5753 map
->count
= section_count
;
5754 *pointer_to_map
= map
;
5755 pointer_to_map
= &map
->next
;
5758 && !bed
->want_p_paddr_set_to_zero
5759 && matching_lma
!= map
->p_paddr
5760 && !map
->includes_filehdr
5761 && !map
->includes_phdrs
)
5762 /* There is some padding before the first section in the
5763 segment. So, we must account for that in the output
5765 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5772 if (!first_matching_lma
)
5774 /* At least one section fits inside the current segment.
5775 Keep it, but modify its physical address to match the
5776 LMA of the first section that fitted. */
5777 map
->p_paddr
= matching_lma
;
5781 /* None of the sections fitted inside the current segment.
5782 Change the current segment's physical address to match
5783 the LMA of the first section. */
5784 map
->p_paddr
= suggested_lma
;
5787 /* Offset the segment physical address from the lma
5788 to allow for space taken up by elf headers. */
5789 if (map
->includes_filehdr
)
5791 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5792 map
->p_paddr
-= iehdr
->e_ehsize
;
5795 map
->includes_filehdr
= FALSE
;
5796 map
->includes_phdrs
= FALSE
;
5800 if (map
->includes_phdrs
)
5802 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5804 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5806 /* iehdr->e_phnum is just an estimate of the number
5807 of program headers that we will need. Make a note
5808 here of the number we used and the segment we chose
5809 to hold these headers, so that we can adjust the
5810 offset when we know the correct value. */
5811 phdr_adjust_num
= iehdr
->e_phnum
;
5812 phdr_adjust_seg
= map
;
5815 map
->includes_phdrs
= FALSE
;
5819 /* Step Three: Loop over the sections again, this time assigning
5820 those that fit to the current segment and removing them from the
5821 sections array; but making sure not to leave large gaps. Once all
5822 possible sections have been assigned to the current segment it is
5823 added to the list of built segments and if sections still remain
5824 to be assigned, a new segment is constructed before repeating
5831 first_suggested_lma
= TRUE
;
5833 /* Fill the current segment with sections that fit. */
5834 for (j
= 0; j
< section_count
; j
++)
5836 section
= sections
[j
];
5838 if (section
== NULL
)
5841 output_section
= section
->output_section
;
5843 BFD_ASSERT (output_section
!= NULL
);
5845 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5846 || IS_COREFILE_NOTE (segment
, section
))
5848 if (map
->count
== 0)
5850 /* If the first section in a segment does not start at
5851 the beginning of the segment, then something is
5853 if (output_section
->lma
5855 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5856 + (map
->includes_phdrs
5857 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5865 prev_sec
= map
->sections
[map
->count
- 1];
5867 /* If the gap between the end of the previous section
5868 and the start of this section is more than
5869 maxpagesize then we need to start a new segment. */
5870 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5872 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5873 || (prev_sec
->lma
+ prev_sec
->size
5874 > output_section
->lma
))
5876 if (first_suggested_lma
)
5878 suggested_lma
= output_section
->lma
;
5879 first_suggested_lma
= FALSE
;
5886 map
->sections
[map
->count
++] = output_section
;
5889 section
->segment_mark
= TRUE
;
5891 else if (first_suggested_lma
)
5893 suggested_lma
= output_section
->lma
;
5894 first_suggested_lma
= FALSE
;
5898 BFD_ASSERT (map
->count
> 0);
5900 /* Add the current segment to the list of built segments. */
5901 *pointer_to_map
= map
;
5902 pointer_to_map
= &map
->next
;
5904 if (isec
< section_count
)
5906 /* We still have not allocated all of the sections to
5907 segments. Create a new segment here, initialise it
5908 and carry on looping. */
5909 amt
= sizeof (struct elf_segment_map
);
5910 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5911 map
= (struct elf_segment_map
*) bfd_alloc (obfd
, amt
);
5918 /* Initialise the fields of the segment map. Set the physical
5919 physical address to the LMA of the first section that has
5920 not yet been assigned. */
5922 map
->p_type
= segment
->p_type
;
5923 map
->p_flags
= segment
->p_flags
;
5924 map
->p_flags_valid
= 1;
5925 map
->p_paddr
= suggested_lma
;
5926 map
->p_paddr_valid
= p_paddr_valid
;
5927 map
->includes_filehdr
= 0;
5928 map
->includes_phdrs
= 0;
5931 while (isec
< section_count
);
5936 elf_tdata (obfd
)->segment_map
= map_first
;
5938 /* If we had to estimate the number of program headers that were
5939 going to be needed, then check our estimate now and adjust
5940 the offset if necessary. */
5941 if (phdr_adjust_seg
!= NULL
)
5945 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5948 if (count
> phdr_adjust_num
)
5949 phdr_adjust_seg
->p_paddr
5950 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5955 #undef IS_CONTAINED_BY_VMA
5956 #undef IS_CONTAINED_BY_LMA
5958 #undef IS_COREFILE_NOTE
5959 #undef IS_SOLARIS_PT_INTERP
5960 #undef IS_SECTION_IN_INPUT_SEGMENT
5961 #undef INCLUDE_SECTION_IN_SEGMENT
5962 #undef SEGMENT_AFTER_SEGMENT
5963 #undef SEGMENT_OVERLAPS
5967 /* Copy ELF program header information. */
5970 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5972 Elf_Internal_Ehdr
*iehdr
;
5973 struct elf_segment_map
*map
;
5974 struct elf_segment_map
*map_first
;
5975 struct elf_segment_map
**pointer_to_map
;
5976 Elf_Internal_Phdr
*segment
;
5978 unsigned int num_segments
;
5979 bfd_boolean phdr_included
= FALSE
;
5980 bfd_boolean p_paddr_valid
;
5982 iehdr
= elf_elfheader (ibfd
);
5985 pointer_to_map
= &map_first
;
5987 /* If all the segment p_paddr fields are zero, don't set
5988 map->p_paddr_valid. */
5989 p_paddr_valid
= FALSE
;
5990 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5991 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5994 if (segment
->p_paddr
!= 0)
5996 p_paddr_valid
= TRUE
;
6000 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6005 unsigned int section_count
;
6007 Elf_Internal_Shdr
*this_hdr
;
6008 asection
*first_section
= NULL
;
6009 asection
*lowest_section
;
6011 /* Compute how many sections are in this segment. */
6012 for (section
= ibfd
->sections
, section_count
= 0;
6014 section
= section
->next
)
6016 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6017 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6019 if (first_section
== NULL
)
6020 first_section
= section
;
6025 /* Allocate a segment map big enough to contain
6026 all of the sections we have selected. */
6027 amt
= sizeof (struct elf_segment_map
);
6028 if (section_count
!= 0)
6029 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
6030 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
6034 /* Initialize the fields of the output segment map with the
6037 map
->p_type
= segment
->p_type
;
6038 map
->p_flags
= segment
->p_flags
;
6039 map
->p_flags_valid
= 1;
6040 map
->p_paddr
= segment
->p_paddr
;
6041 map
->p_paddr_valid
= p_paddr_valid
;
6042 map
->p_align
= segment
->p_align
;
6043 map
->p_align_valid
= 1;
6044 map
->p_vaddr_offset
= 0;
6046 if (map
->p_type
== PT_GNU_RELRO
)
6048 /* The PT_GNU_RELRO segment may contain the first a few
6049 bytes in the .got.plt section even if the whole .got.plt
6050 section isn't in the PT_GNU_RELRO segment. We won't
6051 change the size of the PT_GNU_RELRO segment. */
6052 map
->p_size
= segment
->p_memsz
;
6053 map
->p_size_valid
= 1;
6056 /* Determine if this segment contains the ELF file header
6057 and if it contains the program headers themselves. */
6058 map
->includes_filehdr
= (segment
->p_offset
== 0
6059 && segment
->p_filesz
>= iehdr
->e_ehsize
);
6061 map
->includes_phdrs
= 0;
6062 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
6064 map
->includes_phdrs
=
6065 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
6066 && (segment
->p_offset
+ segment
->p_filesz
6067 >= ((bfd_vma
) iehdr
->e_phoff
6068 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
6070 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
6071 phdr_included
= TRUE
;
6074 lowest_section
= first_section
;
6075 if (section_count
!= 0)
6077 unsigned int isec
= 0;
6079 for (section
= first_section
;
6081 section
= section
->next
)
6083 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6084 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6086 map
->sections
[isec
++] = section
->output_section
;
6087 if (section
->lma
< lowest_section
->lma
)
6088 lowest_section
= section
;
6089 if ((section
->flags
& SEC_ALLOC
) != 0)
6093 /* Section lmas are set up from PT_LOAD header
6094 p_paddr in _bfd_elf_make_section_from_shdr.
