1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
210 bfd_elf_mkobject (bfd
*abfd
)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
215 if (elf_tdata (abfd
) == 0)
217 /* Since everything is done at close time, do we need any
224 bfd_elf_mkcorefile (bfd
*abfd
)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd
);
231 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
233 Elf_Internal_Shdr
**i_shdrp
;
234 bfd_byte
*shstrtab
= NULL
;
236 bfd_size_type shstrtabsize
;
238 i_shdrp
= elf_elfsections (abfd
);
239 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
242 shstrtab
= i_shdrp
[shindex
]->contents
;
243 if (shstrtab
== NULL
)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset
= i_shdrp
[shindex
]->sh_offset
;
247 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize
+ 1 == 0
252 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
253 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
255 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
257 if (bfd_get_error () != bfd_error_system_call
)
258 bfd_set_error (bfd_error_file_truncated
);
262 shstrtab
[shstrtabsize
] = '\0';
263 i_shdrp
[shindex
]->contents
= shstrtab
;
265 return (char *) shstrtab
;
269 bfd_elf_string_from_elf_section (bfd
*abfd
,
270 unsigned int shindex
,
271 unsigned int strindex
)
273 Elf_Internal_Shdr
*hdr
;
278 hdr
= elf_elfsections (abfd
)[shindex
];
280 if (hdr
->contents
== NULL
281 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
284 if (strindex
>= hdr
->sh_size
)
286 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
287 (*_bfd_error_handler
)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
290 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
292 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
296 return ((char *) hdr
->contents
) + strindex
;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
306 bfd_elf_get_elf_syms (bfd
*ibfd
,
307 Elf_Internal_Shdr
*symtab_hdr
,
310 Elf_Internal_Sym
*intsym_buf
,
312 Elf_External_Sym_Shndx
*extshndx_buf
)
314 Elf_Internal_Shdr
*shndx_hdr
;
316 const bfd_byte
*esym
;
317 Elf_External_Sym_Shndx
*alloc_extshndx
;
318 Elf_External_Sym_Shndx
*shndx
;
319 Elf_Internal_Sym
*isym
;
320 Elf_Internal_Sym
*isymend
;
321 const struct elf_backend_data
*bed
;
329 /* Normal syms might have section extension entries. */
331 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
332 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
334 /* Read the symbols. */
336 alloc_extshndx
= NULL
;
337 bed
= get_elf_backend_data (ibfd
);
338 extsym_size
= bed
->s
->sizeof_sym
;
339 amt
= symcount
* extsym_size
;
340 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
341 if (extsym_buf
== NULL
)
343 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
344 extsym_buf
= alloc_ext
;
346 if (extsym_buf
== NULL
347 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
348 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
354 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
358 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
359 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
360 if (extshndx_buf
== NULL
)
362 alloc_extshndx
= bfd_malloc2 (symcount
,
363 sizeof (Elf_External_Sym_Shndx
));
364 extshndx_buf
= alloc_extshndx
;
366 if (extshndx_buf
== NULL
367 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
368 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
375 if (intsym_buf
== NULL
)
377 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
378 if (intsym_buf
== NULL
)
382 /* Convert the symbols to internal form. */
383 isymend
= intsym_buf
+ symcount
;
384 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
386 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
387 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
390 if (alloc_ext
!= NULL
)
392 if (alloc_extshndx
!= NULL
)
393 free (alloc_extshndx
);
398 /* Look up a symbol name. */
400 bfd_elf_sym_name (bfd
*abfd
,
401 Elf_Internal_Shdr
*symtab_hdr
,
402 Elf_Internal_Sym
*isym
,
406 unsigned int iname
= isym
->st_name
;
407 unsigned int shindex
= symtab_hdr
->sh_link
;
409 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym
->st_shndx
< elf_numsections (abfd
)
412 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 else if (sym_sec
&& *name
== '\0')
422 name
= bfd_section_name (abfd
, sym_sec
);
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
431 typedef union elf_internal_group
{
432 Elf_Internal_Shdr
*shdr
;
434 } Elf_Internal_Group
;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
440 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
442 Elf_Internal_Shdr
*hdr
;
443 unsigned char esym
[sizeof (Elf64_External_Sym
)];
444 Elf_External_Sym_Shndx eshndx
;
445 Elf_Internal_Sym isym
;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
450 if (hdr
->sh_type
!= SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
454 /* Go read the symbol. */
455 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
456 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
457 &isym
, esym
, &eshndx
) == NULL
)
460 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
466 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
468 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
474 unsigned int i
, shnum
;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum
= elf_numsections (abfd
);
480 for (i
= 0; i
< shnum
; i
++)
482 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
483 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
489 num_group
= (unsigned) -1;
490 elf_tdata (abfd
)->num_group
= num_group
;
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
498 elf_tdata (abfd
)->num_group
= num_group
;
499 elf_tdata (abfd
)->group_sect_ptr
500 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
501 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
505 for (i
= 0; i
< shnum
; i
++)
507 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
508 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
511 Elf_Internal_Group
*dest
;
513 /* Add to list of sections. */
514 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest
) >= 4);
519 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
520 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
522 if (shdr
->contents
== NULL
523 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
524 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
532 src
= shdr
->contents
+ shdr
->sh_size
;
533 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
540 idx
= H_GET_32 (abfd
, src
);
541 if (src
== shdr
->contents
)
544 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
545 shdr
->bfd_section
->flags
546 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
551 ((*_bfd_error_handler
)
552 (_("%B: invalid SHT_GROUP entry"), abfd
));
555 dest
->shdr
= elf_elfsections (abfd
)[idx
];
562 if (num_group
!= (unsigned) -1)
566 for (i
= 0; i
< num_group
; i
++)
568 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
569 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
570 unsigned int n_elt
= shdr
->sh_size
/ 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
575 if ((++idx
)->shdr
== hdr
)
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
582 idx
= (Elf_Internal_Group
*) shdr
->contents
;
583 n_elt
= shdr
->sh_size
/ 4;
585 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
586 && elf_next_in_group (s
) != NULL
)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect
) = elf_group_name (s
);
593 elf_next_in_group (newsect
) = elf_next_in_group (s
);
594 elf_next_in_group (s
) = newsect
;
600 gname
= group_signature (abfd
, shdr
);
603 elf_group_name (newsect
) = gname
;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect
) = newsect
;
609 /* If the group section has been created, point to the
611 if (shdr
->bfd_section
!= NULL
)
612 elf_next_in_group (shdr
->bfd_section
) = newsect
;
620 if (elf_group_name (newsect
) == NULL
)
622 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
629 _bfd_elf_setup_sections (bfd
*abfd
)
632 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
633 bfd_boolean result
= TRUE
;
636 /* Process SHF_LINK_ORDER. */
637 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
639 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
640 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
642 unsigned int elfsec
= this_hdr
->sh_link
;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
648 const struct elf_backend_data
*bed
649 = get_elf_backend_data (abfd
);
650 if (bed
->link_order_error_handler
)
651 bed
->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
659 this_hdr
= elf_elfsections (abfd
)[elfsec
];
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link
= this_hdr
->bfd_section
;
667 (*_bfd_error_handler
)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s
->owner
, s
, elfsec
);
673 elf_linked_to_section (s
) = link
;
678 /* Process section groups. */
679 if (num_group
== (unsigned) -1)
682 for (i
= 0; i
< num_group
; i
++)
684 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
685 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
686 unsigned int n_elt
= shdr
->sh_size
/ 4;
689 if ((++idx
)->shdr
->bfd_section
)
690 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
691 else if (idx
->shdr
->sh_type
== SHT_RELA
692 || idx
->shdr
->sh_type
== SHT_REL
)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
698 shdr
->bfd_section
->size
-= 4;
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler
)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
705 (unsigned int) idx
->shdr
->sh_type
,
706 bfd_elf_string_from_elf_section (abfd
,
707 (elf_elfheader (abfd
)
710 shdr
->bfd_section
->name
);
718 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
720 return elf_next_in_group (sec
) != NULL
;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
727 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
728 Elf_Internal_Shdr
*hdr
,
734 const struct elf_backend_data
*bed
;
736 if (hdr
->bfd_section
!= NULL
)
738 BFD_ASSERT (strcmp (name
,
739 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
743 newsect
= bfd_make_section_anyway (abfd
, name
);
747 hdr
->bfd_section
= newsect
;
748 elf_section_data (newsect
)->this_hdr
= *hdr
;
749 elf_section_data (newsect
)->this_idx
= shindex
;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect
) = hdr
->sh_type
;
753 elf_section_flags (newsect
) = hdr
->sh_flags
;
755 newsect
->filepos
= hdr
->sh_offset
;
757 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
758 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
759 || ! bfd_set_section_alignment (abfd
, newsect
,
760 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
763 flags
= SEC_NO_FLAGS
;
764 if (hdr
->sh_type
!= SHT_NOBITS
)
765 flags
|= SEC_HAS_CONTENTS
;
766 if (hdr
->sh_type
== SHT_GROUP
)
767 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
768 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
771 if (hdr
->sh_type
!= SHT_NOBITS
)
774 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
775 flags
|= SEC_READONLY
;
776 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
778 else if ((flags
& SEC_LOAD
) != 0)
780 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
783 newsect
->entsize
= hdr
->sh_entsize
;
784 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
785 flags
|= SEC_STRINGS
;
787 if (hdr
->sh_flags
& SHF_GROUP
)
788 if (!setup_group (abfd
, hdr
, newsect
))
790 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
791 flags
|= SEC_THREAD_LOCAL
;
793 if ((flags
& SEC_ALLOC
) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
801 } debug_sections
[] =
803 { "debug", 5 }, /* 'd' */
804 { NULL
, 0 }, /* 'e' */
805 { NULL
, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL
, 0 }, /* 'h' */
808 { NULL
, 0 }, /* 'i' */
809 { NULL
, 0 }, /* 'j' */
810 { NULL
, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL
, 0 }, /* 'm' */
813 { NULL
, 0 }, /* 'n' */
814 { NULL
, 0 }, /* 'o' */
815 { NULL
, 0 }, /* 'p' */
816 { NULL
, 0 }, /* 'q' */
817 { NULL
, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
823 int i
= name
[1] - 'd';
825 && i
< (int) ARRAY_SIZE (debug_sections
)
826 && debug_sections
[i
].name
!= NULL
827 && strncmp (&name
[1], debug_sections
[i
].name
,
828 debug_sections
[i
].len
) == 0)
829 flags
|= SEC_DEBUGGING
;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect
) == NULL
)
841 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
843 bed
= get_elf_backend_data (abfd
);
844 if (bed
->elf_backend_section_flags
)
845 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
848 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
851 if ((flags
& SEC_ALLOC
) != 0)
853 Elf_Internal_Phdr
*phdr
;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr
= elf_tdata (abfd
)->phdr
;
860 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
862 if (phdr
->p_paddr
!= 0)
865 if (i
< elf_elfheader (abfd
)->e_phnum
)
867 phdr
= elf_tdata (abfd
)->phdr
;
868 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr
->p_type
== PT_LOAD
883 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
884 && (hdr
->sh_offset
+ hdr
->sh_size
885 <= phdr
->p_offset
+ phdr
->p_memsz
)
886 && ((flags
& SEC_LOAD
) == 0
887 || (hdr
->sh_offset
+ hdr
->sh_size
888 <= phdr
->p_offset
+ phdr
->p_filesz
)))
890 if ((flags
& SEC_LOAD
) == 0)
891 newsect
->lma
= (phdr
->p_paddr
892 + hdr
->sh_addr
- phdr
->p_vaddr
);
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect
->lma
= (phdr
->p_paddr
902 + hdr
->sh_offset
- phdr
->p_offset
);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr
->sh_addr
>= phdr
->p_vaddr
909 && (hdr
->sh_addr
+ hdr
->sh_size
910 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr
*
936 bfd_elf_find_section (bfd
*abfd
, char *name
)
938 Elf_Internal_Shdr
**i_shdrp
;
943 i_shdrp
= elf_elfsections (abfd
);
946 shstrtab
= bfd_elf_get_str_section (abfd
,
947 elf_elfheader (abfd
)->e_shstrndx
);
948 if (shstrtab
!= NULL
)
950 max
= elf_numsections (abfd
);
951 for (i
= 1; i
< max
; i
++)
952 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
959 const char *const bfd_elf_section_type_names
[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
977 arelent
*reloc_entry
,
979 void *data ATTRIBUTE_UNUSED
,
980 asection
*input_section
,
982 char **error_message ATTRIBUTE_UNUSED
)
984 if (output_bfd
!= NULL
985 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
986 && (! reloc_entry
->howto
->partial_inplace
987 || reloc_entry
->addend
== 0))
989 reloc_entry
->address
+= input_section
->output_offset
;
993 return bfd_reloc_continue
;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
999 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1002 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1003 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1006 /* Finish SHF_MERGE section merging. */
1009 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1014 if (!is_elf_hash_table (info
->hash
))
1017 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1018 if ((ibfd
->flags
& DYNAMIC
) == 0)
1019 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1020 if ((sec
->flags
& SEC_MERGE
) != 0
1021 && !bfd_is_abs_section (sec
->output_section
))
1023 struct bfd_elf_section_data
*secdata
;
1025 secdata
= elf_section_data (sec
);
1026 if (! _bfd_add_merge_section (abfd
,
1027 &elf_hash_table (info
)->merge_info
,
1028 sec
, &secdata
->sec_info
))
1030 else if (secdata
->sec_info
)
1031 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1034 if (elf_hash_table (info
)->merge_info
!= NULL
)
1035 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1036 merge_sections_remove_hook
);
1041 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1043 sec
->output_section
= bfd_abs_section_ptr
;
1044 sec
->output_offset
= sec
->vma
;
1045 if (!is_elf_hash_table (info
->hash
))
1048 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1051 /* Copy the program header and other data from one object module to
1055 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1061 BFD_ASSERT (!elf_flags_init (obfd
)
1062 || (elf_elfheader (obfd
)->e_flags
1063 == elf_elfheader (ibfd
)->e_flags
));
1065 elf_gp (obfd
) = elf_gp (ibfd
);
1066 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1067 elf_flags_init (obfd
) = TRUE
;
1072 get_segment_type (unsigned int p_type
)
1077 case PT_NULL
: pt
= "NULL"; break;
1078 case PT_LOAD
: pt
= "LOAD"; break;
1079 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1080 case PT_INTERP
: pt
= "INTERP"; break;
1081 case PT_NOTE
: pt
= "NOTE"; break;
1082 case PT_SHLIB
: pt
= "SHLIB"; break;
1083 case PT_PHDR
: pt
= "PHDR"; break;
1084 case PT_TLS
: pt
= "TLS"; break;
1085 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1086 case PT_GNU_STACK
: pt
= "STACK"; break;
1087 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1088 default: pt
= NULL
; break;
1093 /* Print out the program headers. */
1096 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1099 Elf_Internal_Phdr
*p
;
1101 bfd_byte
*dynbuf
= NULL
;
1103 p
= elf_tdata (abfd
)->phdr
;
1108 fprintf (f
, _("\nProgram Header:\n"));
1109 c
= elf_elfheader (abfd
)->e_phnum
;
1110 for (i
= 0; i
< c
; i
++, p
++)
1112 const char *pt
= get_segment_type (p
->p_type
);
1117 sprintf (buf
, "0x%lx", p
->p_type
);
1120 fprintf (f
, "%8s off 0x", pt
);
1121 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1122 fprintf (f
, " vaddr 0x");
1123 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1124 fprintf (f
, " paddr 0x");
1125 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1126 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1127 fprintf (f
, " filesz 0x");
1128 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1129 fprintf (f
, " memsz 0x");
1130 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1131 fprintf (f
, " flags %c%c%c",
1132 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1133 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1134 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1135 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1136 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1141 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1145 unsigned long shlink
;
1146 bfd_byte
*extdyn
, *extdynend
;
1148 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1150 fprintf (f
, _("\nDynamic Section:\n"));
1152 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1155 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1158 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1160 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1161 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1164 extdynend
= extdyn
+ s
->size
;
1165 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1167 Elf_Internal_Dyn dyn
;
1170 bfd_boolean stringp
;
1172 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1174 if (dyn
.d_tag
== DT_NULL
)
1181 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1185 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1186 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1187 case DT_PLTGOT
: name
= "PLTGOT"; break;
1188 case DT_HASH
: name
= "HASH"; break;
1189 case DT_STRTAB
: name
= "STRTAB"; break;
1190 case DT_SYMTAB
: name
= "SYMTAB"; break;
1191 case DT_RELA
: name
= "RELA"; break;
1192 case DT_RELASZ
: name
= "RELASZ"; break;
1193 case DT_RELAENT
: name
= "RELAENT"; break;
1194 case DT_STRSZ
: name
= "STRSZ"; break;
1195 case DT_SYMENT
: name
= "SYMENT"; break;
1196 case DT_INIT
: name
= "INIT"; break;
1197 case DT_FINI
: name
= "FINI"; break;
1198 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1199 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1200 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1201 case DT_REL
: name
= "REL"; break;
1202 case DT_RELSZ
: name
= "RELSZ"; break;
1203 case DT_RELENT
: name
= "RELENT"; break;
1204 case DT_PLTREL
: name
= "PLTREL"; break;
1205 case DT_DEBUG
: name
= "DEBUG"; break;
1206 case DT_TEXTREL
: name
= "TEXTREL"; break;
1207 case DT_JMPREL
: name
= "JMPREL"; break;
1208 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1209 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1214 case DT_FLAGS
: name
= "FLAGS"; break;
1215 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1218 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1219 case DT_MOVEENT
: name
= "MOVEENT"; break;
1220 case DT_MOVESZ
: name
= "MOVESZ"; break;
1221 case DT_FEATURE
: name
= "FEATURE"; break;
1222 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1223 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1224 case DT_SYMINENT
: name
= "SYMINENT"; break;
1225 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1226 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1227 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1228 case DT_PLTPAD
: name
= "PLTPAD"; break;
1229 case DT_MOVETAB
: name
= "MOVETAB"; break;
1230 case DT_SYMINFO
: name
= "SYMINFO"; break;
1231 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1232 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1233 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1234 case DT_VERSYM
: name
= "VERSYM"; break;
1235 case DT_VERDEF
: name
= "VERDEF"; break;
1236 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1237 case DT_VERNEED
: name
= "VERNEED"; break;
1238 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1239 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1240 case DT_USED
: name
= "USED"; break;
1241 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1244 fprintf (f
, " %-11s ", name
);
1246 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1250 unsigned int tagv
= dyn
.d_un
.d_val
;
1252 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1255 fprintf (f
, "%s", string
);
1264 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1265 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1267 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1271 if (elf_dynverdef (abfd
) != 0)
1273 Elf_Internal_Verdef
*t
;
1275 fprintf (f
, _("\nVersion definitions:\n"));
1276 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1278 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1279 t
->vd_flags
, t
->vd_hash
,
1280 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1281 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1283 Elf_Internal_Verdaux
*a
;
1286 for (a
= t
->vd_auxptr
->vda_nextptr
;
1290 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1296 if (elf_dynverref (abfd
) != 0)
1298 Elf_Internal_Verneed
*t
;
1300 fprintf (f
, _("\nVersion References:\n"));
1301 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1303 Elf_Internal_Vernaux
*a
;
1305 fprintf (f
, _(" required from %s:\n"),
1306 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1307 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1308 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1309 a
->vna_flags
, a
->vna_other
,
1310 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1322 /* Display ELF-specific fields of a symbol. */
1325 bfd_elf_print_symbol (bfd
*abfd
,
1328 bfd_print_symbol_type how
)
1333 case bfd_print_symbol_name
:
1334 fprintf (file
, "%s", symbol
->name
);
1336 case bfd_print_symbol_more
:
1337 fprintf (file
, "elf ");
1338 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1339 fprintf (file
, " %lx", (long) symbol
->flags
);
1341 case bfd_print_symbol_all
:
1343 const char *section_name
;
1344 const char *name
= NULL
;
1345 const struct elf_backend_data
*bed
;
1346 unsigned char st_other
;
1349 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1351 bed
= get_elf_backend_data (abfd
);
1352 if (bed
->elf_backend_print_symbol_all
)
1353 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1357 name
= symbol
->name
;
1358 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1361 fprintf (file
, " %s\t", section_name
);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol
->section
))
1367 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1369 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1370 bfd_fprintf_vma (abfd
, file
, val
);
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd
)->dynversym_section
!= 0
1374 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1375 || elf_tdata (abfd
)->dynverref_section
!= 0))
1377 unsigned int vernum
;
1378 const char *version_string
;
1380 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1383 version_string
= "";
1384 else if (vernum
== 1)
1385 version_string
= "Base";
1386 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1388 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1391 Elf_Internal_Verneed
*t
;
1393 version_string
= "";
1394 for (t
= elf_tdata (abfd
)->verref
;
1398 Elf_Internal_Vernaux
*a
;
1400 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1402 if (a
->vna_other
== vernum
)
1404 version_string
= a
->vna_nodename
;
1411 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1412 fprintf (file
, " %-11s", version_string
);
1417 fprintf (file
, " (%s)", version_string
);
1418 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1423 /* If the st_other field is not zero, print it. */
1424 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1429 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1430 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1431 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1433 /* Some other non-defined flags are also present, so print
1435 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1438 fprintf (file
, " %s", name
);
1444 /* Create an entry in an ELF linker hash table. */
1446 struct bfd_hash_entry
*
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1448 struct bfd_hash_table
*table
,
1451 /* Allocate the structure if it has not already been allocated by a
1455 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1460 /* Call the allocation method of the superclass. */
1461 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1464 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1465 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1467 /* Set local fields. */
1470 ret
->got
= htab
->init_got_refcount
;
1471 ret
->plt
= htab
->init_plt_refcount
