2000-06-06 Michael Snyder <msnyder@seadog.cygnus.com>
[binutils.git] / gas / config / tc-i960.c
blobd8c15c09911f8135de0de7e20ddb406b84bed4a2
1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 90, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
5 This file is part of GAS.
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* See comment on md_parse_option for 80960-specific invocation options. */
24 /* There are 4 different lengths of (potentially) symbol-based displacements
25 in the 80960 instruction set, each of which could require address fix-ups
26 and (in the case of external symbols) emission of relocation directives:
28 32-bit (MEMB)
29 This is a standard length for the base assembler and requires no
30 special action.
32 13-bit (COBR)
33 This is a non-standard length, but the base assembler has a
34 hook for bit field address fixups: the fixS structure can
35 point to a descriptor of the field, in which case our
36 md_number_to_field() routine gets called to process it.
38 I made the hook a little cleaner by having fix_new() (in the base
39 assembler) return a pointer to the fixS in question. And I made it a
40 little simpler by storing the field size (in this case 13) instead of
41 of a pointer to another structure: 80960 displacements are ALWAYS
42 stored in the low-order bits of a 4-byte word.
44 Since the target of a COBR cannot be external, no relocation
45 directives for this size displacement have to be generated.
46 But the base assembler had to be modified to issue error
47 messages if the symbol did turn out to be external.
49 24-bit (CTRL)
50 Fixups are handled as for the 13-bit case (except that 24 is stored
51 in the fixS).
53 The relocation directive generated is the same as that for the 32-bit
54 displacement, except that it's PC-relative (the 32-bit displacement
55 never is). The i80960 version of the linker needs a mod to
56 distinguish and handle the 24-bit case.
58 12-bit (MEMA)
59 MEMA formats are always promoted to MEMB (32-bit) if the displacement
60 is based on a symbol, because it could be relocated at link time.
61 The only time we use the 12-bit format is if an absolute value of
62 less than 4096 is specified, in which case we need neither a fixup nor
63 a relocation directive. */
65 #include <stdio.h>
66 #include <ctype.h>
68 #include "as.h"
70 #include "obstack.h"
72 #include "opcode/i960.h"
74 #if defined (OBJ_AOUT) || defined (OBJ_BOUT)
76 #define TC_S_IS_SYSPROC(s) ((1<=S_GET_OTHER(s)) && (S_GET_OTHER(s)<=32))
77 #define TC_S_IS_BALNAME(s) (S_GET_OTHER(s) == N_BALNAME)
78 #define TC_S_IS_CALLNAME(s) (S_GET_OTHER(s) == N_CALLNAME)
79 #define TC_S_IS_BADPROC(s) ((S_GET_OTHER(s) != 0) && !TC_S_IS_CALLNAME(s) && !TC_S_IS_BALNAME(s) && !TC_S_IS_SYSPROC(s))
81 #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER((s), (p)+1))
82 #define TC_S_GET_SYSPROC(s) (S_GET_OTHER(s)-1)
84 #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER((s), N_BALNAME))
85 #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER((s), N_CALLNAME))
86 #define TC_S_FORCE_TO_SYSPROC(s) {;}
88 #else /* ! OBJ_A/BOUT */
89 #ifdef OBJ_COFF
91 #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS(s) == C_SCALL)
92 #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME(s))
93 #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME(s))
94 #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC(s) && TC_S_GET_SYSPROC(s) < 0 && 31 < TC_S_GET_SYSPROC(s))
96 #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p))
97 #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx)
99 #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME(s))
100 #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME(s))
101 #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS((s), C_SCALL))
103 #else /* ! OBJ_COFF */
104 #ifdef OBJ_ELF
105 #define TC_S_IS_SYSPROC(s) 0
107 #define TC_S_IS_BALNAME(s) 0
108 #define TC_S_IS_CALLNAME(s) 0
109 #define TC_S_IS_BADPROC(s) 0
111 #define TC_S_SET_SYSPROC(s, p)
112 #define TC_S_GET_SYSPROC(s) 0
114 #define TC_S_FORCE_TO_BALNAME(s)
115 #define TC_S_FORCE_TO_CALLNAME(s)
116 #define TC_S_FORCE_TO_SYSPROC(s)
117 #else
118 #error COFF, a.out, b.out, and ELF are the only supported formats.
119 #endif /* ! OBJ_ELF */
120 #endif /* ! OBJ_COFF */
121 #endif /* ! OBJ_A/BOUT */
123 extern char *input_line_pointer;
125 #if !defined (BFD_ASSEMBLER) && !defined (BFD)
126 #ifdef OBJ_COFF
127 const int md_reloc_size = sizeof (struct reloc);
128 #else /* OBJ_COFF */
129 const int md_reloc_size = sizeof (struct relocation_info);
130 #endif /* OBJ_COFF */
131 #endif
133 /* Local i80960 routines. */
135 static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
136 static char *brlab_next (); /* Return next branch local label */
137 void brtab_emit (); /* Emit br-predict instrumentation table */
138 static void cobr_fmt (); /* Generate COBR instruction */
139 static void ctrl_fmt (); /* Generate CTRL instruction */
140 static char *emit (); /* Emit (internally) binary */
141 static int get_args (); /* Break arguments out of comma-separated list */
142 static void get_cdisp (); /* Handle COBR or CTRL displacement */
143 static char *get_ispec (); /* Find index specification string */
144 static int get_regnum (); /* Translate text to register number */
145 static int i_scan (); /* Lexical scan of instruction source */
146 static void mem_fmt (); /* Generate MEMA or MEMB instruction */
147 static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
148 static void parse_expr (); /* Parse an expression */
149 static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
150 static void parse_memop (); /* Parse a memory operand */
151 static void parse_po (); /* Parse machine-dependent pseudo-op */
152 static void parse_regop (); /* Parse a register operand */
153 static void reg_fmt (); /* Generate a REG format instruction */
154 void reloc_callj (); /* Relocate a 'callj' instruction */
155 static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
156 static void s_leafproc (); /* Process '.leafproc' pseudo-op */
157 static void s_sysproc (); /* Process '.sysproc' pseudo-op */
158 static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
159 static void syntax (); /* Give syntax error */
160 static int targ_has_sfr (); /* Target chip supports spec-func register? */
161 static int targ_has_iclass (); /* Target chip supports instruction set? */
163 /* See md_parse_option() for meanings of these options */
164 static char norelax; /* True if -norelax switch seen */
165 static char instrument_branches; /* True if -b switch seen */
167 /* Characters that always start a comment.
168 If the pre-processor is disabled, these aren't very useful.
170 const char comment_chars[] = "#";
172 /* Characters that only start a comment at the beginning of
173 a line. If the line seems to have the form '# 123 filename'
174 .line and .file directives will appear in the pre-processed output.
176 Note that input_file.c hand checks for '#' at the beginning of the
177 first line of the input file. This is because the compiler outputs
178 #NO_APP at the beginning of its output.
181 /* Also note that comments started like this one will always work. */
183 const char line_comment_chars[1];
185 const char line_separator_chars[1];
187 /* Chars that can be used to separate mant from exp in floating point nums */
188 const char EXP_CHARS[] = "eE";
190 /* Chars that mean this number is a floating point constant,
191 as in 0f12.456 or 0d1.2345e12
193 const char FLT_CHARS[] = "fFdDtT";
196 /* Table used by base assembler to relax addresses based on varying length
197 instructions. The fields are:
198 1) most positive reach of this state,
199 2) most negative reach of this state,
200 3) how many bytes this mode will add to the size of the current frag
201 4) which index into the table to try if we can't fit into this one.
203 For i80960, the only application is the (de-)optimization of cobr
204 instructions into separate compare and branch instructions when a 13-bit
205 displacement won't hack it.
207 const relax_typeS md_relax_table[] =
209 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
210 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
211 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
214 static void s_endian PARAMS ((int));
216 /* These are the machine dependent pseudo-ops.
218 This table describes all the machine specific pseudo-ops the assembler
219 has to support. The fields are:
220 pseudo-op name without dot
221 function to call to execute this pseudo-op
222 integer arg to pass to the function
224 #define S_LEAFPROC 1
225 #define S_SYSPROC 2
227 const pseudo_typeS md_pseudo_table[] =
229 {"bss", s_lcomm, 1},
230 {"endian", s_endian, 0},
231 {"extended", float_cons, 't'},
232 {"leafproc", parse_po, S_LEAFPROC},
233 {"sysproc", parse_po, S_SYSPROC},
235 {"word", cons, 4},
236 {"quad", cons, 16},
238 {0, 0, 0}
241 /* Macros to extract info from an 'expressionS' structure 'e' */
242 #define adds(e) e.X_add_symbol
243 #define offs(e) e.X_add_number
246 /* Branch-prediction bits for CTRL/COBR format opcodes */
247 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
248 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
249 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
252 /* Some instruction opcodes that we need explicitly */
253 #define BE 0x12000000
254 #define BG 0x11000000
255 #define BGE 0x13000000
256 #define BL 0x14000000
257 #define BLE 0x16000000
258 #define BNE 0x15000000
259 #define BNO 0x10000000
260 #define BO 0x17000000
261 #define CHKBIT 0x5a002700
262 #define CMPI 0x5a002080
263 #define CMPO 0x5a002000
265 #define B 0x08000000
266 #define BAL 0x0b000000
267 #define CALL 0x09000000
268 #define CALLS 0x66003800
269 #define RET 0x0a000000
272 /* These masks are used to build up a set of MEMB mode bits. */
273 #define A_BIT 0x0400
274 #define I_BIT 0x0800
275 #define MEMB_BIT 0x1000
276 #define D_BIT 0x2000
279 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
280 used). */
281 #define MEMA_ABASE 0x2000
283 /* Info from which a MEMA or MEMB format instruction can be generated */
284 typedef struct
286 /* (First) 32 bits of instruction */
287 long opcode;
288 /* 0-(none), 12- or, 32-bit displacement needed */
289 int disp;
290 /* The expression in the source instruction from which the
291 displacement should be determined. */
292 char *e;
295 memS;
298 /* The two pieces of info we need to generate a register operand */
299 struct regop
301 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
302 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
303 int n; /* Register number or literal value */
307 /* Number and assembler mnemonic for all registers that can appear in
308 operands. */
309 static const struct
311 char *reg_name;
312 int reg_num;
314 regnames[] =
316 { "pfp", 0 },
317 { "sp", 1 },
318 { "rip", 2 },
319 { "r3", 3 },
320 { "r4", 4 },
321 { "r5", 5 },
322 { "r6", 6 },
323 { "r7", 7 },
324 { "r8", 8 },
325 { "r9", 9 },
326 { "r10", 10 },
327 { "r11", 11 },
328 { "r12", 12 },
329 { "r13", 13 },
330 { "r14", 14 },
331 { "r15", 15 },
332 { "g0", 16 },
333 { "g1", 17 },
334 { "g2", 18 },
335 { "g3", 19 },
336 { "g4", 20 },
337 { "g5", 21 },
338 { "g6", 22 },
339 { "g7", 23 },
340 { "g8", 24 },
341 { "g9", 25 },