6095 If this header has a p_paddr that disagrees
6096 with the section lma, flag the p_paddr as
6098 if ((section
->flags
& SEC_LOAD
) != 0)
6099 seg_off
= this_hdr
->sh_offset
- segment
->p_offset
;
6101 seg_off
= this_hdr
->sh_addr
- segment
->p_vaddr
;
6102 if (section
->lma
- segment
->p_paddr
!= seg_off
)
6103 map
->p_paddr_valid
= FALSE
;
6105 if (isec
== section_count
)
6111 if (map
->includes_filehdr
&& lowest_section
!= NULL
)
6112 /* We need to keep the space used by the headers fixed. */
6113 map
->header_size
= lowest_section
->vma
- segment
->p_vaddr
;
6115 if (!map
->includes_phdrs
6116 && !map
->includes_filehdr
6117 && map
->p_paddr_valid
)
6118 /* There is some other padding before the first section. */
6119 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
6120 - segment
->p_paddr
);
6122 map
->count
= section_count
;
6123 *pointer_to_map
= map
;
6124 pointer_to_map
= &map
->next
;
6127 elf_tdata (obfd
)->segment_map
= map_first
;
6131 /* Copy private BFD data. This copies or rewrites ELF program header
6135 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
6137 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6138 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6141 if (elf_tdata (ibfd
)->phdr
== NULL
)
6144 if (ibfd
->xvec
== obfd
->xvec
)
6146 /* Check to see if any sections in the input BFD
6147 covered by ELF program header have changed. */
6148 Elf_Internal_Phdr
*segment
;
6149 asection
*section
, *osec
;
6150 unsigned int i
, num_segments
;
6151 Elf_Internal_Shdr
*this_hdr
;
6152 const struct elf_backend_data
*bed
;
6154 bed
= get_elf_backend_data (ibfd
);
6156 /* Regenerate the segment map if p_paddr is set to 0. */
6157 if (bed
->want_p_paddr_set_to_zero
)
6160 /* Initialize the segment mark field. */
6161 for (section
= obfd
->sections
; section
!= NULL
;
6162 section
= section
->next
)
6163 section
->segment_mark
= FALSE
;
6165 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
6166 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6170 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6171 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6172 which severly confuses things, so always regenerate the segment
6173 map in this case. */
6174 if (segment
->p_paddr
== 0
6175 && segment
->p_memsz
== 0
6176 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
6179 for (section
= ibfd
->sections
;
6180 section
!= NULL
; section
= section
->next
)
6182 /* We mark the output section so that we know it comes
6183 from the input BFD. */
6184 osec
= section
->output_section
;
6186 osec
->segment_mark
= TRUE
;
6188 /* Check if this section is covered by the segment. */
6189 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6190 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6192 /* FIXME: Check if its output section is changed or
6193 removed. What else do we need to check? */
6195 || section
->flags
!= osec
->flags
6196 || section
->lma
!= osec
->lma
6197 || section
->vma
!= osec
->vma
6198 || section
->size
!= osec
->size
6199 || section
->rawsize
!= osec
->rawsize
6200 || section
->alignment_power
!= osec
->alignment_power
)
6206 /* Check to see if any output section do not come from the
6208 for (section
= obfd
->sections
; section
!= NULL
;
6209 section
= section
->next
)
6211 if (section
->segment_mark
== FALSE
)
6214 section
->segment_mark
= FALSE
;
6217 return copy_elf_program_header (ibfd
, obfd
);
6221 return rewrite_elf_program_header (ibfd
, obfd
);
6224 /* Initialize private output section information from input section. */
6227 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6231 struct bfd_link_info
*link_info
)
6234 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6235 bfd_boolean final_link
= link_info
!= NULL
&& !link_info
->relocatable
;
6237 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6238 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6241 /* For objcopy and relocatable link, don't copy the output ELF
6242 section type from input if the output BFD section flags have been
6243 set to something different. For a final link allow some flags
6244 that the linker clears to differ. */
6245 if (elf_section_type (osec
) == SHT_NULL
6246 && (osec
->flags
== isec
->flags
6248 && ((osec
->flags
^ isec
->flags
)
6249 & ~(SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
| SEC_RELOC
)) == 0)))
6250 elf_section_type (osec
) = elf_section_type (isec
);
6252 /* FIXME: Is this correct for all OS/PROC specific flags? */
6253 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6254 & (SHF_MASKOS
| SHF_MASKPROC
));
6256 /* Set things up for objcopy and relocatable link. The output
6257 SHT_GROUP section will have its elf_next_in_group pointing back
6258 to the input group members. Ignore linker created group section.
6259 See elfNN_ia64_object_p in elfxx-ia64.c. */
6262 if (elf_sec_group (isec
) == NULL
6263 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6265 if (elf_section_flags (isec
) & SHF_GROUP
)
6266 elf_section_flags (osec
) |= SHF_GROUP
;
6267 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6268 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6272 ihdr
= &elf_section_data (isec
)->this_hdr
;
6274 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6275 don't use the output section of the linked-to section since it
6276 may be NULL at this point. */
6277 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6279 ohdr
= &elf_section_data (osec
)->this_hdr
;
6280 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6281 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6284 osec
->use_rela_p
= isec
->use_rela_p
;
6289 /* Copy private section information. This copies over the entsize
6290 field, and sometimes the info field. */
6293 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6298 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6300 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6301 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6304 ihdr
= &elf_section_data (isec
)->this_hdr
;
6305 ohdr
= &elf_section_data (osec
)->this_hdr
;
6307 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6309 if (ihdr
->sh_type
== SHT_SYMTAB
6310 || ihdr
->sh_type
== SHT_DYNSYM
6311 || ihdr
->sh_type
== SHT_GNU_verneed
6312 || ihdr
->sh_type
== SHT_GNU_verdef
)
6313 ohdr
->sh_info
= ihdr
->sh_info
;
6315 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6319 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6320 necessary if we are removing either the SHT_GROUP section or any of
6321 the group member sections. DISCARDED is the value that a section's
6322 output_section has if the section will be discarded, NULL when this
6323 function is called from objcopy, bfd_abs_section_ptr when called
6327 _bfd_elf_fixup_group_sections (bfd
*ibfd
, asection
*discarded
)
6331 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6332 if (elf_section_type (isec
) == SHT_GROUP
)
6334 asection
*first
= elf_next_in_group (isec
);
6335 asection
*s
= first
;
6336 bfd_size_type removed
= 0;
6340 /* If this member section is being output but the
6341 SHT_GROUP section is not, then clear the group info
6342 set up by _bfd_elf_copy_private_section_data. */
6343 if (s
->output_section
!= discarded
6344 && isec
->output_section
== discarded
)
6346 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6347 elf_group_name (s
->output_section
) = NULL
;
6349 /* Conversely, if the member section is not being output
6350 but the SHT_GROUP section is, then adjust its size. */
6351 else if (s
->output_section
== discarded
6352 && isec
->output_section
!= discarded
)
6354 s
= elf_next_in_group (s
);
6360 if (discarded
!= NULL
)
6362 /* If we've been called for ld -r, then we need to
6363 adjust the input section size. This function may
6364 be called multiple times, so save the original
6366 if (isec
->rawsize
== 0)
6367 isec
->rawsize
= isec
->size
;
6368 isec
->size
= isec
->rawsize
- removed
;
6372 /* Adjust the output section size when called from
6374 isec
->output_section
->size
-= removed
;
6382 /* Copy private header information. */
6385 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6387 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6388 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6391 /* Copy over private BFD data if it has not already been copied.
6392 This must be done here, rather than in the copy_private_bfd_data
6393 entry point, because the latter is called after the section
6394 contents have been set, which means that the program headers have
6395 already been worked out. */
6396 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6398 if (! copy_private_bfd_data (ibfd
, obfd
))
6402 return _bfd_elf_fixup_group_sections (ibfd
, NULL
);
6405 /* Copy private symbol information. If this symbol is in a section
6406 which we did not map into a BFD section, try to map the section
6407 index correctly. We use special macro definitions for the mapped
6408 section indices; these definitions are interpreted by the
6409 swap_out_syms function. */
6411 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6412 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6413 #define MAP_STRTAB (SHN_HIOS + 3)
6414 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6415 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6418 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6423 elf_symbol_type
*isym
, *osym
;
6425 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6426 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6429 isym
= elf_symbol_from (ibfd
, isymarg
);
6430 osym
= elf_symbol_from (obfd
, osymarg
);
6433 && isym
->internal_elf_sym
.st_shndx
!= 0
6435 && bfd_is_abs_section (isym
->symbol
.section
))
6439 shndx
= isym
->internal_elf_sym
.st_shndx
;
6440 if (shndx
== elf_onesymtab (ibfd
))
6441 shndx
= MAP_ONESYMTAB
;
6442 else if (shndx
== elf_dynsymtab (ibfd
))
6443 shndx
= MAP_DYNSYMTAB
;
6444 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6446 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6447 shndx
= MAP_SHSTRTAB
;
6448 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6449 shndx
= MAP_SYM_SHNDX
;
6450 osym
->internal_elf_sym
.st_shndx
= shndx
;
6456 /* Swap out the symbols. */
6459 swap_out_syms (bfd
*abfd
,
6460 struct bfd_strtab_hash
**sttp
,
6463 const struct elf_backend_data
*bed
;
6466 struct bfd_strtab_hash
*stt
;
6467 Elf_Internal_Shdr
*symtab_hdr
;
6468 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6469 Elf_Internal_Shdr
*symstrtab_hdr
;
6470 bfd_byte
*outbound_syms
;
6471 bfd_byte
*outbound_shndx
;
6474 bfd_boolean name_local_sections
;
6476 if (!elf_map_symbols (abfd
))
6479 /* Dump out the symtabs. */
6480 stt
= _bfd_elf_stringtab_init ();
6484 bed
= get_elf_backend_data (abfd
);
6485 symcount
= bfd_get_symcount (abfd
);
6486 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6487 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6488 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6489 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6490 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6491 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6493 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6494 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6496 outbound_syms