;
1472 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1473 - offsetof (struct elf_link_hash_entry
, size
)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1489 struct elf_link_hash_entry
*dir
,
1490 struct elf_link_hash_entry
*ind
)
1492 struct elf_link_hash_table
*htab
;
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1497 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1498 dir
->ref_regular
|= ind
->ref_regular
;
1499 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1500 dir
->non_got_ref
|= ind
->non_got_ref
;
1501 dir
->needs_plt
|= ind
->needs_plt
;
1502 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1504 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab
= elf_hash_table (info
);
1510 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1512 if (dir
->got
.refcount
< 0)
1513 dir
->got
.refcount
= 0;
1514 dir
->got
.refcount
+= ind
->got
.refcount
;
1515 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1518 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1520 if (dir
->plt
.refcount
< 0)
1521 dir
->plt
.refcount
= 0;
1522 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1523 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1526 if (ind
->dynindx
!= -1)
1528 if (dir
->dynindx
!= -1)
1529 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1530 dir
->dynindx
= ind
->dynindx
;
1531 dir
->dynstr_index
= ind
->dynstr_index
;
1533 ind
->dynstr_index
= 0;
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1539 struct elf_link_hash_entry
*h
,
1540 bfd_boolean force_local
)
1542 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1546 h
->forced_local
= 1;
1547 if (h
->dynindx
!= -1)
1550 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1556 /* Initialize an ELF linker hash table. */
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table
*table
,
1562 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1563 struct bfd_hash_table
*,
1567 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1569 table
->dynamic_sections_created
= FALSE
;
1570 table
->dynobj
= NULL
;
1571 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1572 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1573 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1574 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1575 /* The first dynamic symbol is a dummy. */
1576 table
->dynsymcount
= 1;
1577 table
->dynstr
= NULL
;
1578 table
->bucketcount
= 0;
1579 table
->needed
= NULL
;
1581 table
->merge_info
= NULL
;
1582 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1583 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1584 table
->dynlocal
= NULL
;
1585 table
->runpath
= NULL
;
1586 table
->tls_sec
= NULL
;
1587 table
->tls_size
= 0;
1588 table
->loaded
= NULL
;
1589 table
->is_relocatable_executable
= FALSE
;
1591 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1592 table
->root
.type
= bfd_link_elf_hash_table
;
1597 /* Create an ELF linker hash table. */
1599 struct bfd_link_hash_table
*
1600 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1602 struct elf_link_hash_table
*ret
;
1603 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1605 ret
= bfd_malloc (amt
);
1609 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1618 /* This is a hook for the ELF emulation code in the generic linker to
1619 tell the backend linker what file name to use for the DT_NEEDED
1620 entry for a dynamic object. */
1623 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1625 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1626 && bfd_get_format (abfd
) == bfd_object
)
1627 elf_dt_name (abfd
) = name
;
1631 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1634 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1635 && bfd_get_format (abfd
) == bfd_object
)
1636 lib_class
= elf_dyn_lib_class (abfd
);
1643 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1645 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1646 && bfd_get_format (abfd
) == bfd_object
)
1647 elf_dyn_lib_class (abfd
) = lib_class
;
1650 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1651 the linker ELF emulation code. */
1653 struct bfd_link_needed_list
*
1654 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1655 struct bfd_link_info
*info
)
1657 if (! is_elf_hash_table (info
->hash
))
1659 return elf_hash_table (info
)->needed
;
1662 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1663 hook for the linker ELF emulation code. */
1665 struct bfd_link_needed_list
*
1666 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1667 struct bfd_link_info
*info
)
1669 if (! is_elf_hash_table (info
->hash
))
1671 return elf_hash_table (info
)->runpath
;
1674 /* Get the name actually used for a dynamic object for a link. This
1675 is the SONAME entry if there is one. Otherwise, it is the string
1676 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679 bfd_elf_get_dt_soname (bfd
*abfd
)
1681 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1682 && bfd_get_format (abfd
) == bfd_object
)
1683 return elf_dt_name (abfd
);
1687 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1688 the ELF linker emulation code. */
1691 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1692 struct bfd_link_needed_list
**pneeded
)
1695 bfd_byte
*dynbuf
= NULL
;
1697 unsigned long shlink
;
1698 bfd_byte
*extdyn
, *extdynend
;
1700 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1704 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1705 || bfd_get_format (abfd
) != bfd_object
)
1708 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1709 if (s
== NULL
|| s
->size
== 0)
1712 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1715 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1719 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1721 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1722 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1725 extdynend
= extdyn
+ s
->size
;
1726 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1728 Elf_Internal_Dyn dyn
;
1730 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1732 if (dyn
.d_tag
== DT_NULL
)
1735 if (dyn
.d_tag
== DT_NEEDED
)
1738 struct bfd_link_needed_list
*l
;
1739 unsigned int tagv
= dyn
.d_un
.d_val
;
1742 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1747 l
= bfd_alloc (abfd
, amt
);
1768 /* Allocate an ELF string table--force the first byte to be zero. */
1770 struct bfd_strtab_hash
*
1771 _bfd_elf_stringtab_init (void)
1773 struct bfd_strtab_hash
*ret
;
1775 ret
= _bfd_stringtab_init ();
1780 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1781 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1782 if (loc
== (bfd_size_type
) -1)
1784 _bfd_stringtab_free (ret
);
1791 /* ELF .o/exec file reading */
1793 /* Create a new bfd section from an ELF section header. */
1796 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1798 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1799 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1800 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1803 name
= bfd_elf_string_from_elf_section (abfd
,
1804 elf_elfheader (abfd
)->e_shstrndx
,
1809 switch (hdr
->sh_type
)
1812 /* Inactive section. Throw it away. */
1815 case SHT_PROGBITS
: /* Normal section with contents. */
1816 case SHT_NOBITS
: /* .bss section. */
1817 case SHT_HASH
: /* .hash section. */
1818 case SHT_NOTE
: /* .note section. */
1819 case SHT_INIT_ARRAY
: /* .init_array section. */
1820 case SHT_FINI_ARRAY
: /* .fini_array section. */
1821 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1822 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1823 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1825 case SHT_DYNAMIC
: /* Dynamic linking information. */
1826 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1828 if (hdr
->sh_link
> elf_numsections (abfd
)
1829 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1831 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1833 Elf_Internal_Shdr
*dynsymhdr
;
1835 /* The shared libraries distributed with hpux11 have a bogus
1836 sh_link field for the ".dynamic" section. Find the
1837 string table for the ".dynsym" section instead. */
1838 if (elf_dynsymtab (abfd
) != 0)
1840 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1841 hdr
->sh_link
= dynsymhdr
->sh_link
;
1845 unsigned int i
, num_sec
;
1847 num_sec
= elf_numsections (abfd
);
1848 for (i
= 1; i
< num_sec
; i
++)
1850 dynsymhdr
= elf_elfsections (abfd
)[i
];
1851 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1853 hdr
->sh_link
= dynsymhdr
->sh_link
;
1861 case SHT_SYMTAB
: /* A symbol table */
1862 if (elf_onesymtab (abfd
) == shindex
)
1865 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1867 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1868 elf_onesymtab (abfd
) = shindex
;
1869 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1870 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1871 abfd
->flags
|= HAS_SYMS
;
1873 /* Sometimes a shared object will map in the symbol table. If
1874 SHF_ALLOC is set, and this is a shared object, then we also
1875 treat this section as a BFD section. We can not base the
1876 decision purely on SHF_ALLOC, because that flag is sometimes
1877 set in a relocatable object file, which would confuse the
1879 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1880 && (abfd
->flags
& DYNAMIC
) != 0
1881 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1885 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1886 can't read symbols without that section loaded as well. It
1887 is most likely specified by the next section header. */
1888 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1890 unsigned int i
, num_sec
;
1892 num_sec
= elf_numsections (abfd
);
1893 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1895 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1896 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1897 && hdr2
->sh_link
== shindex
)
1901 for (i
= 1; i
< shindex
; i
++)
1903 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1904 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1905 && hdr2
->sh_link
== shindex
)
1909 return bfd_section_from_shdr (abfd
, i
);
1913 case SHT_DYNSYM
: /* A dynamic symbol table */
1914 if (elf_dynsymtab (abfd
) == shindex
)
1917 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1919 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1920 elf_dynsymtab (abfd
) = shindex
;
1921 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1922 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1923 abfd
->flags
|= HAS_SYMS
;
1925 /* Besides being a symbol table, we also treat this as a regular
1926 section, so that objcopy can handle it. */
1927 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1929 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1930 if (elf_symtab_shndx (abfd
) == shindex
)
1933 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1934 elf_symtab_shndx (abfd
) = shindex
;
1935 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1936 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1939 case SHT_STRTAB
: /* A string table */
1940 if (hdr
->bfd_section
!= NULL
)
1942 if (ehdr
->e_shstrndx
== shindex
)
1944 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1945 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1948 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1951 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1952 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1955 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1958 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1959 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1960 elf_elfsections (abfd
)[shindex
] = hdr
;
1961 /* We also treat this as a regular section, so that objcopy
1963 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1967 /* If the string table isn't one of the above, then treat it as a
1968 regular section. We need to scan all the headers to be sure,
1969 just in case this strtab section appeared before the above. */
1970 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1972 unsigned int i
, num_sec
;
1974 num_sec
= elf_numsections (abfd
);
1975 for (i
= 1; i
< num_sec
; i
++)
1977 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1978 if (hdr2
->sh_link
== shindex
)
1980 /* Prevent endless recursion on broken objects. */
1983 if (! bfd_section_from_shdr (abfd
, i
))
1985 if (elf_onesymtab (abfd
) == i
)
1987 if (elf_dynsymtab (abfd
) == i
)
1988 goto dynsymtab_strtab
;
1992 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1996 /* *These* do a lot of work -- but build no sections! */
1998 asection
*target_sect
;
1999 Elf_Internal_Shdr
*hdr2
;
2000 unsigned int num_sec
= elf_numsections (abfd
);
2003 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2004 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2007 /* Check for a bogus link to avoid crashing. */
2008 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2009 || hdr
->sh_link
>= num_sec
)
2011 ((*_bfd_error_handler
)
2012 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2013 abfd
, hdr
->sh_link
, name
, shindex
));
2014 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2018 /* For some incomprehensible reason Oracle distributes
2019 libraries for Solaris in which some of the objects have
2020 bogus sh_link fields. It would be nice if we could just
2021 reject them, but, unfortunately, some people need to use
2022 them. We scan through the section headers; if we find only
2023 one suitable symbol table, we clobber the sh_link to point
2024 to it. I hope this doesn't break anything. */
2025 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2026 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2032 for (scan
= 1; scan
< num_sec
; scan
++)
2034 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2035 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2046 hdr
->sh_link
= found
;
2049 /* Get the symbol table. */
2050 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2051 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2052 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2055 /* If this reloc section does not use the main symbol table we
2056 don't treat it as a reloc section. BFD can't adequately
2057 represent such a section, so at least for now, we don't
2058 try. We just present it as a normal section. We also
2059 can't use it as a reloc section if it points to the null
2060 section, an invalid section, or another reloc section. */
2061 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2062 || hdr
->sh_info
== SHN_UNDEF
2063 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2064 || hdr
->sh_info
>= num_sec
2065 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2066 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2067 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2070 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2072 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2073 if (target_sect
== NULL
)
2076 if ((target_sect
->flags
& SEC_RELOC
) == 0
2077 || target_sect
->reloc_count
== 0)
2078 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2082 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2083 amt
= sizeof (*hdr2
);
2084 hdr2
= bfd_alloc (abfd
, amt
);
2085 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2088 elf_elfsections (abfd
)[shindex
] = hdr2
;
2089 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2090 target_sect
->flags
|= SEC_RELOC
;
2091 target_sect
->relocation
= NULL
;
2092 target_sect
->rel_filepos
= hdr
->sh_offset
;
2093 /* In the section to which the relocations apply, mark whether
2094 its relocations are of the REL or RELA variety. */
2095 if (hdr
->sh_size
!= 0)
2096 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2097 abfd
->flags
|= HAS_RELOC
;
2102 case SHT_GNU_verdef
:
2103 elf_dynverdef (abfd
) = shindex
;
2104 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2105 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2108 case SHT_GNU_versym
:
2109 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2111 elf_dynversym (abfd
) = shindex
;
2112 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2113 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2116 case SHT_GNU_verneed
:
2117 elf_dynverref (abfd
) = shindex
;
2118 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2119 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2129 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2131 name
= group_signature (abfd
, hdr
);
2134 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2136 if (hdr
->contents
!= NULL
)
2138 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2139 unsigned int n_elt
= hdr
->sh_size
/ 4;
2142 if (idx
->flags
& GRP_COMDAT
)
2143 hdr
->bfd_section
->flags
2144 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2146 /* We try to keep the same section order as it comes in. */
2148 while (--n_elt
!= 0)
2149 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2150 && elf_next_in_group (s
) != NULL
)
2152 elf_next_in_group (hdr
->bfd_section
) = s
;
2159 /* Check for any processor-specific section types. */
2160 return bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
,
2167 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2168 Return SEC for sections that have no elf section, and NULL on error. */
2171 bfd_section_from_r_symndx (bfd
*abfd
,
2172 struct sym_sec_cache
*cache
,
2174 unsigned long r_symndx
)
2176 Elf_Internal_Shdr
*symtab_hdr
;
2177 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2178 Elf_External_Sym_Shndx eshndx
;
2179 Elf_Internal_Sym isym
;
2180 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2182 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2183 return cache
->sec
[ent
];
2185 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2186 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2187 &isym
, esym
, &eshndx
) == NULL
)
2190 if (cache
->abfd
!= abfd
)
2192 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2195 cache
->indx
[ent
] = r_symndx
;
2196 cache
->sec
[ent
] = sec
;
2197 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2198 || isym
.st_shndx
> SHN_HIRESERVE
)
2201 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2203 cache
->sec
[ent
] = s
;
2205 return cache
->sec
[ent
];
2208 /* Given an ELF section number, retrieve the corresponding BFD
2212 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2214 if (index
>= elf_numsections (abfd
))
2216 return elf_elfsections (abfd
)[index
]->bfd_section
;
2219 static const struct bfd_elf_special_section special_sections_b
[] =
2221 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2222 { NULL
, 0, 0, 0, 0 }
2225 static const struct bfd_elf_special_section special_sections_c
[] =
2227 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2228 { NULL
, 0, 0, 0, 0 }
2231 static const struct bfd_elf_special_section special_sections_d
[] =
2233 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2234 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2235 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2236 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2237 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2238 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2239 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2240 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2241 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2242 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2243 { NULL
, 0, 0, 0, 0 }
2246 static const struct bfd_elf_special_section special_sections_f
[] =
2248 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2249 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2250 { NULL
, 0, 0, 0, 0 }
2253 static const struct bfd_elf_special_section special_sections_g
[] =
2255 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2256 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2257 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2258 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2259 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2260 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2261 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2262 { NULL
, 0, 0, 0, 0 }
2265 static const struct bfd_elf_special_section special_sections_h
[] =
2267 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2268 { NULL
, 0, 0, 0, 0 }
2271 static const struct bfd_elf_special_section special_sections_i
[] =
2273 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2274 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2275 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2276 { NULL
, 0, 0, 0, 0 }
2279 static const struct bfd_elf_special_section special_sections_l
[] =
2281 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2282 { NULL
, 0, 0, 0, 0 }
2285 static const struct bfd_elf_special_section special_sections_n
[] =
2287 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2288 { ".note", 5, -1, SHT_NOTE
, 0 },
2289 { NULL
, 0, 0, 0, 0 }
2292 static const struct bfd_elf_special_section special_sections_p
[] =
2294 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2295 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2296 { NULL
, 0, 0, 0, 0 }
2299 static const struct bfd_elf_special_section special_sections_r
[] =
2301 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2302 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2303 { ".rela", 5, -1, SHT_RELA
, 0 },
2304 { ".rel", 4, -1, SHT_REL
, 0 },
2305 { NULL
, 0, 0, 0, 0 }
2308 static const struct bfd_elf_special_section special_sections_s
[] =
2310 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2311 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2312 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2313 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2314 { NULL
, 0, 0, 0, 0 }
2317 static const struct bfd_elf_special_section special_sections_t
[] =
2319 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2320 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2321 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2322 { NULL
, 0, 0, 0, 0 }
2325 static const struct bfd_elf_special_section
*special_sections
[] =
2327 special_sections_b
, /* 'b' */
2328 special_sections_c
, /* 'b' */
2329 special_sections_d
, /* 'd' */
2331 special_sections_f
, /* 'f' */
2332 special_sections_g
, /* 'g' */
2333 special_sections_h
, /* 'h' */
2334 special_sections_i
, /* 'i' */
2337 special_sections_l
, /* 'l' */
2339 special_sections_n
, /* 'n' */
2341 special_sections_p
, /* 'p' */
2343 special_sections_r
, /* 'r' */
2344 special_sections_s
, /* 's' */
2345 special_sections_t
, /* 't' */
2348 const struct bfd_elf_special_section
*
2349 _bfd_elf_get_special_section (const char *name
,
2350 const struct bfd_elf_special_section
*spec
,
2356 len
= strlen (name
);
2358 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2361 int prefix_len
= spec
[i
].prefix_length
;
2363 if (len
< prefix_len
)
2365 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2368 suffix_len
= spec
[i
].suffix_length
;
2369 if (suffix_len
<= 0)
2371 if (name
[prefix_len
] != 0)
2373 if (suffix_len
== 0)
2375 if (name
[prefix_len
] != '.'
2376 && (suffix_len
== -2
2377 || (rela
&& spec
[i
].type
== SHT_REL
)))
2383 if (len
< prefix_len
+ suffix_len
)
2385 if (memcmp (name
+ len
- suffix_len
,
2386 spec
[i
].prefix
+ prefix_len
,
2396 const struct bfd_elf_special_section
*
2397 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2400 const struct bfd_elf_special_section
*spec
;
2401 const struct elf_backend_data
*bed
;
2403 /* See if this is one of the special sections. */
2404 if (sec
->name
== NULL
)
2407 bed
= get_elf_backend_data (abfd
);
2408 spec
= bed
->special_sections
;
2411 spec
= _bfd_elf_get_special_section (sec
->name
,
2412 bed
->special_sections
,
2418 if (sec
->name
[0] != '.')
2421 i
= sec
->name
[1] - 'b';
2422 if (i
< 0 || i
> 't' - 'b')
2425 spec
= special_sections
[i
];
2430 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2434 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2436 struct bfd_elf_section_data
*sdata
;
2437 const struct elf_backend_data
*bed
;
2438 const struct bfd_elf_special_section
*ssect
;
2440 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2443 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2446 sec
->used_by_bfd
= sdata
;
2449 /* Indicate whether or not this section should use RELA relocations. */
2450 bed
= get_elf_backend_data (abfd
);
2451 sec
->use_rela_p
= bed
->default_use_rela_p
;
2453 /* When we read a file, we don't need section type and flags unless
2454 it is a linker created section. They will be overridden in
2455 _bfd_elf_make_section_from_shdr anyway. */
2456 if (abfd
->direction
!= read_direction
2457 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2459 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2462 elf_section_type (sec
) = ssect
->type
;
2463 elf_section_flags (sec
) = ssect
->attr
;
2470 /* Create a new bfd section from an ELF program header.
2472 Since program segments have no names, we generate a synthetic name
2473 of the form segment<NUM>, where NUM is generally the index in the
2474 program header table. For segments that are split (see below) we
2475 generate the names segment<NUM>a and segment<NUM>b.
2477 Note that some program segments may have a file size that is different than
2478 (less than) the memory size. All this means is that at execution the
2479 system must allocate the amount of memory specified by the memory size,
2480 but only initialize it with the first "file size" bytes read from the
2481 file. This would occur for example, with program segments consisting
2482 of combined data+bss.
2484 To handle the above situation, this routine generates TWO bfd sections
2485 for the single program segment. The first has the length specified by
2486 the file size of the segment, and the second has the length specified
2487 by the difference between the two sizes. In effect, the segment is split
2488 into it's initialized and uninitialized parts.
