* testsuite/debug_msg.sh: Test mixed weak/strong symbol behavior.
[binutils.git] / bfd / elfxx-mips.c
bloba94e60945a1bf47e3f013dc1e3ac5270030d709c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
47 #include "hashtab.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
139 /* This structure is used to hold .got information when linking. */
141 struct mips_got_info
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
178 /* Map an input bfd to a got in a multi-got link. */
180 struct mips_elf_bfd2got_hash
182 bfd *bfd;
183 struct mips_got_info *g;
186 /* Structure passed when traversing the bfd2got hash table, used to
187 create and merge bfd's gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* A hashtable that maps bfds to gots. */
192 htab_t bfd2got;
193 /* The output bfd. */
194 bfd *obfd;
195 /* The link information. */
196 struct bfd_link_info *info;
197 /* A pointer to the primary got, i.e., the one that's going to get
198 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 DT_MIPS_GOTSYM. */
200 struct mips_got_info *primary;
201 /* A non-primary got we're trying to merge with other input bfd's
202 gots. */
203 struct mips_got_info *current;
204 /* The maximum number of got entries that can be addressed with a
205 16-bit offset. */
206 unsigned int max_count;
207 /* The maximum number of page entries needed by each got. */
208 unsigned int max_pages;
209 /* The total number of global entries which will live in the
210 primary got and be automatically relocated. This includes
211 those not referenced by the primary GOT but included in
212 the "master" GOT. */
213 unsigned int global_count;
216 /* Another structure used to pass arguments for got entries traversal. */
218 struct mips_elf_set_global_got_offset_arg
220 struct mips_got_info *g;
221 int value;
222 unsigned int needed_relocs;
223 struct bfd_link_info *info;
226 /* A structure used to count TLS relocations or GOT entries, for GOT
227 entry or ELF symbol table traversal. */
229 struct mips_elf_count_tls_arg
231 struct bfd_link_info *info;
232 unsigned int needed;
235 struct _mips_elf_section_data
237 struct bfd_elf_section_data elf;
238 union
240 bfd_byte *tdata;
241 } u;
244 #define mips_elf_section_data(sec) \
245 ((struct _mips_elf_section_data *) elf_section_data (sec))
247 #define is_mips_elf(bfd) \
248 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
249 && elf_tdata (bfd) != NULL \
250 && elf_object_id (bfd) == MIPS_ELF_DATA)
252 /* The ABI says that every symbol used by dynamic relocations must have
253 a global GOT entry. Among other things, this provides the dynamic
254 linker with a free, directly-indexed cache. The GOT can therefore
255 contain symbols that are not referenced by GOT relocations themselves
256 (in other words, it may have symbols that are not referenced by things
257 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
259 GOT relocations are less likely to overflow if we put the associated
260 GOT entries towards the beginning. We therefore divide the global
261 GOT entries into two areas: "normal" and "reloc-only". Entries in
262 the first area can be used for both dynamic relocations and GP-relative
263 accesses, while those in the "reloc-only" area are for dynamic
264 relocations only.
266 These GGA_* ("Global GOT Area") values are organised so that lower
267 values are more general than higher values. Also, non-GGA_NONE
268 values are ordered by the position of the area in the GOT. */
269 #define GGA_NORMAL 0
270 #define GGA_RELOC_ONLY 1
271 #define GGA_NONE 2
273 /* Information about a non-PIC interface to a PIC function. There are
274 two ways of creating these interfaces. The first is to add:
276 lui $25,%hi(func)
277 addiu $25,$25,%lo(func)
279 immediately before a PIC function "func". The second is to add:
281 lui $25,%hi(func)
282 j func
283 addiu $25,$25,%lo(func)
285 to a separate trampoline section.
287 Stubs of the first kind go in a new section immediately before the
288 target function. Stubs of the second kind go in a single section
289 pointed to by the hash table's "strampoline" field. */
290 struct mips_elf_la25_stub {
291 /* The generated section that contains this stub. */
292 asection *stub_section;
294 /* The offset of the stub from the start of STUB_SECTION. */
295 bfd_vma offset;
297 /* One symbol for the original function. Its location is available
298 in H->root.root.u.def. */
299 struct mips_elf_link_hash_entry *h;
302 /* Macros for populating a mips_elf_la25_stub. */
304 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
305 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
306 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
308 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
309 the dynamic symbols. */
311 struct mips_elf_hash_sort_data
313 /* The symbol in the global GOT with the lowest dynamic symbol table
314 index. */
315 struct elf_link_hash_entry *low;
316 /* The least dynamic symbol table index corresponding to a non-TLS
317 symbol with a GOT entry. */
318 long min_got_dynindx;
319 /* The greatest dynamic symbol table index corresponding to a symbol
320 with a GOT entry that is not referenced (e.g., a dynamic symbol
321 with dynamic relocations pointing to it from non-primary GOTs). */
322 long max_unref_got_dynindx;
323 /* The greatest dynamic symbol table index not corresponding to a
324 symbol without a GOT entry. */
325 long max_non_got_dynindx;
328 /* The MIPS ELF linker needs additional information for each symbol in
329 the global hash table. */
331 struct mips_elf_link_hash_entry
333 struct elf_link_hash_entry root;
335 /* External symbol information. */
336 EXTR esym;
338 /* The la25 stub we have created for ths symbol, if any. */
339 struct mips_elf_la25_stub *la25_stub;
341 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
342 this symbol. */
343 unsigned int possibly_dynamic_relocs;
345 /* If there is a stub that 32 bit functions should use to call this
346 16 bit function, this points to the section containing the stub. */
347 asection *fn_stub;
349 /* If there is a stub that 16 bit functions should use to call this
350 32 bit function, this points to the section containing the stub. */
351 asection *call_stub;
353 /* This is like the call_stub field, but it is used if the function
354 being called returns a floating point value. */
355 asection *call_fp_stub;
357 #define GOT_NORMAL 0
358 #define GOT_TLS_GD 1
359 #define GOT_TLS_LDM 2
360 #define GOT_TLS_IE 4
361 #define GOT_TLS_OFFSET_DONE 0x40
362 #define GOT_TLS_DONE 0x80
363 unsigned char tls_type;
365 /* This is only used in single-GOT mode; in multi-GOT mode there
366 is one mips_got_entry per GOT entry, so the offset is stored
367 there. In single-GOT mode there may be many mips_got_entry
368 structures all referring to the same GOT slot. It might be
369 possible to use root.got.offset instead, but that field is
370 overloaded already. */
371 bfd_vma tls_got_offset;
373 /* The highest GGA_* value that satisfies all references to this symbol. */
374 unsigned int global_got_area : 2;
376 /* True if one of the relocations described by possibly_dynamic_relocs
377 is against a readonly section. */
378 unsigned int readonly_reloc : 1;
380 /* True if there is a relocation against this symbol that must be
381 resolved by the static linker (in other words, if the relocation
382 cannot possibly be made dynamic). */
383 unsigned int has_static_relocs : 1;
385 /* True if we must not create a .MIPS.stubs entry for this symbol.
386 This is set, for example, if there are relocations related to
387 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
388 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
389 unsigned int no_fn_stub : 1;
391 /* Whether we need the fn_stub; this is true if this symbol appears
392 in any relocs other than a 16 bit call. */
393 unsigned int need_fn_stub : 1;
395 /* True if this symbol is referenced by branch relocations from
396 any non-PIC input file. This is used to determine whether an
397 la25 stub is required. */
398 unsigned int has_nonpic_branches : 1;
400 /* Does this symbol need a traditional MIPS lazy-binding stub
401 (as opposed to a PLT entry)? */
402 unsigned int needs_lazy_stub : 1;
405 /* MIPS ELF linker hash table. */
407 struct mips_elf_link_hash_table
409 struct elf_link_hash_table root;
410 #if 0
411 /* We no longer use this. */
412 /* String section indices for the dynamic section symbols. */
413 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
414 #endif
416 /* The number of .rtproc entries. */
417 bfd_size_type procedure_count;
419 /* The size of the .compact_rel section (if SGI_COMPAT). */
420 bfd_size_type compact_rel_size;
422 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
423 entry is set to the address of __rld_obj_head as in IRIX5. */
424 bfd_boolean use_rld_obj_head;
426 /* This is the value of the __rld_map or __rld_obj_head symbol. */
427 bfd_vma rld_value;
429 /* This is set if we see any mips16 stub sections. */
430 bfd_boolean mips16_stubs_seen;
432 /* True if we can generate copy relocs and PLTs. */
433 bfd_boolean use_plts_and_copy_relocs;
435 /* True if we're generating code for VxWorks. */
436 bfd_boolean is_vxworks;
438 /* True if we already reported the small-data section overflow. */
439 bfd_boolean small_data_overflow_reported;
441 /* Shortcuts to some dynamic sections, or NULL if they are not
442 being used. */
443 asection *srelbss;
444 asection *sdynbss;
445 asection *srelplt;
446 asection *srelplt2;
447 asection *sgotplt;
448 asection *splt;
449 asection *sstubs;
450 asection *sgot;
452 /* The master GOT information. */
453 struct mips_got_info *got_info;
455 /* The size of the PLT header in bytes. */
456 bfd_vma plt_header_size;
458 /* The size of a PLT entry in bytes. */
459 bfd_vma plt_entry_size;
461 /* The number of functions that need a lazy-binding stub. */
462 bfd_vma lazy_stub_count;
464 /* The size of a function stub entry in bytes. */
465 bfd_vma function_stub_size;
467 /* The number of reserved entries at the beginning of the GOT. */
468 unsigned int reserved_gotno;
470 /* The section used for mips_elf_la25_stub trampolines.
471 See the comment above that structure for details. */
472 asection *strampoline;
474 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
475 pairs. */
476 htab_t la25_stubs;
478 /* A function FN (NAME, IS, OS) that creates a new input section
479 called NAME and links it to output section OS. If IS is nonnull,
480 the new section should go immediately before it, otherwise it
481 should go at the (current) beginning of OS.
483 The function returns the new section on success, otherwise it
484 returns null. */
485 asection *(*add_stub_section) (const char *, asection *, asection *);
488 /* Get the MIPS ELF linker hash table from a link_info structure. */
490 #define mips_elf_hash_table(p) \
491 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
492 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
494 /* A structure used to communicate with htab_traverse callbacks. */
495 struct mips_htab_traverse_info
497 /* The usual link-wide information. */
498 struct bfd_link_info *info;
499 bfd *output_bfd;
501 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
502 bfd_boolean error;
505 #define TLS_RELOC_P(r_type) \
506 (r_type == R_MIPS_TLS_DTPMOD32 \
507 || r_type == R_MIPS_TLS_DTPMOD64 \
508 || r_type == R_MIPS_TLS_DTPREL32 \
509 || r_type == R_MIPS_TLS_DTPREL64 \
510 || r_type == R_MIPS_TLS_GD \
511 || r_type == R_MIPS_TLS_LDM \
512 || r_type == R_MIPS_TLS_DTPREL_HI16 \
513 || r_type == R_MIPS_TLS_DTPREL_LO16 \
514 || r_type == R_MIPS_TLS_GOTTPREL \
515 || r_type == R_MIPS_TLS_TPREL32 \
516 || r_type == R_MIPS_TLS_TPREL64 \
517 || r_type == R_MIPS_TLS_TPREL_HI16 \
518 || r_type == R_MIPS_TLS_TPREL_LO16)
520 /* Structure used to pass information to mips_elf_output_extsym. */
522 struct extsym_info
524 bfd *abfd;
525 struct bfd_link_info *info;
526 struct ecoff_debug_info *debug;
527 const struct ecoff_debug_swap *swap;
528 bfd_boolean failed;
531 /* The names of the runtime procedure table symbols used on IRIX5. */
533 static const char * const mips_elf_dynsym_rtproc_names[] =
535 "_procedure_table",
536 "_procedure_string_table",
537 "_procedure_table_size",
538 NULL
541 /* These structures are used to generate the .compact_rel section on
542 IRIX5. */
544 typedef struct
546 unsigned long id1; /* Always one? */
547 unsigned long num; /* Number of compact relocation entries. */
548 unsigned long id2; /* Always two? */
549 unsigned long offset; /* The file offset of the first relocation. */
550 unsigned long reserved0; /* Zero? */
551 unsigned long reserved1; /* Zero? */
552 } Elf32_compact_rel;
554 typedef struct
556 bfd_byte id1[4];
557 bfd_byte num[4];
558 bfd_byte id2[4];
559 bfd_byte offset[4];
560 bfd_byte reserved0[4];
561 bfd_byte reserved1[4];
562 } Elf32_External_compact_rel;
564 typedef struct
566 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
567 unsigned int rtype : 4; /* Relocation types. See below. */
568 unsigned int dist2to : 8;
569 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
570 unsigned long konst; /* KONST field. See below. */
571 unsigned long vaddr; /* VADDR to be relocated. */
572 } Elf32_crinfo;
574 typedef struct
576 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
577 unsigned int rtype : 4; /* Relocation types. See below. */
578 unsigned int dist2to : 8;
579 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
580 unsigned long konst; /* KONST field. See below. */
581 } Elf32_crinfo2;
583 typedef struct
585 bfd_byte info[4];
586 bfd_byte konst[4];
587 bfd_byte vaddr[4];
588 } Elf32_External_crinfo;
590 typedef struct
592 bfd_byte info[4];
593 bfd_byte konst[4];
594 } Elf32_External_crinfo2;
596 /* These are the constants used to swap the bitfields in a crinfo. */
598 #define CRINFO_CTYPE (0x1)
599 #define CRINFO_CTYPE_SH (31)
600 #define CRINFO_RTYPE (0xf)
601 #define CRINFO_RTYPE_SH (27)
602 #define CRINFO_DIST2TO (0xff)
603 #define CRINFO_DIST2TO_SH (19)
604 #define CRINFO_RELVADDR (0x7ffff)
605 #define CRINFO_RELVADDR_SH (0)
607 /* A compact relocation info has long (3 words) or short (2 words)
608 formats. A short format doesn't have VADDR field and relvaddr
609 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
610 #define CRF_MIPS_LONG 1
611 #define CRF_MIPS_SHORT 0
613 /* There are 4 types of compact relocation at least. The value KONST
614 has different meaning for each type:
616 (type) (konst)
617 CT_MIPS_REL32 Address in data
618 CT_MIPS_WORD Address in word (XXX)
619 CT_MIPS_GPHI_LO GP - vaddr
620 CT_MIPS_JMPAD Address to jump
623 #define CRT_MIPS_REL32 0xa
624 #define CRT_MIPS_WORD 0xb
625 #define CRT_MIPS_GPHI_LO 0xc
626 #define CRT_MIPS_JMPAD 0xd
628 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
629 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
630 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
631 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
633 /* The structure of the runtime procedure descriptor created by the
634 loader for use by the static exception system. */
636 typedef struct runtime_pdr {
637 bfd_vma adr; /* Memory address of start of procedure. */
638 long regmask; /* Save register mask. */
639 long regoffset; /* Save register offset. */
640 long fregmask; /* Save floating point register mask. */
641 long fregoffset; /* Save floating point register offset. */
642 long frameoffset; /* Frame size. */
643 short framereg; /* Frame pointer register. */
644 short pcreg; /* Offset or reg of return pc. */
645 long irpss; /* Index into the runtime string table. */
646 long reserved;
647 struct exception_info *exception_info;/* Pointer to exception array. */
648 } RPDR, *pRPDR;
649 #define cbRPDR sizeof (RPDR)
650 #define rpdNil ((pRPDR) 0)
652 static struct mips_got_entry *mips_elf_create_local_got_entry
653 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
654 struct mips_elf_link_hash_entry *, int);
655 static bfd_boolean mips_elf_sort_hash_table_f
656 (struct mips_elf_link_hash_entry *, void *);
657 static bfd_vma mips_elf_high
658 (bfd_vma);
659 static bfd_boolean mips_elf_create_dynamic_relocation
660 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
661 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
662 bfd_vma *, asection *);
663 static hashval_t mips_elf_got_entry_hash
664 (const void *);
665 static bfd_vma mips_elf_adjust_gp
666 (bfd *, struct mips_got_info *, bfd *);
667 static struct mips_got_info *mips_elf_got_for_ibfd
668 (struct mips_got_info *, bfd *);
670 /* This will be used when we sort the dynamic relocation records. */
671 static bfd *reldyn_sorting_bfd;
673 /* True if ABFD is for CPUs with load interlocking that include
674 non-MIPS1 CPUs and R3900. */
675 #define LOAD_INTERLOCKS_P(abfd) \
676 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
677 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
679 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
680 This should be safe for all architectures. We enable this predicate
681 for RM9000 for now. */
682 #define JAL_TO_BAL_P(abfd) \
683 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
685 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
686 This should be safe for all architectures. We enable this predicate for
687 all CPUs. */
688 #define JALR_TO_BAL_P(abfd) 1
690 /* True if ABFD is for CPUs that are faster if JR is converted to B.
691 This should be safe for all architectures. We enable this predicate for
692 all CPUs. */
693 #define JR_TO_B_P(abfd) 1
695 /* True if ABFD is a PIC object. */
696 #define PIC_OBJECT_P(abfd) \
697 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
699 /* Nonzero if ABFD is using the N32 ABI. */
700 #define ABI_N32_P(abfd) \
701 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
703 /* Nonzero if ABFD is using the N64 ABI. */
704 #define ABI_64_P(abfd) \
705 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
707 /* Nonzero if ABFD is using NewABI conventions. */
708 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
710 /* The IRIX compatibility level we are striving for. */
711 #define IRIX_COMPAT(abfd) \
712 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
714 /* Whether we are trying to be compatible with IRIX at all. */
715 #define SGI_COMPAT(abfd) \
716 (IRIX_COMPAT (abfd) != ict_none)
718 /* The name of the options section. */
719 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
720 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
722 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
723 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
724 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
725 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
727 /* Whether the section is readonly. */
728 #define MIPS_ELF_READONLY_SECTION(sec) \
729 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
730 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
732 /* The name of the stub section. */
733 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
735 /* The size of an external REL relocation. */
736 #define MIPS_ELF_REL_SIZE(abfd) \
737 (get_elf_backend_data (abfd)->s->sizeof_rel)
739 /* The size of an external RELA relocation. */
740 #define MIPS_ELF_RELA_SIZE(abfd) \
741 (get_elf_backend_data (abfd)->s->sizeof_rela)
743 /* The size of an external dynamic table entry. */
744 #define MIPS_ELF_DYN_SIZE(abfd) \
745 (get_elf_backend_data (abfd)->s->sizeof_dyn)
747 /* The size of a GOT entry. */
748 #define MIPS_ELF_GOT_SIZE(abfd) \
749 (get_elf_backend_data (abfd)->s->arch_size / 8)
751 /* The size of a symbol-table entry. */
752 #define MIPS_ELF_SYM_SIZE(abfd) \
753 (get_elf_backend_data (abfd)->s->sizeof_sym)
755 /* The default alignment for sections, as a power of two. */
756 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
757 (get_elf_backend_data (abfd)->s->log_file_align)
759 /* Get word-sized data. */
760 #define MIPS_ELF_GET_WORD(abfd, ptr) \
761 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
763 /* Put out word-sized data. */
764 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
765 (ABI_64_P (abfd) \
766 ? bfd_put_64 (abfd, val, ptr) \
767 : bfd_put_32 (abfd, val, ptr))
769 /* The opcode for word-sized loads (LW or LD). */
770 #define MIPS_ELF_LOAD_WORD(abfd) \
771 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
773 /* Add a dynamic symbol table-entry. */
774 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
775 _bfd_elf_add_dynamic_entry (info, tag, val)
777 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
778 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
780 /* Determine whether the internal relocation of index REL_IDX is REL
781 (zero) or RELA (non-zero). The assumption is that, if there are
782 two relocation sections for this section, one of them is REL and
783 the other is RELA. If the index of the relocation we're testing is
784 in range for the first relocation section, check that the external
785 relocation size is that for RELA. It is also assumed that, if
786 rel_idx is not in range for the first section, and this first
787 section contains REL relocs, then the relocation is in the second
788 section, that is RELA. */
789 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
790 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
791 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
792 > (bfd_vma)(rel_idx)) \
793 == (elf_section_data (sec)->rel_hdr.sh_entsize \
794 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
795 : sizeof (Elf32_External_Rela))))
797 /* The name of the dynamic relocation section. */
798 #define MIPS_ELF_REL_DYN_NAME(INFO) \
799 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
801 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
802 from smaller values. Start with zero, widen, *then* decrement. */
803 #define MINUS_ONE (((bfd_vma)0) - 1)
804 #define MINUS_TWO (((bfd_vma)0) - 2)
806 /* The value to write into got[1] for SVR4 targets, to identify it is
807 a GNU object. The dynamic linker can then use got[1] to store the
808 module pointer. */
809 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
810 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
812 /* The offset of $gp from the beginning of the .got section. */
813 #define ELF_MIPS_GP_OFFSET(INFO) \
814 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
816 /* The maximum size of the GOT for it to be addressable using 16-bit
817 offsets from $gp. */
818 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
820 /* Instructions which appear in a stub. */
821 #define STUB_LW(abfd) \
822 ((ABI_64_P (abfd) \
823 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
824 : 0x8f998010)) /* lw t9,0x8010(gp) */
825 #define STUB_MOVE(abfd) \
826 ((ABI_64_P (abfd) \
827 ? 0x03e0782d /* daddu t7,ra */ \
828 : 0x03e07821)) /* addu t7,ra */
829 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
830 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
831 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
832 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
833 #define STUB_LI16S(abfd, VAL) \
834 ((ABI_64_P (abfd) \
835 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
836 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
838 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
839 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
841 /* The name of the dynamic interpreter. This is put in the .interp
842 section. */
844 #define ELF_DYNAMIC_INTERPRETER(abfd) \
845 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
846 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
847 : "/usr/lib/libc.so.1")
849 #ifdef BFD64
850 #define MNAME(bfd,pre,pos) \
851 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
852 #define ELF_R_SYM(bfd, i) \
853 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
854 #define ELF_R_TYPE(bfd, i) \
855 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
856 #define ELF_R_INFO(bfd, s, t) \
857 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
858 #else
859 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
860 #define ELF_R_SYM(bfd, i) \
861 (ELF32_R_SYM (i))
862 #define ELF_R_TYPE(bfd, i) \
863 (ELF32_R_TYPE (i))
864 #define ELF_R_INFO(bfd, s, t) \
865 (ELF32_R_INFO (s, t))
866 #endif
868 /* The mips16 compiler uses a couple of special sections to handle
869 floating point arguments.
871 Section names that look like .mips16.fn.FNNAME contain stubs that
872 copy floating point arguments from the fp regs to the gp regs and
873 then jump to FNNAME. If any 32 bit function calls FNNAME, the
874 call should be redirected to the stub instead. If no 32 bit
875 function calls FNNAME, the stub should be discarded. We need to
876 consider any reference to the function, not just a call, because
877 if the address of the function is taken we will need the stub,
878 since the address might be passed to a 32 bit function.
880 Section names that look like .mips16.call.FNNAME contain stubs
881 that copy floating point arguments from the gp regs to the fp
882 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
883 then any 16 bit function that calls FNNAME should be redirected
884 to the stub instead. If FNNAME is not a 32 bit function, the
885 stub should be discarded.
887 .mips16.call.fp.FNNAME sections are similar, but contain stubs
888 which call FNNAME and then copy the return value from the fp regs
889 to the gp regs. These stubs store the return value in $18 while
890 calling FNNAME; any function which might call one of these stubs
891 must arrange to save $18 around the call. (This case is not
892 needed for 32 bit functions that call 16 bit functions, because
893 16 bit functions always return floating point values in both
894 $f0/$f1 and $2/$3.)
896 Note that in all cases FNNAME might be defined statically.
897 Therefore, FNNAME is not used literally. Instead, the relocation
898 information will indicate which symbol the section is for.
900 We record any stubs that we find in the symbol table. */
902 #define FN_STUB ".mips16.fn."
903 #define CALL_STUB ".mips16.call."
904 #define CALL_FP_STUB ".mips16.call.fp."
906 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
907 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
908 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
910 /* The format of the first PLT entry in an O32 executable. */
911 static const bfd_vma mips_o32_exec_plt0_entry[] =
913 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
914 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
915 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
916 0x031cc023, /* subu $24, $24, $28 */
917 0x03e07821, /* move $15, $31 */
918 0x0018c082, /* srl $24, $24, 2 */
919 0x0320f809, /* jalr $25 */
920 0x2718fffe /* subu $24, $24, 2 */
923 /* The format of the first PLT entry in an N32 executable. Different
924 because gp ($28) is not available; we use t2 ($14) instead. */
925 static const bfd_vma mips_n32_exec_plt0_entry[] =
927 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
928 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
929 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
930 0x030ec023, /* subu $24, $24, $14 */
931 0x03e07821, /* move $15, $31 */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
937 /* The format of the first PLT entry in an N64 executable. Different
938 from N32 because of the increased size of GOT entries. */
939 static const bfd_vma mips_n64_exec_plt0_entry[] =
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 */
946 0x0018c0c2, /* srl $24, $24, 3 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
951 /* The format of subsequent PLT entries. */
952 static const bfd_vma mips_exec_plt_entry[] =
954 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
955 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
956 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
957 0x03200008 /* jr $25 */
960 /* The format of the first PLT entry in a VxWorks executable. */
961 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
963 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
964 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
965 0x8f390008, /* lw t9, 8(t9) */
966 0x00000000, /* nop */
967 0x03200008, /* jr t9 */
968 0x00000000 /* nop */
971 /* The format of subsequent PLT entries. */
972 static const bfd_vma mips_vxworks_exec_plt_entry[] =
974 0x10000000, /* b .PLT_resolver */
975 0x24180000, /* li t8, <pltindex> */
976 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
977 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
978 0x8f390000, /* lw t9, 0(t9) */
979 0x00000000, /* nop */
980 0x03200008, /* jr t9 */
981 0x00000000 /* nop */
984 /* The format of the first PLT entry in a VxWorks shared object. */
985 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
987 0x8f990008, /* lw t9, 8(gp) */
988 0x00000000, /* nop */
989 0x03200008, /* jr t9 */
990 0x00000000, /* nop */
991 0x00000000, /* nop */
992 0x00000000 /* nop */
995 /* The format of subsequent PLT entries. */
996 static const bfd_vma mips_vxworks_shared_plt_entry[] =
998 0x10000000, /* b .PLT_resolver */
999 0x24180000 /* li t8, <pltindex> */
1002 /* Look up an entry in a MIPS ELF linker hash table. */
1004 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1005 ((struct mips_elf_link_hash_entry *) \
1006 elf_link_hash_lookup (&(table)->root, (string), (create), \
1007 (copy), (follow)))
1009 /* Traverse a MIPS ELF linker hash table. */
1011 #define mips_elf_link_hash_traverse(table, func, info) \
1012 (elf_link_hash_traverse \
1013 (&(table)->root, \
1014 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1015 (info)))
1017 /* Find the base offsets for thread-local storage in this object,
1018 for GD/LD and IE/LE respectively. */
1020 #define TP_OFFSET 0x7000
1021 #define DTP_OFFSET 0x8000
1023 static bfd_vma
1024 dtprel_base (struct bfd_link_info *info)
1026 /* If tls_sec is NULL, we should have signalled an error already. */
1027 if (elf_hash_table (info)->tls_sec == NULL)
1028 return 0;
1029 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1032 static bfd_vma
1033 tprel_base (struct bfd_link_info *info)
1035 /* If tls_sec is NULL, we should have signalled an error already. */
1036 if (elf_hash_table (info)->tls_sec == NULL)
1037 return 0;
1038 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1041 /* Create an entry in a MIPS ELF linker hash table. */
1043 static struct bfd_hash_entry *
1044 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1045 struct bfd_hash_table *table, const char *string)
1047 struct mips_elf_link_hash_entry *ret =
1048 (struct mips_elf_link_hash_entry *) entry;
1050 /* Allocate the structure if it has not already been allocated by a
1051 subclass. */
1052 if (ret == NULL)
1053 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1054 if (ret == NULL)
1055 return (struct bfd_hash_entry *) ret;
1057 /* Call the allocation method of the superclass. */
1058 ret = ((struct mips_elf_link_hash_entry *)
1059 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1060 table, string));
1061 if (ret != NULL)
1063 /* Set local fields. */
1064 memset (&ret->esym, 0, sizeof (EXTR));
1065 /* We use -2 as a marker to indicate that the information has
1066 not been set. -1 means there is no associated ifd. */
1067 ret->esym.ifd = -2;
1068 ret->la25_stub = 0;
1069 ret->possibly_dynamic_relocs = 0;
1070 ret->fn_stub = NULL;
1071 ret->call_stub = NULL;
1072 ret->call_fp_stub = NULL;
1073 ret->tls_type = GOT_NORMAL;
1074 ret->global_got_area = GGA_NONE;
1075 ret->readonly_reloc = FALSE;
1076 ret->has_static_relocs = FALSE;
1077 ret->no_fn_stub = FALSE;
1078 ret->need_fn_stub = FALSE;
1079 ret->has_nonpic_branches = FALSE;
1080 ret->needs_lazy_stub = FALSE;
1083 return (struct bfd_hash_entry *) ret;
1086 bfd_boolean
1087 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1089 if (!sec->used_by_bfd)
1091 struct _mips_elf_section_data *sdata;
1092 bfd_size_type amt = sizeof (*sdata);
1094 sdata = bfd_zalloc (abfd, amt);
1095 if (sdata == NULL)
1096 return FALSE;
1097 sec->used_by_bfd = sdata;
1100 return _bfd_elf_new_section_hook (abfd, sec);
1103 /* Read ECOFF debugging information from a .mdebug section into a
1104 ecoff_debug_info structure. */
1106 bfd_boolean
1107 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1108 struct ecoff_debug_info *debug)
1110 HDRR *symhdr;
1111 const struct ecoff_debug_swap *swap;
1112 char *ext_hdr;
1114 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1115 memset (debug, 0, sizeof (*debug));
1117 ext_hdr = bfd_malloc (swap->external_hdr_size);
1118 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1119 goto error_return;
1121 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1122 swap->external_hdr_size))
1123 goto error_return;
1125 symhdr = &debug->symbolic_header;
1126 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1128 /* The symbolic header contains absolute file offsets and sizes to
1129 read. */
1130 #define READ(ptr, offset, count, size, type) \
1131 if (symhdr->count == 0) \
1132 debug->ptr = NULL; \
1133 else \
1135 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1136 debug->ptr = bfd_malloc (amt); \
1137 if (debug->ptr == NULL) \
1138 goto error_return; \
1139 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1140 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1141 goto error_return; \
1144 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1145 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1146 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1147 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1148 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1149 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1150 union aux_ext *);
1151 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1152 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1153 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1154 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1155 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1156 #undef READ
1158 debug->fdr = NULL;
1160 return TRUE;
1162 error_return:
1163 if (ext_hdr != NULL)
1164 free (ext_hdr);
1165 if (debug->line != NULL)
1166 free (debug->line);
1167 if (debug->external_dnr != NULL)
1168 free (debug->external_dnr);
1169 if (debug->external_pdr != NULL)
1170 free (debug->external_pdr);
1171 if (debug->external_sym != NULL)
1172 free (debug->external_sym);
1173 if (debug->external_opt != NULL)
1174 free (debug->external_opt);
1175 if (debug->external_aux != NULL)
1176 free (debug->external_aux);
1177 if (debug->ss != NULL)
1178 free (debug->ss);
1179 if (debug->ssext != NULL)
1180 free (debug->ssext);
1181 if (debug->external_fdr != NULL)
1182 free (debug->external_fdr);
1183 if (debug->external_rfd != NULL)
1184 free (debug->external_rfd);
1185 if (debug->external_ext != NULL)
1186 free (debug->external_ext);
1187 return FALSE;
1190 /* Swap RPDR (runtime procedure table entry) for output. */
1192 static void
1193 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1195 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1196 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1197 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1198 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1199 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1200 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1202 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1203 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1205 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1208 /* Create a runtime procedure table from the .mdebug section. */
1210 static bfd_boolean
1211 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1212 struct bfd_link_info *info, asection *s,
1213 struct ecoff_debug_info *debug)
1215 const struct ecoff_debug_swap *swap;
1216 HDRR *hdr = &debug->symbolic_header;
1217 RPDR *rpdr, *rp;
1218 struct rpdr_ext *erp;
1219 void *rtproc;
1220 struct pdr_ext *epdr;
1221 struct sym_ext *esym;
1222 char *ss, **sv;
1223 char *str;
1224 bfd_size_type size;
1225 bfd_size_type count;
1226 unsigned long sindex;
1227 unsigned long i;
1228 PDR pdr;
1229 SYMR sym;
1230 const char *no_name_func = _("static procedure (no name)");
1232 epdr = NULL;
1233 rpdr = NULL;
1234 esym = NULL;
1235 ss = NULL;
1236 sv = NULL;
1238 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1240 sindex = strlen (no_name_func) + 1;
1241 count = hdr->ipdMax;
1242 if (count > 0)
1244 size = swap->external_pdr_size;
1246 epdr = bfd_malloc (size * count);
1247 if (epdr == NULL)
1248 goto error_return;
1250 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1251 goto error_return;
1253 size = sizeof (RPDR);
1254 rp = rpdr = bfd_malloc (size * count);
1255 if (rpdr == NULL)
1256 goto error_return;
1258 size = sizeof (char *);
1259 sv = bfd_malloc (size * count);
1260 if (sv == NULL)
1261 goto error_return;
1263 count = hdr->isymMax;
1264 size = swap->external_sym_size;
1265 esym = bfd_malloc (size * count);
1266 if (esym == NULL)
1267 goto error_return;
1269 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1270 goto error_return;
1272 count = hdr->issMax;
1273 ss = bfd_malloc (count);
1274 if (ss == NULL)
1275 goto error_return;
1276 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1277 goto error_return;
1279 count = hdr->ipdMax;
1280 for (i = 0; i < (unsigned long) count; i++, rp++)
1282 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1283 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1284 rp->adr = sym.value;
1285 rp->regmask = pdr.regmask;
1286 rp->regoffset = pdr.regoffset;
1287 rp->fregmask = pdr.fregmask;
1288 rp->fregoffset = pdr.fregoffset;
1289 rp->frameoffset = pdr.frameoffset;
1290 rp->framereg = pdr.framereg;
1291 rp->pcreg = pdr.pcreg;
1292 rp->irpss = sindex;
1293 sv[i] = ss + sym.iss;
1294 sindex += strlen (sv[i]) + 1;
1298 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1299 size = BFD_ALIGN (size, 16);
1300 rtproc = bfd_alloc (abfd, size);
1301 if (rtproc == NULL)
1303 mips_elf_hash_table (info)->procedure_count = 0;
1304 goto error_return;
1307 mips_elf_hash_table (info)->procedure_count = count + 2;
1309 erp = rtproc;
1310 memset (erp, 0, sizeof (struct rpdr_ext));
1311 erp++;
1312 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1313 strcpy (str, no_name_func);
1314 str += strlen (no_name_func) + 1;
1315 for (i = 0; i < count; i++)
1317 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1318 strcpy (str, sv[i]);
1319 str += strlen (sv[i]) + 1;
1321 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1323 /* Set the size and contents of .rtproc section. */
1324 s->size = size;
1325 s->contents = rtproc;
1327 /* Skip this section later on (I don't think this currently
1328 matters, but someday it might). */
1329 s->map_head.link_order = NULL;
1331 if (epdr != NULL)
1332 free (epdr);
1333 if (rpdr != NULL)
1334 free (rpdr);
1335 if (esym != NULL)
1336 free (esym);
1337 if (ss != NULL)
1338 free (ss);
1339 if (sv != NULL)
1340 free (sv);
1342 return TRUE;
1344 error_return:
1345 if (epdr != NULL)
1346 free (epdr);
1347 if (rpdr != NULL)
1348 free (rpdr);
1349 if (esym != NULL)
1350 free (esym);
1351 if (ss != NULL)
1352 free (ss);
1353 if (sv != NULL)
1354 free (sv);
1355 return FALSE;
1358 /* We're going to create a stub for H. Create a symbol for the stub's
1359 value and size, to help make the disassembly easier to read. */
1361 static bfd_boolean
1362 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1363 struct mips_elf_link_hash_entry *h,
1364 const char *prefix, asection *s, bfd_vma value,
1365 bfd_vma size)
1367 struct bfd_link_hash_entry *bh;
1368 struct elf_link_hash_entry *elfh;
1369 const char *name;
1371 /* Create a new symbol. */
1372 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1373 bh = NULL;
1374 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1375 BSF_LOCAL, s, value, NULL,
1376 TRUE, FALSE, &bh))
1377 return FALSE;
1379 /* Make it a local function. */
1380 elfh = (struct elf_link_hash_entry *) bh;
1381 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1382 elfh->size = size;
1383 elfh->forced_local = 1;
1384 return TRUE;
1387 /* We're about to redefine H. Create a symbol to represent H's
1388 current value and size, to help make the disassembly easier
1389 to read. */
1391 static bfd_boolean
1392 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1393 struct mips_elf_link_hash_entry *h,
1394 const char *prefix)
1396 struct bfd_link_hash_entry *bh;
1397 struct elf_link_hash_entry *elfh;
1398 const char *name;
1399 asection *s;
1400 bfd_vma value;
1402 /* Read the symbol's value. */
1403 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1404 || h->root.root.type == bfd_link_hash_defweak);
1405 s = h->root.root.u.def.section;
1406 value = h->root.root.u.def.value;
1408 /* Create a new symbol. */
1409 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1410 bh = NULL;
1411 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1412 BSF_LOCAL, s, value, NULL,
1413 TRUE, FALSE, &bh))
1414 return FALSE;
1416 /* Make it local and copy the other attributes from H. */
1417 elfh = (struct elf_link_hash_entry *) bh;
1418 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1419 elfh->other = h->root.other;
1420 elfh->size = h->root.size;
1421 elfh->forced_local = 1;
1422 return TRUE;
1425 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1426 function rather than to a hard-float stub. */
1428 static bfd_boolean
1429 section_allows_mips16_refs_p (asection *section)
1431 const char *name;
1433 name = bfd_get_section_name (section->owner, section);
1434 return (FN_STUB_P (name)
1435 || CALL_STUB_P (name)
1436 || CALL_FP_STUB_P (name)
1437 || strcmp (name, ".pdr") == 0);
1440 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1441 stub section of some kind. Return the R_SYMNDX of the target
1442 function, or 0 if we can't decide which function that is. */
1444 static unsigned long
1445 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1446 const Elf_Internal_Rela *relocs,
1447 const Elf_Internal_Rela *relend)
1449 const Elf_Internal_Rela *rel;
1451 /* Trust the first R_MIPS_NONE relocation, if any. */
1452 for (rel = relocs; rel < relend; rel++)
1453 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1454 return ELF_R_SYM (sec->owner, rel->r_info);
1456 /* Otherwise trust the first relocation, whatever its kind. This is
1457 the traditional behavior. */
1458 if (relocs < relend)
1459 return ELF_R_SYM (sec->owner, relocs->r_info);
1461 return 0;
1464 /* Check the mips16 stubs for a particular symbol, and see if we can
1465 discard them. */
1467 static void
1468 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1469 struct mips_elf_link_hash_entry *h)
1471 /* Dynamic symbols must use the standard call interface, in case other
1472 objects try to call them. */
1473 if (h->fn_stub != NULL
1474 && h->root.dynindx != -1)
1476 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1477 h->need_fn_stub = TRUE;
1480 if (h->fn_stub != NULL
1481 && ! h->need_fn_stub)
1483 /* We don't need the fn_stub; the only references to this symbol
1484 are 16 bit calls. Clobber the size to 0 to prevent it from
1485 being included in the link. */
1486 h->fn_stub->size = 0;
1487 h->fn_stub->flags &= ~SEC_RELOC;
1488 h->fn_stub->reloc_count = 0;
1489 h->fn_stub->flags |= SEC_EXCLUDE;
1492 if (h->call_stub != NULL
1493 && ELF_ST_IS_MIPS16 (h->root.other))
1495 /* We don't need the call_stub; this is a 16 bit function, so
1496 calls from other 16 bit functions are OK. Clobber the size
1497 to 0 to prevent it from being included in the link. */
1498 h->call_stub->size = 0;
1499 h->call_stub->flags &= ~SEC_RELOC;
1500 h->call_stub->reloc_count = 0;
1501 h->call_stub->flags |= SEC_EXCLUDE;
1504 if (h->call_fp_stub != NULL
1505 && ELF_ST_IS_MIPS16 (h->root.other))
1507 /* We don't need the call_stub; this is a 16 bit function, so
1508 calls from other 16 bit functions are OK. Clobber the size
1509 to 0 to prevent it from being included in the link. */
1510 h->call_fp_stub->size = 0;
1511 h->call_fp_stub->flags &= ~SEC_RELOC;
1512 h->call_fp_stub->reloc_count = 0;
1513 h->call_fp_stub->flags |= SEC_EXCLUDE;
1517 /* Hashtable callbacks for mips_elf_la25_stubs. */
1519 static hashval_t
1520 mips_elf_la25_stub_hash (const void *entry_)
1522 const struct mips_elf_la25_stub *entry;
1524 entry = (struct mips_elf_la25_stub *) entry_;
1525 return entry->h->root.root.u.def.section->id
1526 + entry->h->root.root.u.def.value;
1529 static int
1530 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1532 const struct mips_elf_la25_stub *entry1, *entry2;
1534 entry1 = (struct mips_elf_la25_stub *) entry1_;
1535 entry2 = (struct mips_elf_la25_stub *) entry2_;
1536 return ((entry1->h->root.root.u.def.section
1537 == entry2->h->root.root.u.def.section)
1538 && (entry1->h->root.root.u.def.value
1539 == entry2->h->root.root.u.def.value));
1542 /* Called by the linker to set up the la25 stub-creation code. FN is
1543 the linker's implementation of add_stub_function. Return true on
1544 success. */
1546 bfd_boolean
1547 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1548 asection *(*fn) (const char *, asection *,
1549 asection *))
1551 struct mips_elf_link_hash_table *htab;
1553 htab = mips_elf_hash_table (info);
1554 if (htab == NULL)
1555 return FALSE;
1557 htab->add_stub_section = fn;
1558 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1559 mips_elf_la25_stub_eq, NULL);
1560 if (htab->la25_stubs == NULL)
1561 return FALSE;
1563 return TRUE;
1566 /* Return true if H is a locally-defined PIC function, in the sense
1567 that it might need $25 to be valid on entry. Note that MIPS16
1568 functions never need $25 to be valid on entry; they set up $gp
1569 using PC-relative instructions instead. */
1571 static bfd_boolean
1572 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1574 return ((h->root.root.type == bfd_link_hash_defined
1575 || h->root.root.type == bfd_link_hash_defweak)
1576 && h->root.def_regular
1577 && !bfd_is_abs_section (h->root.root.u.def.section)
1578 && !ELF_ST_IS_MIPS16 (h->root.other)
1579 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1580 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1583 /* STUB describes an la25 stub that we have decided to implement
1584 by inserting an LUI/ADDIU pair before the target function.
