bfd/
[binutils.git] / gold / object.cc
blobbde89f68d26480d35493f66734ee370dd4f5a57b
1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
45 namespace gold
48 // Struct Read_symbols_data.
50 // Destroy any remaining File_view objects.
52 Read_symbols_data::~Read_symbols_data()
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
70 // Class Xindex.
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 if (!this->symtab_xindex_.empty())
81 return;
83 gold_assert(symtab_shndx != 0);
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 if (symndx >= this->symtab_xindex_.size())
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
154 return shndx;
157 // Class Object.
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
163 void
164 Object::error(const char* format, ...) const
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
176 // Return a view of the contents of a section.
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
189 return this->get_view(loc.file_offset, *plen, true, cache);
192 // Read the section data into SD. This is code common to Sized_relobj
193 // and Sized_dynobj, so we put it into Object.
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
255 return false;
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fstack-split, mark it accordingly.
261 bool
262 Object::handle_split_stack_section(const char* name)
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
266 this->uses_split_stack_ = true;
267 return true;
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
271 this->has_no_split_stack_ = true;
272 return true;
274 return false;
277 // Class Relobj
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
303 else
305 gc_sd->symbols_data = NULL;
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
316 else
318 gc_sd->symbol_names_data = NULL;
320 gc_sd->symbol_names_size = sd->symbol_names_size;
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
327 bool
328 Relobj::is_section_name_included(const char* name)
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
345 return true;
347 return false;
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. Returns the next
353 // available reloation index.
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout)
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 this->reloc_counts_[i] = 0;
371 layout->incremental_inputs()->set_reloc_count(rindex);
374 // Class Sized_relobj.
376 template<int size, bool big_endian>
377 Sized_relobj<size, big_endian>::Sized_relobj(
378 const std::string& name,
379 Input_file* input_file,
380 off_t offset,
381 const elfcpp::Ehdr<size, big_endian>& ehdr)
382 : Relobj(name, input_file, offset),
383 elf_file_(this, ehdr),
384 symtab_shndx_(-1U),
385 local_symbol_count_(0),
386 output_local_symbol_count_(0),
387 output_local_dynsym_count_(0),
388 symbols_(),
389 defined_count_(0),
390 local_symbol_offset_(0),
391 local_dynsym_offset_(0),
392 local_values_(),
393 local_got_offsets_(),
394 local_plt_offsets_(),
395 kept_comdat_sections_(),
396 has_eh_frame_(false),
397 discarded_eh_frame_shndx_(-1U),
398 deferred_layout_(),
399 deferred_layout_relocs_(),
400 compressed_sections_()
404 template<int size, bool big_endian>
405 Sized_relobj<size, big_endian>::~Sized_relobj()
409 // Set up an object file based on the file header. This sets up the
410 // section information.
412 template<int size, bool big_endian>
413 void
414 Sized_relobj<size, big_endian>::do_setup()
416 const unsigned int shnum = this->elf_file_.shnum();
417 this->set_shnum(shnum);
420 // Find the SHT_SYMTAB section, given the section headers. The ELF
421 // standard says that maybe in the future there can be more than one
422 // SHT_SYMTAB section. Until somebody figures out how that could
423 // work, we assume there is only one.
425 template<int size, bool big_endian>
426 void
427 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
429 const unsigned int shnum = this->shnum();
430 this->symtab_shndx_ = 0;
431 if (shnum > 0)
433 // Look through the sections in reverse order, since gas tends
434 // to put the symbol table at the end.
435 const unsigned char* p = pshdrs + shnum * This::shdr_size;
436 unsigned int i = shnum;
437 unsigned int xindex_shndx = 0;
438 unsigned int xindex_link = 0;
439 while (i > 0)
441 --i;
442 p -= This::shdr_size;
443 typename This::Shdr shdr(p);
444 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
446 this->symtab_shndx_ = i;
447 if (xindex_shndx > 0 && xindex_link == i)
449 Xindex* xindex =
450 new Xindex(this->elf_file_.large_shndx_offset());
451 xindex->read_symtab_xindex<size, big_endian>(this,
452 xindex_shndx,
453 pshdrs);
454 this->set_xindex(xindex);
456 break;
459 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
460 // one. This will work if it follows the SHT_SYMTAB
461 // section.
462 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
464 xindex_shndx = i;
465 xindex_link = this->adjust_shndx(shdr.get_sh_link());
471 // Return the Xindex structure to use for object with lots of
472 // sections.
474 template<int size, bool big_endian>
475 Xindex*
476 Sized_relobj<size, big_endian>::do_initialize_xindex()
478 gold_assert(this->symtab_shndx_ != -1U);
479 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
480 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
481 return xindex;
484 // Return whether SHDR has the right type and flags to be a GNU
485 // .eh_frame section.
487 template<int size, bool big_endian>
488 bool
489 Sized_relobj<size, big_endian>::check_eh_frame_flags(
490 const elfcpp::Shdr<size, big_endian>* shdr) const
492 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
493 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
496 // Return whether there is a GNU .eh_frame section, given the section
497 // headers and the section names.
499 template<int size, bool big_endian>
500 bool
501 Sized_relobj<size, big_endian>::find_eh_frame(
502 const unsigned char* pshdrs,
503 const char* names,
504 section_size_type names_size) const
506 const unsigned int shnum = this->shnum();
507 const unsigned char* p = pshdrs + This::shdr_size;
508 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
510 typename This::Shdr shdr(p);
511 if (this->check_eh_frame_flags(&shdr))
513 if (shdr.get_sh_name() >= names_size)
515 this->error(_("bad section name offset for section %u: %lu"),
516 i, static_cast<unsigned long>(shdr.get_sh_name()));
517 continue;
520 const char* name = names + shdr.get_sh_name();
521 if (strcmp(name, ".eh_frame") == 0)
522 return true;
525 return false;
528 // Build a table for any compressed debug sections, mapping each section index
529 // to the uncompressed size.
531 template<int size, bool big_endian>
532 Compressed_section_map*
533 build_compressed_section_map(
534 const unsigned char* pshdrs,
535 unsigned int shnum,
536 const char* names,
537 section_size_type names_size,
538 Sized_relobj<size, big_endian>* obj)
540 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
541 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
542 const unsigned char* p = pshdrs + shdr_size;
543 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
545 typename elfcpp::Shdr<size, big_endian> shdr(p);
546 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
547 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
549 if (shdr.get_sh_name() >= names_size)
551 obj->error(_("bad section name offset for section %u: %lu"),
552 i, static_cast<unsigned long>(shdr.get_sh_name()));
553 continue;
556 const char* name = names + shdr.get_sh_name();
557 if (is_compressed_debug_section(name))
559 section_size_type len;
560 const unsigned char* contents =
561 obj->section_contents(i, &len, false);
562 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
563 if (uncompressed_size != -1ULL)
564 (*uncompressed_sizes)[i] =
565 convert_to_section_size_type(uncompressed_size);
569 return uncompressed_sizes;
572 // Read the sections and symbols from an object file.
574 template<int size, bool big_endian>
575 void
576 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
578 this->read_section_data(&this->elf_file_, sd);
580 const unsigned char* const pshdrs = sd->section_headers->data();
582 this->find_symtab(pshdrs);
584 const unsigned char* namesu = sd->section_names->data();
585 const char* names = reinterpret_cast<const char*>(namesu);
586 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
588 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
589 this->has_eh_frame_ = true;
591 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
592 this->compressed_sections_ =
593 build_compressed_section_map(pshdrs, this->shnum(), names,
594 sd->section_names_size, this);
596 sd->symbols = NULL;
597 sd->symbols_size = 0;
598 sd->external_symbols_offset = 0;
599 sd->symbol_names = NULL;
600 sd->symbol_names_size = 0;
602 if (this->symtab_shndx_ == 0)
604 // No symbol table. Weird but legal.
605 return;
608 // Get the symbol table section header.
609 typename This::Shdr symtabshdr(pshdrs
610 + this->symtab_shndx_ * This::shdr_size);
611 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
613 // If this object has a .eh_frame section, we need all the symbols.
614 // Otherwise we only need the external symbols. While it would be
615 // simpler to just always read all the symbols, I've seen object
616 // files with well over 2000 local symbols, which for a 64-bit
617 // object file format is over 5 pages that we don't need to read
618 // now.
620 const int sym_size = This::sym_size;
621 const unsigned int loccount = symtabshdr.get_sh_info();
622 this->local_symbol_count_ = loccount;
623 this->local_values_.resize(loccount);
624 section_offset_type locsize = loccount * sym_size;
625 off_t dataoff = symtabshdr.get_sh_offset();
626 section_size_type datasize =
627 convert_to_section_size_type(symtabshdr.get_sh_size());
628 off_t extoff = dataoff + locsize;
629 section_size_type extsize = datasize - locsize;
631 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
632 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
634 if (readsize == 0)
636 // No external symbols. Also weird but also legal.
637 return;
640 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
642 // Read the section header for the symbol names.
643 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
644 if (strtab_shndx >= this->shnum())
646 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
647 return;
649 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
650 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
652 this->error(_("symbol table name section has wrong type: %u"),
653 static_cast<unsigned int>(strtabshdr.get_sh_type()));
654 return;
657 // Read the symbol names.