= (bfd_byte
*) bfd_alloc2 (abfd
, 1 + symcount
,
6497 bed
->s
->sizeof_sym
);
6498 if (outbound_syms
== NULL
)
6500 _bfd_stringtab_free (stt
);
6503 symtab_hdr
->contents
= outbound_syms
;
6505 outbound_shndx
= NULL
;
6506 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6507 if (symtab_shndx_hdr
->sh_name
!= 0)
6509 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6510 outbound_shndx
= (bfd_byte
*)
6511 bfd_zalloc2 (abfd
, 1 + symcount
, sizeof (Elf_External_Sym_Shndx
));
6512 if (outbound_shndx
== NULL
)
6514 _bfd_stringtab_free (stt
);
6518 symtab_shndx_hdr
->contents
= outbound_shndx
;
6519 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6520 symtab_shndx_hdr
->sh_size
= amt
;
6521 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6522 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6525 /* Now generate the data (for "contents"). */
6527 /* Fill in zeroth symbol and swap it out. */
6528 Elf_Internal_Sym sym
;
6534 sym
.st_shndx
= SHN_UNDEF
;
6535 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6536 outbound_syms
+= bed
->s
->sizeof_sym
;
6537 if (outbound_shndx
!= NULL
)
6538 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6542 = (bed
->elf_backend_name_local_section_symbols
6543 && bed
->elf_backend_name_local_section_symbols (abfd
));
6545 syms
= bfd_get_outsymbols (abfd
);
6546 for (idx
= 0; idx
< symcount
; idx
++)
6548 Elf_Internal_Sym sym
;
6549 bfd_vma value
= syms
[idx
]->value
;
6550 elf_symbol_type
*type_ptr
;
6551 flagword flags
= syms
[idx
]->flags
;
6554 if (!name_local_sections
6555 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6557 /* Local section symbols have no name. */
6562 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6565 if (sym
.st_name
== (unsigned long) -1)
6567 _bfd_stringtab_free (stt
);
6572 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6574 if ((flags
& BSF_SECTION_SYM
) == 0
6575 && bfd_is_com_section (syms
[idx
]->section
))
6577 /* ELF common symbols put the alignment into the `value' field,
6578 and the size into the `size' field. This is backwards from
6579 how BFD handles it, so reverse it here. */
6580 sym
.st_size
= value
;
6581 if (type_ptr
== NULL
6582 || type_ptr
->internal_elf_sym
.st_value
== 0)
6583 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6585 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6586 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6587 (abfd
, syms
[idx
]->section
);
6591 asection
*sec
= syms
[idx
]->section
;
6594 if (sec
->output_section
)
6596 value
+= sec
->output_offset
;
6597 sec
= sec
->output_section
;
6600 /* Don't add in the section vma for relocatable output. */
6601 if (! relocatable_p
)
6603 sym
.st_value
= value
;
6604 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6606 if (bfd_is_abs_section (sec
)
6608 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6610 /* This symbol is in a real ELF section which we did
6611 not create as a BFD section. Undo the mapping done
6612 by copy_private_symbol_data. */
6613 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6617 shndx
= elf_onesymtab (abfd
);
6620 shndx
= elf_dynsymtab (abfd
);
6623 shndx
= elf_tdata (abfd
)->strtab_section
;
6626 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6629 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6637 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6639 if (shndx
== SHN_BAD
)
6643 /* Writing this would be a hell of a lot easier if
6644 we had some decent documentation on bfd, and
6645 knew what to expect of the library, and what to
6646 demand of applications. For example, it
6647 appears that `objcopy' might not set the
6648 section of a symbol to be a section that is
6649 actually in the output file. */
6650 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6653 _bfd_error_handler (_("\
6654 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6655 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6657 bfd_set_error (bfd_error_invalid_operation
);
6658 _bfd_stringtab_free (stt
);
6662 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6663 BFD_ASSERT (shndx
!= SHN_BAD
);
6667 sym
.st_shndx
= shndx
;
6670 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6672 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6673 type
= STT_GNU_IFUNC
;
6674 else if ((flags
& BSF_FUNCTION
) != 0)
6676 else if ((flags
& BSF_OBJECT
) != 0)
6678 else if ((flags
& BSF_RELC
) != 0)
6680 else if ((flags
& BSF_SRELC
) != 0)
6685 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6688 /* Processor-specific types. */
6689 if (type_ptr
!= NULL
6690 && bed
->elf_backend_get_symbol_type
)
6691 type
= ((*bed
->elf_backend_get_symbol_type
)
6692 (&type_ptr
->internal_elf_sym
, type
));
6694 if (flags
& BSF_SECTION_SYM
)
6696 if (flags
& BSF_GLOBAL
)
6697 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6699 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6701 else if (bfd_is_com_section (syms
[idx
]->section
))
6703 #ifdef USE_STT_COMMON
6704 if (type
== STT_OBJECT
)
6705 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6708 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6710 else if (bfd_is_und_section (syms
[idx
]->section
))
6711 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6715 else if (flags
& BSF_FILE
)
6716 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6719 int bind
= STB_LOCAL
;
6721 if (flags
& BSF_LOCAL
)
6723 else if (flags
& BSF_GNU_UNIQUE
)
6724 bind
= STB_GNU_UNIQUE
;
6725 else if (flags
& BSF_WEAK
)
6727 else if (flags
& BSF_GLOBAL
)
6730 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6733 if (type_ptr
!= NULL
)
6734 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6738 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6739 outbound_syms
+= bed
->s
->sizeof_sym
;
6740 if (outbound_shndx
!= NULL
)
6741 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6745 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6746 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6748 symstrtab_hdr
->sh_flags
= 0;
6749 symstrtab_hdr
->sh_addr
= 0;
6750 symstrtab_hdr
->sh_entsize
= 0;
6751 symstrtab_hdr
->sh_link
= 0;
6752 symstrtab_hdr
->sh_info
= 0;
6753 symstrtab_hdr
->sh_addralign
= 1;
6758 /* Return the number of bytes required to hold the symtab vector.
6760 Note that we base it on the count plus 1, since we will null terminate
6761 the vector allocated based on this size. However, the ELF symbol table
6762 always has a dummy entry as symbol #0, so it ends up even. */
6765 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6769 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6771 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6772 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6774 symtab_size
-= sizeof (asymbol
*);
6780 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6784 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6786 if (elf_dynsymtab (abfd
) == 0)
6788 bfd_set_error (bfd_error_invalid_operation
);
6792 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6793 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6795 symtab_size
-= sizeof (asymbol
*);
6801 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6804 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6807 /* Canonicalize the relocs. */
6810 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6817 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6819 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6822 tblptr
= section
->relocation
;
6823 for (i
= 0; i
< section
->reloc_count
; i
++)
6824 *relptr
++ = tblptr
++;
6828 return section
->reloc_count
;
6832 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6834 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6835 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6838 bfd_get_symcount (abfd
) = symcount
;
6843 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6844 asymbol
**allocation
)
6846 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6847 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6850 bfd_get_dynamic_symcount (abfd
) = symcount
;
6854 /* Return the size required for the dynamic reloc entries. Any loadable
6855 section that was actually installed in the BFD, and has type SHT_REL
6856 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6857 dynamic reloc section. */
6860 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6865 if (elf_dynsymtab (abfd
) == 0)
6867 bfd_set_error (bfd_error_invalid_operation
);
6871 ret
= sizeof (arelent
*);
6872 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6873 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6874 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6875 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6876 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6877 * sizeof (arelent
*));
6882 /* Canonicalize the dynamic relocation entries. Note that we return the
6883 dynamic relocations as a single block, although they are actually
6884 associated with particular sections; the interface, which was
6885 designed for SunOS style shared libraries, expects that there is only
6886 one set of dynamic relocs. Any loadable section that was actually
6887 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6888 dynamic symbol table, is considered to be a dynamic reloc section. */
6891 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6895 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6899 if (elf_dynsymtab (abfd
) == 0)
6901 bfd_set_error (bfd_error_invalid_operation
);
6905 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6907 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6909 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6910 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6911 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6916 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6918 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6920 for (i
= 0; i
< count
; i
++)
6931 /* Read in the version information. */
6934 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6936 bfd_byte
*contents
= NULL
;
6937 unsigned int freeidx
= 0;
6939 if (elf_dynverref (abfd
) != 0)
6941 Elf_Internal_Shdr
*hdr
;
6942 Elf_External_Verneed
*everneed
;
6943 Elf_Internal_Verneed
*iverneed
;
6945 bfd_byte
*contents_end
;
6947 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6949 elf_tdata (abfd
)->verref
= (Elf_Internal_Verneed
*)
6950 bfd_zalloc2 (abfd
, hdr
->sh_info
, sizeof (Elf_Internal_Verneed
));
6951 if (elf_tdata (abfd
)->verref
== NULL
)
6954 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6956 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6957 if (contents
== NULL
)
6959 error_return_verref
:
6960 elf_tdata (abfd
)->verref
= NULL
;
6961 elf_tdata (abfd
)->cverrefs
= 0;
6964 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6965 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6966 goto error_return_verref
;
6968 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6969 goto error_return_verref
;
6971 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6972 == sizeof (Elf_External_Vernaux
));
6973 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6974 everneed
= (Elf_External_Verneed
*) contents
;