1585 Create the section and redirect the function symbol to it. */
1587 static bfd_boolean
1588 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1589 struct bfd_link_info *info)
1591 struct mips_elf_link_hash_table *htab;
1592 char *name;
1593 asection *s, *input_section;
1594 unsigned int align;
1596 htab = mips_elf_hash_table (info);
1597 if (htab == NULL)
1598 return FALSE;
1600 /* Create a unique name for the new section. */
1601 name = bfd_malloc (11 + sizeof (".text.stub."));
1602 if (name == NULL)
1603 return FALSE;
1604 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1606 /* Create the section. */
1607 input_section = stub->h->root.root.u.def.section;
1608 s = htab->add_stub_section (name, input_section,
1609 input_section->output_section);
1610 if (s == NULL)
1611 return FALSE;
1613 /* Make sure that any padding goes before the stub. */
1614 align = input_section->alignment_power;
1615 if (!bfd_set_section_alignment (s->owner, s, align))
1616 return FALSE;
1617 if (align > 3)
1618 s->size = (1 << align) - 8;
1620 /* Create a symbol for the stub. */
1621 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1622 stub->stub_section = s;
1623 stub->offset = s->size;
1625 /* Allocate room for it. */
1626 s->size += 8;
1627 return TRUE;
1630 /* STUB describes an la25 stub that we have decided to implement
1631 with a separate trampoline. Allocate room for it and redirect
1632 the function symbol to it. */
1634 static bfd_boolean
1635 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1636 struct bfd_link_info *info)
1638 struct mips_elf_link_hash_table *htab;
1639 asection *s;
1641 htab = mips_elf_hash_table (info);
1642 if (htab == NULL)
1643 return FALSE;
1645 /* Create a trampoline section, if we haven't already. */
1646 s = htab->strampoline;
1647 if (s == NULL)
1649 asection *input_section = stub->h->root.root.u.def.section;
1650 s = htab->add_stub_section (".text", NULL,
1651 input_section->output_section);
1652 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1653 return FALSE;
1654 htab->strampoline = s;
1657 /* Create a symbol for the stub. */
1658 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1659 stub->stub_section = s;
1660 stub->offset = s->size;
1662 /* Allocate room for it. */
1663 s->size += 16;
1664 return TRUE;
1667 /* H describes a symbol that needs an la25 stub. Make sure that an
1668 appropriate stub exists and point H at it. */
1670 static bfd_boolean
1671 mips_elf_add_la25_stub (struct bfd_link_info *info,
1672 struct mips_elf_link_hash_entry *h)
1674 struct mips_elf_link_hash_table *htab;
1675 struct mips_elf_la25_stub search, *stub;
1676 bfd_boolean use_trampoline_p;
1677 asection *s;
1678 bfd_vma value;
1679 void **slot;
1681 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1682 of the section and if we would need no more than 2 nops. */
1683 s = h->root.root.u.def.section;
1684 value = h->root.root.u.def.value;
1685 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1687 /* Describe the stub we want. */
1688 search.stub_section = NULL;
1689 search.offset = 0;
1690 search.h = h;
1692 /* See if we've already created an equivalent stub. */
1693 htab = mips_elf_hash_table (info);
1694 if (htab == NULL)
1695 return FALSE;
1697 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1698 if (slot == NULL)
1699 return FALSE;
1701 stub = (struct mips_elf_la25_stub *) *slot;
1702 if (stub != NULL)
1704 /* We can reuse the existing stub. */
1705 h->la25_stub = stub;
1706 return TRUE;
1709 /* Create a permanent copy of ENTRY and add it to the hash table. */
1710 stub = bfd_malloc (sizeof (search));
1711 if (stub == NULL)
1712 return FALSE;
1713 *stub = search;
1714 *slot = stub;
1716 h->la25_stub = stub;
1717 return (use_trampoline_p
1718 ? mips_elf_add_la25_trampoline (stub, info)
1719 : mips_elf_add_la25_intro (stub, info));
1722 /* A mips_elf_link_hash_traverse callback that is called before sizing
1723 sections. DATA points to a mips_htab_traverse_info structure. */
1725 static bfd_boolean
1726 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1728 struct mips_htab_traverse_info *hti;
1730 hti = (struct mips_htab_traverse_info *) data;
1731 if (h->root.root.type == bfd_link_hash_warning)
1732 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1734 if (!hti->info->relocatable)
1735 mips_elf_check_mips16_stubs (hti->info, h);
1737 if (mips_elf_local_pic_function_p (h))
1739 /* H is a function that might need $25 to be valid on entry.
1740 If we're creating a non-PIC relocatable object, mark H as
1741 being PIC. If we're creating a non-relocatable object with
1742 non-PIC branches and jumps to H, make sure that H has an la25
1743 stub. */
1744 if (hti->info->relocatable)
1746 if (!PIC_OBJECT_P (hti->output_bfd))
1747 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1749 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1751 hti->error = TRUE;
1752 return FALSE;
1755 return TRUE;
1758 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1759 Most mips16 instructions are 16 bits, but these instructions
1760 are 32 bits.
1762 The format of these instructions is:
1764 +--------------+--------------------------------+
1765 | JALX | X| Imm 20:16 | Imm 25:21 |
1766 +--------------+--------------------------------+
1767 | Immediate 15:0 |
1768 +-----------------------------------------------+
1770 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1771 Note that the immediate value in the first word is swapped.
1773 When producing a relocatable object file, R_MIPS16_26 is
1774 handled mostly like R_MIPS_26. In particular, the addend is
1775 stored as a straight 26-bit value in a 32-bit instruction.
1776 (gas makes life simpler for itself by never adjusting a
1777 R_MIPS16_26 reloc to be against a section, so the addend is
1778 always zero). However, the 32 bit instruction is stored as 2
1779 16-bit values, rather than a single 32-bit value. In a
1780 big-endian file, the result is the same; in a little-endian
1781 file, the two 16-bit halves of the 32 bit value are swapped.
1782 This is so that a disassembler can recognize the jal
1783 instruction.
1785 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1786 instruction stored as two 16-bit values. The addend A is the
1787 contents of the targ26 field. The calculation is the same as
1788 R_MIPS_26. When storing the calculated value, reorder the
1789 immediate value as shown above, and don't forget to store the
1790 value as two 16-bit values.
1792 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1793 defined as
1795 big-endian:
1796 +--------+----------------------+
1797 | | |
1798 | | targ26-16 |
1799 |31 26|25 0|
1800 +--------+----------------------+
1802 little-endian:
1803 +----------+------+-------------+
1804 | | | |
1805 | sub1 | | sub2 |
1806 |0 9|10 15|16 31|
1807 +----------+--------------------+
1808 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1809 ((sub1 << 16) | sub2)).
1811 When producing a relocatable object file, the calculation is
1812 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1813 When producing a fully linked file, the calculation is
1814 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1815 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1817 The table below lists the other MIPS16 instruction relocations.
1818 Each one is calculated in the same way as the non-MIPS16 relocation
1819 given on the right, but using the extended MIPS16 layout of 16-bit
1820 immediate fields:
1822 R_MIPS16_GPREL R_MIPS_GPREL16
1823 R_MIPS16_GOT16 R_MIPS_GOT16
1824 R_MIPS16_CALL16 R_MIPS_CALL16
1825 R_MIPS16_HI16 R_MIPS_HI16
1826 R_MIPS16_LO16 R_MIPS_LO16
1828 A typical instruction will have a format like this:
1830 +--------------+--------------------------------+
1831 | EXTEND | Imm 10:5 | Imm 15:11 |
1832 +--------------+--------------------------------+
1833 | Major | rx | ry | Imm 4:0 |
1834 +--------------+--------------------------------+
1836 EXTEND is the five bit value 11110. Major is the instruction
1837 opcode.
1839 All we need to do here is shuffle the bits appropriately.
1840 As above, the two 16-bit halves must be swapped on a
1841 little-endian system. */
1843 static inline bfd_boolean
1844 mips16_reloc_p (int r_type)
1846 switch (r_type)
1848 case R_MIPS16_26:
1849 case R_MIPS16_GPREL:
1850 case R_MIPS16_GOT16:
1851 case R_MIPS16_CALL16:
1852 case R_MIPS16_HI16:
1853 case R_MIPS16_LO16:
1854 return TRUE;
1856 default:
1857 return FALSE;
1861 static inline bfd_boolean
1862 got16_reloc_p (int r_type)
1864 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1867 static inline bfd_boolean
1868 call16_reloc_p (int r_type)
1870 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1873 static inline bfd_boolean
1874 hi16_reloc_p (int r_type)
1876 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1879 static inline bfd_boolean
1880 lo16_reloc_p (int r_type)
1882 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1885 static inline bfd_boolean
1886 mips16_call_reloc_p (int r_type)
1888 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1891 static inline bfd_boolean
1892 jal_reloc_p (int r_type)
1894 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1897 void
1898 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1899 bfd_boolean jal_shuffle, bfd_byte *data)
1901 bfd_vma extend, insn, val;
1903 if (!mips16_reloc_p (r_type))
1904 return;
1906 /* Pick up the mips16 extend instruction and the real instruction. */
1907 extend = bfd_get_16 (abfd, data);
1908 insn = bfd_get_16 (abfd, data + 2);
1909 if (r_type == R_MIPS16_26)
1911 if (jal_shuffle)
1912 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1913 | ((extend & 0x1f) << 21) | insn;
1914 else
1915 val = extend << 16 | insn;
1917 else
1918 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1919 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1920 bfd_put_32 (abfd, val, data);
1923 void
1924 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1925 bfd_boolean jal_shuffle, bfd_byte *data)
1927 bfd_vma extend, insn, val;
1929 if (!mips16_reloc_p (r_type))
1930 return;
1932 val = bfd_get_32 (abfd, data);
1933 if (r_type == R_MIPS16_26)
1935 if (jal_shuffle)
1937 insn = val & 0xffff;
1938 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1939 | ((val >> 21) & 0x1f);
1941 else
1943 insn = val & 0xffff;
1944 extend = val >> 16;
1947 else
1949 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1950 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1952 bfd_put_16 (abfd, insn, data + 2);
1953 bfd_put_16 (abfd, extend, data);
1956 bfd_reloc_status_type
1957 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1958 arelent *reloc_entry, asection *input_section,
1959 bfd_boolean relocatable, void *data, bfd_vma gp)
1961 bfd_vma relocation;
1962 bfd_signed_vma val;
1963 bfd_reloc_status_type status;
1965 if (bfd_is_com_section (symbol->section))
1966 relocation = 0;
1967 else
1968 relocation = symbol->value;
1970 relocation += symbol->section->output_section->vma;
1971 relocation += symbol->section->output_offset;
1973 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1974 return bfd_reloc_outofrange;
1976 /* Set val to the offset into the section or symbol. */
1977 val = reloc_entry->addend;
1979 _bfd_mips_elf_sign_extend (val, 16);
1981 /* Adjust val for the final section location and GP value. If we
1982 are producing relocatable output, we don't want to do this for
1983 an external symbol. */
1984 if (! relocatable
1985 || (symbol->flags & BSF_SECTION_SYM) != 0)
1986 val += relocation - gp;
1988 if (reloc_entry->howto->partial_inplace)
1990 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1991 (bfd_byte *) data
1992 + reloc_entry->address);
1993 if (status != bfd_reloc_ok)
1994 return status;
1996 else
1997 reloc_entry->addend = val;
1999 if (relocatable)
2000 reloc_entry->address += input_section->output_offset;
2002 return bfd_reloc_ok;
2005 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2006 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2007 that contains the relocation field and DATA points to the start of
2008 INPUT_SECTION. */
2010 struct mips_hi16
2012 struct mips_hi16 *next;
2013 bfd_byte *data;
2014 asection *input_section;
2015 arelent rel;
2018 /* FIXME: This should not be a static variable. */
2020 static struct mips_hi16 *mips_hi16_list;
2022 /* A howto special_function for REL *HI16 relocations. We can only
2023 calculate the correct value once we've seen the partnering
2024 *LO16 relocation, so just save the information for later.
2026 The ABI requires that the *LO16 immediately follow the *HI16.
2027 However, as a GNU extension, we permit an arbitrary number of
2028 *HI16s to be associated with a single *LO16. This significantly
2029 simplies the relocation handling in gcc. */
2031 bfd_reloc_status_type
2032 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2033 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2034 asection *input_section, bfd *output_bfd,
2035 char **error_message ATTRIBUTE_UNUSED)
2037 struct mips_hi16 *n;
2039 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2040 return bfd_reloc_outofrange;
2042 n = bfd_malloc (sizeof *n);
2043 if (n == NULL)
2044 return bfd_reloc_outofrange;
2046 n->next = mips_hi16_list;
2047 n->data = data;
2048 n->input_section = input_section;
2049 n->rel = *reloc_entry;
2050 mips_hi16_list = n;
2052 if (output_bfd != NULL)
2053 reloc_entry->address += input_section->output_offset;
2055 return bfd_reloc_ok;
2058 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2059 like any other 16-bit relocation when applied to global symbols, but is
2060 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2062 bfd_reloc_status_type
2063 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2064 void *data, asection *input_section,
2065 bfd *output_bfd, char **error_message)
2067 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2068 || bfd_is_und_section (bfd_get_section (symbol))
2069 || bfd_is_com_section (bfd_get_section (symbol)))
2070 /* The relocation is against a global symbol. */
2071 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2072 input_section, output_bfd,
2073 error_message);
2075 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2076 input_section, output_bfd, error_message);
2079 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2080 is a straightforward 16 bit inplace relocation, but we must deal with
2081 any partnering high-part relocations as well. */
2083 bfd_reloc_status_type
2084 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2085 void *data, asection *input_section,
2086 bfd *output_bfd, char **error_message)
2088 bfd_vma vallo;
2089 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2091 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2092 return bfd_reloc_outofrange;
2094 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2095 location);
2096 vallo = bfd_get_32 (abfd, location);
2097 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2098 location);
2100 while (mips_hi16_list != NULL)
2102 bfd_reloc_status_type ret;
2103 struct mips_hi16 *hi;
2105 hi = mips_hi16_list;
2107 /* R_MIPS*_GOT16 relocations are something of a special case. We
2108 want to install the addend in the same way as for a R_MIPS*_HI16
2109 relocation (with a rightshift of 16). However, since GOT16
2110 relocations can also be used with global symbols, their howto
2111 has a rightshift of 0. */
2112 if (hi->rel.howto->type == R_MIPS_GOT16)
2113 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2114 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2115 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2117 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2118 carry or borrow will induce a change of +1 or -1 in the high part. */
2119 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2121 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2122 hi->input_section, output_bfd,
2123 error_message);
2124 if (ret != bfd_reloc_ok)
2125 return ret;
2127 mips_hi16_list = hi->next;
2128 free (hi);
2131 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2132 input_section, output_bfd,
2133 error_message);
2136 /* A generic howto special_function. This calculates and installs the
2137 relocation itself, thus avoiding the oft-discussed problems in
2138 bfd_perform_relocation and bfd_install_relocation. */
2140 bfd_reloc_status_type
2141 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2142 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2143 asection *input_section, bfd *output_bfd,
2144 char **error_message ATTRIBUTE_UNUSED)
2146 bfd_signed_vma val;
2147 bfd_reloc_status_type status;
2148 bfd_boolean relocatable;
2150 relocatable = (output_bfd != NULL);
2152 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2153 return bfd_reloc_outofrange;
2155 /* Build up the field adjustment in VAL. */
2156 val = 0;
2157 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2159 /* Either we're calculating the final field value or we have a
2160 relocation against a section symbol. Add in the section's
2161 offset or address. */
2162 val += symbol->section->output_section->vma;
2163 val += symbol->section->output_offset;
2166 if (!relocatable)
2168 /* We're calculating the final field value. Add in the symbol's value
2169 and, if pc-relative, subtract the address of the field itself. */
2170 val += symbol->value;
2171 if (reloc_entry->howto->pc_relative)
2173 val -= input_section->output_section->vma;
2174 val -= input_section->output_offset;
2175 val -= reloc_entry->address;
2179 /* VAL is now the final adjustment. If we're keeping this relocation
2180 in the output file, and if the relocation uses a separate addend,
2181 we just need to add VAL to that addend. Otherwise we need to add
2182 VAL to the relocation field itself. */
2183 if (relocatable && !reloc_entry->howto->partial_inplace)
2184 reloc_entry->addend += val;
2185 else
2187 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2189 /* Add in the separate addend, if any. */
2190 val += reloc_entry->addend;
2192 /* Add VAL to the relocation field. */
2193 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2194 location);
2195 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2196 location);
2197 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2198 location);
2200 if (status != bfd_reloc_ok)
2201 return status;
2204 if (relocatable)
2205 reloc_entry->address += input_section->output_offset;
2207 return bfd_reloc_ok;
2210 /* Swap an entry in a .gptab section. Note that these routines rely
2211 on the equivalence of the two elements of the union. */
2213 static void
2214 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2215 Elf32_gptab *in)
2217 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2218 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2221 static void
2222 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2223 Elf32_External_gptab *ex)
2225 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2226 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2229 static void
2230 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2231 Elf32_External_compact_rel *ex)
2233 H_PUT_32 (abfd, in->id1, ex->id1);
2234 H_PUT_32 (abfd, in->num, ex->num);
2235 H_PUT_32 (abfd, in->id2, ex->id2);
2236 H_PUT_32 (abfd, in->offset, ex->offset);
2237 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2238 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2241 static void
2242 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2243 Elf32_External_crinfo *ex)
2245 unsigned long l;
2247 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2248 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2249 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2250 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2251 H_PUT_32 (abfd, l, ex->info);
2252 H_PUT_32 (abfd, in->konst, ex->konst);
2253 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2256 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2257 routines swap this structure in and out. They are used outside of
2258 BFD, so they are globally visible. */
2260 void
2261 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2262 Elf32_RegInfo *in)
2264 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2265 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2266 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2267 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2268 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2269 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2272 void
2273 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2274 Elf32_External_RegInfo *ex)
2276 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2277 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2278 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2279 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2280 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2281 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2284 /* In the 64 bit ABI, the .MIPS.options section holds register
2285 information in an Elf64_Reginfo structure. These routines swap
2286 them in and out. They are globally visible because they are used
2287 outside of BFD. These routines are here so that gas can call them
2288 without worrying about whether the 64 bit ABI has been included. */
2290 void
2291 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2292 Elf64_Internal_RegInfo *in)
2294 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2295 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2296 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2297 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2298 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2299 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2300 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2303 void
2304 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2305 Elf64_External_RegInfo *ex)
2307 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2308 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2309 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2310 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2311 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2312 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2313 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2316 /* Swap in an options header. */
2318 void
2319 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2320 Elf_Internal_Options *in)
2322 in->kind = H_GET_8 (abfd, ex->kind);
2323 in->size = H_GET_8 (abfd, ex->size);
2324 in->section = H_GET_16 (abfd, ex->section);
2325 in->info = H_GET_32 (abfd, ex->info);
2328 /* Swap out an options header. */
2330 void
2331 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2332 Elf_External_Options *ex)
2334 H_PUT_8 (abfd, in->kind, ex->kind);
2335 H_PUT_8 (abfd, in->size, ex->size);
2336 H_PUT_16 (abfd, in->section, ex->section);
2337 H_PUT_32 (abfd, in->info, ex->info);
2340 /* This function is called via qsort() to sort the dynamic relocation
2341 entries by increasing r_symndx value. */
2343 static int
2344 sort_dynamic_relocs (const void *arg1, const void *arg2)
2346 Elf_Internal_Rela int_reloc1;
2347 Elf_Internal_Rela int_reloc2;
2348 int diff;
2350 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2351 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2353 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2354 if (diff != 0)
2355 return diff;
2357 if (int_reloc1.r_offset < int_reloc2.r_offset)
2358 return -1;
2359 if (int_reloc1.r_offset > int_reloc2.r_offset)
2360 return 1;
2361 return 0;
2364 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2366 static int
2367 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2368 const void *arg2 ATTRIBUTE_UNUSED)
2370 #ifdef BFD64
2371 Elf_Internal_Rela int_reloc1[3];
2372 Elf_Internal_Rela int_reloc2[3];
2374 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2375 (reldyn_sorting_bfd, arg1, int_reloc1);
2376 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2377 (reldyn_sorting_bfd, arg2, int_reloc2);
2379 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2380 return -1;
2381 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2382 return 1;
2384 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2385 return -1;
2386 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2387 return 1;
2388 return 0;
2389 #else
2390 abort ();
2391 #endif
2395 /* This routine is used to write out ECOFF debugging external symbol
2396 information. It is called via mips_elf_link_hash_traverse. The
2397 ECOFF external symbol information must match the ELF external
2398 symbol information. Unfortunately, at this point we don't know
2399 whether a symbol is required by reloc information, so the two
2400 tables may wind up being different. We must sort out the external
2401 symbol information before we can set the final size of the .mdebug
2402 section, and we must set the size of the .mdebug section before we
2403 can relocate any sections, and we can't know which symbols are
2404 required by relocation until we relocate the sections.
2405 Fortunately, it is relatively unlikely that any symbol will be
2406 stripped but required by a reloc. In particular, it can not happen
2407 when generating a final executable. */
2409 static bfd_boolean
2410 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2412 struct extsym_info *einfo = data;
2413 bfd_boolean strip;
2414 asection *sec, *output_section;
2416 if (h->root.root.type == bfd_link_hash_warning)
2417 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2419 if (h->root.indx == -2)
2420 strip = FALSE;
2421 else if ((h->root.def_dynamic
2422 || h->root.ref_dynamic
2423 || h->root.type == bfd_link_hash_new)
2424 && !h->root.def_regular
2425 && !h->root.ref_regular)
2426 strip = TRUE;
2427 else if (einfo->info->strip == strip_all
2428 || (einfo->info->strip == strip_some
2429 && bfd_hash_lookup (einfo->info->keep_hash,
2430 h->root.root.root.string,
2431 FALSE, FALSE) == NULL))
2432 strip = TRUE;
2433 else
2434 strip = FALSE;
2436 if (strip)
2437 return TRUE;
2439 if (h->esym.ifd == -2)
2441 h->esym.jmptbl = 0;
2442 h->esym.cobol_main = 0;
2443 h->esym.weakext = 0;
2444 h->esym.reserved = 0;
2445 h->esym.ifd = ifdNil;
2446 h->esym.asym.value = 0;
2447 h->esym.asym.st = stGlobal;
2449 if (h->root.root.type == bfd_link_hash_undefined
2450 || h->root.root.type == bfd_link_hash_undefweak)
2452 const char *name;
2454 /* Use undefined class. Also, set class and type for some
2455 special symbols. */
2456 name = h->root.root.root.string;
2457 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2458 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2460 h->esym.asym.sc = scData;
2461 h->esym.asym.st = stLabel;
2462 h->esym.asym.value = 0;
2464 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2466 h->esym.asym.sc = scAbs;
2467 h->esym.asym.st = stLabel;
2468 h->esym.asym.value =
2469 mips_elf_hash_table (einfo->info)->procedure_count;
2471 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2473 h->esym.asym.sc = scAbs;
2474 h->esym.asym.st = stLabel;
2475 h->esym.asym.value = elf_gp (einfo->abfd);
2477 else
2478 h->esym.asym.sc = scUndefined;
2480 else if (h->root.root.type != bfd_link_hash_defined
2481 && h->root.root.type != bfd_link_hash_defweak)
2482 h->esym.asym.sc = scAbs;
2483 else
2485 const char *name;
2487 sec = h->root.root.u.def.section;
2488 output_section = sec->output_section;
2490 /* When making a shared library and symbol h is the one from
2491 the another shared library, OUTPUT_SECTION may be null. */
2492 if (output_section == NULL)
2493 h->esym.asym.sc = scUndefined;
2494 else
2496 name = bfd_section_name (output_section->owner, output_section);
2498 if (strcmp (name, ".text") == 0)
2499 h->esym.asym.sc = scText;
2500 else if (strcmp (name, ".data") == 0)
2501 h->esym.asym.sc = scData;
2502 else if (strcmp (name, ".sdata") == 0)
2503 h->esym.asym.sc = scSData;
2504 else if (strcmp (name, ".rodata") == 0
2505 || strcmp (name, ".rdata") == 0)
2506 h->esym.asym.sc = scRData;
2507 else if (strcmp (name, ".bss") == 0)
2508 h->esym.asym.sc = scBss;
2509 else if (strcmp (name, ".sbss") == 0)
2510 h->esym.asym.sc = scSBss;
2511 else if (strcmp (name, ".init") == 0)
2512 h->esym.asym.sc = scInit;
2513 else if (strcmp (name, ".fini") == 0)
2514 h->esym.asym.sc = scFini;
2515 else
2516 h->esym.asym.sc = scAbs;
2520 h->esym.asym.reserved = 0;
2521 h->esym.asym.index = indexNil;
2524 if (h->root.root.type == bfd_link_hash_common)
2525 h->esym.asym.value = h->root.root.u.c.size;
2526 else if (h->root.root.type == bfd_link_hash_defined
2527 || h->root.root.type == bfd_link_hash_defweak)
2529 if (h->esym.asym.sc == scCommon)
2530 h->esym.asym.sc = scBss;
2531 else if (h->esym.asym.sc == scSCommon)
2532 h->esym.asym.sc = scSBss;
2534 sec = h->root.root.u.def.section;
2535 output_section = sec->output_section;
2536 if (output_section != NULL)
2537 h->esym.asym.value = (h->root.root.u.def.value
2538 + sec->output_offset
2539 + output_section->vma);
2540 else
2541 h->esym.asym.value = 0;
2543 else
2545 struct mips_elf_link_hash_entry *hd = h;
2547 while (hd->root.root.type == bfd_link_hash_indirect)
2548 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2550 if (hd->needs_lazy_stub)
2552 /* Set type and value for a symbol with a function stub. */
2553 h->esym.asym.st = stProc;
2554 sec = hd->root.root.u.def.section;
2555 if (sec == NULL)
2556 h->esym.asym.value = 0;
2557 else
2559 output_section = sec->output_section;
2560 if (output_section != NULL)
2561 h->esym.asym.value = (hd->root.plt.offset
2562 + sec->output_offset
2563 + output_section->vma);
2564 else
2565 h->esym.asym.value = 0;
2570 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2571 h->root.root.root.string,
2572 &h->esym))
2574 einfo->failed = TRUE;
2575 return FALSE;
2578 return TRUE;
2581 /* A comparison routine used to sort .gptab entries. */
2583 static int
2584 gptab_compare (const void *p1, const void *p2)
2586 const Elf32_gptab *a1 = p1;
2587 const Elf32_gptab *a2 = p2;
2589 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2592 /* Functions to manage the got entry hash table. */
2594 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2595 hash number. */
2597 static INLINE hashval_t
2598 mips_elf_hash_bfd_vma (bfd_vma addr)
2600 #ifdef BFD64
2601 return addr + (addr >> 32);
2602 #else
2603 return addr;
2604 #endif
2607 /* got_entries only match if they're identical, except for gotidx, so
2608 use all fields to compute the hash, and compare the appropriate
2609 union members. */
2611 static hashval_t
2612 mips_elf_got_entry_hash (const void *entry_)
2614 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2616 return entry->symndx
2617 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2618 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2619 : entry->abfd->id
2620 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2621 : entry->d.h->root.root.root.hash));
2624 static int
2625 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2627 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2628 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2630 /* An LDM entry can only match another LDM entry. */
2631 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2632 return 0;
2634 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2635 && (! e1->abfd ? e1->d.address == e2->d.address
2636 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2637 : e1->d.h == e2->d.h);
2640 /* multi_got_entries are still a match in the case of global objects,
2641 even if the input bfd in which they're referenced differs, so the
2642 hash computation and compare functions are adjusted
2643 accordingly. */
2645 static hashval_t
2646 mips_elf_multi_got_entry_hash (const void *entry_)
2648 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2650 return entry->symndx
2651 + (! entry->abfd
2652 ? mips_elf_hash_bfd_vma (entry->d.address)
2653 : entry->symndx >= 0
2654 ? ((entry->tls_type & GOT_TLS_LDM)
2655 ? (GOT_TLS_LDM << 17)
2656 : (entry->abfd->id
2657 + mips_elf_hash_bfd_vma (entry->d.addend)))
2658 : entry->d.h->root.root.root.hash);
2661 static int
2662 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2664 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2665 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2667 /* Any two LDM entries match. */
2668 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2669 return 1;
2671 /* Nothing else matches an LDM entry. */
2672 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2673 return 0;
2675 return e1->symndx == e2->symndx
2676 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2677 : e1->abfd == NULL || e2->abfd == NULL
2678 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2679 : e1->d.h == e2->d.h);
2682 static hashval_t
2683 mips_got_page_entry_hash (const void *entry_)
2685 const struct mips_got_page_entry *entry;
2687 entry = (const struct mips_got_page_entry *) entry_;
2688 return entry->abfd->id + entry->symndx;
2691 static int
2692 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2694 const struct mips_got_page_entry *entry1, *entry2;
2696 entry1 = (const struct mips_got_page_entry *) entry1_;
2697 entry2 = (const struct mips_got_page_entry *) entry2_;
2698 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2701 /* Return the dynamic relocation section. If it doesn't exist, try to
2702 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2703 if creation fails. */
2705 static asection *
2706 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2708 const char *dname;
2709 asection *sreloc;
2710 bfd *dynobj;
2712 dname = MIPS_ELF_REL_DYN_NAME (info);
2713 dynobj = elf_hash_table (info)->dynobj;
2714 sreloc = bfd_get_section_by_name (dynobj, dname);
2715 if (sreloc == NULL && create_p)
2717 sreloc = bfd_make_section_with_flags (dynobj, dname,
2718 (SEC_ALLOC
2719 | SEC_LOAD
2720 | SEC_HAS_CONTENTS
2721 | SEC_IN_MEMORY
2722 | SEC_LINKER_CREATED
2723 | SEC_READONLY));
2724 if (sreloc == NULL
2725 || ! bfd_set_section_alignment (dynobj, sreloc,
2726 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2727 return NULL;
2729 return sreloc;
2732 /* Count the number of relocations needed for a TLS GOT entry, with
2733 access types from TLS_TYPE, and symbol H (or a local symbol if H
2734 is NULL). */
2736 static int
2737 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2738 struct elf_link_hash_entry *h)
2740 int indx = 0;
2741 int ret = 0;
2742 bfd_boolean need_relocs = FALSE;
2743 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2745 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2746 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2747 indx = h->dynindx;
2749 if ((info->shared || indx != 0)
2750 && (h == NULL
2751 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2752 || h->root.type != bfd_link_hash_undefweak))
2753 need_relocs = TRUE;
2755 if (!need_relocs)
2756 return FALSE;
2758 if (tls_type & GOT_TLS_GD)
2760 ret++;
2761 if (indx != 0)
2762 ret++;
2765 if (tls_type & GOT_TLS_IE)
2766 ret++;
2768 if ((tls_type & GOT_TLS_LDM) && info->shared)
2769 ret++;
2771 return ret;
2774 /* Count the number of TLS relocations required for the GOT entry in
2775 ARG1, if it describes a local symbol. */
2777 static int
2778 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2780 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2781 struct mips_elf_count_tls_arg *arg = arg2;
2783 if (entry->abfd != NULL && entry->symndx != -1)
2784 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2786 return 1;
2789 /* Count the number of TLS GOT entries required for the global (or
2790 forced-local) symbol in ARG1. */
2792 static int
2793 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2795 struct mips_elf_link_hash_entry *hm
2796 = (struct mips_elf_link_hash_entry *) arg1;
2797 struct mips_elf_count_tls_arg *arg = arg2;
2799 if (hm->tls_type & GOT_TLS_GD)
2800 arg->needed += 2;
2801 if (hm->tls_type & GOT_TLS_IE)
2802 arg->needed += 1;
2804 return 1;
2807 /* Count the number of TLS relocations required for the global (or
2808 forced-local) symbol in ARG1. */
2810 static int
2811 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2813 struct mips_elf_link_hash_entry *hm
2814 = (struct mips_elf_link_hash_entry *) arg1;
2815 struct mips_elf_count_tls_arg *arg = arg2;
2817 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2819 return 1;
2822 /* Output a simple dynamic relocation into SRELOC. */
2824 static void
2825 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2826 asection *sreloc,
2827 unsigned long reloc_index,
2828 unsigned long indx,
2829 int r_type,
2830 bfd_vma offset)
2832 Elf_Internal_Rela rel[3];
2834 memset (rel, 0, sizeof (rel));
2836 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2837 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2839 if (ABI_64_P (output_bfd))
2841 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2842 (output_bfd, &rel[0],
2843 (sreloc->contents
2844 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2846 else
2847 bfd_elf32_swap_reloc_out
2848 (output_bfd, &rel[0],
2849 (sreloc->contents
2850 + reloc_index * sizeof (Elf32_External_Rel)));
2853 /* Initialize a set of TLS GOT entries for one symbol. */
2855 static void
2856 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2857 unsigned char *tls_type_p,
2858 struct bfd_link_info *info,
2859 struct mips_elf_link_hash_entry *h,
2860 bfd_vma value)
2862 struct mips_elf_link_hash_table *htab;
2863 int indx;
2864 asection *sreloc, *sgot;
2865 bfd_vma offset, offset2;
2866 bfd_boolean need_relocs = FALSE;
2868 htab = mips_elf_hash_table (info);
2869 if (htab == NULL)
2870 return;
2872 sgot = htab->sgot;
2874 indx = 0;
2875 if (h != NULL)
2877 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2879 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2880 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2881 indx = h->root.dynindx;
2884 if (*tls_type_p & GOT_TLS_DONE)
2885 return;
2887 if ((info->shared || indx != 0)
2888 && (h == NULL
2889 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2890 || h->root.type != bfd_link_hash_undefweak))
2891 need_relocs = TRUE;
2893 /* MINUS_ONE means the symbol is not defined in this object. It may not
2894 be defined at all; assume that the value doesn't matter in that
2895 case. Otherwise complain if we would use the value. */
2896 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2897 || h->root.root.type == bfd_link_hash_undefweak);
2899 /* Emit necessary relocations. */
2900 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2902 /* General Dynamic. */
2903 if (*tls_type_p & GOT_TLS_GD)
2905 offset = got_offset;
2906 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2908 if (need_relocs)
2910 mips_elf_output_dynamic_relocation
2911 (abfd, sreloc, sreloc->reloc_count++, indx,
2912 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2913 sgot->output_offset + sgot->output_section->vma + offset);
2915 if (indx)
2916 mips_elf_output_dynamic_relocation
2917 (abfd, sreloc, sreloc->reloc_count++, indx,
2918 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2919 sgot->output_offset + sgot->output_section->vma + offset2);
2920 else
2921 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2922 sgot->contents + offset2);
2924 else
2926 MIPS_ELF_PUT_WORD (abfd, 1,
2927 sgot->contents + offset);
2928 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2929 sgot->contents + offset2);
2932 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2935 /* Initial Exec model. */
2936 if (*tls_type_p & GOT_TLS_IE)
2938 offset = got_offset;
2940 if (need_relocs)
2942 if (indx == 0)
2943 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2944 sgot->contents + offset);
2945 else
2946 MIPS_ELF_PUT_WORD (abfd, 0,
2947 sgot->contents + offset);
2949 mips_elf_output_dynamic_relocation
2950 (abfd, sreloc, sreloc->reloc_count++, indx,
2951 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2952 sgot->output_offset + sgot->output_section->vma + offset);
2954 else
2955 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2956 sgot->contents + offset);
2959 if (*tls_type_p & GOT_TLS_LDM)
2961 /* The initial offset is zero, and the LD offsets will include the
2962 bias by DTP_OFFSET. */
2963 MIPS_ELF_PUT_WORD (abfd, 0,
2964 sgot->contents + got_offset
2965 + MIPS_ELF_GOT_SIZE (abfd));
2967 if (!info->shared)
2968 MIPS_ELF_PUT_WORD (abfd, 1,
2969 sgot->contents + got_offset);
2970 else
2971 mips_elf_output_dynamic_relocation
2972 (abfd, sreloc, sreloc->reloc_count++, indx,
2973 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2974 sgot->output_offset + sgot->output_section->vma + got_offset);
2977 *tls_type_p |= GOT_TLS_DONE;
2980 /* Return the GOT index to use for a relocation of type R_TYPE against
2981 a symbol accessed using TLS_TYPE models. The GOT entries for this
2982 symbol in this GOT start at GOT_INDEX. This function initializes the
2983 GOT entries and corresponding relocations. */
2985 static bfd_vma
2986 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2987 int r_type, struct bfd_link_info *info,
2988 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2990 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2991 || r_type == R_MIPS_TLS_LDM);
2993 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2995 if (r_type == R_MIPS_TLS_GOTTPREL)
2997 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2998 if (*tls_type & GOT_TLS_GD)
2999 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3000 else
3001 return got_index;
3004 if (r_type == R_MIPS_TLS_GD)
3006 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3007 return got_index;
3010 if (r_type == R_MIPS_TLS_LDM)
3012 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3013 return got_index;
3016 return got_index;
3019 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3020 for global symbol H. .got.plt comes before the GOT, so the offset
3021 will be negative. */
3023 static bfd_vma
3024 mips_elf_gotplt_index (struct bfd_link_info *info,
3025 struct elf_link_hash_entry *h)
3027 bfd_vma plt_index, got_address, got_value;
3028 struct mips_elf_link_hash_table *htab;
3030 htab = mips_elf_hash_table (info);
3031 BFD_ASSERT (htab != NULL);
3033 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3035 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3036 section starts with reserved entries. */
3037 BFD_ASSERT (htab->is_vxworks);
3039 /* Calculate the index of the symbol's PLT entry. */
3040 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3042 /* Calculate the address of the associated .got.plt entry. */
3043 got_address = (htab->sgotplt->output_section->vma
3044 + htab->sgotplt->output_offset
3045 + plt_index * 4);
3047 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3048 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3049 + htab->root.hgot->root.u.def.section->output_offset
3050 + htab->root.hgot->root.u.def.value);
3052 return got_address - got_value;
3055 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3056 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3057 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3058 offset can be found. */
3060 static bfd_vma
3061 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3062 bfd_vma value, unsigned long r_symndx,
3063 struct mips_elf_link_hash_entry *h, int r_type)
3065 struct mips_elf_link_hash_table *htab;
3066 struct mips_got_entry *entry;
3068 htab = mips_elf_hash_table (info);
3069 BFD_ASSERT (htab != NULL);
3071 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3072 r_symndx, h, r_type);
3073 if (!entry)
3074 return MINUS_ONE;
3076 if (TLS_RELOC_P (r_type))
3078 if (entry->symndx == -1 && htab->got_info->next == NULL)
3079 /* A type (3) entry in the single-GOT case. We use the symbol's
3080 hash table entry to track the index. */
3081 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3082 r_type, info, h, value);
3083 else
3084 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3085 r_type, info, h, value);
3087 else
3088 return entry->gotidx;
3091 /* Returns the GOT index for the global symbol indicated by H. */
3093 static bfd_vma
3094 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3095 int r_type, struct bfd_link_info *info)
3097 struct mips_elf_link_hash_table *htab;
3098 bfd_vma got_index;
3099 struct mips_got_info *g, *gg;
3100 long global_got_dynindx = 0;
3102 htab = mips_elf_hash_table (info);
3103 BFD_ASSERT (htab != NULL);
3105 gg = g = htab->got_info;
3106 if (g->bfd2got && ibfd)
3108 struct mips_got_entry e, *p;
3110 BFD_ASSERT (h->dynindx >= 0);
3112 g = mips_elf_got_for_ibfd (g, ibfd);
3113 if (g->next != gg || TLS_RELOC_P (r_type))
3115 e.abfd = ibfd;
3116 e.symndx = -1;
3117 e.d.h = (struct mips_elf_link_hash_entry *)h;
3118 e.tls_type = 0;
3120 p = htab_find (g->got_entries, &e);
3122 BFD_ASSERT (p->gotidx > 0);
3124 if (TLS_RELOC_P (r_type))
3126 bfd_vma value = MINUS_ONE;
3127 if ((h->root.type == bfd_link_hash_defined
3128 || h->root.type == bfd_link_hash_defweak)
3129 && h->root.u.def.section->output_section)
3130 value = (h->root.u.def.value
3131 + h->root.u.def.section->output_offset
3132 + h->root.u.def.section->output_section->vma);
3134 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3135 info, e.d.h, value);
3137 else
3138 return p->gotidx;
3142 if (gg->global_gotsym != NULL)
3143 global_got_dynindx = gg->global_gotsym->dynindx;
3145 if (TLS_RELOC_P (r_type))
3147 struct mips_elf_link_hash_entry *hm
3148 = (struct mips_elf_link_hash_entry *) h;
3149 bfd_vma value = MINUS_ONE;
3151 if ((h->root.type == bfd_link_hash_defined
3152 || h->root.type == bfd_link_hash_defweak)
3153 && h->root.u.def.section->output_section)
3154 value = (h->root.u.def.value
3155 + h->root.u.def.section->output_offset
3156 + h->root.u.def.section->output_section->vma);
3158 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3159 r_type, info, hm, value);
3161 else
3163 /* Once we determine the global GOT entry with the lowest dynamic
3164 symbol table index, we must put all dynamic symbols with greater
3165 indices into the GOT. That makes it easy to calculate the GOT
3166 offset. */
3167 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3168 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd));
3171 BFD_ASSERT (got_index < htab->sgot->size);
3173 return got_index;
3176 /* Find a GOT page entry that points to within 32KB of VALUE. These
3177 entries are supposed to be placed at small offsets in the GOT, i.e.,
3178 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3179 entry could be created. If OFFSETP is nonnull, use it to return the
3180 offset of the GOT entry from VALUE. */
3182 static bfd_vma
3183 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3184 bfd_vma value, bfd_vma *offsetp)
3186 bfd_vma page, got_index;
3187 struct mips_got_entry *entry;
3189 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3190 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3191 NULL, R_MIPS_GOT_PAGE);
3193 if (!entry)
3194 return MINUS_ONE;
3196 got_index = entry->gotidx;
3198 if (offsetp)
3199 *offsetp = value - entry->d.address;
3201 return got_index;
3204 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3205 EXTERNAL is true if the relocation was against a global symbol
3206 that has been forced local. */
3208 static bfd_vma
3209 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3210 bfd_vma value, bfd_boolean external)
3212 struct mips_got_entry *entry;
3214 /* GOT16 relocations against local symbols are followed by a LO16
3215 relocation; those against global symbols are not. Thus if the
3216 symbol was originally local, the GOT16 relocation should load the
3217 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3218 if (! external)
3219 value = mips_elf_high (value) << 16;
3221 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3222 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3223 same in all cases. */
3224 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3225 NULL, R_MIPS_GOT16);
3226 if (entry)
3227 return entry->gotidx;
3228 else
3229 return MINUS_ONE;
3232 /* Returns the offset for the entry at the INDEXth position
3233 in the GOT. */
3235 static bfd_vma
3236 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3237 bfd *input_bfd, bfd_vma got_index)
3239 struct mips_elf_link_hash_table *htab;
3240 asection *sgot;
3241 bfd_vma gp;
3243 htab = mips_elf_hash_table (info);
3244 BFD_ASSERT (htab != NULL);
3246 sgot = htab->sgot;
3247 gp = _bfd_get_gp_value (output_bfd)
3248 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3250 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3253 /* Create and return a local GOT entry for VALUE, which was calculated
3254 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3255 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3256 instead. */
3258 static struct mips_got_entry *
3259 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3260 bfd *ibfd, bfd_vma value,
3261 unsigned long r_symndx,
3262 struct mips_elf_link_hash_entry *h,
3263 int r_type)
3265 struct mips_got_entry entry, **loc;
3266 struct mips_got_info *g;
3267 struct mips_elf_link_hash_table *htab;
3269 htab = mips_elf_hash_table (info);
3270 BFD_ASSERT (htab != NULL);
3272 entry.abfd = NULL;
3273 entry.symndx = -1;
3274 entry.d.address = value;
3275 entry.tls_type = 0;
3277 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3278 if (g == NULL)
3280 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3281 BFD_ASSERT (g != NULL);
3284 /* We might have a symbol, H, if it has been forced local. Use the
3285 global entry then. It doesn't matter whether an entry is local
3286 or global for TLS, since the dynamic linker does not
3287 automatically relocate TLS GOT entries. */
3288 BFD_ASSERT (h == NULL || h->root.forced_local);
3289 if (TLS_RELOC_P (r_type))
3291 struct mips_got_entry *p;
3293 entry.abfd = ibfd;
3294 if (r_type == R_MIPS_TLS_LDM)
3296 entry.tls_type = GOT_TLS_LDM;
3297 entry.symndx = 0;
3298 entry.d.addend = 0;
3300 else if (h == NULL)
3302 entry.symndx = r_symndx;
3303 entry.d.addend = 0;
3305 else
3306 entry.d.h = h;
3308 p = (struct mips_got_entry *)
3309 htab_find (g->got_entries, &entry);
3311 BFD_ASSERT (p);
3312 return p;
3315 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3316 INSERT);
3317 if (*loc)
3318 return *loc;
3320 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3321 entry.tls_type = 0;
3323 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3325 if (! *loc)
3326 return NULL;
3328 memcpy (*loc, &entry, sizeof entry);
3330 if (g->assigned_gotno > g->local_gotno)
3332 (*loc)->gotidx = -1;
3333 /* We didn't allocate enough space in the GOT. */
3334 (*_bfd_error_handler)
3335 (_("not enough GOT space for local GOT entries"));
3336 bfd_set_error (bfd_error_bad_value);
3337 return NULL;
3340 MIPS_ELF_PUT_WORD (abfd, value,
3341 (htab->sgot->contents + entry.gotidx));
3343 /* These GOT entries need a dynamic relocation on VxWorks. */
3344 if (htab->is_vxworks)
3346 Elf_Internal_Rela outrel;
3347 asection *s;
3348 bfd_byte *rloc;
3349 bfd_vma got_address;
3351 s = mips_elf_rel_dyn_section (info, FALSE);
3352 got_address = (htab->sgot->output_section->vma
3353 + htab->sgot->output_offset
3354 + entry.gotidx);
3356 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3357 outrel.r_offset = got_address;
3358 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3359 outrel.r_addend = value;
3360 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3363 return *loc;
3366 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3367 The number might be exact or a worst-case estimate, depending on how
3368 much information is available to elf_backend_omit_section_dynsym at
3369 the current linking stage. */
3371 static bfd_size_type
3372 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3374 bfd_size_type count;
3376 count = 0;
3377 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3379 asection *p;
3380 const struct elf_backend_data *bed;
3382 bed = get_elf_backend_data (output_bfd);
3383 for (p = output_bfd->sections; p ; p = p->next)
3384 if ((p->flags & SEC_EXCLUDE) == 0
3385 && (p->flags & SEC_ALLOC) != 0
3386 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3387 ++count;
3389 return count;
3392 /* Sort the dynamic symbol table so that symbols that need GOT entries
3393 appear towards the end. */
3395 static bfd_boolean
3396 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3398 struct mips_elf_link_hash_table *htab;
3399 struct mips_elf_hash_sort_data hsd;
3400 struct mips_got_info *g;
3402 if (elf_hash_table (info)->dynsymcount == 0)
3403 return TRUE;
3405 htab = mips_elf_hash_table (info);
3406 BFD_ASSERT (htab != NULL);
3408 g = htab->got_info;
3409 if (g == NULL)
3410 return TRUE;
3412 hsd.low = NULL;
3413 hsd.max_unref_got_dynindx
3414 = hsd.min_got_dynindx
3415 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3416 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3417 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3418 elf_hash_table (info)),
3419 mips_elf_sort_hash_table_f,
3420 &hsd);
3422 /* There should have been enough room in the symbol table to
3423 accommodate both the GOT and non-GOT symbols. */
3424 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3425 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3426 == elf_hash_table (info)->dynsymcount);
3427 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3428 == g->global_gotno);
3430 /* Now we know which dynamic symbol has the lowest dynamic symbol
3431 table index in the GOT. */
3432 g->global_gotsym = hsd.low;
3434 return TRUE;
3437 /* If H needs a GOT entry, assign it the highest available dynamic
3438 index. Otherwise, assign it the lowest available dynamic
3439 index. */
3441 static bfd_boolean
3442 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3444 struct mips_elf_hash_sort_data *hsd = data;
3446 if (h->root.root.type == bfd_link_hash_warning)
3447 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3449 /* Symbols without dynamic symbol table entries aren't interesting
3450 at all. */
3451 if (h->root.dynindx == -1)
3452 return TRUE;
3454 switch (h->global_got_area)
3456 case GGA_NONE:
3457 h->root.dynindx = hsd->max_non_got_dynindx++;
3458 break;
3460 case GGA_NORMAL:
3461 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3463 h->root.dynindx = --hsd->min_got_dynindx;
3464 hsd->low = (struct elf_link_hash_entry *) h;
3465 break;
3467 case GGA_RELOC_ONLY:
3468 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3470 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3471 hsd->low = (struct elf_link_hash_entry *) h;
3472 h->root.dynindx = hsd->max_unref_got_dynindx++;
3473 break;
3476 return TRUE;
3479 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3480 symbol table index lower than any we've seen to date, record it for
3481 posterity. */
3483 static bfd_boolean
3484 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3485 bfd *abfd, struct bfd_link_info *info,
3486 unsigned char tls_flag)
3488 struct mips_elf_link_hash_table *htab;
3489 struct mips_elf_link_hash_entry *hmips;
3490 struct mips_got_entry entry, **loc;
3491 struct mips_got_info *g;
3493 htab = mips_elf_hash_table (info);
3494 BFD_ASSERT (htab != NULL);
3496 hmips = (struct mips_elf_link_hash_entry *) h;
3498 /* A global symbol in the GOT must also be in the dynamic symbol
3499 table. */
3500 if (h->dynindx == -1)
3502 switch (ELF_ST_VISIBILITY (h->other))
3504 case STV_INTERNAL:
3505 case STV_HIDDEN:
3506 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3507 break;
3509 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3510 return FALSE;
3513 /* Make sure we have a GOT to put this entry into. */
3514 g = htab->got_info;
3515 BFD_ASSERT (g != NULL);
3517 entry.abfd = abfd;
3518 entry.symndx = -1;
3519 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3520 entry.tls_type = 0;
3522 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3523 INSERT);
3525 /* If we've already marked this entry as needing GOT space, we don't
3526 need to do it again. */
3527 if (*loc)
3529 (*loc)->tls_type |= tls_flag;
3530 return TRUE;
3533 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3535 if (! *loc)
3536 return FALSE;
3538 entry.gotidx = -1;
3539 entry.tls_type = tls_flag;
3541 memcpy (*loc, &entry, sizeof entry);
3543 if (tls_flag == 0)
3544 hmips->global_got_area = GGA_NORMAL;
3546 return TRUE;
3549 /* Reserve space in G for a GOT entry containing the value of symbol
3550 SYMNDX in input bfd ABDF, plus ADDEND. */
3552 static bfd_boolean
3553 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3554 struct bfd_link_info *info,
3555 unsigned char tls_flag)
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry entry, **loc;
3561 htab = mips_elf_hash_table (info);
3562 BFD_ASSERT (htab != NULL);
3564 g = htab->got_info;
3565 BFD_ASSERT (g != NULL);
3567 entry.abfd = abfd;
3568 entry.symndx = symndx;
3569 entry.d.addend = addend;
3570 entry.tls_type = tls_flag;
3571 loc = (struct mips_got_entry **)
3572 htab_find_slot (g->got_entries, &entry, INSERT);
3574 if (*loc)
3576 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3578 g->tls_gotno += 2;
3579 (*loc)->tls_type |= tls_flag;
3581 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3583 g->tls_gotno += 1;
3584 (*loc)->tls_type |= tls_flag;
3586 return TRUE;
3589 if (tls_flag != 0)
3591 entry.gotidx = -1;
3592 entry.tls_type = tls_flag;
3593 if (tls_flag == GOT_TLS_IE)
3594 g->tls_gotno += 1;
3595 else if (tls_flag == GOT_TLS_GD)
3596 g->tls_gotno += 2;
3597 else if (g->tls_ldm_offset == MINUS_ONE)
3599 g->tls_ldm_offset = MINUS_TWO;
3600 g->tls_gotno += 2;
3603 else
3605 entry.gotidx = g->local_gotno++;
3606 entry.tls_type = 0;
3609 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3611 if (! *loc)
3612 return FALSE;
3614 memcpy (*loc, &entry, sizeof entry);
3616 return TRUE;
3619 /* Return the maximum number of GOT page entries required for RANGE. */
3621 static bfd_vma
3622 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3624 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3627 /* Record that ABFD has a page relocation against symbol SYMNDX and
3628 that ADDEND is the addend for that relocation.