658 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
659 strtabshdr.get_sh_size(),
660 false, true);
662 sd->symbols = fvsymtab;
663 sd->symbols_size = readsize;
664 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
665 sd->symbol_names = fvstrtab;
666 sd->symbol_names_size =
667 convert_to_section_size_type(strtabshdr.get_sh_size());
670 // Return the section index of symbol SYM. Set *VALUE to its value in
671 // the object file. Set *IS_ORDINARY if this is an ordinary section
672 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
673 // Note that for a symbol which is not defined in this object file,
674 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
675 // the final value of the symbol in the link.
677 template<int size, bool big_endian>
678 unsigned int
679 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
680 Address* value,
681 bool* is_ordinary)
683 section_size_type symbols_size;
684 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
685 &symbols_size,
686 false);
688 const size_t count = symbols_size / This::sym_size;
689 gold_assert(sym < count);
691 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
692 *value = elfsym.get_st_value();
694 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
697 // Return whether to include a section group in the link. LAYOUT is
698 // used to keep track of which section groups we have already seen.
699 // INDEX is the index of the section group and SHDR is the section
700 // header. If we do not want to include this group, we set bits in
701 // OMIT for each section which should be discarded.
703 template<int size, bool big_endian>
704 bool
705 Sized_relobj<size, big_endian>::include_section_group(
706 Symbol_table* symtab,
707 Layout* layout,
708 unsigned int index,
709 const char* name,
710 const unsigned char* shdrs,
711 const char* section_names,
712 section_size_type section_names_size,
713 std::vector<bool>* omit)
715 // Read the section contents.
716 typename This::Shdr shdr(shdrs + index * This::shdr_size);
717 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
718 shdr.get_sh_size(), true, false);
719 const elfcpp::Elf_Word* pword =
720 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
722 // The first word contains flags. We only care about COMDAT section
723 // groups. Other section groups are always included in the link
724 // just like ordinary sections.
725 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
727 // Look up the group signature, which is the name of a symbol. This
728 // is a lot of effort to go to to read a string. Why didn't they
729 // just have the group signature point into the string table, rather
730 // than indirect through a symbol?
732 // Get the appropriate symbol table header (this will normally be
733 // the single SHT_SYMTAB section, but in principle it need not be).
734 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
735 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
737 // Read the symbol table entry.
738 unsigned int symndx = shdr.get_sh_info();
739 if (symndx >= symshdr.get_sh_size() / This::sym_size)
741 this->error(_("section group %u info %u out of range"),
742 index, symndx);
743 return false;
745 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
746 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
747 false);
748 elfcpp::Sym<size, big_endian> sym(psym);
750 // Read the symbol table names.
751 section_size_type symnamelen;
752 const unsigned char* psymnamesu;
753 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
754 &symnamelen, true);
755 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
757 // Get the section group signature.
758 if (sym.get_st_name() >= symnamelen)
760 this->error(_("symbol %u name offset %u out of range"),
761 symndx, sym.get_st_name());
762 return false;
765 std::string signature(psymnames + sym.get_st_name());
767 // It seems that some versions of gas will create a section group
768 // associated with a section symbol, and then fail to give a name to
769 // the section symbol. In such a case, use the name of the section.
770 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
772 bool is_ordinary;
773 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
774 sym.get_st_shndx(),
775 &is_ordinary);
776 if (!is_ordinary || sym_shndx >= this->shnum())
778 this->error(_("symbol %u invalid section index %u"),
779 symndx, sym_shndx);
780 return false;
782 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
783 if (member_shdr.get_sh_name() < section_names_size)
784 signature = section_names + member_shdr.get_sh_name();
787 // Record this section group in the layout, and see whether we've already
788 // seen one with the same signature.
789 bool include_group;
790 bool is_comdat;
791 Kept_section* kept_section = NULL;
793 if ((flags & elfcpp::GRP_COMDAT) == 0)
795 include_group = true;
796 is_comdat = false;
798 else
800 include_group = layout->find_or_add_kept_section(signature,
801 this, index, true,
802 true, &kept_section);
803 is_comdat = true;
806 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
808 std::vector<unsigned int> shndxes;
809 bool relocate_group = include_group && parameters->options().relocatable();
810 if (relocate_group)
811 shndxes.reserve(count - 1);
813 for (size_t i = 1; i < count; ++i)
815 elfcpp::Elf_Word shndx =
816 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
818 if (relocate_group)
819 shndxes.push_back(shndx);
821 if (shndx >= this->shnum())
823 this->error(_("section %u in section group %u out of range"),
824 shndx, index);
825 continue;
828 // Check for an earlier section number, since we're going to get
829 // it wrong--we may have already decided to include the section.
830 if (shndx < index)
831 this->error(_("invalid section group %u refers to earlier section %u"),
832 index, shndx);
834 // Get the name of the member section.
835 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
836 if (member_shdr.get_sh_name() >= section_names_size)
838 // This is an error, but it will be diagnosed eventually
839 // in do_layout, so we don't need to do anything here but
840 // ignore it.
841 continue;
843 std::string mname(section_names + member_shdr.get_sh_name());
845 if (include_group)
847 if (is_comdat)
848 kept_section->add_comdat_section(mname, shndx,
849 member_shdr.get_sh_size());
851 else
853 (*omit)[shndx] = true;
855 if (is_comdat)
857 Relobj* kept_object = kept_section->object();
858 if (kept_section->is_comdat())
860 // Find the corresponding kept section, and store
861 // that info in the discarded section table.
862 unsigned int kept_shndx;
863 uint64_t kept_size;
864 if (kept_section->find_comdat_section(mname, &kept_shndx,
865 &kept_size))
867 // We don't keep a mapping for this section if
868 // it has a different size. The mapping is only
869 // used for relocation processing, and we don't
870 // want to treat the sections as similar if the
871 // sizes are different. Checking the section
872 // size is the approach used by the GNU linker.
873 if (kept_size == member_shdr.get_sh_size())
874 this->set_kept_comdat_section(shndx, kept_object,
875 kept_shndx);
878 else
880 // The existing section is a linkonce section. Add
881 // a mapping if there is exactly one section in the
882 // group (which is true when COUNT == 2) and if it
883 // is the same size.
884 if (count == 2
885 && (kept_section->linkonce_size()
886 == member_shdr.get_sh_size()))
887 this->set_kept_comdat_section(shndx, kept_object,
888 kept_section->shndx());
894 if (relocate_group)
895 layout->layout_group(symtab, this, index, name, signature.c_str(),
896 shdr, flags, &shndxes);
898 return include_group;
901 // Whether to include a linkonce section in the link. NAME is the
902 // name of the section and SHDR is the section header.
904 // Linkonce sections are a GNU extension implemented in the original
905 // GNU linker before section groups were defined. The semantics are
906 // that we only include one linkonce section with a given name. The
907 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
908 // where T is the type of section and SYMNAME is the name of a symbol.
909 // In an attempt to make linkonce sections interact well with section
910 // groups, we try to identify SYMNAME and use it like a section group
911 // signature. We want to block section groups with that signature,
912 // but not other linkonce sections with that signature. We also use
913 // the full name of the linkonce section as a normal section group
914 // signature.
916 template<int size, bool big_endian>
917 bool
918 Sized_relobj<size, big_endian>::include_linkonce_section(
919 Layout* layout,
920 unsigned int index,
921 const char* name,
922 const elfcpp::Shdr<size, big_endian>& shdr)
924 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
925 // In general the symbol name we want will be the string following
926 // the last '.'. However, we have to handle the case of
927 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
928 // some versions of gcc. So we use a heuristic: if the name starts
929 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
930 // we look for the last '.'. We can't always simply skip
931 // ".gnu.linkonce.X", because we have to deal with cases like
932 // ".gnu.linkonce.d.rel.ro.local".
933 const char* const linkonce_t = ".gnu.linkonce.t.";
934 const char* symname;
935 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
936 symname = name + strlen(linkonce_t);
937 else
938 symname = strrchr(name, '.') + 1;
939 std::string sig1(symname);
940 std::string sig2(name);
941 Kept_section* kept1;
942 Kept_section* kept2;
943 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
944 false, &kept1);
945 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
946 true, &kept2);
948 if (!include2)
950 // We are not including this section because we already saw the
951 // name of the section as a signature. This normally implies
952 // that the kept section is another linkonce section. If it is
953 // the same size, record it as the section which corresponds to
954 // this one.
955 if (kept2->object() != NULL
956 && !kept2->is_comdat()
957 && kept2->linkonce_size() == sh_size)
958 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
960 else if (!include1)
962 // The section is being discarded on the basis of its symbol
963 // name. This means that the corresponding kept section was
964 // part of a comdat group, and it will be difficult to identify
965 // the specific section within that group that corresponds to
966 // this linkonce section. We'll handle the simple case where
967 // the group has only one member section. Otherwise, it's not
968 // worth the effort.