342 { "g10", 26 },
343 { "g11", 27 },
344 { "g12", 28 },
345 { "g13", 29 },
346 { "g14", 30 },
347 { "fp", 31 },
349 /* Numbers for special-function registers are for assembler internal
350 use only: they are scaled back to range [0-31] for binary output. */
351 #define SF0 32
353 { "sf0", 32 },
354 { "sf1", 33 },
355 { "sf2", 34 },
356 { "sf3", 35 },
357 { "sf4", 36 },
358 { "sf5", 37 },
359 { "sf6", 38 },
360 { "sf7", 39 },
361 { "sf8", 40 },
362 { "sf9", 41 },
363 { "sf10", 42 },
364 { "sf11", 43 },
365 { "sf12", 44 },
366 { "sf13", 45 },
367 { "sf14", 46 },
368 { "sf15", 47 },
369 { "sf16", 48 },
370 { "sf17", 49 },
371 { "sf18", 50 },
372 { "sf19", 51 },
373 { "sf20", 52 },
374 { "sf21", 53 },
375 { "sf22", 54 },
376 { "sf23", 55 },
377 { "sf24", 56 },
378 { "sf25", 57 },
379 { "sf26", 58 },
380 { "sf27", 59 },
381 { "sf28", 60 },
382 { "sf29", 61 },
383 { "sf30", 62 },
384 { "sf31", 63 },
386 /* Numbers for floating point registers are for assembler internal
387 use only: they are scaled back to [0-3] for binary output. */
388 #define FP0 64
390 { "fp0", 64 },
391 { "fp1", 65 },
392 { "fp2", 66 },
393 { "fp3", 67 },
395 { NULL, 0 }, /* END OF LIST */
398 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
399 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
400 #define IS_FP_REG(n) ((n) >= FP0)
402 /* Number and assembler mnemonic for all registers that can appear as
403 'abase' (indirect addressing) registers. */
404 static const struct
406 char *areg_name;
407 int areg_num;
409 aregs[] =
411 { "(pfp)", 0 },
412 { "(sp)", 1 },
413 { "(rip)", 2 },
414 { "(r3)", 3 },
415 { "(r4)", 4 },
416 { "(r5)", 5 },
417 { "(r6)", 6 },
418 { "(r7)", 7 },
419 { "(r8)", 8 },
420 { "(r9)", 9 },
421 { "(r10)", 10 },
422 { "(r11)", 11 },
423 { "(r12)", 12 },
424 { "(r13)", 13 },
425 { "(r14)", 14 },
426 { "(r15)", 15 },
427 { "(g0)", 16 },
428 { "(g1)", 17 },
429 { "(g2)", 18 },
430 { "(g3)", 19 },
431 { "(g4)", 20 },
432 { "(g5)", 21 },
433 { "(g6)", 22 },
434 { "(g7)", 23 },
435 { "(g8)", 24 },
436 { "(g9)", 25 },
437 { "(g10)", 26 },
438 { "(g11)", 27 },
439 { "(g12)", 28 },
440 { "(g13)", 29 },
441 { "(g14)", 30 },
442 { "(fp)", 31 },
444 #define IPREL 32
445 /* For assembler internal use only: this number never appears in binary
446 output. */
447 { "(ip)", IPREL },
449 { NULL, 0 }, /* END OF LIST */
453 /* Hash tables */
454 static struct hash_control *op_hash; /* Opcode mnemonics */
455 static struct hash_control *reg_hash; /* Register name hash table */
456 static struct hash_control *areg_hash; /* Abase register hash table */
459 /* Architecture for which we are assembling */
460 #define ARCH_ANY 0 /* Default: no architecture checking done */
461 #define ARCH_KA 1
462 #define ARCH_KB 2
463 #define ARCH_MC 3
464 #define ARCH_CA 4
465 #define ARCH_JX 5
466 #define ARCH_HX 6
467 int architecture = ARCH_ANY; /* Architecture requested on invocation line */
468 int iclasses_seen; /* OR of instruction classes (I_* constants)
469 * for which we've actually assembled
470 * instructions.
474 /* BRANCH-PREDICTION INSTRUMENTATION
476 The following supports generation of branch-prediction instrumentation
477 (turned on by -b switch). The instrumentation collects counts
478 of branches taken/not-taken for later input to a utility that will
479 set the branch prediction bits of the instructions in accordance with
480 the behavior observed. (Note that the KX series does not have
481 brach-prediction.)
483 The instrumentation consists of:
485 (1) before and after each conditional branch, a call to an external
486 routine that increments and steps over an inline counter. The
487 counter itself, initialized to 0, immediately follows the call
488 instruction. For each branch, the counter following the branch
489 is the number of times the branch was not taken, and the difference
490 between the counters is the number of times it was taken. An
491 example of an instrumented conditional branch:
493 call BR_CNT_FUNC
494 .word 0
495 LBRANCH23: be label
496 call BR_CNT_FUNC
497 .word 0
499 (2) a table of pointers to the instrumented branches, so that an
500 external postprocessing routine can locate all of the counters.
501 the table begins with a 2-word header: a pointer to the next in
502 a linked list of such tables (initialized to 0); and a count
503 of the number of entries in the table (exclusive of the header.
505 Note that input source code is expected to already contain calls
506 an external routine that will link the branch local table into a
507 list of such tables.
510 /* Number of branches instrumented so far. Also used to generate
511 unique local labels for each instrumented branch. */
512 static int br_cnt;
514 #define BR_LABEL_BASE "LBRANCH"
515 /* Basename of local labels on instrumented branches, to avoid
516 conflict with compiler- generated local labels. */
518 #define BR_CNT_FUNC "__inc_branch"
519 /* Name of the external routine that will increment (and step over) an
520 inline counter. */
522 #define BR_TAB_NAME "__BRANCH_TABLE__"
523 /* Name of the table of pointers to branches. A local (i.e.,
524 non-external) symbol. */
526 /*****************************************************************************
527 md_begin: One-time initialization.
529 Set up hash tables.
531 *************************************************************************** */
532 void
533 md_begin ()
535 int i; /* Loop counter */
536 const struct i960_opcode *oP; /* Pointer into opcode table */
537 const char *retval; /* Value returned by hash functions */
539 op_hash = hash_new ();
540 reg_hash = hash_new ();
541 areg_hash = hash_new ();
543 /* For some reason, the base assembler uses an empty string for "no
544 error message", instead of a NULL pointer. */
545 retval = 0;
547 for (oP = i960_opcodes; oP->name && !retval; oP++)
548 retval = hash_insert (op_hash, oP->name, (PTR) oP);
550 for (i = 0; regnames[i].reg_name && !retval; i++)
551 retval = hash_insert (reg_hash, regnames[i].reg_name,
552 (char *) &regnames[i].reg_num);
554 for (i = 0; aregs[i].areg_name && !retval; i++)
555 retval = hash_insert (areg_hash, aregs[i].areg_name,
556 (char *) &aregs[i].areg_num);
558 if (retval)
559 as_fatal (_("Hashing returned \"%s\"."), retval);
562 /*****************************************************************************
563 md_assemble: Assemble an instruction
565 Assumptions about the passed-in text:
566 - all comments, labels removed
567 - text is an instruction
568 - all white space compressed to single blanks
569 - all character constants have been replaced with decimal
571 *************************************************************************** */
572 void
573 md_assemble (textP)
574 char *textP; /* Source text of instruction */
576 /* Parsed instruction text, containing NO whitespace: arg[0]->opcode
577 mnemonic arg[1-3]->operands, with char constants replaced by
578 decimal numbers. */
579 char *args[4];
581 int n_ops; /* Number of instruction operands */
582 /* Pointer to instruction description */
583 struct i960_opcode *oP;
584 /* TRUE iff opcode mnemonic included branch-prediction suffix (".f"
585 or ".t"). */
586 int branch_predict;
587 /* Setting of branch-prediction bit(s) to be OR'd into instruction
588 opcode of CTRL/COBR format instructions. */
589 long bp_bits;
591 int n; /* Offset of last character in opcode mnemonic */
593 const char *bp_error_msg = _("branch prediction invalid on this opcode");
596 /* Parse instruction into opcode and operands */
597 memset (args, '\0', sizeof (args));
598 n_ops = i_scan (textP, args);
599 if (n_ops == -1)
601 return; /* Error message already issued */
604 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
605 if (!strcmp (args[0], "ldconst"))
607 n_ops = parse_ldconst (args);
608 if (n_ops == -1)
610 return;
616 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
617 n = strlen (args[0]) - 1;
618 branch_predict = 0;
619 bp_bits = 0;
620 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
622 /* We could check here to see if the target architecture
623 supports branch prediction, but why bother? The bit will
624 just be ignored by processors that don't use it. */
625 branch_predict = 1;
626 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
627 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
630 /* Look up opcode mnemonic in table and check number of operands.
631 Check that opcode is legal for the target architecture. If all
632 looks good, assemble instruction. */
633 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
634 if (!oP || !targ_has_iclass (oP->iclass))
636 as_bad (_("invalid opcode, \"%s\"."), args[0]);
639 else if (n_ops != oP->num_ops)
641 as_bad (_("improper number of operands. expecting %d, got %d"),
642 oP->num_ops, n_ops);
644 else
646 switch (oP->format)
648 case FBRA:
649 case CTRL:
650 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
651 if (oP->format == FBRA)
653 /* Now generate a 'bno' to same arg */
654 ctrl_fmt (args[1], BNO | bp_bits, 1);
656 break;
657 case COBR:
658 case COJ:
659 cobr_fmt (args, oP->opcode | bp_bits, oP);
660 break;
661 case REG:
662 if (branch_predict)
664 as_warn (bp_error_msg);
666 reg_fmt (args, oP);
667 break;
668 case MEM1:
669 if (args[0][0] == 'c' && args[0][1] == 'a')
671 if (branch_predict)
673 as_warn (bp_error_msg);
675 mem_fmt (args, oP, 1);
676 break;
678 case MEM2:
679 case MEM4:
680 case MEM8:
681 case MEM12:
682 case MEM16:
683 if (branch_predict)
685 as_warn (bp_error_msg);
687 mem_fmt (args, oP, 0);
688 break;
689 case CALLJ:
690 if (branch_predict)
692 as_warn (bp_error_msg);
694 /* Output opcode & set up "fixup" (relocation); flag
695 relocation as 'callj' type. */
696 know (oP->num_ops == 1);
697 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
698 break;
699 default:
700 BAD_CASE (oP->format);
701 break;
704 } /* md_assemble() */
706 /*****************************************************************************
707 md_number_to_chars: convert a number to target byte order
709 *************************************************************************** */
710 void
711 md_number_to_chars (buf, value, n)
712 char *buf;
713 valueT value;
714 int n;
716 number_to_chars_littleendian (buf, value, n);
719 /*****************************************************************************
720 md_chars_to_number: convert from target byte order to host byte order.
722 *************************************************************************** */
724 md_chars_to_number (val, n)
725 unsigned char *val; /* Value in target byte order */
726 int n; /* Number of bytes in the input */
728 int retval;
730 for (retval = 0; n--;)
732 retval <<= 8;
733 retval |= val[n];
735 return retval;
739 #define MAX_LITTLENUMS 6
740 #define LNUM_SIZE sizeof(LITTLENUM_TYPE)
742 /*****************************************************************************
743 md_atof: convert ascii to floating point
745 Turn a string at input_line_pointer into a floating point constant of type
746 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
747 emitted is returned at 'sizeP'. An error message is returned, or a pointer
748 to an empty message if OK.
750 Note we call the i386 floating point routine, rather than complicating
751 things with more files or symbolic links.