3630 This function creates an upper bound on the number of GOT slots
3631 required; no attempt is made to combine references to non-overridable
3632 global symbols across multiple input files. */
3634 static bfd_boolean
3635 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3636 long symndx, bfd_signed_vma addend)
3638 struct mips_elf_link_hash_table *htab;
3639 struct mips_got_info *g;
3640 struct mips_got_page_entry lookup, *entry;
3641 struct mips_got_page_range **range_ptr, *range;
3642 bfd_vma old_pages, new_pages;
3643 void **loc;
3645 htab = mips_elf_hash_table (info);
3646 BFD_ASSERT (htab != NULL);
3648 g = htab->got_info;
3649 BFD_ASSERT (g != NULL);
3651 /* Find the mips_got_page_entry hash table entry for this symbol. */
3652 lookup.abfd = abfd;
3653 lookup.symndx = symndx;
3654 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3655 if (loc == NULL)
3656 return FALSE;
3658 /* Create a mips_got_page_entry if this is the first time we've
3659 seen the symbol. */
3660 entry = (struct mips_got_page_entry *) *loc;
3661 if (!entry)
3663 entry = bfd_alloc (abfd, sizeof (*entry));
3664 if (!entry)
3665 return FALSE;
3667 entry->abfd = abfd;
3668 entry->symndx = symndx;
3669 entry->ranges = NULL;
3670 entry->num_pages = 0;
3671 *loc = entry;
3674 /* Skip over ranges whose maximum extent cannot share a page entry
3675 with ADDEND. */
3676 range_ptr = &entry->ranges;
3677 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3678 range_ptr = &(*range_ptr)->next;
3680 /* If we scanned to the end of the list, or found a range whose
3681 minimum extent cannot share a page entry with ADDEND, create
3682 a new singleton range. */
3683 range = *range_ptr;
3684 if (!range || addend < range->min_addend - 0xffff)
3686 range = bfd_alloc (abfd, sizeof (*range));
3687 if (!range)
3688 return FALSE;
3690 range->next = *range_ptr;
3691 range->min_addend = addend;
3692 range->max_addend = addend;
3694 *range_ptr = range;
3695 entry->num_pages++;
3696 g->page_gotno++;
3697 return TRUE;
3700 /* Remember how many pages the old range contributed. */
3701 old_pages = mips_elf_pages_for_range (range);
3703 /* Update the ranges. */
3704 if (addend < range->min_addend)
3705 range->min_addend = addend;
3706 else if (addend > range->max_addend)
3708 if (range->next && addend >= range->next->min_addend - 0xffff)
3710 old_pages += mips_elf_pages_for_range (range->next);
3711 range->max_addend = range->next->max_addend;
3712 range->next = range->next->next;
3714 else
3715 range->max_addend = addend;
3718 /* Record any change in the total estimate. */
3719 new_pages = mips_elf_pages_for_range (range);
3720 if (old_pages != new_pages)
3722 entry->num_pages += new_pages - old_pages;
3723 g->page_gotno += new_pages - old_pages;
3726 return TRUE;
3729 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3731 static void
3732 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3733 unsigned int n)
3735 asection *s;
3736 struct mips_elf_link_hash_table *htab;
3738 htab = mips_elf_hash_table (info);
3739 BFD_ASSERT (htab != NULL);
3741 s = mips_elf_rel_dyn_section (info, FALSE);
3742 BFD_ASSERT (s != NULL);
3744 if (htab->is_vxworks)
3745 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3746 else
3748 if (s->size == 0)
3750 /* Make room for a null element. */
3751 s->size += MIPS_ELF_REL_SIZE (abfd);
3752 ++s->reloc_count;
3754 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3758 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3759 if the GOT entry is for an indirect or warning symbol. */
3761 static int
3762 mips_elf_check_recreate_got (void **entryp, void *data)
3764 struct mips_got_entry *entry;
3765 bfd_boolean *must_recreate;
3767 entry = (struct mips_got_entry *) *entryp;
3768 must_recreate = (bfd_boolean *) data;
3769 if (entry->abfd != NULL && entry->symndx == -1)
3771 struct mips_elf_link_hash_entry *h;
3773 h = entry->d.h;
3774 if (h->root.root.type == bfd_link_hash_indirect
3775 || h->root.root.type == bfd_link_hash_warning)
3777 *must_recreate = TRUE;
3778 return 0;
3781 return 1;
3784 /* A htab_traverse callback for GOT entries. Add all entries to
3785 hash table *DATA, converting entries for indirect and warning
3786 symbols into entries for the target symbol. Set *DATA to null
3787 on error. */
3789 static int
3790 mips_elf_recreate_got (void **entryp, void *data)
3792 htab_t *new_got;
3793 struct mips_got_entry *entry;
3794 void **slot;
3796 new_got = (htab_t *) data;
3797 entry = (struct mips_got_entry *) *entryp;
3798 if (entry->abfd != NULL && entry->symndx == -1)
3800 struct mips_elf_link_hash_entry *h;
3802 h = entry->d.h;
3803 while (h->root.root.type == bfd_link_hash_indirect
3804 || h->root.root.type == bfd_link_hash_warning)
3806 BFD_ASSERT (h->global_got_area == GGA_NONE);
3807 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3809 entry->d.h = h;
3811 slot = htab_find_slot (*new_got, entry, INSERT);
3812 if (slot == NULL)
3814 *new_got = NULL;
3815 return 0;
3817 if (*slot == NULL)
3818 *slot = entry;
3819 else
3820 free (entry);
3821 return 1;
3824 /* If any entries in G->got_entries are for indirect or warning symbols,
3825 replace them with entries for the target symbol. */
3827 static bfd_boolean
3828 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3830 bfd_boolean must_recreate;
3831 htab_t new_got;
3833 must_recreate = FALSE;
3834 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3835 if (must_recreate)
3837 new_got = htab_create (htab_size (g->got_entries),
3838 mips_elf_got_entry_hash,
3839 mips_elf_got_entry_eq, NULL);
3840 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3841 if (new_got == NULL)
3842 return FALSE;
3844 /* Each entry in g->got_entries has either been copied to new_got
3845 or freed. Now delete the hash table itself. */
3846 htab_delete (g->got_entries);
3847 g->got_entries = new_got;
3849 return TRUE;
3852 /* A mips_elf_link_hash_traverse callback for which DATA points
3853 to a mips_got_info. Count the number of type (3) entries. */
3855 static int
3856 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3858 struct mips_got_info *g;
3860 g = (struct mips_got_info *) data;
3861 if (h->global_got_area != GGA_NONE)
3863 if (h->root.forced_local || h->root.dynindx == -1)
3865 /* We no longer need this entry if it was only used for
3866 relocations; those relocations will be against the
3867 null or section symbol instead of H. */
3868 if (h->global_got_area != GGA_RELOC_ONLY)
3869 g->local_gotno++;
3870 h->global_got_area = GGA_NONE;
3872 else
3874 g->global_gotno++;
3875 if (h->global_got_area == GGA_RELOC_ONLY)
3876 g->reloc_only_gotno++;
3879 return 1;
3882 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3884 static hashval_t
3885 mips_elf_bfd2got_entry_hash (const void *entry_)
3887 const struct mips_elf_bfd2got_hash *entry
3888 = (struct mips_elf_bfd2got_hash *)entry_;
3890 return entry->bfd->id;
3893 /* Check whether two hash entries have the same bfd. */
3895 static int
3896 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3898 const struct mips_elf_bfd2got_hash *e1
3899 = (const struct mips_elf_bfd2got_hash *)entry1;
3900 const struct mips_elf_bfd2got_hash *e2
3901 = (const struct mips_elf_bfd2got_hash *)entry2;
3903 return e1->bfd == e2->bfd;
3906 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3907 be the master GOT data. */
3909 static struct mips_got_info *
3910 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3912 struct mips_elf_bfd2got_hash e, *p;
3914 if (! g->bfd2got)
3915 return g;
3917 e.bfd = ibfd;
3918 p = htab_find (g->bfd2got, &e);
3919 return p ? p->g : NULL;
3922 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3923 Return NULL if an error occured. */
3925 static struct mips_got_info *
3926 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3927 bfd *input_bfd)
3929 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3930 struct mips_got_info *g;
3931 void **bfdgotp;
3933 bfdgot_entry.bfd = input_bfd;
3934 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3935 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3937 if (bfdgot == NULL)
3939 bfdgot = ((struct mips_elf_bfd2got_hash *)
3940 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3941 if (bfdgot == NULL)
3942 return NULL;
3944 *bfdgotp = bfdgot;
3946 g = ((struct mips_got_info *)
3947 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3948 if (g == NULL)
3949 return NULL;
3951 bfdgot->bfd = input_bfd;
3952 bfdgot->g = g;
3954 g->global_gotsym = NULL;
3955 g->global_gotno = 0;
3956 g->reloc_only_gotno = 0;
3957 g->local_gotno = 0;
3958 g->page_gotno = 0;
3959 g->assigned_gotno = -1;
3960 g->tls_gotno = 0;
3961 g->tls_assigned_gotno = 0;
3962 g->tls_ldm_offset = MINUS_ONE;
3963 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3964 mips_elf_multi_got_entry_eq, NULL);
3965 if (g->got_entries == NULL)
3966 return NULL;
3968 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3969 mips_got_page_entry_eq, NULL);
3970 if (g->got_page_entries == NULL)
3971 return NULL;
3973 g->bfd2got = NULL;
3974 g->next = NULL;
3977 return bfdgot->g;
3980 /* A htab_traverse callback for the entries in the master got.
3981 Create one separate got for each bfd that has entries in the global
3982 got, such that we can tell how many local and global entries each
3983 bfd requires. */
3985 static int
3986 mips_elf_make_got_per_bfd (void **entryp, void *p)
3988 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3989 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3990 struct mips_got_info *g;
3992 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3993 if (g == NULL)
3995 arg->obfd = NULL;
3996 return 0;
3999 /* Insert the GOT entry in the bfd's got entry hash table. */
4000 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4001 if (*entryp != NULL)
4002 return 1;
4004 *entryp = entry;
4006 if (entry->tls_type)
4008 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4009 g->tls_gotno += 2;
4010 if (entry->tls_type & GOT_TLS_IE)
4011 g->tls_gotno += 1;
4013 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
4014 ++g->local_gotno;
4015 else
4016 ++g->global_gotno;
4018 return 1;
4021 /* A htab_traverse callback for the page entries in the master got.
4022 Associate each page entry with the bfd's got. */
4024 static int
4025 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4027 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4028 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4029 struct mips_got_info *g;
4031 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4032 if (g == NULL)
4034 arg->obfd = NULL;
4035 return 0;
4038 /* Insert the GOT entry in the bfd's got entry hash table. */
4039 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4040 if (*entryp != NULL)
4041 return 1;
4043 *entryp = entry;
4044 g->page_gotno += entry->num_pages;
4045 return 1;
4048 /* Consider merging the got described by BFD2GOT with TO, using the
4049 information given by ARG. Return -1 if this would lead to overflow,
4050 1 if they were merged successfully, and 0 if a merge failed due to
4051 lack of memory. (These values are chosen so that nonnegative return
4052 values can be returned by a htab_traverse callback.) */
4054 static int
4055 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4056 struct mips_got_info *to,
4057 struct mips_elf_got_per_bfd_arg *arg)
4059 struct mips_got_info *from = bfd2got->g;
4060 unsigned int estimate;
4062 /* Work out how many page entries we would need for the combined GOT. */
4063 estimate = arg->max_pages;
4064 if (estimate >= from->page_gotno + to->page_gotno)
4065 estimate = from->page_gotno + to->page_gotno;
4067 /* And conservatively estimate how many local, global and TLS entries
4068 would be needed. */
4069 estimate += (from->local_gotno
4070 + from->global_gotno
4071 + from->tls_gotno
4072 + to->local_gotno
4073 + to->global_gotno
4074 + to->tls_gotno);
4076 /* Bail out if the combined GOT might be too big. */
4077 if (estimate > arg->max_count)
4078 return -1;
4080 /* Commit to the merge. Record that TO is now the bfd for this got. */
4081 bfd2got->g = to;
4083 /* Transfer the bfd's got information from FROM to TO. */
4084 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4085 if (arg->obfd == NULL)
4086 return 0;
4088 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4089 if (arg->obfd == NULL)
4090 return 0;
4092 /* We don't have to worry about releasing memory of the actual
4093 got entries, since they're all in the master got_entries hash
4094 table anyway. */
4095 htab_delete (from->got_entries);
4096 htab_delete (from->got_page_entries);
4097 return 1;
4100 /* Attempt to merge gots of different input bfds. Try to use as much
4101 as possible of the primary got, since it doesn't require explicit
4102 dynamic relocations, but don't use bfds that would reference global
4103 symbols out of the addressable range. Failing the primary got,
4104 attempt to merge with the current got, or finish the current got
4105 and then make make the new got current. */
4107 static int
4108 mips_elf_merge_gots (void **bfd2got_, void *p)
4110 struct mips_elf_bfd2got_hash *bfd2got
4111 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4112 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4113 struct mips_got_info *g;
4114 unsigned int estimate;
4115 int result;
4117 g = bfd2got->g;
4119 /* Work out the number of page, local and TLS entries. */
4120 estimate = arg->max_pages;
4121 if (estimate > g->page_gotno)
4122 estimate = g->page_gotno;
4123 estimate += g->local_gotno + g->tls_gotno;
4125 /* We place TLS GOT entries after both locals and globals. The globals
4126 for the primary GOT may overflow the normal GOT size limit, so be
4127 sure not to merge a GOT which requires TLS with the primary GOT in that
4128 case. This doesn't affect non-primary GOTs. */
4129 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4131 if (estimate <= arg->max_count)
4133 /* If we don't have a primary GOT, use it as
4134 a starting point for the primary GOT. */
4135 if (!arg->primary)
4137 arg->primary = bfd2got->g;
4138 return 1;
4141 /* Try merging with the primary GOT. */
4142 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4143 if (result >= 0)
4144 return result;
4147 /* If we can merge with the last-created got, do it. */
4148 if (arg->current)
4150 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4151 if (result >= 0)
4152 return result;
4155 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4156 fits; if it turns out that it doesn't, we'll get relocation
4157 overflows anyway. */
4158 g->next = arg->current;
4159 arg->current = g;
4161 return 1;
4164 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4165 is null iff there is just a single GOT. */
4167 static int
4168 mips_elf_initialize_tls_index (void **entryp, void *p)
4170 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4171 struct mips_got_info *g = p;
4172 bfd_vma next_index;
4173 unsigned char tls_type;
4175 /* We're only interested in TLS symbols. */
4176 if (entry->tls_type == 0)
4177 return 1;
4179 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4181 if (entry->symndx == -1 && g->next == NULL)
4183 /* A type (3) got entry in the single-GOT case. We use the symbol's
4184 hash table entry to track its index. */
4185 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4186 return 1;
4187 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4188 entry->d.h->tls_got_offset = next_index;
4189 tls_type = entry->d.h->tls_type;
4191 else
4193 if (entry->tls_type & GOT_TLS_LDM)
4195 /* There are separate mips_got_entry objects for each input bfd
4196 that requires an LDM entry. Make sure that all LDM entries in
4197 a GOT resolve to the same index. */
4198 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4200 entry->gotidx = g->tls_ldm_offset;
4201 return 1;
4203 g->tls_ldm_offset = next_index;
4205 entry->gotidx = next_index;
4206 tls_type = entry->tls_type;
4209 /* Account for the entries we've just allocated. */
4210 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4211 g->tls_assigned_gotno += 2;
4212 if (tls_type & GOT_TLS_IE)
4213 g->tls_assigned_gotno += 1;
4215 return 1;
4218 /* If passed a NULL mips_got_info in the argument, set the marker used
4219 to tell whether a global symbol needs a got entry (in the primary
4220 got) to the given VALUE.
4222 If passed a pointer G to a mips_got_info in the argument (it must
4223 not be the primary GOT), compute the offset from the beginning of
4224 the (primary) GOT section to the entry in G corresponding to the
4225 global symbol. G's assigned_gotno must contain the index of the
4226 first available global GOT entry in G. VALUE must contain the size
4227 of a GOT entry in bytes. For each global GOT entry that requires a
4228 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4229 marked as not eligible for lazy resolution through a function
4230 stub. */
4231 static int
4232 mips_elf_set_global_got_offset (void **entryp, void *p)
4234 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4235 struct mips_elf_set_global_got_offset_arg *arg
4236 = (struct mips_elf_set_global_got_offset_arg *)p;
4237 struct mips_got_info *g = arg->g;
4239 if (g && entry->tls_type != GOT_NORMAL)
4240 arg->needed_relocs +=
4241 mips_tls_got_relocs (arg->info, entry->tls_type,
4242 entry->symndx == -1 ? &entry->d.h->root : NULL);
4244 if (entry->abfd != NULL
4245 && entry->symndx == -1
4246 && entry->d.h->global_got_area != GGA_NONE)
4248 if (g)
4250 BFD_ASSERT (g->global_gotsym == NULL);
4252 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4253 if (arg->info->shared
4254 || (elf_hash_table (arg->info)->dynamic_sections_created
4255 && entry->d.h->root.def_dynamic
4256 && !entry->d.h->root.def_regular))
4257 ++arg->needed_relocs;
4259 else
4260 entry->d.h->global_got_area = arg->value;
4263 return 1;
4266 /* A htab_traverse callback for GOT entries for which DATA is the
4267 bfd_link_info. Forbid any global symbols from having traditional
4268 lazy-binding stubs. */
4270 static int
4271 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4273 struct bfd_link_info *info;
4274 struct mips_elf_link_hash_table *htab;
4275 struct mips_got_entry *entry;
4277 entry = (struct mips_got_entry *) *entryp;
4278 info = (struct bfd_link_info *) data;
4279 htab = mips_elf_hash_table (info);
4280 BFD_ASSERT (htab != NULL);
4282 if (entry->abfd != NULL
4283 && entry->symndx == -1
4284 && entry->d.h->needs_lazy_stub)
4286 entry->d.h->needs_lazy_stub = FALSE;
4287 htab->lazy_stub_count--;
4290 return 1;
4293 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4294 the primary GOT. */
4295 static bfd_vma
4296 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4298 if (g->bfd2got == NULL)
4299 return 0;
4301 g = mips_elf_got_for_ibfd (g, ibfd);
4302 if (! g)
4303 return 0;
4305 BFD_ASSERT (g->next);
4307 g = g->next;
4309 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4310 * MIPS_ELF_GOT_SIZE (abfd);
4313 /* Turn a single GOT that is too big for 16-bit addressing into
4314 a sequence of GOTs, each one 16-bit addressable. */
4316 static bfd_boolean
4317 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4318 asection *got, bfd_size_type pages)
4320 struct mips_elf_link_hash_table *htab;
4321 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4322 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4323 struct mips_got_info *g, *gg;
4324 unsigned int assign, needed_relocs;
4325 bfd *dynobj;
4327 dynobj = elf_hash_table (info)->dynobj;
4328 htab = mips_elf_hash_table (info);
4329 BFD_ASSERT (htab != NULL);
4331 g = htab->got_info;
4332 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4333 mips_elf_bfd2got_entry_eq, NULL);
4334 if (g->bfd2got == NULL)
4335 return FALSE;
4337 got_per_bfd_arg.bfd2got = g->bfd2got;
4338 got_per_bfd_arg.obfd = abfd;
4339 got_per_bfd_arg.info = info;
4341 /* Count how many GOT entries each input bfd requires, creating a
4342 map from bfd to got info while at that. */
4343 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4344 if (got_per_bfd_arg.obfd == NULL)
4345 return FALSE;
4347 /* Also count how many page entries each input bfd requires. */
4348 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4349 &got_per_bfd_arg);
4350 if (got_per_bfd_arg.obfd == NULL)
4351 return FALSE;
4353 got_per_bfd_arg.current = NULL;
4354 got_per_bfd_arg.primary = NULL;
4355 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4356 / MIPS_ELF_GOT_SIZE (abfd))
4357 - htab->reserved_gotno);
4358 got_per_bfd_arg.max_pages = pages;
4359 /* The number of globals that will be included in the primary GOT.
4360 See the calls to mips_elf_set_global_got_offset below for more
4361 information. */
4362 got_per_bfd_arg.global_count = g->global_gotno;
4364 /* Try to merge the GOTs of input bfds together, as long as they
4365 don't seem to exceed the maximum GOT size, choosing one of them
4366 to be the primary GOT. */
4367 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4368 if (got_per_bfd_arg.obfd == NULL)
4369 return FALSE;
4371 /* If we do not find any suitable primary GOT, create an empty one. */
4372 if (got_per_bfd_arg.primary == NULL)
4374 g->next = (struct mips_got_info *)
4375 bfd_alloc (abfd, sizeof (struct mips_got_info));
4376 if (g->next == NULL)
4377 return FALSE;
4379 g->next->global_gotsym = NULL;
4380 g->next->global_gotno = 0;
4381 g->next->reloc_only_gotno = 0;
4382 g->next->local_gotno = 0;
4383 g->next->page_gotno = 0;
4384 g->next->tls_gotno = 0;
4385 g->next->assigned_gotno = 0;
4386 g->next->tls_assigned_gotno = 0;
4387 g->next->tls_ldm_offset = MINUS_ONE;
4388 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4389 mips_elf_multi_got_entry_eq,
4390 NULL);
4391 if (g->next->got_entries == NULL)
4392 return FALSE;
4393 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4394 mips_got_page_entry_eq,
4395 NULL);
4396 if (g->next->got_page_entries == NULL)
4397 return FALSE;
4398 g->next->bfd2got = NULL;
4400 else
4401 g->next = got_per_bfd_arg.primary;
4402 g->next->next = got_per_bfd_arg.current;
4404 /* GG is now the master GOT, and G is the primary GOT. */
4405 gg = g;
4406 g = g->next;
4408 /* Map the output bfd to the primary got. That's what we're going
4409 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4410 didn't mark in check_relocs, and we want a quick way to find it.
4411 We can't just use gg->next because we're going to reverse the
4412 list. */
4414 struct mips_elf_bfd2got_hash *bfdgot;
4415 void **bfdgotp;
4417 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4418 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4420 if (bfdgot == NULL)
4421 return FALSE;
4423 bfdgot->bfd = abfd;
4424 bfdgot->g = g;
4425 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4427 BFD_ASSERT (*bfdgotp == NULL);
4428 *bfdgotp = bfdgot;
4431 /* Every symbol that is referenced in a dynamic relocation must be
4432 present in the primary GOT, so arrange for them to appear after
4433 those that are actually referenced. */
4434 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4435 g->global_gotno = gg->global_gotno;
4437 set_got_offset_arg.g = NULL;
4438 set_got_offset_arg.value = GGA_RELOC_ONLY;
4439 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4440 &set_got_offset_arg);
4441 set_got_offset_arg.value = GGA_NORMAL;
4442 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4443 &set_got_offset_arg);
4445 /* Now go through the GOTs assigning them offset ranges.
4446 [assigned_gotno, local_gotno[ will be set to the range of local
4447 entries in each GOT. We can then compute the end of a GOT by
4448 adding local_gotno to global_gotno. We reverse the list and make
4449 it circular since then we'll be able to quickly compute the
4450 beginning of a GOT, by computing the end of its predecessor. To
4451 avoid special cases for the primary GOT, while still preserving
4452 assertions that are valid for both single- and multi-got links,
4453 we arrange for the main got struct to have the right number of
4454 global entries, but set its local_gotno such that the initial
4455 offset of the primary GOT is zero. Remember that the primary GOT
4456 will become the last item in the circular linked list, so it
4457 points back to the master GOT. */
4458 gg->local_gotno = -g->global_gotno;
4459 gg->global_gotno = g->global_gotno;
4460 gg->tls_gotno = 0;
4461 assign = 0;
4462 gg->next = gg;
4466 struct mips_got_info *gn;
4468 assign += htab->reserved_gotno;
4469 g->assigned_gotno = assign;
4470 g->local_gotno += assign;
4471 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4472 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4474 /* Take g out of the direct list, and push it onto the reversed
4475 list that gg points to. g->next is guaranteed to be nonnull after
4476 this operation, as required by mips_elf_initialize_tls_index. */
4477 gn = g->next;
4478 g->next = gg->next;
4479 gg->next = g;
4481 /* Set up any TLS entries. We always place the TLS entries after
4482 all non-TLS entries. */
4483 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4484 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4486 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4487 g = gn;
4489 /* Forbid global symbols in every non-primary GOT from having
4490 lazy-binding stubs. */
4491 if (g)
4492 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4494 while (g);
4496 got->size = (gg->next->local_gotno
4497 + gg->next->global_gotno
4498 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4500 needed_relocs = 0;
4501 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4502 set_got_offset_arg.info = info;
4503 for (g = gg->next; g && g->next != gg; g = g->next)
4505 unsigned int save_assign;
4507 /* Assign offsets to global GOT entries. */
4508 save_assign = g->assigned_gotno;
4509 g->assigned_gotno = g->local_gotno;
4510 set_got_offset_arg.g = g;
4511 set_got_offset_arg.needed_relocs = 0;
4512 htab_traverse (g->got_entries,
4513 mips_elf_set_global_got_offset,
4514 &set_got_offset_arg);
4515 needed_relocs += set_got_offset_arg.needed_relocs;
4516 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4518 g->assigned_gotno = save_assign;
4519 if (info->shared)
4521 needed_relocs += g->local_gotno - g->assigned_gotno;
4522 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4523 + g->next->global_gotno
4524 + g->next->tls_gotno
4525 + htab->reserved_gotno);
4529 if (needed_relocs)
4530 mips_elf_allocate_dynamic_relocations (dynobj, info,
4531 needed_relocs);
4533 return TRUE;
4537 /* Returns the first relocation of type r_type found, beginning with
4538 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4540 static const Elf_Internal_Rela *
4541 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4542 const Elf_Internal_Rela *relocation,
4543 const Elf_Internal_Rela *relend)
4545 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4547 while (relocation < relend)
4549 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4550 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4551 return relocation;
4553 ++relocation;
4556 /* We didn't find it. */
4557 return NULL;
4560 /* Return whether a relocation is against a local symbol. */
4562 static bfd_boolean
4563 mips_elf_local_relocation_p (bfd *input_bfd,
4564 const Elf_Internal_Rela *relocation,
4565 asection **local_sections,
4566 bfd_boolean check_forced)
4568 unsigned long r_symndx;
4569 Elf_Internal_Shdr *symtab_hdr;
4570 struct mips_elf_link_hash_entry *h;
4571 size_t extsymoff;
4573 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4574 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4575 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4577 if (r_symndx < extsymoff)
4578 return TRUE;
4579 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4580 return TRUE;
4582 if (check_forced)
4584 /* Look up the hash table to check whether the symbol
4585 was forced local. */
4586 h = (struct mips_elf_link_hash_entry *)
4587 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4588 /* Find the real hash-table entry for this symbol. */
4589 while (h->root.root.type == bfd_link_hash_indirect
4590 || h->root.root.type == bfd_link_hash_warning)
4591 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4592 if (h->root.forced_local)
4593 return TRUE;
4596 return FALSE;
4599 /* Sign-extend VALUE, which has the indicated number of BITS. */
4601 bfd_vma
4602 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4604 if (value & ((bfd_vma) 1 << (bits - 1)))
4605 /* VALUE is negative. */
4606 value |= ((bfd_vma) - 1) << bits;
4608 return value;
4611 /* Return non-zero if the indicated VALUE has overflowed the maximum
4612 range expressible by a signed number with the indicated number of
4613 BITS. */
4615 static bfd_boolean
4616 mips_elf_overflow_p (bfd_vma value, int bits)
4618 bfd_signed_vma svalue = (bfd_signed_vma) value;
4620 if (svalue > (1 << (bits - 1)) - 1)
4621 /* The value is too big. */
4622 return TRUE;
4623 else if (svalue < -(1 << (bits - 1)))
4624 /* The value is too small. */
4625 return TRUE;
4627 /* All is well. */
4628 return FALSE;
4631 /* Calculate the %high function. */
4633 static bfd_vma
4634 mips_elf_high (bfd_vma value)
4636 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4639 /* Calculate the %higher function. */
4641 static bfd_vma
4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4644 #ifdef BFD64
4645 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4646 #else
4647 abort ();
4648 return MINUS_ONE;
4649 #endif
4652 /* Calculate the %highest function. */
4654 static bfd_vma
4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4657 #ifdef BFD64
4658 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4659 #else
4660 abort ();
4661 return MINUS_ONE;
4662 #endif
4665 /* Create the .compact_rel section. */
4667 static bfd_boolean
4668 mips_elf_create_compact_rel_section
4669 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4671 flagword flags;
4672 register asection *s;
4674 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4676 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4677 | SEC_READONLY);
4679 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4680 if (s == NULL
4681 || ! bfd_set_section_alignment (abfd, s,
4682 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4683 return FALSE;
4685 s->size = sizeof (Elf32_External_compact_rel);
4688 return TRUE;
4691 /* Create the .got section to hold the global offset table. */
4693 static bfd_boolean
4694 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4696 flagword flags;
4697 register asection *s;
4698 struct elf_link_hash_entry *h;
4699 struct bfd_link_hash_entry *bh;
4700 struct mips_got_info *g;
4701 bfd_size_type amt;
4702 struct mips_elf_link_hash_table *htab;
4704 htab = mips_elf_hash_table (info);
4705 BFD_ASSERT (htab != NULL);
4707 /* This function may be called more than once. */
4708 if (htab->sgot)
4709 return TRUE;
4711 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4712 | SEC_LINKER_CREATED);
4714 /* We have to use an alignment of 2**4 here because this is hardcoded
4715 in the function stub generation and in the linker script. */
4716 s = bfd_make_section_with_flags (abfd, ".got", flags);
4717 if (s == NULL
4718 || ! bfd_set_section_alignment (abfd, s, 4))
4719 return FALSE;
4720 htab->sgot = s;
4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4723 linker script because we don't want to define the symbol if we
4724 are not creating a global offset table. */
4725 bh = NULL;
4726 if (! (_bfd_generic_link_add_one_symbol
4727 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4728 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4729 return FALSE;
4731 h = (struct elf_link_hash_entry *) bh;
4732 h->non_elf = 0;
4733 h->def_regular = 1;
4734 h->type = STT_OBJECT;
4735 elf_hash_table (info)->hgot = h;
4737 if (info->shared
4738 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4739 return FALSE;
4741 amt = sizeof (struct mips_got_info);
4742 g = bfd_alloc (abfd, amt);
4743 if (g == NULL)
4744 return FALSE;
4745 g->global_gotsym = NULL;
4746 g->global_gotno = 0;
4747 g->reloc_only_gotno = 0;
4748 g->tls_gotno = 0;
4749 g->local_gotno = 0;
4750 g->page_gotno = 0;
4751 g->assigned_gotno = 0;
4752 g->bfd2got = NULL;
4753 g->next = NULL;
4754 g->tls_ldm_offset = MINUS_ONE;
4755 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4756 mips_elf_got_entry_eq, NULL);
4757 if (g->got_entries == NULL)
4758 return FALSE;
4759 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4760 mips_got_page_entry_eq, NULL);
4761 if (g->got_page_entries == NULL)
4762 return FALSE;
4763 htab->got_info = g;
4764 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4765 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4767 /* We also need a .got.plt section when generating PLTs. */
4768 s = bfd_make_section_with_flags (abfd, ".got.plt",
4769 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4770 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4771 if (s == NULL)
4772 return FALSE;
4773 htab->sgotplt = s;
4775 return TRUE;
4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779 __GOTT_INDEX__ symbols. These symbols are only special for
4780 shared objects; they are not used in executables. */
4782 static bfd_boolean
4783 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4785 return (mips_elf_hash_table (info)->is_vxworks
4786 && info->shared
4787 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4788 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792 require an la25 stub. See also mips_elf_local_pic_function_p,
4793 which determines whether the destination function ever requires a
4794 stub. */
4796 static bfd_boolean
4797 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4799 /* We specifically ignore branches and jumps from EF_PIC objects,
4800 where the onus is on the compiler or programmer to perform any
4801 necessary initialization of $25. Sometimes such initialization
4802 is unnecessary; for example, -mno-shared functions do not use
4803 the incoming value of $25, and may therefore be called directly. */
4804 if (PIC_OBJECT_P (input_bfd))
4805 return FALSE;
4807 switch (r_type)
4809 case R_MIPS_26:
4810 case R_MIPS_PC16:
4811 case R_MIPS16_26:
4812 return TRUE;
4814 default:
4815 return FALSE;