2493 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2494 Elf_Internal_Phdr
*hdr
,
2496 const char *typename
)
2504 split
= ((hdr
->p_memsz
> 0)
2505 && (hdr
->p_filesz
> 0)
2506 && (hdr
->p_memsz
> hdr
->p_filesz
));
2507 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2508 len
= strlen (namebuf
) + 1;
2509 name
= bfd_alloc (abfd
, len
);
2512 memcpy (name
, namebuf
, len
);
2513 newsect
= bfd_make_section (abfd
, name
);
2514 if (newsect
== NULL
)
2516 newsect
->vma
= hdr
->p_vaddr
;
2517 newsect
->lma
= hdr
->p_paddr
;
2518 newsect
->size
= hdr
->p_filesz
;
2519 newsect
->filepos
= hdr
->p_offset
;
2520 newsect
->flags
|= SEC_HAS_CONTENTS
;
2521 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2522 if (hdr
->p_type
== PT_LOAD
)
2524 newsect
->flags
|= SEC_ALLOC
;
2525 newsect
->flags
|= SEC_LOAD
;
2526 if (hdr
->p_flags
& PF_X
)
2528 /* FIXME: all we known is that it has execute PERMISSION,
2530 newsect
->flags
|= SEC_CODE
;
2533 if (!(hdr
->p_flags
& PF_W
))
2535 newsect
->flags
|= SEC_READONLY
;
2540 sprintf (namebuf
, "%s%db", typename
, index
);
2541 len
= strlen (namebuf
) + 1;
2542 name
= bfd_alloc (abfd
, len
);
2545 memcpy (name
, namebuf
, len
);
2546 newsect
= bfd_make_section (abfd
, name
);
2547 if (newsect
== NULL
)
2549 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2550 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2551 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2552 if (hdr
->p_type
== PT_LOAD
)
2554 newsect
->flags
|= SEC_ALLOC
;
2555 if (hdr
->p_flags
& PF_X
)
2556 newsect
->flags
|= SEC_CODE
;
2558 if (!(hdr
->p_flags
& PF_W
))
2559 newsect
->flags
|= SEC_READONLY
;
2566 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2568 const struct elf_backend_data
*bed
;
2570 switch (hdr
->p_type
)
2573 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2576 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2579 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2582 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2585 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2587 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2592 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2595 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2597 case PT_GNU_EH_FRAME
:
2598 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2602 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2605 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2608 /* Check for any processor-specific program segment types. */
2609 bed
= get_elf_backend_data (abfd
);
2610 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2614 /* Initialize REL_HDR, the section-header for new section, containing
2615 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2616 relocations; otherwise, we use REL relocations. */
2619 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2620 Elf_Internal_Shdr
*rel_hdr
,
2622 bfd_boolean use_rela_p
)
2625 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2626 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2628 name
= bfd_alloc (abfd
, amt
);
2631 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2633 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2635 if (rel_hdr
->sh_name
== (unsigned int) -1)
2637 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2638 rel_hdr
->sh_entsize
= (use_rela_p
2639 ? bed
->s
->sizeof_rela
2640 : bed
->s
->sizeof_rel
);
2641 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2642 rel_hdr
->sh_flags
= 0;
2643 rel_hdr
->sh_addr
= 0;
2644 rel_hdr
->sh_size
= 0;
2645 rel_hdr
->sh_offset
= 0;
2650 /* Set up an ELF internal section header for a section. */
2653 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2655 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2656 bfd_boolean
*failedptr
= failedptrarg
;
2657 Elf_Internal_Shdr
*this_hdr
;
2661 /* We already failed; just get out of the bfd_map_over_sections
2666 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2668 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2669 asect
->name
, FALSE
);
2670 if (this_hdr
->sh_name
== (unsigned int) -1)
2676 /* Don't clear sh_flags. Assembler may set additional bits. */
2678 if ((asect
->flags
& SEC_ALLOC
) != 0
2679 || asect
->user_set_vma
)
2680 this_hdr
->sh_addr
= asect
->vma
;
2682 this_hdr
->sh_addr
= 0;
2684 this_hdr
->sh_offset
= 0;
2685 this_hdr
->sh_size
= asect
->size
;
2686 this_hdr
->sh_link
= 0;
2687 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2688 /* The sh_entsize and sh_info fields may have been set already by
2689 copy_private_section_data. */
2691 this_hdr
->bfd_section
= asect
;
2692 this_hdr
->contents
= NULL
;
2694 /* If the section type is unspecified, we set it based on
2696 if (this_hdr
->sh_type
== SHT_NULL
)
2698 if ((asect
->flags
& SEC_GROUP
) != 0)
2699 this_hdr
->sh_type
= SHT_GROUP
;
2700 else if ((asect
->flags
& SEC_ALLOC
) != 0
2701 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2702 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2703 this_hdr
->sh_type
= SHT_NOBITS
;
2705 this_hdr
->sh_type
= SHT_PROGBITS
;
2708 switch (this_hdr
->sh_type
)
2714 case SHT_INIT_ARRAY
:
2715 case SHT_FINI_ARRAY
:
2716 case SHT_PREINIT_ARRAY
:
2723 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2727 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2731 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2735 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2736 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2740 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2741 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2744 case SHT_GNU_versym
:
2745 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2748 case SHT_GNU_verdef
:
2749 this_hdr
->sh_entsize
= 0;
2750 /* objcopy or strip will copy over sh_info, but may not set
2751 cverdefs. The linker will set cverdefs, but sh_info will be
2753 if (this_hdr
->sh_info
== 0)
2754 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2756 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2757 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2760 case SHT_GNU_verneed
:
2761 this_hdr
->sh_entsize
= 0;
2762 /* objcopy or strip will copy over sh_info, but may not set
2763 cverrefs. The linker will set cverrefs, but sh_info will be
2765 if (this_hdr
->sh_info
== 0)
2766 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2768 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2769 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2773 this_hdr
->sh_entsize
= 4;
2777 if ((asect
->flags
& SEC_ALLOC
) != 0)
2778 this_hdr
->sh_flags
|= SHF_ALLOC
;
2779 if ((asect
->flags
& SEC_READONLY
) == 0)
2780 this_hdr
->sh_flags
|= SHF_WRITE
;
2781 if ((asect
->flags
& SEC_CODE
) != 0)
2782 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2783 if ((asect
->flags
& SEC_MERGE
) != 0)
2785 this_hdr
->sh_flags
|= SHF_MERGE
;
2786 this_hdr
->sh_entsize
= asect
->entsize
;
2787 if ((asect
->flags
& SEC_STRINGS
) != 0)
2788 this_hdr
->sh_flags
|= SHF_STRINGS
;
2790 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2791 this_hdr
->sh_flags
|= SHF_GROUP
;
2792 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2794 this_hdr
->sh_flags
|= SHF_TLS
;
2795 if (asect
->size
== 0
2796 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2798 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2800 this_hdr
->sh_size
= 0;
2803 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2804 if (this_hdr
->sh_size
!= 0)
2805 this_hdr
->sh_type
= SHT_NOBITS
;
2810 /* Check for processor-specific section types. */
2811 if (bed
->elf_backend_fake_sections
2812 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2815 /* If the section has relocs, set up a section header for the
2816 SHT_REL[A] section. If two relocation sections are required for
2817 this section, it is up to the processor-specific back-end to
2818 create the other. */
2819 if ((asect
->flags
& SEC_RELOC
) != 0
2820 && !_bfd_elf_init_reloc_shdr (abfd
,
2821 &elf_section_data (asect
)->rel_hdr
,
2827 /* Fill in the contents of a SHT_GROUP section. */
2830 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2832 bfd_boolean
*failedptr
= failedptrarg
;
2833 unsigned long symindx
;
2834 asection
*elt
, *first
;
2838 /* Ignore linker created group section. See elfNN_ia64_object_p in
2840 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2845 if (elf_group_id (sec
) != NULL
)
2846 symindx
= elf_group_id (sec
)->udata
.i
;
2850 /* If called from the assembler, swap_out_syms will have set up
2851 elf_section_syms; If called for "ld -r", use target_index. */
2852 if (elf_section_syms (abfd
) != NULL
)
2853 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2855 symindx
= sec
->target_index
;
2857 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2859 /* The contents won't be allocated for "ld -r" or objcopy. */
2861 if (sec
->contents
== NULL
)
2864 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2866 /* Arrange for the section to be written out. */
2867 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2868 if (sec
->contents
== NULL
)
2875 loc
= sec
->contents
+ sec
->size
;
2877 /* Get the pointer to the first section in the group that gas
2878 squirreled away here. objcopy arranges for this to be set to the
2879 start of the input section group. */
2880 first
= elt
= elf_next_in_group (sec
);
2882 /* First element is a flag word. Rest of section is elf section
2883 indices for all the sections of the group. Write them backwards
2884 just to keep the group in the same order as given in .section
2885 directives, not that it matters. */
2894 s
= s
->output_section
;
2897 idx
= elf_section_data (s
)->this_idx
;
2898 H_PUT_32 (abfd
, idx
, loc
);
2899 elt
= elf_next_in_group (elt
);
2904 if ((loc
-= 4) != sec
->contents
)
2907 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2910 /* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2915 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2917 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2919 unsigned int section_number
, secn
;
2920 Elf_Internal_Shdr
**i_shdrp
;
2921 struct bfd_elf_section_data
*d
;
2925 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2927 /* SHT_GROUP sections are in relocatable files only. */
2928 if (link_info
== NULL
|| link_info
->relocatable
)
2930 /* Put SHT_GROUP sections first. */
2931 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2933 d
= elf_section_data (sec
);
2935 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2937 if (sec
->flags
& SEC_LINKER_CREATED
)
2939 /* Remove the linker created SHT_GROUP sections. */
2940 bfd_section_list_remove (abfd
, sec
);
2941 abfd
->section_count
--;
2945 if (section_number
== SHN_LORESERVE
)
2946 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2947 d
->this_idx
= section_number
++;
2953 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2955 d
= elf_section_data (sec
);
2957 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2959 if (section_number
== SHN_LORESERVE
)
2960 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2961 d
->this_idx
= section_number
++;
2963 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2964 if ((sec
->flags
& SEC_RELOC
) == 0)
2968 if (section_number
== SHN_LORESERVE
)
2969 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2970 d
->rel_idx
= section_number
++;
2971 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2976 if (section_number
== SHN_LORESERVE
)
2977 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2978 d
->rel_idx2
= section_number
++;
2979 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2985 if (section_number
== SHN_LORESERVE
)
2986 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2987 t
->shstrtab_section
= section_number
++;
2988 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2989 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2991 if (bfd_get_symcount (abfd
) > 0)
2993 if (section_number
== SHN_LORESERVE
)
2994 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2995 t
->symtab_section
= section_number
++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2997 if (section_number
> SHN_LORESERVE
- 2)
2999 if (section_number
== SHN_LORESERVE
)
3000 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3001 t
->symtab_shndx_section
= section_number
++;
3002 t
->symtab_shndx_hdr
.sh_name
3003 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3004 ".symtab_shndx", FALSE
);
3005 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3008 if (section_number
== SHN_LORESERVE
)
3009 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3010 t
->strtab_section
= section_number
++;
3011 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3014 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3015 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3017 elf_numsections (abfd
) = section_number
;
3018 elf_elfheader (abfd
)->e_shnum
= section_number
;
3019 if (section_number
> SHN_LORESERVE
)
3020 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3022 /* Set up the list of section header pointers, in agreement with the
3024 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3025 if (i_shdrp
== NULL
)
3028 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3029 if (i_shdrp
[0] == NULL
)
3031 bfd_release (abfd
, i_shdrp
);
3035 elf_elfsections (abfd
) = i_shdrp
;
3037 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3038 if (bfd_get_symcount (abfd
) > 0)
3040 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3041 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3043 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3044 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3046 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3047 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3050 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3052 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3056 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3057 if (d
->rel_idx
!= 0)
3058 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3059 if (d
->rel_idx2
!= 0)
3060 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3062 /* Fill in the sh_link and sh_info fields while we're at it. */
3064 /* sh_link of a reloc section is the section index of the symbol
3065 table. sh_info is the section index of the section to which
3066 the relocation entries apply. */
3067 if (d
->rel_idx
!= 0)
3069 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3070 d
->rel_hdr
.sh_info
= d
->this_idx
;
3072 if (d
->rel_idx2
!= 0)
3074 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3075 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3078 /* We need to set up sh_link for SHF_LINK_ORDER. */
3079 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3081 s
= elf_linked_to_section (sec
);
3084 /* elf_linked_to_section points to the input section. */
3085 if (link_info
!= NULL
)
3087 /* Check discarded linkonce section. */
3088 if (elf_discarded_section (s
))
3091 (*_bfd_error_handler
)
3092 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3093 abfd
, d
->this_hdr
.bfd_section
,
3095 /* Point to the kept section if it has the same
3096 size as the discarded one. */
3097 kept
= _bfd_elf_check_kept_section (s
);
3100 bfd_set_error (bfd_error_bad_value
);
3106 s
= s
->output_section
;
3107 BFD_ASSERT (s
!= NULL
);
3111 /* Handle objcopy. */
3112 if (s
->output_section
== NULL
)
3114 (*_bfd_error_handler
)
3115 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3116 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3117 bfd_set_error (bfd_error_bad_value
);
3120 s
= s
->output_section
;
3122 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3127 The Intel C compiler generates SHT_IA_64_UNWIND with
3128 SHF_LINK_ORDER. But it doesn't set the sh_link or
3129 sh_info fields. Hence we could get the situation
3131 const struct elf_backend_data
*bed
3132 = get_elf_backend_data (abfd
);
3133 if (bed
->link_order_error_handler
)
3134 bed
->link_order_error_handler
3135 (_("%B: warning: sh_link not set for section `%A'"),
3140 switch (d
->this_hdr
.sh_type
)
3144 /* A reloc section which we are treating as a normal BFD
3145 section. sh_link is the section index of the symbol
3146 table. sh_info is the section index of the section to
3147 which the relocation entries apply. We assume that an
3148 allocated reloc section uses the dynamic symbol table.
3149 FIXME: How can we be sure? */
3150 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3152 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3154 /* We look up the section the relocs apply to by name. */
3156 if (d
->this_hdr
.sh_type
== SHT_REL
)
3160 s
= bfd_get_section_by_name (abfd
, name
);
3162 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3166 /* We assume that a section named .stab*str is a stabs
3167 string section. We look for a section with the same name
3168 but without the trailing ``str'', and set its sh_link
3169 field to point to this section. */
3170 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3171 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3176 len
= strlen (sec
->name
);
3177 alc
= bfd_malloc (len
- 2);
3180 memcpy (alc
, sec
->name
, len
- 3);
3181 alc
[len
- 3] = '\0';
3182 s
= bfd_get_section_by_name (abfd
, alc
);
3186 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3188 /* This is a .stab section. */
3189 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3190 elf_section_data (s
)->this_hdr
.sh_entsize
3191 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3198 case SHT_GNU_verneed
:
3199 case SHT_GNU_verdef
:
3200 /* sh_link is the section header index of the string table
3201 used for the dynamic entries, or the symbol table, or the
3203 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3205 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3208 case SHT_GNU_LIBLIST
:
3209 /* sh_link is the section header index of the prelink library
3211 used for the dynamic entries, or the symbol table, or the
3213 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3214 ? ".dynstr" : ".gnu.libstr");
3216 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3220 case SHT_GNU_versym
:
3221 /* sh_link is the section header index of the symbol table
3222 this hash table or version table is for. */
3223 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3225 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3229 d
->this_hdr
.sh_link
= t
->symtab_section
;
3233 for (secn
= 1; secn
< section_number
; ++secn
)
3234 if (i_shdrp
[secn
] == NULL
)
3235 i_shdrp
[secn
] = i_shdrp
[0];
3237 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3238 i_shdrp
[secn
]->sh_name
);
3242 /* Map symbol from it's internal number to the external number, moving
3243 all local symbols to be at the head of the list. */
3246 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3248 /* If the backend has a special mapping, use it. */
3249 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3250 if (bed
->elf_backend_sym_is_global
)
3251 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3253 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3254 || bfd_is_und_section (bfd_get_section (sym
))
3255 || bfd_is_com_section (bfd_get_section (sym
)));
3259 elf_map_symbols (bfd
*abfd
)
3261 unsigned int symcount
= bfd_get_symcount (abfd
);
3262 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3263 asymbol
**sect_syms
;
3264 unsigned int num_locals
= 0;
3265 unsigned int num_globals
= 0;
3266 unsigned int num_locals2
= 0;
3267 unsigned int num_globals2
= 0;
3274 fprintf (stderr
, "elf_map_symbols\n");
3278 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3280 if (max_index
< asect
->index
)
3281 max_index
= asect
->index
;
3285 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3286 if (sect_syms
== NULL
)
3288 elf_section_syms (abfd
) = sect_syms
;
3289 elf_num_section_syms (abfd
) = max_index
;
3291 /* Init sect_syms entries for any section symbols we have already
3292 decided to output. */
3293 for (idx
= 0; idx
< symcount
; idx
++)
3295 asymbol
*sym
= syms
[idx
];
3297 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3304 if (sec
->owner
!= NULL
)
3306 if (sec
->owner
!= abfd
)
3308 if (sec
->output_offset
!= 0)
3311 sec
= sec
->output_section
;
3313 /* Empty sections in the input files may have had a
3314 section symbol created for them. (See the comment
3315 near the end of _bfd_generic_link_output_symbols in
3316 linker.c). If the linker script discards such
3317 sections then we will reach this point. Since we know
3318 that we cannot avoid this case, we detect it and skip
3319 the abort and the assignment to the sect_syms array.
3320 To reproduce this particular case try running the
3321 linker testsuite test ld-scripts/weak.exp for an ELF
3322 port that uses the generic linker. */
3323 if (sec
->owner
== NULL
)
3326 BFD_ASSERT (sec
->owner
== abfd
);
3328 sect_syms
[sec
->index
] = syms
[idx
];
3333 /* Classify all of the symbols. */
3334 for (idx
= 0; idx
< symcount
; idx
++)
3336 if (!sym_is_global (abfd
, syms
[idx
]))
3342 /* We will be adding a section symbol for each BFD section. Most normal
3343 sections will already have a section symbol in outsymbols, but
3344 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3345 at least in that case. */
3346 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3348 if (sect_syms
[asect
->index
] == NULL
)
3350 if (!sym_is_global (abfd
, asect
->symbol
))
3357 /* Now sort the symbols so the local symbols are first. */
3358 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3360 if (new_syms
== NULL
)
3363 for (idx
= 0; idx
< symcount
; idx
++)
3365 asymbol
*sym
= syms
[idx
];
3368 if (!sym_is_global (abfd
, sym
))
3371 i
= num_locals
+ num_globals2
++;
3373 sym
->udata
.i
= i
+ 1;
3375 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3377 if (sect_syms
[asect
->index
] == NULL
)
3379 asymbol
*sym
= asect
->symbol
;
3382 sect_syms
[asect
->index
] = sym
;
3383 if (!sym_is_global (abfd
, sym
))
3386 i
= num_locals
+ num_globals2
++;
3388 sym
->udata
.i
= i
+ 1;
3392 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3394 elf_num_locals (abfd
) = num_locals
;
3395 elf_num_globals (abfd
) = num_globals
;
3399 /* Align to the maximum file alignment that could be required for any
3400 ELF data structure. */
3402 static inline file_ptr
3403 align_file_position (file_ptr off
, int align
)
3405 return (off
+ align
- 1) & ~(align
- 1);
3408 /* Assign a file position to a section, optionally aligning to the
3409 required section alignment. */
3412 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3420 al
= i_shdrp
->sh_addralign
;
3422 offset
= BFD_ALIGN (offset
, al
);
3424 i_shdrp
->sh_offset
= offset
;
3425 if (i_shdrp
->bfd_section
!= NULL
)
3426 i_shdrp
->bfd_section
->filepos
= offset
;
3427 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3428 offset
+= i_shdrp
->sh_size
;
3432 /* Compute the file positions we are going to put the sections at, and
3433 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3434 is not NULL, this is being called by the ELF backend linker. */
3437 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3438 struct bfd_link_info
*link_info
)
3440 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3442 struct bfd_strtab_hash
*strtab
= NULL
;
3443 Elf_Internal_Shdr
*shstrtab_hdr
;
3445 if (abfd
->output_has_begun
)
3448 /* Do any elf backend specific processing first. */
3449 if (bed
->elf_backend_begin_write_processing
)
3450 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3452 if (! prep_headers (abfd
))
3455 /* Post process the headers if necessary. */
3456 if (bed
->elf_backend_post_process_headers
)
3457 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3460 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3464 if (!assign_section_numbers (abfd
, link_info
))
3467 /* The backend linker builds symbol table information itself. */
3468 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3470 /* Non-zero if doing a relocatable link. */
3471 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3473 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3477 if (link_info
== NULL
)
3479 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3484 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3487 shstrtab_hdr
->sh_flags
= 0;
3488 shstrtab_hdr
->sh_addr
= 0;
3489 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3490 shstrtab_hdr
->sh_entsize
= 0;
3491 shstrtab_hdr
->sh_link
= 0;
3492 shstrtab_hdr
->sh_info
= 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr
->sh_addralign
= 1;
3496 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3499 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3502 Elf_Internal_Shdr
*hdr
;
3504 off
= elf_tdata (abfd
)->next_file_pos
;
3506 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3507 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3509 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3510 if (hdr
->sh_size
!= 0)
3511 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3513 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3514 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3516 elf_tdata (abfd
)->next_file_pos
= off
;
3518 /* Now that we know where the .strtab section goes, write it
3520 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3521 || ! _bfd_stringtab_emit (abfd
, strtab
))
3523 _bfd_stringtab_free (strtab
);
3526 abfd
->output_has_begun
= TRUE
;
3531 /* Create a mapping from a set of sections to a program segment. */
3533 static struct elf_segment_map
*
3534 make_mapping (bfd
*abfd
,
3535 asection
**sections
,
3540 struct elf_segment_map
*m
;
3545 amt
= sizeof (struct elf_segment_map
);
3546 amt
+= (to
- from
- 1) * sizeof (asection
*);
3547 m
= bfd_zalloc (abfd
, amt
);
3551 m
->p_type
= PT_LOAD
;
3552 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3553 m
->sections
[i
- from
] = *hdrpp
;
3554 m
->count
= to
- from
;
3556 if (from
== 0 && phdr
)
3558 /* Include the headers in the first PT_LOAD segment. */
3559 m
->includes_filehdr
= 1;
3560 m
->includes_phdrs
= 1;
3566 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3569 struct elf_segment_map
*
3570 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3572 struct elf_segment_map
*m
;
3574 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3578 m
->p_type
= PT_DYNAMIC
;
3580 m
->sections
[0] = dynsec
;
3585 /* Set up a mapping from BFD sections to program segments. */
3588 map_sections_to_segments (bfd
*abfd
)
3590 asection
**sections
= NULL
;
3594 struct elf_segment_map
*mfirst
;
3595 struct elf_segment_map
**pm
;
3596 struct elf_segment_map
*m
;
3599 unsigned int phdr_index
;
3600 bfd_vma maxpagesize
;
3602 bfd_boolean phdr_in_segment
= TRUE
;
3603 bfd_boolean writable
;
3605 asection
*first_tls
= NULL
;
3606 asection
*dynsec
, *eh_frame_hdr
;
3609 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3612 if (bfd_count_sections (abfd
) == 0)
3615 /* Select the allocated sections, and sort them. */
3617 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3618 if (sections
== NULL
)
3622 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3624 if ((s
->flags
& SEC_ALLOC
) != 0)
3630 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3633 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3635 /* Build the mapping. */
3640 /* If we have a .interp section, then create a PT_PHDR segment for
3641 the program headers and a PT_INTERP segment for the .interp
3643 s
= bfd_get_section_by_name (abfd
, ".interp");
3644 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3646 amt
= sizeof (struct elf_segment_map
);
3647 m
= bfd_zalloc (abfd
, amt
);
3651 m
->p_type
= PT_PHDR
;
3652 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3653 m
->p_flags
= PF_R
| PF_X
;
3654 m
->p_flags_valid
= 1;
3655 m
->includes_phdrs
= 1;
3660 amt
= sizeof (struct elf_segment_map
);
3661 m
= bfd_zalloc (abfd
, amt
);
3665 m
->p_type
= PT_INTERP
;
3673 /* Look through the sections. We put sections in the same program
3674 segment when the start of the second section can be placed within
3675 a few bytes of the end of the first section. */
3679 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3681 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3683 && (dynsec
->flags
& SEC_LOAD
) == 0)
3686 /* Deal with -Ttext or something similar such that the first section
3687 is not adjacent to the program headers. This is an
3688 approximation, since at this point we don't know exactly how many
3689 program headers we will need. */
3692 bfd_size_type phdr_size
;
3694 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3696 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3697 if ((abfd
->flags
& D_PAGED
) == 0
3698 || sections
[0]->lma
< phdr_size
3699 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3700 phdr_in_segment
= FALSE
;
3703 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3706 bfd_boolean new_segment
;
3710 /* See if this section and the last one will fit in the same
3713 if (last_hdr
== NULL
)
3715 /* If we don't have a segment yet, then we don't need a new
3716 one (we build the last one after this loop). */
3717 new_segment
= FALSE
;
3719 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3721 /* If this section has a different relation between the
3722 virtual address and the load address, then we need a new
3726 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3727 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3729 /* If putting this section in this segment would force us to
3730 skip a page in the segment, then we need a new segment. */
3733 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3734 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3736 /* We don't want to put a loadable section after a
3737 nonloadable section in the same segment.