753 *************************************************************************** */
754 char *
755 md_atof (type, litP, sizeP)
756 int type;
757 char *litP;
758 int *sizeP;
760 LITTLENUM_TYPE words[MAX_LITTLENUMS];
761 LITTLENUM_TYPE *wordP;
762 int prec;
763 char *t;
764 char *atof_ieee ();
766 switch (type)
768 case 'f':
769 case 'F':
770 prec = 2;
771 break;
773 case 'd':
774 case 'D':
775 prec = 4;
776 break;
778 case 't':
779 case 'T':
780 prec = 5;
781 type = 'x'; /* That's what atof_ieee() understands */
782 break;
784 default:
785 *sizeP = 0;
786 return _("Bad call to md_atof()");
789 t = atof_ieee (input_line_pointer, type, words);
790 if (t)
792 input_line_pointer = t;
795 *sizeP = prec * LNUM_SIZE;
797 /* Output the LITTLENUMs in REVERSE order in accord with i80960
798 word-order. (Dunno why atof_ieee doesn't do it in the right
799 order in the first place -- probably because it's a hack of
800 atof_m68k.) */
802 for (wordP = words + prec - 1; prec--;)
804 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
805 litP += sizeof (LITTLENUM_TYPE);
808 return 0;
812 /*****************************************************************************
813 md_number_to_imm
815 *************************************************************************** */
816 void
817 md_number_to_imm (buf, val, n)
818 char *buf;
819 long val;
820 int n;
822 md_number_to_chars (buf, val, n);
826 /*****************************************************************************
827 md_number_to_disp
829 *************************************************************************** */
830 void
831 md_number_to_disp (buf, val, n)
832 char *buf;
833 long val;
834 int n;
836 md_number_to_chars (buf, val, n);
839 /*****************************************************************************
840 md_number_to_field:
842 Stick a value (an address fixup) into a bit field of
843 previously-generated instruction.
845 *************************************************************************** */
846 void
847 md_number_to_field (instrP, val, bfixP)
848 char *instrP; /* Pointer to instruction to be fixed */
849 long val; /* Address fixup value */
850 bit_fixS *bfixP; /* Description of bit field to be fixed up */
852 int numbits; /* Length of bit field to be fixed */
853 long instr; /* 32-bit instruction to be fixed-up */
854 long sign; /* 0 or -1, according to sign bit of 'val' */
856 /* Convert instruction back to host byte order. */
857 instr = md_chars_to_number (instrP, 4);
859 /* Surprise! -- we stored the number of bits to be modified rather
860 than a pointer to a structure. */
861 numbits = (int) bfixP;
862 if (numbits == 1)
864 /* This is a no-op, stuck here by reloc_callj() */
865 return;
868 know ((numbits == 13) || (numbits == 24));
870 /* Propagate sign bit of 'val' for the given number of bits. Result
871 should be all 0 or all 1. */
872 sign = val >> ((int) numbits - 1);
873 if (((val < 0) && (sign != -1))
874 || ((val > 0) && (sign != 0)))
876 as_bad (_("Fixup of %ld too large for field width of %d"),
877 val, numbits);
879 else
881 /* Put bit field into instruction and write back in target
882 * byte order.
884 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */
885 instr |= val;
886 md_number_to_chars (instrP, instr, 4);
888 } /* md_number_to_field() */
891 /*****************************************************************************
892 md_parse_option
893 Invocation line includes a switch not recognized by the base assembler.
894 See if it's a processor-specific option. For the 960, these are:
896 -norelax:
897 Conditional branch instructions that require displacements
898 greater than 13 bits (or that have external targets) should
899 generate errors. The default is to replace each such
900 instruction with the corresponding compare (or chkbit) and
901 branch instructions. Note that the Intel "j" cobr directives
902 are ALWAYS "de-optimized" in this way when necessary,
903 regardless of the setting of this option.
906 Add code to collect information about branches taken, for
907 later optimization of branch prediction bits by a separate
908 tool. COBR and CNTL format instructions have branch
909 prediction bits (in the CX architecture); if "BR" represents
910 an instruction in one of these classes, the following rep-
911 resents the code generated by the assembler:
913 call <increment routine>
914 .word 0 # pre-counter
915 Label: BR
916 call <increment routine>
917 .word 0 # post-counter
919 A table of all such "Labels" is also generated.
922 -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
923 Select the 80960 architecture. Instructions or features not
924 supported by the selected architecture cause fatal errors.
925 The default is to generate code for any instruction or feature
926 that is supported by SOME version of the 960 (even if this
927 means mixing architectures!).
929 ****************************************************************************/
931 CONST char *md_shortopts = "A:b";
932 struct option md_longopts[] =
934 #define OPTION_LINKRELAX (OPTION_MD_BASE)
935 {"linkrelax", no_argument, NULL, OPTION_LINKRELAX},
936 {"link-relax", no_argument, NULL, OPTION_LINKRELAX},
937 #define OPTION_NORELAX (OPTION_MD_BASE + 1)
938 {"norelax", no_argument, NULL, OPTION_NORELAX},
939 {"no-relax", no_argument, NULL, OPTION_NORELAX},
940 {NULL, no_argument, NULL, 0}
942 size_t md_longopts_size = sizeof (md_longopts);
944 struct tabentry
946 char *flag;
947 int arch;
949 static const struct tabentry arch_tab[] =
951 {"KA", ARCH_KA},
952 {"KB", ARCH_KB},
953 {"SA", ARCH_KA}, /* Synonym for KA */
954 {"SB", ARCH_KB}, /* Synonym for KB */
955 {"KC", ARCH_MC}, /* Synonym for MC */
956 {"MC", ARCH_MC},
957 {"CA", ARCH_CA},
958 {"JX", ARCH_JX},
959 {"HX", ARCH_HX},
960 {NULL, 0}
964 md_parse_option (c, arg)
965 int c;
966 char *arg;
968 switch (c)
970 case OPTION_LINKRELAX:
971 linkrelax = 1;
972 flag_keep_locals = 1;
973 break;
975 case OPTION_NORELAX:
976 norelax = 1;
977 break;
979 case 'b':
980 instrument_branches = 1;
981 break;
983 case 'A':
985 const struct tabentry *tp;
986 char *p = arg;
988 for (tp = arch_tab; tp->flag != NULL; tp++)
989 if (!strcmp (p, tp->flag))
990 break;
992 if (tp->flag == NULL)
994 as_bad (_("invalid architecture %s"), p);
995 return 0;
997 else
998 architecture = tp->arch;
1000 break;
1002 default:
1003 return 0;
1006 return 1;
1009 void
1010 md_show_usage (stream)
1011 FILE *stream;
1013 int i;
1014 fprintf (stream, _("I960 options:\n"));
1015 for (i = 0; arch_tab[i].flag; i++)
1016 fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag);
1017 fprintf (stream, _("\n\
1018 specify variant of 960 architecture\n\
1019 -b add code to collect statistics about branches taken\n\
1020 -link-relax preserve individual alignment directives so linker\n\
1021 can do relaxing (b.out format only)\n\
1022 -no-relax don't alter compare-and-branch instructions for\n\
1023 long displacements\n"));
1027 /*****************************************************************************
1028 md_convert_frag:
1029 Called by base assembler after address relaxation is finished: modify
1030 variable fragments according to how much relaxation was done.
1032 If the fragment substate is still 1, a 13-bit displacement was enough
1033 to reach the symbol in question. Set up an address fixup, but otherwise
1034 leave the cobr instruction alone.
1036 If the fragment substate is 2, a 13-bit displacement was not enough.
1037 Replace the cobr with a two instructions (a compare and a branch).
1039 *************************************************************************** */
1040 #ifndef BFD_ASSEMBLER
1041 void
1042 md_convert_frag (headers, seg, fragP)
1043 object_headers *headers;
1044 segT seg;
1045 fragS *fragP;
1046 #else
1047 void
1048 md_convert_frag (abfd, sec, fragP)
1049 bfd *abfd;
1050 segT sec;
1051 fragS *fragP;
1052 #endif
1054 fixS *fixP; /* Structure describing needed address fix */
1056 switch (fragP->fr_subtype)
1058 case 1:
1059 /* LEAVE SINGLE COBR INSTRUCTION */
1060 fixP = fix_new (fragP,
1061 fragP->fr_opcode - fragP->fr_literal,
1063 fragP->fr_symbol,
1064 fragP->fr_offset,
1066 NO_RELOC);
1068 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
1069 break;
1070 case 2:
1071 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1072 relax_cobr (fragP);
1073 break;
1074 default:
1075 BAD_CASE (fragP->fr_subtype);
1076 break;
1080 /*****************************************************************************
1081 md_estimate_size_before_relax: How much does it look like *fragP will grow?
1083 Called by base assembler just before address relaxation.
1084 Return the amount by which the fragment will grow.
1086 Any symbol that is now undefined will not become defined; cobr's
1087 based on undefined symbols will have to be replaced with a compare
1088 instruction and a branch instruction, and the code fragment will grow
1089 by 4 bytes.
1091 *************************************************************************** */
1093 md_estimate_size_before_relax (fragP, segment_type)
1094 register fragS *fragP;
1095 register segT segment_type;
1097 /* If symbol is undefined in this segment, go to "relaxed" state
1098 (compare and branch instructions instead of cobr) right now. */
1099 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
1101 relax_cobr (fragP);
1102 return 4;
1104 return 0;
1105 } /* md_estimate_size_before_relax() */
1107 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
1109 /*****************************************************************************
1110 md_ri_to_chars:
1111 This routine exists in order to overcome machine byte-order problems
1112 when dealing with bit-field entries in the relocation_info struct.
1114 But relocation info will be used on the host machine only (only
1115 executable code is actually downloaded to the i80960). Therefore,
1116 we leave it in host byte order.
1118 The above comment is no longer true. This routine now really
1119 does do the reordering (Ian Taylor 28 Aug 92).
1121 *************************************************************************** */
1123 static void
1124 md_ri_to_chars (where, ri)
1125 char *where;
1126 struct relocation_info *ri;
1128 md_number_to_chars (where, ri->r_address,
1129 sizeof (ri->r_address));
1130 where[4] = ri->r_index & 0x0ff;
1131 where[5] = (ri->r_index >> 8) & 0x0ff;
1132 where[6] = (ri->r_index >> 16) & 0x0ff;
1133 where[7] = ((ri->r_pcrel << 0)
1134 | (ri->r_length << 1)
1135 | (ri->r_extern << 3)
1136 | (ri->r_bsr << 4)
1137 | (ri->r_disp << 5)
1138 | (ri->r_callj << 6));
1141 #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */
1144 /* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER */
1146 /*****************************************************************************
1147 brcnt_emit: Emit code to increment inline branch counter.
1149 See the comments above the declaration of 'br_cnt' for details on
1150 branch-prediction instrumentation.
1151 *************************************************************************** */
1152 static void
1153 brcnt_emit ()
1155 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */
1156 emit (0); /* Emit inline counter to be incremented */
1159 /*****************************************************************************
1160 brlab_next: generate the next branch local label
1162 See the comments above the declaration of 'br_cnt' for details on
1163 branch-prediction instrumentation.
1164 *************************************************************************** */
1165 static char *
1166 brlab_next ()
1168 static char buf[20];
1170 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1171 return buf;
1174 /*****************************************************************************
1175 brtab_emit: generate the fetch-prediction branch table.
1177 See the comments above the declaration of 'br_cnt' for details on
1178 branch-prediction instrumentation.
1180 The code emitted here would be functionally equivalent to the following
1181 example assembler source.