4819 /* Calculate the value produced by the RELOCATION (which comes from
4820 the INPUT_BFD). The ADDEND is the addend to use for this
4821 RELOCATION; RELOCATION->R_ADDEND is ignored.
4823 The result of the relocation calculation is stored in VALUEP.
4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4827 This function returns bfd_reloc_continue if the caller need take no
4828 further action regarding this relocation, bfd_reloc_notsupported if
4829 something goes dramatically wrong, bfd_reloc_overflow if an
4830 overflow occurs, and bfd_reloc_ok to indicate success. */
4832 static bfd_reloc_status_type
4833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4834 asection *input_section,
4835 struct bfd_link_info *info,
4836 const Elf_Internal_Rela *relocation,
4837 bfd_vma addend, reloc_howto_type *howto,
4838 Elf_Internal_Sym *local_syms,
4839 asection **local_sections, bfd_vma *valuep,
4840 const char **namep,
4841 bfd_boolean *cross_mode_jump_p,
4842 bfd_boolean save_addend)
4844 /* The eventual value we will return. */
4845 bfd_vma value;
4846 /* The address of the symbol against which the relocation is
4847 occurring. */
4848 bfd_vma symbol = 0;
4849 /* The final GP value to be used for the relocatable, executable, or
4850 shared object file being produced. */
4851 bfd_vma gp;
4852 /* The place (section offset or address) of the storage unit being
4853 relocated. */
4854 bfd_vma p;
4855 /* The value of GP used to create the relocatable object. */
4856 bfd_vma gp0;
4857 /* The offset into the global offset table at which the address of
4858 the relocation entry symbol, adjusted by the addend, resides
4859 during execution. */
4860 bfd_vma g = MINUS_ONE;
4861 /* The section in which the symbol referenced by the relocation is
4862 located. */
4863 asection *sec = NULL;
4864 struct mips_elf_link_hash_entry *h = NULL;
4865 /* TRUE if the symbol referred to by this relocation is a local
4866 symbol. */
4867 bfd_boolean local_p, was_local_p;
4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4869 bfd_boolean gp_disp_p = FALSE;
4870 /* TRUE if the symbol referred to by this relocation is
4871 "__gnu_local_gp". */
4872 bfd_boolean gnu_local_gp_p = FALSE;
4873 Elf_Internal_Shdr *symtab_hdr;
4874 size_t extsymoff;
4875 unsigned long r_symndx;
4876 int r_type;
4877 /* TRUE if overflow occurred during the calculation of the
4878 relocation value. */
4879 bfd_boolean overflowed_p;
4880 /* TRUE if this relocation refers to a MIPS16 function. */
4881 bfd_boolean target_is_16_bit_code_p = FALSE;
4882 struct mips_elf_link_hash_table *htab;
4883 bfd *dynobj;
4885 dynobj = elf_hash_table (info)->dynobj;
4886 htab = mips_elf_hash_table (info);
4887 BFD_ASSERT (htab != NULL);
4889 /* Parse the relocation. */
4890 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4891 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4892 p = (input_section->output_section->vma
4893 + input_section->output_offset
4894 + relocation->r_offset);
4896 /* Assume that there will be no overflow. */
4897 overflowed_p = FALSE;
4899 /* Figure out whether or not the symbol is local, and get the offset
4900 used in the array of hash table entries. */
4901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4902 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4903 local_sections, FALSE);
4904 was_local_p = local_p;
4905 if (! elf_bad_symtab (input_bfd))
4906 extsymoff = symtab_hdr->sh_info;
4907 else
4909 /* The symbol table does not follow the rule that local symbols
4910 must come before globals. */
4911 extsymoff = 0;
4914 /* Figure out the value of the symbol. */
4915 if (local_p)
4917 Elf_Internal_Sym *sym;
4919 sym = local_syms + r_symndx;
4920 sec = local_sections[r_symndx];
4922 symbol = sec->output_section->vma + sec->output_offset;
4923 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4924 || (sec->flags & SEC_MERGE))
4925 symbol += sym->st_value;
4926 if ((sec->flags & SEC_MERGE)
4927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4929 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4930 addend -= symbol;
4931 addend += sec->output_section->vma + sec->output_offset;
4934 /* MIPS16 text labels should be treated as odd. */
4935 if (ELF_ST_IS_MIPS16 (sym->st_other))
4936 ++symbol;
4938 /* Record the name of this symbol, for our caller. */
4939 *namep = bfd_elf_string_from_elf_section (input_bfd,
4940 symtab_hdr->sh_link,
4941 sym->st_name);
4942 if (*namep == '\0')
4943 *namep = bfd_section_name (input_bfd, sec);
4945 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4947 else
4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4951 /* For global symbols we look up the symbol in the hash-table. */
4952 h = ((struct mips_elf_link_hash_entry *)
4953 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4954 /* Find the real hash-table entry for this symbol. */
4955 while (h->root.root.type == bfd_link_hash_indirect
4956 || h->root.root.type == bfd_link_hash_warning)
4957 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4959 /* Record the name of this symbol, for our caller. */
4960 *namep = h->root.root.root.string;
4962 /* See if this is the special _gp_disp symbol. Note that such a
4963 symbol must always be a global symbol. */
4964 if (strcmp (*namep, "_gp_disp") == 0
4965 && ! NEWABI_P (input_bfd))
4967 /* Relocations against _gp_disp are permitted only with
4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4969 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4970 return bfd_reloc_notsupported;
4972 gp_disp_p = TRUE;
4974 /* See if this is the special _gp symbol. Note that such a
4975 symbol must always be a global symbol. */
4976 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4977 gnu_local_gp_p = TRUE;
4980 /* If this symbol is defined, calculate its address. Note that
4981 _gp_disp is a magic symbol, always implicitly defined by the
4982 linker, so it's inappropriate to check to see whether or not
4983 its defined. */
4984 else if ((h->root.root.type == bfd_link_hash_defined
4985 || h->root.root.type == bfd_link_hash_defweak)
4986 && h->root.root.u.def.section)
4988 sec = h->root.root.u.def.section;
4989 if (sec->output_section)
4990 symbol = (h->root.root.u.def.value
4991 + sec->output_section->vma
4992 + sec->output_offset);
4993 else
4994 symbol = h->root.root.u.def.value;
4996 else if (h->root.root.type == bfd_link_hash_undefweak)
4997 /* We allow relocations against undefined weak symbols, giving
4998 it the value zero, so that you can undefined weak functions
4999 and check to see if they exist by looking at their
5000 addresses. */
5001 symbol = 0;
5002 else if (info->unresolved_syms_in_objects == RM_IGNORE
5003 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5004 symbol = 0;
5005 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5008 /* If this is a dynamic link, we should have created a
5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 in in _bfd_mips_elf_create_dynamic_sections.
5011 Otherwise, we should define the symbol with a value of 0.
5012 FIXME: It should probably get into the symbol table
5013 somehow as well. */
5014 BFD_ASSERT (! info->shared);
5015 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5016 symbol = 0;
5018 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5020 /* This is an optional symbol - an Irix specific extension to the
5021 ELF spec. Ignore it for now.
5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 than simply ignoring them, but we do not handle this for now.
5024 For information see the "64-bit ELF Object File Specification"
5025 which is available from here:
5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5027 symbol = 0;
5029 else if ((*info->callbacks->undefined_symbol)
5030 (info, h->root.root.root.string, input_bfd,
5031 input_section, relocation->r_offset,
5032 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5033 || ELF_ST_VISIBILITY (h->root.other)))
5035 return bfd_reloc_undefined;
5037 else
5039 return bfd_reloc_notsupported;
5042 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5045 /* If this is a reference to a 16-bit function with a stub, we need
5046 to redirect the relocation to the stub unless:
5048 (a) the relocation is for a MIPS16 JAL;
5050 (b) the relocation is for a MIPS16 PIC call, and there are no
5051 non-MIPS16 uses of the GOT slot; or
5053 (c) the section allows direct references to MIPS16 functions. */
5054 if (r_type != R_MIPS16_26
5055 && !info->relocatable
5056 && ((h != NULL
5057 && h->fn_stub != NULL
5058 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5059 || (local_p
5060 && elf_tdata (input_bfd)->local_stubs != NULL
5061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5062 && !section_allows_mips16_refs_p (input_section))
5064 /* This is a 32- or 64-bit call to a 16-bit function. We should
5065 have already noticed that we were going to need the
5066 stub. */
5067 if (local_p)
5068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5069 else
5071 BFD_ASSERT (h->need_fn_stub);
5072 sec = h->fn_stub;
5075 symbol = sec->output_section->vma + sec->output_offset;
5076 /* The target is 16-bit, but the stub isn't. */
5077 target_is_16_bit_code_p = FALSE;
5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5080 need to redirect the call to the stub. Note that we specifically
5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082 use an indirect stub instead. */
5083 else if (r_type == R_MIPS16_26 && !info->relocatable
5084 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5085 || (local_p
5086 && elf_tdata (input_bfd)->local_call_stubs != NULL
5087 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5088 && !target_is_16_bit_code_p)
5090 if (local_p)
5091 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5092 else
5094 /* If both call_stub and call_fp_stub are defined, we can figure
5095 out which one to use by checking which one appears in the input
5096 file. */
5097 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5099 asection *o;
5101 sec = NULL;
5102 for (o = input_bfd->sections; o != NULL; o = o->next)
5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5106 sec = h->call_fp_stub;
5107 break;
5110 if (sec == NULL)
5111 sec = h->call_stub;
5113 else if (h->call_stub != NULL)
5114 sec = h->call_stub;
5115 else
5116 sec = h->call_fp_stub;
5119 BFD_ASSERT (sec->size > 0);
5120 symbol = sec->output_section->vma + sec->output_offset;
5122 /* If this is a direct call to a PIC function, redirect to the
5123 non-PIC stub. */
5124 else if (h != NULL && h->la25_stub
5125 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5126 symbol = (h->la25_stub->stub_section->output_section->vma
5127 + h->la25_stub->stub_section->output_offset
5128 + h->la25_stub->offset);
5130 /* Calls from 16-bit code to 32-bit code and vice versa require the
5131 mode change. */
5132 *cross_mode_jump_p = !info->relocatable
5133 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5134 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5135 && target_is_16_bit_code_p));
5137 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5138 local_sections, TRUE);
5140 gp0 = _bfd_get_gp_value (input_bfd);
5141 gp = _bfd_get_gp_value (abfd);
5142 if (htab->got_info)
5143 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5145 if (gnu_local_gp_p)
5146 symbol = gp;
5148 /* If we haven't already determined the GOT offset, oand we're going
5149 to need it, get it now. */
5150 switch (r_type)
5152 case R_MIPS_GOT_PAGE:
5153 case R_MIPS_GOT_OFST:
5154 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5155 bind locally. */
5156 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
5157 if (local_p || r_type == R_MIPS_GOT_OFST)
5158 break;
5159 /* Fall through. */
5161 case R_MIPS16_CALL16:
5162 case R_MIPS16_GOT16:
5163 case R_MIPS_CALL16:
5164 case R_MIPS_GOT16:
5165 case R_MIPS_GOT_DISP:
5166 case R_MIPS_GOT_HI16:
5167 case R_MIPS_CALL_HI16:
5168 case R_MIPS_GOT_LO16:
5169 case R_MIPS_CALL_LO16:
5170 case R_MIPS_TLS_GD:
5171 case R_MIPS_TLS_GOTTPREL:
5172 case R_MIPS_TLS_LDM:
5173 /* Find the index into the GOT where this value is located. */
5174 if (r_type == R_MIPS_TLS_LDM)
5176 g = mips_elf_local_got_index (abfd, input_bfd, info,
5177 0, 0, NULL, r_type);
5178 if (g == MINUS_ONE)
5179 return bfd_reloc_outofrange;
5181 else if (!local_p)
5183 /* On VxWorks, CALL relocations should refer to the .got.plt
5184 entry, which is initialized to point at the PLT stub. */
5185 if (htab->is_vxworks
5186 && (r_type == R_MIPS_CALL_HI16
5187 || r_type == R_MIPS_CALL_LO16
5188 || call16_reloc_p (r_type)))
5190 BFD_ASSERT (addend == 0);
5191 BFD_ASSERT (h->root.needs_plt);
5192 g = mips_elf_gotplt_index (info, &h->root);
5194 else
5196 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5197 GOT_PAGE relocation that decays to GOT_DISP because the
5198 symbol turns out to be global. The addend is then added
5199 as GOT_OFST. */
5200 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5201 g = mips_elf_global_got_index (dynobj, input_bfd,
5202 &h->root, r_type, info);
5203 if (h->tls_type == GOT_NORMAL
5204 && (! elf_hash_table(info)->dynamic_sections_created
5205 || (info->shared
5206 && (info->symbolic || h->root.forced_local)
5207 && h->root.def_regular)))
5208 /* This is a static link or a -Bsymbolic link. The
5209 symbol is defined locally, or was forced to be local.
5210 We must initialize this entry in the GOT. */
5211 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5214 else if (!htab->is_vxworks
5215 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5216 /* The calculation below does not involve "g". */
5217 break;
5218 else
5220 g = mips_elf_local_got_index (abfd, input_bfd, info,
5221 symbol + addend, r_symndx, h, r_type);
5222 if (g == MINUS_ONE)
5223 return bfd_reloc_outofrange;
5226 /* Convert GOT indices to actual offsets. */
5227 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5228 break;
5231 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5232 symbols are resolved by the loader. Add them to .rela.dyn. */
5233 if (h != NULL && is_gott_symbol (info, &h->root))
5235 Elf_Internal_Rela outrel;
5236 bfd_byte *loc;
5237 asection *s;
5239 s = mips_elf_rel_dyn_section (info, FALSE);
5240 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5242 outrel.r_offset = (input_section->output_section->vma
5243 + input_section->output_offset
5244 + relocation->r_offset);
5245 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5246 outrel.r_addend = addend;
5247 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5249 /* If we've written this relocation for a readonly section,
5250 we need to set DF_TEXTREL again, so that we do not delete the
5251 DT_TEXTREL tag. */
5252 if (MIPS_ELF_READONLY_SECTION (input_section))
5253 info->flags |= DF_TEXTREL;
5255 *valuep = 0;
5256 return bfd_reloc_ok;
5259 /* Figure out what kind of relocation is being performed. */
5260 switch (r_type)
5262 case R_MIPS_NONE:
5263 return bfd_reloc_continue;
5265 case R_MIPS_16:
5266 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5267 overflowed_p = mips_elf_overflow_p (value, 16);
5268 break;
5270 case R_MIPS_32:
5271 case R_MIPS_REL32:
5272 case R_MIPS_64:
5273 if ((info->shared
5274 || (htab->root.dynamic_sections_created
5275 && h != NULL
5276 && h->root.def_dynamic
5277 && !h->root.def_regular
5278 && !h->has_static_relocs))
5279 && r_symndx != 0
5280 && (h == NULL
5281 || h->root.root.type != bfd_link_hash_undefweak
5282 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5283 && (input_section->flags & SEC_ALLOC) != 0)
5285 /* If we're creating a shared library, then we can't know
5286 where the symbol will end up. So, we create a relocation
5287 record in the output, and leave the job up to the dynamic
5288 linker. We must do the same for executable references to
5289 shared library symbols, unless we've decided to use copy
5290 relocs or PLTs instead. */
5291 value = addend;
5292 if (!mips_elf_create_dynamic_relocation (abfd,
5293 info,
5294 relocation,
5296 sec,
5297 symbol,
5298 &value,
5299 input_section))
5300 return bfd_reloc_undefined;
5302 else
5304 if (r_type != R_MIPS_REL32)
5305 value = symbol + addend;
5306 else
5307 value = addend;
5309 value &= howto->dst_mask;
5310 break;
5312 case R_MIPS_PC32:
5313 value = symbol + addend - p;
5314 value &= howto->dst_mask;
5315 break;
5317 case R_MIPS16_26:
5318 /* The calculation for R_MIPS16_26 is just the same as for an
5319 R_MIPS_26. It's only the storage of the relocated field into
5320 the output file that's different. That's handled in
5321 mips_elf_perform_relocation. So, we just fall through to the
5322 R_MIPS_26 case here. */
5323 case R_MIPS_26:
5324 if (local_p)
5325 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5326 else
5328 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5329 if (h->root.root.type != bfd_link_hash_undefweak)
5330 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5332 value &= howto->dst_mask;
5333 break;
5335 case R_MIPS_TLS_DTPREL_HI16:
5336 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5337 & howto->dst_mask);
5338 break;
5340 case R_MIPS_TLS_DTPREL_LO16:
5341 case R_MIPS_TLS_DTPREL32:
5342 case R_MIPS_TLS_DTPREL64:
5343 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5344 break;
5346 case R_MIPS_TLS_TPREL_HI16:
5347 value = (mips_elf_high (addend + symbol - tprel_base (info))
5348 & howto->dst_mask);
5349 break;
5351 case R_MIPS_TLS_TPREL_LO16:
5352 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5353 break;
5355 case R_MIPS_HI16:
5356 case R_MIPS16_HI16:
5357 if (!gp_disp_p)
5359 value = mips_elf_high (addend + symbol);
5360 value &= howto->dst_mask;
5362 else
5364 /* For MIPS16 ABI code we generate this sequence
5365 0: li $v0,%hi(_gp_disp)
5366 4: addiupc $v1,%lo(_gp_disp)
5367 8: sll $v0,16
5368 12: addu $v0,$v1
5369 14: move $gp,$v0
5370 So the offsets of hi and lo relocs are the same, but the
5371 $pc is four higher than $t9 would be, so reduce
5372 both reloc addends by 4. */
5373 if (r_type == R_MIPS16_HI16)
5374 value = mips_elf_high (addend + gp - p - 4);
5375 else
5376 value = mips_elf_high (addend + gp - p);
5377 overflowed_p = mips_elf_overflow_p (value, 16);
5379 break;
5381 case R_MIPS_LO16:
5382 case R_MIPS16_LO16:
5383 if (!gp_disp_p)
5384 value = (symbol + addend) & howto->dst_mask;
5385 else
5387 /* See the comment for R_MIPS16_HI16 above for the reason
5388 for this conditional. */
5389 if (r_type == R_MIPS16_LO16)
5390 value = addend + gp - p;
5391 else
5392 value = addend + gp - p + 4;
5393 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5394 for overflow. But, on, say, IRIX5, relocations against
5395 _gp_disp are normally generated from the .cpload
5396 pseudo-op. It generates code that normally looks like
5397 this:
5399 lui $gp,%hi(_gp_disp)
5400 addiu $gp,$gp,%lo(_gp_disp)
5401 addu $gp,$gp,$t9
5403 Here $t9 holds the address of the function being called,
5404 as required by the MIPS ELF ABI. The R_MIPS_LO16
5405 relocation can easily overflow in this situation, but the
5406 R_MIPS_HI16 relocation will handle the overflow.
5407 Therefore, we consider this a bug in the MIPS ABI, and do
5408 not check for overflow here. */
5410 break;
5412 case R_MIPS_LITERAL:
5413 /* Because we don't merge literal sections, we can handle this
5414 just like R_MIPS_GPREL16. In the long run, we should merge
5415 shared literals, and then we will need to additional work
5416 here. */
5418 /* Fall through. */
5420 case R_MIPS16_GPREL:
5421 /* The R_MIPS16_GPREL performs the same calculation as
5422 R_MIPS_GPREL16, but stores the relocated bits in a different
5423 order. We don't need to do anything special here; the
5424 differences are handled in mips_elf_perform_relocation. */
5425 case R_MIPS_GPREL16:
5426 /* Only sign-extend the addend if it was extracted from the
5427 instruction. If the addend was separate, leave it alone,
5428 otherwise we may lose significant bits. */
5429 if (howto->partial_inplace)
5430 addend = _bfd_mips_elf_sign_extend (addend, 16);
5431 value = symbol + addend - gp;
5432 /* If the symbol was local, any earlier relocatable links will
5433 have adjusted its addend with the gp offset, so compensate
5434 for that now. Don't do it for symbols forced local in this
5435 link, though, since they won't have had the gp offset applied
5436 to them before. */
5437 if (was_local_p)
5438 value += gp0;
5439 overflowed_p = mips_elf_overflow_p (value, 16);
5440 break;
5442 case R_MIPS16_GOT16:
5443 case R_MIPS16_CALL16:
5444 case R_MIPS_GOT16:
5445 case R_MIPS_CALL16:
5446 /* VxWorks does not have separate local and global semantics for
5447 R_MIPS*_GOT16; every relocation evaluates to "G". */
5448 if (!htab->is_vxworks && local_p)
5450 bfd_boolean forced;
5452 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
5453 local_sections, FALSE);
5454 value = mips_elf_got16_entry (abfd, input_bfd, info,
5455 symbol + addend, forced);
5456 if (value == MINUS_ONE)
5457 return bfd_reloc_outofrange;
5458 value
5459 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5460 overflowed_p = mips_elf_overflow_p (value, 16);
5461 break;
5464 /* Fall through. */
5466 case R_MIPS_TLS_GD:
5467 case R_MIPS_TLS_GOTTPREL:
5468 case R_MIPS_TLS_LDM:
5469 case R_MIPS_GOT_DISP:
5470 got_disp:
5471 value = g;
5472 overflowed_p = mips_elf_overflow_p (value, 16);
5473 break;
5475 case R_MIPS_GPREL32:
5476 value = (addend + symbol + gp0 - gp);
5477 if (!save_addend)
5478 value &= howto->dst_mask;
5479 break;
5481 case R_MIPS_PC16:
5482 case R_MIPS_GNU_REL16_S2:
5483 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5484 overflowed_p = mips_elf_overflow_p (value, 18);
5485 value >>= howto->rightshift;
5486 value &= howto->dst_mask;
5487 break;
5489 case R_MIPS_GOT_HI16:
5490 case R_MIPS_CALL_HI16:
5491 /* We're allowed to handle these two relocations identically.
5492 The dynamic linker is allowed to handle the CALL relocations
5493 differently by creating a lazy evaluation stub. */
5494 value = g;
5495 value = mips_elf_high (value);
5496 value &= howto->dst_mask;
5497 break;
5499 case R_MIPS_GOT_LO16:
5500 case R_MIPS_CALL_LO16:
5501 value = g & howto->dst_mask;
5502 break;
5504 case R_MIPS_GOT_PAGE:
5505 /* GOT_PAGE relocations that reference non-local symbols decay
5506 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5507 0. */
5508 if (! local_p)
5509 goto got_disp;
5510 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5511 if (value == MINUS_ONE)
5512 return bfd_reloc_outofrange;
5513 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5514 overflowed_p = mips_elf_overflow_p (value, 16);
5515 break;
5517 case R_MIPS_GOT_OFST:
5518 if (local_p)
5519 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5520 else
5521 value = addend;
5522 overflowed_p = mips_elf_overflow_p (value, 16);
5523 break;
5525 case R_MIPS_SUB:
5526 value = symbol - addend;
5527 value &= howto->dst_mask;
5528 break;
5530 case R_MIPS_HIGHER:
5531 value = mips_elf_higher (addend + symbol);
5532 value &= howto->dst_mask;
5533 break;
5535 case R_MIPS_HIGHEST:
5536 value = mips_elf_highest (addend + symbol);
5537 value &= howto->dst_mask;
5538 break;
5540 case R_MIPS_SCN_DISP:
5541 value = symbol + addend - sec->output_offset;
5542 value &= howto->dst_mask;
5543 break;
5545 case R_MIPS_JALR:
5546 /* This relocation is only a hint. In some cases, we optimize
5547 it into a bal instruction. But we don't try to optimize
5548 when the symbol does not resolve locally. */
5549 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5550 return bfd_reloc_continue;
5551 value = symbol + addend;
5552 break;
5554 case R_MIPS_PJUMP:
5555 case R_MIPS_GNU_VTINHERIT:
5556 case R_MIPS_GNU_VTENTRY:
5557 /* We don't do anything with these at present. */
5558 return bfd_reloc_continue;
5560 default:
5561 /* An unrecognized relocation type. */
5562 return bfd_reloc_notsupported;
5565 /* Store the VALUE for our caller. */
5566 *valuep = value;
5567 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5570 /* Obtain the field relocated by RELOCATION. */
5572 static bfd_vma
5573 mips_elf_obtain_contents (reloc_howto_type *howto,
5574 const Elf_Internal_Rela *relocation,
5575 bfd *input_bfd, bfd_byte *contents)
5577 bfd_vma x;
5578 bfd_byte *location = contents + relocation->r_offset;
5580 /* Obtain the bytes. */
5581 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5583 return x;
5586 /* It has been determined that the result of the RELOCATION is the
5587 VALUE. Use HOWTO to place VALUE into the output file at the
5588 appropriate position. The SECTION is the section to which the
5589 relocation applies.
5590 CROSS_MODE_JUMP_P is true if the relocation field
5591 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5593 Returns FALSE if anything goes wrong. */
5595 static bfd_boolean
5596 mips_elf_perform_relocation (struct bfd_link_info *info,
5597 reloc_howto_type *howto,
5598 const Elf_Internal_Rela *relocation,
5599 bfd_vma value, bfd *input_bfd,
5600 asection *input_section, bfd_byte *contents,
5601 bfd_boolean cross_mode_jump_p)
5603 bfd_vma x;
5604 bfd_byte *location;
5605 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5607 /* Figure out where the relocation is occurring. */
5608 location = contents + relocation->r_offset;
5610 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5612 /* Obtain the current value. */
5613 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5615 /* Clear the field we are setting. */
5616 x &= ~howto->dst_mask;
5618 /* Set the field. */
5619 x |= (value & howto->dst_mask);
5621 /* If required, turn JAL into JALX. */
5622 if (cross_mode_jump_p && jal_reloc_p (r_type))
5624 bfd_boolean ok;
5625 bfd_vma opcode = x >> 26;
5626 bfd_vma jalx_opcode;
5628 /* Check to see if the opcode is already JAL or JALX. */
5629 if (r_type == R_MIPS16_26)
5631 ok = ((opcode == 0x6) || (opcode == 0x7));
5632 jalx_opcode = 0x7;
5634 else
5636 ok = ((opcode == 0x3) || (opcode == 0x1d));
5637 jalx_opcode = 0x1d;
5640 /* If the opcode is not JAL or JALX, there's a problem. */
5641 if (!ok)
5643 (*_bfd_error_handler)
5644 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5645 input_bfd,
5646 input_section,
5647 (unsigned long) relocation->r_offset);
5648 bfd_set_error (bfd_error_bad_value);
5649 return FALSE;
5652 /* Make this the JALX opcode. */
5653 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5656 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5657 range. */
5658 if (!info->relocatable
5659 && !cross_mode_jump_p
5660 && ((JAL_TO_BAL_P (input_bfd)
5661 && r_type == R_MIPS_26
5662 && (x >> 26) == 0x3) /* jal addr */
5663 || (JALR_TO_BAL_P (input_bfd)
5664 && r_type == R_MIPS_JALR
5665 && x == 0x0320f809) /* jalr t9 */
5666 || (JR_TO_B_P (input_bfd)
5667 && r_type == R_MIPS_JALR
5668 && x == 0x03200008))) /* jr t9 */
5670 bfd_vma addr;
5671 bfd_vma dest;
5672 bfd_signed_vma off;
5674 addr = (input_section->output_section->vma
5675 + input_section->output_offset
5676 + relocation->r_offset
5677 + 4);
5678 if (r_type == R_MIPS_26)
5679 dest = (value << 2) | ((addr >> 28) << 28);
5680 else
5681 dest = value;
5682 off = dest - addr;
5683 if (off <= 0x1ffff && off >= -0x20000)
5685 if (x == 0x03200008) /* jr t9 */
5686 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5687 else
5688 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5692 /* Put the value into the output. */
5693 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5695 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5696 location);
5698 return TRUE;
5701 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5702 is the original relocation, which is now being transformed into a
5703 dynamic relocation. The ADDENDP is adjusted if necessary; the
5704 caller should store the result in place of the original addend. */
5706 static bfd_boolean
5707 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5708 struct bfd_link_info *info,
5709 const Elf_Internal_Rela *rel,
5710 struct mips_elf_link_hash_entry *h,
5711 asection *sec, bfd_vma symbol,
5712 bfd_vma *addendp, asection *input_section)
5714 Elf_Internal_Rela outrel[3];
5715 asection *sreloc;
5716 bfd *dynobj;
5717 int r_type;
5718 long indx;
5719 bfd_boolean defined_p;
5720 struct mips_elf_link_hash_table *htab;
5722 htab = mips_elf_hash_table (info);
5723 BFD_ASSERT (htab != NULL);
5725 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5726 dynobj = elf_hash_table (info)->dynobj;
5727 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5728 BFD_ASSERT (sreloc != NULL);
5729 BFD_ASSERT (sreloc->contents != NULL);
5730 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5731 < sreloc->size);
5733 outrel[0].r_offset =
5734 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5735 if (ABI_64_P (output_bfd))
5737 outrel[1].r_offset =
5738 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5739 outrel[2].r_offset =
5740 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5743 if (outrel[0].r_offset == MINUS_ONE)
5744 /* The relocation field has been deleted. */
5745 return TRUE;
5747 if (outrel[0].r_offset == MINUS_TWO)
5749 /* The relocation field has been converted into a relative value of
5750 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5751 the field to be fully relocated, so add in the symbol's value. */
5752 *addendp += symbol;
5753 return TRUE;
5756 /* We must now calculate the dynamic symbol table index to use
5757 in the relocation. */
5758 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5760 indx = h->root.dynindx;
5761 if (SGI_COMPAT (output_bfd))
5762 defined_p = h->root.def_regular;
5763 else
5764 /* ??? glibc's ld.so just adds the final GOT entry to the
5765 relocation field. It therefore treats relocs against
5766 defined symbols in the same way as relocs against
5767 undefined symbols. */
5768 defined_p = FALSE;
5770 else
5772 if (sec != NULL && bfd_is_abs_section (sec))
5773 indx = 0;
5774 else if (sec == NULL || sec->owner == NULL)
5776 bfd_set_error (bfd_error_bad_value);
5777 return FALSE;
5779 else
5781 indx = elf_section_data (sec->output_section)->dynindx;
5782 if (indx == 0)
5784 asection *osec = htab->root.text_index_section;
5785 indx = elf_section_data (osec)->dynindx;
5787 if (indx == 0)
5788 abort ();
5791 /* Instead of generating a relocation using the section
5792 symbol, we may as well make it a fully relative
5793 relocation. We want to avoid generating relocations to
5794 local symbols because we used to generate them
5795 incorrectly, without adding the original symbol value,
5796 which is mandated by the ABI for section symbols. In
5797 order to give dynamic loaders and applications time to
5798 phase out the incorrect use, we refrain from emitting
5799 section-relative relocations. It's not like they're
5800 useful, after all. This should be a bit more efficient
5801 as well. */
5802 /* ??? Although this behavior is compatible with glibc's ld.so,
5803 the ABI says that relocations against STN_UNDEF should have
5804 a symbol value of 0. Irix rld honors this, so relocations
5805 against STN_UNDEF have no effect. */
5806 if (!SGI_COMPAT (output_bfd))
5807 indx = 0;
5808 defined_p = TRUE;
5811 /* If the relocation was previously an absolute relocation and
5812 this symbol will not be referred to by the relocation, we must
5813 adjust it by the value we give it in the dynamic symbol table.
5814 Otherwise leave the job up to the dynamic linker. */
5815 if (defined_p && r_type != R_MIPS_REL32)
5816 *addendp += symbol;
5818 if (htab->is_vxworks)
5819 /* VxWorks uses non-relative relocations for this. */
5820 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5821 else
5822 /* The relocation is always an REL32 relocation because we don't
5823 know where the shared library will wind up at load-time. */
5824 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5825 R_MIPS_REL32);
5827 /* For strict adherence to the ABI specification, we should
5828 generate a R_MIPS_64 relocation record by itself before the
5829 _REL32/_64 record as well, such that the addend is read in as
5830 a 64-bit value (REL32 is a 32-bit relocation, after all).
5831 However, since none of the existing ELF64 MIPS dynamic
5832 loaders seems to care, we don't waste space with these
5833 artificial relocations. If this turns out to not be true,
5834 mips_elf_allocate_dynamic_relocation() should be tweaked so
5835 as to make room for a pair of dynamic relocations per
5836 invocation if ABI_64_P, and here we should generate an
5837 additional relocation record with R_MIPS_64 by itself for a
5838 NULL symbol before this relocation record. */
5839 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5840 ABI_64_P (output_bfd)
5841 ? R_MIPS_64
5842 : R_MIPS_NONE);
5843 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5845 /* Adjust the output offset of the relocation to reference the
5846 correct location in the output file. */
5847 outrel[0].r_offset += (input_section->output_section->vma
5848 + input_section->output_offset);
5849 outrel[1].r_offset += (input_section->output_section->vma
5850 + input_section->output_offset);
5851 outrel[2].r_offset += (input_section->output_section->vma
5852 + input_section->output_offset);
5854 /* Put the relocation back out. We have to use the special
5855 relocation outputter in the 64-bit case since the 64-bit
5856 relocation format is non-standard. */
5857 if (ABI_64_P (output_bfd))
5859 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5860 (output_bfd, &outrel[0],
5861 (sreloc->contents
5862 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5864 else if (htab->is_vxworks)
5866 /* VxWorks uses RELA rather than REL dynamic relocations. */
5867 outrel[0].r_addend = *addendp;
5868 bfd_elf32_swap_reloca_out
5869 (output_bfd, &outrel[0],
5870 (sreloc->contents
5871 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5873 else
5874 bfd_elf32_swap_reloc_out
5875 (output_bfd, &outrel[0],
5876 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5878 /* We've now added another relocation. */
5879 ++sreloc->reloc_count;
5881 /* Make sure the output section is writable. The dynamic linker
5882 will be writing to it. */
5883 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5884 |= SHF_WRITE;
5886 /* On IRIX5, make an entry of compact relocation info. */
5887 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5889 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5890 bfd_byte *cr;
5892 if (scpt)
5894 Elf32_crinfo cptrel;
5896 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5897 cptrel.vaddr = (rel->r_offset
5898 + input_section->output_section->vma
5899 + input_section->output_offset);
5900 if (r_type == R_MIPS_REL32)
5901 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5902 else
5903 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5904 mips_elf_set_cr_dist2to (cptrel, 0);
5905 cptrel.konst = *addendp;
5907 cr = (scpt->contents
5908 + sizeof (Elf32_External_compact_rel));
5909 mips_elf_set_cr_relvaddr (cptrel, 0);
5910 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5911 ((Elf32_External_crinfo *) cr
5912 + scpt->reloc_count));
5913 ++scpt->reloc_count;
5917 /* If we've written this relocation for a readonly section,
5918 we need to set DF_TEXTREL again, so that we do not delete the
5919 DT_TEXTREL tag. */
5920 if (MIPS_ELF_READONLY_SECTION (input_section))
5921 info->flags |= DF_TEXTREL;
5923 return TRUE;
5926 /* Return the MACH for a MIPS e_flags value. */
5928 unsigned long
5929 _bfd_elf_mips_mach (flagword flags)
5931 switch (flags & EF_MIPS_MACH)
5933 case E_MIPS_MACH_3900:
5934 return bfd_mach_mips3900;
5936 case E_MIPS_MACH_4010:
5937 return bfd_mach_mips4010;
5939 case E_MIPS_MACH_4100:
5940 return bfd_mach_mips4100;
5942 case E_MIPS_MACH_4111:
5943 return bfd_mach_mips4111;
5945 case E_MIPS_MACH_4120:
5946 return bfd_mach_mips4120;
5948 case E_MIPS_MACH_4650:
5949 return bfd_mach_mips4650;
5951 case E_MIPS_MACH_5400:
5952 return bfd_mach_mips5400;
5954 case E_MIPS_MACH_5500:
5955 return bfd_mach_mips5500;
5957 case E_MIPS_MACH_9000:
5958 return bfd_mach_mips9000;
5960 case E_MIPS_MACH_SB1:
5961 return bfd_mach_mips_sb1;
5963 case E_MIPS_MACH_LS2E:
5964 return bfd_mach_mips_loongson_2e;
5966 case E_MIPS_MACH_LS2F:
5967 return bfd_mach_mips_loongson_2f;
5969 case E_MIPS_MACH_OCTEON:
5970 return bfd_mach_mips_octeon;
5972 case E_MIPS_MACH_XLR:
5973 return bfd_mach_mips_xlr;
5975 default:
5976 switch (flags & EF_MIPS_ARCH)
5978 default:
5979 case E_MIPS_ARCH_1:
5980 return bfd_mach_mips3000;
5982 case E_MIPS_ARCH_2:
5983 return bfd_mach_mips6000;
5985 case E_MIPS_ARCH_3:
5986 return bfd_mach_mips4000;
5988 case E_MIPS_ARCH_4:
5989 return bfd_mach_mips8000;
5991 case E_MIPS_ARCH_5:
5992 return bfd_mach_mips5;
5994 case E_MIPS_ARCH_32:
5995 return bfd_mach_mipsisa32;
5997 case E_MIPS_ARCH_64:
5998 return bfd_mach_mipsisa64;
6000 case E_MIPS_ARCH_32R2:
6001 return bfd_mach_mipsisa32r2;
6003 case E_MIPS_ARCH_64R2:
6004 return bfd_mach_mipsisa64r2;
6008 return 0;
6011 /* Return printable name for ABI. */
6013 static INLINE char *
6014 elf_mips_abi_name (bfd *abfd)
6016 flagword flags;
6018 flags = elf_elfheader (abfd)->e_flags;
6019 switch (flags & EF_MIPS_ABI)
6021 case 0:
6022 if (ABI_N32_P (abfd))
6023 return "N32";
6024 else if (ABI_64_P (abfd))
6025 return "64";
6026 else
6027 return "none";
6028 case E_MIPS_ABI_O32:
6029 return "O32";
6030 case E_MIPS_ABI_O64:
6031 return "O64";
6032 case E_MIPS_ABI_EABI32:
6033 return "EABI32";
6034 case E_MIPS_ABI_EABI64:
6035 return "EABI64";
6036 default:
6037 return "unknown abi";
6041 /* MIPS ELF uses two common sections. One is the usual one, and the
6042 other is for small objects. All the small objects are kept
6043 together, and then referenced via the gp pointer, which yields
6044 faster assembler code. This is what we use for the small common
6045 section. This approach is copied from ecoff.c. */
6046 static asection mips_elf_scom_section;
6047 static asymbol mips_elf_scom_symbol;
6048 static asymbol *mips_elf_scom_symbol_ptr;
6050 /* MIPS ELF also uses an acommon section, which represents an
6051 allocated common symbol which may be overridden by a
6052 definition in a shared library. */
6053 static asection mips_elf_acom_section;
6054 static asymbol mips_elf_acom_symbol;
6055 static asymbol *mips_elf_acom_symbol_ptr;
6057 /* This is used for both the 32-bit and the 64-bit ABI. */
6059 void
6060 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6062 elf_symbol_type *elfsym;
6064 /* Handle the special MIPS section numbers that a symbol may use. */
6065 elfsym = (elf_symbol_type *) asym;
6066 switch (elfsym->internal_elf_sym.st_shndx)
6068 case SHN_MIPS_ACOMMON:
6069 /* This section is used in a dynamically linked executable file.
6070 It is an allocated common section. The dynamic linker can
6071 either resolve these symbols to something in a shared
6072 library, or it can just leave them here. For our purposes,
6073 we can consider these symbols to be in a new section. */
6074 if (mips_elf_acom_section.name == NULL)
6076 /* Initialize the acommon section. */
6077 mips_elf_acom_section.name = ".acommon";
6078 mips_elf_acom_section.flags = SEC_ALLOC;
6079 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6080 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6081 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6082 mips_elf_acom_symbol.name = ".acommon";
6083 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6084 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6085 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6087 asym->section = &mips_elf_acom_section;
6088 break;
6090 case SHN_COMMON:
6091 /* Common symbols less than the GP size are automatically
6092 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6093 if (asym->value > elf_gp_size (abfd)
6094 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6095 || IRIX_COMPAT (abfd) == ict_irix6)
6096 break;
6097 /* Fall through. */
6098 case SHN_MIPS_SCOMMON:
6099 if (mips_elf_scom_section.name == NULL)
6101 /* Initialize the small common section. */
6102 mips_elf_scom_section.name = ".scommon";
6103 mips_elf_scom_section.flags = SEC_IS_COMMON;
6104 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6105 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6106 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6107 mips_elf_scom_symbol.name = ".scommon";
6108 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6109 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6110 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6112 asym->section = &mips_elf_scom_section;
6113 asym->value = elfsym->internal_elf_sym.st_size;
6114 break;
6116 case SHN_MIPS_SUNDEFINED:
6117 asym->section = bfd_und_section_ptr;
6118 break;
6120 case SHN_MIPS_TEXT:
6122 asection *section = bfd_get_section_by_name (abfd, ".text");
6124 BFD_ASSERT (SGI_COMPAT (abfd));
6125 if (section != NULL)
6127 asym->section = section;
6128 /* MIPS_TEXT is a bit special, the address is not an offset
6129 to the base of the .text section. So substract the section
6130 base address to make it an offset. */
6131 asym->value -= section->vma;
6134 break;
6136 case SHN_MIPS_DATA:
6138 asection *section = bfd_get_section_by_name (abfd, ".data");
6140 BFD_ASSERT (SGI_COMPAT (abfd));
6141 if (section != NULL)
6143 asym->section = section;
6144 /* MIPS_DATA is a bit special, the address is not an offset
6145 to the base of the .data section. So substract the section
6146 base address to make it an offset. */
6147 asym->value -= section->vma;
6150 break;
6153 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6154 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6155 && (asym->value & 1) != 0)
6157 asym->value--;
6158 elfsym->internal_elf_sym.st_other
6159 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6163 /* Implement elf_backend_eh_frame_address_size. This differs from
6164 the default in the way it handles EABI64.
6166 EABI64 was originally specified as an LP64 ABI, and that is what
6167 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6168 historically accepted the combination of -mabi=eabi and -mlong32,
6169 and this ILP32 variation has become semi-official over time.
6170 Both forms use elf32 and have pointer-sized FDE addresses.
6172 If an EABI object was generated by GCC 4.0 or above, it will have
6173 an empty .gcc_compiled_longXX section, where XX is the size of longs
6174 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6175 have no special marking to distinguish them from LP64 objects.
6177 We don't want users of the official LP64 ABI to be punished for the
6178 existence of the ILP32 variant, but at the same time, we don't want
6179 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6180 We therefore take the following approach:
6182 - If ABFD contains a .gcc_compiled_longXX section, use it to
6183 determine the pointer size.
6185 - Otherwise check the type of the first relocation. Assume that
6186 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6188 - Otherwise punt.