969 unsigned int kept_shndx;
970 uint64_t kept_size;
971 if (kept1->object() != NULL
972 && kept1->is_comdat()
973 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
974 && kept_size == sh_size)
975 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
977 else
979 kept1->set_linkonce_size(sh_size);
980 kept2->set_linkonce_size(sh_size);
983 return include1 && include2;
986 // Layout an input section.
988 template<int size, bool big_endian>
989 inline void
990 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
991 unsigned int shndx,
992 const char* name,
993 typename This::Shdr& shdr,
994 unsigned int reloc_shndx,
995 unsigned int reloc_type)
997 off_t offset;
998 Output_section* os = layout->layout(this, shndx, name, shdr,
999 reloc_shndx, reloc_type, &offset);
1001 this->output_sections()[shndx] = os;
1002 if (offset == -1)
1003 this->section_offsets_[shndx] = invalid_address;
1004 else
1005 this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
1007 // If this section requires special handling, and if there are
1008 // relocs that apply to it, then we must do the special handling
1009 // before we apply the relocs.
1010 if (offset == -1 && reloc_shndx != 0)
1011 this->set_relocs_must_follow_section_writes();
1014 // Lay out the input sections. We walk through the sections and check
1015 // whether they should be included in the link. If they should, we
1016 // pass them to the Layout object, which will return an output section
1017 // and an offset.
1018 // During garbage collection (--gc-sections) and identical code folding
1019 // (--icf), this function is called twice. When it is called the first
1020 // time, it is for setting up some sections as roots to a work-list for
1021 // --gc-sections and to do comdat processing. Actual layout happens the
1022 // second time around after all the relevant sections have been determined.
1023 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1024 // set to true after the garbage collection worklist or identical code
1025 // folding is processed and the relevant sections to be kept are
1026 // determined. Then, this function is called again to layout the sections.
1028 template<int size, bool big_endian>
1029 void
1030 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
1031 Layout* layout,
1032 Read_symbols_data* sd)
1034 const unsigned int shnum = this->shnum();
1035 bool is_gc_pass_one = ((parameters->options().gc_sections()
1036 && !symtab->gc()->is_worklist_ready())
1037 || (parameters->options().icf_enabled()
1038 && !symtab->icf()->is_icf_ready()));
1040 bool is_gc_pass_two = ((parameters->options().gc_sections()
1041 && symtab->gc()->is_worklist_ready())
1042 || (parameters->options().icf_enabled()
1043 && symtab->icf()->is_icf_ready()));
1045 bool is_gc_or_icf = (parameters->options().gc_sections()
1046 || parameters->options().icf_enabled());
1048 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1049 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1051 if (shnum == 0)
1052 return;
1053 Symbols_data* gc_sd = NULL;
1054 if (is_gc_pass_one)
1056 // During garbage collection save the symbols data to use it when
1057 // re-entering this function.
1058 gc_sd = new Symbols_data;
1059 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1060 this->set_symbols_data(gc_sd);
1062 else if (is_gc_pass_two)
1064 gc_sd = this->get_symbols_data();
1067 const unsigned char* section_headers_data = NULL;
1068 section_size_type section_names_size;
1069 const unsigned char* symbols_data = NULL;
1070 section_size_type symbols_size;
1071 section_offset_type external_symbols_offset;
1072 const unsigned char* symbol_names_data = NULL;
1073 section_size_type symbol_names_size;
1075 if (is_gc_or_icf)
1077 section_headers_data = gc_sd->section_headers_data;
1078 section_names_size = gc_sd->section_names_size;
1079 symbols_data = gc_sd->symbols_data;
1080 symbols_size = gc_sd->symbols_size;
1081 external_symbols_offset = gc_sd->external_symbols_offset;
1082 symbol_names_data = gc_sd->symbol_names_data;
1083 symbol_names_size = gc_sd->symbol_names_size;
1085 else
1087 section_headers_data = sd->section_headers->data();
1088 section_names_size = sd->section_names_size;
1089 if (sd->symbols != NULL)
1090 symbols_data = sd->symbols->data();
1091 symbols_size = sd->symbols_size;
1092 external_symbols_offset = sd->external_symbols_offset;
1093 if (sd->symbol_names != NULL)
1094 symbol_names_data = sd->symbol_names->data();
1095 symbol_names_size = sd->symbol_names_size;
1098 // Get the section headers.
1099 const unsigned char* shdrs = section_headers_data;
1100 const unsigned char* pshdrs;
1102 // Get the section names.
1103 const unsigned char* pnamesu = (is_gc_or_icf)
1104 ? gc_sd->section_names_data
1105 : sd->section_names->data();
1107 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1109 // If any input files have been claimed by plugins, we need to defer
1110 // actual layout until the replacement files have arrived.
1111 const bool should_defer_layout =
1112 (parameters->options().has_plugins()
1113 && parameters->options().plugins()->should_defer_layout());
1114 unsigned int num_sections_to_defer = 0;
1116 // For each section, record the index of the reloc section if any.
1117 // Use 0 to mean that there is no reloc section, -1U to mean that
1118 // there is more than one.
1119 std::vector<unsigned int> reloc_shndx(shnum, 0);
1120 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1121 // Skip the first, dummy, section.
1122 pshdrs = shdrs + This::shdr_size;
1123 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1125 typename This::Shdr shdr(pshdrs);
1127 // Count the number of sections whose layout will be deferred.
1128 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1129 ++num_sections_to_defer;
1131 unsigned int sh_type = shdr.get_sh_type();
1132 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1134 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1135 if (target_shndx == 0 || target_shndx >= shnum)
1137 this->error(_("relocation section %u has bad info %u"),
1138 i, target_shndx);
1139 continue;
1142 if (reloc_shndx[target_shndx] != 0)
1143 reloc_shndx[target_shndx] = -1U;
1144 else
1146 reloc_shndx[target_shndx] = i;
1147 reloc_type[target_shndx] = sh_type;
1152 Output_sections& out_sections(this->output_sections());
1153 std::vector<Address>& out_section_offsets(this->section_offsets_);
1155 if (!is_gc_pass_two)
1157 out_sections.resize(shnum);
1158 out_section_offsets.resize(shnum);
1161 // If we are only linking for symbols, then there is nothing else to
1162 // do here.
1163 if (this->input_file()->just_symbols())
1165 if (!is_gc_pass_two)
1167 delete sd->section_headers;
1168 sd->section_headers = NULL;
1169 delete sd->section_names;
1170 sd->section_names = NULL;
1172 return;
1175 if (num_sections_to_defer > 0)
1177 parameters->options().plugins()->add_deferred_layout_object(this);
1178 this->deferred_layout_.reserve(num_sections_to_defer);
1181 // Whether we've seen a .note.GNU-stack section.
1182 bool seen_gnu_stack = false;
1183 // The flags of a .note.GNU-stack section.
1184 uint64_t gnu_stack_flags = 0;
1186 // Keep track of which sections to omit.
1187 std::vector<bool> omit(shnum, false);
1189 // Keep track of reloc sections when emitting relocations.
1190 const bool relocatable = parameters->options().relocatable();
1191 const bool emit_relocs = (relocatable
1192 || parameters->options().emit_relocs());
1193 std::vector<unsigned int> reloc_sections;
1195 // Keep track of .eh_frame sections.
1196 std::vector<unsigned int> eh_frame_sections;
1198 // Skip the first, dummy, section.
1199 pshdrs = shdrs + This::shdr_size;
1200 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1202 typename This::Shdr shdr(pshdrs);
1204 if (shdr.get_sh_name() >= section_names_size)
1206 this->error(_("bad section name offset for section %u: %lu"),
1207 i, static_cast<unsigned long>(shdr.get_sh_name()));
1208 return;
1211 const char* name = pnames + shdr.get_sh_name();
1213 if (!is_gc_pass_two)
1215 if (this->handle_gnu_warning_section(name, i, symtab))
1217 if (!relocatable)
1218 omit[i] = true;
1221 // The .note.GNU-stack section is special. It gives the
1222 // protection flags that this object file requires for the stack
1223 // in memory.
1224 if (strcmp(name, ".note.GNU-stack") == 0)
1226 seen_gnu_stack = true;
1227 gnu_stack_flags |= shdr.get_sh_flags();
1228 omit[i] = true;
1231 // The .note.GNU-split-stack section is also special. It
1232 // indicates that the object was compiled with
1233 // -fsplit-stack.
1234 if (this->handle_split_stack_section(name))
1236 if (!parameters->options().relocatable()
1237 && !parameters->options().shared())
1238 omit[i] = true;
1241 // Skip attributes section.
1242 if (parameters->target().is_attributes_section(name))
1244 omit[i] = true;
1247 bool discard = omit[i];
1248 if (!discard)
1250 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1252 if (!this->include_section_group(symtab, layout, i, name,
1253 shdrs, pnames,
1254 section_names_size,
1255 &omit))
1256 discard = true;
1258 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1259 && Layout::is_linkonce(name))
1261 if (!this->include_linkonce_section(layout, i, name, shdr))
1262 discard = true;
1266 // Add the section to the incremental inputs layout.
1267 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1268 if (incremental_inputs != NULL)
1269 incremental_inputs->report_input_section(this, i,
1270 discard ? NULL : name,
1271 shdr.get_sh_size());
1273 if (discard)
1275 // Do not include this section in the link.