1183 .data
1184 .align 2
1185 BR_TAB_NAME:
1186 .word 0 # link to next table
1187 .word 3 # length of table
1188 .word LBRANCH0 # 1st entry in table proper
1189 .word LBRANCH1
1190 .word LBRANCH2
1191 **************************************************************************** */
1192 void
1193 brtab_emit ()
1195 int i;
1196 char buf[20];
1197 char *p; /* Where the binary was output to */
1198 /* Pointer to description of deferred address fixup. */
1199 fixS *fixP;
1201 if (!instrument_branches)
1203 return;
1206 subseg_set (data_section, 0); /* .data */
1207 frag_align (2, 0, 0); /* .align 2 */
1208 record_alignment (now_seg, 2);
1209 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
1210 emit (0); /* .word 0 #link to next table */
1211 emit (br_cnt); /* .word n #length of table */
1213 for (i = 0; i < br_cnt; i++)
1215 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
1216 p = emit (0);
1217 fixP = fix_new (frag_now,
1218 p - frag_now->fr_literal,
1220 symbol_find (buf),
1223 NO_RELOC);
1227 /*****************************************************************************
1228 cobr_fmt: generate a COBR-format instruction
1230 *************************************************************************** */
1231 static
1232 void
1233 cobr_fmt (arg, opcode, oP)
1234 /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1235 char *arg[];
1236 /* Opcode, with branch-prediction bits already set if necessary. */
1237 long opcode;
1238 /* Pointer to description of instruction. */
1239 struct i960_opcode *oP;
1241 long instr; /* 32-bit instruction */
1242 struct regop regop; /* Description of register operand */
1243 int n; /* Number of operands */
1244 int var_frag; /* 1 if varying length code fragment should
1245 * be emitted; 0 if an address fix
1246 * should be emitted.
1249 instr = opcode;
1250 n = oP->num_ops;
1252 if (n >= 1)
1254 /* First operand (if any) of a COBR is always a register
1255 operand. Parse it. */
1256 parse_regop (&regop, arg[1], oP->operand[0]);
1257 instr |= (regop.n << 19) | (regop.mode << 13);
1259 if (n >= 2)
1261 /* Second operand (if any) of a COBR is always a register
1262 operand. Parse it. */
1263 parse_regop (&regop, arg[2], oP->operand[1]);
1264 instr |= (regop.n << 14) | regop.special;
1268 if (n < 3)
1270 emit (instr);
1273 else
1275 if (instrument_branches)
1277 brcnt_emit ();
1278 colon (brlab_next ());
1281 /* A third operand to a COBR is always a displacement. Parse
1282 it; if it's relaxable (a cobr "j" directive, or any cobr
1283 other than bbs/bbc when the "-norelax" option is not in use)
1284 set up a variable code fragment; otherwise set up an address
1285 fix. */
1286 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1287 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1289 if (instrument_branches)
1291 brcnt_emit ();
1294 } /* cobr_fmt() */
1297 /*****************************************************************************
1298 ctrl_fmt: generate a CTRL-format instruction
1300 *************************************************************************** */
1301 static
1302 void
1303 ctrl_fmt (targP, opcode, num_ops)
1304 char *targP; /* Pointer to text of lone operand (if any) */
1305 long opcode; /* Template of instruction */
1306 int num_ops; /* Number of operands */
1308 int instrument; /* TRUE iff we should add instrumentation to track
1309 * how often the branch is taken
1313 if (num_ops == 0)
1315 emit (opcode); /* Output opcode */
1317 else
1320 instrument = instrument_branches && (opcode != CALL)
1321 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1323 if (instrument)
1325 brcnt_emit ();
1326 colon (brlab_next ());
1329 /* The operand MUST be an ip-relative displacment. Parse it
1330 * and set up address fix for the instruction we just output.
1332 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1334 if (instrument)
1336 brcnt_emit ();
1343 /*****************************************************************************
1344 emit: output instruction binary
1346 Output instruction binary, in target byte order, 4 bytes at a time.
1347 Return pointer to where it was placed.
1349 *************************************************************************** */
1350 static
1351 char *
1352 emit (instr)
1353 long instr; /* Word to be output, host byte order */
1355 char *toP; /* Where to output it */
1357 toP = frag_more (4); /* Allocate storage */
1358 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */
1359 return toP;
1363 /*****************************************************************************
1364 get_args: break individual arguments out of comma-separated list
1366 Input assumptions:
1367 - all comments and labels have been removed
1368 - all strings of whitespace have been collapsed to a single blank.
1369 - all character constants ('x') have been replaced with decimal
1371 Output:
1372 args[0] is untouched. args[1] points to first operand, etc. All args:
1373 - are NULL-terminated
1374 - contain no whitespace
1376 Return value:
1377 Number of operands (0,1,2, or 3) or -1 on error.
1379 *************************************************************************** */
1380 static int
1381 get_args (p, args)
1382 /* Pointer to comma-separated operands; MUCKED BY US */
1383 register char *p;
1384 /* Output arg: pointers to operands placed in args[1-3]. MUST
1385 ACCOMMODATE 4 ENTRIES (args[0-3]). */
1386 char *args[];
1388 register int n; /* Number of operands */
1389 register char *to;
1391 /* Skip lead white space */
1392 while (*p == ' ')
1394 p++;
1397 if (*p == '\0')
1399 return 0;
1402 n = 1;
1403 args[1] = p;
1405 /* Squeze blanks out by moving non-blanks toward start of string.
1406 * Isolate operands, whenever comma is found.
1408 to = p;
1409 while (*p != '\0')
1412 if (*p == ' '
1413 && (! isalnum ((unsigned char) p[1])
1414 || ! isalnum ((unsigned char) p[-1])))
1416 p++;
1419 else if (*p == ',')
1422 /* Start of operand */
1423 if (n == 3)
1425 as_bad (_("too many operands"));
1426 return -1;
1428 *to++ = '\0'; /* Terminate argument */
1429 args[++n] = to; /* Start next argument */
1430 p++;
1433 else
1435 *to++ = *p++;
1438 *to = '\0';
1439 return n;
1443 /*****************************************************************************
1444 get_cdisp: handle displacement for a COBR or CTRL instruction.
1446 Parse displacement for a COBR or CTRL instruction.
1448 If successful, output the instruction opcode and set up for it,
1449 depending on the arg 'var_frag', either:
1450 o an address fixup to be done when all symbol values are known, or
1451 o a varying length code fragment, with address fixup info. This
1452 will be done for cobr instructions that may have to be relaxed
1453 in to compare/branch instructions (8 bytes) if the final
1454 address displacement is greater than 13 bits.
1456 ****************************************************************************/
1457 static
1458 void
1459 get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
1460 /* displacement as specified in source instruction */
1461 char *dispP;
1462 /* "COBR" or "CTRL" (for use in error message) */
1463 char *ifmtP;
1464 /* Instruction needing the displacement */
1465 long instr;
1466 /* # bits of displacement (13 for COBR, 24 for CTRL) */
1467 int numbits;
1468 /* 1 if varying length code fragment should be emitted;
1469 * 0 if an address fix should be emitted.
1471 int var_frag;
1472 /* 1 if callj relocation should be done; else 0 */
1473 int callj;
1475 expressionS e; /* Parsed expression */
1476 fixS *fixP; /* Structure describing needed address fix */
1477 char *outP; /* Where instruction binary is output to */
1479 fixP = NULL;
1481 parse_expr (dispP, &e);
1482 switch (e.X_op)
1484 case O_illegal:
1485 as_bad (_("expression syntax error"));
1487 case O_symbol:
1488 if (S_GET_SEGMENT (e.X_add_symbol) == now_seg
1489 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
1491 if (var_frag)
1493 outP = frag_more (8); /* Allocate worst-case storage */
1494 md_number_to_chars (outP, instr, 4);
1495 frag_variant (rs_machine_dependent, 4, 4, 1,
1496 adds (e), offs (e), outP);
1498 else
1500 /* Set up a new fix structure, so address can be updated
1501 * when all symbol values are known.
1503 outP = emit (instr);
1504 fixP = fix_new (frag_now,
1505 outP - frag_now->fr_literal,
1507 adds (e),
1508 offs (e),
1510 NO_RELOC);
1512 fixP->fx_tcbit = callj;
1514 /* We want to modify a bit field when the address is
1515 * known. But we don't need all the garbage in the
1516 * bit_fix structure. So we're going to lie and store
1517 * the number of bits affected instead of a pointer.
1519 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1522 else
1523 as_bad (_("attempt to branch into different segment"));
1524 break;
1526 default:
1527 as_bad (_("target of %s instruction must be a label"), ifmtP);
1528 break;
1533 /*****************************************************************************
1534 get_ispec: parse a memory operand for an index specification
1536 Here, an "index specification" is taken to be anything surrounded
1537 by square brackets and NOT followed by anything else.
1539 If it's found, detach it from the input string, remove the surrounding
1540 square brackets, and return a pointer to it. Otherwise, return NULL.
1542 *************************************************************************** */
1543 static
1544 char *
1545 get_ispec (textP)
1546 /* Pointer to memory operand from source instruction, no white space. */
1547 char *textP;
1549 /* Points to start of index specification. */
1550 char *start;
1551 /* Points to end of index specification. */
1552 char *end;
1554 /* Find opening square bracket, if any. */
1555 start = strchr (textP, '[');
1557 if (start != NULL)
1560 /* Eliminate '[', detach from rest of operand */
1561 *start++ = '\0';
1563 end = strchr (start, ']');
1565 if (end == NULL)
1567 as_bad (_("unmatched '['"));
1570 else
1572 /* Eliminate ']' and make sure it was the last thing
1573 * in the string.
1575 *end = '\0';
1576 if (*(end + 1) != '\0')
1578 as_bad (_("garbage after index spec ignored"));
1582 return start;
1585 /*****************************************************************************
1586 get_regnum:
1588 Look up a (suspected) register name in the register table and return the
1589 associated register number (or -1 if not found).
1591 *************************************************************************** */
1592 static
1594 get_regnum (regname)
1595 char *regname; /* Suspected register name */
1597 int *rP;
1599 rP = (int *) hash_find (reg_hash, regname);
1600 return (rP == NULL) ? -1 : *rP;
1604 /*****************************************************************************
1605 i_scan: perform lexical scan of ascii assembler instruction.
1607 Input assumptions:
1608 - input string is an i80960 instruction (not a pseudo-op)
1609 - all comments and labels have been removed
1610 - all strings of whitespace have been collapsed to a single blank.