6190 The second check is enough to detect LP64 objects generated by pre-4.0
6191 compilers because, in the kind of output generated by those compilers,
6192 the first relocation will be associated with either a CIE personality
6193 routine or an FDE start address. Furthermore, the compilers never
6194 used a special (non-pointer) encoding for this ABI.
6196 Checking the relocation type should also be safe because there is no
6197 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6198 did so. */
6200 unsigned int
6201 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6203 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6204 return 8;
6205 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6207 bfd_boolean long32_p, long64_p;
6209 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6210 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6211 if (long32_p && long64_p)
6212 return 0;
6213 if (long32_p)
6214 return 4;
6215 if (long64_p)
6216 return 8;
6218 if (sec->reloc_count > 0
6219 && elf_section_data (sec)->relocs != NULL
6220 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6221 == R_MIPS_64))
6222 return 8;
6224 return 0;
6226 return 4;
6229 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6230 relocations against two unnamed section symbols to resolve to the
6231 same address. For example, if we have code like:
6233 lw $4,%got_disp(.data)($gp)
6234 lw $25,%got_disp(.text)($gp)
6235 jalr $25
6237 then the linker will resolve both relocations to .data and the program
6238 will jump there rather than to .text.
6240 We can work around this problem by giving names to local section symbols.
6241 This is also what the MIPSpro tools do. */
6243 bfd_boolean
6244 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6246 return SGI_COMPAT (abfd);
6249 /* Work over a section just before writing it out. This routine is
6250 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6251 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6252 a better way. */
6254 bfd_boolean
6255 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6257 if (hdr->sh_type == SHT_MIPS_REGINFO
6258 && hdr->sh_size > 0)
6260 bfd_byte buf[4];
6262 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6263 BFD_ASSERT (hdr->contents == NULL);
6265 if (bfd_seek (abfd,
6266 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6267 SEEK_SET) != 0)
6268 return FALSE;
6269 H_PUT_32 (abfd, elf_gp (abfd), buf);
6270 if (bfd_bwrite (buf, 4, abfd) != 4)
6271 return FALSE;
6274 if (hdr->sh_type == SHT_MIPS_OPTIONS
6275 && hdr->bfd_section != NULL
6276 && mips_elf_section_data (hdr->bfd_section) != NULL
6277 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6279 bfd_byte *contents, *l, *lend;
6281 /* We stored the section contents in the tdata field in the
6282 set_section_contents routine. We save the section contents
6283 so that we don't have to read them again.
6284 At this point we know that elf_gp is set, so we can look
6285 through the section contents to see if there is an
6286 ODK_REGINFO structure. */
6288 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6289 l = contents;
6290 lend = contents + hdr->sh_size;
6291 while (l + sizeof (Elf_External_Options) <= lend)
6293 Elf_Internal_Options intopt;
6295 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6296 &intopt);
6297 if (intopt.size < sizeof (Elf_External_Options))
6299 (*_bfd_error_handler)
6300 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6301 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6302 break;
6304 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6306 bfd_byte buf[8];
6308 if (bfd_seek (abfd,
6309 (hdr->sh_offset
6310 + (l - contents)
6311 + sizeof (Elf_External_Options)
6312 + (sizeof (Elf64_External_RegInfo) - 8)),
6313 SEEK_SET) != 0)
6314 return FALSE;
6315 H_PUT_64 (abfd, elf_gp (abfd), buf);
6316 if (bfd_bwrite (buf, 8, abfd) != 8)
6317 return FALSE;
6319 else if (intopt.kind == ODK_REGINFO)
6321 bfd_byte buf[4];
6323 if (bfd_seek (abfd,
6324 (hdr->sh_offset
6325 + (l - contents)
6326 + sizeof (Elf_External_Options)
6327 + (sizeof (Elf32_External_RegInfo) - 4)),
6328 SEEK_SET) != 0)
6329 return FALSE;
6330 H_PUT_32 (abfd, elf_gp (abfd), buf);
6331 if (bfd_bwrite (buf, 4, abfd) != 4)
6332 return FALSE;
6334 l += intopt.size;
6338 if (hdr->bfd_section != NULL)
6340 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6342 /* .sbss is not handled specially here because the GNU/Linux
6343 prelinker can convert .sbss from NOBITS to PROGBITS and
6344 changing it back to NOBITS breaks the binary. The entry in
6345 _bfd_mips_elf_special_sections will ensure the correct flags
6346 are set on .sbss if BFD creates it without reading it from an
6347 input file, and without special handling here the flags set
6348 on it in an input file will be followed. */
6349 if (strcmp (name, ".sdata") == 0
6350 || strcmp (name, ".lit8") == 0
6351 || strcmp (name, ".lit4") == 0)
6353 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6354 hdr->sh_type = SHT_PROGBITS;
6356 else if (strcmp (name, ".srdata") == 0)
6358 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6359 hdr->sh_type = SHT_PROGBITS;
6361 else if (strcmp (name, ".compact_rel") == 0)
6363 hdr->sh_flags = 0;
6364 hdr->sh_type = SHT_PROGBITS;
6366 else if (strcmp (name, ".rtproc") == 0)
6368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6370 unsigned int adjust;
6372 adjust = hdr->sh_size % hdr->sh_addralign;
6373 if (adjust != 0)
6374 hdr->sh_size += hdr->sh_addralign - adjust;
6379 return TRUE;
6382 /* Handle a MIPS specific section when reading an object file. This
6383 is called when elfcode.h finds a section with an unknown type.
6384 This routine supports both the 32-bit and 64-bit ELF ABI.
6386 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6387 how to. */
6389 bfd_boolean
6390 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6391 Elf_Internal_Shdr *hdr,
6392 const char *name,
6393 int shindex)
6395 flagword flags = 0;
6397 /* There ought to be a place to keep ELF backend specific flags, but
6398 at the moment there isn't one. We just keep track of the
6399 sections by their name, instead. Fortunately, the ABI gives
6400 suggested names for all the MIPS specific sections, so we will
6401 probably get away with this. */
6402 switch (hdr->sh_type)
6404 case SHT_MIPS_LIBLIST:
6405 if (strcmp (name, ".liblist") != 0)
6406 return FALSE;
6407 break;
6408 case SHT_MIPS_MSYM:
6409 if (strcmp (name, ".msym") != 0)
6410 return FALSE;
6411 break;
6412 case SHT_MIPS_CONFLICT:
6413 if (strcmp (name, ".conflict") != 0)
6414 return FALSE;
6415 break;
6416 case SHT_MIPS_GPTAB:
6417 if (! CONST_STRNEQ (name, ".gptab."))
6418 return FALSE;
6419 break;
6420 case SHT_MIPS_UCODE:
6421 if (strcmp (name, ".ucode") != 0)
6422 return FALSE;
6423 break;
6424 case SHT_MIPS_DEBUG:
6425 if (strcmp (name, ".mdebug") != 0)
6426 return FALSE;
6427 flags = SEC_DEBUGGING;
6428 break;
6429 case SHT_MIPS_REGINFO:
6430 if (strcmp (name, ".reginfo") != 0
6431 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6432 return FALSE;
6433 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6434 break;
6435 case SHT_MIPS_IFACE:
6436 if (strcmp (name, ".MIPS.interfaces") != 0)
6437 return FALSE;
6438 break;
6439 case SHT_MIPS_CONTENT:
6440 if (! CONST_STRNEQ (name, ".MIPS.content"))
6441 return FALSE;
6442 break;
6443 case SHT_MIPS_OPTIONS:
6444 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6445 return FALSE;
6446 break;
6447 case SHT_MIPS_DWARF:
6448 if (! CONST_STRNEQ (name, ".debug_")
6449 && ! CONST_STRNEQ (name, ".zdebug_"))
6450 return FALSE;
6451 break;
6452 case SHT_MIPS_SYMBOL_LIB:
6453 if (strcmp (name, ".MIPS.symlib") != 0)
6454 return FALSE;
6455 break;
6456 case SHT_MIPS_EVENTS:
6457 if (! CONST_STRNEQ (name, ".MIPS.events")
6458 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6459 return FALSE;
6460 break;
6461 default:
6462 break;
6465 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6466 return FALSE;
6468 if (flags)
6470 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6471 (bfd_get_section_flags (abfd,
6472 hdr->bfd_section)
6473 | flags)))
6474 return FALSE;
6477 /* FIXME: We should record sh_info for a .gptab section. */
6479 /* For a .reginfo section, set the gp value in the tdata information
6480 from the contents of this section. We need the gp value while
6481 processing relocs, so we just get it now. The .reginfo section
6482 is not used in the 64-bit MIPS ELF ABI. */
6483 if (hdr->sh_type == SHT_MIPS_REGINFO)
6485 Elf32_External_RegInfo ext;
6486 Elf32_RegInfo s;
6488 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6489 &ext, 0, sizeof ext))
6490 return FALSE;
6491 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6492 elf_gp (abfd) = s.ri_gp_value;
6495 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6496 set the gp value based on what we find. We may see both
6497 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6498 they should agree. */
6499 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6501 bfd_byte *contents, *l, *lend;
6503 contents = bfd_malloc (hdr->sh_size);
6504 if (contents == NULL)
6505 return FALSE;
6506 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6507 0, hdr->sh_size))
6509 free (contents);
6510 return FALSE;
6512 l = contents;
6513 lend = contents + hdr->sh_size;
6514 while (l + sizeof (Elf_External_Options) <= lend)
6516 Elf_Internal_Options intopt;
6518 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6519 &intopt);
6520 if (intopt.size < sizeof (Elf_External_Options))
6522 (*_bfd_error_handler)
6523 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6524 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6525 break;
6527 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6529 Elf64_Internal_RegInfo intreg;
6531 bfd_mips_elf64_swap_reginfo_in
6532 (abfd,
6533 ((Elf64_External_RegInfo *)
6534 (l + sizeof (Elf_External_Options))),
6535 &intreg);
6536 elf_gp (abfd) = intreg.ri_gp_value;
6538 else if (intopt.kind == ODK_REGINFO)
6540 Elf32_RegInfo intreg;
6542 bfd_mips_elf32_swap_reginfo_in
6543 (abfd,
6544 ((Elf32_External_RegInfo *)
6545 (l + sizeof (Elf_External_Options))),
6546 &intreg);
6547 elf_gp (abfd) = intreg.ri_gp_value;
6549 l += intopt.size;
6551 free (contents);
6554 return TRUE;
6557 /* Set the correct type for a MIPS ELF section. We do this by the
6558 section name, which is a hack, but ought to work. This routine is
6559 used by both the 32-bit and the 64-bit ABI. */
6561 bfd_boolean
6562 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6564 const char *name = bfd_get_section_name (abfd, sec);
6566 if (strcmp (name, ".liblist") == 0)
6568 hdr->sh_type = SHT_MIPS_LIBLIST;
6569 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6570 /* The sh_link field is set in final_write_processing. */
6572 else if (strcmp (name, ".conflict") == 0)
6573 hdr->sh_type = SHT_MIPS_CONFLICT;
6574 else if (CONST_STRNEQ (name, ".gptab."))
6576 hdr->sh_type = SHT_MIPS_GPTAB;
6577 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6578 /* The sh_info field is set in final_write_processing. */
6580 else if (strcmp (name, ".ucode") == 0)
6581 hdr->sh_type = SHT_MIPS_UCODE;
6582 else if (strcmp (name, ".mdebug") == 0)
6584 hdr->sh_type = SHT_MIPS_DEBUG;
6585 /* In a shared object on IRIX 5.3, the .mdebug section has an
6586 entsize of 0. FIXME: Does this matter? */
6587 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6588 hdr->sh_entsize = 0;
6589 else
6590 hdr->sh_entsize = 1;
6592 else if (strcmp (name, ".reginfo") == 0)
6594 hdr->sh_type = SHT_MIPS_REGINFO;
6595 /* In a shared object on IRIX 5.3, the .reginfo section has an
6596 entsize of 0x18. FIXME: Does this matter? */
6597 if (SGI_COMPAT (abfd))
6599 if ((abfd->flags & DYNAMIC) != 0)
6600 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6601 else
6602 hdr->sh_entsize = 1;
6604 else
6605 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6607 else if (SGI_COMPAT (abfd)
6608 && (strcmp (name, ".hash") == 0
6609 || strcmp (name, ".dynamic") == 0
6610 || strcmp (name, ".dynstr") == 0))
6612 if (SGI_COMPAT (abfd))
6613 hdr->sh_entsize = 0;
6614 #if 0
6615 /* This isn't how the IRIX6 linker behaves. */
6616 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6617 #endif
6619 else if (strcmp (name, ".got") == 0
6620 || strcmp (name, ".srdata") == 0
6621 || strcmp (name, ".sdata") == 0
6622 || strcmp (name, ".sbss") == 0
6623 || strcmp (name, ".lit4") == 0
6624 || strcmp (name, ".lit8") == 0)
6625 hdr->sh_flags |= SHF_MIPS_GPREL;
6626 else if (strcmp (name, ".MIPS.interfaces") == 0)
6628 hdr->sh_type = SHT_MIPS_IFACE;
6629 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6631 else if (CONST_STRNEQ (name, ".MIPS.content"))
6633 hdr->sh_type = SHT_MIPS_CONTENT;
6634 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6635 /* The sh_info field is set in final_write_processing. */
6637 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6639 hdr->sh_type = SHT_MIPS_OPTIONS;
6640 hdr->sh_entsize = 1;
6641 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6643 else if (CONST_STRNEQ (name, ".debug_")
6644 || CONST_STRNEQ (name, ".zdebug_"))
6646 hdr->sh_type = SHT_MIPS_DWARF;
6648 /* Irix facilities such as libexc expect a single .debug_frame
6649 per executable, the system ones have NOSTRIP set and the linker
6650 doesn't merge sections with different flags so ... */
6651 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6654 else if (strcmp (name, ".MIPS.symlib") == 0)
6656 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6657 /* The sh_link and sh_info fields are set in
6658 final_write_processing. */
6660 else if (CONST_STRNEQ (name, ".MIPS.events")
6661 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6663 hdr->sh_type = SHT_MIPS_EVENTS;
6664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6665 /* The sh_link field is set in final_write_processing. */
6667 else if (strcmp (name, ".msym") == 0)
6669 hdr->sh_type = SHT_MIPS_MSYM;
6670 hdr->sh_flags |= SHF_ALLOC;
6671 hdr->sh_entsize = 8;
6674 /* The generic elf_fake_sections will set up REL_HDR using the default
6675 kind of relocations. We used to set up a second header for the
6676 non-default kind of relocations here, but only NewABI would use
6677 these, and the IRIX ld doesn't like resulting empty RELA sections.
6678 Thus we create those header only on demand now. */
6680 return TRUE;
6683 /* Given a BFD section, try to locate the corresponding ELF section
6684 index. This is used by both the 32-bit and the 64-bit ABI.
6685 Actually, it's not clear to me that the 64-bit ABI supports these,
6686 but for non-PIC objects we will certainly want support for at least
6687 the .scommon section. */
6689 bfd_boolean
6690 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6691 asection *sec, int *retval)
6693 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6695 *retval = SHN_MIPS_SCOMMON;
6696 return TRUE;
6698 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6700 *retval = SHN_MIPS_ACOMMON;
6701 return TRUE;
6703 return FALSE;
6706 /* Hook called by the linker routine which adds symbols from an object
6707 file. We must handle the special MIPS section numbers here. */
6709 bfd_boolean
6710 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6711 Elf_Internal_Sym *sym, const char **namep,
6712 flagword *flagsp ATTRIBUTE_UNUSED,
6713 asection **secp, bfd_vma *valp)
6715 if (SGI_COMPAT (abfd)
6716 && (abfd->flags & DYNAMIC) != 0
6717 && strcmp (*namep, "_rld_new_interface") == 0)
6719 /* Skip IRIX5 rld entry name. */
6720 *namep = NULL;
6721 return TRUE;
6724 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6725 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6726 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6727 a magic symbol resolved by the linker, we ignore this bogus definition
6728 of _gp_disp. New ABI objects do not suffer from this problem so this
6729 is not done for them. */
6730 if (!NEWABI_P(abfd)
6731 && (sym->st_shndx == SHN_ABS)
6732 && (strcmp (*namep, "_gp_disp") == 0))
6734 *namep = NULL;
6735 return TRUE;
6738 switch (sym->st_shndx)
6740 case SHN_COMMON:
6741 /* Common symbols less than the GP size are automatically
6742 treated as SHN_MIPS_SCOMMON symbols. */
6743 if (sym->st_size > elf_gp_size (abfd)
6744 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6745 || IRIX_COMPAT (abfd) == ict_irix6)
6746 break;
6747 /* Fall through. */
6748 case SHN_MIPS_SCOMMON:
6749 *secp = bfd_make_section_old_way (abfd, ".scommon");
6750 (*secp)->flags |= SEC_IS_COMMON;
6751 *valp = sym->st_size;
6752 break;
6754 case SHN_MIPS_TEXT:
6755 /* This section is used in a shared object. */
6756 if (elf_tdata (abfd)->elf_text_section == NULL)
6758 asymbol *elf_text_symbol;
6759 asection *elf_text_section;
6760 bfd_size_type amt = sizeof (asection);
6762 elf_text_section = bfd_zalloc (abfd, amt);
6763 if (elf_text_section == NULL)
6764 return FALSE;
6766 amt = sizeof (asymbol);
6767 elf_text_symbol = bfd_zalloc (abfd, amt);
6768 if (elf_text_symbol == NULL)
6769 return FALSE;
6771 /* Initialize the section. */
6773 elf_tdata (abfd)->elf_text_section = elf_text_section;
6774 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6776 elf_text_section->symbol = elf_text_symbol;
6777 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6779 elf_text_section->name = ".text";
6780 elf_text_section->flags = SEC_NO_FLAGS;
6781 elf_text_section->output_section = NULL;
6782 elf_text_section->owner = abfd;
6783 elf_text_symbol->name = ".text";
6784 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6785 elf_text_symbol->section = elf_text_section;
6787 /* This code used to do *secp = bfd_und_section_ptr if
6788 info->shared. I don't know why, and that doesn't make sense,
6789 so I took it out. */
6790 *secp = elf_tdata (abfd)->elf_text_section;
6791 break;
6793 case SHN_MIPS_ACOMMON:
6794 /* Fall through. XXX Can we treat this as allocated data? */
6795 case SHN_MIPS_DATA:
6796 /* This section is used in a shared object. */
6797 if (elf_tdata (abfd)->elf_data_section == NULL)
6799 asymbol *elf_data_symbol;
6800 asection *elf_data_section;
6801 bfd_size_type amt = sizeof (asection);
6803 elf_data_section = bfd_zalloc (abfd, amt);
6804 if (elf_data_section == NULL)
6805 return FALSE;
6807 amt = sizeof (asymbol);
6808 elf_data_symbol = bfd_zalloc (abfd, amt);
6809 if (elf_data_symbol == NULL)
6810 return FALSE;
6812 /* Initialize the section. */
6814 elf_tdata (abfd)->elf_data_section = elf_data_section;
6815 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6817 elf_data_section->symbol = elf_data_symbol;
6818 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6820 elf_data_section->name = ".data";
6821 elf_data_section->flags = SEC_NO_FLAGS;
6822 elf_data_section->output_section = NULL;
6823 elf_data_section->owner = abfd;
6824 elf_data_symbol->name = ".data";
6825 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6826 elf_data_symbol->section = elf_data_section;
6828 /* This code used to do *secp = bfd_und_section_ptr if
6829 info->shared. I don't know why, and that doesn't make sense,
6830 so I took it out. */
6831 *secp = elf_tdata (abfd)->elf_data_section;
6832 break;
6834 case SHN_MIPS_SUNDEFINED:
6835 *secp = bfd_und_section_ptr;
6836 break;
6839 if (SGI_COMPAT (abfd)
6840 && ! info->shared
6841 && info->output_bfd->xvec == abfd->xvec
6842 && strcmp (*namep, "__rld_obj_head") == 0)
6844 struct elf_link_hash_entry *h;
6845 struct bfd_link_hash_entry *bh;
6847 /* Mark __rld_obj_head as dynamic. */
6848 bh = NULL;
6849 if (! (_bfd_generic_link_add_one_symbol
6850 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6851 get_elf_backend_data (abfd)->collect, &bh)))
6852 return FALSE;
6854 h = (struct elf_link_hash_entry *) bh;
6855 h->non_elf = 0;
6856 h->def_regular = 1;
6857 h->type = STT_OBJECT;
6859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6860 return FALSE;
6862 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6865 /* If this is a mips16 text symbol, add 1 to the value to make it
6866 odd. This will cause something like .word SYM to come up with
6867 the right value when it is loaded into the PC. */
6868 if (ELF_ST_IS_MIPS16 (sym->st_other))
6869 ++*valp;
6871 return TRUE;
6874 /* This hook function is called before the linker writes out a global
6875 symbol. We mark symbols as small common if appropriate. This is
6876 also where we undo the increment of the value for a mips16 symbol. */
6879 _bfd_mips_elf_link_output_symbol_hook
6880 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6881 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6882 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6884 /* If we see a common symbol, which implies a relocatable link, then
6885 if a symbol was small common in an input file, mark it as small
6886 common in the output file. */
6887 if (sym->st_shndx == SHN_COMMON
6888 && strcmp (input_sec->name, ".scommon") == 0)
6889 sym->st_shndx = SHN_MIPS_SCOMMON;
6891 if (ELF_ST_IS_MIPS16 (sym->st_other))
6892 sym->st_value &= ~1;
6894 return 1;
6897 /* Functions for the dynamic linker. */
6899 /* Create dynamic sections when linking against a dynamic object. */
6901 bfd_boolean
6902 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6904 struct elf_link_hash_entry *h;
6905 struct bfd_link_hash_entry *bh;
6906 flagword flags;
6907 register asection *s;
6908 const char * const *namep;
6909 struct mips_elf_link_hash_table *htab;
6911 htab = mips_elf_hash_table (info);
6912 BFD_ASSERT (htab != NULL);
6914 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6915 | SEC_LINKER_CREATED | SEC_READONLY);
6917 /* The psABI requires a read-only .dynamic section, but the VxWorks
6918 EABI doesn't. */
6919 if (!htab->is_vxworks)
6921 s = bfd_get_section_by_name (abfd, ".dynamic");
6922 if (s != NULL)
6924 if (! bfd_set_section_flags (abfd, s, flags))
6925 return FALSE;
6929 /* We need to create .got section. */
6930 if (!mips_elf_create_got_section (abfd, info))
6931 return FALSE;
6933 if (! mips_elf_rel_dyn_section (info, TRUE))
6934 return FALSE;
6936 /* Create .stub section. */
6937 s = bfd_make_section_with_flags (abfd,
6938 MIPS_ELF_STUB_SECTION_NAME (abfd),
6939 flags | SEC_CODE);
6940 if (s == NULL
6941 || ! bfd_set_section_alignment (abfd, s,
6942 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6943 return FALSE;
6944 htab->sstubs = s;
6946 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6947 && !info->shared
6948 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6950 s = bfd_make_section_with_flags (abfd, ".rld_map",
6951 flags &~ (flagword) SEC_READONLY);
6952 if (s == NULL
6953 || ! bfd_set_section_alignment (abfd, s,
6954 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6955 return FALSE;
6958 /* On IRIX5, we adjust add some additional symbols and change the
6959 alignments of several sections. There is no ABI documentation
6960 indicating that this is necessary on IRIX6, nor any evidence that
6961 the linker takes such action. */
6962 if (IRIX_COMPAT (abfd) == ict_irix5)
6964 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6966 bh = NULL;
6967 if (! (_bfd_generic_link_add_one_symbol
6968 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6969 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6970 return FALSE;
6972 h = (struct elf_link_hash_entry *) bh;
6973 h->non_elf = 0;
6974 h->def_regular = 1;
6975 h->type = STT_SECTION;
6977 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6978 return FALSE;
6981 /* We need to create a .compact_rel section. */
6982 if (SGI_COMPAT (abfd))
6984 if (!mips_elf_create_compact_rel_section (abfd, info))
6985 return FALSE;
6988 /* Change alignments of some sections. */
6989 s = bfd_get_section_by_name (abfd, ".hash");
6990 if (s != NULL)
6991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6992 s = bfd_get_section_by_name (abfd, ".dynsym");
6993 if (s != NULL)
6994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6995 s = bfd_get_section_by_name (abfd, ".dynstr");
6996 if (s != NULL)
6997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6998 s = bfd_get_section_by_name (abfd, ".reginfo");
6999 if (s != NULL)
7000 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7001 s = bfd_get_section_by_name (abfd, ".dynamic");
7002 if (s != NULL)
7003 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7006 if (!info->shared)
7008 const char *name;
7010 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7011 bh = NULL;
7012 if (!(_bfd_generic_link_add_one_symbol
7013 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7014 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7015 return FALSE;
7017 h = (struct elf_link_hash_entry *) bh;
7018 h->non_elf = 0;
7019 h->def_regular = 1;
7020 h->type = STT_SECTION;
7022 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7023 return FALSE;
7025 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7027 /* __rld_map is a four byte word located in the .data section
7028 and is filled in by the rtld to contain a pointer to
7029 the _r_debug structure. Its symbol value will be set in
7030 _bfd_mips_elf_finish_dynamic_symbol. */
7031 s = bfd_get_section_by_name (abfd, ".rld_map");
7032 BFD_ASSERT (s != NULL);
7034 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7035 bh = NULL;
7036 if (!(_bfd_generic_link_add_one_symbol
7037 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7038 get_elf_backend_data (abfd)->collect, &bh)))
7039 return FALSE;
7041 h = (struct elf_link_hash_entry *) bh;
7042 h->non_elf = 0;
7043 h->def_regular = 1;
7044 h->type = STT_OBJECT;
7046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7047 return FALSE;
7051 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7052 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7053 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7054 return FALSE;
7056 /* Cache the sections created above. */
7057 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7058 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7059 if (htab->is_vxworks)
7061 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7062 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7064 else
7065 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7066 if (!htab->sdynbss
7067 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7068 || !htab->srelplt
7069 || !htab->splt)
7070 abort ();
7072 if (htab->is_vxworks)
7074 /* Do the usual VxWorks handling. */
7075 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7076 return FALSE;
7078 /* Work out the PLT sizes. */
7079 if (info->shared)
7081 htab->plt_header_size
7082 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7083 htab->plt_entry_size
7084 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7086 else
7088 htab->plt_header_size
7089 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7090 htab->plt_entry_size
7091 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7094 else if (!info->shared)
7096 /* All variants of the plt0 entry are the same size. */
7097 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7098 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7101 return TRUE;
7104 /* Return true if relocation REL against section SEC is a REL rather than
7105 RELA relocation. RELOCS is the first relocation in the section and
7106 ABFD is the bfd that contains SEC. */
7108 static bfd_boolean
7109 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7110 const Elf_Internal_Rela *relocs,
7111 const Elf_Internal_Rela *rel)
7113 Elf_Internal_Shdr *rel_hdr;
7114 const struct elf_backend_data *bed;
7116 /* To determine which flavor or relocation this is, we depend on the
7117 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7118 rel_hdr = &elf_section_data (sec)->rel_hdr;
7119 bed = get_elf_backend_data (abfd);
7120 if ((size_t) (rel - relocs)
7121 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7122 rel_hdr = elf_section_data (sec)->rel_hdr2;
7123 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7126 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7127 HOWTO is the relocation's howto and CONTENTS points to the contents
7128 of the section that REL is against. */
7130 static bfd_vma
7131 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7132 reloc_howto_type *howto, bfd_byte *contents)
7134 bfd_byte *location;
7135 unsigned int r_type;
7136 bfd_vma addend;
7138 r_type = ELF_R_TYPE (abfd, rel->r_info);
7139 location = contents + rel->r_offset;
7141 /* Get the addend, which is stored in the input file. */
7142 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7143 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7144 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7146 return addend & howto->src_mask;
7149 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7150 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7151 and update *ADDEND with the final addend. Return true on success
7152 or false if the LO16 could not be found. RELEND is the exclusive
7153 upper bound on the relocations for REL's section. */
7155 static bfd_boolean
7156 mips_elf_add_lo16_rel_addend (bfd *abfd,
7157 const Elf_Internal_Rela *rel,
7158 const Elf_Internal_Rela *relend,
7159 bfd_byte *contents, bfd_vma *addend)
7161 unsigned int r_type, lo16_type;
7162 const Elf_Internal_Rela *lo16_relocation;
7163 reloc_howto_type *lo16_howto;
7164 bfd_vma l;
7166 r_type = ELF_R_TYPE (abfd, rel->r_info);
7167 if (mips16_reloc_p (r_type))
7168 lo16_type = R_MIPS16_LO16;
7169 else
7170 lo16_type = R_MIPS_LO16;
7172 /* The combined value is the sum of the HI16 addend, left-shifted by
7173 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7174 code does a `lui' of the HI16 value, and then an `addiu' of the
7175 LO16 value.)
7177 Scan ahead to find a matching LO16 relocation.
7179 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7180 be immediately following. However, for the IRIX6 ABI, the next
7181 relocation may be a composed relocation consisting of several
7182 relocations for the same address. In that case, the R_MIPS_LO16
7183 relocation may occur as one of these. We permit a similar
7184 extension in general, as that is useful for GCC.
7186 In some cases GCC dead code elimination removes the LO16 but keeps
7187 the corresponding HI16. This is strictly speaking a violation of
7188 the ABI but not immediately harmful. */
7189 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7190 if (lo16_relocation == NULL)
7191 return FALSE;
7193 /* Obtain the addend kept there. */
7194 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7195 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7197 l <<= lo16_howto->rightshift;
7198 l = _bfd_mips_elf_sign_extend (l, 16);
7200 *addend <<= 16;
7201 *addend += l;
7202 return TRUE;
7205 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7206 store the contents in *CONTENTS on success. Assume that *CONTENTS
7207 already holds the contents if it is nonull on entry. */
7209 static bfd_boolean
7210 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7212 if (*contents)
7213 return TRUE;
7215 /* Get cached copy if it exists. */
7216 if (elf_section_data (sec)->this_hdr.contents != NULL)
7218 *contents = elf_section_data (sec)->this_hdr.contents;
7219 return TRUE;
7222 return bfd_malloc_and_get_section (abfd, sec, contents);
7225 /* Look through the relocs for a section during the first phase, and
7226 allocate space in the global offset table. */
7228 bfd_boolean
7229 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7230 asection *sec, const Elf_Internal_Rela *relocs)
7232 const char *name;
7233 bfd *dynobj;
7234 Elf_Internal_Shdr *symtab_hdr;
7235 struct elf_link_hash_entry **sym_hashes;
7236 size_t extsymoff;
7237 const Elf_Internal_Rela *rel;
7238 const Elf_Internal_Rela *rel_end;
7239 asection *sreloc;
7240 const struct elf_backend_data *bed;
7241 struct mips_elf_link_hash_table *htab;
7242 bfd_byte *contents;
7243 bfd_vma addend;
7244 reloc_howto_type *howto;
7246 if (info->relocatable)
7247 return TRUE;
7249 htab = mips_elf_hash_table (info);
7250 BFD_ASSERT (htab != NULL);
7252 dynobj = elf_hash_table (info)->dynobj;
7253 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7254 sym_hashes = elf_sym_hashes (abfd);
7255 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7257 bed = get_elf_backend_data (abfd);
7258 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7260 /* Check for the mips16 stub sections. */
7262 name = bfd_get_section_name (abfd, sec);
7263 if (FN_STUB_P (name))
7265 unsigned long r_symndx;
7267 /* Look at the relocation information to figure out which symbol
7268 this is for. */
7270 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7271 if (r_symndx == 0)
7273 (*_bfd_error_handler)
7274 (_("%B: Warning: cannot determine the target function for"
7275 " stub section `%s'"),
7276 abfd, name);
7277 bfd_set_error (bfd_error_bad_value);
7278 return FALSE;
7281 if (r_symndx < extsymoff
7282 || sym_hashes[r_symndx - extsymoff] == NULL)
7284 asection *o;
7286 /* This stub is for a local symbol. This stub will only be
7287 needed if there is some relocation in this BFD, other
7288 than a 16 bit function call, which refers to this symbol. */
7289 for (o = abfd->sections; o != NULL; o = o->next)
7291 Elf_Internal_Rela *sec_relocs;
7292 const Elf_Internal_Rela *r, *rend;
7294 /* We can ignore stub sections when looking for relocs. */
7295 if ((o->flags & SEC_RELOC) == 0
7296 || o->reloc_count == 0
7297 || section_allows_mips16_refs_p (o))
7298 continue;
7300 sec_relocs
7301 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7302 info->keep_memory);
7303 if (sec_relocs == NULL)
7304 return FALSE;
7306 rend = sec_relocs + o->reloc_count;
7307 for (r = sec_relocs; r < rend; r++)
7308 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7309 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7310 break;
7312 if (elf_section_data (o)->relocs != sec_relocs)
7313 free (sec_relocs);
7315 if (r < rend)
7316 break;
7319 if (o == NULL)
7321 /* There is no non-call reloc for this stub, so we do
7322 not need it. Since this function is called before
7323 the linker maps input sections to output sections, we
7324 can easily discard it by setting the SEC_EXCLUDE
7325 flag. */
7326 sec->flags |= SEC_EXCLUDE;
7327 return TRUE;
7330 /* Record this stub in an array of local symbol stubs for
7331 this BFD. */
7332 if (elf_tdata (abfd)->local_stubs == NULL)
7334 unsigned long symcount;
7335 asection **n;
7336 bfd_size_type amt;
7338 if (elf_bad_symtab (abfd))
7339 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7340 else
7341 symcount = symtab_hdr->sh_info;
7342 amt = symcount * sizeof (asection *);
7343 n = bfd_zalloc (abfd, amt);
7344 if (n == NULL)
7345 return FALSE;
7346 elf_tdata (abfd)->local_stubs = n;
7349 sec->flags |= SEC_KEEP;
7350 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7352 /* We don't need to set mips16_stubs_seen in this case.
7353 That flag is used to see whether we need to look through
7354 the global symbol table for stubs. We don't need to set
7355 it here, because we just have a local stub. */
7357 else
7359 struct mips_elf_link_hash_entry *h;
7361 h = ((struct mips_elf_link_hash_entry *)
7362 sym_hashes[r_symndx - extsymoff]);
7364 while (h->root.root.type == bfd_link_hash_indirect
7365 || h->root.root.type == bfd_link_hash_warning)
7366 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7368 /* H is the symbol this stub is for. */
7370 /* If we already have an appropriate stub for this function, we
7371 don't need another one, so we can discard this one. Since
7372 this function is called before the linker maps input sections
7373 to output sections, we can easily discard it by setting the
7374 SEC_EXCLUDE flag. */
7375 if (h->fn_stub != NULL)
7377 sec->flags |= SEC_EXCLUDE;
7378 return TRUE;
7381 sec->flags |= SEC_KEEP;
7382 h->fn_stub = sec;
7383 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7386 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7388 unsigned long r_symndx;
7389 struct mips_elf_link_hash_entry *h;
7390 asection **loc;
7392 /* Look at the relocation information to figure out which symbol
7393 this is for. */
7395 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7396 if (r_symndx == 0)
7398 (*_bfd_error_handler)
7399 (_("%B: Warning: cannot determine the target function for"
7400 " stub section `%s'"),
7401 abfd, name);
7402 bfd_set_error (bfd_error_bad_value);
7403 return FALSE;
7406 if (r_symndx < extsymoff
7407 || sym_hashes[r_symndx - extsymoff] == NULL)
7409 asection *o;
7411 /* This stub is for a local symbol. This stub will only be
7412 needed if there is some relocation (R_MIPS16_26) in this BFD
7413 that refers to this symbol. */
7414 for (o = abfd->sections; o != NULL; o = o->next)
7416 Elf_Internal_Rela *sec_relocs;
7417 const Elf_Internal_Rela *r, *rend;
7419 /* We can ignore stub sections when looking for relocs. */
7420 if ((o->flags & SEC_RELOC) == 0
7421 || o->reloc_count == 0
7422 || section_allows_mips16_refs_p (o))
7423 continue;
7425 sec_relocs
7426 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7427 info->keep_memory);
7428 if (sec_relocs == NULL)
7429 return FALSE;
7431 rend = sec_relocs + o->reloc_count;
7432 for (r = sec_relocs; r < rend; r++)
7433 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7434 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7435 break;
7437 if (elf_section_data (o)->relocs != sec_relocs)
7438 free (sec_relocs);
7440 if (r < rend)
7441 break;
7444 if (o == NULL)
7446 /* There is no non-call reloc for this stub, so we do
7447 not need it. Since this function is called before
7448 the linker maps input sections to output sections, we
7449 can easily discard it by setting the SEC_EXCLUDE
7450 flag. */
7451 sec->flags |= SEC_EXCLUDE;
7452 return TRUE;
7455 /* Record this stub in an array of local symbol call_stubs for
7456 this BFD. */
7457 if (elf_tdata (abfd)->local_call_stubs == NULL)
7459 unsigned long symcount;
7460 asection **n;
7461 bfd_size_type amt;
7463 if (elf_bad_symtab (abfd))
7464 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7465 else
7466 symcount = symtab_hdr->sh_info;
7467 amt = symcount * sizeof (asection *);
7468 n = bfd_zalloc (abfd, amt);
7469 if (n == NULL)
7470 return FALSE;
7471 elf_tdata (abfd)->local_call_stubs = n;
7474 sec->flags |= SEC_KEEP;
7475 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7477 /* We don't need to set mips16_stubs_seen in this case.
7478 That flag is used to see whether we need to look through
7479 the global symbol table for stubs. We don't need to set
7480 it here, because we just have a local stub. */
7482 else
7484 h = ((struct mips_elf_link_hash_entry *)
7485 sym_hashes[r_symndx - extsymoff]);
7487 /* H is the symbol this stub is for. */
7489 if (CALL_FP_STUB_P (name))
7490 loc = &h->call_fp_stub;
7491 else
7492 loc = &h->call_stub;
7494 /* If we already have an appropriate stub for this function, we
7495 don't need another one, so we can discard this one. Since
7496 this function is called before the linker maps input sections
7497 to output sections, we can easily discard it by setting the
7498 SEC_EXCLUDE flag. */
7499 if (*loc != NULL)
7501 sec->flags |= SEC_EXCLUDE;
7502 return TRUE;
7505 sec->flags |= SEC_KEEP;
7506 *loc = sec;
7507 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7511 sreloc = NULL;
7512 contents = NULL;
7513 for (rel = relocs; rel < rel_end; ++rel)
7515 unsigned long r_symndx;
7516 unsigned int r_type;
7517 struct elf_link_hash_entry *h;
7518 bfd_boolean can_make_dynamic_p;
7520 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7521 r_type = ELF_R_TYPE (abfd, rel->r_info);
7523 if (r_symndx < extsymoff)
7524 h = NULL;
7525 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7527 (*_bfd_error_handler)
7528 (_("%B: Malformed reloc detected for section %s"),
7529 abfd, name);
7530 bfd_set_error (bfd_error_bad_value);
7531 return FALSE;
7533 else
7535 h = sym_hashes[r_symndx - extsymoff];
7536 while (h != NULL
7537 && (h->root.type == bfd_link_hash_indirect
7538 || h->root.type == bfd_link_hash_warning))
7539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7542 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7543 relocation into a dynamic one. */
7544 can_make_dynamic_p = FALSE;
7545 switch (r_type)
7547 case R_MIPS16_GOT16:
7548 case R_MIPS16_CALL16:
7549 case R_MIPS_GOT16:
7550 case R_MIPS_CALL16:
7551 case R_MIPS_CALL_HI16:
7552 case R_MIPS_CALL_LO16:
7553 case R_MIPS_GOT_HI16:
7554 case R_MIPS_GOT_LO16:
7555 case R_MIPS_GOT_PAGE:
7556 case R_MIPS_GOT_OFST:
7557 case R_MIPS_GOT_DISP:
7558 case R_MIPS_TLS_GOTTPREL:
7559 case R_MIPS_TLS_GD:
7560 case R_MIPS_TLS_LDM:
7561 if (dynobj == NULL)
7562 elf_hash_table (info)->dynobj = dynobj = abfd;
7563 if (!mips_elf_create_got_section (dynobj, info))
7564 return FALSE;
7565 if (htab->is_vxworks && !info->shared)
7567 (*_bfd_error_handler)
7568 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7569 abfd, (unsigned long) rel->r_offset);
7570 bfd_set_error (bfd_error_bad_value);
7571 return FALSE;
7573 break;
7575 /* This is just a hint; it can safely be ignored. Don't set
7576 has_static_relocs for the corresponding symbol. */
7577 case R_MIPS_JALR:
7578 break;
7580 case R_MIPS_32:
7581 case R_MIPS_REL32:
7582 case R_MIPS_64:
7583 /* In VxWorks executables, references to external symbols
7584 must be handled using copy relocs or PLT entries; it is not
7585 possible to convert this relocation into a dynamic one.
7587 For executables that use PLTs and copy-relocs, we have a
7588 choice between converting the relocation into a dynamic
7589 one or using copy relocations or PLT entries. It is
7590 usually better to do the former, unless the relocation is
7591 against a read-only section. */
7592 if ((info->shared
7593 || (h != NULL
7594 && !htab->is_vxworks
7595 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7596 && !(!info->nocopyreloc
7597 && !PIC_OBJECT_P (abfd)
7598 && MIPS_ELF_READONLY_SECTION (sec))))
7599 && (sec->flags & SEC_ALLOC) != 0)
7601 can_make_dynamic_p = TRUE;
7602 if (dynobj == NULL)
7603 elf_hash_table (info)->dynobj = dynobj = abfd;
7604 break;
7606 /* Fall through. */
7608 default:
7609 /* Most static relocations require pointer equality, except
7610 for branches. */
7611 if (h)
7612 h->pointer_equality_needed = TRUE;
7613 /* Fall through. */
7615 case R_MIPS_26:
7616 case R_MIPS_PC16:
7617 case R_MIPS16_26:
7618 if (h)
7619 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7620 break;
7623 if (h)
7625 /* Relocations against the special VxWorks __GOTT_BASE__ and
7626 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7627 room for them in .rela.dyn. */
7628 if (is_gott_symbol (info, h))
7630 if (sreloc == NULL)
7632 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7633 if (sreloc == NULL)
7634 return FALSE;
7636 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7637 if (MIPS_ELF_READONLY_SECTION (sec))
7638 /* We tell the dynamic linker that there are
7639 relocations against the text segment. */
7640 info->flags |= DF_TEXTREL;
7643 else if (r_type == R_MIPS_CALL_LO16
7644 || r_type == R_MIPS_GOT_LO16
7645 || r_type == R_MIPS_GOT_DISP
7646 || (got16_reloc_p (r_type) && htab->is_vxworks))
7648 /* We may need a local GOT entry for this relocation. We
7649 don't count R_MIPS_GOT_PAGE because we can estimate the
7650 maximum number of pages needed by looking at the size of
7651 the segment. Similar comments apply to R_MIPS*_GOT16 and
7652 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7653 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7654 R_MIPS_CALL_HI16 because these are always followed by an
7655 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7656 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7657 rel->r_addend, info, 0))
7658 return FALSE;
7661 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7662 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7664 switch (r_type)
7666 case R_MIPS_CALL16:
7667 case R_MIPS16_CALL16:
7668 if (h == NULL)
7670 (*_bfd_error_handler)
7671 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7672 abfd, (unsigned long) rel->r_offset);
7673 bfd_set_error (bfd_error_bad_value);
7674 return FALSE;
7676 /* Fall through. */
7678 case R_MIPS_CALL_HI16:
7679 case R_MIPS_CALL_LO16:
7680 if (h != NULL)
7682 /* VxWorks call relocations point at the function's .got.plt
7683 entry, which will be allocated by adjust_dynamic_symbol.