3738 Consider .tbss sections as loadable for this purpose. */
3741 else if ((abfd
->flags
& D_PAGED
) == 0)
3743 /* If the file is not demand paged, which means that we
3744 don't require the sections to be correctly aligned in the
3745 file, then there is no other reason for a new segment. */
3746 new_segment
= FALSE
;
3749 && (hdr
->flags
& SEC_READONLY
) == 0
3750 && (((last_hdr
->lma
+ last_size
- 1)
3751 & ~(maxpagesize
- 1))
3752 != (hdr
->lma
& ~(maxpagesize
- 1))))
3754 /* We don't want to put a writable section in a read only
3755 segment, unless they are on the same page in memory
3756 anyhow. We already know that the last section does not
3757 bring us past the current section on the page, so the
3758 only case in which the new section is not on the same
3759 page as the previous section is when the previous section
3760 ends precisely on a page boundary. */
3765 /* Otherwise, we can use the same segment. */
3766 new_segment
= FALSE
;
3771 if ((hdr
->flags
& SEC_READONLY
) == 0)
3774 /* .tbss sections effectively have zero size. */
3775 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3776 last_size
= hdr
->size
;
3782 /* We need a new program segment. We must create a new program
3783 header holding all the sections from phdr_index until hdr. */
3785 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3792 if ((hdr
->flags
& SEC_READONLY
) == 0)
3798 /* .tbss sections effectively have zero size. */
3799 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3800 last_size
= hdr
->size
;
3804 phdr_in_segment
= FALSE
;
3807 /* Create a final PT_LOAD program segment. */
3808 if (last_hdr
!= NULL
)
3810 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3818 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3821 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3828 /* For each loadable .note section, add a PT_NOTE segment. We don't
3829 use bfd_get_section_by_name, because if we link together
3830 nonloadable .note sections and loadable .note sections, we will
3831 generate two .note sections in the output file. FIXME: Using
3832 names for section types is bogus anyhow. */
3833 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3835 if ((s
->flags
& SEC_LOAD
) != 0
3836 && strncmp (s
->name
, ".note", 5) == 0)
3838 amt
= sizeof (struct elf_segment_map
);
3839 m
= bfd_zalloc (abfd
, amt
);
3843 m
->p_type
= PT_NOTE
;
3850 if (s
->flags
& SEC_THREAD_LOCAL
)
3858 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3863 amt
= sizeof (struct elf_segment_map
);
3864 amt
+= (tls_count
- 1) * sizeof (asection
*);
3865 m
= bfd_zalloc (abfd
, amt
);
3870 m
->count
= tls_count
;
3871 /* Mandated PF_R. */
3873 m
->p_flags_valid
= 1;
3874 for (i
= 0; i
< tls_count
; ++i
)
3876 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3877 m
->sections
[i
] = first_tls
;
3878 first_tls
= first_tls
->next
;
3885 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3887 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3888 if (eh_frame_hdr
!= NULL
3889 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3891 amt
= sizeof (struct elf_segment_map
);
3892 m
= bfd_zalloc (abfd
, amt
);
3896 m
->p_type
= PT_GNU_EH_FRAME
;
3898 m
->sections
[0] = eh_frame_hdr
->output_section
;
3904 if (elf_tdata (abfd
)->stack_flags
)
3906 amt
= sizeof (struct elf_segment_map
);
3907 m
= bfd_zalloc (abfd
, amt
);
3911 m
->p_type
= PT_GNU_STACK
;
3912 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3913 m
->p_flags_valid
= 1;
3919 if (elf_tdata (abfd
)->relro
)
3921 amt
= sizeof (struct elf_segment_map
);
3922 m
= bfd_zalloc (abfd
, amt
);
3926 m
->p_type
= PT_GNU_RELRO
;
3928 m
->p_flags_valid
= 1;
3937 elf_tdata (abfd
)->segment_map
= mfirst
;
3941 if (sections
!= NULL
)
3946 /* Sort sections by address. */
3949 elf_sort_sections (const void *arg1
, const void *arg2
)
3951 const asection
*sec1
= *(const asection
**) arg1
;
3952 const asection
*sec2
= *(const asection
**) arg2
;
3953 bfd_size_type size1
, size2
;
3955 /* Sort by LMA first, since this is the address used to
3956 place the section into a segment. */
3957 if (sec1
->lma
< sec2
->lma
)
3959 else if (sec1
->lma
> sec2
->lma
)
3962 /* Then sort by VMA. Normally the LMA and the VMA will be
3963 the same, and this will do nothing. */
3964 if (sec1
->vma
< sec2
->vma
)
3966 else if (sec1
->vma
> sec2
->vma
)
3969 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3971 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3977 /* If the indicies are the same, do not return 0
3978 here, but continue to try the next comparison. */
3979 if (sec1
->target_index
- sec2
->target_index
!= 0)
3980 return sec1
->target_index
- sec2
->target_index
;
3985 else if (TOEND (sec2
))
3990 /* Sort by size, to put zero sized sections
3991 before others at the same address. */
3993 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3994 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4001 return sec1
->target_index
- sec2
->target_index
;
4004 /* Ian Lance Taylor writes:
4006 We shouldn't be using % with a negative signed number. That's just
4007 not good. We have to make sure either that the number is not
4008 negative, or that the number has an unsigned type. When the types
4009 are all the same size they wind up as unsigned. When file_ptr is a
4010 larger signed type, the arithmetic winds up as signed long long,
4013 What we're trying to say here is something like ``increase OFF by
4014 the least amount that will cause it to be equal to the VMA modulo
4016 /* In other words, something like:
4018 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4019 off_offset = off % bed->maxpagesize;
4020 if (vma_offset < off_offset)
4021 adjustment = vma_offset + bed->maxpagesize - off_offset;
4023 adjustment = vma_offset - off_offset;
4025 which can can be collapsed into the expression below. */
4028 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4030 return ((vma
- off
) % maxpagesize
);
4034 print_segment_map (bfd
*abfd
)
4036 struct elf_segment_map
*m
;
4039 fprintf (stderr
, _(" Section to Segment mapping:\n"));
4040 fprintf (stderr
, _(" Segment Sections...\n"));
4042 for (i
= 0, m
= elf_tdata (abfd
)->segment_map
;
4046 const char *pt
= get_segment_type (m
->p_type
);
4051 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4052 sprintf (buf
, "LOPROC+%7.7x",
4053 (unsigned int) (m
->p_type
- PT_LOPROC
));
4054 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4055 sprintf (buf
, "LOOS+%7.7x",
4056 (unsigned int) (m
->p_type
- PT_LOOS
));
4058 snprintf (buf
, sizeof (buf
), "%8.8x",
4059 (unsigned int) m
->p_type
);
4062 fprintf (stderr
, " %2.2d: %14.14s: ", i
, pt
);
4063 for (j
= 0; j
< m
->count
; j
++)
4064 fprintf (stderr
, "%s ", m
->sections
[j
]->name
);
4069 /* Assign file positions to the sections based on the mapping from
4070 sections to segments. This function also sets up some fields in
4071 the file header, and writes out the program headers. */
4074 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
4076 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4078 struct elf_segment_map
*m
;
4080 Elf_Internal_Phdr
*phdrs
;
4082 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4083 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4084 Elf_Internal_Phdr
*p
;
4086 if (elf_tdata (abfd
)->segment_map
== NULL
)
4088 if (! map_sections_to_segments (abfd
))
4093 /* The placement algorithm assumes that non allocated sections are
4094 not in PT_LOAD segments. We ensure this here by removing such
4095 sections from the segment map. We also remove excluded
4097 for (m
= elf_tdata (abfd
)->segment_map
;
4101 unsigned int new_count
;
4105 for (i
= 0; i
< m
->count
; i
++)
4107 if ((m
->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
4108 && ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0
4109 || m
->p_type
!= PT_LOAD
))
4112 m
->sections
[new_count
] = m
->sections
[i
];
4118 if (new_count
!= m
->count
)
4119 m
->count
= new_count
;
4123 if (bed
->elf_backend_modify_segment_map
)
4125 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
4130 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4133 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4134 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4135 elf_elfheader (abfd
)->e_phnum
= count
;
4139 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4143 /* If we already counted the number of program segments, make sure
4144 that we allocated enough space. This happens when SIZEOF_HEADERS
4145 is used in a linker script. */
4146 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
4147 if (alloc
!= 0 && count
> alloc
)
4149 ((*_bfd_error_handler
)
4150 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4151 abfd
, alloc
, count
));
4152 print_segment_map (abfd
);
4153 bfd_set_error (bfd_error_bad_value
);
4160 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4164 off
= bed
->s
->sizeof_ehdr
;
4165 off
+= alloc
* bed
->s
->sizeof_phdr
;
4172 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4179 /* If elf_segment_map is not from map_sections_to_segments, the
4180 sections may not be correctly ordered. NOTE: sorting should
4181 not be done to the PT_NOTE section of a corefile, which may
4182 contain several pseudo-sections artificially created by bfd.
4183 Sorting these pseudo-sections breaks things badly. */
4185 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4186 && m
->p_type
== PT_NOTE
))
4187 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4190 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4191 number of sections with contents contributing to both p_filesz
4192 and p_memsz, followed by a number of sections with no contents
4193 that just contribute to p_memsz. In this loop, OFF tracks next
4194 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4195 an adjustment we use for segments that have no file contents
4196 but need zero filled memory allocation. */
4198 p
->p_type
= m
->p_type
;
4199 p
->p_flags
= m
->p_flags
;
4201 if (p
->p_type
== PT_LOAD
4204 bfd_size_type align
;
4206 unsigned int align_power
= 0;
4208 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4210 unsigned int secalign
;
4212 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4213 if (secalign
> align_power
)
4214 align_power
= secalign
;
4216 align
= (bfd_size_type
) 1 << align_power
;
4218 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> align
)
4219 align
= bed
->maxpagesize
;
4221 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4224 && !m
->includes_filehdr
4225 && !m
->includes_phdrs
4226 && (ufile_ptr
) off
>= align
)
4228 /* If the first section isn't loadable, the same holds for
4229 any other sections. Since the segment won't need file
4230 space, we can make p_offset overlap some prior segment.
4231 However, .tbss is special. If a segment starts with
4232 .tbss, we need to look at the next section to decide
4233 whether the segment has any loadable sections. */
4235 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4237 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4241 voff
= adjust
- align
;
4247 /* Make sure the .dynamic section is the first section in the
4248 PT_DYNAMIC segment. */
4249 else if (p
->p_type
== PT_DYNAMIC
4251 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4254 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4256 bfd_set_error (bfd_error_bad_value
);
4263 p
->p_vaddr
= m
->sections
[0]->vma
;
4265 if (m
->p_paddr_valid
)
4266 p
->p_paddr
= m
->p_paddr
;
4267 else if (m
->count
== 0)
4270 p
->p_paddr
= m
->sections
[0]->lma
;
4272 if (p
->p_type
== PT_LOAD
4273 && (abfd
->flags
& D_PAGED
) != 0)
4274 p
->p_align
= bed
->maxpagesize
;
4275 else if (m
->count
== 0)
4276 p
->p_align
= 1 << bed
->s
->log_file_align
;
4284 if (m
->includes_filehdr
)
4286 if (! m
->p_flags_valid
)
4289 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4290 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4293 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4295 if (p
->p_vaddr
< (bfd_vma
) off
)
4297 (*_bfd_error_handler
)
4298 (_("%B: Not enough room for program headers, try linking with -N"),
4300 bfd_set_error (bfd_error_bad_value
);
4305 if (! m
->p_paddr_valid
)
4308 if (p
->p_type
== PT_LOAD
)
4310 filehdr_vaddr
= p
->p_vaddr
;
4311 filehdr_paddr
= p
->p_paddr
;
4315 if (m
->includes_phdrs
)
4317 if (! m
->p_flags_valid
)
4320 if (m
->includes_filehdr
)
4322 if (p
->p_type
== PT_LOAD
)
4324 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4325 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4330 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4334 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4335 p
->p_vaddr
-= off
- p
->p_offset
;
4336 if (! m
->p_paddr_valid
)
4337 p
->p_paddr
-= off
- p
->p_offset
;
4340 if (p
->p_type
== PT_LOAD
)
4342 phdrs_vaddr
= p
->p_vaddr
;
4343 phdrs_paddr
= p
->p_paddr
;
4346 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4349 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4350 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4353 if (p
->p_type
== PT_LOAD
4354 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4356 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4357 p
->p_offset
= off
+ voff
;
4362 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4363 p
->p_filesz
+= adjust
;
4364 p
->p_memsz
+= adjust
;
4368 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4372 bfd_size_type align
;
4376 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4378 if (p
->p_type
== PT_LOAD
4379 || p
->p_type
== PT_TLS
)
4381 bfd_signed_vma adjust
;
4383 if ((flags
& SEC_LOAD
) != 0)
4385 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4388 (*_bfd_error_handler
)
4389 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4390 abfd
, sec
, (unsigned long) sec
->lma
);
4394 p
->p_filesz
+= adjust
;
4395 p
->p_memsz
+= adjust
;
4397 /* .tbss is special. It doesn't contribute to p_memsz of
4399 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4400 || p
->p_type
== PT_TLS
)
4402 /* The section VMA must equal the file position
4403 modulo the page size. */
4404 bfd_size_type page
= align
;
4405 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> page
)
4406 page
= bed
->maxpagesize
;
4407 adjust
= vma_page_aligned_bias (sec
->vma
,
4408 p
->p_vaddr
+ p
->p_memsz
,
4410 p
->p_memsz
+= adjust
;
4414 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4416 /* The section at i == 0 is the one that actually contains
4422 p
->p_filesz
= sec
->size
;
4428 /* The rest are fake sections that shouldn't be written. */
4437 if (p
->p_type
== PT_LOAD
)
4440 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4441 1997, and the exact reason for it isn't clear. One
4442 plausible explanation is that it is to work around
4443 a problem we have with linker scripts using data
4444 statements in NOLOAD sections. I don't think it
4445 makes a great deal of sense to have such a section
4446 assigned to a PT_LOAD segment, but apparently
4447 people do this. The data statement results in a
4448 bfd_data_link_order being built, and these need
4449 section contents to write into. Eventually, we get
4450 to _bfd_elf_write_object_contents which writes any
4451 section with contents to the output. Make room
4452 here for the write, so that following segments are
4454 if ((flags
& SEC_LOAD
) != 0
4455 || (flags
& SEC_HAS_CONTENTS
) != 0)
4459 if ((flags
& SEC_LOAD
) != 0)
4461 p
->p_filesz
+= sec
->size
;
4462 p
->p_memsz
+= sec
->size
;
4464 /* PR ld/594: Sections in note segments which are not loaded
4465 contribute to the file size but not the in-memory size. */
4466 else if (p
->p_type
== PT_NOTE
4467 && (flags
& SEC_HAS_CONTENTS
) != 0)
4468 p
->p_filesz
+= sec
->size
;
4470 /* .tbss is special. It doesn't contribute to p_memsz of
4472 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4473 || p
->p_type
== PT_TLS
)
4474 p
->p_memsz
+= sec
->size
;
4476 if (p
->p_type
== PT_TLS
4478 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4480 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4482 p
->p_memsz
+= o
->offset
+ o
->size
;
4485 if (align
> p
->p_align
4486 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4490 if (! m
->p_flags_valid
)
4493 if ((flags
& SEC_CODE
) != 0)
4495 if ((flags
& SEC_READONLY
) == 0)
4501 /* Now that we have set the section file positions, we can set up
4502 the file positions for the non PT_LOAD segments. */
4503 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4507 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4509 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4510 /* If the section has not yet been assigned a file position,
4511 do so now. The ARM BPABI requires that .dynamic section
4512 not be marked SEC_ALLOC because it is not part of any
4513 PT_LOAD segment, so it will not be processed above. */
4514 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4517 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4520 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4522 off
= (_bfd_elf_assign_file_position_for_section
4523 (i_shdrpp
[i
], off
, TRUE
));
4524 p
->p_filesz
= m
->sections
[0]->size
;
4526 p
->p_offset
= m
->sections
[0]->filepos
;
4530 if (m
->includes_filehdr
)
4532 p
->p_vaddr
= filehdr_vaddr
;
4533 if (! m
->p_paddr_valid
)
4534 p
->p_paddr
= filehdr_paddr
;
4536 else if (m
->includes_phdrs
)
4538 p
->p_vaddr
= phdrs_vaddr
;
4539 if (! m
->p_paddr_valid
)
4540 p
->p_paddr
= phdrs_paddr
;
4542 else if (p
->p_type
== PT_GNU_RELRO
)
4544 Elf_Internal_Phdr
*lp
;
4546 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4548 if (lp
->p_type
== PT_LOAD
4549 && lp
->p_vaddr
<= link_info
->relro_end
4550 && lp
->p_vaddr
>= link_info
->relro_start
4551 && lp
->p_vaddr
+ lp
->p_filesz
4552 >= link_info
->relro_end
)
4556 if (lp
< phdrs
+ count
4557 && link_info
->relro_end
> lp
->p_vaddr
)
4559 p
->p_vaddr
= lp
->p_vaddr
;
4560 p
->p_paddr
= lp
->p_paddr
;
4561 p
->p_offset
= lp
->p_offset
;
4562 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4563 p
->p_memsz
= p
->p_filesz
;
4565 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4569 memset (p
, 0, sizeof *p
);
4570 p
->p_type
= PT_NULL
;
4576 /* Clear out any program headers we allocated but did not use. */
4577 for (; count
< alloc
; count
++, p
++)
4579 memset (p
, 0, sizeof *p
);
4580 p
->p_type
= PT_NULL
;
4583 elf_tdata (abfd
)->phdr
= phdrs
;
4585 elf_tdata (abfd
)->next_file_pos
= off
;
4587 /* Write out the program headers. */
4588 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4589 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4595 /* Get the size of the program header.
4597 If this is called by the linker before any of the section VMA's are set, it
4598 can't calculate the correct value for a strange memory layout. This only
4599 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4600 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4601 data segment (exclusive of .interp and .dynamic).