1276 out_sections[i] = NULL;
1277 out_section_offsets[i] = invalid_address;
1278 continue;
1282 if (is_gc_pass_one && parameters->options().gc_sections())
1284 if (is_section_name_included(name)
1285 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1286 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1288 symtab->gc()->worklist().push(Section_id(this, i));
1290 // If the section name XXX can be represented as a C identifier
1291 // it cannot be discarded if there are references to
1292 // __start_XXX and __stop_XXX symbols. These need to be
1293 // specially handled.
1294 if (is_cident(name))
1296 symtab->gc()->add_cident_section(name, Section_id(this, i));
1300 // When doing a relocatable link we are going to copy input
1301 // reloc sections into the output. We only want to copy the
1302 // ones associated with sections which are not being discarded.
1303 // However, we don't know that yet for all sections. So save
1304 // reloc sections and process them later. Garbage collection is
1305 // not triggered when relocatable code is desired.
1306 if (emit_relocs
1307 && (shdr.get_sh_type() == elfcpp::SHT_REL
1308 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1310 reloc_sections.push_back(i);
1311 continue;
1314 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1315 continue;
1317 // The .eh_frame section is special. It holds exception frame
1318 // information that we need to read in order to generate the
1319 // exception frame header. We process these after all the other
1320 // sections so that the exception frame reader can reliably
1321 // determine which sections are being discarded, and discard the
1322 // corresponding information.
1323 if (!relocatable
1324 && strcmp(name, ".eh_frame") == 0
1325 && this->check_eh_frame_flags(&shdr))
1327 if (is_gc_pass_one)
1329 out_sections[i] = reinterpret_cast<Output_section*>(1);
1330 out_section_offsets[i] = invalid_address;
1332 else
1333 eh_frame_sections.push_back(i);
1334 continue;
1337 if (is_gc_pass_two && parameters->options().gc_sections())
1339 // This is executed during the second pass of garbage
1340 // collection. do_layout has been called before and some
1341 // sections have been already discarded. Simply ignore
1342 // such sections this time around.
1343 if (out_sections[i] == NULL)
1345 gold_assert(out_section_offsets[i] == invalid_address);
1346 continue;
1348 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1349 && symtab->gc()->is_section_garbage(this, i))
1351 if (parameters->options().print_gc_sections())
1352 gold_info(_("%s: removing unused section from '%s'"
1353 " in file '%s'"),
1354 program_name, this->section_name(i).c_str(),
1355 this->name().c_str());
1356 out_sections[i] = NULL;
1357 out_section_offsets[i] = invalid_address;
1358 continue;
1362 if (is_gc_pass_two && parameters->options().icf_enabled())
1364 if (out_sections[i] == NULL)
1366 gold_assert(out_section_offsets[i] == invalid_address);
1367 continue;
1369 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1370 && symtab->icf()->is_section_folded(this, i))
1372 if (parameters->options().print_icf_sections())
1374 Section_id folded =
1375 symtab->icf()->get_folded_section(this, i);
1376 Relobj* folded_obj =
1377 reinterpret_cast<Relobj*>(folded.first);
1378 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1379 "into '%s' in file '%s'"),
1380 program_name, this->section_name(i).c_str(),
1381 this->name().c_str(),
1382 folded_obj->section_name(folded.second).c_str(),
1383 folded_obj->name().c_str());
1385 out_sections[i] = NULL;
1386 out_section_offsets[i] = invalid_address;
1387 continue;
1391 // Defer layout here if input files are claimed by plugins. When gc
1392 // is turned on this function is called twice. For the second call
1393 // should_defer_layout should be false.
1394 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1396 gold_assert(!is_gc_pass_two);
1397 this->deferred_layout_.push_back(Deferred_layout(i, name,
1398 pshdrs,
1399 reloc_shndx[i],
1400 reloc_type[i]));
1401 // Put dummy values here; real values will be supplied by
1402 // do_layout_deferred_sections.
1403 out_sections[i] = reinterpret_cast<Output_section*>(2);
1404 out_section_offsets[i] = invalid_address;
1405 continue;
1408 // During gc_pass_two if a section that was previously deferred is
1409 // found, do not layout the section as layout_deferred_sections will
1410 // do it later from gold.cc.
1411 if (is_gc_pass_two
1412 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1413 continue;
1415 if (is_gc_pass_one)
1417 // This is during garbage collection. The out_sections are
1418 // assigned in the second call to this function.
1419 out_sections[i] = reinterpret_cast<Output_section*>(1);
1420 out_section_offsets[i] = invalid_address;
1422 else
1424 // When garbage collection is switched on the actual layout
1425 // only happens in the second call.
1426 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1427 reloc_type[i]);
1431 if (!is_gc_pass_two)
1432 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
1434 // When doing a relocatable link handle the reloc sections at the
1435 // end. Garbage collection and Identical Code Folding is not
1436 // turned on for relocatable code.
1437 if (emit_relocs)
1438 this->size_relocatable_relocs();
1440 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1442 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1443 p != reloc_sections.end();
1444 ++p)
1446 unsigned int i = *p;
1447 const unsigned char* pshdr;
1448 pshdr = section_headers_data + i * This::shdr_size;
1449 typename This::Shdr shdr(pshdr);
1451 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1452 if (data_shndx >= shnum)
1454 // We already warned about this above.
1455 continue;
1458 Output_section* data_section = out_sections[data_shndx];
1459 if (data_section == reinterpret_cast<Output_section*>(2))
1461 // The layout for the data section was deferred, so we need
1462 // to defer the relocation section, too.
1463 const char* name = pnames + shdr.get_sh_name();
1464 this->deferred_layout_relocs_.push_back(
1465 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1466 out_sections[i] = reinterpret_cast<Output_section*>(2);
1467 out_section_offsets[i] = invalid_address;
1468 continue;
1470 if (data_section == NULL)
1472 out_sections[i] = NULL;
1473 out_section_offsets[i] = invalid_address;
1474 continue;
1477 Relocatable_relocs* rr = new Relocatable_relocs();
1478 this->set_relocatable_relocs(i, rr);
1480 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1481 rr);
1482 out_sections[i] = os;
1483 out_section_offsets[i] = invalid_address;
1486 // Handle the .eh_frame sections at the end.
1487 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1488 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1489 p != eh_frame_sections.end();
1490 ++p)
1492 gold_assert(this->has_eh_frame_);
1493 gold_assert(external_symbols_offset != 0);
1495 unsigned int i = *p;
1496 const unsigned char* pshdr;
1497 pshdr = section_headers_data + i * This::shdr_size;
1498 typename This::Shdr shdr(pshdr);
1500 off_t offset;
1501 Output_section* os = layout->layout_eh_frame(this,
1502 symbols_data,
1503 symbols_size,
1504 symbol_names_data,
1505 symbol_names_size,
1506 i, shdr,
1507 reloc_shndx[i],
1508 reloc_type[i],
1509 &offset);
1510 out_sections[i] = os;
1511 if (os == NULL || offset == -1)
1513 // An object can contain at most one section holding exception
1514 // frame information.
1515 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1516 this->discarded_eh_frame_shndx_ = i;
1517 out_section_offsets[i] = invalid_address;
1519 else
1520 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1522 // If this section requires special handling, and if there are
1523 // relocs that apply to it, then we must do the special handling
1524 // before we apply the relocs.
1525 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1526 this->set_relocs_must_follow_section_writes();
1529 if (is_gc_pass_two)
1531 delete[] gc_sd->section_headers_data;
1532 delete[] gc_sd->section_names_data;
1533 delete[] gc_sd->symbols_data;
1534 delete[] gc_sd->symbol_names_data;
1535 this->set_symbols_data(NULL);
1537 else
1539 delete sd->section_headers;
1540 sd->section_headers = NULL;
1541 delete sd->section_names;
1542 sd->section_names = NULL;
1546 // Layout sections whose layout was deferred while waiting for
1547 // input files from a plugin.
1549 template<int size, bool big_endian>
1550 void
1551 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1553 typename std::vector<Deferred_layout>::iterator deferred;
1555 for (deferred = this->deferred_layout_.begin();
1556 deferred != this->deferred_layout_.end();
1557 ++deferred)
1559 typename This::Shdr shdr(deferred->shdr_data_);
1560 // If the section is not included, it is because the garbage collector
1561 // decided it is not needed. Avoid reverting that decision.
1562 if (!this->is_section_included(deferred->shndx_))
1563 continue;
1565 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1566 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1569 this->deferred_layout_.clear();
1571 // Now handle the deferred relocation sections.
1573 Output_sections& out_sections(this->output_sections());
1574 std::vector<Address>& out_section_offsets(this->section_offsets_);
1576 for (deferred = this->deferred_layout_relocs_.begin();
1577 deferred != this->deferred_layout_relocs_.end();
1578 ++deferred)
1580 unsigned int shndx = deferred->shndx_;
1581 typename This::Shdr shdr(deferred->shdr_data_);
1582 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1584 Output_section* data_section = out_sections[data_shndx];
1585 if (data_section == NULL)
1587 out_sections[shndx] = NULL;
1588 out_section_offsets[shndx] = invalid_address;
1589 continue;
1592 Relocatable_relocs* rr = new Relocatable_relocs();
1593 this->set_relocatable_relocs(shndx, rr);
1595 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1596 data_section, rr);
1597 out_sections[shndx] = os;
1598 out_section_offsets[shndx] = invalid_address;
1602 // Add the symbols to the symbol table.