7684 Otherwise, this symbol requires a global GOT entry. */
7685 if ((!htab->is_vxworks || h->forced_local)
7686 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7687 return FALSE;
7689 /* We need a stub, not a plt entry for the undefined
7690 function. But we record it as if it needs plt. See
7691 _bfd_elf_adjust_dynamic_symbol. */
7692 h->needs_plt = 1;
7693 h->type = STT_FUNC;
7695 break;
7697 case R_MIPS_GOT_PAGE:
7698 /* If this is a global, overridable symbol, GOT_PAGE will
7699 decay to GOT_DISP, so we'll need a GOT entry for it. */
7700 if (h)
7702 struct mips_elf_link_hash_entry *hmips =
7703 (struct mips_elf_link_hash_entry *) h;
7705 /* This symbol is definitely not overridable. */
7706 if (hmips->root.def_regular
7707 && ! (info->shared && ! info->symbolic
7708 && ! hmips->root.forced_local))
7709 h = NULL;
7711 /* Fall through. */
7713 case R_MIPS16_GOT16:
7714 case R_MIPS_GOT16:
7715 case R_MIPS_GOT_HI16:
7716 case R_MIPS_GOT_LO16:
7717 if (!h || r_type == R_MIPS_GOT_PAGE)
7719 /* This relocation needs (or may need, if h != NULL) a
7720 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7721 know for sure until we know whether the symbol is
7722 preemptible. */
7723 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7725 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7726 return FALSE;
7727 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7728 addend = mips_elf_read_rel_addend (abfd, rel,
7729 howto, contents);
7730 if (r_type == R_MIPS_GOT16)
7731 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7732 contents, &addend);
7733 else
7734 addend <<= howto->rightshift;
7736 else
7737 addend = rel->r_addend;
7738 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7739 addend))
7740 return FALSE;
7741 break;
7743 /* Fall through. */
7745 case R_MIPS_GOT_DISP:
7746 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7747 return FALSE;
7748 break;
7750 case R_MIPS_TLS_GOTTPREL:
7751 if (info->shared)
7752 info->flags |= DF_STATIC_TLS;
7753 /* Fall through */
7755 case R_MIPS_TLS_LDM:
7756 if (r_type == R_MIPS_TLS_LDM)
7758 r_symndx = 0;
7759 h = NULL;
7761 /* Fall through */
7763 case R_MIPS_TLS_GD:
7764 /* This symbol requires a global offset table entry, or two
7765 for TLS GD relocations. */
7767 unsigned char flag = (r_type == R_MIPS_TLS_GD
7768 ? GOT_TLS_GD
7769 : r_type == R_MIPS_TLS_LDM
7770 ? GOT_TLS_LDM
7771 : GOT_TLS_IE);
7772 if (h != NULL)
7774 struct mips_elf_link_hash_entry *hmips =
7775 (struct mips_elf_link_hash_entry *) h;
7776 hmips->tls_type |= flag;
7778 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7779 info, flag))
7780 return FALSE;
7782 else
7784 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7786 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7787 rel->r_addend,
7788 info, flag))
7789 return FALSE;
7792 break;
7794 case R_MIPS_32:
7795 case R_MIPS_REL32:
7796 case R_MIPS_64:
7797 /* In VxWorks executables, references to external symbols
7798 are handled using copy relocs or PLT stubs, so there's
7799 no need to add a .rela.dyn entry for this relocation. */
7800 if (can_make_dynamic_p)
7802 if (sreloc == NULL)
7804 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7805 if (sreloc == NULL)
7806 return FALSE;
7808 if (info->shared && h == NULL)
7810 /* When creating a shared object, we must copy these
7811 reloc types into the output file as R_MIPS_REL32
7812 relocs. Make room for this reloc in .rel(a).dyn. */
7813 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7814 if (MIPS_ELF_READONLY_SECTION (sec))
7815 /* We tell the dynamic linker that there are
7816 relocations against the text segment. */
7817 info->flags |= DF_TEXTREL;
7819 else
7821 struct mips_elf_link_hash_entry *hmips;
7823 /* For a shared object, we must copy this relocation
7824 unless the symbol turns out to be undefined and
7825 weak with non-default visibility, in which case
7826 it will be left as zero.
7828 We could elide R_MIPS_REL32 for locally binding symbols
7829 in shared libraries, but do not yet do so.
7831 For an executable, we only need to copy this
7832 reloc if the symbol is defined in a dynamic
7833 object. */
7834 hmips = (struct mips_elf_link_hash_entry *) h;
7835 ++hmips->possibly_dynamic_relocs;
7836 if (MIPS_ELF_READONLY_SECTION (sec))
7837 /* We need it to tell the dynamic linker if there
7838 are relocations against the text segment. */
7839 hmips->readonly_reloc = TRUE;
7843 if (SGI_COMPAT (abfd))
7844 mips_elf_hash_table (info)->compact_rel_size +=
7845 sizeof (Elf32_External_crinfo);
7846 break;
7848 case R_MIPS_26:
7849 case R_MIPS_GPREL16:
7850 case R_MIPS_LITERAL:
7851 case R_MIPS_GPREL32:
7852 if (SGI_COMPAT (abfd))
7853 mips_elf_hash_table (info)->compact_rel_size +=
7854 sizeof (Elf32_External_crinfo);
7855 break;
7857 /* This relocation describes the C++ object vtable hierarchy.
7858 Reconstruct it for later use during GC. */
7859 case R_MIPS_GNU_VTINHERIT:
7860 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7861 return FALSE;
7862 break;
7864 /* This relocation describes which C++ vtable entries are actually
7865 used. Record for later use during GC. */
7866 case R_MIPS_GNU_VTENTRY:
7867 BFD_ASSERT (h != NULL);
7868 if (h != NULL
7869 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7870 return FALSE;
7871 break;
7873 default:
7874 break;
7877 /* We must not create a stub for a symbol that has relocations
7878 related to taking the function's address. This doesn't apply to
7879 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7880 a normal .got entry. */
7881 if (!htab->is_vxworks && h != NULL)
7882 switch (r_type)
7884 default:
7885 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7886 break;
7887 case R_MIPS16_CALL16:
7888 case R_MIPS_CALL16:
7889 case R_MIPS_CALL_HI16:
7890 case R_MIPS_CALL_LO16:
7891 case R_MIPS_JALR:
7892 break;
7895 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7896 if there is one. We only need to handle global symbols here;
7897 we decide whether to keep or delete stubs for local symbols
7898 when processing the stub's relocations. */
7899 if (h != NULL
7900 && !mips16_call_reloc_p (r_type)
7901 && !section_allows_mips16_refs_p (sec))
7903 struct mips_elf_link_hash_entry *mh;
7905 mh = (struct mips_elf_link_hash_entry *) h;
7906 mh->need_fn_stub = TRUE;
7909 /* Refuse some position-dependent relocations when creating a
7910 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7911 not PIC, but we can create dynamic relocations and the result
7912 will be fine. Also do not refuse R_MIPS_LO16, which can be
7913 combined with R_MIPS_GOT16. */
7914 if (info->shared)
7916 switch (r_type)
7918 case R_MIPS16_HI16:
7919 case R_MIPS_HI16:
7920 case R_MIPS_HIGHER:
7921 case R_MIPS_HIGHEST:
7922 /* Don't refuse a high part relocation if it's against
7923 no symbol (e.g. part of a compound relocation). */
7924 if (r_symndx == 0)
7925 break;
7927 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7928 and has a special meaning. */
7929 if (!NEWABI_P (abfd) && h != NULL
7930 && strcmp (h->root.root.string, "_gp_disp") == 0)
7931 break;
7933 /* FALLTHROUGH */
7935 case R_MIPS16_26:
7936 case R_MIPS_26:
7937 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7938 (*_bfd_error_handler)
7939 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7940 abfd, howto->name,
7941 (h) ? h->root.root.string : "a local symbol");
7942 bfd_set_error (bfd_error_bad_value);
7943 return FALSE;
7944 default:
7945 break;
7950 return TRUE;
7953 bfd_boolean
7954 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7955 struct bfd_link_info *link_info,
7956 bfd_boolean *again)
7958 Elf_Internal_Rela *internal_relocs;
7959 Elf_Internal_Rela *irel, *irelend;
7960 Elf_Internal_Shdr *symtab_hdr;
7961 bfd_byte *contents = NULL;
7962 size_t extsymoff;
7963 bfd_boolean changed_contents = FALSE;
7964 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7965 Elf_Internal_Sym *isymbuf = NULL;
7967 /* We are not currently changing any sizes, so only one pass. */
7968 *again = FALSE;
7970 if (link_info->relocatable)
7971 return TRUE;
7973 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7974 link_info->keep_memory);
7975 if (internal_relocs == NULL)
7976 return TRUE;
7978 irelend = internal_relocs + sec->reloc_count
7979 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7980 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7981 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7983 for (irel = internal_relocs; irel < irelend; irel++)
7985 bfd_vma symval;
7986 bfd_signed_vma sym_offset;
7987 unsigned int r_type;
7988 unsigned long r_symndx;
7989 asection *sym_sec;
7990 unsigned long instruction;
7992 /* Turn jalr into bgezal, and jr into beq, if they're marked
7993 with a JALR relocation, that indicate where they jump to.
7994 This saves some pipeline bubbles. */
7995 r_type = ELF_R_TYPE (abfd, irel->r_info);
7996 if (r_type != R_MIPS_JALR)
7997 continue;
7999 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8000 /* Compute the address of the jump target. */
8001 if (r_symndx >= extsymoff)
8003 struct mips_elf_link_hash_entry *h
8004 = ((struct mips_elf_link_hash_entry *)
8005 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8007 while (h->root.root.type == bfd_link_hash_indirect
8008 || h->root.root.type == bfd_link_hash_warning)
8009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8011 /* If a symbol is undefined, or if it may be overridden,
8012 skip it. */
8013 if (! ((h->root.root.type == bfd_link_hash_defined
8014 || h->root.root.type == bfd_link_hash_defweak)
8015 && h->root.root.u.def.section)
8016 || (link_info->shared && ! link_info->symbolic
8017 && !h->root.forced_local))
8018 continue;
8020 sym_sec = h->root.root.u.def.section;
8021 if (sym_sec->output_section)
8022 symval = (h->root.root.u.def.value
8023 + sym_sec->output_section->vma
8024 + sym_sec->output_offset);
8025 else
8026 symval = h->root.root.u.def.value;
8028 else
8030 Elf_Internal_Sym *isym;
8032 /* Read this BFD's symbols if we haven't done so already. */
8033 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8035 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8036 if (isymbuf == NULL)
8037 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8038 symtab_hdr->sh_info, 0,
8039 NULL, NULL, NULL);
8040 if (isymbuf == NULL)
8041 goto relax_return;
8044 isym = isymbuf + r_symndx;
8045 if (isym->st_shndx == SHN_UNDEF)
8046 continue;
8047 else if (isym->st_shndx == SHN_ABS)
8048 sym_sec = bfd_abs_section_ptr;
8049 else if (isym->st_shndx == SHN_COMMON)
8050 sym_sec = bfd_com_section_ptr;
8051 else
8052 sym_sec
8053 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8054 symval = isym->st_value
8055 + sym_sec->output_section->vma
8056 + sym_sec->output_offset;
8059 /* Compute branch offset, from delay slot of the jump to the
8060 branch target. */
8061 sym_offset = (symval + irel->r_addend)
8062 - (sec_start + irel->r_offset + 4);
8064 /* Branch offset must be properly aligned. */
8065 if ((sym_offset & 3) != 0)
8066 continue;
8068 sym_offset >>= 2;
8070 /* Check that it's in range. */
8071 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8072 continue;
8074 /* Get the section contents if we haven't done so already. */
8075 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8076 goto relax_return;
8078 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8080 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8081 if ((instruction & 0xfc1fffff) == 0x0000f809)
8082 instruction = 0x04110000;
8083 /* If it was jr <reg>, turn it into b <target>. */
8084 else if ((instruction & 0xfc1fffff) == 0x00000008)
8085 instruction = 0x10000000;
8086 else
8087 continue;
8089 instruction |= (sym_offset & 0xffff);
8090 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8091 changed_contents = TRUE;
8094 if (contents != NULL
8095 && elf_section_data (sec)->this_hdr.contents != contents)
8097 if (!changed_contents && !link_info->keep_memory)
8098 free (contents);
8099 else
8101 /* Cache the section contents for elf_link_input_bfd. */
8102 elf_section_data (sec)->this_hdr.contents = contents;
8105 return TRUE;
8107 relax_return:
8108 if (contents != NULL
8109 && elf_section_data (sec)->this_hdr.contents != contents)
8110 free (contents);
8111 return FALSE;
8114 /* Allocate space for global sym dynamic relocs. */
8116 static bfd_boolean
8117 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8119 struct bfd_link_info *info = inf;
8120 bfd *dynobj;
8121 struct mips_elf_link_hash_entry *hmips;
8122 struct mips_elf_link_hash_table *htab;
8124 htab = mips_elf_hash_table (info);
8125 BFD_ASSERT (htab != NULL);
8127 dynobj = elf_hash_table (info)->dynobj;
8128 hmips = (struct mips_elf_link_hash_entry *) h;
8130 /* VxWorks executables are handled elsewhere; we only need to
8131 allocate relocations in shared objects. */
8132 if (htab->is_vxworks && !info->shared)
8133 return TRUE;
8135 /* Ignore indirect and warning symbols. All relocations against
8136 such symbols will be redirected to the target symbol. */
8137 if (h->root.type == bfd_link_hash_indirect
8138 || h->root.type == bfd_link_hash_warning)
8139 return TRUE;
8141 /* If this symbol is defined in a dynamic object, or we are creating
8142 a shared library, we will need to copy any R_MIPS_32 or
8143 R_MIPS_REL32 relocs against it into the output file. */
8144 if (! info->relocatable
8145 && hmips->possibly_dynamic_relocs != 0
8146 && (h->root.type == bfd_link_hash_defweak
8147 || !h->def_regular
8148 || info->shared))
8150 bfd_boolean do_copy = TRUE;
8152 if (h->root.type == bfd_link_hash_undefweak)
8154 /* Do not copy relocations for undefined weak symbols with
8155 non-default visibility. */
8156 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8157 do_copy = FALSE;
8159 /* Make sure undefined weak symbols are output as a dynamic
8160 symbol in PIEs. */
8161 else if (h->dynindx == -1 && !h->forced_local)
8163 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8164 return FALSE;
8168 if (do_copy)
8170 /* Even though we don't directly need a GOT entry for this symbol,
8171 a symbol must have a dynamic symbol table index greater that
8172 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8173 if (hmips->global_got_area > GGA_RELOC_ONLY)
8174 hmips->global_got_area = GGA_RELOC_ONLY;
8176 mips_elf_allocate_dynamic_relocations
8177 (dynobj, info, hmips->possibly_dynamic_relocs);
8178 if (hmips->readonly_reloc)
8179 /* We tell the dynamic linker that there are relocations
8180 against the text segment. */
8181 info->flags |= DF_TEXTREL;
8185 return TRUE;
8188 /* Adjust a symbol defined by a dynamic object and referenced by a
8189 regular object. The current definition is in some section of the
8190 dynamic object, but we're not including those sections. We have to
8191 change the definition to something the rest of the link can
8192 understand. */
8194 bfd_boolean
8195 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8196 struct elf_link_hash_entry *h)
8198 bfd *dynobj;
8199 struct mips_elf_link_hash_entry *hmips;
8200 struct mips_elf_link_hash_table *htab;
8202 htab = mips_elf_hash_table (info);
8203 BFD_ASSERT (htab != NULL);
8205 dynobj = elf_hash_table (info)->dynobj;
8206 hmips = (struct mips_elf_link_hash_entry *) h;
8208 /* Make sure we know what is going on here. */
8209 BFD_ASSERT (dynobj != NULL
8210 && (h->needs_plt
8211 || h->u.weakdef != NULL
8212 || (h->def_dynamic
8213 && h->ref_regular
8214 && !h->def_regular)));
8216 hmips = (struct mips_elf_link_hash_entry *) h;
8218 /* If there are call relocations against an externally-defined symbol,
8219 see whether we can create a MIPS lazy-binding stub for it. We can
8220 only do this if all references to the function are through call
8221 relocations, and in that case, the traditional lazy-binding stubs
8222 are much more efficient than PLT entries.
8224 Traditional stubs are only available on SVR4 psABI-based systems;
8225 VxWorks always uses PLTs instead. */
8226 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8228 if (! elf_hash_table (info)->dynamic_sections_created)
8229 return TRUE;
8231 /* If this symbol is not defined in a regular file, then set
8232 the symbol to the stub location. This is required to make
8233 function pointers compare as equal between the normal
8234 executable and the shared library. */
8235 if (!h->def_regular)
8237 hmips->needs_lazy_stub = TRUE;
8238 htab->lazy_stub_count++;
8239 return TRUE;
8242 /* As above, VxWorks requires PLT entries for externally-defined
8243 functions that are only accessed through call relocations.
8245 Both VxWorks and non-VxWorks targets also need PLT entries if there
8246 are static-only relocations against an externally-defined function.
8247 This can technically occur for shared libraries if there are
8248 branches to the symbol, although it is unlikely that this will be
8249 used in practice due to the short ranges involved. It can occur
8250 for any relative or absolute relocation in executables; in that
8251 case, the PLT entry becomes the function's canonical address. */
8252 else if (((h->needs_plt && !hmips->no_fn_stub)
8253 || (h->type == STT_FUNC && hmips->has_static_relocs))
8254 && htab->use_plts_and_copy_relocs
8255 && !SYMBOL_CALLS_LOCAL (info, h)
8256 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8257 && h->root.type == bfd_link_hash_undefweak))
8259 /* If this is the first symbol to need a PLT entry, allocate room
8260 for the header. */
8261 if (htab->splt->size == 0)
8263 BFD_ASSERT (htab->sgotplt->size == 0);
8265 /* If we're using the PLT additions to the psABI, each PLT
8266 entry is 16 bytes and the PLT0 entry is 32 bytes.
8267 Encourage better cache usage by aligning. We do this
8268 lazily to avoid pessimizing traditional objects. */
8269 if (!htab->is_vxworks
8270 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8271 return FALSE;
8273 /* Make sure that .got.plt is word-aligned. We do this lazily
8274 for the same reason as above. */
8275 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8276 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8277 return FALSE;
8279 htab->splt->size += htab->plt_header_size;
8281 /* On non-VxWorks targets, the first two entries in .got.plt
8282 are reserved. */
8283 if (!htab->is_vxworks)
8284 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8286 /* On VxWorks, also allocate room for the header's
8287 .rela.plt.unloaded entries. */
8288 if (htab->is_vxworks && !info->shared)
8289 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8292 /* Assign the next .plt entry to this symbol. */
8293 h->plt.offset = htab->splt->size;
8294 htab->splt->size += htab->plt_entry_size;
8296 /* If the output file has no definition of the symbol, set the
8297 symbol's value to the address of the stub. */
8298 if (!info->shared && !h->def_regular)
8300 h->root.u.def.section = htab->splt;
8301 h->root.u.def.value = h->plt.offset;
8302 /* For VxWorks, point at the PLT load stub rather than the
8303 lazy resolution stub; this stub will become the canonical
8304 function address. */
8305 if (htab->is_vxworks)
8306 h->root.u.def.value += 8;
8309 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8310 relocation. */
8311 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8312 htab->srelplt->size += (htab->is_vxworks
8313 ? MIPS_ELF_RELA_SIZE (dynobj)
8314 : MIPS_ELF_REL_SIZE (dynobj));
8316 /* Make room for the .rela.plt.unloaded relocations. */
8317 if (htab->is_vxworks && !info->shared)
8318 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8320 /* All relocations against this symbol that could have been made
8321 dynamic will now refer to the PLT entry instead. */
8322 hmips->possibly_dynamic_relocs = 0;
8324 return TRUE;
8327 /* If this is a weak symbol, and there is a real definition, the
8328 processor independent code will have arranged for us to see the
8329 real definition first, and we can just use the same value. */
8330 if (h->u.weakdef != NULL)
8332 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8333 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8334 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8335 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8336 return TRUE;
8339 /* Otherwise, there is nothing further to do for symbols defined
8340 in regular objects. */
8341 if (h->def_regular)
8342 return TRUE;
8344 /* There's also nothing more to do if we'll convert all relocations
8345 against this symbol into dynamic relocations. */
8346 if (!hmips->has_static_relocs)
8347 return TRUE;
8349 /* We're now relying on copy relocations. Complain if we have
8350 some that we can't convert. */
8351 if (!htab->use_plts_and_copy_relocs || info->shared)
8353 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8354 "dynamic symbol %s"),
8355 h->root.root.string);
8356 bfd_set_error (bfd_error_bad_value);
8357 return FALSE;
8360 /* We must allocate the symbol in our .dynbss section, which will
8361 become part of the .bss section of the executable. There will be
8362 an entry for this symbol in the .dynsym section. The dynamic
8363 object will contain position independent code, so all references
8364 from the dynamic object to this symbol will go through the global
8365 offset table. The dynamic linker will use the .dynsym entry to
8366 determine the address it must put in the global offset table, so
8367 both the dynamic object and the regular object will refer to the
8368 same memory location for the variable. */
8370 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8372 if (htab->is_vxworks)
8373 htab->srelbss->size += sizeof (Elf32_External_Rela);
8374 else
8375 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8376 h->needs_copy = 1;
8379 /* All relocations against this symbol that could have been made
8380 dynamic will now refer to the local copy instead. */
8381 hmips->possibly_dynamic_relocs = 0;
8383 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8386 /* This function is called after all the input files have been read,
8387 and the input sections have been assigned to output sections. We
8388 check for any mips16 stub sections that we can discard. */
8390 bfd_boolean
8391 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8392 struct bfd_link_info *info)
8394 asection *ri;
8395 struct mips_elf_link_hash_table *htab;
8396 struct mips_htab_traverse_info hti;
8398 htab = mips_elf_hash_table (info);
8399 BFD_ASSERT (htab != NULL);
8401 /* The .reginfo section has a fixed size. */
8402 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8403 if (ri != NULL)
8404 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8406 hti.info = info;
8407 hti.output_bfd = output_bfd;
8408 hti.error = FALSE;
8409 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8410 mips_elf_check_symbols, &hti);
8411 if (hti.error)
8412 return FALSE;
8414 return TRUE;
8417 /* If the link uses a GOT, lay it out and work out its size. */
8419 static bfd_boolean
8420 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8422 bfd *dynobj;
8423 asection *s;
8424 struct mips_got_info *g;
8425 bfd_size_type loadable_size = 0;
8426 bfd_size_type page_gotno;
8427 bfd *sub;
8428 struct mips_elf_count_tls_arg count_tls_arg;
8429 struct mips_elf_link_hash_table *htab;
8431 htab = mips_elf_hash_table (info);
8432 BFD_ASSERT (htab != NULL);
8434 s = htab->sgot;
8435 if (s == NULL)
8436 return TRUE;
8438 dynobj = elf_hash_table (info)->dynobj;
8439 g = htab->got_info;
8441 /* Allocate room for the reserved entries. VxWorks always reserves
8442 3 entries; other objects only reserve 2 entries. */
8443 BFD_ASSERT (g->assigned_gotno == 0);
8444 if (htab->is_vxworks)
8445 htab->reserved_gotno = 3;
8446 else
8447 htab->reserved_gotno = 2;
8448 g->local_gotno += htab->reserved_gotno;
8449 g->assigned_gotno = htab->reserved_gotno;
8451 /* Replace entries for indirect and warning symbols with entries for
8452 the target symbol. */
8453 if (!mips_elf_resolve_final_got_entries (g))
8454 return FALSE;
8456 /* Count the number of GOT symbols. */
8457 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
8459 /* Calculate the total loadable size of the output. That
8460 will give us the maximum number of GOT_PAGE entries
8461 required. */
8462 for (sub = info->input_bfds; sub; sub = sub->link_next)
8464 asection *subsection;
8466 for (subsection = sub->sections;
8467 subsection;
8468 subsection = subsection->next)
8470 if ((subsection->flags & SEC_ALLOC) == 0)
8471 continue;
8472 loadable_size += ((subsection->size + 0xf)
8473 &~ (bfd_size_type) 0xf);
8477 if (htab->is_vxworks)
8478 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8479 relocations against local symbols evaluate to "G", and the EABI does
8480 not include R_MIPS_GOT_PAGE. */
8481 page_gotno = 0;
8482 else
8483 /* Assume there are two loadable segments consisting of contiguous
8484 sections. Is 5 enough? */
8485 page_gotno = (loadable_size >> 16) + 5;
8487 /* Choose the smaller of the two estimates; both are intended to be
8488 conservative. */
8489 if (page_gotno > g->page_gotno)
8490 page_gotno = g->page_gotno;
8492 g->local_gotno += page_gotno;
8493 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8494 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8496 /* We need to calculate tls_gotno for global symbols at this point
8497 instead of building it up earlier, to avoid doublecounting
8498 entries for one global symbol from multiple input files. */
8499 count_tls_arg.info = info;
8500 count_tls_arg.needed = 0;
8501 elf_link_hash_traverse (elf_hash_table (info),
8502 mips_elf_count_global_tls_entries,
8503 &count_tls_arg);
8504 g->tls_gotno += count_tls_arg.needed;
8505 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8507 /* VxWorks does not support multiple GOTs. It initializes $gp to
8508 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8509 dynamic loader. */
8510 if (htab->is_vxworks)
8512 /* VxWorks executables do not need a GOT. */
8513 if (info->shared)
8515 /* Each VxWorks GOT entry needs an explicit relocation. */
8516 unsigned int count;
8518 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8519 if (count)
8520 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8523 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8525 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8526 return FALSE;
8528 else
8530 struct mips_elf_count_tls_arg arg;
8532 /* Set up TLS entries. */
8533 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8534 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8536 /* Allocate room for the TLS relocations. */
8537 arg.info = info;
8538 arg.needed = 0;
8539 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8540 elf_link_hash_traverse (elf_hash_table (info),
8541 mips_elf_count_global_tls_relocs,
8542 &arg);
8543 if (arg.needed)
8544 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8547 return TRUE;
8550 /* Estimate the size of the .MIPS.stubs section. */
8552 static void
8553 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8555 struct mips_elf_link_hash_table *htab;
8556 bfd_size_type dynsymcount;
8558 htab = mips_elf_hash_table (info);
8559 BFD_ASSERT (htab != NULL);
8561 if (htab->lazy_stub_count == 0)
8562 return;
8564 /* IRIX rld assumes that a function stub isn't at the end of the .text
8565 section, so add a dummy entry to the end. */
8566 htab->lazy_stub_count++;
8568 /* Get a worst-case estimate of the number of dynamic symbols needed.
8569 At this point, dynsymcount does not account for section symbols
8570 and count_section_dynsyms may overestimate the number that will
8571 be needed. */
8572 dynsymcount = (elf_hash_table (info)->dynsymcount
8573 + count_section_dynsyms (output_bfd, info));
8575 /* Determine the size of one stub entry. */
8576 htab->function_stub_size = (dynsymcount > 0x10000
8577 ? MIPS_FUNCTION_STUB_BIG_SIZE
8578 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8580 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8583 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8584 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8585 allocate an entry in the stubs section. */
8587 static bfd_boolean
8588 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8590 struct mips_elf_link_hash_table *htab;
8592 htab = (struct mips_elf_link_hash_table *) data;
8593 if (h->needs_lazy_stub)
8595 h->root.root.u.def.section = htab->sstubs;
8596 h->root.root.u.def.value = htab->sstubs->size;
8597 h->root.plt.offset = htab->sstubs->size;
8598 htab->sstubs->size += htab->function_stub_size;
8600 return TRUE;
8603 /* Allocate offsets in the stubs section to each symbol that needs one.
8604 Set the final size of the .MIPS.stub section. */
8606 static void
8607 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8609 struct mips_elf_link_hash_table *htab;
8611 htab = mips_elf_hash_table (info);
8612 BFD_ASSERT (htab != NULL);
8614 if (htab->lazy_stub_count == 0)
8615 return;
8617 htab->sstubs->size = 0;
8618 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8619 htab->sstubs->size += htab->function_stub_size;
8620 BFD_ASSERT (htab->sstubs->size
8621 == htab->lazy_stub_count * htab->function_stub_size);
8624 /* Set the sizes of the dynamic sections. */
8626 bfd_boolean
8627 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8628 struct bfd_link_info *info)
8630 bfd *dynobj;
8631 asection *s, *sreldyn;
8632 bfd_boolean reltext;
8633 struct mips_elf_link_hash_table *htab;
8635 htab = mips_elf_hash_table (info);
8636 BFD_ASSERT (htab != NULL);
8637 dynobj = elf_hash_table (info)->dynobj;
8638 BFD_ASSERT (dynobj != NULL);
8640 if (elf_hash_table (info)->dynamic_sections_created)
8642 /* Set the contents of the .interp section to the interpreter. */
8643 if (info->executable)
8645 s = bfd_get_section_by_name (dynobj, ".interp");
8646 BFD_ASSERT (s != NULL);
8647 s->size
8648 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8649 s->contents
8650 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8653 /* Create a symbol for the PLT, if we know that we are using it. */
8654 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8656 struct elf_link_hash_entry *h;
8658 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8660 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8661 "_PROCEDURE_LINKAGE_TABLE_");
8662 htab->root.hplt = h;
8663 if (h == NULL)
8664 return FALSE;
8665 h->type = STT_FUNC;
8669 /* Allocate space for global sym dynamic relocs. */
8670 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8672 mips_elf_estimate_stub_size (output_bfd, info);
8674 if (!mips_elf_lay_out_got (output_bfd, info))
8675 return FALSE;
8677 mips_elf_lay_out_lazy_stubs (info);
8679 /* The check_relocs and adjust_dynamic_symbol entry points have
8680 determined the sizes of the various dynamic sections. Allocate
8681 memory for them. */
8682 reltext = FALSE;
8683 for (s = dynobj->sections; s != NULL; s = s->next)
8685 const char *name;
8687 /* It's OK to base decisions on the section name, because none
8688 of the dynobj section names depend upon the input files. */
8689 name = bfd_get_section_name (dynobj, s);
8691 if ((s->flags & SEC_LINKER_CREATED) == 0)
8692 continue;
8694 if (CONST_STRNEQ (name, ".rel"))
8696 if (s->size != 0)
8698 const char *outname;
8699 asection *target;
8701 /* If this relocation section applies to a read only
8702 section, then we probably need a DT_TEXTREL entry.
8703 If the relocation section is .rel(a).dyn, we always
8704 assert a DT_TEXTREL entry rather than testing whether
8705 there exists a relocation to a read only section or
8706 not. */
8707 outname = bfd_get_section_name (output_bfd,
8708 s->output_section);
8709 target = bfd_get_section_by_name (output_bfd, outname + 4);
8710 if ((target != NULL
8711 && (target->flags & SEC_READONLY) != 0
8712 && (target->flags & SEC_ALLOC) != 0)
8713 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8714 reltext = TRUE;
8716 /* We use the reloc_count field as a counter if we need
8717 to copy relocs into the output file. */
8718 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8719 s->reloc_count = 0;
8721 /* If combreloc is enabled, elf_link_sort_relocs() will
8722 sort relocations, but in a different way than we do,
8723 and before we're done creating relocations. Also, it
8724 will move them around between input sections'
8725 relocation's contents, so our sorting would be
8726 broken, so don't let it run. */
8727 info->combreloc = 0;
8730 else if (! info->shared
8731 && ! mips_elf_hash_table (info)->use_rld_obj_head
8732 && CONST_STRNEQ (name, ".rld_map"))
8734 /* We add a room for __rld_map. It will be filled in by the
8735 rtld to contain a pointer to the _r_debug structure. */
8736 s->size += 4;
8738 else if (SGI_COMPAT (output_bfd)
8739 && CONST_STRNEQ (name, ".compact_rel"))
8740 s->size += mips_elf_hash_table (info)->compact_rel_size;
8741 else if (s == htab->splt)
8743 /* If the last PLT entry has a branch delay slot, allocate
8744 room for an extra nop to fill the delay slot. This is
8745 for CPUs without load interlocking. */
8746 if (! LOAD_INTERLOCKS_P (output_bfd)
8747 && ! htab->is_vxworks && s->size > 0)
8748 s->size += 4;
8750 else if (! CONST_STRNEQ (name, ".init")
8751 && s != htab->sgot
8752 && s != htab->sgotplt
8753 && s != htab->sstubs
8754 && s != htab->sdynbss)
8756 /* It's not one of our sections, so don't allocate space. */
8757 continue;
8760 if (s->size == 0)
8762 s->flags |= SEC_EXCLUDE;
8763 continue;
8766 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8767 continue;
8769 /* Allocate memory for the section contents. */
8770 s->contents = bfd_zalloc (dynobj, s->size);
8771 if (s->contents == NULL)
8773 bfd_set_error (bfd_error_no_memory);
8774 return FALSE;
8778 if (elf_hash_table (info)->dynamic_sections_created)
8780 /* Add some entries to the .dynamic section. We fill in the
8781 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8782 must add the entries now so that we get the correct size for
8783 the .dynamic section. */
8785 /* SGI object has the equivalence of DT_DEBUG in the
8786 DT_MIPS_RLD_MAP entry. This must come first because glibc
8787 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8788 looks at the first one it sees. */
8789 if (!info->shared
8790 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8791 return FALSE;
8793 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8794 used by the debugger. */
8795 if (info->executable
8796 && !SGI_COMPAT (output_bfd)
8797 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8798 return FALSE;
8800 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8801 info->flags |= DF_TEXTREL;
8803 if ((info->flags & DF_TEXTREL) != 0)
8805 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8806 return FALSE;
8808 /* Clear the DF_TEXTREL flag. It will be set again if we
8809 write out an actual text relocation; we may not, because
8810 at this point we do not know whether e.g. any .eh_frame
8811 absolute relocations have been converted to PC-relative. */
8812 info->flags &= ~DF_TEXTREL;
8815 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8816 return FALSE;
8818 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8819 if (htab->is_vxworks)
8821 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8822 use any of the DT_MIPS_* tags. */
8823 if (sreldyn && sreldyn->size > 0)
8825 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8826 return FALSE;
8828 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8829 return FALSE;
8831 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8832 return FALSE;
8835 else
8837 if (sreldyn && sreldyn->size > 0)
8839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8840 return FALSE;
8842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8843 return FALSE;
8845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8846 return FALSE;
8849 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8850 return FALSE;
8852 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8853 return FALSE;
8855 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8856 return FALSE;
8858 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8859 return FALSE;
8861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8862 return FALSE;
8864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8865 return FALSE;
8867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8868 return FALSE;
8870 if (IRIX_COMPAT (dynobj) == ict_irix5
8871 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8872 return FALSE;
8874 if (IRIX_COMPAT (dynobj) == ict_irix6
8875 && (bfd_get_section_by_name
8876 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8877 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8878 return FALSE;
8880 if (htab->splt->size > 0)
8882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8883 return FALSE;
8885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8886 return FALSE;
8888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8889 return FALSE;
8891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8892 return FALSE;
8894 if (htab->is_vxworks
8895 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8896 return FALSE;
8899 return TRUE;
8902 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8903 Adjust its R_ADDEND field so that it is correct for the output file.