4603 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4604 will be two segments. */
4606 static bfd_size_type
4607 get_program_header_size (bfd
*abfd
)
4611 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4613 /* We can't return a different result each time we're called. */
4614 if (elf_tdata (abfd
)->program_header_size
!= 0)
4615 return elf_tdata (abfd
)->program_header_size
;
4617 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4619 struct elf_segment_map
*m
;
4622 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4624 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4625 return elf_tdata (abfd
)->program_header_size
;
4628 /* Assume we will need exactly two PT_LOAD segments: one for text
4629 and one for data. */
4632 s
= bfd_get_section_by_name (abfd
, ".interp");
4633 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4635 /* If we have a loadable interpreter section, we need a
4636 PT_INTERP segment. In this case, assume we also need a
4637 PT_PHDR segment, although that may not be true for all
4642 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4644 /* We need a PT_DYNAMIC segment. */
4648 if (elf_tdata (abfd
)->eh_frame_hdr
)
4650 /* We need a PT_GNU_EH_FRAME segment. */
4654 if (elf_tdata (abfd
)->stack_flags
)
4656 /* We need a PT_GNU_STACK segment. */
4660 if (elf_tdata (abfd
)->relro
)
4662 /* We need a PT_GNU_RELRO segment. */
4666 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4668 if ((s
->flags
& SEC_LOAD
) != 0
4669 && strncmp (s
->name
, ".note", 5) == 0)
4671 /* We need a PT_NOTE segment. */
4676 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4678 if (s
->flags
& SEC_THREAD_LOCAL
)
4680 /* We need a PT_TLS segment. */
4686 /* Let the backend count up any program headers it might need. */
4687 if (bed
->elf_backend_additional_program_headers
)
4691 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4697 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4698 return elf_tdata (abfd
)->program_header_size
;
4701 /* Work out the file positions of all the sections. This is called by
4702 _bfd_elf_compute_section_file_positions. All the section sizes and
4703 VMAs must be known before this is called.
4705 Reloc sections come in two flavours: Those processed specially as
4706 "side-channel" data attached to a section to which they apply, and
4707 those that bfd doesn't process as relocations. The latter sort are
4708 stored in a normal bfd section by bfd_section_from_shdr. We don't
4709 consider the former sort here, unless they form part of the loadable
4710 image. Reloc sections not assigned here will be handled later by
4711 assign_file_positions_for_relocs.
4713 We also don't set the positions of the .symtab and .strtab here. */
4716 assign_file_positions_except_relocs (bfd
*abfd
,
4717 struct bfd_link_info
*link_info
)
4719 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4720 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4721 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4722 unsigned int num_sec
= elf_numsections (abfd
);
4724 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4726 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4727 && bfd_get_format (abfd
) != bfd_core
)
4729 Elf_Internal_Shdr
**hdrpp
;
4732 /* Start after the ELF header. */
4733 off
= i_ehdrp
->e_ehsize
;
4735 /* We are not creating an executable, which means that we are
4736 not creating a program header, and that the actual order of
4737 the sections in the file is unimportant. */
4738 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4740 Elf_Internal_Shdr
*hdr
;
4743 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4744 && hdr
->bfd_section
== NULL
)
4745 || i
== tdata
->symtab_section
4746 || i
== tdata
->symtab_shndx_section
4747 || i
== tdata
->strtab_section
)
4749 hdr
->sh_offset
= -1;
4752 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4754 if (i
== SHN_LORESERVE
- 1)
4756 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4757 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4764 Elf_Internal_Shdr
**hdrpp
;
4766 /* Assign file positions for the loaded sections based on the
4767 assignment of sections to segments. */
4768 if (! assign_file_positions_for_segments (abfd
, link_info
))
4771 /* Assign file positions for the other sections. */
4773 off
= elf_tdata (abfd
)->next_file_pos
;
4774 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4776 Elf_Internal_Shdr
*hdr
;
4779 if (hdr
->bfd_section
!= NULL
4780 && hdr
->bfd_section
->filepos
!= 0)
4781 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4782 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4784 ((*_bfd_error_handler
)
4785 (_("%B: warning: allocated section `%s' not in segment"),
4787 (hdr
->bfd_section
== NULL
4789 : hdr
->bfd_section
->name
)));
4790 if ((abfd
->flags
& D_PAGED
) != 0)
4791 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4794 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4796 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4799 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4800 && hdr
->bfd_section
== NULL
)
4801 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4802 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4803 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4804 hdr
->sh_offset
= -1;
4806 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4808 if (i
== SHN_LORESERVE
- 1)
4810 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4811 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4816 /* Place the section headers. */
4817 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4818 i_ehdrp
->e_shoff
= off
;
4819 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4821 elf_tdata (abfd
)->next_file_pos
= off
;
4827 prep_headers (bfd
*abfd
)
4829 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4830 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4831 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4832 struct elf_strtab_hash
*shstrtab
;
4833 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4835 i_ehdrp
= elf_elfheader (abfd
);
4836 i_shdrp
= elf_elfsections (abfd
);
4838 shstrtab
= _bfd_elf_strtab_init ();
4839 if (shstrtab
== NULL
)
4842 elf_shstrtab (abfd
) = shstrtab
;
4844 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4845 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4846 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4847 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4849 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4850 i_ehdrp
->e_ident
[EI_DATA
] =
4851 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4852 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4854 if ((abfd
->flags
& DYNAMIC
) != 0)
4855 i_ehdrp
->e_type
= ET_DYN
;
4856 else if ((abfd
->flags
& EXEC_P
) != 0)
4857 i_ehdrp
->e_type
= ET_EXEC
;
4858 else if (bfd_get_format (abfd
) == bfd_core
)
4859 i_ehdrp
->e_type
= ET_CORE
;
4861 i_ehdrp
->e_type
= ET_REL
;
4863 switch (bfd_get_arch (abfd
))
4865 case bfd_arch_unknown
:
4866 i_ehdrp
->e_machine
= EM_NONE
;
4869 /* There used to be a long list of cases here, each one setting
4870 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4871 in the corresponding bfd definition. To avoid duplication,
4872 the switch was removed. Machines that need special handling
4873 can generally do it in elf_backend_final_write_processing(),
4874 unless they need the information earlier than the final write.
4875 Such need can generally be supplied by replacing the tests for
4876 e_machine with the conditions used to determine it. */
4878 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4881 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4882 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4884 /* No program header, for now. */
4885 i_ehdrp
->e_phoff
= 0;
4886 i_ehdrp
->e_phentsize
= 0;
4887 i_ehdrp
->e_phnum
= 0;
4889 /* Each bfd section is section header entry. */
4890 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4891 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4893 /* If we're building an executable, we'll need a program header table. */
4894 if (abfd
->flags
& EXEC_P
)
4895 /* It all happens later. */
4899 i_ehdrp
->e_phentsize
= 0;
4901 i_ehdrp
->e_phoff
= 0;
4904 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4905 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4906 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4907 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4908 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4909 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4910 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4911 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4912 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4918 /* Assign file positions for all the reloc sections which are not part
4919 of the loadable file image. */
4922 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4925 unsigned int i
, num_sec
;
4926 Elf_Internal_Shdr
**shdrpp
;
4928 off
= elf_tdata (abfd
)->next_file_pos
;
4930 num_sec
= elf_numsections (abfd
);
4931 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4933 Elf_Internal_Shdr
*shdrp
;
4936 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4937 && shdrp
->sh_offset
== -1)
4938 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4941 elf_tdata (abfd
)->next_file_pos
= off
;
4945 _bfd_elf_write_object_contents (bfd
*abfd
)
4947 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4948 Elf_Internal_Ehdr
*i_ehdrp
;
4949 Elf_Internal_Shdr
**i_shdrp
;
4951 unsigned int count
, num_sec
;
4953 if (! abfd
->output_has_begun
4954 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4957 i_shdrp
= elf_elfsections (abfd
);
4958 i_ehdrp
= elf_elfheader (abfd
);
4961 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4965 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4967 /* After writing the headers, we need to write the sections too... */
4968 num_sec
= elf_numsections (abfd
);
4969 for (count
= 1; count
< num_sec
; count
++)
4971 if (bed
->elf_backend_section_processing
)
4972 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4973 if (i_shdrp
[count
]->contents
)
4975 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4977 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4978 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4981 if (count
== SHN_LORESERVE
- 1)
4982 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4985 /* Write out the section header names. */
4986 if (elf_shstrtab (abfd
) != NULL
4987 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4988 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4991 if (bed
->elf_backend_final_write_processing
)
4992 (*bed
->elf_backend_final_write_processing
) (abfd
,
4993 elf_tdata (abfd
)->linker
);
4995 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4999 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5001 /* Hopefully this can be done just like an object file. */
5002 return _bfd_elf_write_object_contents (abfd
);
5005 /* Given a section, search the header to find them. */
5008 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5010 const struct elf_backend_data
*bed
;
5013 if (elf_section_data (asect
) != NULL
5014 && elf_section_data (asect
)->this_idx
!= 0)
5015 return elf_section_data (asect
)->this_idx
;
5017 if (bfd_is_abs_section (asect
))
5019 else if (bfd_is_com_section (asect
))
5021 else if (bfd_is_und_section (asect
))
5026 bed
= get_elf_backend_data (abfd
);
5027 if (bed
->elf_backend_section_from_bfd_section
)
5031 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5036 bfd_set_error (bfd_error_nonrepresentable_section
);
5041 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5045 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5047 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5049 flagword flags
= asym_ptr
->flags
;
5051 /* When gas creates relocations against local labels, it creates its
5052 own symbol for the section, but does put the symbol into the
5053 symbol chain, so udata is 0. When the linker is generating
5054 relocatable output, this section symbol may be for one of the
5055 input sections rather than the output section. */
5056 if (asym_ptr
->udata
.i
== 0
5057 && (flags
& BSF_SECTION_SYM
)
5058 && asym_ptr
->section
)
5062 if (asym_ptr
->section
->output_section
!= NULL
)
5063 indx
= asym_ptr
->section
->output_section
->index
;
5065 indx
= asym_ptr
->section
->index
;
5066 if (indx
< elf_num_section_syms (abfd
)
5067 && elf_section_syms (abfd
)[indx
] != NULL
)
5068 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5071 idx
= asym_ptr
->udata
.i
;
5075 /* This case can occur when using --strip-symbol on a symbol
5076 which is used in a relocation entry. */
5077 (*_bfd_error_handler
)
5078 (_("%B: symbol `%s' required but not present"),
5079 abfd
, bfd_asymbol_name (asym_ptr
));
5080 bfd_set_error (bfd_error_no_symbols
);
5087 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5088 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5089 elf_symbol_flags (flags
));
5097 /* Rewrite program header information. */
5100 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5102 Elf_Internal_Ehdr
*iehdr
;
5103 struct elf_segment_map
*map
;
5104 struct elf_segment_map
*map_first
;
5105 struct elf_segment_map
**pointer_to_map
;
5106 Elf_Internal_Phdr
*segment
;
5109 unsigned int num_segments
;
5110 bfd_boolean phdr_included
= FALSE
;
5111 bfd_vma maxpagesize
;
5112 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5113 unsigned int phdr_adjust_num
= 0;
5114 const struct elf_backend_data
*bed
;
5116 bed
= get_elf_backend_data (ibfd
);
5117 iehdr
= elf_elfheader (ibfd
);
5120 pointer_to_map
= &map_first
;
5122 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5123 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5125 /* Returns the end address of the segment + 1. */
5126 #define SEGMENT_END(segment, start) \
5127 (start + (segment->p_memsz > segment->p_filesz \
5128 ? segment->p_memsz : segment->p_filesz))
5130 #define SECTION_SIZE(section, segment) \
5131 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5132 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5133 ? section->size : 0)
5135 /* Returns TRUE if the given section is contained within
5136 the given segment. VMA addresses are compared. */
5137 #define IS_CONTAINED_BY_VMA(section, segment) \
5138 (section->vma >= segment->p_vaddr \
5139 && (section->vma + SECTION_SIZE (section, segment) \
5140 <= (SEGMENT_END (segment, segment->p_vaddr))))
5142 /* Returns TRUE if the given section is contained within
5143 the given segment. LMA addresses are compared. */
5144 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5145 (section->lma >= base \
5146 && (section->lma + SECTION_SIZE (section, segment) \
5147 <= SEGMENT_END (segment, base)))
5149 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5150 #define IS_COREFILE_NOTE(p, s) \
5151 (p->p_type == PT_NOTE \
5152 && bfd_get_format (ibfd) == bfd_core \
5153 && s->vma == 0 && s->lma == 0 \
5154 && (bfd_vma) s->filepos >= p->p_offset \
5155 && ((bfd_vma) s->filepos + s->size \
5156 <= p->p_offset + p->p_filesz))
5158 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5159 linker, which generates a PT_INTERP section with p_vaddr and
5160 p_memsz set to 0. */
5161 #define IS_SOLARIS_PT_INTERP(p, s) \
5163 && p->p_paddr == 0 \
5164 && p->p_memsz == 0 \
5165 && p->p_filesz > 0 \
5166 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5168 && (bfd_vma) s->filepos >= p->p_offset \
5169 && ((bfd_vma) s->filepos + s->size \
5170 <= p->p_offset + p->p_filesz))
5172 /* Decide if the given section should be included in the given segment.
5173 A section will be included if:
5174 1. It is within the address space of the segment -- we use the LMA
5175 if that is set for the segment and the VMA otherwise,
5176 2. It is an allocated segment,
5177 3. There is an output section associated with it,
5178 4. The section has not already been allocated to a previous segment.
5179 5. PT_GNU_STACK segments do not include any sections.
5180 6. PT_TLS segment includes only SHF_TLS sections.
5181 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5182 8. PT_DYNAMIC should not contain empty sections at the beginning
5183 (with the possible exception of .dynamic). */
5184 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5185 ((((segment->p_paddr \
5186 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5187 : IS_CONTAINED_BY_VMA (section, segment)) \
5188 && (section->flags & SEC_ALLOC) != 0) \
5189 || IS_COREFILE_NOTE (segment, section)) \
5190 && section->output_section != NULL \
5191 && segment->p_type != PT_GNU_STACK \
5192 && (segment->p_type != PT_TLS \
5193 || (section->flags & SEC_THREAD_LOCAL)) \
5194 && (segment->p_type == PT_LOAD \
5195 || segment->p_type == PT_TLS \
5196 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5197 && (segment->p_type != PT_DYNAMIC \
5198 || SECTION_SIZE (section, segment) > 0 \
5199 || (segment->p_paddr \
5200 ? segment->p_paddr != section->lma \
5201 : segment->p_vaddr != section->vma) \
5202 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5204 && ! section->segment_mark)
5206 /* Returns TRUE iff seg1 starts after the end of seg2. */
5207 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5208 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5210 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5211 their VMA address ranges and their LMA address ranges overlap.
5212 It is possible to have overlapping VMA ranges without overlapping LMA
5213 ranges. RedBoot images for example can have both .data and .bss mapped
5214 to the same VMA range, but with the .data section mapped to a different
5216 #define SEGMENT_OVERLAPS(seg1, seg2) \
5217 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5218 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5219 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5220 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5222 /* Initialise the segment mark field. */
5223 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5224 section
->segment_mark
= FALSE
;
5226 /* Scan through the segments specified in the program header
5227 of the input BFD. For this first scan we look for overlaps
5228 in the loadable segments. These can be created by weird
5229 parameters to objcopy. Also, fix some solaris weirdness. */
5230 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5235 Elf_Internal_Phdr
*segment2
;
5237 if (segment
->p_type
== PT_INTERP
)
5238 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5239 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5241 /* Mininal change so that the normal section to segment
5242 assignment code will work. */
5243 segment
->p_vaddr
= section
->vma
;
5247 if (segment
->p_type
!= PT_LOAD
)
5250 /* Determine if this segment overlaps any previous segments. */
5251 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5253 bfd_signed_vma extra_length
;
5255 if (segment2
->p_type
!= PT_LOAD
5256 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5259 /* Merge the two segments together. */
5260 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5262 /* Extend SEGMENT2 to include SEGMENT and then delete
5265 SEGMENT_END (segment
, segment
->p_vaddr
)
5266 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5268 if (extra_length
> 0)
5270 segment2
->p_memsz
+= extra_length
;
5271 segment2
->p_filesz
+= extra_length
;
5274 segment
->p_type
= PT_NULL
;
5276 /* Since we have deleted P we must restart the outer loop. */
5278 segment
= elf_tdata (ibfd
)->phdr
;
5283 /* Extend SEGMENT to include SEGMENT2 and then delete
5286 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5287 - SEGMENT_END (segment
, segment
->p_vaddr
);
5289 if (extra_length
> 0)
5291 segment
->p_memsz
+= extra_length
;
5292 segment
->p_filesz
+= extra_length
;
5295 segment2
->p_type
= PT_NULL
;
5300 /* The second scan attempts to assign sections to segments. */
5301 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5305 unsigned int section_count
;
5306 asection
** sections
;
5307 asection
* output_section
;
5309 bfd_vma matching_lma
;
5310 bfd_vma suggested_lma
;
5314 if (segment
->p_type
== PT_NULL
)
5317 /* Compute how many sections might be placed into this segment. */
5318 for (section
= ibfd
->sections
, section_count
= 0;
5320 section
= section
->next
)
5321 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5324 /* Allocate a segment map big enough to contain
5325 all of the sections we have selected. */
5326 amt
= sizeof (struct elf_segment_map
);
5327 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5328 map
= bfd_alloc (obfd
, amt
);
5332 /* Initialise the fields of the segment map. Default to
5333 using the physical address of the segment in the input BFD. */
5335 map
->p_type
= segment
->p_type
;
5336 map
->p_flags
= segment
->p_flags
;
5337 map
->p_flags_valid
= 1;
5338 map
->p_paddr
= segment
->p_paddr
;
5339 map
->p_paddr_valid
= 1;
5341 /* Determine if this segment contains the ELF file header
5342 and if it contains the program headers themselves. */
5343 map
->includes_filehdr
= (segment
->p_offset
== 0
5344 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5346 map
->includes_phdrs
= 0;
5348 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5350 map
->includes_phdrs
=
5351 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5352 && (segment
->p_offset
+ segment
->p_filesz
5353 >= ((bfd_vma
) iehdr
->e_phoff
5354 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5356 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5357 phdr_included
= TRUE
;
5360 if (section_count
== 0)
5362 /* Special segments, such as the PT_PHDR segment, may contain
5363 no sections, but ordinary, loadable segments should contain
5364 something. They are allowed by the ELF spec however, so only
5365 a warning is produced. */
5366 if (segment
->p_type
== PT_LOAD
)
5367 (*_bfd_error_handler
)
5368 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5372 *pointer_to_map
= map
;
5373 pointer_to_map
= &map
->next
;
5378 /* Now scan the sections in the input BFD again and attempt
5379 to add their corresponding output sections to the segment map.
5380 The problem here is how to handle an output section which has
5381 been moved (ie had its LMA changed). There are four possibilities:
5383 1. None of the sections have been moved.
5384 In this case we can continue to use the segment LMA from the
5387 2. All of the sections have been moved by the same amount.
5388 In this case we can change the segment's LMA to match the LMA
5389 of the first section.
5391 3. Some of the sections have been moved, others have not.
5392 In this case those sections which have not been moved can be
5393 placed in the current segment which will have to have its size,
5394 and possibly its LMA changed, and a new segment or segments will
5395 have to be created to contain the other sections.
5397 4. The sections have been moved, but not by the same amount.
5398 In this case we can change the segment's LMA to match the LMA
5399 of the first section and we will have to create a new segment
5400 or segments to contain the other sections.
5402 In order to save time, we allocate an array to hold the section
5403 pointers that we are interested in. As these sections get assigned
5404 to a segment, they are removed from this array. */
5406 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5407 to work around this long long bug. */
5408 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5409 if (sections
== NULL
)
5412 /* Step One: Scan for segment vs section LMA conflicts.
5413 Also add the sections to the section array allocated above.
5414 Also add the sections to the current segment. In the common
5415 case, where the sections have not been moved, this means that
5416 we have completely filled the segment, and there is nothing
5422 for (j
= 0, section
= ibfd
->sections
;
5424 section
= section
->next
)
5426 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5428 output_section
= section
->output_section
;
5430 sections
[j
++] = section
;
5432 /* The Solaris native linker always sets p_paddr to 0.
5433 We try to catch that case here, and set it to the
5434 correct value. Note - some backends require that
5435 p_paddr be left as zero. */
5436 if (segment
->p_paddr
== 0
5437 && segment
->p_vaddr
!= 0
5438 && (! bed
->want_p_paddr_set_to_zero
)
5440 && output_section
->lma
!= 0
5441 && (output_section
->vma
== (segment
->p_vaddr
5442 + (map
->includes_filehdr
5445 + (map
->includes_phdrs
5447 * iehdr
->e_phentsize
)
5449 map
->p_paddr
= segment
->p_vaddr
;
5451 /* Match up the physical address of the segment with the
5452 LMA address of the output section. */
5453 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5454 || IS_COREFILE_NOTE (segment
, section
)
5455 || (bed
->want_p_paddr_set_to_zero
&&
5456 IS_CONTAINED_BY_VMA (output_section
, segment
))
5459 if (matching_lma
== 0)
5460 matching_lma
= output_section
->lma
;
5462 /* We assume that if the section fits within the segment
5463 then it does not overlap any other section within that
5465 map
->sections
[isec
++] = output_section
;
5467 else if (suggested_lma
== 0)
5468 suggested_lma
= output_section
->lma
;
5472 BFD_ASSERT (j
== section_count
);
5474 /* Step Two: Adjust the physical address of the current segment,
5476 if (isec
== section_count
)
5478 /* All of the sections fitted within the segment as currently
5479 specified. This is the default case. Add the segment to
5480 the list of built segments and carry on to process the next
5481 program header in the input BFD. */
5482 map
->count
= section_count
;
5483 *pointer_to_map
= map
;
5484 pointer_to_map
= &map
->next
;
5491 if (matching_lma
!= 0)
5493 /* At least one section fits inside the current segment.