6975 iverneed
= elf_tdata (abfd
)->verref
;
6976 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6978 Elf_External_Vernaux
*evernaux
;
6979 Elf_Internal_Vernaux
*ivernaux
;
6982 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6984 iverneed
->vn_bfd
= abfd
;
6986 iverneed
->vn_filename
=
6987 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6989 if (iverneed
->vn_filename
== NULL
)
6990 goto error_return_verref
;
6992 if (iverneed
->vn_cnt
== 0)
6993 iverneed
->vn_auxptr
= NULL
;
6996 iverneed
->vn_auxptr
= (struct elf_internal_vernaux
*)
6997 bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6998 sizeof (Elf_Internal_Vernaux
));
6999 if (iverneed
->vn_auxptr
== NULL
)
7000 goto error_return_verref
;
7003 if (iverneed
->vn_aux
7004 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7005 goto error_return_verref
;
7007 evernaux
= ((Elf_External_Vernaux
*)
7008 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
7009 ivernaux
= iverneed
->vn_auxptr
;
7010 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
7012 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
7014 ivernaux
->vna_nodename
=
7015 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7016 ivernaux
->vna_name
);
7017 if (ivernaux
->vna_nodename
== NULL
)
7018 goto error_return_verref
;
7020 if (j
+ 1 < iverneed
->vn_cnt
)
7021 ivernaux
->vna_nextptr
= ivernaux
+ 1;
7023 ivernaux
->vna_nextptr
= NULL
;
7025 if (ivernaux
->vna_next
7026 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
7027 goto error_return_verref
;
7029 evernaux
= ((Elf_External_Vernaux
*)
7030 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
7032 if (ivernaux
->vna_other
> freeidx
)
7033 freeidx
= ivernaux
->vna_other
;
7036 if (i
+ 1 < hdr
->sh_info
)
7037 iverneed
->vn_nextref
= iverneed
+ 1;
7039 iverneed
->vn_nextref
= NULL
;
7041 if (iverneed
->vn_next
7042 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7043 goto error_return_verref
;
7045 everneed
= ((Elf_External_Verneed
*)
7046 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
7053 if (elf_dynverdef (abfd
) != 0)
7055 Elf_Internal_Shdr
*hdr
;
7056 Elf_External_Verdef
*everdef
;
7057 Elf_Internal_Verdef
*iverdef
;
7058 Elf_Internal_Verdef
*iverdefarr
;
7059 Elf_Internal_Verdef iverdefmem
;
7061 unsigned int maxidx
;
7062 bfd_byte
*contents_end_def
, *contents_end_aux
;
7064 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
7066 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
7067 if (contents
== NULL
)
7069 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
7070 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
7073 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
7076 BFD_ASSERT (sizeof (Elf_External_Verdef
)
7077 >= sizeof (Elf_External_Verdaux
));
7078 contents_end_def
= contents
+ hdr
->sh_size
7079 - sizeof (Elf_External_Verdef
);
7080 contents_end_aux
= contents
+ hdr
->sh_size
7081 - sizeof (Elf_External_Verdaux
);
7083 /* We know the number of entries in the section but not the maximum
7084 index. Therefore we have to run through all entries and find
7086 everdef
= (Elf_External_Verdef
*) contents
;
7088 for (i
= 0; i
< hdr
->sh_info
; ++i
)
7090 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7092 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
7093 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
7095 if (iverdefmem
.vd_next
7096 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
7099 everdef
= ((Elf_External_Verdef
*)
7100 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
7103 if (default_imported_symver
)
7105 if (freeidx
> maxidx
)
7110 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7111 bfd_zalloc2 (abfd
, maxidx
, sizeof (Elf_Internal_Verdef
));
7112 if (elf_tdata (abfd
)->verdef
== NULL
)
7115 elf_tdata (abfd
)->cverdefs
= maxidx
;
7117 everdef
= (Elf_External_Verdef
*) contents
;
7118 iverdefarr
= elf_tdata (abfd
)->verdef
;
7119 for (i
= 0; i
< hdr
->sh_info
; i
++)
7121 Elf_External_Verdaux
*everdaux
;
7122 Elf_Internal_Verdaux
*iverdaux
;
7125 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7127 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
7129 error_return_verdef
:
7130 elf_tdata (abfd
)->verdef
= NULL
;
7131 elf_tdata (abfd
)->cverdefs
= 0;
7135 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
7136 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
7138 iverdef
->vd_bfd
= abfd
;
7140 if (iverdef
->vd_cnt
== 0)
7141 iverdef
->vd_auxptr
= NULL
;
7144 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7145 bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
7146 sizeof (Elf_Internal_Verdaux
));
7147 if (iverdef
->vd_auxptr
== NULL
)
7148 goto error_return_verdef
;
7152 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
7153 goto error_return_verdef
;
7155 everdaux
= ((Elf_External_Verdaux
*)
7156 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
7157 iverdaux
= iverdef
->vd_auxptr
;
7158 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
7160 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
7162 iverdaux
->vda_nodename
=
7163 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7164 iverdaux
->vda_name
);
7165 if (iverdaux
->vda_nodename
== NULL
)
7166 goto error_return_verdef
;
7168 if (j
+ 1 < iverdef
->vd_cnt
)
7169 iverdaux
->vda_nextptr
= iverdaux
+ 1;
7171 iverdaux
->vda_nextptr
= NULL
;
7173 if (iverdaux
->vda_next
7174 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
7175 goto error_return_verdef
;
7177 everdaux
= ((Elf_External_Verdaux
*)
7178 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
7181 if (iverdef
->vd_cnt
)
7182 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
7184 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
7185 iverdef
->vd_nextdef
= iverdef
+ 1;
7187 iverdef
->vd_nextdef
= NULL
;
7189 everdef
= ((Elf_External_Verdef
*)
7190 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
7196 else if (default_imported_symver
)
7203 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7204 bfd_zalloc2 (abfd
, freeidx
, sizeof (Elf_Internal_Verdef
));
7205 if (elf_tdata (abfd
)->verdef
== NULL
)
7208 elf_tdata (abfd
)->cverdefs
= freeidx
;
7211 /* Create a default version based on the soname. */
7212 if (default_imported_symver
)
7214 Elf_Internal_Verdef
*iverdef
;
7215 Elf_Internal_Verdaux
*iverdaux
;
7217 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
7219 iverdef
->vd_version
= VER_DEF_CURRENT
;
7220 iverdef
->vd_flags
= 0;
7221 iverdef
->vd_ndx
= freeidx
;
7222 iverdef
->vd_cnt
= 1;
7224 iverdef
->vd_bfd
= abfd
;
7226 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
7227 if (iverdef
->vd_nodename
== NULL
)
7228 goto error_return_verdef
;
7229 iverdef
->vd_nextdef
= NULL
;
7230 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7231 bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
7232 if (iverdef
->vd_auxptr
== NULL
)
7233 goto error_return_verdef
;
7235 iverdaux
= iverdef
->vd_auxptr
;
7236 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
7237 iverdaux
->vda_nextptr
= NULL
;
7243 if (contents
!= NULL
)
7249 _bfd_elf_make_empty_symbol (bfd
*abfd
)
7251 elf_symbol_type
*newsym
;
7252 bfd_size_type amt
= sizeof (elf_symbol_type
);
7254 newsym
= (elf_symbol_type
*) bfd_zalloc (abfd
, amt
);
7259 newsym
->symbol
.the_bfd
= abfd
;
7260 return &newsym
->symbol
;
7265 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7269 bfd_symbol_info (symbol
, ret
);
7272 /* Return whether a symbol name implies a local symbol. Most targets
7273 use this function for the is_local_label_name entry point, but some
7277 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7280 /* Normal local symbols start with ``.L''. */
7281 if (name
[0] == '.' && name
[1] == 'L')
7284 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7285 DWARF debugging symbols starting with ``..''. */
7286 if (name
[0] == '.' && name
[1] == '.')
7289 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7290 emitting DWARF debugging output. I suspect this is actually a
7291 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7292 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7293 underscore to be emitted on some ELF targets). For ease of use,
7294 we treat such symbols as local. */
7295 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7302 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7303 asymbol
*symbol ATTRIBUTE_UNUSED
)
7310 _bfd_elf_set_arch_mach (bfd
*abfd
,
7311 enum bfd_architecture arch
,
7312 unsigned long machine
)
7314 /* If this isn't the right architecture for this backend, and this
7315 isn't the generic backend, fail. */
7316 if (arch
!= get_elf_backend_data (abfd
)->arch
7317 && arch
!= bfd_arch_unknown
7318 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7321 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7324 /* Find the function to a particular section and offset,
7325 for error reporting. */
7328 elf_find_function (bfd
*abfd
,
7332 const char **filename_ptr
,
7333 const char **functionname_ptr
)
7335 const char *filename
;
7336 asymbol
*func
, *file
;
7339 /* ??? Given multiple file symbols, it is impossible to reliably
7340 choose the right file name for global symbols. File symbols are
7341 local symbols, and thus all file symbols must sort before any
7342 global symbols. The ELF spec may be interpreted to say that a
7343 file symbol must sort before other local symbols, but currently
7344 ld -r doesn't do this. So, for ld -r output, it is possible to
7345 make a better choice of file name for local symbols by ignoring
7346 file symbols appearing after a given local symbol. */
7347 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7348 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7354 state
= nothing_seen
;
7356 for (p
= symbols
; *p
!= NULL
; p
++)
7361 q
= (elf_symbol_type
*) *p
;
7363 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7368 if (state
== symbol_seen
)
7369 state
= file_after_symbol_seen
;
7372 if (!bed
->is_function_type (type
))
7375 if (bfd_get_section (&q
->symbol
) == section
7376 && q
->symbol
.value
>= low_func
7377 && q
->symbol
.value
<= offset
)
7379 func
= (asymbol
*) q
;
7380 low_func
= q
->symbol
.value
;
7383 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7384 || state
!= file_after_symbol_seen
))
7385 filename
= bfd_asymbol_name (file
);
7389 if (state
== nothing_seen
)
7390 state
= symbol_seen
;
7397 *filename_ptr
= filename
;
7398 if (functionname_ptr
)
7399 *functionname_ptr
= bfd_asymbol_name (func
);
7404 /* Find the nearest line to a particular section and offset,
7405 for error reporting. */
7408 _bfd_elf_find_nearest_line (bfd
*abfd
,
7412 const char **filename_ptr
,
7413 const char **functionname_ptr
,
7414 unsigned int *line_ptr
)
7418 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7419 filename_ptr
, functionname_ptr
,
7422 if (!*functionname_ptr
)
7423 elf_find_function (abfd
, section
, symbols
, offset
,
7424 *filename_ptr
? NULL
: filename_ptr
,
7430 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7431 filename_ptr
, functionname_ptr
,
7433 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7435 if (!*functionname_ptr
)
7436 elf_find_function (abfd
, section
, symbols
, offset
,
7437 *filename_ptr
? NULL
: filename_ptr
,