1612 Output:
1613 args[0] points to opcode, other entries point to operands. All strings:
1614 - are NULL-terminated
1615 - contain no whitespace
1616 - have character constants ('x') replaced with a decimal number
1618 Return value:
1619 Number of operands (0,1,2, or 3) or -1 on error.
1621 *************************************************************************** */
1622 static int
1623 i_scan (iP, args)
1624 /* Pointer to ascii instruction; MUCKED BY US. */
1625 register char *iP;
1626 /* Output arg: pointers to opcode and operands placed here. MUST
1627 ACCOMMODATE 4 ENTRIES. */
1628 char *args[];
1631 /* Isolate opcode */
1632 if (*(iP) == ' ')
1634 iP++;
1635 } /* Skip lead space, if any */
1636 args[0] = iP;
1637 for (; *iP != ' '; iP++)
1639 if (*iP == '\0')
1641 /* There are no operands */
1642 if (args[0] == iP)
1644 /* We never moved: there was no opcode either! */
1645 as_bad (_("missing opcode"));
1646 return -1;
1648 return 0;
1651 *iP++ = '\0'; /* Terminate opcode */
1652 return (get_args (iP, args));
1653 } /* i_scan() */
1656 /*****************************************************************************
1657 mem_fmt: generate a MEMA- or MEMB-format instruction
1659 *************************************************************************** */
1660 static void
1661 mem_fmt (args, oP, callx)
1662 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1663 struct i960_opcode *oP; /* Pointer to description of instruction */
1664 int callx; /* Is this a callx opcode */
1666 int i; /* Loop counter */
1667 struct regop regop; /* Description of register operand */
1668 char opdesc; /* Operand descriptor byte */
1669 memS instr; /* Description of binary to be output */
1670 char *outP; /* Where the binary was output to */
1671 expressionS expr; /* Parsed expression */
1672 /* ->description of deferred address fixup */
1673 fixS *fixP;
1675 #ifdef OBJ_COFF
1676 /* COFF support isn't in place yet for callx relaxing. */
1677 callx = 0;
1678 #endif
1680 memset (&instr, '\0', sizeof (memS));
1681 instr.opcode = oP->opcode;
1683 /* Process operands. */
1684 for (i = 1; i <= oP->num_ops; i++)
1686 opdesc = oP->operand[i - 1];
1688 if (MEMOP (opdesc))
1690 parse_memop (&instr, args[i], oP->format);
1692 else
1694 parse_regop (&regop, args[i], opdesc);
1695 instr.opcode |= regop.n << 19;
1699 /* Parse the displacement; this must be done before emitting the
1700 opcode, in case it is an expression using `.'. */
1701 parse_expr (instr.e, &expr);
1703 /* Output opcode */
1704 outP = emit (instr.opcode);
1706 if (instr.disp == 0)
1708 return;
1711 /* Process the displacement */
1712 switch (expr.X_op)
1714 case O_illegal:
1715 as_bad (_("expression syntax error"));
1716 break;
1718 case O_constant:
1719 if (instr.disp == 32)
1721 (void) emit (offs (expr)); /* Output displacement */
1723 else
1725 /* 12-bit displacement */
1726 if (offs (expr) & ~0xfff)
1728 /* Won't fit in 12 bits: convert already-output
1729 * instruction to MEMB format, output
1730 * displacement.
1732 mema_to_memb (outP);
1733 (void) emit (offs (expr));
1735 else
1737 /* WILL fit in 12 bits: OR into opcode and
1738 * overwrite the binary we already put out
1740 instr.opcode |= offs (expr);
1741 md_number_to_chars (outP, instr.opcode, 4);
1744 break;
1746 default:
1747 if (instr.disp == 12)
1749 /* Displacement is dependent on a symbol, whose value
1750 * may change at link time. We HAVE to reserve 32 bits.
1751 * Convert already-output opcode to MEMB format.
1753 mema_to_memb (outP);
1756 /* Output 0 displacement and set up address fixup for when
1757 * this symbol's value becomes known.
1759 outP = emit ((long) 0);
1760 fixP = fix_new_exp (frag_now,
1761 outP - frag_now->fr_literal,
1763 &expr,
1765 NO_RELOC);
1766 /* Steve's linker relaxing hack. Mark this 32-bit relocation as
1767 being in the instruction stream, specifically as part of a callx
1768 instruction. */
1769 fixP->fx_bsr = callx;
1770 break;
1772 } /* memfmt() */
1775 /*****************************************************************************
1776 mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1778 There are 2 possible MEMA formats:
1779 - displacement only
1780 - displacement + abase
1782 They are distinguished by the setting of the MEMA_ABASE bit.
1784 *************************************************************************** */
1785 static void
1786 mema_to_memb (opcodeP)
1787 char *opcodeP; /* Where to find the opcode, in target byte order */
1789 long opcode; /* Opcode in host byte order */
1790 long mode; /* Mode bits for MEMB instruction */
1792 opcode = md_chars_to_number (opcodeP, 4);
1793 know (!(opcode & MEMB_BIT));
1795 mode = MEMB_BIT | D_BIT;
1796 if (opcode & MEMA_ABASE)
1798 mode |= A_BIT;
1801 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1802 opcode |= mode; /* Set MEMB mode bits */
1804 md_number_to_chars (opcodeP, opcode, 4);
1805 } /* mema_to_memb() */
1808 /*****************************************************************************
1809 parse_expr: parse an expression
1811 Use base assembler's expression parser to parse an expression.
1812 It, unfortunately, runs off a global which we have to save/restore
1813 in order to make it work for us.
1815 An empty expression string is treated as an absolute 0.
1817 Sets O_illegal regardless of expression evaluation if entire input
1818 string is not consumed in the evaluation -- tolerate no dangling junk!
1820 *************************************************************************** */
1821 static void
1822 parse_expr (textP, expP)
1823 char *textP; /* Text of expression to be parsed */
1824 expressionS *expP; /* Where to put the results of parsing */
1826 char *save_in; /* Save global here */
1827 symbolS *symP;
1829 know (textP);
1831 if (*textP == '\0')
1833 /* Treat empty string as absolute 0 */
1834 expP->X_add_symbol = expP->X_op_symbol = NULL;
1835 expP->X_add_number = 0;
1836 expP->X_op = O_constant;
1838 else
1840 save_in = input_line_pointer; /* Save global */
1841 input_line_pointer = textP; /* Make parser work for us */
1843 (void) expression (expP);
1844 if ((size_t) (input_line_pointer - textP) != strlen (textP))
1846 /* Did not consume all of the input */
1847 expP->X_op = O_illegal;
1849 symP = expP->X_add_symbol;
1850 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
1852 /* Register name in an expression */
1853 /* FIXME: this isn't much of a check any more. */
1854 expP->X_op = O_illegal;
1857 input_line_pointer = save_in; /* Restore global */
1862 /*****************************************************************************
1863 parse_ldcont:
1864 Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1865 i80960 instruction.
1867 Assumes the input consists of:
1868 arg[0] opcode mnemonic ('ldconst')
1869 arg[1] first operand (constant)
1870 arg[2] name of register to be loaded
1872 Replaces opcode and/or operands as appropriate.
1874 Returns the new number of arguments, or -1 on failure.
1876 *************************************************************************** */
1877 static
1879 parse_ldconst (arg)
1880 char *arg[]; /* See above */
1882 int n; /* Constant to be loaded */
1883 int shift; /* Shift count for "shlo" instruction */
1884 static char buf[5]; /* Literal for first operand */
1885 static char buf2[5]; /* Literal for second operand */
1886 expressionS e; /* Parsed expression */
1889 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1891 parse_expr (arg[1], &e);
1892 switch (e.X_op)
1894 default:
1895 /* We're dependent on one or more symbols -- use "lda" */
1896 arg[0] = "lda";
1897 break;
1899 case O_constant:
1900 /* Try the following mappings:
1901 * ldconst 0,<reg> ->mov 0,<reg>
1902 * ldconst 31,<reg> ->mov 31,<reg>
1903 * ldconst 32,<reg> ->addo 1,31,<reg>
1904 * ldconst 62,<reg> ->addo 31,31,<reg>
1905 * ldconst 64,<reg> ->shlo 8,3,<reg>
1906 * ldconst -1,<reg> ->subo 1,0,<reg>
1907 * ldconst -31,<reg>->subo 31,0,<reg>
1909 * anthing else becomes:
1910 * lda xxx,<reg>
1912 n = offs (e);
1913 if ((0 <= n) && (n <= 31))
1915 arg[0] = "mov";
1918 else if ((-31 <= n) && (n <= -1))
1920 arg[0] = "subo";
1921 arg[3] = arg[2];
1922 sprintf (buf, "%d", -n);
1923 arg[1] = buf;
1924 arg[2] = "0";
1927 else if ((32 <= n) && (n <= 62))
1929 arg[0] = "addo";
1930 arg[3] = arg[2];
1931 arg[1] = "31";
1932 sprintf (buf, "%d", n - 31);
1933 arg[2] = buf;
1936 else if ((shift = shift_ok (n)) != 0)
1938 arg[0] = "shlo";
1939 arg[3] = arg[2];
1940 sprintf (buf, "%d", shift);
1941 arg[1] = buf;
1942 sprintf (buf2, "%d", n >> shift);
1943 arg[2] = buf2;
1946 else
1948 arg[0] = "lda";
1950 break;
1952 case O_illegal:
1953 as_bad (_("invalid constant"));
1954 return -1;
1955 break;
1957 return (arg[3] == 0) ? 2 : 3;
1960 /*****************************************************************************
1961 parse_memop: parse a memory operand
1963 This routine is based on the observation that the 4 mode bits of the
1964 MEMB format, taken individually, have fairly consistent meaning:
1966 M3 (bit 13): 1 if displacement is present (D_BIT)
1967 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1968 M1 (bit 11): 1 if index is present (I_BIT)
1969 M0 (bit 10): 1 if abase is present (A_BIT)
1971 So we parse the memory operand and set bits in the mode as we find
1972 things. Then at the end, if we go to MEMB format, we need only set
1973 the MEMB bit (M2) and our mode is built for us.
1975 Unfortunately, I said "fairly consistent". The exceptions:
1977 DBIA
1978 0100 Would seem illegal, but means "abase-only".
1980 0101 Would seem to mean "abase-only" -- it means IP-relative.
1981 Must be converted to 0100.
1983 0110 Would seem to mean "index-only", but is reserved.
1984 We turn on the D bit and provide a 0 displacement.
1986 The other thing to observe is that we parse from the right, peeling
1987 things * off as we go: first any index spec, then any abase, then
1988 the displacement.
1990 *************************************************************************** */
1991 static
1992 void
1993 parse_memop (memP, argP, optype)
1994 memS *memP; /* Where to put the results */
1995 char *argP; /* Text of the operand to be parsed */
1996 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
1998 char *indexP; /* Pointer to index specification with "[]" removed */
1999 char *p; /* Temp char pointer */
2000 char iprel_flag; /* True if this is an IP-relative operand */
2001 int regnum; /* Register number */
2002 /* Scale factor: 1,2,4,8, or 16. Later converted to internal format
2003 (0,1,2,3,4 respectively). */
2004 int scale;
2005 int mode; /* MEMB mode bits */
2006 int *intP; /* Pointer to register number */
2008 /* The following table contains the default scale factors for each
2009 type of memory instruction. It is accessed using (optype-MEM1)
2010 as an index -- thus it assumes the 'optype' constants are
2011 assigned consecutive values, in the order they appear in this
2012 table. */
2013 static const int def_scale[] =
2015 1, /* MEM1 */
2016 2, /* MEM2 */
2017 4, /* MEM4 */
2018 8, /* MEM8 */
2019 -1, /* MEM12 -- no valid default */
2020 16 /* MEM16 */
2024 iprel_flag = mode = 0;
2026 /* Any index present? */
2027 indexP = get_ispec (argP);
2028 if (indexP)
2030 p = strchr (indexP, '*');
2031 if (p == NULL)
2033 /* No explicit scale -- use default for this instruction
2034 type and assembler mode. */
2035 if (flag_mri)
2036 scale = 1;
2037 else
2038 /* GNU960 compatibility */
2039 scale = def_scale[optype - MEM1];
2041 else
2043 *p++ = '\0'; /* Eliminate '*' */
2045 /* Now indexP->a '\0'-terminated register name,
2046 * and p->a scale factor.