5494 Keep it, but modify its physical address to match the
5495 LMA of the first section that fitted. */
5496 map
->p_paddr
= matching_lma
;
5500 /* None of the sections fitted inside the current segment.
5501 Change the current segment's physical address to match
5502 the LMA of the first section. */
5503 map
->p_paddr
= suggested_lma
;
5506 /* Offset the segment physical address from the lma
5507 to allow for space taken up by elf headers. */
5508 if (map
->includes_filehdr
)
5509 map
->p_paddr
-= iehdr
->e_ehsize
;
5511 if (map
->includes_phdrs
)
5513 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5515 /* iehdr->e_phnum is just an estimate of the number
5516 of program headers that we will need. Make a note
5517 here of the number we used and the segment we chose
5518 to hold these headers, so that we can adjust the
5519 offset when we know the correct value. */
5520 phdr_adjust_num
= iehdr
->e_phnum
;
5521 phdr_adjust_seg
= map
;
5525 /* Step Three: Loop over the sections again, this time assigning
5526 those that fit to the current segment and removing them from the
5527 sections array; but making sure not to leave large gaps. Once all
5528 possible sections have been assigned to the current segment it is
5529 added to the list of built segments and if sections still remain
5530 to be assigned, a new segment is constructed before repeating
5538 /* Fill the current segment with sections that fit. */
5539 for (j
= 0; j
< section_count
; j
++)
5541 section
= sections
[j
];
5543 if (section
== NULL
)
5546 output_section
= section
->output_section
;
5548 BFD_ASSERT (output_section
!= NULL
);
5550 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5551 || IS_COREFILE_NOTE (segment
, section
))
5553 if (map
->count
== 0)
5555 /* If the first section in a segment does not start at
5556 the beginning of the segment, then something is
5558 if (output_section
->lma
!=
5560 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5561 + (map
->includes_phdrs
5562 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5568 asection
* prev_sec
;
5570 prev_sec
= map
->sections
[map
->count
- 1];
5572 /* If the gap between the end of the previous section
5573 and the start of this section is more than
5574 maxpagesize then we need to start a new segment. */
5575 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5577 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5578 || ((prev_sec
->lma
+ prev_sec
->size
)
5579 > output_section
->lma
))
5581 if (suggested_lma
== 0)
5582 suggested_lma
= output_section
->lma
;
5588 map
->sections
[map
->count
++] = output_section
;
5591 section
->segment_mark
= TRUE
;
5593 else if (suggested_lma
== 0)
5594 suggested_lma
= output_section
->lma
;
5597 BFD_ASSERT (map
->count
> 0);
5599 /* Add the current segment to the list of built segments. */
5600 *pointer_to_map
= map
;
5601 pointer_to_map
= &map
->next
;
5603 if (isec
< section_count
)
5605 /* We still have not allocated all of the sections to
5606 segments. Create a new segment here, initialise it
5607 and carry on looping. */
5608 amt
= sizeof (struct elf_segment_map
);
5609 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5610 map
= bfd_alloc (obfd
, amt
);
5617 /* Initialise the fields of the segment map. Set the physical
5618 physical address to the LMA of the first section that has
5619 not yet been assigned. */
5621 map
->p_type
= segment
->p_type
;
5622 map
->p_flags
= segment
->p_flags
;
5623 map
->p_flags_valid
= 1;
5624 map
->p_paddr
= suggested_lma
;
5625 map
->p_paddr_valid
= 1;
5626 map
->includes_filehdr
= 0;
5627 map
->includes_phdrs
= 0;
5630 while (isec
< section_count
);
5635 /* The Solaris linker creates program headers in which all the
5636 p_paddr fields are zero. When we try to objcopy or strip such a
5637 file, we get confused. Check for this case, and if we find it
5638 reset the p_paddr_valid fields. */
5639 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5640 if (map
->p_paddr
!= 0)
5643 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5644 map
->p_paddr_valid
= 0;
5646 elf_tdata (obfd
)->segment_map
= map_first
;
5648 /* If we had to estimate the number of program headers that were
5649 going to be needed, then check our estimate now and adjust
5650 the offset if necessary. */
5651 if (phdr_adjust_seg
!= NULL
)
5655 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5658 if (count
> phdr_adjust_num
)
5659 phdr_adjust_seg
->p_paddr
5660 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5665 #undef IS_CONTAINED_BY_VMA
5666 #undef IS_CONTAINED_BY_LMA
5667 #undef IS_COREFILE_NOTE
5668 #undef IS_SOLARIS_PT_INTERP
5669 #undef INCLUDE_SECTION_IN_SEGMENT
5670 #undef SEGMENT_AFTER_SEGMENT
5671 #undef SEGMENT_OVERLAPS
5675 /* Copy ELF program header information. */
5678 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5680 Elf_Internal_Ehdr
*iehdr
;
5681 struct elf_segment_map
*map
;
5682 struct elf_segment_map
*map_first
;
5683 struct elf_segment_map
**pointer_to_map
;
5684 Elf_Internal_Phdr
*segment
;
5686 unsigned int num_segments
;
5687 bfd_boolean phdr_included
= FALSE
;
5689 iehdr
= elf_elfheader (ibfd
);
5692 pointer_to_map
= &map_first
;
5694 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5695 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5700 unsigned int section_count
;
5702 Elf_Internal_Shdr
*this_hdr
;
5704 /* FIXME: Do we need to copy PT_NULL segment? */
5705 if (segment
->p_type
== PT_NULL
)
5708 /* Compute how many sections are in this segment. */
5709 for (section
= ibfd
->sections
, section_count
= 0;
5711 section
= section
->next
)
5713 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5714 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5718 /* Allocate a segment map big enough to contain
5719 all of the sections we have selected. */
5720 amt
= sizeof (struct elf_segment_map
);
5721 if (section_count
!= 0)
5722 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5723 map
= bfd_alloc (obfd
, amt
);
5727 /* Initialize the fields of the output segment map with the
5730 map
->p_type
= segment
->p_type
;
5731 map
->p_flags
= segment
->p_flags
;
5732 map
->p_flags_valid
= 1;
5733 map
->p_paddr
= segment
->p_paddr
;
5734 map
->p_paddr_valid
= 1;
5736 /* Determine if this segment contains the ELF file header
5737 and if it contains the program headers themselves. */
5738 map
->includes_filehdr
= (segment
->p_offset
== 0
5739 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5741 map
->includes_phdrs
= 0;
5742 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5744 map
->includes_phdrs
=
5745 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5746 && (segment
->p_offset
+ segment
->p_filesz
5747 >= ((bfd_vma
) iehdr
->e_phoff
5748 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5750 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5751 phdr_included
= TRUE
;
5754 if (section_count
!= 0)
5756 unsigned int isec
= 0;
5758 for (section
= ibfd
->sections
;
5760 section
= section
->next
)
5762 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5763 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5764 map
->sections
[isec
++] = section
->output_section
;
5768 map
->count
= section_count
;
5769 *pointer_to_map
= map
;
5770 pointer_to_map
= &map
->next
;
5773 elf_tdata (obfd
)->segment_map
= map_first
;
5777 /* Copy private BFD data. This copies or rewrites ELF program header
5781 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5783 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5784 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5787 if (elf_tdata (ibfd
)->phdr
== NULL
)
5790 if (ibfd
->xvec
== obfd
->xvec
)
5792 /* Check if any sections in the input BFD covered by ELF program
5793 header are changed. */
5794 Elf_Internal_Phdr
*segment
;
5795 asection
*section
, *osec
;
5796 unsigned int i
, num_segments
;
5797 Elf_Internal_Shdr
*this_hdr
;
5799 /* Initialize the segment mark field. */
5800 for (section
= obfd
->sections
; section
!= NULL
;
5801 section
= section
->next
)
5802 section
->segment_mark
= FALSE
;
5804 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5805 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5809 for (section
= ibfd
->sections
;
5810 section
!= NULL
; section
= section
->next
)
5812 /* We mark the output section so that we know it comes
5813 from the input BFD. */
5814 osec
= section
->output_section
;
5816 osec
->segment_mark
= TRUE
;
5818 /* Check if this section is covered by the segment. */
5819 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5820 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5822 /* FIXME: Check if its output section is changed or
5823 removed. What else do we need to check? */
5825 || section
->flags
!= osec
->flags
5826 || section
->lma
!= osec
->lma
5827 || section
->vma
!= osec
->vma
5828 || section
->size
!= osec
->size
5829 || section
->rawsize
!= osec
->rawsize
5830 || section
->alignment_power
!= osec
->alignment_power
)
5836 /* Check to see if any output section doesn't come from the
5838 for (section
= obfd
->sections
; section
!= NULL
;
5839 section
= section
->next
)
5841 if (section
->segment_mark
== FALSE
)
5844 section
->segment_mark
= FALSE
;
5847 return copy_elf_program_header (ibfd
, obfd
);
5851 return rewrite_elf_program_header (ibfd
, obfd
);
5854 /* Initialize private output section information from input section. */
5857 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5861 struct bfd_link_info
*link_info
)
5864 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5865 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5867 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5868 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5871 /* FIXME: What if the output ELF section type has been set to
5872 something different? */
5873 if (elf_section_type (osec
) == SHT_NULL
)
5874 elf_section_type (osec
) = elf_section_type (isec
);
5876 /* Set things up for objcopy and relocatable link. The output
5877 SHT_GROUP section will have its elf_next_in_group pointing back
5878 to the input group members. Ignore linker created group section.
5879 See elfNN_ia64_object_p in elfxx-ia64.c. */
5883 if (elf_sec_group (isec
) == NULL
5884 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5886 if (elf_section_flags (isec
) & SHF_GROUP
)
5887 elf_section_flags (osec
) |= SHF_GROUP
;
5888 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5889 elf_group_name (osec
) = elf_group_name (isec
);
5893 ihdr
= &elf_section_data (isec
)->this_hdr
;
5895 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5896 don't use the output section of the linked-to section since it
5897 may be NULL at this point. */
5898 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5900 ohdr
= &elf_section_data (osec
)->this_hdr
;
5901 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5902 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5905 osec
->use_rela_p
= isec
->use_rela_p
;
5910 /* Copy private section information. This copies over the entsize
5911 field, and sometimes the info field. */
5914 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5919 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5921 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5922 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5925 ihdr
= &elf_section_data (isec
)->this_hdr
;
5926 ohdr
= &elf_section_data (osec
)->this_hdr
;
5928 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5930 if (ihdr
->sh_type
== SHT_SYMTAB
5931 || ihdr
->sh_type
== SHT_DYNSYM
5932 || ihdr
->sh_type
== SHT_GNU_verneed
5933 || ihdr
->sh_type
== SHT_GNU_verdef
)
5934 ohdr
->sh_info
= ihdr
->sh_info
;
5936 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
5940 /* Copy private header information. */
5943 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5945 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5946 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5949 /* Copy over private BFD data if it has not already been copied.
5950 This must be done here, rather than in the copy_private_bfd_data
5951 entry point, because the latter is called after the section
5952 contents have been set, which means that the program headers have
5953 already been worked out. */
5954 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5956 if (! copy_private_bfd_data (ibfd
, obfd
))
5963 /* Copy private symbol information. If this symbol is in a section
5964 which we did not map into a BFD section, try to map the section
5965 index correctly. We use special macro definitions for the mapped
5966 section indices; these definitions are interpreted by the
5967 swap_out_syms function. */
5969 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5970 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5971 #define MAP_STRTAB (SHN_HIOS + 3)
5972 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5973 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5976 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5981 elf_symbol_type
*isym
, *osym
;
5983 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5984 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5987 isym
= elf_symbol_from (ibfd
, isymarg
);
5988 osym
= elf_symbol_from (obfd
, osymarg
);
5992 && bfd_is_abs_section (isym
->symbol
.section
))
5996 shndx
= isym
->internal_elf_sym
.st_shndx
;
5997 if (shndx
== elf_onesymtab (ibfd
))
5998 shndx
= MAP_ONESYMTAB
;
5999 else if (shndx
== elf_dynsymtab (ibfd
))
6000 shndx
= MAP_DYNSYMTAB
;
6001 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6003 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6004 shndx
= MAP_SHSTRTAB
;
6005 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6006 shndx
= MAP_SYM_SHNDX
;
6007 osym
->internal_elf_sym
.st_shndx
= shndx
;
6013 /* Swap out the symbols. */
6016 swap_out_syms (bfd
*abfd
,
6017 struct bfd_strtab_hash
**sttp
,
6020 const struct elf_backend_data
*bed
;
6023 struct bfd_strtab_hash
*stt
;
6024 Elf_Internal_Shdr
*symtab_hdr
;
6025 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6026 Elf_Internal_Shdr
*symstrtab_hdr
;
6027 bfd_byte
*outbound_syms
;
6028 bfd_byte
*outbound_shndx
;
6031 bfd_boolean name_local_sections
;
6033 if (!elf_map_symbols (abfd
))
6036 /* Dump out the symtabs. */
6037 stt
= _bfd_elf_stringtab_init ();
6041 bed
= get_elf_backend_data (abfd
);
6042 symcount
= bfd_get_symcount (abfd
);
6043 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6044 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6045 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6046 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6047 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6048 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6050 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6051 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6053 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6054 if (outbound_syms
== NULL
)
6056 _bfd_stringtab_free (stt
);
6059 symtab_hdr
->contents
= outbound_syms
;
6061 outbound_shndx
= NULL
;
6062 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6063 if (symtab_shndx_hdr
->sh_name
!= 0)
6065 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6066 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6067 sizeof (Elf_External_Sym_Shndx
));
6068 if (outbound_shndx
== NULL
)
6070 _bfd_stringtab_free (stt
);
6074 symtab_shndx_hdr
->contents
= outbound_shndx
;
6075 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6076 symtab_shndx_hdr
->sh_size
= amt
;
6077 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6078 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6081 /* Now generate the data (for "contents"). */
6083 /* Fill in zeroth symbol and swap it out. */
6084 Elf_Internal_Sym sym
;
6090 sym
.st_shndx
= SHN_UNDEF
;
6091 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6092 outbound_syms
+= bed
->s
->sizeof_sym
;
6093 if (outbound_shndx
!= NULL
)
6094 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6098 = (bed
->elf_backend_name_local_section_symbols
6099 && bed
->elf_backend_name_local_section_symbols (abfd
));
6101 syms
= bfd_get_outsymbols (abfd
);
6102 for (idx
= 0; idx
< symcount
; idx
++)
6104 Elf_Internal_Sym sym
;
6105 bfd_vma value
= syms
[idx
]->value
;
6106 elf_symbol_type
*type_ptr
;
6107 flagword flags
= syms
[idx
]->flags
;
6110 if (!name_local_sections
6111 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6113 /* Local section symbols have no name. */
6118 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6121 if (sym
.st_name
== (unsigned long) -1)
6123 _bfd_stringtab_free (stt
);
6128 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6130 if ((flags
& BSF_SECTION_SYM
) == 0
6131 && bfd_is_com_section (syms
[idx
]->section
))
6133 /* ELF common symbols put the alignment into the `value' field,
6134 and the size into the `size' field. This is backwards from
6135 how BFD handles it, so reverse it here. */
6136 sym
.st_size
= value
;
6137 if (type_ptr
== NULL
6138 || type_ptr
->internal_elf_sym
.st_value
== 0)
6139 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6141 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6142 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6143 (abfd
, syms
[idx
]->section
);
6147 asection
*sec
= syms
[idx
]->section
;
6150 if (sec
->output_section
)
6152 value
+= sec
->output_offset
;
6153 sec
= sec
->output_section
;
6156 /* Don't add in the section vma for relocatable output. */
6157 if (! relocatable_p
)
6159 sym
.st_value
= value
;
6160 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6162 if (bfd_is_abs_section (sec
)
6164 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6166 /* This symbol is in a real ELF section which we did
6167 not create as a BFD section. Undo the mapping done
6168 by copy_private_symbol_data. */
6169 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6173 shndx
= elf_onesymtab (abfd
);
6176 shndx
= elf_dynsymtab (abfd
);
6179 shndx
= elf_tdata (abfd
)->strtab_section
;
6182 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6185 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6193 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6199 /* Writing this would be a hell of a lot easier if
6200 we had some decent documentation on bfd, and
6201 knew what to expect of the library, and what to
6202 demand of applications. For example, it
6203 appears that `objcopy' might not set the
6204 section of a symbol to be a section that is
6205 actually in the output file. */
6206 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6209 _bfd_error_handler (_("\
6210 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6211 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6213 bfd_set_error (bfd_error_invalid_operation
);
6214 _bfd_stringtab_free (stt
);
6218 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6219 BFD_ASSERT (shndx
!= -1);
6223 sym
.st_shndx
= shndx
;
6226 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6228 else if ((flags
& BSF_FUNCTION
) != 0)
6230 else if ((flags
& BSF_OBJECT
) != 0)
6235 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6238 /* Processor-specific types. */
6239 if (type_ptr
!= NULL
6240 && bed
->elf_backend_get_symbol_type
)
6241 type
= ((*bed
->elf_backend_get_symbol_type
)
6242 (&type_ptr
->internal_elf_sym
, type
));
6244 if (flags
& BSF_SECTION_SYM
)
6246 if (flags
& BSF_GLOBAL
)
6247 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6249 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6251 else if (bfd_is_com_section (syms
[idx
]->section
))
6252 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6253 else if (bfd_is_und_section (syms
[idx
]->section
))
6254 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6258 else if (flags
& BSF_FILE
)
6259 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6262 int bind
= STB_LOCAL
;
6264 if (flags
& BSF_LOCAL
)
6266 else if (flags
& BSF_WEAK
)
6268 else if (flags
& BSF_GLOBAL
)
6271 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6274 if (type_ptr
!= NULL
)
6275 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6279 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6280 outbound_syms
+= bed
->s
->sizeof_sym
;
6281 if (outbound_shndx
!= NULL
)
6282 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6286 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6287 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6289 symstrtab_hdr
->sh_flags
= 0;
6290 symstrtab_hdr
->sh_addr
= 0;
6291 symstrtab_hdr
->sh_entsize
= 0;
6292 symstrtab_hdr
->sh_link
= 0;
6293 symstrtab_hdr
->sh_info
= 0;
6294 symstrtab_hdr
->sh_addralign
= 1;
6299 /* Return the number of bytes required to hold the symtab vector.