8904 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8905 and sections respectively; both use symbol indexes. */
8907 static void
8908 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8909 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8910 asection **local_sections, Elf_Internal_Rela *rel)
8912 unsigned int r_type, r_symndx;
8913 Elf_Internal_Sym *sym;
8914 asection *sec;
8916 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8918 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8919 if (r_type == R_MIPS16_GPREL
8920 || r_type == R_MIPS_GPREL16
8921 || r_type == R_MIPS_GPREL32
8922 || r_type == R_MIPS_LITERAL)
8924 rel->r_addend += _bfd_get_gp_value (input_bfd);
8925 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8928 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8929 sym = local_syms + r_symndx;
8931 /* Adjust REL's addend to account for section merging. */
8932 if (!info->relocatable)
8934 sec = local_sections[r_symndx];
8935 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8938 /* This would normally be done by the rela_normal code in elflink.c. */
8939 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8940 rel->r_addend += local_sections[r_symndx]->output_offset;
8944 /* Relocate a MIPS ELF section. */
8946 bfd_boolean
8947 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8948 bfd *input_bfd, asection *input_section,
8949 bfd_byte *contents, Elf_Internal_Rela *relocs,
8950 Elf_Internal_Sym *local_syms,
8951 asection **local_sections)
8953 Elf_Internal_Rela *rel;
8954 const Elf_Internal_Rela *relend;
8955 bfd_vma addend = 0;
8956 bfd_boolean use_saved_addend_p = FALSE;
8957 const struct elf_backend_data *bed;
8959 bed = get_elf_backend_data (output_bfd);
8960 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8961 for (rel = relocs; rel < relend; ++rel)
8963 const char *name;
8964 bfd_vma value = 0;
8965 reloc_howto_type *howto;
8966 bfd_boolean cross_mode_jump_p;
8967 /* TRUE if the relocation is a RELA relocation, rather than a
8968 REL relocation. */
8969 bfd_boolean rela_relocation_p = TRUE;
8970 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8971 const char *msg;
8972 unsigned long r_symndx;
8973 asection *sec;
8974 Elf_Internal_Shdr *symtab_hdr;
8975 struct elf_link_hash_entry *h;
8977 /* Find the relocation howto for this relocation. */
8978 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8979 NEWABI_P (input_bfd)
8980 && (MIPS_RELOC_RELA_P
8981 (input_bfd, input_section,
8982 rel - relocs)));
8984 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8985 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8986 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8988 sec = local_sections[r_symndx];
8989 h = NULL;
8991 else
8993 unsigned long extsymoff;
8995 extsymoff = 0;
8996 if (!elf_bad_symtab (input_bfd))
8997 extsymoff = symtab_hdr->sh_info;
8998 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8999 while (h->root.type == bfd_link_hash_indirect
9000 || h->root.type == bfd_link_hash_warning)
9001 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9003 sec = NULL;
9004 if (h->root.type == bfd_link_hash_defined
9005 || h->root.type == bfd_link_hash_defweak)
9006 sec = h->root.u.def.section;
9009 if (sec != NULL && elf_discarded_section (sec))
9011 /* For relocs against symbols from removed linkonce sections,
9012 or sections discarded by a linker script, we just want the
9013 section contents zeroed. Avoid any special processing. */
9014 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
9015 rel->r_info = 0;
9016 rel->r_addend = 0;
9017 continue;
9020 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9022 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9023 64-bit code, but make sure all their addresses are in the
9024 lowermost or uppermost 32-bit section of the 64-bit address
9025 space. Thus, when they use an R_MIPS_64 they mean what is
9026 usually meant by R_MIPS_32, with the exception that the
9027 stored value is sign-extended to 64 bits. */
9028 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9030 /* On big-endian systems, we need to lie about the position
9031 of the reloc. */
9032 if (bfd_big_endian (input_bfd))
9033 rel->r_offset += 4;
9036 if (!use_saved_addend_p)
9038 /* If these relocations were originally of the REL variety,
9039 we must pull the addend out of the field that will be
9040 relocated. Otherwise, we simply use the contents of the
9041 RELA relocation. */
9042 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9043 relocs, rel))
9045 rela_relocation_p = FALSE;
9046 addend = mips_elf_read_rel_addend (input_bfd, rel,
9047 howto, contents);
9048 if (hi16_reloc_p (r_type)
9049 || (got16_reloc_p (r_type)
9050 && mips_elf_local_relocation_p (input_bfd, rel,
9051 local_sections, FALSE)))
9053 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9054 contents, &addend))
9056 if (h)
9057 name = h->root.root.string;
9058 else
9059 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9060 local_syms + r_symndx,
9061 sec);
9062 (*_bfd_error_handler)
9063 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9064 input_bfd, input_section, name, howto->name,
9065 rel->r_offset);
9068 else
9069 addend <<= howto->rightshift;
9071 else
9072 addend = rel->r_addend;
9073 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9074 local_syms, local_sections, rel);
9077 if (info->relocatable)
9079 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9080 && bfd_big_endian (input_bfd))
9081 rel->r_offset -= 4;
9083 if (!rela_relocation_p && rel->r_addend)
9085 addend += rel->r_addend;
9086 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9087 addend = mips_elf_high (addend);
9088 else if (r_type == R_MIPS_HIGHER)
9089 addend = mips_elf_higher (addend);
9090 else if (r_type == R_MIPS_HIGHEST)
9091 addend = mips_elf_highest (addend);
9092 else
9093 addend >>= howto->rightshift;
9095 /* We use the source mask, rather than the destination
9096 mask because the place to which we are writing will be
9097 source of the addend in the final link. */
9098 addend &= howto->src_mask;
9100 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9101 /* See the comment above about using R_MIPS_64 in the 32-bit
9102 ABI. Here, we need to update the addend. It would be
9103 possible to get away with just using the R_MIPS_32 reloc
9104 but for endianness. */
9106 bfd_vma sign_bits;
9107 bfd_vma low_bits;
9108 bfd_vma high_bits;
9110 if (addend & ((bfd_vma) 1 << 31))
9111 #ifdef BFD64
9112 sign_bits = ((bfd_vma) 1 << 32) - 1;
9113 #else
9114 sign_bits = -1;
9115 #endif
9116 else
9117 sign_bits = 0;
9119 /* If we don't know that we have a 64-bit type,
9120 do two separate stores. */
9121 if (bfd_big_endian (input_bfd))
9123 /* Store the sign-bits (which are most significant)
9124 first. */
9125 low_bits = sign_bits;
9126 high_bits = addend;
9128 else
9130 low_bits = addend;
9131 high_bits = sign_bits;
9133 bfd_put_32 (input_bfd, low_bits,
9134 contents + rel->r_offset);
9135 bfd_put_32 (input_bfd, high_bits,
9136 contents + rel->r_offset + 4);
9137 continue;
9140 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9141 input_bfd, input_section,
9142 contents, FALSE))
9143 return FALSE;
9146 /* Go on to the next relocation. */
9147 continue;
9150 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9151 relocations for the same offset. In that case we are
9152 supposed to treat the output of each relocation as the addend
9153 for the next. */
9154 if (rel + 1 < relend
9155 && rel->r_offset == rel[1].r_offset
9156 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9157 use_saved_addend_p = TRUE;
9158 else
9159 use_saved_addend_p = FALSE;
9161 /* Figure out what value we are supposed to relocate. */
9162 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9163 input_section, info, rel,
9164 addend, howto, local_syms,
9165 local_sections, &value,
9166 &name, &cross_mode_jump_p,
9167 use_saved_addend_p))
9169 case bfd_reloc_continue:
9170 /* There's nothing to do. */
9171 continue;
9173 case bfd_reloc_undefined:
9174 /* mips_elf_calculate_relocation already called the
9175 undefined_symbol callback. There's no real point in
9176 trying to perform the relocation at this point, so we
9177 just skip ahead to the next relocation. */
9178 continue;
9180 case bfd_reloc_notsupported:
9181 msg = _("internal error: unsupported relocation error");
9182 info->callbacks->warning
9183 (info, msg, name, input_bfd, input_section, rel->r_offset);
9184 return FALSE;
9186 case bfd_reloc_overflow:
9187 if (use_saved_addend_p)
9188 /* Ignore overflow until we reach the last relocation for
9189 a given location. */
9191 else
9193 struct mips_elf_link_hash_table *htab;
9195 htab = mips_elf_hash_table (info);
9196 BFD_ASSERT (htab != NULL);
9197 BFD_ASSERT (name != NULL);
9198 if (!htab->small_data_overflow_reported
9199 && (howto->type == R_MIPS_GPREL16
9200 || howto->type == R_MIPS_LITERAL))
9202 msg = _("small-data section exceeds 64KB;"
9203 " lower small-data size limit (see option -G)");
9205 htab->small_data_overflow_reported = TRUE;
9206 (*info->callbacks->einfo) ("%P: %s\n", msg);
9208 if (! ((*info->callbacks->reloc_overflow)
9209 (info, NULL, name, howto->name, (bfd_vma) 0,
9210 input_bfd, input_section, rel->r_offset)))
9211 return FALSE;
9213 break;
9215 case bfd_reloc_ok:
9216 break;
9218 default:
9219 abort ();
9220 break;
9223 /* If we've got another relocation for the address, keep going
9224 until we reach the last one. */
9225 if (use_saved_addend_p)
9227 addend = value;
9228 continue;
9231 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9232 /* See the comment above about using R_MIPS_64 in the 32-bit
9233 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9234 that calculated the right value. Now, however, we
9235 sign-extend the 32-bit result to 64-bits, and store it as a
9236 64-bit value. We are especially generous here in that we
9237 go to extreme lengths to support this usage on systems with
9238 only a 32-bit VMA. */
9240 bfd_vma sign_bits;
9241 bfd_vma low_bits;
9242 bfd_vma high_bits;
9244 if (value & ((bfd_vma) 1 << 31))
9245 #ifdef BFD64
9246 sign_bits = ((bfd_vma) 1 << 32) - 1;
9247 #else
9248 sign_bits = -1;
9249 #endif
9250 else
9251 sign_bits = 0;
9253 /* If we don't know that we have a 64-bit type,
9254 do two separate stores. */
9255 if (bfd_big_endian (input_bfd))
9257 /* Undo what we did above. */
9258 rel->r_offset -= 4;
9259 /* Store the sign-bits (which are most significant)
9260 first. */
9261 low_bits = sign_bits;
9262 high_bits = value;
9264 else
9266 low_bits = value;
9267 high_bits = sign_bits;
9269 bfd_put_32 (input_bfd, low_bits,
9270 contents + rel->r_offset);
9271 bfd_put_32 (input_bfd, high_bits,
9272 contents + rel->r_offset + 4);
9273 continue;
9276 /* Actually perform the relocation. */
9277 if (! mips_elf_perform_relocation (info, howto, rel, value,
9278 input_bfd, input_section,
9279 contents, cross_mode_jump_p))
9280 return FALSE;
9283 return TRUE;
9286 /* A function that iterates over each entry in la25_stubs and fills
9287 in the code for each one. DATA points to a mips_htab_traverse_info. */
9289 static int
9290 mips_elf_create_la25_stub (void **slot, void *data)
9292 struct mips_htab_traverse_info *hti;
9293 struct mips_elf_link_hash_table *htab;
9294 struct mips_elf_la25_stub *stub;
9295 asection *s;
9296 bfd_byte *loc;
9297 bfd_vma offset, target, target_high, target_low;
9299 stub = (struct mips_elf_la25_stub *) *slot;
9300 hti = (struct mips_htab_traverse_info *) data;
9301 htab = mips_elf_hash_table (hti->info);
9302 BFD_ASSERT (htab != NULL);
9304 /* Create the section contents, if we haven't already. */
9305 s = stub->stub_section;
9306 loc = s->contents;
9307 if (loc == NULL)
9309 loc = bfd_malloc (s->size);
9310 if (loc == NULL)
9312 hti->error = TRUE;
9313 return FALSE;
9315 s->contents = loc;
9318 /* Work out where in the section this stub should go. */
9319 offset = stub->offset;
9321 /* Work out the target address. */
9322 target = (stub->h->root.root.u.def.section->output_section->vma
9323 + stub->h->root.root.u.def.section->output_offset
9324 + stub->h->root.root.u.def.value);
9325 target_high = ((target + 0x8000) >> 16) & 0xffff;
9326 target_low = (target & 0xffff);
9328 if (stub->stub_section != htab->strampoline)
9330 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9331 of the section and write the two instructions at the end. */
9332 memset (loc, 0, offset);
9333 loc += offset;
9334 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9335 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9337 else
9339 /* This is trampoline. */
9340 loc += offset;
9341 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9342 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9343 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9344 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9346 return TRUE;
9349 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9350 adjust it appropriately now. */
9352 static void
9353 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9354 const char *name, Elf_Internal_Sym *sym)
9356 /* The linker script takes care of providing names and values for
9357 these, but we must place them into the right sections. */
9358 static const char* const text_section_symbols[] = {
9359 "_ftext",
9360 "_etext",
9361 "__dso_displacement",
9362 "__elf_header",
9363 "__program_header_table",
9364 NULL
9367 static const char* const data_section_symbols[] = {
9368 "_fdata",
9369 "_edata",
9370 "_end",
9371 "_fbss",
9372 NULL
9375 const char* const *p;
9376 int i;
9378 for (i = 0; i < 2; ++i)
9379 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9381 ++p)
9382 if (strcmp (*p, name) == 0)
9384 /* All of these symbols are given type STT_SECTION by the
9385 IRIX6 linker. */
9386 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9387 sym->st_other = STO_PROTECTED;
9389 /* The IRIX linker puts these symbols in special sections. */
9390 if (i == 0)
9391 sym->st_shndx = SHN_MIPS_TEXT;
9392 else
9393 sym->st_shndx = SHN_MIPS_DATA;
9395 break;
9399 /* Finish up dynamic symbol handling. We set the contents of various
9400 dynamic sections here. */
9402 bfd_boolean
9403 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9404 struct bfd_link_info *info,
9405 struct elf_link_hash_entry *h,
9406 Elf_Internal_Sym *sym)
9408 bfd *dynobj;
9409 asection *sgot;
9410 struct mips_got_info *g, *gg;
9411 const char *name;
9412 int idx;
9413 struct mips_elf_link_hash_table *htab;
9414 struct mips_elf_link_hash_entry *hmips;
9416 htab = mips_elf_hash_table (info);
9417 BFD_ASSERT (htab != NULL);
9418 dynobj = elf_hash_table (info)->dynobj;
9419 hmips = (struct mips_elf_link_hash_entry *) h;
9421 BFD_ASSERT (!htab->is_vxworks);
9423 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9425 /* We've decided to create a PLT entry for this symbol. */
9426 bfd_byte *loc;
9427 bfd_vma header_address, plt_index, got_address;
9428 bfd_vma got_address_high, got_address_low, load;
9429 const bfd_vma *plt_entry;
9431 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9432 BFD_ASSERT (h->dynindx != -1);
9433 BFD_ASSERT (htab->splt != NULL);
9434 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9435 BFD_ASSERT (!h->def_regular);
9437 /* Calculate the address of the PLT header. */
9438 header_address = (htab->splt->output_section->vma
9439 + htab->splt->output_offset);
9441 /* Calculate the index of the entry. */
9442 plt_index = ((h->plt.offset - htab->plt_header_size)
9443 / htab->plt_entry_size);
9445 /* Calculate the address of the .got.plt entry. */
9446 got_address = (htab->sgotplt->output_section->vma
9447 + htab->sgotplt->output_offset
9448 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9449 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9450 got_address_low = got_address & 0xffff;
9452 /* Initially point the .got.plt entry at the PLT header. */
9453 loc = (htab->sgotplt->contents
9454 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9455 if (ABI_64_P (output_bfd))
9456 bfd_put_64 (output_bfd, header_address, loc);
9457 else
9458 bfd_put_32 (output_bfd, header_address, loc);
9460 /* Find out where the .plt entry should go. */
9461 loc = htab->splt->contents + h->plt.offset;
9463 /* Pick the load opcode. */
9464 load = MIPS_ELF_LOAD_WORD (output_bfd);
9466 /* Fill in the PLT entry itself. */
9467 plt_entry = mips_exec_plt_entry;
9468 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9469 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9471 if (! LOAD_INTERLOCKS_P (output_bfd))
9473 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9474 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9476 else
9478 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9479 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9482 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9483 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9484 plt_index, h->dynindx,
9485 R_MIPS_JUMP_SLOT, got_address);
9487 /* We distinguish between PLT entries and lazy-binding stubs by
9488 giving the former an st_other value of STO_MIPS_PLT. Set the
9489 flag and leave the value if there are any relocations in the
9490 binary where pointer equality matters. */
9491 sym->st_shndx = SHN_UNDEF;
9492 if (h->pointer_equality_needed)
9493 sym->st_other = STO_MIPS_PLT;
9494 else
9495 sym->st_value = 0;
9497 else if (h->plt.offset != MINUS_ONE)
9499 /* We've decided to create a lazy-binding stub. */
9500 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9502 /* This symbol has a stub. Set it up. */
9504 BFD_ASSERT (h->dynindx != -1);
9506 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9507 || (h->dynindx <= 0xffff));
9509 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9510 sign extension at runtime in the stub, resulting in a negative
9511 index value. */
9512 if (h->dynindx & ~0x7fffffff)
9513 return FALSE;
9515 /* Fill the stub. */
9516 idx = 0;
9517 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9518 idx += 4;
9519 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9520 idx += 4;
9521 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9523 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9524 stub + idx);
9525 idx += 4;
9527 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9528 idx += 4;
9530 /* If a large stub is not required and sign extension is not a
9531 problem, then use legacy code in the stub. */
9532 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9533 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9534 else if (h->dynindx & ~0x7fff)
9535 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9536 else
9537 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9538 stub + idx);
9540 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9541 memcpy (htab->sstubs->contents + h->plt.offset,
9542 stub, htab->function_stub_size);
9544 /* Mark the symbol as undefined. plt.offset != -1 occurs
9545 only for the referenced symbol. */
9546 sym->st_shndx = SHN_UNDEF;
9548 /* The run-time linker uses the st_value field of the symbol
9549 to reset the global offset table entry for this external
9550 to its stub address when unlinking a shared object. */
9551 sym->st_value = (htab->sstubs->output_section->vma
9552 + htab->sstubs->output_offset
9553 + h->plt.offset);
9556 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9557 refer to the stub, since only the stub uses the standard calling
9558 conventions. */
9559 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9561 BFD_ASSERT (hmips->need_fn_stub);
9562 sym->st_value = (hmips->fn_stub->output_section->vma
9563 + hmips->fn_stub->output_offset);
9564 sym->st_size = hmips->fn_stub->size;
9565 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9568 BFD_ASSERT (h->dynindx != -1
9569 || h->forced_local);
9571 sgot = htab->sgot;
9572 g = htab->got_info;
9573 BFD_ASSERT (g != NULL);
9575 /* Run through the global symbol table, creating GOT entries for all
9576 the symbols that need them. */
9577 if (g->global_gotsym != NULL
9578 && h->dynindx >= g->global_gotsym->dynindx)
9580 bfd_vma offset;
9581 bfd_vma value;
9583 value = sym->st_value;
9584 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9585 R_MIPS_GOT16, info);
9586 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9589 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
9591 struct mips_got_entry e, *p;
9592 bfd_vma entry;
9593 bfd_vma offset;
9595 gg = g;
9597 e.abfd = output_bfd;
9598 e.symndx = -1;
9599 e.d.h = hmips;
9600 e.tls_type = 0;
9602 for (g = g->next; g->next != gg; g = g->next)
9604 if (g->got_entries
9605 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9606 &e)))
9608 offset = p->gotidx;
9609 if (info->shared
9610 || (elf_hash_table (info)->dynamic_sections_created
9611 && p->d.h != NULL
9612 && p->d.h->root.def_dynamic
9613 && !p->d.h->root.def_regular))
9615 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9616 the various compatibility problems, it's easier to mock
9617 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9618 mips_elf_create_dynamic_relocation to calculate the
9619 appropriate addend. */
9620 Elf_Internal_Rela rel[3];
9622 memset (rel, 0, sizeof (rel));
9623 if (ABI_64_P (output_bfd))
9624 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9625 else
9626 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9627 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9629 entry = 0;
9630 if (! (mips_elf_create_dynamic_relocation
9631 (output_bfd, info, rel,
9632 e.d.h, NULL, sym->st_value, &entry, sgot)))
9633 return FALSE;
9635 else
9636 entry = sym->st_value;
9637 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9642 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9643 name = h->root.root.string;
9644 if (strcmp (name, "_DYNAMIC") == 0
9645 || h == elf_hash_table (info)->hgot)
9646 sym->st_shndx = SHN_ABS;
9647 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9648 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9650 sym->st_shndx = SHN_ABS;
9651 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9652 sym->st_value = 1;
9654 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9656 sym->st_shndx = SHN_ABS;
9657 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9658 sym->st_value = elf_gp (output_bfd);
9660 else if (SGI_COMPAT (output_bfd))
9662 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9663 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9665 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9666 sym->st_other = STO_PROTECTED;
9667 sym->st_value = 0;
9668 sym->st_shndx = SHN_MIPS_DATA;
9670 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9673 sym->st_other = STO_PROTECTED;
9674 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9675 sym->st_shndx = SHN_ABS;
9677 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9679 if (h->type == STT_FUNC)
9680 sym->st_shndx = SHN_MIPS_TEXT;
9681 else if (h->type == STT_OBJECT)
9682 sym->st_shndx = SHN_MIPS_DATA;
9686 /* Emit a copy reloc, if needed. */
9687 if (h->needs_copy)
9689 asection *s;
9690 bfd_vma symval;
9692 BFD_ASSERT (h->dynindx != -1);
9693 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9695 s = mips_elf_rel_dyn_section (info, FALSE);
9696 symval = (h->root.u.def.section->output_section->vma
9697 + h->root.u.def.section->output_offset
9698 + h->root.u.def.value);
9699 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9700 h->dynindx, R_MIPS_COPY, symval);
9703 /* Handle the IRIX6-specific symbols. */
9704 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9705 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9707 if (! info->shared)
9709 if (! mips_elf_hash_table (info)->use_rld_obj_head
9710 && (strcmp (name, "__rld_map") == 0
9711 || strcmp (name, "__RLD_MAP") == 0))
9713 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9714 BFD_ASSERT (s != NULL);
9715 sym->st_value = s->output_section->vma + s->output_offset;
9716 bfd_put_32 (output_bfd, 0, s->contents);
9717 if (mips_elf_hash_table (info)->rld_value == 0)
9718 mips_elf_hash_table (info)->rld_value = sym->st_value;
9720 else if (mips_elf_hash_table (info)->use_rld_obj_head
9721 && strcmp (name, "__rld_obj_head") == 0)
9723 /* IRIX6 does not use a .rld_map section. */
9724 if (IRIX_COMPAT (output_bfd) == ict_irix5
9725 || IRIX_COMPAT (output_bfd) == ict_none)
9726 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9727 != NULL);
9728 mips_elf_hash_table (info)->rld_value = sym->st_value;
9732 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9733 treat MIPS16 symbols like any other. */
9734 if (ELF_ST_IS_MIPS16 (sym->st_other))
9736 BFD_ASSERT (sym->st_value & 1);
9737 sym->st_other -= STO_MIPS16;
9740 return TRUE;
9743 /* Likewise, for VxWorks. */
9745 bfd_boolean
9746 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9747 struct bfd_link_info *info,
9748 struct elf_link_hash_entry *h,
9749 Elf_Internal_Sym *sym)
9751 bfd *dynobj;
9752 asection *sgot;
9753 struct mips_got_info *g;
9754 struct mips_elf_link_hash_table *htab;
9756 htab = mips_elf_hash_table (info);
9757 BFD_ASSERT (htab != NULL);
9758 dynobj = elf_hash_table (info)->dynobj;
9760 if (h->plt.offset != (bfd_vma) -1)
9762 bfd_byte *loc;
9763 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9764 Elf_Internal_Rela rel;
9765 static const bfd_vma *plt_entry;
9767 BFD_ASSERT (h->dynindx != -1);
9768 BFD_ASSERT (htab->splt != NULL);
9769 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9771 /* Calculate the address of the .plt entry. */
9772 plt_address = (htab->splt->output_section->vma
9773 + htab->splt->output_offset
9774 + h->plt.offset);
9776 /* Calculate the index of the entry. */
9777 plt_index = ((h->plt.offset - htab->plt_header_size)
9778 / htab->plt_entry_size);
9780 /* Calculate the address of the .got.plt entry. */
9781 got_address = (htab->sgotplt->output_section->vma
9782 + htab->sgotplt->output_offset
9783 + plt_index * 4);
9785 /* Calculate the offset of the .got.plt entry from
9786 _GLOBAL_OFFSET_TABLE_. */
9787 got_offset = mips_elf_gotplt_index (info, h);
9789 /* Calculate the offset for the branch at the start of the PLT
9790 entry. The branch jumps to the beginning of .plt. */
9791 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9793 /* Fill in the initial value of the .got.plt entry. */
9794 bfd_put_32 (output_bfd, plt_address,
9795 htab->sgotplt->contents + plt_index * 4);
9797 /* Find out where the .plt entry should go. */
9798 loc = htab->splt->contents + h->plt.offset;
9800 if (info->shared)
9802 plt_entry = mips_vxworks_shared_plt_entry;
9803 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9804 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9806 else
9808 bfd_vma got_address_high, got_address_low;
9810 plt_entry = mips_vxworks_exec_plt_entry;
9811 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9812 got_address_low = got_address & 0xffff;
9814 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9815 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9816 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9817 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9818 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9819 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9820 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9821 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9823 loc = (htab->srelplt2->contents
9824 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9826 /* Emit a relocation for the .got.plt entry. */
9827 rel.r_offset = got_address;
9828 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9829 rel.r_addend = h->plt.offset;
9830 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9832 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9833 loc += sizeof (Elf32_External_Rela);
9834 rel.r_offset = plt_address + 8;
9835 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9836 rel.r_addend = got_offset;
9837 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9839 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9840 loc += sizeof (Elf32_External_Rela);
9841 rel.r_offset += 4;
9842 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9843 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9846 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9847 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9848 rel.r_offset = got_address;
9849 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9850 rel.r_addend = 0;
9851 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9853 if (!h->def_regular)
9854 sym->st_shndx = SHN_UNDEF;
9857 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9859 sgot = htab->sgot;
9860 g = htab->got_info;
9861 BFD_ASSERT (g != NULL);
9863 /* See if this symbol has an entry in the GOT. */
9864 if (g->global_gotsym != NULL
9865 && h->dynindx >= g->global_gotsym->dynindx)
9867 bfd_vma offset;
9868 Elf_Internal_Rela outrel;
9869 bfd_byte *loc;
9870 asection *s;
9872 /* Install the symbol value in the GOT. */
9873 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9874 R_MIPS_GOT16, info);
9875 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9877 /* Add a dynamic relocation for it. */
9878 s = mips_elf_rel_dyn_section (info, FALSE);
9879 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9880 outrel.r_offset = (sgot->output_section->vma
9881 + sgot->output_offset
9882 + offset);
9883 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9884 outrel.r_addend = 0;
9885 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9888 /* Emit a copy reloc, if needed. */
9889 if (h->needs_copy)
9891 Elf_Internal_Rela rel;
9893 BFD_ASSERT (h->dynindx != -1);
9895 rel.r_offset = (h->root.u.def.section->output_section->vma
9896 + h->root.u.def.section->output_offset
9897 + h->root.u.def.value);
9898 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9899 rel.r_addend = 0;
9900 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9901 htab->srelbss->contents
9902 + (htab->srelbss->reloc_count
9903 * sizeof (Elf32_External_Rela)));
9904 ++htab->srelbss->reloc_count;
9907 /* If this is a mips16 symbol, force the value to be even. */
9908 if (ELF_ST_IS_MIPS16 (sym->st_other))
9909 sym->st_value &= ~1;
9911 return TRUE;
9914 /* Write out a plt0 entry to the beginning of .plt. */
9916 static void
9917 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9919 bfd_byte *loc;
9920 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9921 static const bfd_vma *plt_entry;
9922 struct mips_elf_link_hash_table *htab;
9924 htab = mips_elf_hash_table (info);
9925 BFD_ASSERT (htab != NULL);
9927 if (ABI_64_P (output_bfd))
9928 plt_entry = mips_n64_exec_plt0_entry;
9929 else if (ABI_N32_P (output_bfd))
9930 plt_entry = mips_n32_exec_plt0_entry;
9931 else
9932 plt_entry = mips_o32_exec_plt0_entry;
9934 /* Calculate the value of .got.plt. */
9935 gotplt_value = (htab->sgotplt->output_section->vma
9936 + htab->sgotplt->output_offset);
9937 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9938 gotplt_value_low = gotplt_value & 0xffff;
9940 /* The PLT sequence is not safe for N64 if .got.plt's address can
9941 not be loaded in two instructions. */
9942 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9943 || ~(gotplt_value | 0x7fffffff) == 0);
9945 /* Install the PLT header. */
9946 loc = htab->splt->contents;
9947 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9948 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9949 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9950 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9951 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9952 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9953 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9954 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9957 /* Install the PLT header for a VxWorks executable and finalize the
9958 contents of .rela.plt.unloaded. */
9960 static void
9961 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9963 Elf_Internal_Rela rela;
9964 bfd_byte *loc;
9965 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9966 static const bfd_vma *plt_entry;
9967 struct mips_elf_link_hash_table *htab;
9969 htab = mips_elf_hash_table (info);
9970 BFD_ASSERT (htab != NULL);
9972 plt_entry = mips_vxworks_exec_plt0_entry;
9974 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9975 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9976 + htab->root.hgot->root.u.def.section->output_offset
9977 + htab->root.hgot->root.u.def.value);
9979 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9980 got_value_low = got_value & 0xffff;
9982 /* Calculate the address of the PLT header. */
9983 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9985 /* Install the PLT header. */
9986 loc = htab->splt->contents;
9987 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9988 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9989 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9990 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9991 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9992 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9994 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9995 loc = htab->srelplt2->contents;
9996 rela.r_offset = plt_address;
9997 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9998 rela.r_addend = 0;
9999 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10000 loc += sizeof (Elf32_External_Rela);
10002 /* Output the relocation for the following addiu of
10003 %lo(_GLOBAL_OFFSET_TABLE_). */
10004 rela.r_offset += 4;
10005 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10006 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10007 loc += sizeof (Elf32_External_Rela);
10009 /* Fix up the remaining relocations. They may have the wrong
10010 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10011 in which symbols were output. */
10012 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10014 Elf_Internal_Rela rel;
10016 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10017 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10018 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10019 loc += sizeof (Elf32_External_Rela);
10021 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10022 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10023 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10024 loc += sizeof (Elf32_External_Rela);
10026 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10027 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10028 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10029 loc += sizeof (Elf32_External_Rela);
10033 /* Install the PLT header for a VxWorks shared library. */
10035 static void
10036 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10038 unsigned int i;
10039 struct mips_elf_link_hash_table *htab;
10041 htab = mips_elf_hash_table (info);
10042 BFD_ASSERT (htab != NULL);
10044 /* We just need to copy the entry byte-by-byte. */
10045 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10046 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10047 htab->splt->contents + i * 4);
10050 /* Finish up the dynamic sections. */
10052 bfd_boolean
10053 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10054 struct bfd_link_info *info)
10056 bfd *dynobj;
10057 asection *sdyn;
10058 asection *sgot;
10059 struct mips_got_info *gg, *g;
10060 struct mips_elf_link_hash_table *htab;
10062 htab = mips_elf_hash_table (info);
10063 BFD_ASSERT (htab != NULL);
10065 dynobj = elf_hash_table (info)->dynobj;
10067 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10069 sgot = htab->sgot;
10070 gg = htab->got_info;
10072 if (elf_hash_table (info)->dynamic_sections_created)
10074 bfd_byte *b;
10075 int dyn_to_skip = 0, dyn_skipped = 0;
10077 BFD_ASSERT (sdyn != NULL);
10078 BFD_ASSERT (gg != NULL);
10080 g = mips_elf_got_for_ibfd (gg, output_bfd);
10081 BFD_ASSERT (g != NULL);
10083 for (b = sdyn->contents;
10084 b < sdyn->contents + sdyn->size;
10085 b += MIPS_ELF_DYN_SIZE (dynobj))
10087 Elf_Internal_Dyn dyn;
10088 const char *name;
10089 size_t elemsize;
10090 asection *s;
10091 bfd_boolean swap_out_p;
10093 /* Read in the current dynamic entry. */
10094 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10096 /* Assume that we're going to modify it and write it out. */
10097 swap_out_p = TRUE;
10099 switch (dyn.d_tag)
10101 case DT_RELENT:
10102 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10103 break;
10105 case DT_RELAENT:
10106 BFD_ASSERT (htab->is_vxworks);
10107 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10108 break;
10110 case DT_STRSZ:
10111 /* Rewrite DT_STRSZ. */
10112 dyn.d_un.d_val =
10113 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10114 break;
10116 case DT_PLTGOT:
10117 s = htab->sgot;
10118 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10119 break;
10121 case DT_MIPS_PLTGOT:
10122 s = htab->sgotplt;
10123 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10124 break;
10126 case DT_MIPS_RLD_VERSION:
10127 dyn.d_un.d_val = 1; /* XXX */
10128 break;
10130 case DT_MIPS_FLAGS:
10131 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10132 break;
10134 case DT_MIPS_TIME_STAMP:
10136 time_t t;
10137 time (&t);
10138 dyn.d_un.d_val = t;
10140 break;
10142 case DT_MIPS_ICHECKSUM:
10143 /* XXX FIXME: */
10144 swap_out_p = FALSE;
10145 break;
10147 case DT_MIPS_IVERSION:
10148 /* XXX FIXME: */
10149 swap_out_p = FALSE;
10150 break;
10152 case DT_MIPS_BASE_ADDRESS:
10153 s = output_bfd->sections;
10154 BFD_ASSERT (s != NULL);
10155 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10156 break;
10158 case DT_MIPS_LOCAL_GOTNO:
10159 dyn.d_un.d_val = g->local_gotno;
10160 break;
10162 case DT_MIPS_UNREFEXTNO:
10163 /* The index into the dynamic symbol table which is the
10164 entry of the first external symbol that is not
10165 referenced within the same object. */
10166 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10167 break;
10169 case DT_MIPS_GOTSYM:
10170 if (gg->global_gotsym)
10172 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10173 break;
10175 /* In case if we don't have global got symbols we default
10176 to setting DT_MIPS_GOTSYM to the same value as
10177 DT_MIPS_SYMTABNO, so we just fall through. */
10179 case DT_MIPS_SYMTABNO:
10180 name = ".dynsym";
10181 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10182 s = bfd_get_section_by_name (output_bfd, name);
10183 BFD_ASSERT (s != NULL);
10185 dyn.d_un.d_val = s->size / elemsize;
10186 break;
10188 case DT_MIPS_HIPAGENO:
10189 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10190 break;
10192 case DT_MIPS_RLD_MAP:
10193 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10194 break;
10196 case DT_MIPS_OPTIONS:
10197 s = (bfd_get_section_by_name
10198 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10199 dyn.d_un.d_ptr = s->vma;
10200 break;
10202 case DT_RELASZ:
10203 BFD_ASSERT (htab->is_vxworks);
10204 /* The count does not include the JUMP_SLOT relocations. */
10205 if (htab->srelplt)
10206 dyn.d_un.d_val -= htab->srelplt->size;
10207 break;
10209 case DT_PLTREL:
10210 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10211 if (htab->is_vxworks)
10212 dyn.d_un.d_val = DT_RELA;
10213 else
10214 dyn.d_un.d_val = DT_REL;
10215 break;
10217 case DT_PLTRELSZ:
10218 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10219 dyn.d_un.d_val = htab->srelplt->size;
10220 break;
10222 case DT_JMPREL:
10223 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10224 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10225 + htab->srelplt->output_offset);
10226 break;
10228 case DT_TEXTREL:
10229 /* If we didn't need any text relocations after all, delete
10230 the dynamic tag. */
10231 if (!(info->flags & DF_TEXTREL))
10233 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10234 swap_out_p = FALSE;
10236 break;
10238 case DT_FLAGS:
10239 /* If we didn't need any text relocations after all, clear
10240 DF_TEXTREL from DT_FLAGS. */
10241 if (!(info->flags & DF_TEXTREL))
10242 dyn.d_un.d_val &= ~DF_TEXTREL;
10243 else
10244 swap_out_p = FALSE;
10245 break;
10247 default:
10248 swap_out_p = FALSE;
10249 if (htab->is_vxworks
10250 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10251 swap_out_p = TRUE;
10252 break;
10255 if (swap_out_p || dyn_skipped)
10256 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10257 (dynobj, &dyn, b - dyn_skipped);
10259 if (dyn_to_skip)
10261 dyn_skipped += dyn_to_skip;
10262 dyn_to_skip = 0;
10266 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10267 if (dyn_skipped > 0)
10268 memset (b - dyn_skipped, 0, dyn_skipped);
10271 if (sgot != NULL && sgot->size > 0
10272 && !bfd_is_abs_section (sgot->output_section))
10274 if (htab->is_vxworks)
10276 /* The first entry of the global offset table points to the
10277 ".dynamic" section. The second is initialized by the
10278 loader and contains the shared library identifier.
10279 The third is also initialized by the loader and points
10280 to the lazy resolution stub. */
10281 MIPS_ELF_PUT_WORD (output_bfd,
10282 sdyn->output_offset + sdyn->output_section->vma,
10283 sgot->contents);
10284 MIPS_ELF_PUT_WORD (output_bfd, 0,
10285 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10286 MIPS_ELF_PUT_WORD (output_bfd, 0,
10287 sgot->contents
10288 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10290 else
10292 /* The first entry of the global offset table will be filled at
10293 runtime. The second entry will be used by some runtime loaders.
10294 This isn't the case of IRIX rld. */
10295 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10296 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10297 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10300 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10301 = MIPS_ELF_GOT_SIZE (output_bfd);
10304 /* Generate dynamic relocations for the non-primary gots. */
10305 if (gg != NULL && gg->next)
10307 Elf_Internal_Rela rel[3];
10308 bfd_vma addend = 0;
10310 memset (rel, 0, sizeof (rel));
10311 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10313 for (g = gg->next; g->next != gg; g = g->next)
10315 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10316 + g->next->tls_gotno;
10318 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10319 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10320 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10321 sgot->contents
10322 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10324 if (! info->shared)
10325 continue;
10327 while (got_index < g->assigned_gotno)
10329 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10330 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10331 if (!(mips_elf_create_dynamic_relocation
10332 (output_bfd, info, rel, NULL,
10333 bfd_abs_section_ptr,
10334 0, &addend, sgot)))
10335 return FALSE;
10336 BFD_ASSERT (addend == 0);
10341 /* The generation of dynamic relocations for the non-primary gots
10342 adds more dynamic relocations. We cannot count them until
10343 here. */
10345 if (elf_hash_table (info)->dynamic_sections_created)
10347 bfd_byte *b;
10348 bfd_boolean swap_out_p;
10350 BFD_ASSERT (sdyn != NULL);
10352 for (b = sdyn->contents;
10353 b < sdyn->contents + sdyn->size;
10354 b += MIPS_ELF_DYN_SIZE (dynobj))
10356 Elf_Internal_Dyn dyn;
10357 asection *s;
10359 /* Read in the current dynamic entry. */
10360 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10362 /* Assume that we're going to modify it and write it out. */
10363 swap_out_p = TRUE;
10365 switch (dyn.d_tag)
10367 case DT_RELSZ:
10368 /* Reduce DT_RELSZ to account for any relocations we
10369 decided not to make. This is for the n64 irix rld,
10370 which doesn't seem to apply any relocations if there
10371 are trailing null entries. */
10372 s = mips_elf_rel_dyn_section (info, FALSE);
10373 dyn.d_un.d_val = (s->reloc_count
10374 * (ABI_64_P (output_bfd)
10375 ? sizeof (Elf64_Mips_External_Rel)
10376 : sizeof (Elf32_External_Rel)));
10377 /* Adjust the section size too. Tools like the prelinker
10378 can reasonably expect the values to the same. */
10379 elf_section_data (s->output_section)->this_hdr.sh_size
10380 = dyn.d_un.d_val;
10381 break;
10383 default:
10384 swap_out_p = FALSE;
10385 break;
10388 if (swap_out_p)
10389 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10390 (dynobj, &dyn, b);
10395 asection *s;
10396 Elf32_compact_rel cpt;
10398 if (SGI_COMPAT (output_bfd))
10400 /* Write .compact_rel section out. */
10401 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10402 if (s != NULL)
10404 cpt.id1 = 1;
10405 cpt.num = s->reloc_count;
10406 cpt.id2 = 2;
10407 cpt.offset = (s->output_section->filepos
10408 + sizeof (Elf32_External_compact_rel));
10409 cpt.reserved0 = 0;
10410 cpt.reserved1 = 0;
10411 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10412 ((Elf32_External_compact_rel *)
10413 s->contents));
10415 /* Clean up a dummy stub function entry in .text. */
10416 if (htab->sstubs != NULL)
10418 file_ptr dummy_offset;
10420 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10421 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10422 memset (htab->sstubs->contents + dummy_offset, 0,
10423 htab->function_stub_size);
10428 /* The psABI says that the dynamic relocations must be sorted in
10429 increasing order of r_symndx. The VxWorks EABI doesn't require
10430 this, and because the code below handles REL rather than RELA
10431 relocations, using it for VxWorks would be outright harmful. */
10432 if (!htab->is_vxworks)
10434 s = mips_elf_rel_dyn_section (info, FALSE);
10435 if (s != NULL
10436 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10438 reldyn_sorting_bfd = output_bfd;
10440 if (ABI_64_P (output_bfd))
10441 qsort ((Elf64_External_Rel *) s->contents + 1,
10442 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10443 sort_dynamic_relocs_64);
10444 else
10445 qsort ((Elf32_External_Rel *) s->contents + 1,
10446 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10447 sort_dynamic_relocs);
10452 if (htab->splt && htab->splt->size > 0)
10454 if (htab->is_vxworks)
10456 if (info->shared)
10457 mips_vxworks_finish_shared_plt (output_bfd, info);
10458 else
10459 mips_vxworks_finish_exec_plt (output_bfd, info);
10461 else
10463 BFD_ASSERT (!info->shared);
10464 mips_finish_exec_plt (output_bfd, info);
10467 return TRUE;
10471 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10473 static void
10474 mips_set_isa_flags (bfd *abfd)
10476 flagword val;
10478 switch (bfd_get_mach (abfd))
10480 default:
10481 case bfd_mach_mips3000:
10482 val = E_MIPS_ARCH_1;
10483 break;
10485 case bfd_mach_mips3900:
10486 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10487 break;
10489 case bfd_mach_mips6000:
10490 val = E_MIPS_ARCH_2;
10491 break;
10493 case bfd_mach_mips4000:
10494 case bfd_mach_mips4300:
10495 case bfd_mach_mips4400:
10496 case bfd_mach_mips4600:
10497 val = E_MIPS_ARCH_3;
10498 break;
10500 case bfd_mach_mips4010:
10501 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10502 break;
10504 case bfd_mach_mips4100:
10505 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10506 break;
10508 case bfd_mach_mips4111:
10509 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10510 break;
10512 case bfd_mach_mips4120:
10513 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10514 break;
10516 case bfd_mach_mips4650:
10517 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10518 break;
10520 case bfd_mach_mips5400:
10521 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10522 break;
10524 case bfd_mach_mips5500:
10525 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10526 break;
10528 case bfd_mach_mips9000:
10529 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10530 break;
10532 case bfd_mach_mips5000:
10533 case bfd_mach_mips7000:
10534 case bfd_mach_mips8000:
10535 case bfd_mach_mips10000:
10536 case bfd_mach_mips12000:
10537 case bfd_mach_mips14000:
10538 case bfd_mach_mips16000:
10539 val = E_MIPS_ARCH_4;
10540 break;
10542 case bfd_mach_mips5:
10543 val = E_MIPS_ARCH_5;
10544 break;
10546 case bfd_mach_mips_loongson_2e:
10547 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10548 break;
10550 case bfd_mach_mips_loongson_2f:
10551 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10552 break;
10554 case bfd_mach_mips_sb1:
10555 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10556 break;
10558 case bfd_mach_mips_octeon:
10559 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10560 break;
10562 case bfd_mach_mips_xlr:
10563 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10564 break;
10566 case bfd_mach_mipsisa32:
10567 val = E_MIPS_ARCH_32;
10568 break;
10570 case bfd_mach_mipsisa64:
10571 val = E_MIPS_ARCH_64;
10572 break;
10574 case bfd_mach_mipsisa32r2:
10575 val = E_MIPS_ARCH_32R2;
10576 break;
10578 case bfd_mach_mipsisa64r2:
10579 val = E_MIPS_ARCH_64R2;
10580 break;
10582 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10583 elf_elfheader (abfd)->e_flags |= val;
10588 /* The final processing done just before writing out a MIPS ELF object
10589 file. This gets the MIPS architecture right based on the machine
10590 number. This is used by both the 32-bit and the 64-bit ABI. */
10592 void
10593 _bfd_mips_elf_final_write_processing (bfd *abfd,
10594 bfd_boolean linker ATTRIBUTE_UNUSED)
10596 unsigned int i;
10597 Elf_Internal_Shdr **hdrpp;
10598 const char *name;
10599 asection *sec;
10601 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10602 is nonzero. This is for compatibility with old objects, which used
10603 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10604 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10605 mips_set_isa_flags (abfd);
10607 /* Set the sh_info field for .gptab sections and other appropriate
10608 info for each special section. */
10609 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10610 i < elf_numsections (abfd);
10611 i++, hdrpp++)
10613 switch ((*hdrpp)->sh_type)
10615 case SHT_MIPS_MSYM:
10616 case SHT_MIPS_LIBLIST:
10617 sec = bfd_get_section_by_name (abfd, ".dynstr");
10618 if (sec != NULL)
10619 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10620 break;
10622 case SHT_MIPS_GPTAB:
10623 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10624 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10625 BFD_ASSERT (name != NULL
10626 && CONST_STRNEQ (name, ".gptab."));
10627 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10628 BFD_ASSERT (sec != NULL);
10629 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10630 break;
10632 case SHT_MIPS_CONTENT:
10633 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10634 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10635 BFD_ASSERT (name != NULL
10636 && CONST_STRNEQ (name, ".MIPS.content"));
10637 sec = bfd_get_section_by_name (abfd,
10638 name + sizeof ".MIPS.content" - 1);
10639 BFD_ASSERT (sec != NULL);
10640 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10641 break;
10643 case SHT_MIPS_SYMBOL_LIB:
10644 sec = bfd_get_section_by_name (abfd, ".dynsym");
10645 if (sec != NULL)
10646 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10647 sec = bfd_get_section_by_name (abfd, ".liblist");
10648 if (sec != NULL)
10649 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10650 break;
10652 case SHT_MIPS_EVENTS:
10653 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10654 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10655 BFD_ASSERT (name != NULL);
10656 if (CONST_STRNEQ (name, ".MIPS.events"))
10657 sec = bfd_get_section_by_name (abfd,
10658 name + sizeof ".MIPS.events" - 1);
10659 else
10661 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10662 sec = bfd_get_section_by_name (abfd,
10663 (name
10664 + sizeof ".MIPS.post_rel" - 1));
10666 BFD_ASSERT (sec != NULL);
10667 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10668 break;
10674 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10675 segments. */
10678 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10679 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10681 asection *s;
10682 int ret = 0;
10684 /* See if we need a PT_MIPS_REGINFO segment. */
10685 s = bfd_get_section_by_name (abfd, ".reginfo");
10686 if (s && (s->flags & SEC_LOAD))
10687 ++ret;
10689 /* See if we need a PT_MIPS_OPTIONS segment. */
10690 if (IRIX_COMPAT (abfd) == ict_irix6
10691 && bfd_get_section_by_name (abfd,
10692 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10693 ++ret;
10695 /* See if we need a PT_MIPS_RTPROC segment. */
10696 if (IRIX_COMPAT (abfd) == ict_irix5
10697 && bfd_get_section_by_name (abfd, ".dynamic")
10698 && bfd_get_section_by_name (abfd, ".mdebug"))
10699 ++ret;
10701 /* Allocate a PT_NULL header in dynamic objects. See
10702 _bfd_mips_elf_modify_segment_map for details. */
10703 if (!SGI_COMPAT (abfd)
10704 && bfd_get_section_by_name (abfd, ".dynamic"))
10705 ++ret;
10707 return ret;
10710 /* Modify the segment map for an IRIX5 executable. */
10712 bfd_boolean
10713 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10714 struct bfd_link_info *info)
10716 asection *s;
10717 struct elf_segment_map *m, **pm;
10718 bfd_size_type amt;
10720 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10721 segment. */
10722 s = bfd_get_section_by_name (abfd, ".reginfo");
10723 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10725 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10726 if (m->p_type == PT_MIPS_REGINFO)
10727 break;
10728 if (m == NULL)
10730 amt = sizeof *m;
10731 m = bfd_zalloc (abfd, amt);
10732 if (m == NULL)
10733 return FALSE;
10735 m->p_type = PT_MIPS_REGINFO;
10736 m->count = 1;
10737 m->sections[0] = s;
10739 /* We want to put it after the PHDR and INTERP segments. */
10740 pm = &elf_tdata (abfd)->segment_map;
10741 while (*pm != NULL
10742 && ((*pm)->p_type == PT_PHDR
10743 || (*pm)->p_type == PT_INTERP))
10744 pm = &(*pm)->next;
10746 m->next = *pm;
10747 *pm = m;
10751 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10752 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10753 PT_MIPS_OPTIONS segment immediately following the program header
10754 table. */
10755 if (NEWABI_P (abfd)
10756 /* On non-IRIX6 new abi, we'll have already created a segment
10757 for this section, so don't create another. I'm not sure this
10758 is not also the case for IRIX 6, but I can't test it right
10759 now. */
10760 && IRIX_COMPAT (abfd) == ict_irix6)
10762 for (s = abfd->sections; s; s = s->next)
10763 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10764 break;
10766 if (s)
10768 struct elf_segment_map *options_segment;
10770 pm = &elf_tdata (abfd)->segment_map;
10771 while (*pm != NULL
10772 && ((*pm)->p_type == PT_PHDR
10773 || (*pm)->p_type == PT_INTERP))
10774 pm = &(*pm)->next;
10776 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10778 amt = sizeof (struct elf_segment_map);
10779 options_segment = bfd_zalloc (abfd, amt);
10780 options_segment->next = *pm;
10781 options_segment->p_type = PT_MIPS_OPTIONS;
10782 options_segment->p_flags = PF_R;
10783 options_segment->p_flags_valid = TRUE;
10784 options_segment->count = 1;
10785 options_segment->sections[0] = s;
10786 *pm = options_segment;
10790 else
10792 if (IRIX_COMPAT (abfd) == ict_irix5)
10794 /* If there are .dynamic and .mdebug sections, we make a room
10795 for the RTPROC header. FIXME: Rewrite without section names. */
10796 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10797 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10798 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10800 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10801 if (m->p_type == PT_MIPS_RTPROC)
10802 break;
10803 if (m == NULL)
10805 amt = sizeof *m;
10806 m = bfd_zalloc (abfd, amt);
10807 if (m == NULL)
10808 return FALSE;
10810 m->p_type = PT_MIPS_RTPROC;
10812 s = bfd_get_section_by_name (abfd, ".rtproc");
10813 if (s == NULL)
10815 m->count = 0;
10816 m->p_flags = 0;
10817 m->p_flags_valid = 1;
10819 else
10821 m->count = 1;
10822 m->sections[0] = s;
10825 /* We want to put it after the DYNAMIC segment. */
10826 pm = &elf_tdata (abfd)->segment_map;
10827 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10828 pm = &(*pm)->next;
10829 if (*pm != NULL)
10830 pm = &(*pm)->next;
10832 m->next = *pm;
10833 *pm = m;
10837 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10838 .dynstr, .dynsym, and .hash sections, and everything in
10839 between. */
10840 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10841 pm = &(*pm)->next)
10842 if ((*pm)->p_type == PT_DYNAMIC)
10843 break;
10844 m = *pm;
10845 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10847 /* For a normal mips executable the permissions for the PT_DYNAMIC
10848 segment are read, write and execute. We do that here since
10849 the code in elf.c sets only the read permission. This matters
10850 sometimes for the dynamic linker. */
10851 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10853 m->p_flags = PF_R | PF_W | PF_X;
10854 m->p_flags_valid = 1;
10857 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10858 glibc's dynamic linker has traditionally derived the number of
10859 tags from the p_filesz field, and sometimes allocates stack
10860 arrays of that size. An overly-big PT_DYNAMIC segment can
10861 be actively harmful in such cases. Making PT_DYNAMIC contain
10862 other sections can also make life hard for the prelinker,
10863 which might move one of the other sections to a different
10864 PT_LOAD segment. */
10865 if (SGI_COMPAT (abfd)
10866 && m != NULL
10867 && m->count == 1
10868 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10870 static const char *sec_names[] =
10872 ".dynamic", ".dynstr", ".dynsym", ".hash"
10874 bfd_vma low, high;
10875 unsigned int i, c;
10876 struct elf_segment_map *n;
10878 low = ~(bfd_vma) 0;
10879 high = 0;
10880 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10882 s = bfd_get_section_by_name (abfd, sec_names[i]);
10883 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10885 bfd_size_type sz;
10887 if (low > s->vma)
10888 low = s->vma;
10889 sz = s->size;
10890 if (high < s->vma + sz)
10891 high = s->vma + sz;
10895 c = 0;
10896 for (s = abfd->sections; s != NULL; s = s->next)
10897 if ((s->flags & SEC_LOAD) != 0
10898 && s->vma >= low
10899 && s->vma + s->size <= high)
10900 ++c;
10902 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10903 n = bfd_zalloc (abfd, amt);
10904 if (n == NULL)
10905 return FALSE;
10906 *n = *m;
10907 n->count = c;
10909 i = 0;
10910 for (s = abfd->sections; s != NULL; s = s->next)
10912 if ((s->flags & SEC_LOAD) != 0
10913 && s->vma >= low
10914 && s->vma + s->size <= high)
10916 n->sections[i] = s;
10917 ++i;
10921 *pm = n;
10925 /* Allocate a spare program header in dynamic objects so that tools
10926 like the prelinker can add an extra PT_LOAD entry.