1604 template<int size, bool big_endian>
1605 void
1606 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1607 Read_symbols_data* sd,
1608 Layout*)
1610 if (sd->symbols == NULL)
1612 gold_assert(sd->symbol_names == NULL);
1613 return;
1616 const int sym_size = This::sym_size;
1617 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1618 / sym_size);
1619 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1621 this->error(_("size of symbols is not multiple of symbol size"));
1622 return;
1625 this->symbols_.resize(symcount);
1627 const char* sym_names =
1628 reinterpret_cast<const char*>(sd->symbol_names->data());
1629 symtab->add_from_relobj(this,
1630 sd->symbols->data() + sd->external_symbols_offset,
1631 symcount, this->local_symbol_count_,
1632 sym_names, sd->symbol_names_size,
1633 &this->symbols_,
1634 &this->defined_count_);
1636 delete sd->symbols;
1637 sd->symbols = NULL;
1638 delete sd->symbol_names;
1639 sd->symbol_names = NULL;
1642 // Find out if this object, that is a member of a lib group, should be included
1643 // in the link. We check every symbol defined by this object. If the symbol
1644 // table has a strong undefined reference to that symbol, we have to include
1645 // the object.
1647 template<int size, bool big_endian>
1648 Archive::Should_include
1649 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab,
1650 Layout* layout,
1651 Read_symbols_data* sd,
1652 std::string* why)
1654 char* tmpbuf = NULL;
1655 size_t tmpbuflen = 0;
1656 const char* sym_names =
1657 reinterpret_cast<const char*>(sd->symbol_names->data());
1658 const unsigned char* syms =
1659 sd->symbols->data() + sd->external_symbols_offset;
1660 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1661 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1662 / sym_size);
1664 const unsigned char* p = syms;
1666 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1668 elfcpp::Sym<size, big_endian> sym(p);
1669 unsigned int st_shndx = sym.get_st_shndx();
1670 if (st_shndx == elfcpp::SHN_UNDEF)
1671 continue;
1673 unsigned int st_name = sym.get_st_name();
1674 const char* name = sym_names + st_name;
1675 Symbol* symbol;
1676 Archive::Should_include t = Archive::should_include_member(symtab,
1677 layout,
1678 name,
1679 &symbol, why,
1680 &tmpbuf,
1681 &tmpbuflen);
1682 if (t == Archive::SHOULD_INCLUDE_YES)
1684 if (tmpbuf != NULL)
1685 free(tmpbuf);
1686 return t;
1689 if (tmpbuf != NULL)
1690 free(tmpbuf);
1691 return Archive::SHOULD_INCLUDE_UNKNOWN;
1694 // Return whether the local symbol SYMNDX has a PLT offset.
1696 template<int size, bool big_endian>
1697 bool
1698 Sized_relobj<size, big_endian>::local_has_plt_offset(unsigned int symndx) const
1700 typename Local_plt_offsets::const_iterator p =
1701 this->local_plt_offsets_.find(symndx);
1702 return p != this->local_plt_offsets_.end();
1705 // Get the PLT offset of a local symbol.
1707 template<int size, bool big_endian>
1708 unsigned int
1709 Sized_relobj<size, big_endian>::local_plt_offset(unsigned int symndx) const
1711 typename Local_plt_offsets::const_iterator p =
1712 this->local_plt_offsets_.find(symndx);
1713 gold_assert(p != this->local_plt_offsets_.end());
1714 return p->second;
1717 // Set the PLT offset of a local symbol.
1719 template<int size, bool big_endian>
1720 void
1721 Sized_relobj<size, big_endian>::set_local_plt_offset(unsigned int symndx,
1722 unsigned int plt_offset)
1724 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1725 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1726 gold_assert(ins.second);
1729 // First pass over the local symbols. Here we add their names to
1730 // *POOL and *DYNPOOL, and we store the symbol value in
1731 // THIS->LOCAL_VALUES_. This function is always called from a
1732 // singleton thread. This is followed by a call to
1733 // finalize_local_symbols.
1735 template<int size, bool big_endian>
1736 void
1737 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1738 Stringpool* dynpool)
1740 gold_assert(this->symtab_shndx_ != -1U);
1741 if (this->symtab_shndx_ == 0)
1743 // This object has no symbols. Weird but legal.
1744 return;
1747 // Read the symbol table section header.
1748 const unsigned int symtab_shndx = this->symtab_shndx_;
1749 typename This::Shdr symtabshdr(this,
1750 this->elf_file_.section_header(symtab_shndx));
1751 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1753 // Read the local symbols.
1754 const int sym_size = This::sym_size;
1755 const unsigned int loccount = this->local_symbol_count_;
1756 gold_assert(loccount == symtabshdr.get_sh_info());
1757 off_t locsize = loccount * sym_size;
1758 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1759 locsize, true, true);
1761 // Read the symbol names.
1762 const unsigned int strtab_shndx =
1763 this->adjust_shndx(symtabshdr.get_sh_link());
1764 section_size_type strtab_size;
1765 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1766 &strtab_size,
1767 true);
1768 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1770 // Loop over the local symbols.
1772 const Output_sections& out_sections(this->output_sections());
1773 unsigned int shnum = this->shnum();
1774 unsigned int count = 0;
1775 unsigned int dyncount = 0;
1776 // Skip the first, dummy, symbol.
1777 psyms += sym_size;
1778 bool discard_all = parameters->options().discard_all();
1779 bool discard_locals = parameters->options().discard_locals();
1780 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1782 elfcpp::Sym<size, big_endian> sym(psyms);
1784 Symbol_value<size>& lv(this->local_values_[i]);
1786 bool is_ordinary;
1787 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1788 &is_ordinary);
1789 lv.set_input_shndx(shndx, is_ordinary);
1791 if (sym.get_st_type() == elfcpp::STT_SECTION)
1792 lv.set_is_section_symbol();
1793 else if (sym.get_st_type() == elfcpp::STT_TLS)
1794 lv.set_is_tls_symbol();
1795 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1796 lv.set_is_ifunc_symbol();
1798 // Save the input symbol value for use in do_finalize_local_symbols().
1799 lv.set_input_value(sym.get_st_value());
1801 // Decide whether this symbol should go into the output file.
1803 if ((shndx < shnum && out_sections[shndx] == NULL)
1804 || shndx == this->discarded_eh_frame_shndx_)
1806 lv.set_no_output_symtab_entry();
1807 gold_assert(!lv.needs_output_dynsym_entry());
1808 continue;
1811 if (sym.get_st_type() == elfcpp::STT_SECTION)
1813 lv.set_no_output_symtab_entry();
1814 gold_assert(!lv.needs_output_dynsym_entry());
1815 continue;
1818 if (sym.get_st_name() >= strtab_size)
1820 this->error(_("local symbol %u section name out of range: %u >= %u"),
1821 i, sym.get_st_name(),
1822 static_cast<unsigned int>(strtab_size));
1823 lv.set_no_output_symtab_entry();
1824 continue;
1827 const char* name = pnames + sym.get_st_name();
1829 // If needed, add the symbol to the dynamic symbol table string pool.
1830 if (lv.needs_output_dynsym_entry())
1832 dynpool->add(name, true, NULL);
1833 ++dyncount;
1836 if (discard_all && lv.may_be_discarded_from_output_symtab())
1838 lv.set_no_output_symtab_entry();
1839 continue;
1842 // If --discard-locals option is used, discard all temporary local
1843 // symbols. These symbols start with system-specific local label
1844 // prefixes, typically .L for ELF system. We want to be compatible
1845 // with GNU ld so here we essentially use the same check in
1846 // bfd_is_local_label(). The code is different because we already
1847 // know that:
1849 // - the symbol is local and thus cannot have global or weak binding.
1850 // - the symbol is not a section symbol.
1851 // - the symbol has a name.
1853 // We do not discard a symbol if it needs a dynamic symbol entry.
1854 if (discard_locals
1855 && sym.get_st_type() != elfcpp::STT_FILE
1856 && !lv.needs_output_dynsym_entry()
1857 && lv.may_be_discarded_from_output_symtab()
1858 && parameters->target().is_local_label_name(name))
1860 lv.set_no_output_symtab_entry();
1861 continue;
1864 // Discard the local symbol if -retain_symbols_file is specified
1865 // and the local symbol is not in that file.
1866 if (!parameters->options().should_retain_symbol(name))
1868 lv.set_no_output_symtab_entry();
1869 continue;
1872 // Add the symbol to the symbol table string pool.
1873 pool->add(name, true, NULL);
1874 ++count;
1877 this->output_local_symbol_count_ = count;
1878 this->output_local_dynsym_count_ = dyncount;
1881 // Compute the final value of a local symbol.