6301 Note that we base it on the count plus 1, since we will null terminate
6302 the vector allocated based on this size. However, the ELF symbol table
6303 always has a dummy entry as symbol #0, so it ends up even. */
6306 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6310 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6312 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6313 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6315 symtab_size
-= sizeof (asymbol
*);
6321 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6325 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6327 if (elf_dynsymtab (abfd
) == 0)
6329 bfd_set_error (bfd_error_invalid_operation
);
6333 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6334 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6336 symtab_size
-= sizeof (asymbol
*);
6342 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6345 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6348 /* Canonicalize the relocs. */
6351 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6358 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6360 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6363 tblptr
= section
->relocation
;
6364 for (i
= 0; i
< section
->reloc_count
; i
++)
6365 *relptr
++ = tblptr
++;
6369 return section
->reloc_count
;
6373 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6375 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6376 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6379 bfd_get_symcount (abfd
) = symcount
;
6384 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6385 asymbol
**allocation
)
6387 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6388 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6391 bfd_get_dynamic_symcount (abfd
) = symcount
;
6395 /* Return the size required for the dynamic reloc entries. Any loadable
6396 section that was actually installed in the BFD, and has type SHT_REL
6397 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6398 dynamic reloc section. */
6401 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6406 if (elf_dynsymtab (abfd
) == 0)
6408 bfd_set_error (bfd_error_invalid_operation
);
6412 ret
= sizeof (arelent
*);
6413 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6414 if ((s
->flags
& SEC_LOAD
) != 0
6415 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6416 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6417 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6418 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6419 * sizeof (arelent
*));
6424 /* Canonicalize the dynamic relocation entries. Note that we return the
6425 dynamic relocations as a single block, although they are actually
6426 associated with particular sections; the interface, which was
6427 designed for SunOS style shared libraries, expects that there is only
6428 one set of dynamic relocs. Any loadable section that was actually
6429 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6430 dynamic symbol table, is considered to be a dynamic reloc section. */
6433 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6437 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6441 if (elf_dynsymtab (abfd
) == 0)
6443 bfd_set_error (bfd_error_invalid_operation
);
6447 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6449 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6451 if ((s
->flags
& SEC_LOAD
) != 0
6452 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6453 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6454 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6459 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6461 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6463 for (i
= 0; i
< count
; i
++)
6474 /* Read in the version information. */
6477 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6479 bfd_byte
*contents
= NULL
;
6480 unsigned int freeidx
= 0;
6482 if (elf_dynverref (abfd
) != 0)
6484 Elf_Internal_Shdr
*hdr
;
6485 Elf_External_Verneed
*everneed
;
6486 Elf_Internal_Verneed
*iverneed
;
6488 bfd_byte
*contents_end
;
6490 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6492 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6493 sizeof (Elf_Internal_Verneed
));
6494 if (elf_tdata (abfd
)->verref
== NULL
)
6497 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6499 contents
= bfd_malloc (hdr
->sh_size
);
6500 if (contents
== NULL
)
6502 error_return_verref
:
6503 elf_tdata (abfd
)->verref
= NULL
;
6504 elf_tdata (abfd
)->cverrefs
= 0;
6507 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6508 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6509 goto error_return_verref
;
6511 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6512 goto error_return_verref
;
6514 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6515 == sizeof (Elf_External_Vernaux
));
6516 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6517 everneed
= (Elf_External_Verneed
*) contents
;
6518 iverneed
= elf_tdata (abfd
)->verref
;
6519 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6521 Elf_External_Vernaux
*evernaux
;
6522 Elf_Internal_Vernaux
*ivernaux
;
6525 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6527 iverneed
->vn_bfd
= abfd
;
6529 iverneed
->vn_filename
=
6530 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6532 if (iverneed
->vn_filename
== NULL
)
6533 goto error_return_verref
;
6535 if (iverneed
->vn_cnt
== 0)
6536 iverneed
->vn_auxptr
= NULL
;
6539 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6540 sizeof (Elf_Internal_Vernaux
));
6541 if (iverneed
->vn_auxptr
== NULL
)
6542 goto error_return_verref
;
6545 if (iverneed
->vn_aux
6546 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6547 goto error_return_verref
;
6549 evernaux
= ((Elf_External_Vernaux
*)
6550 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6551 ivernaux
= iverneed
->vn_auxptr
;
6552 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6554 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6556 ivernaux
->vna_nodename
=
6557 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6558 ivernaux
->vna_name
);
6559 if (ivernaux
->vna_nodename
== NULL
)
6560 goto error_return_verref
;
6562 if (j
+ 1 < iverneed
->vn_cnt
)
6563 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6565 ivernaux
->vna_nextptr
= NULL
;
6567 if (ivernaux
->vna_next
6568 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6569 goto error_return_verref
;
6571 evernaux
= ((Elf_External_Vernaux
*)
6572 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6574 if (ivernaux
->vna_other
> freeidx
)
6575 freeidx
= ivernaux
->vna_other
;
6578 if (i
+ 1 < hdr
->sh_info
)
6579 iverneed
->vn_nextref
= iverneed
+ 1;
6581 iverneed
->vn_nextref
= NULL
;
6583 if (iverneed
->vn_next
6584 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6585 goto error_return_verref
;
6587 everneed
= ((Elf_External_Verneed
*)
6588 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6595 if (elf_dynverdef (abfd
) != 0)
6597 Elf_Internal_Shdr
*hdr
;
6598 Elf_External_Verdef
*everdef
;
6599 Elf_Internal_Verdef
*iverdef
;
6600 Elf_Internal_Verdef
*iverdefarr
;
6601 Elf_Internal_Verdef iverdefmem
;
6603 unsigned int maxidx
;
6604 bfd_byte
*contents_end_def
, *contents_end_aux
;
6606 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6608 contents
= bfd_malloc (hdr
->sh_size
);
6609 if (contents
== NULL
)
6611 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6612 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6615 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6618 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6619 >= sizeof (Elf_External_Verdaux
));
6620 contents_end_def
= contents
+ hdr
->sh_size
6621 - sizeof (Elf_External_Verdef
);
6622 contents_end_aux
= contents
+ hdr
->sh_size
6623 - sizeof (Elf_External_Verdaux
);
6625 /* We know the number of entries in the section but not the maximum
6626 index. Therefore we have to run through all entries and find
6628 everdef
= (Elf_External_Verdef
*) contents
;
6630 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6632 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6634 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6635 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6637 if (iverdefmem
.vd_next
6638 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6641 everdef
= ((Elf_External_Verdef
*)
6642 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6645 if (default_imported_symver
)
6647 if (freeidx
> maxidx
)
6652 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6653 sizeof (Elf_Internal_Verdef
));
6654 if (elf_tdata (abfd
)->verdef
== NULL
)
6657 elf_tdata (abfd
)->cverdefs
= maxidx
;
6659 everdef
= (Elf_External_Verdef
*) contents
;
6660 iverdefarr
= elf_tdata (abfd
)->verdef
;
6661 for (i
= 0; i
< hdr
->sh_info
; i
++)
6663 Elf_External_Verdaux
*everdaux
;
6664 Elf_Internal_Verdaux
*iverdaux
;
6667 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6669 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6671 error_return_verdef
:
6672 elf_tdata (abfd
)->verdef
= NULL
;
6673 elf_tdata (abfd
)->cverdefs
= 0;
6677 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6678 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6680 iverdef
->vd_bfd
= abfd
;
6682 if (iverdef
->vd_cnt
== 0)
6683 iverdef
->vd_auxptr
= NULL
;
6686 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6687 sizeof (Elf_Internal_Verdaux
));
6688 if (iverdef
->vd_auxptr
== NULL
)
6689 goto error_return_verdef
;
6693 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6694 goto error_return_verdef
;
6696 everdaux
= ((Elf_External_Verdaux
*)
6697 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6698 iverdaux
= iverdef
->vd_auxptr
;
6699 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6701 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6703 iverdaux
->vda_nodename
=
6704 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6705 iverdaux
->vda_name
);
6706 if (iverdaux
->vda_nodename
== NULL
)
6707 goto error_return_verdef
;
6709 if (j
+ 1 < iverdef
->vd_cnt
)
6710 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6712 iverdaux
->vda_nextptr
= NULL
;
6714 if (iverdaux
->vda_next
6715 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6716 goto error_return_verdef
;
6718 everdaux
= ((Elf_External_Verdaux
*)
6719 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6722 if (iverdef
->vd_cnt
)
6723 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6725 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6726 iverdef
->vd_nextdef
= iverdef
+ 1;
6728 iverdef
->vd_nextdef
= NULL
;
6730 everdef
= ((Elf_External_Verdef
*)
6731 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6737 else if (default_imported_symver
)
6744 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6745 sizeof (Elf_Internal_Verdef
));
6746 if (elf_tdata (abfd
)->verdef
== NULL
)
6749 elf_tdata (abfd
)->cverdefs
= freeidx
;
6752 /* Create a default version based on the soname. */
6753 if (default_imported_symver
)
6755 Elf_Internal_Verdef
*iverdef
;
6756 Elf_Internal_Verdaux
*iverdaux
;
6758 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6760 iverdef
->vd_version
= VER_DEF_CURRENT
;
6761 iverdef
->vd_flags
= 0;
6762 iverdef
->vd_ndx
= freeidx
;
6763 iverdef
->vd_cnt
= 1;
6765 iverdef
->vd_bfd
= abfd
;
6767 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6768 if (iverdef
->vd_nodename
== NULL
)
6769 goto error_return_verdef
;
6770 iverdef
->vd_nextdef
= NULL
;
6771 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6772 if (iverdef
->vd_auxptr
== NULL
)
6773 goto error_return_verdef
;
6775 iverdaux
= iverdef
->vd_auxptr
;
6776 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6777 iverdaux
->vda_nextptr
= NULL
;
6783 if (contents
!= NULL
)
6789 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6791 elf_symbol_type
*newsym
;
6792 bfd_size_type amt
= sizeof (elf_symbol_type
);
6794 newsym
= bfd_zalloc (abfd
, amt
);
6799 newsym
->symbol
.the_bfd
= abfd
;
6800 return &newsym
->symbol
;
6805 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6809 bfd_symbol_info (symbol
, ret
);
6812 /* Return whether a symbol name implies a local symbol. Most targets
6813 use this function for the is_local_label_name entry point, but some
6817 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6820 /* Normal local symbols start with ``.L''. */
6821 if (name
[0] == '.' && name
[1] == 'L')
6824 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6825 DWARF debugging symbols starting with ``..''. */
6826 if (name
[0] == '.' && name
[1] == '.')
6829 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6830 emitting DWARF debugging output. I suspect this is actually a
6831 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6832 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6833 underscore to be emitted on some ELF targets). For ease of use,
6834 we treat such symbols as local. */
6835 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6842 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6843 asymbol
*symbol ATTRIBUTE_UNUSED
)
6850 _bfd_elf_set_arch_mach (bfd
*abfd
,
6851 enum bfd_architecture arch
,
6852 unsigned long machine
)
6854 /* If this isn't the right architecture for this backend, and this
6855 isn't the generic backend, fail. */
6856 if (arch
!= get_elf_backend_data (abfd
)->arch
6857 && arch
!= bfd_arch_unknown
6858 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6861 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6864 /* Find the function to a particular section and offset,
6865 for error reporting. */
6868 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6872 const char **filename_ptr
,
6873 const char **functionname_ptr
)
6875 const char *filename
;
6876 asymbol
*func
, *file
;
6879 /* ??? Given multiple file symbols, it is impossible to reliably
6880 choose the right file name for global symbols. File symbols are
6881 local symbols, and thus all file symbols must sort before any
6882 global symbols. The ELF spec may be interpreted to say that a
6883 file symbol must sort before other local symbols, but currently
6884 ld -r doesn't do this. So, for ld -r output, it is possible to
6885 make a better choice of file name for local symbols by ignoring
6886 file symbols appearing after a given local symbol. */
6887 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6893 state
= nothing_seen
;
6895 for (p
= symbols
; *p
!= NULL
; p
++)
6899 q
= (elf_symbol_type
*) *p
;
6901 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6907 if (state
== symbol_seen
)
6908 state
= file_after_symbol_seen
;
6912 if (bfd_get_section (&q
->symbol
) == section
6913 && q
->symbol
.value
>= low_func
6914 && q
->symbol
.value
<= offset
)
6916 func
= (asymbol
*) q
;
6917 low_func
= q
->symbol
.value
;
6920 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
6921 || state
!= file_after_symbol_seen
))
6922 filename
= bfd_asymbol_name (file
);
6926 if (state
== nothing_seen
)
6927 state
= symbol_seen
;
6934 *filename_ptr
= filename
;
6935 if (functionname_ptr
)
6936 *functionname_ptr
= bfd_asymbol_name (func
);
6941 /* Find the nearest line to a particular section and offset,
6942 for error reporting. */
6945 _bfd_elf_find_nearest_line (bfd
*abfd
,
6949 const char **filename_ptr
,
6950 const char **functionname_ptr
,
6951 unsigned int *line_ptr
)
6955 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6956 filename_ptr
, functionname_ptr
,
6959 if (!*functionname_ptr
)
6960 elf_find_function (abfd
, section
, symbols
, offset
,
6961 *filename_ptr
? NULL
: filename_ptr
,
6967 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6968 filename_ptr
, functionname_ptr
,
6970 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6972 if (!*functionname_ptr
)
6973 elf_find_function (abfd
, section
, symbols
, offset
,
6974 *filename_ptr
? NULL
: filename_ptr
,
6980 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6981 &found
, filename_ptr
,
6982 functionname_ptr
, line_ptr
,
6983 &elf_tdata (abfd
)->line_info
))
6985 if (found
&& (*functionname_ptr
|| *line_ptr
))
6988 if (symbols
== NULL
)
6991 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6992 filename_ptr
, functionname_ptr
))
6999 /* Find the line for a symbol. */
7002 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7003 const char **filename_ptr
, unsigned int *line_ptr
)
7005 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7006 filename_ptr
, line_ptr
, 0,
7007 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7010 /* After a call to bfd_find_nearest_line, successive calls to
7011 bfd_find_inliner_info can be used to get source information about
7012 each level of function inlining that terminated at the address
7013 passed to bfd_find_nearest_line. Currently this is only supported
7014 for DWARF2 with appropriate DWARF3 extensions. */
7017 _bfd_elf_find_inliner_info (bfd
*abfd
,
7018 const char **filename_ptr
,
7019 const char **functionname_ptr
,
7020 unsigned int *line_ptr
)
7023 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7024 functionname_ptr
, line_ptr
,
7025 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7030 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
7034 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
7036 ret
+= get_program_header_size (abfd
);
7041 _bfd_elf_set_section_contents (bfd
*abfd
,
7043 const void *location
,
7045 bfd_size_type count
)
7047 Elf_Internal_Shdr
*hdr
;
7050 if (! abfd
->output_has_begun
7051 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7054 hdr
= &elf_section_data (section
)->this_hdr
;
7055 pos
= hdr
->sh_offset
+ offset
;
7056 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7057 || bfd_bwrite (location
, count
, abfd
) != count
)
7064 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7065 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7066 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7071 /* Try to convert a non-ELF reloc into an ELF one. */
7074 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7076 /* Check whether we really have an ELF howto. */
7078 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7080 bfd_reloc_code_real_type code
;
7081 reloc_howto_type
*howto
;
7083 /* Alien reloc: Try to determine its type to replace it with an
7084 equivalent ELF reloc. */
7086 if (areloc
->howto
->pc_relative
)
7088 switch (areloc
->howto
->bitsize
)
7091 code
= BFD_RELOC_8_PCREL
;
7094 code
= BFD_RELOC_12_PCREL
;
7097 code
= BFD_RELOC_16_PCREL
;
7100 code
= BFD_RELOC_24_PCREL
;
7103 code
= BFD_RELOC_32_PCREL
;
7106 code
= BFD_RELOC_64_PCREL
;
7112 howto
= bfd_reloc_type_lookup (abfd
, code
);
7114 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7116 if (howto
->pcrel_offset
)
7117 areloc
->addend
+= areloc
->address
;
7119 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7124 switch (areloc
->howto
->bitsize
)
7130 code
= BFD_RELOC_14
;
7133 code
= BFD_RELOC_16
;
7136 code
= BFD_RELOC_26
;
7139 code
= BFD_RELOC_32
;
7142 code
= BFD_RELOC_64
;
7148 howto
= bfd_reloc_type_lookup (abfd
, code
);
7152 areloc
->howto
= howto
;
7160 (*_bfd_error_handler
)
7161 (_("%B: unsupported relocation type %s"),
7162 abfd
, areloc
->howto
->name
);
7163 bfd_set_error (bfd_error_bad_value
);
7168 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7170 if (bfd_get_format (abfd
) == bfd_object
)
7172 if (elf_shstrtab (abfd
) != NULL
)
7173 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7174 _bfd_dwarf2_cleanup_debug_info (abfd
);
7177 return _bfd_generic_close_and_cleanup (abfd
);
7180 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7181 in the relocation's offset. Thus we cannot allow any sort of sanity
7182 range-checking to interfere. There is nothing else to do in processing
7185 bfd_reloc_status_type
7186 _bfd_elf_rel_vtable_reloc_fn
7187 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7188 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7189 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7190 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7192 return bfd_reloc_ok
;
7195 /* Elf core file support. Much of this only works on native
7196 toolchains, since we rely on knowing the
7197 machine-dependent procfs structure in order to pick
7198 out details about the corefile. */
7200 #ifdef HAVE_SYS_PROCFS_H
7201 # include <sys/procfs.h>
7204 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7207 elfcore_make_pid (bfd
*abfd
)
7209 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7210 + (elf_tdata (abfd
)->core_pid
));
7213 /* If there isn't a section called NAME, make one, using
7214 data from SECT. Note, this function will generate a
7215 reference to NAME, so you shouldn't deallocate or
7219 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7223 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7226 sect2
= bfd_make_section (abfd
, name
);
7230 sect2
->size
= sect
->size
;
7231 sect2
->filepos
= sect
->filepos
;
7232 sect2
->flags
= sect
->flags
;
7233 sect2
->alignment_power
= sect
->alignment_power
;
7237 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7238 actually creates up to two pseudosections:
7239 - For the single-threaded case, a section named NAME, unless
7240 such a section already exists.
7241 - For the multi-threaded case, a section named "NAME/PID", where
7242 PID is elfcore_make_pid (abfd).
7243 Both pseudosections have identical contents. */
7245 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7251 char *threaded_name
;
7255 /* Build the section name. */
7257 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7258 len
= strlen (buf
) + 1;
7259 threaded_name
= bfd_alloc (abfd
, len
);
7260 if (threaded_name
== NULL
)
7262 memcpy (threaded_name
, buf
, len
);
7264 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
7268 sect
->filepos
= filepos
;
7269 sect
->flags
= SEC_HAS_CONTENTS
;
7270 sect
->alignment_power
= 2;
7272 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7275 /* prstatus_t exists on:
7277 linux 2.[01] + glibc
7281 #if defined (HAVE_PRSTATUS_T)
7284 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7289 if (note
->descsz
== sizeof (prstatus_t
))
7293 size
= sizeof (prstat
.pr_reg
);
7294 offset
= offsetof (prstatus_t
, pr_reg
);
7295 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7297 /* Do not overwrite the core signal if it
7298 has already been set by another thread. */
7299 if (elf_tdata (abfd
)->core_signal
== 0)
7300 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7301 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7303 /* pr_who exists on:
7306 pr_who doesn't exist on:
7309 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7310 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7313 #if defined (HAVE_PRSTATUS32_T)
7314 else if (note
->descsz
== sizeof (prstatus32_t
))
7316 /* 64-bit host, 32-bit corefile */
7317 prstatus32_t prstat
;
7319 size
= sizeof (prstat
.pr_reg
);
7320 offset
= offsetof (prstatus32_t
, pr_reg
);
7321 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7323 /* Do not overwrite the core signal if it
7324 has already been set by another thread. */
7325 if (elf_tdata (abfd
)->core_signal
== 0)
7326 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7327 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7329 /* pr_who exists on:
7332 pr_who doesn't exist on:
7335 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7336 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7339 #endif /* HAVE_PRSTATUS32_T */
7342 /* Fail - we don't know how to handle any other
7343 note size (ie. data object type). */
7347 /* Make a ".reg/999" section and a ".reg" section. */
7348 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7349 size
, note
->descpos
+ offset
);
7351 #endif /* defined (HAVE_PRSTATUS_T) */
7353 /* Create a pseudosection containing the exact contents of NOTE. */
7355 elfcore_make_note_pseudosection (bfd
*abfd
,
7357 Elf_Internal_Note
*note
)
7359 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7360 note
->descsz
, note
->descpos
);
7363 /* There isn't a consistent prfpregset_t across platforms,
7364 but it doesn't matter, because we don't have to pick this
7365 data structure apart. */
7368 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7370 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7373 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7374 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7378 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7380 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7383 #if defined (HAVE_PRPSINFO_T)
7384 typedef prpsinfo_t elfcore_psinfo_t
;
7385 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7386 typedef prpsinfo32_t elfcore_psinfo32_t
;
7390 #if defined (HAVE_PSINFO_T)
7391 typedef psinfo_t elfcore_psinfo_t
;
7392 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7393 typedef psinfo32_t elfcore_psinfo32_t
;
7397 /* return a malloc'ed copy of a string at START which is at
7398 most MAX bytes long, possibly without a terminating '\0'.