2049 if (!strcmp (p, "16"))
2051 scale = 16;
2053 else if (strchr ("1248", *p) && (p[1] == '\0'))
2055 scale = *p - '0';
2057 else
2059 scale = -1;
2063 regnum = get_regnum (indexP); /* Get index reg. # */
2064 if (!IS_RG_REG (regnum))
2066 as_bad (_("invalid index register"));
2067 return;
2070 /* Convert scale to its binary encoding */
2071 switch (scale)
2073 case 1:
2074 scale = 0 << 7;
2075 break;
2076 case 2:
2077 scale = 1 << 7;
2078 break;
2079 case 4:
2080 scale = 2 << 7;
2081 break;
2082 case 8:
2083 scale = 3 << 7;
2084 break;
2085 case 16:
2086 scale = 4 << 7;
2087 break;
2088 default:
2089 as_bad (_("invalid scale factor"));
2090 return;
2093 memP->opcode |= scale | regnum; /* Set index bits in opcode */
2094 mode |= I_BIT; /* Found a valid index spec */
2097 /* Any abase (Register Indirect) specification present? */
2098 if ((p = strrchr (argP, '(')) != NULL)
2100 /* "(" is there -- does it start a legal abase spec? If not, it
2101 could be part of a displacement expression. */
2102 intP = (int *) hash_find (areg_hash, p);
2103 if (intP != NULL)
2105 /* Got an abase here */
2106 regnum = *intP;
2107 *p = '\0'; /* discard register spec */
2108 if (regnum == IPREL)
2110 /* We have to specialcase ip-rel mode */
2111 iprel_flag = 1;
2113 else
2115 memP->opcode |= regnum << 14;
2116 mode |= A_BIT;
2121 /* Any expression present? */
2122 memP->e = argP;
2123 if (*argP != '\0')
2125 mode |= D_BIT;
2128 /* Special-case ip-relative addressing */
2129 if (iprel_flag)
2131 if (mode & I_BIT)
2133 syntax ();
2135 else
2137 memP->opcode |= 5 << 10; /* IP-relative mode */
2138 memP->disp = 32;
2140 return;
2143 /* Handle all other modes */
2144 switch (mode)
2146 case D_BIT | A_BIT:
2147 /* Go with MEMA instruction format for now (grow to MEMB later
2148 if 12 bits is not enough for the displacement). MEMA format
2149 has a single mode bit: set it to indicate that abase is
2150 present. */
2151 memP->opcode |= MEMA_ABASE;
2152 memP->disp = 12;
2153 break;
2155 case D_BIT:
2156 /* Go with MEMA instruction format for now (grow to MEMB later
2157 if 12 bits is not enough for the displacement). */
2158 memP->disp = 12;
2159 break;
2161 case A_BIT:
2162 /* For some reason, the bit string for this mode is not
2163 consistent: it should be 0 (exclusive of the MEMB bit), so we
2164 set it "by hand" here. */
2165 memP->opcode |= MEMB_BIT;
2166 break;
2168 case A_BIT | I_BIT:
2169 /* set MEMB bit in mode, and OR in mode bits */
2170 memP->opcode |= mode | MEMB_BIT;
2171 break;
2173 case I_BIT:
2174 /* Treat missing displacement as displacement of 0. */
2175 mode |= D_BIT;
2176 /* Fall into next case. */
2177 case D_BIT | A_BIT | I_BIT:
2178 case D_BIT | I_BIT:
2179 /* set MEMB bit in mode, and OR in mode bits */
2180 memP->opcode |= mode | MEMB_BIT;
2181 memP->disp = 32;
2182 break;
2184 default:
2185 syntax ();
2186 break;
2190 /*****************************************************************************
2191 parse_po: parse machine-dependent pseudo-op
2193 This is a top-level routine for machine-dependent pseudo-ops. It slurps
2194 up the rest of the input line, breaks out the individual arguments,
2195 and dispatches them to the correct handler.
2196 *************************************************************************** */
2197 static
2198 void
2199 parse_po (po_num)
2200 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
2202 /* Pointers operands, with no embedded whitespace.
2203 arg[0] unused, arg[1-3]->operands */
2204 char *args[4];
2205 int n_ops; /* Number of operands */
2206 char *p; /* Pointer to beginning of unparsed argument string */
2207 char eol; /* Character that indicated end of line */
2209 extern char is_end_of_line[];
2211 /* Advance input pointer to end of line. */
2212 p = input_line_pointer;
2213 while (!is_end_of_line[(unsigned char) *input_line_pointer])
2215 input_line_pointer++;
2217 eol = *input_line_pointer; /* Save end-of-line char */
2218 *input_line_pointer = '\0'; /* Terminate argument list */
2220 /* Parse out operands */
2221 n_ops = get_args (p, args);
2222 if (n_ops == -1)
2224 return;
2227 /* Dispatch to correct handler */
2228 switch (po_num)
2230 case S_SYSPROC:
2231 s_sysproc (n_ops, args);
2232 break;
2233 case S_LEAFPROC:
2234 s_leafproc (n_ops, args);
2235 break;
2236 default:
2237 BAD_CASE (po_num);
2238 break;
2241 /* Restore eol, so line numbers get updated correctly. Base
2242 assembler assumes we leave input pointer pointing at char
2243 following the eol. */
2244 *input_line_pointer++ = eol;
2247 /*****************************************************************************
2248 parse_regop: parse a register operand.
2250 In case of illegal operand, issue a message and return some valid
2251 information so instruction processing can continue.
2252 *************************************************************************** */
2253 static
2254 void
2255 parse_regop (regopP, optext, opdesc)
2256 struct regop *regopP; /* Where to put description of register operand */
2257 char *optext; /* Text of operand */
2258 char opdesc; /* Descriptor byte: what's legal for this operand */
2260 int n; /* Register number */
2261 expressionS e; /* Parsed expression */
2263 /* See if operand is a register */
2264 n = get_regnum (optext);
2265 if (n >= 0)
2267 if (IS_RG_REG (n))
2269 /* global or local register */
2270 if (!REG_ALIGN (opdesc, n))
2272 as_bad (_("unaligned register"));
2274 regopP->n = n;
2275 regopP->mode = 0;
2276 regopP->special = 0;
2277 return;
2279 else if (IS_FP_REG (n) && FP_OK (opdesc))
2281 /* Floating point register, and it's allowed */
2282 regopP->n = n - FP0;
2283 regopP->mode = 1;
2284 regopP->special = 0;
2285 return;
2287 else if (IS_SF_REG (n) && SFR_OK (opdesc))
2289 /* Special-function register, and it's allowed */
2290 regopP->n = n - SF0;
2291 regopP->mode = 0;
2292 regopP->special = 1;
2293 if (!targ_has_sfr (regopP->n))
2295 as_bad (_("no such sfr in this architecture"));
2297 return;
2300 else if (LIT_OK (opdesc))
2302 /* How about a literal? */
2303 regopP->mode = 1;
2304 regopP->special = 0;
2305 if (FP_OK (opdesc))
2306 { /* floating point literal acceptable */
2307 /* Skip over 0f, 0d, or 0e prefix */
2308 if ((optext[0] == '0')
2309 && (optext[1] >= 'd')
2310 && (optext[1] <= 'f'))
2312 optext += 2;
2315 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
2317 regopP->n = 0x10;
2318 return;
2320 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
2322 regopP->n = 0x16;
2323 return;
2327 else
2328 { /* fixed point literal acceptable */
2329 parse_expr (optext, &e);
2330 if (e.X_op != O_constant
2331 || (offs (e) < 0) || (offs (e) > 31))
2333 as_bad (_("illegal literal"));
2334 offs (e) = 0;
2336 regopP->n = offs (e);
2337 return;
2341 /* Nothing worked */
2342 syntax ();
2343 regopP->mode = 0; /* Register r0 is always a good one */
2344 regopP->n = 0;
2345 regopP->special = 0;
2346 } /* parse_regop() */
2348 /*****************************************************************************
2349 reg_fmt: generate a REG-format instruction
2351 *************************************************************************** */
2352 static void
2353 reg_fmt (args, oP)
2354 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2355 struct i960_opcode *oP; /* Pointer to description of instruction */
2357 long instr; /* Binary to be output */
2358 struct regop regop; /* Description of register operand */
2359 int n_ops; /* Number of operands */
2362 instr = oP->opcode;
2363 n_ops = oP->num_ops;
2365 if (n_ops >= 1)
2367 parse_regop (&regop, args[1], oP->operand[0]);
2369 if ((n_ops == 1) && !(instr & M3))
2371 /* 1-operand instruction in which the dst field should
2372 * be used (instead of src1).
2374 regop.n <<= 19;
2375 if (regop.special)
2377 regop.mode = regop.special;
2379 regop.mode <<= 13;
2380 regop.special = 0;
2382 else
2384 /* regop.n goes in bit 0, needs no shifting */
2385 regop.mode <<= 11;
2386 regop.special <<= 5;
2388 instr |= regop.n | regop.mode | regop.special;
2391 if (n_ops >= 2)
2393 parse_regop (&regop, args[2], oP->operand[1]);
2395 if ((n_ops == 2) && !(instr & M3))
2397 /* 2-operand instruction in which the dst field should
2398 * be used instead of src2).
2400 regop.n <<= 19;
2401 if (regop.special)
2403 regop.mode = regop.special;
2405 regop.mode <<= 13;
2406 regop.special = 0;
2408 else
2410 regop.n <<= 14;
2411 regop.mode <<= 12;
2412 regop.special <<= 6;
2414 instr |= regop.n | regop.mode | regop.special;
2416 if (n_ops == 3)
2418 parse_regop (&regop, args[3], oP->operand[2]);
2419 if (regop.special)
2421 regop.mode = regop.special;
2423 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2425 emit (instr);
2429 /*****************************************************************************
2430 relax_cobr:
2431 Replace cobr instruction in a code fragment with equivalent branch and
2432 compare instructions, so it can reach beyond a 13-bit displacement.
2433 Set up an address fix/relocation for the new branch instruction.
2435 *************************************************************************** */
2437 /* This "conditional jump" table maps cobr instructions into
2438 equivalent compare and branch opcodes. */
2439 static const
2440 struct
2442 long compare;
2443 long branch;
2446 coj[] =
2447 { /* COBR OPCODE: */
2448 { CHKBIT, BNO }, /* 0x30 - bbc */
2449 { CMPO, BG }, /* 0x31 - cmpobg */
2450 { CMPO, BE }, /* 0x32 - cmpobe */
2451 { CMPO, BGE }, /* 0x33 - cmpobge */
2452 { CMPO, BL }, /* 0x34 - cmpobl */
2453 { CMPO, BNE }, /* 0x35 - cmpobne */
2454 { CMPO, BLE }, /* 0x36 - cmpoble */
2455 { CHKBIT, BO }, /* 0x37 - bbs */
2456 { CMPI, BNO }, /* 0x38 - cmpibno */
2457 { CMPI, BG }, /* 0x39 - cmpibg */
2458 { CMPI, BE }, /* 0x3a - cmpibe */
2459 { CMPI, BGE }, /* 0x3b - cmpibge */
2460 { CMPI, BL }, /* 0x3c - cmpibl */
2461 { CMPI, BNE }, /* 0x3d - cmpibne */
2462 { CMPI, BLE }, /* 0x3e - cmpible */
2463 { CMPI, BO }, /* 0x3f - cmpibo */
2466 static
2467 void
2468 relax_cobr (fragP)
2469 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2470 * the cobr instruction, which comes at the
2471 * end of the code fragment.