1883 template<int size, bool big_endian>
1884 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
1885 Sized_relobj<size, big_endian>::compute_final_local_value_internal(
1886 unsigned int r_sym,
1887 const Symbol_value<size>* lv_in,
1888 Symbol_value<size>* lv_out,
1889 bool relocatable,
1890 const Output_sections& out_sections,
1891 const std::vector<Address>& out_offsets,
1892 const Symbol_table* symtab)
1894 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1895 // we may have a memory leak.
1896 gold_assert(lv_out->has_output_value());
1898 bool is_ordinary;
1899 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1901 // Set the output symbol value.
1903 if (!is_ordinary)
1905 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1906 lv_out->set_output_value(lv_in->input_value());
1907 else
1909 this->error(_("unknown section index %u for local symbol %u"),
1910 shndx, r_sym);
1911 lv_out->set_output_value(0);
1912 return This::CFLV_ERROR;
1915 else
1917 if (shndx >= this->shnum())
1919 this->error(_("local symbol %u section index %u out of range"),
1920 r_sym, shndx);
1921 lv_out->set_output_value(0);
1922 return This::CFLV_ERROR;
1925 Output_section* os = out_sections[shndx];
1926 Address secoffset = out_offsets[shndx];
1927 if (symtab->is_section_folded(this, shndx))
1929 gold_assert(os == NULL && secoffset == invalid_address);
1930 // Get the os of the section it is folded onto.
1931 Section_id folded = symtab->icf()->get_folded_section(this,
1932 shndx);
1933 gold_assert(folded.first != NULL);
1934 Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1935 <Sized_relobj<size, big_endian>*>(folded.first);
1936 os = folded_obj->output_section(folded.second);
1937 gold_assert(os != NULL);
1938 secoffset = folded_obj->get_output_section_offset(folded.second);
1940 // This could be a relaxed input section.
1941 if (secoffset == invalid_address)
1943 const Output_relaxed_input_section* relaxed_section =
1944 os->find_relaxed_input_section(folded_obj, folded.second);
1945 gold_assert(relaxed_section != NULL);
1946 secoffset = relaxed_section->address() - os->address();
1950 if (os == NULL)
1952 // This local symbol belongs to a section we are discarding.
1953 // In some cases when applying relocations later, we will
1954 // attempt to match it to the corresponding kept section,
1955 // so we leave the input value unchanged here.
1956 return This::CFLV_DISCARDED;
1958 else if (secoffset == invalid_address)
1960 uint64_t start;
1962 // This is a SHF_MERGE section or one which otherwise
1963 // requires special handling.
1964 if (shndx == this->discarded_eh_frame_shndx_)
1966 // This local symbol belongs to a discarded .eh_frame
1967 // section. Just treat it like the case in which
1968 // os == NULL above.
1969 gold_assert(this->has_eh_frame_);
1970 return This::CFLV_DISCARDED;
1972 else if (!lv_in->is_section_symbol())
1974 // This is not a section symbol. We can determine
1975 // the final value now.
1976 lv_out->set_output_value(
1977 os->output_address(this, shndx, lv_in->input_value()));
1979 else if (!os->find_starting_output_address(this, shndx, &start))
1981 // This is a section symbol, but apparently not one in a
1982 // merged section. First check to see if this is a relaxed
1983 // input section. If so, use its address. Otherwise just
1984 // use the start of the output section. This happens with
1985 // relocatable links when the input object has section
1986 // symbols for arbitrary non-merge sections.
1987 const Output_section_data* posd =
1988 os->find_relaxed_input_section(this, shndx);
1989 if (posd != NULL)
1991 Address relocatable_link_adjustment =
1992 relocatable ? os->address() : 0;
1993 lv_out->set_output_value(posd->address()
1994 - relocatable_link_adjustment);
1996 else
1997 lv_out->set_output_value(os->address());
1999 else
2001 // We have to consider the addend to determine the
2002 // value to use in a relocation. START is the start
2003 // of this input section. If we are doing a relocatable
2004 // link, use offset from start output section instead of
2005 // address.
2006 Address adjusted_start =
2007 relocatable ? start - os->address() : start;
2008 Merged_symbol_value<size>* msv =
2009 new Merged_symbol_value<size>(lv_in->input_value(),
2010 adjusted_start);
2011 lv_out->set_merged_symbol_value(msv);
2014 else if (lv_in->is_tls_symbol())
2015 lv_out->set_output_value(os->tls_offset()
2016 + secoffset
2017 + lv_in->input_value());
2018 else
2019 lv_out->set_output_value((relocatable ? 0 : os->address())
2020 + secoffset
2021 + lv_in->input_value());
2023 return This::CFLV_OK;
2026 // Compute final local symbol value. R_SYM is the index of a local
2027 // symbol in symbol table. LV points to a symbol value, which is
2028 // expected to hold the input value and to be over-written by the
2029 // final value. SYMTAB points to a symbol table. Some targets may want
2030 // to know would-be-finalized local symbol values in relaxation.
2031 // Hence we provide this method. Since this method updates *LV, a
2032 // callee should make a copy of the original local symbol value and
2033 // use the copy instead of modifying an object's local symbols before
2034 // everything is finalized. The caller should also free up any allocated
2035 // memory in the return value in *LV.
2036 template<int size, bool big_endian>
2037 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
2038 Sized_relobj<size, big_endian>::compute_final_local_value(
2039 unsigned int r_sym,
2040 const Symbol_value<size>* lv_in,
2041 Symbol_value<size>* lv_out,
2042 const Symbol_table* symtab)
2044 // This is just a wrapper of compute_final_local_value_internal.
2045 const bool relocatable = parameters->options().relocatable();
2046 const Output_sections& out_sections(this->output_sections());
2047 const std::vector<Address>& out_offsets(this->section_offsets_);
2048 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2049 relocatable, out_sections,
2050 out_offsets, symtab);
2053 // Finalize the local symbols. Here we set the final value in
2054 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2055 // This function is always called from a singleton thread. The actual
2056 // output of the local symbols will occur in a separate task.
2058 template<int size, bool big_endian>
2059 unsigned int
2060 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
2061 off_t off,
2062 Symbol_table* symtab)
2064 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2066 const unsigned int loccount = this->local_symbol_count_;
2067 this->local_symbol_offset_ = off;
2069 const bool relocatable = parameters->options().relocatable();
2070 const Output_sections& out_sections(this->output_sections());
2071 const std::vector<Address>& out_offsets(this->section_offsets_);
2073 for (unsigned int i = 1; i < loccount; ++i)
2075 Symbol_value<size>* lv = &this->local_values_[i];
2077 Compute_final_local_value_status cflv_status =
2078 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2079 out_sections, out_offsets,
2080 symtab);
2081 switch (cflv_status)
2083 case CFLV_OK:
2084 if (!lv->is_output_symtab_index_set())
2086 lv->set_output_symtab_index(index);
2087 ++index;
2089 break;
2090 case CFLV_DISCARDED:
2091 case CFLV_ERROR:
2092 // Do nothing.
2093 break;
2094 default:
2095 gold_unreachable();
2098 return index;
2101 // Set the output dynamic symbol table indexes for the local variables.
2103 template<int size, bool big_endian>
2104 unsigned int
2105 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
2107 const unsigned int loccount = this->local_symbol_count_;
2108 for (unsigned int i = 1; i < loccount; ++i)
2110 Symbol_value<size>& lv(this->local_values_[i]);
2111 if (lv.needs_output_dynsym_entry())
2113 lv.set_output_dynsym_index(index);
2114 ++index;
2117 return index;
2120 // Set the offset where local dynamic symbol information will be stored.
2121 // Returns the count of local symbols contributed to the symbol table by
2122 // this object.
2124 template<int size, bool big_endian>
2125 unsigned int
2126 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2128 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2129 this->local_dynsym_offset_ = off;
2130 return this->output_local_dynsym_count_;
2133 // If Symbols_data is not NULL get the section flags from here otherwise
2134 // get it from the file.
2136 template<int size, bool big_endian>
2137 uint64_t
2138 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
2140 Symbols_data* sd = this->get_symbols_data();
2141 if (sd != NULL)
2143 const unsigned char* pshdrs = sd->section_headers_data
2144 + This::shdr_size * shndx;
2145 typename This::Shdr shdr(pshdrs);
2146 return shdr.get_sh_flags();
2148 // If sd is NULL, read the section header from the file.
2149 return this->elf_file_.section_flags(shndx);
2152 // Get the section's ent size from Symbols_data. Called by get_section_contents
2153 // in icf.cc
2155 template<int size, bool big_endian>
2156 uint64_t
2157 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
2159 Symbols_data* sd = this->get_symbols_data();
2160 gold_assert(sd != NULL);
2162 const unsigned char* pshdrs = sd->section_headers_data
2163 + This::shdr_size * shndx;
2164 typename This::Shdr shdr(pshdrs);
2165 return shdr.get_sh_entsize();
2168 // Write out the local symbols.