7399 the copy will always have a terminating '\0'. */
7402 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7405 char *end
= memchr (start
, '\0', max
);
7413 dups
= bfd_alloc (abfd
, len
+ 1);
7417 memcpy (dups
, start
, len
);
7423 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7425 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7427 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7429 elfcore_psinfo_t psinfo
;
7431 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7433 elf_tdata (abfd
)->core_program
7434 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7435 sizeof (psinfo
.pr_fname
));
7437 elf_tdata (abfd
)->core_command
7438 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7439 sizeof (psinfo
.pr_psargs
));
7441 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7442 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7444 /* 64-bit host, 32-bit corefile */
7445 elfcore_psinfo32_t psinfo
;
7447 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7449 elf_tdata (abfd
)->core_program
7450 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7451 sizeof (psinfo
.pr_fname
));
7453 elf_tdata (abfd
)->core_command
7454 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7455 sizeof (psinfo
.pr_psargs
));
7461 /* Fail - we don't know how to handle any other
7462 note size (ie. data object type). */
7466 /* Note that for some reason, a spurious space is tacked
7467 onto the end of the args in some (at least one anyway)
7468 implementations, so strip it off if it exists. */
7471 char *command
= elf_tdata (abfd
)->core_command
;
7472 int n
= strlen (command
);
7474 if (0 < n
&& command
[n
- 1] == ' ')
7475 command
[n
- 1] = '\0';
7480 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7482 #if defined (HAVE_PSTATUS_T)
7484 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7486 if (note
->descsz
== sizeof (pstatus_t
)
7487 #if defined (HAVE_PXSTATUS_T)
7488 || note
->descsz
== sizeof (pxstatus_t
)
7494 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7496 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7498 #if defined (HAVE_PSTATUS32_T)
7499 else if (note
->descsz
== sizeof (pstatus32_t
))
7501 /* 64-bit host, 32-bit corefile */
7504 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7506 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7509 /* Could grab some more details from the "representative"
7510 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7511 NT_LWPSTATUS note, presumably. */
7515 #endif /* defined (HAVE_PSTATUS_T) */
7517 #if defined (HAVE_LWPSTATUS_T)
7519 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7521 lwpstatus_t lwpstat
;
7527 if (note
->descsz
!= sizeof (lwpstat
)
7528 #if defined (HAVE_LWPXSTATUS_T)
7529 && note
->descsz
!= sizeof (lwpxstatus_t
)
7534 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7536 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7537 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7539 /* Make a ".reg/999" section. */
7541 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7542 len
= strlen (buf
) + 1;
7543 name
= bfd_alloc (abfd
, len
);
7546 memcpy (name
, buf
, len
);
7548 sect
= bfd_make_section_anyway (abfd
, name
);
7552 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7553 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7554 sect
->filepos
= note
->descpos
7555 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7558 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7559 sect
->size
= sizeof (lwpstat
.pr_reg
);
7560 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7563 sect
->flags
= SEC_HAS_CONTENTS
;
7564 sect
->alignment_power
= 2;
7566 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7569 /* Make a ".reg2/999" section */
7571 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7572 len
= strlen (buf
) + 1;
7573 name
= bfd_alloc (abfd
, len
);
7576 memcpy (name
, buf
, len
);
7578 sect
= bfd_make_section_anyway (abfd
, name
);
7582 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7583 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7584 sect
->filepos
= note
->descpos
7585 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7588 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7589 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7590 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7593 sect
->flags
= SEC_HAS_CONTENTS
;
7594 sect
->alignment_power
= 2;
7596 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7598 #endif /* defined (HAVE_LWPSTATUS_T) */
7600 #if defined (HAVE_WIN32_PSTATUS_T)
7602 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7608 win32_pstatus_t pstatus
;
7610 if (note
->descsz
< sizeof (pstatus
))
7613 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7615 switch (pstatus
.data_type
)
7617 case NOTE_INFO_PROCESS
:
7618 /* FIXME: need to add ->core_command. */
7619 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7620 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7623 case NOTE_INFO_THREAD
:
7624 /* Make a ".reg/999" section. */
7625 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7627 len
= strlen (buf
) + 1;
7628 name
= bfd_alloc (abfd
, len
);
7632 memcpy (name
, buf
, len
);
7634 sect
= bfd_make_section_anyway (abfd
, name
);
7638 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7639 sect
->filepos
= (note
->descpos
7640 + offsetof (struct win32_pstatus
,
7641 data
.thread_info
.thread_context
));
7642 sect
->flags
= SEC_HAS_CONTENTS
;
7643 sect
->alignment_power
= 2;
7645 if (pstatus
.data
.thread_info
.is_active_thread
)
7646 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7650 case NOTE_INFO_MODULE
:
7651 /* Make a ".module/xxxxxxxx" section. */
7652 sprintf (buf
, ".module/%08lx",
7653 (long) pstatus
.data
.module_info
.base_address
);
7655 len
= strlen (buf
) + 1;
7656 name
= bfd_alloc (abfd
, len
);
7660 memcpy (name
, buf
, len
);
7662 sect
= bfd_make_section_anyway (abfd
, name
);
7667 sect
->size
= note
->descsz
;
7668 sect
->filepos
= note
->descpos
;
7669 sect
->flags
= SEC_HAS_CONTENTS
;
7670 sect
->alignment_power
= 2;
7679 #endif /* HAVE_WIN32_PSTATUS_T */
7682 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7684 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7692 if (bed
->elf_backend_grok_prstatus
)
7693 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7695 #if defined (HAVE_PRSTATUS_T)
7696 return elfcore_grok_prstatus (abfd
, note
);
7701 #if defined (HAVE_PSTATUS_T)
7703 return elfcore_grok_pstatus (abfd
, note
);
7706 #if defined (HAVE_LWPSTATUS_T)
7708 return elfcore_grok_lwpstatus (abfd
, note
);
7711 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7712 return elfcore_grok_prfpreg (abfd
, note
);
7714 #if defined (HAVE_WIN32_PSTATUS_T)
7715 case NT_WIN32PSTATUS
:
7716 return elfcore_grok_win32pstatus (abfd
, note
);
7719 case NT_PRXFPREG
: /* Linux SSE extension */
7720 if (note
->namesz
== 6
7721 && strcmp (note
->namedata
, "LINUX") == 0)
7722 return elfcore_grok_prxfpreg (abfd
, note
);
7728 if (bed
->elf_backend_grok_psinfo
)
7729 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7731 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7732 return elfcore_grok_psinfo (abfd
, note
);
7739 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7743 sect
->size
= note
->descsz
;
7744 sect
->filepos
= note
->descpos
;
7745 sect
->flags
= SEC_HAS_CONTENTS
;
7746 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7754 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7758 cp
= strchr (note
->namedata
, '@');
7761 *lwpidp
= atoi(cp
+ 1);
7768 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7771 /* Signal number at offset 0x08. */
7772 elf_tdata (abfd
)->core_signal
7773 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7775 /* Process ID at offset 0x50. */
7776 elf_tdata (abfd
)->core_pid
7777 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7779 /* Command name at 0x7c (max 32 bytes, including nul). */
7780 elf_tdata (abfd
)->core_command
7781 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7783 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7788 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7792 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7793 elf_tdata (abfd
)->core_lwpid
= lwp
;
7795 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7797 /* NetBSD-specific core "procinfo". Note that we expect to
7798 find this note before any of the others, which is fine,
7799 since the kernel writes this note out first when it
7800 creates a core file. */
7802 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7805 /* As of Jan 2002 there are no other machine-independent notes
7806 defined for NetBSD core files. If the note type is less
7807 than the start of the machine-dependent note types, we don't
7810 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7814 switch (bfd_get_arch (abfd
))
7816 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7817 PT_GETFPREGS == mach+2. */
7819 case bfd_arch_alpha
:
7820 case bfd_arch_sparc
:
7823 case NT_NETBSDCORE_FIRSTMACH
+0:
7824 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7826 case NT_NETBSDCORE_FIRSTMACH
+2:
7827 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7833 /* On all other arch's, PT_GETREGS == mach+1 and
7834 PT_GETFPREGS == mach+3. */
7839 case NT_NETBSDCORE_FIRSTMACH
+1:
7840 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7842 case NT_NETBSDCORE_FIRSTMACH
+3:
7843 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7853 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7855 void *ddata
= note
->descdata
;
7862 /* nto_procfs_status 'pid' field is at offset 0. */
7863 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7865 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7866 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7868 /* nto_procfs_status 'flags' field is at offset 8. */
7869 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7871 /* nto_procfs_status 'what' field is at offset 14. */
7872 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7874 elf_tdata (abfd
)->core_signal
= sig
;
7875 elf_tdata (abfd
)->core_lwpid
= *tid
;
7878 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7879 do not come from signals so we make sure we set the current
7880 thread just in case. */
7881 if (flags
& 0x00000080)
7882 elf_tdata (abfd
)->core_lwpid
= *tid
;
7884 /* Make a ".qnx_core_status/%d" section. */
7885 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7887 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7892 sect
= bfd_make_section_anyway (abfd
, name
);
7896 sect
->size
= note
->descsz
;
7897 sect
->filepos
= note
->descpos
;
7898 sect
->flags
= SEC_HAS_CONTENTS
;
7899 sect
->alignment_power
= 2;
7901 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7905 elfcore_grok_nto_regs (bfd
*abfd
,
7906 Elf_Internal_Note
*note
,
7914 /* Make a "(base)/%d" section. */
7915 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7917 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7922 sect
= bfd_make_section_anyway (abfd
, name
);
7926 sect
->size
= note
->descsz
;
7927 sect
->filepos
= note
->descpos
;
7928 sect
->flags
= SEC_HAS_CONTENTS
;
7929 sect
->alignment_power
= 2;
7931 /* This is the current thread. */
7932 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7933 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7938 #define BFD_QNT_CORE_INFO 7
7939 #define BFD_QNT_CORE_STATUS 8
7940 #define BFD_QNT_CORE_GREG 9
7941 #define BFD_QNT_CORE_FPREG 10
7944 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7946 /* Every GREG section has a STATUS section before it. Store the
7947 tid from the previous call to pass down to the next gregs
7949 static pid_t tid
= 1;
7953 case BFD_QNT_CORE_INFO
:
7954 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7955 case BFD_QNT_CORE_STATUS
:
7956 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7957 case BFD_QNT_CORE_GREG
:
7958 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
7959 case BFD_QNT_CORE_FPREG
:
7960 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
7966 /* Function: elfcore_write_note
7973 size of data for note
7976 End of buffer containing note. */
7979 elfcore_write_note (bfd
*abfd
,
7987 Elf_External_Note
*xnp
;
7997 const struct elf_backend_data
*bed
;
7999 namesz
= strlen (name
) + 1;
8000 bed
= get_elf_backend_data (abfd
);
8001 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
8004 newspace
= 12 + namesz
+ pad
+ size
;
8006 p
= realloc (buf
, *bufsiz
+ newspace
);
8008 *bufsiz
+= newspace
;
8009 xnp
= (Elf_External_Note
*) dest
;
8010 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8011 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8012 H_PUT_32 (abfd
, type
, xnp
->type
);
8016 memcpy (dest
, name
, namesz
);
8024 memcpy (dest
, input
, size
);
8028 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8030 elfcore_write_prpsinfo (bfd
*abfd
,
8037 char *note_name
= "CORE";
8039 #if defined (HAVE_PSINFO_T)
8041 note_type
= NT_PSINFO
;
8044 note_type
= NT_PRPSINFO
;
8047 memset (&data
, 0, sizeof (data
));
8048 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8049 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8050 return elfcore_write_note (abfd
, buf
, bufsiz
,
8051 note_name
, note_type
, &data
, sizeof (data
));
8053 #endif /* PSINFO_T or PRPSINFO_T */
8055 #if defined (HAVE_PRSTATUS_T)
8057 elfcore_write_prstatus (bfd
*abfd
,
8065 char *note_name
= "CORE";
8067 memset (&prstat
, 0, sizeof (prstat
));
8068 prstat
.pr_pid
= pid
;
8069 prstat
.pr_cursig
= cursig
;
8070 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8071 return elfcore_write_note (abfd
, buf
, bufsiz
,
8072 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8074 #endif /* HAVE_PRSTATUS_T */
8076 #if defined (HAVE_LWPSTATUS_T)
8078 elfcore_write_lwpstatus (bfd
*abfd
,
8085 lwpstatus_t lwpstat
;
8086 char *note_name
= "CORE";
8088 memset (&lwpstat
, 0, sizeof (lwpstat
));
8089 lwpstat
.pr_lwpid
= pid
>> 16;
8090 lwpstat
.pr_cursig
= cursig
;
8091 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8092 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8093 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8095 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8096 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8098 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8099 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8102 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8103 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8105 #endif /* HAVE_LWPSTATUS_T */
8107 #if defined (HAVE_PSTATUS_T)
8109 elfcore_write_pstatus (bfd
*abfd
,
8113 int cursig ATTRIBUTE_UNUSED
,
8114 const void *gregs ATTRIBUTE_UNUSED
)
8117 char *note_name
= "CORE";
8119 memset (&pstat
, 0, sizeof (pstat
));
8120 pstat
.pr_pid
= pid
& 0xffff;
8121 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8122 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8125 #endif /* HAVE_PSTATUS_T */
8128 elfcore_write_prfpreg (bfd
*abfd
,
8134 char *note_name
= "CORE";
8135 return elfcore_write_note (abfd
, buf
, bufsiz
,
8136 note_name
, NT_FPREGSET
, fpregs
, size
);
8140 elfcore_write_prxfpreg (bfd
*abfd
,
8143 const void *xfpregs
,
8146 char *note_name
= "LINUX";
8147 return elfcore_write_note (abfd
, buf
, bufsiz
,
8148 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8152 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8160 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8163 buf
= bfd_malloc (size
);
8167 if (bfd_bread (buf
, size
, abfd
) != size
)
8175 while (p
< buf
+ size
)
8177 /* FIXME: bad alignment assumption. */
8178 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8179 Elf_Internal_Note in
;
8181 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8183 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8184 in
.namedata
= xnp
->name
;
8186 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8187 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8188 in
.descpos
= offset
+ (in
.descdata
- buf
);
8190 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
8192 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8195 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
8197 if (! elfcore_grok_nto_note (abfd
, &in
))
8202 if (! elfcore_grok_note (abfd
, &in
))
8206 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8213 /* Providing external access to the ELF program header table. */
8215 /* Return an upper bound on the number of bytes required to store a
8216 copy of ABFD's program header table entries. Return -1 if an error
8217 occurs; bfd_get_error will return an appropriate code. */
8220 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8222 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8224 bfd_set_error (bfd_error_wrong_format
);
8228 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8231 /* Copy ABFD's program header table entries to *PHDRS. The entries
8232 will be stored as an array of Elf_Internal_Phdr structures, as
8233 defined in include/elf/internal.h. To find out how large the
8234 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8236 Return the number of program header table entries read, or -1 if an
8237 error occurs; bfd_get_error will return an appropriate code. */
8240 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8244 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8246 bfd_set_error (bfd_error_wrong_format
);
8250 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8251 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8252 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8258 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8261 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8263 i_ehdrp
= elf_elfheader (abfd
);
8264 if (i_ehdrp
== NULL
)
8265 sprintf_vma (buf
, value
);
8268 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8270 #if BFD_HOST_64BIT_LONG
8271 sprintf (buf
, "%016lx", value
);
8273 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8274 _bfd_int64_low (value
));
8278 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8281 sprintf_vma (buf
, value
);
8286 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8289 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8291 i_ehdrp
= elf_elfheader (abfd
);
8292 if (i_ehdrp
== NULL
)
8293 fprintf_vma ((FILE *) stream
, value
);
8296 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8298 #if BFD_HOST_64BIT_LONG
8299 fprintf ((FILE *) stream
, "%016lx", value
);
8301 fprintf ((FILE *) stream
, "%08lx%08lx",
8302 _bfd_int64_high (value
), _bfd_int64_low (value
));
8306 fprintf ((FILE *) stream
, "%08lx",
8307 (unsigned long) (value
& 0xffffffff));
8310 fprintf_vma ((FILE *) stream
, value
);
8314 enum elf_reloc_type_class
8315 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8317 return reloc_class_normal
;
8320 /* For RELA architectures, return the relocation value for a
8321 relocation against a local symbol. */
8324 _bfd_elf_rela_local_sym (bfd
*abfd
,
8325 Elf_Internal_Sym
*sym
,
8327 Elf_Internal_Rela
*rel
)
8329 asection
*sec
= *psec
;
8332 relocation
= (sec
->output_section
->vma
8333 + sec
->output_offset
8335 if ((sec
->flags
& SEC_MERGE
)
8336 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8337 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8340 _bfd_merged_section_offset (abfd
, psec
,
8341 elf_section_data (sec
)->sec_info
,
8342 sym
->st_value
+ rel
->r_addend
);
8345 /* If we have changed the section, and our original section is
8346 marked with SEC_EXCLUDE, it means that the original
8347 SEC_MERGE section has been completely subsumed in some
8348 other SEC_MERGE section. In this case, we need to leave
8349 some info around for --emit-relocs. */
8350 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8351 sec
->kept_section
= *psec
;
8354 rel
->r_addend
-= relocation
;
8355 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8361 _bfd_elf_rel_local_sym (bfd
*abfd
,
8362 Elf_Internal_Sym
*sym
,
8366 asection
*sec
= *psec
;
8368 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8369 return sym
->st_value
+ addend
;
8371 return _bfd_merged_section_offset (abfd
, psec
,
8372 elf_section_data (sec
)->sec_info
,
8373 sym
->st_value
+ addend
);
8377 _bfd_elf_section_offset (bfd
*abfd
,
8378 struct bfd_link_info
*info
,
8382 switch (sec
->sec_info_type
)
8384 case ELF_INFO_TYPE_STABS
:
8385 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8387 case ELF_INFO_TYPE_EH_FRAME
:
8388 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8394 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8395 reconstruct an ELF file by reading the segments out of remote memory
8396 based on the ELF file header at EHDR_VMA and the ELF program headers it
8397 points to. If not null, *LOADBASEP is filled in with the difference
8398 between the VMAs from which the segments were read, and the VMAs the
8399 file headers (and hence BFD's idea of each section's VMA) put them at.
8401 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8402 remote memory at target address VMA into the local buffer at MYADDR; it
8403 should return zero on success or an `errno' code on failure. TEMPL must
8404 be a BFD for an ELF target with the word size and byte order found in
8405 the remote memory. */
8408 bfd_elf_bfd_from_remote_memory
8412 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8414 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8415 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8419 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8420 long symcount ATTRIBUTE_UNUSED
,
8421 asymbol
**syms ATTRIBUTE_UNUSED
,
8426 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8429 const char *relplt_name
;
8430 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8434 Elf_Internal_Shdr
*hdr
;
8440 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8443 if (dynsymcount
<= 0)
8446 if (!bed
->plt_sym_val
)
8449 relplt_name
= bed
->relplt_name
;
8450 if (relplt_name
== NULL
)
8451 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8452 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8456 hdr
= &elf_section_data (relplt
)->this_hdr
;
8457 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8458 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8461 plt
= bfd_get_section_by_name (abfd
, ".plt");
8465 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8466 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8469 count
= relplt
->size
/ hdr
->sh_entsize
;
8470 size
= count
* sizeof (asymbol
);
8471 p
= relplt
->relocation
;
8472 for (i
= 0; i
< count
; i
++, s
++, p
++)
8473 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8475 s
= *ret
= bfd_malloc (size
);
8479 names
= (char *) (s
+ count
);
8480 p
= relplt
->relocation
;
8482 for (i
= 0; i
< count
; i
++, s
++, p
++)
8487 addr
= bed
->plt_sym_val (i
, plt
, p
);
8488 if (addr
== (bfd_vma
) -1)
8491 *s
= **p
->sym_ptr_ptr
;
8492 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8493 we are defining a symbol, ensure one of them is set. */
8494 if ((s
->flags
& BSF_LOCAL
) == 0)
8495 s
->flags
|= BSF_GLOBAL
;
8497 s
->value
= addr
- plt
->vma
;
8499 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8500 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8502 memcpy (names
, "@plt", sizeof ("@plt"));
8503 names
+= sizeof ("@plt");
8510 /* Sort symbol by binding and section. We want to put definitions
8511 sorted by section at the beginning. */
8514 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8516 const Elf_Internal_Sym
*s1
;
8517 const Elf_Internal_Sym
*s2
;
8520 /* Make sure that undefined symbols are at the end. */
8521 s1
= (const Elf_Internal_Sym
*) arg1
;
8522 if (s1
->st_shndx
== SHN_UNDEF
)
8524 s2
= (const Elf_Internal_Sym
*) arg2
;
8525 if (s2
->st_shndx
== SHN_UNDEF
)
8528 /* Sorted by section index. */
8529 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8533 /* Sorted by binding. */
8534 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8539 Elf_Internal_Sym
*sym
;
8544 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8546 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8547 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8548 return strcmp (s1
->name
, s2
->name
);
8551 /* Check if 2 sections define the same set of local and global
8555 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8558 const struct elf_backend_data
*bed1
, *bed2
;
8559 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8560 bfd_size_type symcount1
, symcount2
;
8561 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8562 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8563 Elf_Internal_Sym
*isymend
;
8564 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8565 bfd_size_type count1
, count2
, i
;
8572 /* If both are .gnu.linkonce sections, they have to have the same
8574 if (strncmp (sec1
->name
, ".gnu.linkonce",
8575 sizeof ".gnu.linkonce" - 1) == 0
8576 && strncmp (sec2
->name
, ".gnu.linkonce",
8577 sizeof ".gnu.linkonce" - 1) == 0)
8578 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8579 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8581 /* Both sections have to be in ELF. */
8582 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8583 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8586 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8589 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8590 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8592 /* If both are members of section groups, they have to have the
8594 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8598 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8599 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8600 if (shndx1
== -1 || shndx2
== -1)
8603 bed1
= get_elf_backend_data (bfd1
);
8604 bed2
= get_elf_backend_data (bfd2
);
8605 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8606 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8607 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8608 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8610 if (symcount1
== 0 || symcount2
== 0)
8613 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8615 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8619 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8622 /* Sort symbols by binding and section. Global definitions are at
8624 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8625 elf_sort_elf_symbol
);
8626 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8627 elf_sort_elf_symbol
);
8629 /* Count definitions in the section. */
8631 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8632 isym
< isymend
; isym
++)
8634 if (isym
->st_shndx
== (unsigned int) shndx1
)
8641 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8646 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8647 isym
< isymend
; isym
++)
8649 if (isym
->st_shndx
== (unsigned int) shndx2
)
8656 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8660 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8663 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8664 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8666 if (symtable1
== NULL
|| symtable2
== NULL
)
8670 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8671 isym
< isymend
; isym
++)
8674 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8681 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8682 isym
< isymend
; isym
++)
8685 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8691 /* Sort symbol by name. */
8692 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8693 elf_sym_name_compare
);
8694 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8695 elf_sym_name_compare
);
8697 for (i
= 0; i
< count1
; i
++)
8698 /* Two symbols must have the same binding, type and name. */
8699 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8700 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8701 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8719 /* It is only used by x86-64 so far. */
8720 asection _bfd_elf_large_com_section
8721 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8722 SEC_IS_COMMON
, NULL
, NULL
, "LARGE_COMMON",
8725 /* Return TRUE if 2 section types are compatible. */
8728 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8729 bfd
*bbfd
, const asection
*bsec
)
8733 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8734 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8737 return elf_section_type (asec
) == elf_section_type (bsec
);