7443 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7444 &found
, filename_ptr
,
7445 functionname_ptr
, line_ptr
,
7446 &elf_tdata (abfd
)->line_info
))
7448 if (found
&& (*functionname_ptr
|| *line_ptr
))
7451 if (symbols
== NULL
)
7454 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7455 filename_ptr
, functionname_ptr
))
7462 /* Find the line for a symbol. */
7465 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7466 const char **filename_ptr
, unsigned int *line_ptr
)
7468 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7469 filename_ptr
, line_ptr
, 0,
7470 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7473 /* After a call to bfd_find_nearest_line, successive calls to
7474 bfd_find_inliner_info can be used to get source information about
7475 each level of function inlining that terminated at the address
7476 passed to bfd_find_nearest_line. Currently this is only supported
7477 for DWARF2 with appropriate DWARF3 extensions. */
7480 _bfd_elf_find_inliner_info (bfd
*abfd
,
7481 const char **filename_ptr
,
7482 const char **functionname_ptr
,
7483 unsigned int *line_ptr
)
7486 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7487 functionname_ptr
, line_ptr
,
7488 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7493 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7495 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7496 int ret
= bed
->s
->sizeof_ehdr
;
7498 if (!info
->relocatable
)
7500 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7502 if (phdr_size
== (bfd_size_type
) -1)
7504 struct elf_segment_map
*m
;
7507 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7508 phdr_size
+= bed
->s
->sizeof_phdr
;
7511 phdr_size
= get_program_header_size (abfd
, info
);
7514 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7522 _bfd_elf_set_section_contents (bfd
*abfd
,
7524 const void *location
,
7526 bfd_size_type count
)
7528 Elf_Internal_Shdr
*hdr
;
7531 if (! abfd
->output_has_begun
7532 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7535 hdr
= &elf_section_data (section
)->this_hdr
;
7536 pos
= hdr
->sh_offset
+ offset
;
7537 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7538 || bfd_bwrite (location
, count
, abfd
) != count
)
7545 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7546 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7547 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7552 /* Try to convert a non-ELF reloc into an ELF one. */
7555 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7557 /* Check whether we really have an ELF howto. */
7559 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7561 bfd_reloc_code_real_type code
;
7562 reloc_howto_type
*howto
;
7564 /* Alien reloc: Try to determine its type to replace it with an
7565 equivalent ELF reloc. */
7567 if (areloc
->howto
->pc_relative
)
7569 switch (areloc
->howto
->bitsize
)
7572 code
= BFD_RELOC_8_PCREL
;
7575 code
= BFD_RELOC_12_PCREL
;
7578 code
= BFD_RELOC_16_PCREL
;
7581 code
= BFD_RELOC_24_PCREL
;
7584 code
= BFD_RELOC_32_PCREL
;
7587 code
= BFD_RELOC_64_PCREL
;
7593 howto
= bfd_reloc_type_lookup (abfd
, code
);
7595 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7597 if (howto
->pcrel_offset
)
7598 areloc
->addend
+= areloc
->address
;
7600 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7605 switch (areloc
->howto
->bitsize
)
7611 code
= BFD_RELOC_14
;
7614 code
= BFD_RELOC_16
;
7617 code
= BFD_RELOC_26
;
7620 code
= BFD_RELOC_32
;
7623 code
= BFD_RELOC_64
;
7629 howto
= bfd_reloc_type_lookup (abfd
, code
);
7633 areloc
->howto
= howto
;
7641 (*_bfd_error_handler
)
7642 (_("%B: unsupported relocation type %s"),
7643 abfd
, areloc
->howto
->name
);
7644 bfd_set_error (bfd_error_bad_value
);
7649 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7651 if (bfd_get_format (abfd
) == bfd_object
)
7653 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7654 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7655 _bfd_dwarf2_cleanup_debug_info (abfd
);
7658 return _bfd_generic_close_and_cleanup (abfd
);
7661 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7662 in the relocation's offset. Thus we cannot allow any sort of sanity
7663 range-checking to interfere. There is nothing else to do in processing
7666 bfd_reloc_status_type
7667 _bfd_elf_rel_vtable_reloc_fn
7668 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7669 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7670 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7671 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7673 return bfd_reloc_ok
;
7676 /* Elf core file support. Much of this only works on native
7677 toolchains, since we rely on knowing the
7678 machine-dependent procfs structure in order to pick
7679 out details about the corefile. */
7681 #ifdef HAVE_SYS_PROCFS_H
7682 /* Needed for new procfs interface on sparc-solaris. */
7683 # define _STRUCTURED_PROC 1
7684 # include <sys/procfs.h>
7687 /* Return a PID that identifies a "thread" for threaded cores, or the
7688 PID of the main process for non-threaded cores. */
7691 elfcore_make_pid (bfd
*abfd
)
7695 pid
= elf_tdata (abfd
)->core_lwpid
;
7697 pid
= elf_tdata (abfd
)->core_pid
;
7702 /* If there isn't a section called NAME, make one, using
7703 data from SECT. Note, this function will generate a
7704 reference to NAME, so you shouldn't deallocate or
7708 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7712 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7715 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7719 sect2
->size
= sect
->size
;
7720 sect2
->filepos
= sect
->filepos
;
7721 sect2
->alignment_power
= sect
->alignment_power
;
7725 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7726 actually creates up to two pseudosections:
7727 - For the single-threaded case, a section named NAME, unless
7728 such a section already exists.
7729 - For the multi-threaded case, a section named "NAME/PID", where
7730 PID is elfcore_make_pid (abfd).
7731 Both pseudosections have identical contents. */
7733 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7739 char *threaded_name
;
7743 /* Build the section name. */
7745 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7746 len
= strlen (buf
) + 1;
7747 threaded_name
= (char *) bfd_alloc (abfd
, len
);
7748 if (threaded_name
== NULL
)
7750 memcpy (threaded_name
, buf
, len
);
7752 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7757 sect
->filepos
= filepos
;
7758 sect
->alignment_power
= 2;
7760 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7763 /* prstatus_t exists on:
7765 linux 2.[01] + glibc
7769 #if defined (HAVE_PRSTATUS_T)
7772 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7777 if (note
->descsz
== sizeof (prstatus_t
))
7781 size
= sizeof (prstat
.pr_reg
);
7782 offset
= offsetof (prstatus_t
, pr_reg
);
7783 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7785 /* Do not overwrite the core signal if it
7786 has already been set by another thread. */
7787 if (elf_tdata (abfd
)->core_signal
== 0)
7788 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7789 if (elf_tdata (abfd
)->core_pid
== 0)
7790 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7792 /* pr_who exists on:
7795 pr_who doesn't exist on:
7798 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7799 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7801 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
7804 #if defined (HAVE_PRSTATUS32_T)
7805 else if (note
->descsz
== sizeof (prstatus32_t
))
7807 /* 64-bit host, 32-bit corefile */
7808 prstatus32_t prstat
;
7810 size
= sizeof (prstat
.pr_reg
);
7811 offset
= offsetof (prstatus32_t
, pr_reg
);
7812 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7814 /* Do not overwrite the core signal if it
7815 has already been set by another thread. */
7816 if (elf_tdata (abfd
)->core_signal
== 0)
7817 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7818 if (elf_tdata (abfd
)->core_pid
== 0)
7819 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7821 /* pr_who exists on:
7824 pr_who doesn't exist on:
7827 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7828 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7830 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
7833 #endif /* HAVE_PRSTATUS32_T */
7836 /* Fail - we don't know how to handle any other
7837 note size (ie. data object type). */
7841 /* Make a ".reg/999" section and a ".reg" section. */
7842 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7843 size
, note
->descpos
+ offset
);
7845 #endif /* defined (HAVE_PRSTATUS_T) */
7847 /* Create a pseudosection containing the exact contents of NOTE. */
7849 elfcore_make_note_pseudosection (bfd
*abfd
,
7851 Elf_Internal_Note
*note
)
7853 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7854 note
->descsz
, note
->descpos
);
7857 /* There isn't a consistent prfpregset_t across platforms,
7858 but it doesn't matter, because we don't have to pick this
7859 data structure apart. */
7862 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7864 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7867 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7868 type of NT_PRXFPREG. Just include the whole note's contents
7872 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7874 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7877 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7878 with a note type of NT_X86_XSTATE. Just include the whole note's
7879 contents literally. */
7882 elfcore_grok_xstatereg (bfd
*abfd
, Elf_Internal_Note
*note
)
7884 return elfcore_make_note_pseudosection (abfd
, ".reg-xstate", note
);
7888 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7890 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7894 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7896 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7900 elfcore_grok_s390_high_gprs (bfd
*abfd
, Elf_Internal_Note
*note
)
7902 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-high-gprs", note
);
7906 elfcore_grok_s390_timer (bfd
*abfd
, Elf_Internal_Note
*note
)
7908 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-timer", note
);
7912 elfcore_grok_s390_todcmp (bfd
*abfd
, Elf_Internal_Note
*note
)
7914 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todcmp", note
);
7918 elfcore_grok_s390_todpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7920 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todpreg", note
);
7924 elfcore_grok_s390_ctrs (bfd
*abfd
, Elf_Internal_Note
*note
)
7926 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-ctrs", note
);
7930 elfcore_grok_s390_prefix (bfd
*abfd
, Elf_Internal_Note
*note
)
7932 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-prefix", note
);
7935 #if defined (HAVE_PRPSINFO_T)
7936 typedef prpsinfo_t elfcore_psinfo_t
;
7937 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7938 typedef prpsinfo32_t elfcore_psinfo32_t
;
7942 #if defined (HAVE_PSINFO_T)
7943 typedef psinfo_t elfcore_psinfo_t
;
7944 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7945 typedef psinfo32_t elfcore_psinfo32_t
;
7949 /* return a malloc'ed copy of a string at START which is at
7950 most MAX bytes long, possibly without a terminating '\0'.