2170 template<int size, bool big_endian>
2171 void
2172 Sized_relobj<size, big_endian>::write_local_symbols(
2173 Output_file* of,
2174 const Stringpool* sympool,
2175 const Stringpool* dynpool,
2176 Output_symtab_xindex* symtab_xindex,
2177 Output_symtab_xindex* dynsym_xindex)
2179 const bool strip_all = parameters->options().strip_all();
2180 if (strip_all)
2182 if (this->output_local_dynsym_count_ == 0)
2183 return;
2184 this->output_local_symbol_count_ = 0;
2187 gold_assert(this->symtab_shndx_ != -1U);
2188 if (this->symtab_shndx_ == 0)
2190 // This object has no symbols. Weird but legal.
2191 return;
2194 // Read the symbol table section header.
2195 const unsigned int symtab_shndx = this->symtab_shndx_;
2196 typename This::Shdr symtabshdr(this,
2197 this->elf_file_.section_header(symtab_shndx));
2198 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2199 const unsigned int loccount = this->local_symbol_count_;
2200 gold_assert(loccount == symtabshdr.get_sh_info());
2202 // Read the local symbols.
2203 const int sym_size = This::sym_size;
2204 off_t locsize = loccount * sym_size;
2205 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2206 locsize, true, false);
2208 // Read the symbol names.
2209 const unsigned int strtab_shndx =
2210 this->adjust_shndx(symtabshdr.get_sh_link());
2211 section_size_type strtab_size;
2212 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2213 &strtab_size,
2214 false);
2215 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2217 // Get views into the output file for the portions of the symbol table
2218 // and the dynamic symbol table that we will be writing.
2219 off_t output_size = this->output_local_symbol_count_ * sym_size;
2220 unsigned char* oview = NULL;
2221 if (output_size > 0)
2222 oview = of->get_output_view(this->local_symbol_offset_, output_size);
2224 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2225 unsigned char* dyn_oview = NULL;
2226 if (dyn_output_size > 0)
2227 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2228 dyn_output_size);
2230 const Output_sections out_sections(this->output_sections());
2232 gold_assert(this->local_values_.size() == loccount);
2234 unsigned char* ov = oview;
2235 unsigned char* dyn_ov = dyn_oview;
2236 psyms += sym_size;
2237 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2239 elfcpp::Sym<size, big_endian> isym(psyms);
2241 Symbol_value<size>& lv(this->local_values_[i]);
2243 bool is_ordinary;
2244 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2245 &is_ordinary);
2246 if (is_ordinary)
2248 gold_assert(st_shndx < out_sections.size());
2249 if (out_sections[st_shndx] == NULL)
2250 continue;
2251 st_shndx = out_sections[st_shndx]->out_shndx();
2252 if (st_shndx >= elfcpp::SHN_LORESERVE)
2254 if (lv.has_output_symtab_entry())
2255 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2256 if (lv.has_output_dynsym_entry())
2257 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2258 st_shndx = elfcpp::SHN_XINDEX;
2262 // Write the symbol to the output symbol table.
2263 if (lv.has_output_symtab_entry())
2265 elfcpp::Sym_write<size, big_endian> osym(ov);
2267 gold_assert(isym.get_st_name() < strtab_size);
2268 const char* name = pnames + isym.get_st_name();
2269 osym.put_st_name(sympool->get_offset(name));
2270 osym.put_st_value(this->local_values_[i].value(this, 0));
2271 osym.put_st_size(isym.get_st_size());
2272 osym.put_st_info(isym.get_st_info());
2273 osym.put_st_other(isym.get_st_other());
2274 osym.put_st_shndx(st_shndx);
2276 ov += sym_size;
2279 // Write the symbol to the output dynamic symbol table.
2280 if (lv.has_output_dynsym_entry())
2282 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2283 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2285 gold_assert(isym.get_st_name() < strtab_size);
2286 const char* name = pnames + isym.get_st_name();
2287 osym.put_st_name(dynpool->get_offset(name));
2288 osym.put_st_value(this->local_values_[i].value(this, 0));
2289 osym.put_st_size(isym.get_st_size());
2290 osym.put_st_info(isym.get_st_info());
2291 osym.put_st_other(isym.get_st_other());
2292 osym.put_st_shndx(st_shndx);
2294 dyn_ov += sym_size;
2299 if (output_size > 0)
2301 gold_assert(ov - oview == output_size);
2302 of->write_output_view(this->local_symbol_offset_, output_size, oview);
2305 if (dyn_output_size > 0)
2307 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2308 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2309 dyn_oview);
2313 // Set *INFO to symbolic information about the offset OFFSET in the
2314 // section SHNDX. Return true if we found something, false if we
2315 // found nothing.
2317 template<int size, bool big_endian>
2318 bool
2319 Sized_relobj<size, big_endian>::get_symbol_location_info(
2320 unsigned int shndx,
2321 off_t offset,
2322 Symbol_location_info* info)
2324 if (this->symtab_shndx_ == 0)
2325 return false;
2327 section_size_type symbols_size;
2328 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2329 &symbols_size,
2330 false);
2332 unsigned int symbol_names_shndx =
2333 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2334 section_size_type names_size;
2335 const unsigned char* symbol_names_u =
2336 this->section_contents(symbol_names_shndx, &names_size, false);
2337 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2339 const int sym_size = This::sym_size;
2340 const size_t count = symbols_size / sym_size;
2342 const unsigned char* p = symbols;
2343 for (size_t i = 0; i < count; ++i, p += sym_size)
2345 elfcpp::Sym<size, big_endian> sym(p);
2347 if (sym.get_st_type() == elfcpp::STT_FILE)
2349 if (sym.get_st_name() >= names_size)
2350 info->source_file = "(invalid)";
2351 else
2352 info->source_file = symbol_names + sym.get_st_name();
2353 continue;
2356 bool is_ordinary;
2357 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2358 &is_ordinary);
2359 if (is_ordinary
2360 && st_shndx == shndx
2361 && static_cast<off_t>(sym.get_st_value()) <= offset
2362 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2363 > offset))
2365 if (sym.get_st_name() > names_size)
2366 info->enclosing_symbol_name = "(invalid)";
2367 else
2369 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2370 if (parameters->options().do_demangle())
2372 char* demangled_name = cplus_demangle(
2373 info->enclosing_symbol_name.c_str(),
2374 DMGL_ANSI | DMGL_PARAMS);
2375 if (demangled_name != NULL)
2377 info->enclosing_symbol_name.assign(demangled_name);
2378 free(demangled_name);
2382 return true;
2386 return false;
2389 // Look for a kept section corresponding to the given discarded section,
2390 // and return its output address. This is used only for relocations in
2391 // debugging sections. If we can't find the kept section, return 0.
2393 template<int size, bool big_endian>
2394 typename Sized_relobj<size, big_endian>::Address
2395 Sized_relobj<size, big_endian>::map_to_kept_section(
2396 unsigned int shndx,
2397 bool* found) const
2399 Relobj* kept_object;
2400 unsigned int kept_shndx;
2401 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2403 Sized_relobj<size, big_endian>* kept_relobj =
2404 static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2405 Output_section* os = kept_relobj->output_section(kept_shndx);
2406 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2407 if (os != NULL && offset != invalid_address)
2409 *found = true;
2410 return os->address() + offset;
2413 *found = false;
2414 return 0;
2417 // Get symbol counts.
2419 template<int size, bool big_endian>
2420 void
2421 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2422 const Symbol_table*,
2423 size_t* defined,
2424 size_t* used) const
2426 *defined = this->defined_count_;
2427 size_t count = 0;
2428 for (Symbols::const_iterator p = this->symbols_.begin();
2429 p != this->symbols_.end();
2430 ++p)
2431 if (*p != NULL
2432 && (*p)->source() == Symbol::FROM_OBJECT
2433 && (*p)->object() == this
2434 && (*p)->is_defined())
2435 ++count;
2436 *used = count;
2439 // Input_objects methods.
2441 // Add a regular relocatable object to the list. Return false if this
2442 // object should be ignored.
2444 bool
2445 Input_objects::add_object(Object* obj)
2447 // Print the filename if the -t/--trace option is selected.
2448 if (parameters->options().trace())
2449 gold_info("%s", obj->name().c_str());
2451 if (!obj->is_dynamic())
2452 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2453 else
2455 // See if this is a duplicate SONAME.
2456 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2457 const char* soname = dynobj->soname();
2459 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2460 this->sonames_.insert(soname);
2461 if (!ins.second)
2463 // We have already seen a dynamic object with this soname.
2464 return false;
2467 this->dynobj_list_.push_back(dynobj);
2470 // Add this object to the cross-referencer if requested.
2471 if (parameters->options().user_set_print_symbol_counts()
2472 || parameters->options().cref())
2474 if (this->cref_ == NULL)
2475 this->cref_ = new Cref();
2476 this->cref_->add_object(obj);
2479 return true;
2482 // For each dynamic object, record whether we've seen all of its
2483 // explicit dependencies.
2485 void
2486 Input_objects::check_dynamic_dependencies() const
2488 bool issued_copy_dt_needed_error = false;
2489 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2490 p != this->dynobj_list_.end();
2491 ++p)
2493 const Dynobj::Needed& needed((*p)->needed());
2494 bool found_all = true;
2495 Dynobj::Needed::const_iterator pneeded;
2496 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2498 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2500 found_all = false;
2501 break;
2504 (*p)->set_has_unknown_needed_entries(!found_all);
2506 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2507 // that gold does not support. However, they cause no trouble
2508 // unless there is a DT_NEEDED entry that we don't know about;
2509 // warn only in that case.