2474 int opcode, src1, src2, m1, s2;
2475 /* Bit fields from cobr instruction */
2476 long bp_bits; /* Branch prediction bits from cobr instruction */
2477 long instr; /* A single i960 instruction */
2478 /* ->instruction to be replaced */
2479 char *iP;
2480 fixS *fixP; /* Relocation that can be done at assembly time */
2482 /* PICK UP & PARSE COBR INSTRUCTION */
2483 iP = fragP->fr_opcode;
2484 instr = md_chars_to_number (iP, 4);
2485 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2486 src1 = (instr >> 19) & 0x1f;
2487 m1 = (instr >> 13) & 1;
2488 s2 = instr & 1;
2489 src2 = (instr >> 14) & 0x1f;
2490 bp_bits = instr & BP_MASK;
2492 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2493 instr = coj[opcode].compare
2494 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2495 md_number_to_chars (iP, instr, 4);
2497 /* OUTPUT BRANCH INSTRUCTION */
2498 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
2500 /* SET UP ADDRESS FIXUP/RELOCATION */
2501 fixP = fix_new (fragP,
2502 iP + 4 - fragP->fr_literal,
2504 fragP->fr_symbol,
2505 fragP->fr_offset,
2507 NO_RELOC);
2509 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2511 fragP->fr_fix += 4;
2512 frag_wane (fragP);
2516 /*****************************************************************************
2517 reloc_callj: Relocate a 'callj' instruction
2519 This is a "non-(GNU)-standard" machine-dependent hook. The base
2520 assembler calls it when it decides it can relocate an address at
2521 assembly time instead of emitting a relocation directive.
2523 Check to see if the relocation involves a 'callj' instruction to a:
2524 sysproc: Replace the default 'call' instruction with a 'calls'
2525 leafproc: Replace the default 'call' instruction with a 'bal'.
2526 other proc: Do nothing.
2528 See b.out.h for details on the 'n_other' field in a symbol structure.
2530 IMPORTANT!:
2531 Assumes the caller has already figured out, in the case of a leafproc,
2532 to use the 'bal' entry point, and has substituted that symbol into the
2533 passed fixup structure.
2535 *************************************************************************** */
2536 void
2537 reloc_callj (fixP)
2538 /* Relocation that can be done at assembly time */
2539 fixS *fixP;
2541 /* Points to the binary for the instruction being relocated. */
2542 char *where;
2544 if (!fixP->fx_tcbit)
2546 /* This wasn't a callj instruction in the first place */
2547 return;
2550 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2552 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2554 /* Symbol is a .sysproc: replace 'call' with 'calls'. System
2555 procedure number is (other-1). */
2556 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2558 /* Nothing else needs to be done for this instruction. Make
2559 sure 'md_number_to_field()' will perform a no-op. */
2560 fixP->fx_bit_fixP = (bit_fixS *) 1;
2563 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2565 /* Should not happen: see block comment above */
2566 as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy));
2568 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2570 /* Replace 'call' with 'bal'; both instructions have the same
2571 format, so calling code should complete relocation as if
2572 nothing happened here. */
2573 md_number_to_chars (where, BAL, 4);
2575 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2577 as_bad (_("Looks like a proc, but can't tell what kind.\n"));
2578 } /* switch on proc type */
2580 /* else Symbol is neither a sysproc nor a leafproc */
2584 /*****************************************************************************
2585 s_leafproc: process .leafproc pseudo-op
2587 .leafproc takes two arguments, the second one is optional:
2588 arg[1]: name of 'call' entry point to leaf procedure
2589 arg[2]: name of 'bal' entry point to leaf procedure
2591 If the two arguments are identical, or if the second one is missing,
2592 the first argument is taken to be the 'bal' entry point.
2594 If there are 2 distinct arguments, we must make sure that the 'bal'
2595 entry point immediately follows the 'call' entry point in the linked
2596 list of symbols.
2598 *************************************************************************** */
2599 static void
2600 s_leafproc (n_ops, args)
2601 int n_ops; /* Number of operands */
2602 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2604 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2605 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2607 if ((n_ops != 1) && (n_ops != 2))
2609 as_bad (_("should have 1 or 2 operands"));
2610 return;
2611 } /* Check number of arguments */
2613 /* Find or create symbol for 'call' entry point. */
2614 callP = symbol_find_or_make (args[1]);
2616 if (TC_S_IS_CALLNAME (callP))
2618 as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP));
2619 } /* is leafproc */
2621 /* If that was the only argument, use it as the 'bal' entry point.
2622 * Otherwise, mark it as the 'call' entry point and find or create
2623 * another symbol for the 'bal' entry point.
2625 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2627 TC_S_FORCE_TO_BALNAME (callP);
2630 else
2632 TC_S_FORCE_TO_CALLNAME (callP);
2634 balP = symbol_find_or_make (args[2]);
2635 if (TC_S_IS_CALLNAME (balP))
2637 as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP));
2639 TC_S_FORCE_TO_BALNAME (balP);
2641 #ifndef OBJ_ELF
2642 tc_set_bal_of_call (callP, balP);
2643 #endif
2644 } /* if only one arg, or the args are the same */
2649 s_sysproc: process .sysproc pseudo-op
2651 .sysproc takes two arguments:
2652 arg[1]: name of entry point to system procedure
2653 arg[2]: 'entry_num' (index) of system procedure in the range
2654 [0,31] inclusive.
2656 For [ab].out, we store the 'entrynum' in the 'n_other' field of
2657 the symbol. Since that entry is normally 0, we bias 'entrynum'
2658 by adding 1 to it. It must be unbiased before it is used. */
2659 static void
2660 s_sysproc (n_ops, args)
2661 int n_ops; /* Number of operands */
2662 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2664 expressionS exp;
2665 symbolS *symP;
2667 if (n_ops != 2)
2669 as_bad (_("should have two operands"));
2670 return;
2671 } /* bad arg count */
2673 /* Parse "entry_num" argument and check it for validity. */
2674 parse_expr (args[2], &exp);
2675 if (exp.X_op != O_constant
2676 || (offs (exp) < 0)
2677 || (offs (exp) > 31))
2679 as_bad (_("'entry_num' must be absolute number in [0,31]"));
2680 return;
2683 /* Find/make symbol and stick entry number (biased by +1) into it */
2684 symP = symbol_find_or_make (args[1]);
2686 if (TC_S_IS_SYSPROC (symP))
2688 as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP));
2689 } /* redefining */
2691 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */
2692 TC_S_FORCE_TO_SYSPROC (symP);
2696 /*****************************************************************************
2697 shift_ok:
2698 Determine if a "shlo" instruction can be used to implement a "ldconst".
2699 This means that some number X < 32 can be shifted left to produce the
2700 constant of interest.
2702 Return the shift count, or 0 if we can't do it.
2703 Caller calculates X by shifting original constant right 'shift' places.
2705 *************************************************************************** */
2706 static
2708 shift_ok (n)
2709 int n; /* The constant of interest */
2711 int shift; /* The shift count */
2713 if (n <= 0)
2715 /* Can't do it for negative numbers */
2716 return 0;
2719 /* Shift 'n' right until a 1 is about to be lost */
2720 for (shift = 0; (n & 1) == 0; shift++)
2722 n >>= 1;
2725 if (n >= 32)
2727 return 0;
2729 return shift;
2733 /* syntax: issue syntax error */
2735 static void
2736 syntax ()
2738 as_bad (_("syntax error"));
2739 } /* syntax() */
2742 /* targ_has_sfr:
2744 Return TRUE iff the target architecture supports the specified
2745 special-function register (sfr). */
2747 static
2749 targ_has_sfr (n)
2750 int n; /* Number (0-31) of sfr */
2752 switch (architecture)
2754 case ARCH_KA:
2755 case ARCH_KB:
2756 case ARCH_MC:
2757 case ARCH_JX:
2758 return 0;
2759 case ARCH_HX:
2760 return ((0 <= n) && (n <= 4));
2761 case ARCH_CA:
2762 default:
2763 return ((0 <= n) && (n <= 2));
2768 /* targ_has_iclass:
2770 Return TRUE iff the target architecture supports the indicated
2771 class of instructions. */
2772 static
2774 targ_has_iclass (ic)
2775 /* Instruction class; one of:
2776 I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2
2778 int ic;
2780 iclasses_seen |= ic;
2781 switch (architecture)
2783 case ARCH_KA:
2784 return ic & (I_BASE | I_KX);
2785 case ARCH_KB:
2786 return ic & (I_BASE | I_KX | I_FP | I_DEC);
2787 case ARCH_MC:
2788 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2789 case ARCH_CA:
2790 return ic & (I_BASE | I_CX | I_CX2 | I_CASIM);
2791 case ARCH_JX:
2792 return ic & (I_BASE | I_CX2 | I_JX);
2793 case ARCH_HX:
2794 return ic & (I_BASE | I_CX2 | I_JX | I_HX);
2795 default:
2796 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
2797 && (iclasses_seen & (I_CX | I_CX2)))
2799 as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)"));
2800 iclasses_seen &= ~ic;
2802 return 1;
2806 /* Handle the MRI .endian pseudo-op. */
2808 static void
2809 s_endian (ignore)
2810 int ignore;
2812 char *name;
2813 char c;
2815 name = input_line_pointer;
2816 c = get_symbol_end ();
2817 if (strcasecmp (name, "little") == 0)
2819 else if (strcasecmp (name, "big") == 0)
2820 as_bad (_("big endian mode is not supported"));
2821 else
2822 as_warn (_("ignoring unrecognized .endian type `%s'"), name);
2824 *input_line_pointer = c;
2826 demand_empty_rest_of_line ();
2829 /* We have no need to default values of symbols. */
2831 /* ARGSUSED */
2832 symbolS *
2833 md_undefined_symbol (name)
2834 char *name;
2836 return 0;
2839 /* Exactly what point is a PC-relative offset relative TO?