7951 the copy will always have a terminating '\0'. */
7954 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7957 char *end
= (char *) memchr (start
, '\0', max
);
7965 dups
= (char *) bfd_alloc (abfd
, len
+ 1);
7969 memcpy (dups
, start
, len
);
7975 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7977 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7979 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7981 elfcore_psinfo_t psinfo
;
7983 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7985 elf_tdata (abfd
)->core_program
7986 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7987 sizeof (psinfo
.pr_fname
));
7989 elf_tdata (abfd
)->core_command
7990 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7991 sizeof (psinfo
.pr_psargs
));
7993 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7994 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7996 /* 64-bit host, 32-bit corefile */
7997 elfcore_psinfo32_t psinfo
;
7999 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
8001 elf_tdata (abfd
)->core_program
8002 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
8003 sizeof (psinfo
.pr_fname
));
8005 elf_tdata (abfd
)->core_command
8006 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
8007 sizeof (psinfo
.pr_psargs
));
8013 /* Fail - we don't know how to handle any other
8014 note size (ie. data object type). */
8018 /* Note that for some reason, a spurious space is tacked
8019 onto the end of the args in some (at least one anyway)
8020 implementations, so strip it off if it exists. */
8023 char *command
= elf_tdata (abfd
)->core_command
;
8024 int n
= strlen (command
);
8026 if (0 < n
&& command
[n
- 1] == ' ')
8027 command
[n
- 1] = '\0';
8032 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8034 #if defined (HAVE_PSTATUS_T)
8036 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8038 if (note
->descsz
== sizeof (pstatus_t
)
8039 #if defined (HAVE_PXSTATUS_T)
8040 || note
->descsz
== sizeof (pxstatus_t
)
8046 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8048 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8050 #if defined (HAVE_PSTATUS32_T)
8051 else if (note
->descsz
== sizeof (pstatus32_t
))
8053 /* 64-bit host, 32-bit corefile */
8056 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8058 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8061 /* Could grab some more details from the "representative"
8062 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8063 NT_LWPSTATUS note, presumably. */
8067 #endif /* defined (HAVE_PSTATUS_T) */
8069 #if defined (HAVE_LWPSTATUS_T)
8071 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8073 lwpstatus_t lwpstat
;
8079 if (note
->descsz
!= sizeof (lwpstat
)
8080 #if defined (HAVE_LWPXSTATUS_T)
8081 && note
->descsz
!= sizeof (lwpxstatus_t
)
8086 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
8088 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
8089 /* Do not overwrite the core signal if it has already been set by
8091 if (elf_tdata (abfd
)->core_signal
== 0)
8092 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
8094 /* Make a ".reg/999" section. */
8096 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
8097 len
= strlen (buf
) + 1;
8098 name
= bfd_alloc (abfd
, len
);
8101 memcpy (name
, buf
, len
);
8103 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8107 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8108 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
8109 sect
->filepos
= note
->descpos
8110 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
8113 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8114 sect
->size
= sizeof (lwpstat
.pr_reg
);
8115 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
8118 sect
->alignment_power
= 2;
8120 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8123 /* Make a ".reg2/999" section */
8125 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
8126 len
= strlen (buf
) + 1;
8127 name
= bfd_alloc (abfd
, len
);
8130 memcpy (name
, buf
, len
);
8132 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8136 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8137 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
8138 sect
->filepos
= note
->descpos
8139 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
8142 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8143 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
8144 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
8147 sect
->alignment_power
= 2;
8149 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
8151 #endif /* defined (HAVE_LWPSTATUS_T) */
8154 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8161 int is_active_thread
;
8164 if (note
->descsz
< 728)
8167 if (! CONST_STRNEQ (note
->namedata
, "win32"))
8170 type
= bfd_get_32 (abfd
, note
->descdata
);
8174 case 1 /* NOTE_INFO_PROCESS */:
8175 /* FIXME: need to add ->core_command. */
8176 /* process_info.pid */
8177 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8178 /* process_info.signal */
8179 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
8182 case 2 /* NOTE_INFO_THREAD */:
8183 /* Make a ".reg/999" section. */
8184 /* thread_info.tid */
8185 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
8187 len
= strlen (buf
) + 1;
8188 name
= (char *) bfd_alloc (abfd
, len
);
8192 memcpy (name
, buf
, len
);
8194 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8198 /* sizeof (thread_info.thread_context) */
8200 /* offsetof (thread_info.thread_context) */
8201 sect
->filepos
= note
->descpos
+ 12;
8202 sect
->alignment_power
= 2;
8204 /* thread_info.is_active_thread */
8205 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8207 if (is_active_thread
)
8208 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8212 case 3 /* NOTE_INFO_MODULE */:
8213 /* Make a ".module/xxxxxxxx" section. */
8214 /* module_info.base_address */
8215 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
8216 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
8218 len
= strlen (buf
) + 1;
8219 name
= (char *) bfd_alloc (abfd
, len
);
8223 memcpy (name
, buf
, len
);
8225 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8230 sect
->size
= note
->descsz
;
8231 sect
->filepos
= note
->descpos
;
8232 sect
->alignment_power
= 2;
8243 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8245 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8253 if (bed
->elf_backend_grok_prstatus
)
8254 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
8256 #if defined (HAVE_PRSTATUS_T)
8257 return elfcore_grok_prstatus (abfd
, note
);
8262 #if defined (HAVE_PSTATUS_T)
8264 return elfcore_grok_pstatus (abfd
, note
);
8267 #if defined (HAVE_LWPSTATUS_T)
8269 return elfcore_grok_lwpstatus (abfd
, note
);
8272 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
8273 return elfcore_grok_prfpreg (abfd
, note
);
8275 case NT_WIN32PSTATUS
:
8276 return elfcore_grok_win32pstatus (abfd
, note
);
8278 case NT_PRXFPREG
: /* Linux SSE extension */
8279 if (note
->namesz
== 6
8280 && strcmp (note
->namedata
, "LINUX") == 0)
8281 return elfcore_grok_prxfpreg (abfd
, note
);
8285 case NT_X86_XSTATE
: /* Linux XSAVE extension */
8286 if (note
->namesz
== 6
8287 && strcmp (note
->namedata
, "LINUX") == 0)
8288 return elfcore_grok_xstatereg (abfd
, note
);
8293 if (note
->namesz
== 6
8294 && strcmp (note
->namedata
, "LINUX") == 0)
8295 return elfcore_grok_ppc_vmx (abfd
, note
);
8300 if (note
->namesz
== 6
8301 && strcmp (note
->namedata
, "LINUX") == 0)
8302 return elfcore_grok_ppc_vsx (abfd
, note
);
8306 case NT_S390_HIGH_GPRS
:
8307 if (note
->namesz
== 6
8308 && strcmp (note
->namedata
, "LINUX") == 0)
8309 return elfcore_grok_s390_high_gprs (abfd
, note
);
8314 if (note
->namesz
== 6
8315 && strcmp (note
->namedata
, "LINUX") == 0)
8316 return elfcore_grok_s390_timer (abfd
, note
);
8320 case NT_S390_TODCMP
:
8321 if (note
->namesz
== 6
8322 && strcmp (note
->namedata
, "LINUX") == 0)
8323 return elfcore_grok_s390_todcmp (abfd
, note
);
8327 case NT_S390_TODPREG
:
8328 if (note
->namesz
== 6
8329 && strcmp (note
->namedata
, "LINUX") == 0)
8330 return elfcore_grok_s390_todpreg (abfd
, note
);
8335 if (note
->namesz
== 6
8336 && strcmp (note
->namedata
, "LINUX") == 0)
8337 return elfcore_grok_s390_ctrs (abfd
, note
);
8341 case NT_S390_PREFIX
:
8342 if (note
->namesz
== 6
8343 && strcmp (note
->namedata
, "LINUX") == 0)
8344 return elfcore_grok_s390_prefix (abfd
, note
);
8350 if (bed
->elf_backend_grok_psinfo
)
8351 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
8353 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8354 return elfcore_grok_psinfo (abfd
, note
);
8361 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8366 sect
->size
= note
->descsz
;
8367 sect
->filepos
= note
->descpos
;
8368 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8376 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8378 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8379 elf_tdata (abfd
)->build_id
= (bfd_byte
*) bfd_alloc (abfd
, note
->descsz
);
8380 if (elf_tdata (abfd
)->build_id
== NULL
)
8383 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8389 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8396 case NT_GNU_BUILD_ID
:
8397 return elfobj_grok_gnu_build_id (abfd
, note
);
8402 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8406 cp
= strchr (note
->namedata
, '@');
8409 *lwpidp
= atoi(cp
+ 1);
8416 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8418 /* Signal number at offset 0x08. */
8419 elf_tdata (abfd
)->core_signal
8420 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8422 /* Process ID at offset 0x50. */
8423 elf_tdata (abfd
)->core_pid
8424 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8426 /* Command name at 0x7c (max 32 bytes, including nul). */
8427 elf_tdata (abfd
)->core_command
8428 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8430 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8435 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8439 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8440 elf_tdata (abfd
)->core_lwpid
= lwp
;
8442 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8444 /* NetBSD-specific core "procinfo". Note that we expect to
8445 find this note before any of the others, which is fine,
8446 since the kernel writes this note out first when it
8447 creates a core file. */
8449 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8452 /* As of Jan 2002 there are no other machine-independent notes
8453 defined for NetBSD core files. If the note type is less
8454 than the start of the machine-dependent note types, we don't
8457 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8461 switch (bfd_get_arch (abfd
))
8463 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8464 PT_GETFPREGS == mach+2. */
8466 case bfd_arch_alpha
:
8467 case bfd_arch_sparc
:
8470 case NT_NETBSDCORE_FIRSTMACH
+0:
8471 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8473 case NT_NETBSDCORE_FIRSTMACH
+2:
8474 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8480 /* On all other arch's, PT_GETREGS == mach+1 and