2510 if (!found_all
2511 && !issued_copy_dt_needed_error
2512 && (parameters->options().copy_dt_needed_entries()
2513 || parameters->options().add_needed()))
2515 const char* optname;
2516 if (parameters->options().copy_dt_needed_entries())
2517 optname = "--copy-dt-needed-entries";
2518 else
2519 optname = "--add-needed";
2520 gold_error(_("%s is not supported but is required for %s in %s"),
2521 optname, (*pneeded).c_str(), (*p)->name().c_str());
2522 issued_copy_dt_needed_error = true;
2527 // Start processing an archive.
2529 void
2530 Input_objects::archive_start(Archive* archive)
2532 if (parameters->options().user_set_print_symbol_counts()
2533 || parameters->options().cref())
2535 if (this->cref_ == NULL)
2536 this->cref_ = new Cref();
2537 this->cref_->add_archive_start(archive);
2541 // Stop processing an archive.
2543 void
2544 Input_objects::archive_stop(Archive* archive)
2546 if (parameters->options().user_set_print_symbol_counts()
2547 || parameters->options().cref())
2548 this->cref_->add_archive_stop(archive);
2551 // Print symbol counts
2553 void
2554 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2556 if (parameters->options().user_set_print_symbol_counts()
2557 && this->cref_ != NULL)
2558 this->cref_->print_symbol_counts(symtab);
2561 // Print a cross reference table.
2563 void
2564 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2566 if (parameters->options().cref() && this->cref_ != NULL)
2567 this->cref_->print_cref(symtab, f);
2570 // Relocate_info methods.
2572 // Return a string describing the location of a relocation. This is
2573 // only used in error messages.
2575 template<int size, bool big_endian>
2576 std::string
2577 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2579 // See if we can get line-number information from debugging sections.
2580 std::string filename;
2581 std::string file_and_lineno; // Better than filename-only, if available.
2583 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2584 // This will be "" if we failed to parse the debug info for any reason.
2585 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
2587 std::string ret(this->object->name());
2588 ret += ':';
2589 Symbol_location_info info;
2590 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2592 ret += " in function ";
2593 ret += info.enclosing_symbol_name;
2594 ret += ":";
2595 filename = info.source_file;
2598 if (!file_and_lineno.empty())
2599 ret += file_and_lineno;
2600 else
2602 if (!filename.empty())
2603 ret += filename;
2604 ret += "(";
2605 ret += this->object->section_name(this->data_shndx);
2606 char buf[100];
2607 // Offsets into sections have to be positive.
2608 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2609 ret += buf;
2610 ret += ")";
2612 return ret;
2615 } // End namespace gold.
2617 namespace
2620 using namespace gold;
2622 // Read an ELF file with the header and return the appropriate
2623 // instance of Object.
2625 template<int size, bool big_endian>
2626 Object*
2627 make_elf_sized_object(const std::string& name, Input_file* input_file,
2628 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2629 bool* punconfigured)
2631 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2632 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2633 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2634 if (target == NULL)
2635 gold_fatal(_("%s: unsupported ELF machine number %d"),
2636 name.c_str(), ehdr.get_e_machine());
2638 if (!parameters->target_valid())
2639 set_parameters_target(target);
2640 else if (target != &parameters->target())
2642 if (punconfigured != NULL)
2643 *punconfigured = true;
2644 else
2645 gold_error(_("%s: incompatible target"), name.c_str());
2646 return NULL;
2649 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2650 ehdr);
2653 } // End anonymous namespace.
2655 namespace gold
2658 // Return whether INPUT_FILE is an ELF object.
2660 bool
2661 is_elf_object(Input_file* input_file, off_t offset,
2662 const unsigned char** start, int* read_size)
2664 off_t filesize = input_file->file().filesize();
2665 int want = elfcpp::Elf_recognizer::max_header_size;
2666 if (filesize - offset < want)
2667 want = filesize - offset;
2669 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2670 true, false);
2671 *start = p;
2672 *read_size = want;
2674 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2677 // Read an ELF file and return the appropriate instance of Object.
2679 Object*
2680 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2681 const unsigned char* p, section_offset_type bytes,
2682 bool* punconfigured)
2684 if (punconfigured != NULL)
2685 *punconfigured = false;
2687 std::string error;
2688 bool big_endian = false;
2689 int size = 0;
2690 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2691 &big_endian, &error))
2693 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2694 return NULL;
2697 if (size == 32)
2699 if (big_endian)
2701 #ifdef HAVE_TARGET_32_BIG
2702 elfcpp::Ehdr<32, true> ehdr(p);
2703 return make_elf_sized_object<32, true>(name, input_file,
2704 offset, ehdr, punconfigured);
2705 #else
2706 if (punconfigured != NULL)
2707 *punconfigured = true;
2708 else
2709 gold_error(_("%s: not configured to support "
2710 "32-bit big-endian object"),
2711 name.c_str());
2712 return NULL;
2713 #endif
2715 else
2717 #ifdef HAVE_TARGET_32_LITTLE
2718 elfcpp::Ehdr<32, false> ehdr(p);
2719 return make_elf_sized_object<32, false>(name, input_file,
2720 offset, ehdr, punconfigured);
2721 #else
2722 if (punconfigured != NULL)
2723 *punconfigured = true;
2724 else
2725 gold_error(_("%s: not configured to support "
2726 "32-bit little-endian object"),
2727 name.c_str());
2728 return NULL;
2729 #endif
2732 else if (size == 64)
2734 if (big_endian)
2736 #ifdef HAVE_TARGET_64_BIG
2737 elfcpp::Ehdr<64, true> ehdr(p);
2738 return make_elf_sized_object<64, true>(name, input_file,
2739 offset, ehdr, punconfigured);
2740 #else
2741 if (punconfigured != NULL)
2742 *punconfigured = true;
2743 else
2744 gold_error(_("%s: not configured to support "
2745 "64-bit big-endian object"),
2746 name.c_str());
2747 return NULL;
2748 #endif
2750 else
2752 #ifdef HAVE_TARGET_64_LITTLE
2753 elfcpp::Ehdr<64, false> ehdr(p);
2754 return make_elf_sized_object<64, false>(name, input_file,
2755 offset, ehdr, punconfigured);
2756 #else
2757 if (punconfigured != NULL)
2758 *punconfigured = true;
2759 else
2760 gold_error(_("%s: not configured to support "
2761 "64-bit little-endian object"),
2762 name.c_str());
2763 return NULL;
2764 #endif
2767 else
2768 gold_unreachable();
2771 // Instantiate the templates we need.
2773 #ifdef HAVE_TARGET_32_LITTLE
2774 template
2775 void
2776 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2777 Read_symbols_data*);
2778 #endif
2780 #ifdef HAVE_TARGET_32_BIG
2781 template
2782 void
2783 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2784 Read_symbols_data*);
2785 #endif
2787 #ifdef HAVE_TARGET_64_LITTLE
2788 template
2789 void
2790 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2791 Read_symbols_data*);
2792 #endif
2794 #ifdef HAVE_TARGET_64_BIG
2795 template
2796 void
2797 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2798 Read_symbols_data*);
2799 #endif
2801 #ifdef HAVE_TARGET_32_LITTLE
2802 template
2803 class Sized_relobj<32, false>;
2804 #endif
2806 #ifdef HAVE_TARGET_32_BIG
2807 template
2808 class Sized_relobj<32, true>;
2809 #endif
2811 #ifdef HAVE_TARGET_64_LITTLE
2812 template
2813 class Sized_relobj<64, false>;
2814 #endif
2816 #ifdef HAVE_TARGET_64_BIG
2817 template
2818 class Sized_relobj<64, true>;
2819 #endif
2821 #ifdef HAVE_TARGET_32_LITTLE
2822 template
2823 struct Relocate_info<32, false>;
2824 #endif
2826 #ifdef HAVE_TARGET_32_BIG
2827 template
2828 struct Relocate_info<32, true>;
2829 #endif
2831 #ifdef HAVE_TARGET_64_LITTLE
2832 template
2833 struct Relocate_info<64, false>;
2834 #endif
2836 #ifdef HAVE_TARGET_64_BIG
2837 template
2838 struct Relocate_info<64, true>;
2839 #endif
2841 #ifdef HAVE_TARGET_32_LITTLE
2842 template
2843 void
2844 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2846 template
2847 void
2848 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2849 const unsigned char*);
2850 #endif
2852 #ifdef HAVE_TARGET_32_BIG
2853 template
2854 void
2855 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2857 template
2858 void
2859 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2860 const unsigned char*);
2861 #endif
2863 #ifdef HAVE_TARGET_64_LITTLE
2864 template
2865 void
2866 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2868 template
2869 void
2870 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2871 const unsigned char*);
2872 #endif
2874 #ifdef HAVE_TARGET_64_BIG
2875 template
2876 void
2877 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2879 template
2880 void
2881 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2882 const unsigned char*);
2883 #endif
2885 } // End namespace gold.