2840 On the i960, they're relative to the address of the instruction,
2841 which we have set up as the address of the fixup too. */
2842 long
2843 md_pcrel_from (fixP)
2844 fixS *fixP;
2846 return fixP->fx_where + fixP->fx_frag->fr_address;
2849 #ifdef BFD_ASSEMBLER
2851 md_apply_fix (fixP, valp)
2852 fixS *fixP;
2853 valueT *valp;
2854 #else
2855 void
2856 md_apply_fix (fixP, val)
2857 fixS *fixP;
2858 long val;
2859 #endif
2861 #ifdef BFD_ASSEMBLER
2862 long val = *valp;
2863 #endif
2864 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2866 if (!fixP->fx_bit_fixP)
2868 #ifndef BFD_ASSEMBLER
2869 /* For callx, we always want to write out zero, and emit a
2870 symbolic relocation. */
2871 if (fixP->fx_bsr)
2872 val = 0;
2874 fixP->fx_addnumber = val;
2875 #endif
2877 md_number_to_imm (place, val, fixP->fx_size, fixP);
2879 else
2880 md_number_to_field (place, val, fixP->fx_bit_fixP);
2882 #ifdef BFD_ASSEMBLER
2883 return 0;
2884 #endif
2887 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2888 void
2889 tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
2890 char *where;
2891 fixS *fixP;
2892 relax_addressT segment_address_in_file;
2894 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
2895 struct relocation_info ri;
2896 symbolS *symbolP;
2898 memset ((char *) &ri, '\0', sizeof (ri));
2899 symbolP = fixP->fx_addsy;
2900 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2901 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2902 /* These two 'cuz of NS32K */
2903 ri.r_callj = fixP->fx_tcbit;
2904 if (fixP->fx_bit_fixP)
2905 ri.r_length = 2;
2906 else
2907 ri.r_length = nbytes_r_length[fixP->fx_size];
2908 ri.r_pcrel = fixP->fx_pcrel;
2909 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2911 if (fixP->fx_r_type != NO_RELOC)
2913 switch (fixP->fx_r_type)
2915 case rs_align:
2916 ri.r_index = -2;
2917 ri.r_pcrel = 1;
2918 ri.r_length = fixP->fx_size - 1;
2919 break;
2920 case rs_org:
2921 ri.r_index = -2;
2922 ri.r_pcrel = 0;
2923 break;
2924 case rs_fill:
2925 ri.r_index = -1;
2926 break;
2927 default:
2928 abort ();
2930 ri.r_extern = 0;
2932 else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
2934 ri.r_extern = 1;
2935 ri.r_index = symbolP->sy_number;
2937 else
2939 ri.r_extern = 0;
2940 ri.r_index = S_GET_TYPE (symbolP);
2943 /* Output the relocation information in machine-dependent form. */
2944 md_ri_to_chars (where, &ri);
2947 #endif /* OBJ_AOUT or OBJ_BOUT */
2949 #if defined (OBJ_COFF) && defined (BFD)
2950 short
2951 tc_coff_fix2rtype (fixP)
2952 fixS *fixP;
2954 if (fixP->fx_bsr)
2955 abort ();
2957 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
2958 return R_RELLONG;
2960 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
2961 return R_IPRMED;
2963 abort ();
2964 return 0;
2968 tc_coff_sizemachdep (frag)
2969 fragS *frag;
2971 if (frag->fr_next)
2972 return frag->fr_next->fr_address - frag->fr_address;
2973 else
2974 return 0;
2976 #endif
2978 /* Align an address by rounding it up to the specified boundary. */
2979 valueT
2980 md_section_align (seg, addr)
2981 segT seg;
2982 valueT addr; /* Address to be rounded up */
2984 int align;
2985 #ifdef BFD_ASSEMBLER
2986 align = bfd_get_section_alignment (stdoutput, seg);
2987 #else
2988 align = section_alignment[(int) seg];
2989 #endif
2990 return (addr + (1 << align) - 1) & (-1 << align);
2993 extern int coff_flags;
2995 #ifdef OBJ_COFF
2996 void
2997 tc_headers_hook (headers)
2998 object_headers *headers;
3000 switch (architecture)
3002 case ARCH_KA:
3003 coff_flags |= F_I960KA;
3004 break;
3006 case ARCH_KB:
3007 coff_flags |= F_I960KB;
3008 break;
3010 case ARCH_MC:
3011 coff_flags |= F_I960MC;
3012 break;
3014 case ARCH_CA:
3015 coff_flags |= F_I960CA;
3016 break;
3018 case ARCH_JX:
3019 coff_flags |= F_I960JX;
3020 break;
3022 case ARCH_HX:
3023 coff_flags |= F_I960HX;
3024 break;
3026 default:
3027 if (iclasses_seen == I_BASE)
3028 coff_flags |= F_I960CORE;
3029 else if (iclasses_seen & I_CX)
3030 coff_flags |= F_I960CA;
3031 else if (iclasses_seen & I_HX)
3032 coff_flags |= F_I960HX;
3033 else if (iclasses_seen & I_JX)
3034 coff_flags |= F_I960JX;
3035 else if (iclasses_seen & I_CX2)
3036 coff_flags |= F_I960CA;
3037 else if (iclasses_seen & I_MIL)
3038 coff_flags |= F_I960MC;
3039 else if (iclasses_seen & (I_DEC | I_FP))
3040 coff_flags |= F_I960KB;
3041 else
3042 coff_flags |= F_I960KA;
3043 break;
3046 if (flag_readonly_data_in_text)
3048 headers->filehdr.f_magic = I960RWMAGIC;
3049 headers->aouthdr.magic = OMAGIC;
3051 else
3053 headers->filehdr.f_magic = I960ROMAGIC;
3054 headers->aouthdr.magic = NMAGIC;
3055 } /* set magic numbers */
3058 #endif /* OBJ_COFF */
3060 #ifndef BFD_ASSEMBLER
3062 /* Things going on here:
3064 For bout, We need to assure a couple of simplifying
3065 assumptions about leafprocs for the linker: the leafproc
3066 entry symbols will be defined in the same assembly in
3067 which they're declared with the '.leafproc' directive;
3068 and if a leafproc has both 'call' and 'bal' entry points
3069 they are both global or both local.
3071 For coff, the call symbol has a second aux entry that
3072 contains the bal entry point. The bal symbol becomes a
3073 label.
3075 For coff representation, the call symbol has a second aux entry that
3076 contains the bal entry point. The bal symbol becomes a label. */
3078 void
3079 tc_crawl_symbol_chain (headers)
3080 object_headers *headers;
3082 symbolS *symbolP;
3084 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
3086 #ifdef OBJ_COFF
3087 if (TC_S_IS_SYSPROC (symbolP))
3089 /* second aux entry already contains the sysproc number */
3090 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3091 S_SET_STORAGE_CLASS (symbolP, C_SCALL);
3092 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3093 continue;
3094 } /* rewrite sysproc */
3095 #endif /* OBJ_COFF */
3097 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
3099 continue;
3100 } /* Not a leafproc symbol */
3102 if (!S_IS_DEFINED (symbolP))
3104 as_bad (_("leafproc symbol '%s' undefined"), S_GET_NAME (symbolP));
3105 } /* undefined leaf */
3107 if (TC_S_IS_CALLNAME (symbolP))
3109 symbolS *balP = tc_get_bal_of_call (symbolP);
3110 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
3112 S_SET_EXTERNAL (symbolP);
3113 S_SET_EXTERNAL (balP);
3114 as_warn (_("Warning: making leafproc entries %s and %s both global\n"),
3115 S_GET_NAME (symbolP), S_GET_NAME (balP));
3116 } /* externality mismatch */
3117 } /* if callname */
3118 } /* walk the symbol chain */
3121 #endif /* ! BFD_ASSEMBLER */
3123 /* For aout or bout, the bal immediately follows the call.
3125 For coff, we cheat and store a pointer to the bal symbol in the
3126 second aux entry of the call. */
3128 #undef OBJ_ABOUT
3129 #ifdef OBJ_AOUT
3130 #define OBJ_ABOUT
3131 #endif
3132 #ifdef OBJ_BOUT
3133 #define OBJ_ABOUT
3134 #endif
3136 void
3137 tc_set_bal_of_call (callP, balP)
3138 symbolS *callP;
3139 symbolS *balP;
3141 know (TC_S_IS_CALLNAME (callP));
3142 know (TC_S_IS_BALNAME (balP));
3144 #ifdef OBJ_COFF
3146 callP->sy_tc = balP;
3147 S_SET_NUMBER_AUXILIARY (callP, 2);
3149 #else /* ! OBJ_COFF */
3150 #ifdef OBJ_ABOUT
3152 /* If the 'bal' entry doesn't immediately follow the 'call'
3153 * symbol, unlink it from the symbol list and re-insert it.
3155 if (symbol_next (callP) != balP)
3157 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
3158 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
3159 } /* if not in order */
3161 #else /* ! OBJ_ABOUT */
3162 as_fatal ("Only supported for a.out, b.out, or COFF");
3163 #endif /* ! OBJ_ABOUT */
3164 #endif /* ! OBJ_COFF */
3167 symbolS *
3168 tc_get_bal_of_call (callP)
3169 symbolS *callP;
3171 symbolS *retval;
3173 know (TC_S_IS_CALLNAME (callP));
3175 #ifdef OBJ_COFF
3176 retval = callP->sy_tc;
3177 #else
3178 #ifdef OBJ_ABOUT
3179 retval = symbol_next (callP);
3180 #else
3181 as_fatal ("Only supported for a.out, b.out, or COFF");
3182 #endif /* ! OBJ_ABOUT */
3183 #endif /* ! OBJ_COFF */
3185 know (TC_S_IS_BALNAME (retval));
3186 return retval;
3187 } /* _tc_get_bal_of_call() */
3189 void
3190 tc_coff_symbol_emit_hook (symbolP)
3191 symbolS *symbolP;
3193 if (TC_S_IS_CALLNAME (symbolP))
3195 #ifdef OBJ_COFF
3196 symbolS *balP = tc_get_bal_of_call (symbolP);
3198 #if 0
3199 /* second aux entry contains the bal entry point */
3200 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3201 #endif
3202 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
3203 if (S_GET_STORAGE_CLASS (symbolP) == C_EXT)
3204 S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT);
3205 else
3206 S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT);
3207 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3208 /* fix up the bal symbol */
3209 S_SET_STORAGE_CLASS (balP, C_LABEL);
3210 #endif /* OBJ_COFF */
3211 } /* only on calls */
3214 void
3215 i960_handle_align (fragp)
3216 fragS *fragp;
3218 if (!linkrelax)
3219 return;
3221 #ifndef OBJ_BOUT
3223 as_bad (_("option --link-relax is only supported in b.out format"));
3224 linkrelax = 0;
3225 return;
3227 #else
3229 /* The text section "ends" with another alignment reloc, to which we
3230 aren't adding padding. */
3231 if (fragp->fr_next == text_last_frag
3232 || fragp->fr_next == data_last_frag)
3233 return;
3235 /* alignment directive */
3236 fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
3237 (int) fragp->fr_type);
3238 #endif /* OBJ_BOUT */
3242 i960_validate_fix (fixP, this_segment_type, add_symbolPP)
3243 fixS *fixP;
3244 segT this_segment_type;
3245 symbolS **add_symbolPP;
3247 #define add_symbolP (*add_symbolPP)
3248 if (fixP->fx_tcbit && TC_S_IS_CALLNAME (add_symbolP))
3250 /* Relocation should be done via the associated 'bal'
3251 entry point symbol. */
3253 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (add_symbolP)))
3255 as_bad (_("No 'bal' entry point for leafproc %s"),
3256 S_GET_NAME (add_symbolP));
3257 return 1;
3259 fixP->fx_addsy = add_symbolP = tc_get_bal_of_call (add_symbolP);
3261 #if 0
3262 /* Still have to work out other conditions for these tests. */
3264 if (fixP->fx_tcbit)
3266 as_bad (_("callj to difference of two symbols"));
3267 return 1;
3269 reloc_callj (fixP);
3270 if ((int) fixP->fx_bit_fixP == 13)
3272 /* This is a COBR instruction. They have only a 13-bit
3273 displacement and are only to be used for local branches:
3274 flag as error, don't generate relocation. */
3275 as_bad (_("can't use COBR format with external label"));
3276 fixP->fx_addsy = NULL; /* No relocations please. */
3277 return 1;
3280 #endif
3281 #undef add_symbolP
3282 return 0;
3285 #ifdef BFD_ASSEMBLER
3287 /* From cgen.c: */
3289 static short
3290 tc_bfd_fix2rtype (fixP)
3291 fixS *fixP;
3293 #if 0
3294 if (fixP->fx_bsr)
3295 abort ();
3296 #endif
3298 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
3299 return BFD_RELOC_32;
3301 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
3302 return BFD_RELOC_24_PCREL;
3304 abort ();
3305 return 0;
3308 /* Translate internal representation of relocation info to BFD target
3309 format.
3311 FIXME: To what extent can we get all relevant targets to use this? */
3313 arelent *
3314 tc_gen_reloc (section, fixP)
3315 asection *section;
3316 fixS *fixP;
3318 arelent * reloc;
3320 reloc = (arelent *) xmalloc (sizeof (arelent));
3322 /* HACK: Is this right? */
3323 fixP->fx_r_type = tc_bfd_fix2rtype (fixP);
3325 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
3326 if (reloc->howto == (reloc_howto_type *) NULL)
3328 as_bad_where (fixP->fx_file, fixP->fx_line,
3329 "internal error: can't export reloc type %d (`%s')",
3330 fixP->fx_r_type,
3331 bfd_get_reloc_code_name (fixP->fx_r_type));
3332 return NULL;
3335 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
3337 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
3338 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
3339 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
3340 reloc->addend = fixP->fx_addnumber;
3342 return reloc;
3345 /* end from cgen.c */
3347 #endif /* BFD_ASSEMBLER */
3349 /* end of tc-i960.c */