8481 PT_GETFPREGS == mach+3. */
8486 case NT_NETBSDCORE_FIRSTMACH
+1:
8487 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8489 case NT_NETBSDCORE_FIRSTMACH
+3:
8490 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8500 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8502 /* Signal number at offset 0x08. */
8503 elf_tdata (abfd
)->core_signal
8504 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8506 /* Process ID at offset 0x20. */
8507 elf_tdata (abfd
)->core_pid
8508 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8510 /* Command name at 0x48 (max 32 bytes, including nul). */
8511 elf_tdata (abfd
)->core_command
8512 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8518 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8520 if (note
->type
== NT_OPENBSD_PROCINFO
)
8521 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8523 if (note
->type
== NT_OPENBSD_REGS
)
8524 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8526 if (note
->type
== NT_OPENBSD_FPREGS
)
8527 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8529 if (note
->type
== NT_OPENBSD_XFPREGS
)
8530 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8532 if (note
->type
== NT_OPENBSD_AUXV
)
8534 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8539 sect
->size
= note
->descsz
;
8540 sect
->filepos
= note
->descpos
;
8541 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8546 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8548 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8553 sect
->size
= note
->descsz
;
8554 sect
->filepos
= note
->descpos
;
8555 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8564 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8566 void *ddata
= note
->descdata
;
8573 /* nto_procfs_status 'pid' field is at offset 0. */
8574 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8576 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8577 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8579 /* nto_procfs_status 'flags' field is at offset 8. */
8580 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8582 /* nto_procfs_status 'what' field is at offset 14. */
8583 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8585 elf_tdata (abfd
)->core_signal
= sig
;
8586 elf_tdata (abfd
)->core_lwpid
= *tid
;
8589 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8590 do not come from signals so we make sure we set the current
8591 thread just in case. */
8592 if (flags
& 0x00000080)
8593 elf_tdata (abfd
)->core_lwpid
= *tid
;
8595 /* Make a ".qnx_core_status/%d" section. */
8596 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8598 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8603 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8607 sect
->size
= note
->descsz
;
8608 sect
->filepos
= note
->descpos
;
8609 sect
->alignment_power
= 2;
8611 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8615 elfcore_grok_nto_regs (bfd
*abfd
,
8616 Elf_Internal_Note
*note
,
8624 /* Make a "(base)/%d" section. */
8625 sprintf (buf
, "%s/%ld", base
, tid
);
8627 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8632 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8636 sect
->size
= note
->descsz
;
8637 sect
->filepos
= note
->descpos
;
8638 sect
->alignment_power
= 2;
8640 /* This is the current thread. */
8641 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8642 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8647 #define BFD_QNT_CORE_INFO 7
8648 #define BFD_QNT_CORE_STATUS 8
8649 #define BFD_QNT_CORE_GREG 9
8650 #define BFD_QNT_CORE_FPREG 10
8653 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8655 /* Every GREG section has a STATUS section before it. Store the
8656 tid from the previous call to pass down to the next gregs
8658 static long tid
= 1;
8662 case BFD_QNT_CORE_INFO
:
8663 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8664 case BFD_QNT_CORE_STATUS
:
8665 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8666 case BFD_QNT_CORE_GREG
:
8667 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8668 case BFD_QNT_CORE_FPREG
:
8669 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8676 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8682 /* Use note name as section name. */
8684 name
= (char *) bfd_alloc (abfd
, len
);
8687 memcpy (name
, note
->namedata
, len
);
8688 name
[len
- 1] = '\0';
8690 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8694 sect
->size
= note
->descsz
;
8695 sect
->filepos
= note
->descpos
;
8696 sect
->alignment_power
= 1;
8701 /* Function: elfcore_write_note
8704 buffer to hold note, and current size of buffer
8708 size of data for note
8710 Writes note to end of buffer. ELF64 notes are written exactly as
8711 for ELF32, despite the current (as of 2006) ELF gabi specifying
8712 that they ought to have 8-byte namesz and descsz field, and have
8713 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8716 Pointer to realloc'd buffer, *BUFSIZ updated. */
8719 elfcore_write_note (bfd
*abfd
,
8727 Elf_External_Note
*xnp
;
8734 namesz
= strlen (name
) + 1;
8736 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8738 buf
= (char *) realloc (buf
, *bufsiz
+ newspace
);
8741 dest
= buf
+ *bufsiz
;
8742 *bufsiz
+= newspace
;
8743 xnp
= (Elf_External_Note
*) dest
;
8744 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8745 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8746 H_PUT_32 (abfd
, type
, xnp
->type
);
8750 memcpy (dest
, name
, namesz
);
8758 memcpy (dest
, input
, size
);
8768 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8770 elfcore_write_prpsinfo (bfd
*abfd
,
8776 const char *note_name
= "CORE";
8777 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8779 if (bed
->elf_backend_write_core_note
!= NULL
)
8782 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8783 NT_PRPSINFO
, fname
, psargs
);
8788 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8789 if (bed
->s
->elfclass
== ELFCLASS32
)
8791 #if defined (HAVE_PSINFO32_T)
8793 int note_type
= NT_PSINFO
;
8796 int note_type
= NT_PRPSINFO
;
8799 memset (&data
, 0, sizeof (data
));
8800 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8801 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8802 return elfcore_write_note (abfd
, buf
, bufsiz
,
8803 note_name
, note_type
, &data
, sizeof (data
));
8808 #if defined (HAVE_PSINFO_T)
8810 int note_type
= NT_PSINFO
;
8813 int note_type
= NT_PRPSINFO
;
8816 memset (&data
, 0, sizeof (data
));
8817 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8818 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8819 return elfcore_write_note (abfd
, buf
, bufsiz
,
8820 note_name
, note_type
, &data
, sizeof (data
));
8823 #endif /* PSINFO_T or PRPSINFO_T */
8825 #if defined (HAVE_PRSTATUS_T)
8827 elfcore_write_prstatus (bfd
*abfd
,
8834 const char *note_name
= "CORE";
8835 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8837 if (bed
->elf_backend_write_core_note
!= NULL
)
8840 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8842 pid
, cursig
, gregs
);
8847 #if defined (HAVE_PRSTATUS32_T)
8848 if (bed
->s
->elfclass
== ELFCLASS32
)
8850 prstatus32_t prstat
;
8852 memset (&prstat
, 0, sizeof (prstat
));
8853 prstat
.pr_pid
= pid
;
8854 prstat
.pr_cursig
= cursig
;
8855 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8856 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8857 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8864 memset (&prstat
, 0, sizeof (prstat
));
8865 prstat
.pr_pid
= pid
;
8866 prstat
.pr_cursig
= cursig
;
8867 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8868 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8869 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8872 #endif /* HAVE_PRSTATUS_T */
8874 #if defined (HAVE_LWPSTATUS_T)
8876 elfcore_write_lwpstatus (bfd
*abfd
,
8883 lwpstatus_t lwpstat
;
8884 const char *note_name
= "CORE";
8886 memset (&lwpstat
, 0, sizeof (lwpstat
));
8887 lwpstat
.pr_lwpid
= pid
>> 16;
8888 lwpstat
.pr_cursig
= cursig
;
8889 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8890 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8891 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8893 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8894 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8896 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8897 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8900 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8901 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8903 #endif /* HAVE_LWPSTATUS_T */
8905 #if defined (HAVE_PSTATUS_T)
8907 elfcore_write_pstatus (bfd
*abfd
,
8911 int cursig ATTRIBUTE_UNUSED
,
8912 const void *gregs ATTRIBUTE_UNUSED
)
8914 const char *note_name
= "CORE";
8915 #if defined (HAVE_PSTATUS32_T)
8916 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8918 if (bed
->s
->elfclass
== ELFCLASS32
)
8922 memset (&pstat
, 0, sizeof (pstat
));
8923 pstat
.pr_pid
= pid
& 0xffff;
8924 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8925 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8933 memset (&pstat
, 0, sizeof (pstat
));
8934 pstat
.pr_pid
= pid
& 0xffff;
8935 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8936 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8940 #endif /* HAVE_PSTATUS_T */
8943 elfcore_write_prfpreg (bfd
*abfd
,
8949 const char *note_name
= "CORE";
8950 return elfcore_write_note (abfd
, buf
, bufsiz
,
8951 note_name
, NT_FPREGSET
, fpregs
, size
);
8955 elfcore_write_prxfpreg (bfd
*abfd
,
8958 const void *xfpregs
,
8961 char *note_name
= "LINUX";
8962 return elfcore_write_note (abfd
, buf
, bufsiz
,
8963 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8967 elfcore_write_xstatereg (bfd
*abfd
, char *buf
, int *bufsiz
,
8968 const void *xfpregs
, int size
)
8970 char *note_name
= "LINUX";
8971 return elfcore_write_note (abfd
, buf
, bufsiz
,
8972 note_name
, NT_X86_XSTATE
, xfpregs
, size
);
8976 elfcore_write_ppc_vmx (bfd
*abfd
,
8979 const void *ppc_vmx
,
8982 char *note_name
= "LINUX";
8983 return elfcore_write_note (abfd
, buf
, bufsiz
,
8984 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8988 elfcore_write_ppc_vsx (bfd
*abfd
,
8991 const void *ppc_vsx
,
8994 char *note_name
= "LINUX";
8995 return elfcore_write_note (abfd
, buf
, bufsiz
,
8996 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
9000 elfcore_write_s390_high_gprs (bfd
*abfd
,
9003 const void *s390_high_gprs
,
9006 char *note_name
= "LINUX";
9007 return elfcore_write_note (abfd
, buf
, bufsiz
,
9008 note_name
, NT_S390_HIGH_GPRS
,
9009 s390_high_gprs
, size
);
9013 elfcore_write_s390_timer (bfd
*abfd
,
9016 const void *s390_timer
,
9019 char *note_name
= "LINUX";
9020 return elfcore_write_note (abfd
, buf
, bufsiz
,
9021 note_name
, NT_S390_TIMER
, s390_timer
, size
);
9025 elfcore_write_s390_todcmp (bfd
*abfd
,
9028 const void *s390_todcmp
,
9031 char *note_name
= "LINUX";
9032 return elfcore_write_note (abfd
, buf
, bufsiz
,
9033 note_name
, NT_S390_TODCMP
, s390_todcmp
, size
);
9037 elfcore_write_s390_todpreg (bfd
*abfd
,
9040 const void *s390_todpreg
,
9043 char *note_name
= "LINUX";
9044 return elfcore_write_note (abfd
, buf
, bufsiz
,
9045 note_name
, NT_S390_TODPREG
, s390_todpreg
, size
);
9049 elfcore_write_s390_ctrs (bfd
*abfd
,
9052 const void *s390_ctrs
,
9055 char *note_name
= "LINUX";
9056 return elfcore_write_note (abfd
, buf
, bufsiz
,
9057 note_name
, NT_S390_CTRS
, s390_ctrs
, size
);
9061 elfcore_write_s390_prefix (bfd
*abfd
,
9064 const void *s390_prefix
,
9067 char *note_name
= "LINUX";
9068 return elfcore_write_note (abfd
, buf
, bufsiz
,
9069 note_name
, NT_S390_PREFIX
, s390_prefix
, size
);
9073 elfcore_write_register_note (bfd
*abfd
,
9076 const char *section
,
9080 if (strcmp (section
, ".reg2") == 0)
9081 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
9082 if (strcmp (section
, ".reg-xfp") == 0)
9083 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
9084 if (strcmp (section
, ".reg-xstate") == 0)
9085 return elfcore_write_xstatereg (abfd
, buf
, bufsiz
, data
, size
);
9086 if (strcmp (section
, ".reg-ppc-vmx") == 0)
9087 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
9088 if (strcmp (section
, ".reg-ppc-vsx") == 0)
9089 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
9090 if (strcmp (section
, ".reg-s390-high-gprs") == 0)
9091 return elfcore_write_s390_high_gprs (abfd
, buf
, bufsiz
, data
, size
);
9092 if (strcmp (section
, ".reg-s390-timer") == 0)
9093 return elfcore_write_s390_timer (abfd
, buf
, bufsiz
, data
, size
);
9094 if (strcmp (section
, ".reg-s390-todcmp") == 0)
9095 return elfcore_write_s390_todcmp (abfd
, buf
, bufsiz
, data
, size
);
9096 if (strcmp (section
, ".reg-s390-todpreg") == 0)
9097 return elfcore_write_s390_todpreg (abfd
, buf
, bufsiz
, data
, size
);
9098 if (strcmp (section
, ".reg-s390-ctrs") == 0)
9099 return elfcore_write_s390_ctrs (abfd
, buf
, bufsiz
, data
, size
);
9100 if (strcmp (section
, ".reg-s390-prefix") == 0)
9101 return elfcore_write_s390_prefix (abfd
, buf
, bufsiz
, data
, size
);
9106 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
9111 while (p
< buf
+ size
)
9113 /* FIXME: bad alignment assumption. */
9114 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
9115 Elf_Internal_Note in
;
9117 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
9120 in
.type
= H_GET_32 (abfd
, xnp
->type
);
9122 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
9123 in
.namedata
= xnp
->name
;
9124 if (in
.namesz
> buf
- in
.namedata
+ size
)
9127 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
9128 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
9129 in
.descpos
= offset
+ (in
.descdata
- buf
);
9131 && (in
.descdata
>= buf
+ size
9132 || in
.descsz
> buf
- in
.descdata
+ size
))
9135 switch (bfd_get_format (abfd
))
9141 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
9143 if (! elfcore_grok_netbsd_note (abfd
, &in
))
9146 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
9148 if (! elfcore_grok_openbsd_note (abfd
, &in
))
9151 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
9153 if (! elfcore_grok_nto_note (abfd
, &in
))
9156 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
9158 if (! elfcore_grok_spu_note (abfd
, &in
))
9163 if (! elfcore_grok_note (abfd
, &in
))
9169 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
9171 if (! elfobj_grok_gnu_note (abfd
, &in
))
9177 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
9184 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
9191 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
9194 buf
= (char *) bfd_malloc (size
);
9198 if (bfd_bread (buf
, size
, abfd
) != size
9199 || !elf_parse_notes (abfd
, buf
, size
, offset
))
9209 /* Providing external access to the ELF program header table. */
9211 /* Return an upper bound on the number of bytes required to store a
9212 copy of ABFD's program header table entries. Return -1 if an error
9213 occurs; bfd_get_error will return an appropriate code. */
9216 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
9218 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9220 bfd_set_error (bfd_error_wrong_format
);
9224 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
9227 /* Copy ABFD's program header table entries to *PHDRS. The entries
9228 will be stored as an array of Elf_Internal_Phdr structures, as
9229 defined in include/elf/internal.h. To find out how large the
9230 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9232 Return the number of program header table entries read, or -1 if an
9233 error occurs; bfd_get_error will return an appropriate code. */
9236 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
9240 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9242 bfd_set_error (bfd_error_wrong_format
);
9246 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
9247 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
9248 num_phdrs
* sizeof (Elf_Internal_Phdr
));
9253 enum elf_reloc_type_class
9254 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
9256 return reloc_class_normal
;
9259 /* For RELA architectures, return the relocation value for a
9260 relocation against a local symbol. */
9263 _bfd_elf_rela_local_sym (bfd
*abfd
,
9264 Elf_Internal_Sym
*sym
,
9266 Elf_Internal_Rela
*rel
)
9268 asection
*sec
= *psec
;
9271 relocation
= (sec
->output_section
->vma
9272 + sec
->output_offset
9274 if ((sec
->flags
& SEC_MERGE
)
9275 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
9276 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
9279 _bfd_merged_section_offset (abfd
, psec
,
9280 elf_section_data (sec
)->sec_info
,
9281 sym
->st_value
+ rel
->r_addend
);
9284 /* If we have changed the section, and our original section is
9285 marked with SEC_EXCLUDE, it means that the original
9286 SEC_MERGE section has been completely subsumed in some
9287 other SEC_MERGE section. In this case, we need to leave
9288 some info around for --emit-relocs. */
9289 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
9290 sec
->kept_section
= *psec
;
9293 rel
->r_addend
-= relocation
;
9294 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
9300 _bfd_elf_rel_local_sym (bfd
*abfd
,
9301 Elf_Internal_Sym
*sym
,
9305 asection
*sec
= *psec
;
9307 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
9308 return sym
->st_value
+ addend
;
9310 return _bfd_merged_section_offset (abfd
, psec
,
9311 elf_section_data (sec
)->sec_info
,
9312 sym
->st_value
+ addend
);
9316 _bfd_elf_section_offset (bfd
*abfd
,
9317 struct bfd_link_info
*info
,
9321 switch (sec
->sec_info_type
)
9323 case ELF_INFO_TYPE_STABS
:
9324 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
9326 case ELF_INFO_TYPE_EH_FRAME
:
9327 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
9333 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9334 reconstruct an ELF file by reading the segments out of remote memory
9335 based on the ELF file header at EHDR_VMA and the ELF program headers it
9336 points to. If not null, *LOADBASEP is filled in with the difference
9337 between the VMAs from which the segments were read, and the VMAs the
9338 file headers (and hence BFD's idea of each section's VMA) put them at.
9340 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9341 remote memory at target address VMA into the local buffer at MYADDR; it
9342 should return zero on success or an `errno' code on failure. TEMPL must
9343 be a BFD for an ELF target with the word size and byte order found in
9344 the remote memory. */
9347 bfd_elf_bfd_from_remote_memory
9351 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
9353 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
9354 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
9358 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
9359 long symcount ATTRIBUTE_UNUSED
,
9360 asymbol
**syms ATTRIBUTE_UNUSED
,
9365 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9368 const char *relplt_name
;
9369 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
9373 Elf_Internal_Shdr
*hdr
;
9379 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
9382 if (dynsymcount
<= 0)
9385 if (!bed
->plt_sym_val
)
9388 relplt_name
= bed
->relplt_name
;
9389 if (relplt_name
== NULL
)
9390 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
9391 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
9395 hdr
= &elf_section_data (relplt
)->this_hdr
;
9396 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
9397 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
9400 plt
= bfd_get_section_by_name (abfd
, ".plt");
9404 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
9405 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
9408 count
= relplt
->size
/ hdr
->sh_entsize
;
9409 size
= count
* sizeof (asymbol
);
9410 p
= relplt
->relocation
;
9411 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9413 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
9417 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
9419 size
+= sizeof ("+0x") - 1 + 8;
9424 s
= *ret
= (asymbol
*) bfd_malloc (size
);
9428 names
= (char *) (s
+ count
);
9429 p
= relplt
->relocation
;
9431 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9436 addr
= bed
->plt_sym_val (i
, plt
, p
);
9437 if (addr
== (bfd_vma
) -1)
9440 *s
= **p
->sym_ptr_ptr
;
9441 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9442 we are defining a symbol, ensure one of them is set. */
9443 if ((s
->flags
& BSF_LOCAL
) == 0)
9444 s
->flags
|= BSF_GLOBAL
;
9445 s
->flags
|= BSF_SYNTHETIC
;
9447 s
->value
= addr
- plt
->vma
;
9450 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
9451 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
9457 memcpy (names
, "+0x", sizeof ("+0x") - 1);
9458 names
+= sizeof ("+0x") - 1;
9459 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
9460 for (a
= buf
; *a
== '0'; ++a
)
9463 memcpy (names
, a
, len
);
9466 memcpy (names
, "@plt", sizeof ("@plt"));
9467 names
+= sizeof ("@plt");
9474 /* It is only used by x86-64 so far. */
9475 asection _bfd_elf_large_com_section
9476 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9477 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9480 _bfd_elf_set_osabi (bfd
* abfd
,
9481 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9483 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9485 i_ehdrp
= elf_elfheader (abfd
);
9487 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
9489 /* To make things simpler for the loader on Linux systems we set the
9490 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9491 the STT_GNU_IFUNC type. */
9492 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
9493 && elf_tdata (abfd
)->has_ifunc_symbols
)
9494 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
9498 /* Return TRUE for ELF symbol types that represent functions.
9499 This is the default version of this function, which is sufficient for
9500 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9503 _bfd_elf_is_function_type (unsigned int type
)
9505 return (type
== STT_FUNC
9506 || type
== STT_GNU_IFUNC
);