10928 If the prelinker needs to make room for a new PT_LOAD entry, its
10929 standard procedure is to move the first (read-only) sections into
10930 the new (writable) segment. However, the MIPS ABI requires
10931 .dynamic to be in a read-only segment, and the section will often
10932 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10934 Although the prelinker could in principle move .dynamic to a
10935 writable segment, it seems better to allocate a spare program
10936 header instead, and avoid the need to move any sections.
10937 There is a long tradition of allocating spare dynamic tags,
10938 so allocating a spare program header seems like a natural
10939 extension.
10941 If INFO is NULL, we may be copying an already prelinked binary
10942 with objcopy or strip, so do not add this header. */
10943 if (info != NULL
10944 && !SGI_COMPAT (abfd)
10945 && bfd_get_section_by_name (abfd, ".dynamic"))
10947 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10948 if ((*pm)->p_type == PT_NULL)
10949 break;
10950 if (*pm == NULL)
10952 m = bfd_zalloc (abfd, sizeof (*m));
10953 if (m == NULL)
10954 return FALSE;
10956 m->p_type = PT_NULL;
10957 *pm = m;
10961 return TRUE;
10964 /* Return the section that should be marked against GC for a given
10965 relocation. */
10967 asection *
10968 _bfd_mips_elf_gc_mark_hook (asection *sec,
10969 struct bfd_link_info *info,
10970 Elf_Internal_Rela *rel,
10971 struct elf_link_hash_entry *h,
10972 Elf_Internal_Sym *sym)
10974 /* ??? Do mips16 stub sections need to be handled special? */
10976 if (h != NULL)
10977 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10979 case R_MIPS_GNU_VTINHERIT:
10980 case R_MIPS_GNU_VTENTRY:
10981 return NULL;
10984 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10987 /* Update the got entry reference counts for the section being removed. */
10989 bfd_boolean
10990 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10991 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10992 asection *sec ATTRIBUTE_UNUSED,
10993 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10995 #if 0
10996 Elf_Internal_Shdr *symtab_hdr;
10997 struct elf_link_hash_entry **sym_hashes;
10998 bfd_signed_vma *local_got_refcounts;
10999 const Elf_Internal_Rela *rel, *relend;
11000 unsigned long r_symndx;
11001 struct elf_link_hash_entry *h;
11003 if (info->relocatable)
11004 return TRUE;
11006 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11007 sym_hashes = elf_sym_hashes (abfd);
11008 local_got_refcounts = elf_local_got_refcounts (abfd);
11010 relend = relocs + sec->reloc_count;
11011 for (rel = relocs; rel < relend; rel++)
11012 switch (ELF_R_TYPE (abfd, rel->r_info))
11014 case R_MIPS16_GOT16:
11015 case R_MIPS16_CALL16:
11016 case R_MIPS_GOT16:
11017 case R_MIPS_CALL16:
11018 case R_MIPS_CALL_HI16:
11019 case R_MIPS_CALL_LO16:
11020 case R_MIPS_GOT_HI16:
11021 case R_MIPS_GOT_LO16:
11022 case R_MIPS_GOT_DISP:
11023 case R_MIPS_GOT_PAGE:
11024 case R_MIPS_GOT_OFST:
11025 /* ??? It would seem that the existing MIPS code does no sort
11026 of reference counting or whatnot on its GOT and PLT entries,
11027 so it is not possible to garbage collect them at this time. */
11028 break;
11030 default:
11031 break;
11033 #endif
11035 return TRUE;
11038 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11039 hiding the old indirect symbol. Process additional relocation
11040 information. Also called for weakdefs, in which case we just let
11041 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11043 void
11044 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11045 struct elf_link_hash_entry *dir,
11046 struct elf_link_hash_entry *ind)
11048 struct mips_elf_link_hash_entry *dirmips, *indmips;
11050 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11052 dirmips = (struct mips_elf_link_hash_entry *) dir;
11053 indmips = (struct mips_elf_link_hash_entry *) ind;
11054 /* Any absolute non-dynamic relocations against an indirect or weak
11055 definition will be against the target symbol. */
11056 if (indmips->has_static_relocs)
11057 dirmips->has_static_relocs = TRUE;
11059 if (ind->root.type != bfd_link_hash_indirect)
11060 return;
11062 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11063 if (indmips->readonly_reloc)
11064 dirmips->readonly_reloc = TRUE;
11065 if (indmips->no_fn_stub)
11066 dirmips->no_fn_stub = TRUE;
11067 if (indmips->fn_stub)
11069 dirmips->fn_stub = indmips->fn_stub;
11070 indmips->fn_stub = NULL;
11072 if (indmips->need_fn_stub)
11074 dirmips->need_fn_stub = TRUE;
11075 indmips->need_fn_stub = FALSE;
11077 if (indmips->call_stub)
11079 dirmips->call_stub = indmips->call_stub;
11080 indmips->call_stub = NULL;
11082 if (indmips->call_fp_stub)
11084 dirmips->call_fp_stub = indmips->call_fp_stub;
11085 indmips->call_fp_stub = NULL;
11087 if (indmips->global_got_area < dirmips->global_got_area)
11088 dirmips->global_got_area = indmips->global_got_area;
11089 if (indmips->global_got_area < GGA_NONE)
11090 indmips->global_got_area = GGA_NONE;
11091 if (indmips->has_nonpic_branches)
11092 dirmips->has_nonpic_branches = TRUE;
11094 if (dirmips->tls_type == 0)
11095 dirmips->tls_type = indmips->tls_type;
11098 #define PDR_SIZE 32
11100 bfd_boolean
11101 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11102 struct bfd_link_info *info)
11104 asection *o;
11105 bfd_boolean ret = FALSE;
11106 unsigned char *tdata;
11107 size_t i, skip;
11109 o = bfd_get_section_by_name (abfd, ".pdr");
11110 if (! o)
11111 return FALSE;
11112 if (o->size == 0)
11113 return FALSE;
11114 if (o->size % PDR_SIZE != 0)
11115 return FALSE;
11116 if (o->output_section != NULL
11117 && bfd_is_abs_section (o->output_section))
11118 return FALSE;
11120 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11121 if (! tdata)
11122 return FALSE;
11124 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11125 info->keep_memory);
11126 if (!cookie->rels)
11128 free (tdata);
11129 return FALSE;
11132 cookie->rel = cookie->rels;
11133 cookie->relend = cookie->rels + o->reloc_count;
11135 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11137 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11139 tdata[i] = 1;
11140 skip ++;
11144 if (skip != 0)
11146 mips_elf_section_data (o)->u.tdata = tdata;
11147 o->size -= skip * PDR_SIZE;
11148 ret = TRUE;
11150 else
11151 free (tdata);
11153 if (! info->keep_memory)
11154 free (cookie->rels);
11156 return ret;
11159 bfd_boolean
11160 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11162 if (strcmp (sec->name, ".pdr") == 0)
11163 return TRUE;
11164 return FALSE;
11167 bfd_boolean
11168 _bfd_mips_elf_write_section (bfd *output_bfd,
11169 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11170 asection *sec, bfd_byte *contents)
11172 bfd_byte *to, *from, *end;
11173 int i;
11175 if (strcmp (sec->name, ".pdr") != 0)
11176 return FALSE;
11178 if (mips_elf_section_data (sec)->u.tdata == NULL)
11179 return FALSE;
11181 to = contents;
11182 end = contents + sec->size;
11183 for (from = contents, i = 0;
11184 from < end;
11185 from += PDR_SIZE, i++)
11187 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11188 continue;
11189 if (to != from)
11190 memcpy (to, from, PDR_SIZE);
11191 to += PDR_SIZE;
11193 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11194 sec->output_offset, sec->size);
11195 return TRUE;
11198 /* MIPS ELF uses a special find_nearest_line routine in order the
11199 handle the ECOFF debugging information. */
11201 struct mips_elf_find_line
11203 struct ecoff_debug_info d;
11204 struct ecoff_find_line i;
11207 bfd_boolean
11208 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11209 asymbol **symbols, bfd_vma offset,
11210 const char **filename_ptr,
11211 const char **functionname_ptr,
11212 unsigned int *line_ptr)
11214 asection *msec;
11216 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11217 filename_ptr, functionname_ptr,
11218 line_ptr))
11219 return TRUE;
11221 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11222 filename_ptr, functionname_ptr,
11223 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11224 &elf_tdata (abfd)->dwarf2_find_line_info))
11225 return TRUE;
11227 msec = bfd_get_section_by_name (abfd, ".mdebug");
11228 if (msec != NULL)
11230 flagword origflags;
11231 struct mips_elf_find_line *fi;
11232 const struct ecoff_debug_swap * const swap =
11233 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11235 /* If we are called during a link, mips_elf_final_link may have
11236 cleared the SEC_HAS_CONTENTS field. We force it back on here
11237 if appropriate (which it normally will be). */
11238 origflags = msec->flags;
11239 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11240 msec->flags |= SEC_HAS_CONTENTS;
11242 fi = elf_tdata (abfd)->find_line_info;
11243 if (fi == NULL)
11245 bfd_size_type external_fdr_size;
11246 char *fraw_src;
11247 char *fraw_end;
11248 struct fdr *fdr_ptr;
11249 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11251 fi = bfd_zalloc (abfd, amt);
11252 if (fi == NULL)
11254 msec->flags = origflags;
11255 return FALSE;
11258 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11260 msec->flags = origflags;
11261 return FALSE;
11264 /* Swap in the FDR information. */
11265 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11266 fi->d.fdr = bfd_alloc (abfd, amt);
11267 if (fi->d.fdr == NULL)
11269 msec->flags = origflags;
11270 return FALSE;
11272 external_fdr_size = swap->external_fdr_size;
11273 fdr_ptr = fi->d.fdr;
11274 fraw_src = (char *) fi->d.external_fdr;
11275 fraw_end = (fraw_src
11276 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11277 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11278 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11280 elf_tdata (abfd)->find_line_info = fi;
11282 /* Note that we don't bother to ever free this information.
11283 find_nearest_line is either called all the time, as in
11284 objdump -l, so the information should be saved, or it is
11285 rarely called, as in ld error messages, so the memory
11286 wasted is unimportant. Still, it would probably be a
11287 good idea for free_cached_info to throw it away. */
11290 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11291 &fi->i, filename_ptr, functionname_ptr,
11292 line_ptr))
11294 msec->flags = origflags;
11295 return TRUE;
11298 msec->flags = origflags;
11301 /* Fall back on the generic ELF find_nearest_line routine. */
11303 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11304 filename_ptr, functionname_ptr,
11305 line_ptr);
11308 bfd_boolean
11309 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11310 const char **filename_ptr,
11311 const char **functionname_ptr,
11312 unsigned int *line_ptr)
11314 bfd_boolean found;
11315 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11316 functionname_ptr, line_ptr,
11317 & elf_tdata (abfd)->dwarf2_find_line_info);
11318 return found;
11322 /* When are writing out the .options or .MIPS.options section,
11323 remember the bytes we are writing out, so that we can install the
11324 GP value in the section_processing routine. */
11326 bfd_boolean
11327 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11328 const void *location,
11329 file_ptr offset, bfd_size_type count)
11331 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11333 bfd_byte *c;
11335 if (elf_section_data (section) == NULL)
11337 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11338 section->used_by_bfd = bfd_zalloc (abfd, amt);
11339 if (elf_section_data (section) == NULL)
11340 return FALSE;
11342 c = mips_elf_section_data (section)->u.tdata;
11343 if (c == NULL)
11345 c = bfd_zalloc (abfd, section->size);
11346 if (c == NULL)
11347 return FALSE;
11348 mips_elf_section_data (section)->u.tdata = c;
11351 memcpy (c + offset, location, count);
11354 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11355 count);
11358 /* This is almost identical to bfd_generic_get_... except that some
11359 MIPS relocations need to be handled specially. Sigh. */
11361 bfd_byte *
11362 _bfd_elf_mips_get_relocated_section_contents
11363 (bfd *abfd,
11364 struct bfd_link_info *link_info,
11365 struct bfd_link_order *link_order,
11366 bfd_byte *data,
11367 bfd_boolean relocatable,
11368 asymbol **symbols)
11370 /* Get enough memory to hold the stuff */
11371 bfd *input_bfd = link_order->u.indirect.section->owner;
11372 asection *input_section = link_order->u.indirect.section;
11373 bfd_size_type sz;
11375 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11376 arelent **reloc_vector = NULL;
11377 long reloc_count;
11379 if (reloc_size < 0)
11380 goto error_return;
11382 reloc_vector = bfd_malloc (reloc_size);
11383 if (reloc_vector == NULL && reloc_size != 0)
11384 goto error_return;
11386 /* read in the section */
11387 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11388 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11389 goto error_return;
11391 reloc_count = bfd_canonicalize_reloc (input_bfd,
11392 input_section,
11393 reloc_vector,
11394 symbols);
11395 if (reloc_count < 0)
11396 goto error_return;
11398 if (reloc_count > 0)
11400 arelent **parent;
11401 /* for mips */
11402 int gp_found;
11403 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11406 struct bfd_hash_entry *h;
11407 struct bfd_link_hash_entry *lh;
11408 /* Skip all this stuff if we aren't mixing formats. */
11409 if (abfd && input_bfd
11410 && abfd->xvec == input_bfd->xvec)
11411 lh = 0;
11412 else
11414 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11415 lh = (struct bfd_link_hash_entry *) h;
11417 lookup:
11418 if (lh)
11420 switch (lh->type)
11422 case bfd_link_hash_undefined:
11423 case bfd_link_hash_undefweak:
11424 case bfd_link_hash_common:
11425 gp_found = 0;
11426 break;
11427 case bfd_link_hash_defined:
11428 case bfd_link_hash_defweak:
11429 gp_found = 1;
11430 gp = lh->u.def.value;
11431 break;
11432 case bfd_link_hash_indirect:
11433 case bfd_link_hash_warning:
11434 lh = lh->u.i.link;
11435 /* @@FIXME ignoring warning for now */
11436 goto lookup;
11437 case bfd_link_hash_new:
11438 default:
11439 abort ();
11442 else
11443 gp_found = 0;
11445 /* end mips */
11446 for (parent = reloc_vector; *parent != NULL; parent++)
11448 char *error_message = NULL;
11449 bfd_reloc_status_type r;
11451 /* Specific to MIPS: Deal with relocation types that require
11452 knowing the gp of the output bfd. */
11453 asymbol *sym = *(*parent)->sym_ptr_ptr;
11455 /* If we've managed to find the gp and have a special
11456 function for the relocation then go ahead, else default
11457 to the generic handling. */
11458 if (gp_found
11459 && (*parent)->howto->special_function
11460 == _bfd_mips_elf32_gprel16_reloc)
11461 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11462 input_section, relocatable,
11463 data, gp);
11464 else
11465 r = bfd_perform_relocation (input_bfd, *parent, data,
11466 input_section,
11467 relocatable ? abfd : NULL,
11468 &error_message);
11470 if (relocatable)
11472 asection *os = input_section->output_section;
11474 /* A partial link, so keep the relocs */
11475 os->orelocation[os->reloc_count] = *parent;
11476 os->reloc_count++;
11479 if (r != bfd_reloc_ok)
11481 switch (r)
11483 case bfd_reloc_undefined:
11484 if (!((*link_info->callbacks->undefined_symbol)
11485 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11486 input_bfd, input_section, (*parent)->address, TRUE)))
11487 goto error_return;
11488 break;
11489 case bfd_reloc_dangerous:
11490 BFD_ASSERT (error_message != NULL);
11491 if (!((*link_info->callbacks->reloc_dangerous)
11492 (link_info, error_message, input_bfd, input_section,
11493 (*parent)->address)))
11494 goto error_return;
11495 break;
11496 case bfd_reloc_overflow:
11497 if (!((*link_info->callbacks->reloc_overflow)
11498 (link_info, NULL,
11499 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11500 (*parent)->howto->name, (*parent)->addend,
11501 input_bfd, input_section, (*parent)->address)))
11502 goto error_return;
11503 break;
11504 case bfd_reloc_outofrange:
11505 default:
11506 abort ();
11507 break;
11513 if (reloc_vector != NULL)
11514 free (reloc_vector);
11515 return data;
11517 error_return:
11518 if (reloc_vector != NULL)
11519 free (reloc_vector);
11520 return NULL;
11523 /* Allocate ABFD's target-dependent data. */
11525 bfd_boolean
11526 _bfd_mips_elf_mkobject (bfd *abfd)
11528 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
11529 MIPS_ELF_DATA);
11532 /* Create a MIPS ELF linker hash table. */
11534 struct bfd_link_hash_table *
11535 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11537 struct mips_elf_link_hash_table *ret;
11538 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11540 ret = bfd_malloc (amt);
11541 if (ret == NULL)
11542 return NULL;
11544 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11545 mips_elf_link_hash_newfunc,
11546 sizeof (struct mips_elf_link_hash_entry),
11547 MIPS_ELF_DATA))
11549 free (ret);
11550 return NULL;
11553 #if 0
11554 /* We no longer use this. */
11555 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11556 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11557 #endif
11558 ret->procedure_count = 0;
11559 ret->compact_rel_size = 0;
11560 ret->use_rld_obj_head = FALSE;
11561 ret->rld_value = 0;
11562 ret->mips16_stubs_seen = FALSE;
11563 ret->use_plts_and_copy_relocs = FALSE;
11564 ret->is_vxworks = FALSE;
11565 ret->small_data_overflow_reported = FALSE;
11566 ret->srelbss = NULL;
11567 ret->sdynbss = NULL;
11568 ret->srelplt = NULL;
11569 ret->srelplt2 = NULL;
11570 ret->sgotplt = NULL;
11571 ret->splt = NULL;
11572 ret->sstubs = NULL;
11573 ret->sgot = NULL;
11574 ret->got_info = NULL;
11575 ret->plt_header_size = 0;
11576 ret->plt_entry_size = 0;
11577 ret->lazy_stub_count = 0;
11578 ret->function_stub_size = 0;
11579 ret->strampoline = NULL;
11580 ret->la25_stubs = NULL;
11581 ret->add_stub_section = NULL;
11583 return &ret->root.root;
11586 /* Likewise, but indicate that the target is VxWorks. */
11588 struct bfd_link_hash_table *
11589 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11591 struct bfd_link_hash_table *ret;
11593 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11594 if (ret)
11596 struct mips_elf_link_hash_table *htab;
11598 htab = (struct mips_elf_link_hash_table *) ret;
11599 htab->use_plts_and_copy_relocs = TRUE;
11600 htab->is_vxworks = TRUE;
11602 return ret;
11605 /* A function that the linker calls if we are allowed to use PLTs
11606 and copy relocs. */
11608 void
11609 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11611 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11614 /* We need to use a special link routine to handle the .reginfo and
11615 the .mdebug sections. We need to merge all instances of these
11616 sections together, not write them all out sequentially. */
11618 bfd_boolean
11619 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11621 asection *o;
11622 struct bfd_link_order *p;
11623 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11624 asection *rtproc_sec;
11625 Elf32_RegInfo reginfo;
11626 struct ecoff_debug_info debug;
11627 struct mips_htab_traverse_info hti;
11628 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11629 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11630 HDRR *symhdr = &debug.symbolic_header;
11631 void *mdebug_handle = NULL;
11632 asection *s;
11633 EXTR esym;
11634 unsigned int i;
11635 bfd_size_type amt;
11636 struct mips_elf_link_hash_table *htab;
11638 static const char * const secname[] =
11640 ".text", ".init", ".fini", ".data",
11641 ".rodata", ".sdata", ".sbss", ".bss"
11643 static const int sc[] =
11645 scText, scInit, scFini, scData,
11646 scRData, scSData, scSBss, scBss
11649 /* Sort the dynamic symbols so that those with GOT entries come after
11650 those without. */
11651 htab = mips_elf_hash_table (info);
11652 BFD_ASSERT (htab != NULL);
11654 if (!mips_elf_sort_hash_table (abfd, info))
11655 return FALSE;
11657 /* Create any scheduled LA25 stubs. */
11658 hti.info = info;
11659 hti.output_bfd = abfd;
11660 hti.error = FALSE;
11661 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11662 if (hti.error)
11663 return FALSE;
11665 /* Get a value for the GP register. */
11666 if (elf_gp (abfd) == 0)
11668 struct bfd_link_hash_entry *h;
11670 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11671 if (h != NULL && h->type == bfd_link_hash_defined)
11672 elf_gp (abfd) = (h->u.def.value
11673 + h->u.def.section->output_section->vma
11674 + h->u.def.section->output_offset);
11675 else if (htab->is_vxworks
11676 && (h = bfd_link_hash_lookup (info->hash,
11677 "_GLOBAL_OFFSET_TABLE_",
11678 FALSE, FALSE, TRUE))
11679 && h->type == bfd_link_hash_defined)
11680 elf_gp (abfd) = (h->u.def.section->output_section->vma
11681 + h->u.def.section->output_offset
11682 + h->u.def.value);
11683 else if (info->relocatable)
11685 bfd_vma lo = MINUS_ONE;
11687 /* Find the GP-relative section with the lowest offset. */
11688 for (o = abfd->sections; o != NULL; o = o->next)
11689 if (o->vma < lo
11690 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11691 lo = o->vma;
11693 /* And calculate GP relative to that. */
11694 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11696 else
11698 /* If the relocate_section function needs to do a reloc
11699 involving the GP value, it should make a reloc_dangerous
11700 callback to warn that GP is not defined. */
11704 /* Go through the sections and collect the .reginfo and .mdebug
11705 information. */
11706 reginfo_sec = NULL;
11707 mdebug_sec = NULL;
11708 gptab_data_sec = NULL;
11709 gptab_bss_sec = NULL;
11710 for (o = abfd->sections; o != NULL; o = o->next)
11712 if (strcmp (o->name, ".reginfo") == 0)
11714 memset (&reginfo, 0, sizeof reginfo);
11716 /* We have found the .reginfo section in the output file.
11717 Look through all the link_orders comprising it and merge
11718 the information together. */
11719 for (p = o->map_head.link_order; p != NULL; p = p->next)
11721 asection *input_section;
11722 bfd *input_bfd;
11723 Elf32_External_RegInfo ext;
11724 Elf32_RegInfo sub;
11726 if (p->type != bfd_indirect_link_order)
11728 if (p->type == bfd_data_link_order)
11729 continue;
11730 abort ();
11733 input_section = p->u.indirect.section;
11734 input_bfd = input_section->owner;
11736 if (! bfd_get_section_contents (input_bfd, input_section,
11737 &ext, 0, sizeof ext))
11738 return FALSE;
11740 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11742 reginfo.ri_gprmask |= sub.ri_gprmask;
11743 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11744 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11745 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11746 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11748 /* ri_gp_value is set by the function
11749 mips_elf32_section_processing when the section is
11750 finally written out. */
11752 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11753 elf_link_input_bfd ignores this section. */
11754 input_section->flags &= ~SEC_HAS_CONTENTS;
11757 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11758 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11760 /* Skip this section later on (I don't think this currently
11761 matters, but someday it might). */
11762 o->map_head.link_order = NULL;
11764 reginfo_sec = o;
11767 if (strcmp (o->name, ".mdebug") == 0)
11769 struct extsym_info einfo;
11770 bfd_vma last;
11772 /* We have found the .mdebug section in the output file.
11773 Look through all the link_orders comprising it and merge
11774 the information together. */
11775 symhdr->magic = swap->sym_magic;
11776 /* FIXME: What should the version stamp be? */
11777 symhdr->vstamp = 0;
11778 symhdr->ilineMax = 0;
11779 symhdr->cbLine = 0;
11780 symhdr->idnMax = 0;
11781 symhdr->ipdMax = 0;
11782 symhdr->isymMax = 0;
11783 symhdr->ioptMax = 0;
11784 symhdr->iauxMax = 0;
11785 symhdr->issMax = 0;
11786 symhdr->issExtMax = 0;
11787 symhdr->ifdMax = 0;
11788 symhdr->crfd = 0;
11789 symhdr->iextMax = 0;
11791 /* We accumulate the debugging information itself in the
11792 debug_info structure. */
11793 debug.line = NULL;
11794 debug.external_dnr = NULL;
11795 debug.external_pdr = NULL;
11796 debug.external_sym = NULL;
11797 debug.external_opt = NULL;
11798 debug.external_aux = NULL;
11799 debug.ss = NULL;
11800 debug.ssext = debug.ssext_end = NULL;
11801 debug.external_fdr = NULL;
11802 debug.external_rfd = NULL;
11803 debug.external_ext = debug.external_ext_end = NULL;
11805 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11806 if (mdebug_handle == NULL)
11807 return FALSE;
11809 esym.jmptbl = 0;
11810 esym.cobol_main = 0;
11811 esym.weakext = 0;
11812 esym.reserved = 0;
11813 esym.ifd = ifdNil;
11814 esym.asym.iss = issNil;
11815 esym.asym.st = stLocal;
11816 esym.asym.reserved = 0;
11817 esym.asym.index = indexNil;
11818 last = 0;
11819 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11821 esym.asym.sc = sc[i];
11822 s = bfd_get_section_by_name (abfd, secname[i]);
11823 if (s != NULL)
11825 esym.asym.value = s->vma;
11826 last = s->vma + s->size;
11828 else
11829 esym.asym.value = last;
11830 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11831 secname[i], &esym))
11832 return FALSE;
11835 for (p = o->map_head.link_order; p != NULL; p = p->next)
11837 asection *input_section;
11838 bfd *input_bfd;
11839 const struct ecoff_debug_swap *input_swap;
11840 struct ecoff_debug_info input_debug;
11841 char *eraw_src;
11842 char *eraw_end;
11844 if (p->type != bfd_indirect_link_order)
11846 if (p->type == bfd_data_link_order)
11847 continue;
11848 abort ();
11851 input_section = p->u.indirect.section;
11852 input_bfd = input_section->owner;
11854 if (!is_mips_elf (input_bfd))
11856 /* I don't know what a non MIPS ELF bfd would be
11857 doing with a .mdebug section, but I don't really
11858 want to deal with it. */
11859 continue;
11862 input_swap = (get_elf_backend_data (input_bfd)
11863 ->elf_backend_ecoff_debug_swap);
11865 BFD_ASSERT (p->size == input_section->size);
11867 /* The ECOFF linking code expects that we have already
11868 read in the debugging information and set up an
11869 ecoff_debug_info structure, so we do that now. */
11870 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11871 &input_debug))
11872 return FALSE;
11874 if (! (bfd_ecoff_debug_accumulate
11875 (mdebug_handle, abfd, &debug, swap, input_bfd,
11876 &input_debug, input_swap, info)))
11877 return FALSE;
11879 /* Loop through the external symbols. For each one with
11880 interesting information, try to find the symbol in
11881 the linker global hash table and save the information
11882 for the output external symbols. */
11883 eraw_src = input_debug.external_ext;
11884 eraw_end = (eraw_src
11885 + (input_debug.symbolic_header.iextMax
11886 * input_swap->external_ext_size));
11887 for (;
11888 eraw_src < eraw_end;
11889 eraw_src += input_swap->external_ext_size)
11891 EXTR ext;
11892 const char *name;
11893 struct mips_elf_link_hash_entry *h;
11895 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11896 if (ext.asym.sc == scNil
11897 || ext.asym.sc == scUndefined
11898 || ext.asym.sc == scSUndefined)
11899 continue;
11901 name = input_debug.ssext + ext.asym.iss;
11902 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11903 name, FALSE, FALSE, TRUE);
11904 if (h == NULL || h->esym.ifd != -2)
11905 continue;
11907 if (ext.ifd != -1)
11909 BFD_ASSERT (ext.ifd
11910 < input_debug.symbolic_header.ifdMax);
11911 ext.ifd = input_debug.ifdmap[ext.ifd];
11914 h->esym = ext;
11917 /* Free up the information we just read. */
11918 free (input_debug.line);
11919 free (input_debug.external_dnr);
11920 free (input_debug.external_pdr);
11921 free (input_debug.external_sym);
11922 free (input_debug.external_opt);
11923 free (input_debug.external_aux);
11924 free (input_debug.ss);
11925 free (input_debug.ssext);
11926 free (input_debug.external_fdr);
11927 free (input_debug.external_rfd);
11928 free (input_debug.external_ext);
11930 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11931 elf_link_input_bfd ignores this section. */
11932 input_section->flags &= ~SEC_HAS_CONTENTS;
11935 if (SGI_COMPAT (abfd) && info->shared)
11937 /* Create .rtproc section. */
11938 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11939 if (rtproc_sec == NULL)
11941 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11942 | SEC_LINKER_CREATED | SEC_READONLY);
11944 rtproc_sec = bfd_make_section_with_flags (abfd,
11945 ".rtproc",
11946 flags);
11947 if (rtproc_sec == NULL
11948 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11949 return FALSE;
11952 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11953 info, rtproc_sec,
11954 &debug))
11955 return FALSE;
11958 /* Build the external symbol information. */
11959 einfo.abfd = abfd;
11960 einfo.info = info;
11961 einfo.debug = &debug;
11962 einfo.swap = swap;
11963 einfo.failed = FALSE;
11964 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11965 mips_elf_output_extsym, &einfo);
11966 if (einfo.failed)
11967 return FALSE;
11969 /* Set the size of the .mdebug section. */
11970 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11972 /* Skip this section later on (I don't think this currently
11973 matters, but someday it might). */
11974 o->map_head.link_order = NULL;
11976 mdebug_sec = o;
11979 if (CONST_STRNEQ (o->name, ".gptab."))
11981 const char *subname;
11982 unsigned int c;
11983 Elf32_gptab *tab;
11984 Elf32_External_gptab *ext_tab;
11985 unsigned int j;
11987 /* The .gptab.sdata and .gptab.sbss sections hold
11988 information describing how the small data area would
11989 change depending upon the -G switch. These sections
11990 not used in executables files. */
11991 if (! info->relocatable)
11993 for (p = o->map_head.link_order; p != NULL; p = p->next)
11995 asection *input_section;
11997 if (p->type != bfd_indirect_link_order)
11999 if (p->type == bfd_data_link_order)
12000 continue;
12001 abort ();
12004 input_section = p->u.indirect.section;
12006 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12007 elf_link_input_bfd ignores this section. */
12008 input_section->flags &= ~SEC_HAS_CONTENTS;
12011 /* Skip this section later on (I don't think this
12012 currently matters, but someday it might). */
12013 o->map_head.link_order = NULL;
12015 /* Really remove the section. */
12016 bfd_section_list_remove (abfd, o);
12017 --abfd->section_count;
12019 continue;
12022 /* There is one gptab for initialized data, and one for
12023 uninitialized data. */
12024 if (strcmp (o->name, ".gptab.sdata") == 0)
12025 gptab_data_sec = o;
12026 else if (strcmp (o->name, ".gptab.sbss") == 0)
12027 gptab_bss_sec = o;
12028 else
12030 (*_bfd_error_handler)
12031 (_("%s: illegal section name `%s'"),
12032 bfd_get_filename (abfd), o->name);
12033 bfd_set_error (bfd_error_nonrepresentable_section);
12034 return FALSE;
12037 /* The linker script always combines .gptab.data and
12038 .gptab.sdata into .gptab.sdata, and likewise for
12039 .gptab.bss and .gptab.sbss. It is possible that there is
12040 no .sdata or .sbss section in the output file, in which
12041 case we must change the name of the output section. */
12042 subname = o->name + sizeof ".gptab" - 1;
12043 if (bfd_get_section_by_name (abfd, subname) == NULL)
12045 if (o == gptab_data_sec)
12046 o->name = ".gptab.data";
12047 else
12048 o->name = ".gptab.bss";
12049 subname = o->name + sizeof ".gptab" - 1;
12050 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12053 /* Set up the first entry. */
12054 c = 1;
12055 amt = c * sizeof (Elf32_gptab);
12056 tab = bfd_malloc (amt);
12057 if (tab == NULL)
12058 return FALSE;
12059 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12060 tab[0].gt_header.gt_unused = 0;
12062 /* Combine the input sections. */
12063 for (p = o->map_head.link_order; p != NULL; p = p->next)
12065 asection *input_section;
12066 bfd *input_bfd;
12067 bfd_size_type size;
12068 unsigned long last;
12069 bfd_size_type gpentry;
12071 if (p->type != bfd_indirect_link_order)
12073 if (p->type == bfd_data_link_order)
12074 continue;
12075 abort ();
12078 input_section = p->u.indirect.section;
12079 input_bfd = input_section->owner;
12081 /* Combine the gptab entries for this input section one
12082 by one. We know that the input gptab entries are
12083 sorted by ascending -G value. */
12084 size = input_section->size;
12085 last = 0;
12086 for (gpentry = sizeof (Elf32_External_gptab);
12087 gpentry < size;
12088 gpentry += sizeof (Elf32_External_gptab))
12090 Elf32_External_gptab ext_gptab;
12091 Elf32_gptab int_gptab;
12092 unsigned long val;
12093 unsigned long add;
12094 bfd_boolean exact;
12095 unsigned int look;
12097 if (! (bfd_get_section_contents
12098 (input_bfd, input_section, &ext_gptab, gpentry,
12099 sizeof (Elf32_External_gptab))))
12101 free (tab);
12102 return FALSE;
12105 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12106 &int_gptab);
12107 val = int_gptab.gt_entry.gt_g_value;
12108 add = int_gptab.gt_entry.gt_bytes - last;
12110 exact = FALSE;
12111 for (look = 1; look < c; look++)
12113 if (tab[look].gt_entry.gt_g_value >= val)
12114 tab[look].gt_entry.gt_bytes += add;
12116 if (tab[look].gt_entry.gt_g_value == val)
12117 exact = TRUE;
12120 if (! exact)
12122 Elf32_gptab *new_tab;
12123 unsigned int max;
12125 /* We need a new table entry. */
12126 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12127 new_tab = bfd_realloc (tab, amt);
12128 if (new_tab == NULL)
12130 free (tab);
12131 return FALSE;
12133 tab = new_tab;
12134 tab[c].gt_entry.gt_g_value = val;
12135 tab[c].gt_entry.gt_bytes = add;
12137 /* Merge in the size for the next smallest -G
12138 value, since that will be implied by this new
12139 value. */
12140 max = 0;
12141 for (look = 1; look < c; look++)
12143 if (tab[look].gt_entry.gt_g_value < val
12144 && (max == 0
12145 || (tab[look].gt_entry.gt_g_value
12146 > tab[max].gt_entry.gt_g_value)))
12147 max = look;
12149 if (max != 0)
12150 tab[c].gt_entry.gt_bytes +=
12151 tab[max].gt_entry.gt_bytes;
12153 ++c;
12156 last = int_gptab.gt_entry.gt_bytes;
12159 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12160 elf_link_input_bfd ignores this section. */
12161 input_section->flags &= ~SEC_HAS_CONTENTS;
12164 /* The table must be sorted by -G value. */
12165 if (c > 2)
12166 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12168 /* Swap out the table. */
12169 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12170 ext_tab = bfd_alloc (abfd, amt);
12171 if (ext_tab == NULL)
12173 free (tab);
12174 return FALSE;
12177 for (j = 0; j < c; j++)
12178 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12179 free (tab);
12181 o->size = c * sizeof (Elf32_External_gptab);
12182 o->contents = (bfd_byte *) ext_tab;
12184 /* Skip this section later on (I don't think this currently
12185 matters, but someday it might). */
12186 o->map_head.link_order = NULL;
12190 /* Invoke the regular ELF backend linker to do all the work. */
12191 if (!bfd_elf_final_link (abfd, info))
12192 return FALSE;
12194 /* Now write out the computed sections. */
12196 if (reginfo_sec != NULL)
12198 Elf32_External_RegInfo ext;
12200 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12201 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12202 return FALSE;
12205 if (mdebug_sec != NULL)
12207 BFD_ASSERT (abfd->output_has_begun);
12208 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12209 swap, info,
12210 mdebug_sec->filepos))
12211 return FALSE;
12213 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12216 if (gptab_data_sec != NULL)
12218 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12219 gptab_data_sec->contents,
12220 0, gptab_data_sec->size))
12221 return FALSE;
12224 if (gptab_bss_sec != NULL)
12226 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12227 gptab_bss_sec->contents,
12228 0, gptab_bss_sec->size))
12229 return FALSE;
12232 if (SGI_COMPAT (abfd))
12234 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12235 if (rtproc_sec != NULL)
12237 if (! bfd_set_section_contents (abfd, rtproc_sec,
12238 rtproc_sec->contents,
12239 0, rtproc_sec->size))
12240 return FALSE;
12244 return TRUE;
12247 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12249 struct mips_mach_extension {
12250 unsigned long extension, base;
12254 /* An array describing how BFD machines relate to one another. The entries
12255 are ordered topologically with MIPS I extensions listed last. */
12257 static const struct mips_mach_extension mips_mach_extensions[] = {
12258 /* MIPS64r2 extensions. */
12259 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12261 /* MIPS64 extensions. */
12262 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12263 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12264 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12266 /* MIPS V extensions. */
12267 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12269 /* R10000 extensions. */
12270 { bfd_mach_mips12000, bfd_mach_mips10000 },
12271 { bfd_mach_mips14000, bfd_mach_mips10000 },
12272 { bfd_mach_mips16000, bfd_mach_mips10000 },
12274 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12275 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12276 better to allow vr5400 and vr5500 code to be merged anyway, since
12277 many libraries will just use the core ISA. Perhaps we could add
12278 some sort of ASE flag if this ever proves a problem. */
12279 { bfd_mach_mips5500, bfd_mach_mips5400 },
12280 { bfd_mach_mips5400, bfd_mach_mips5000 },
12282 /* MIPS IV extensions. */
12283 { bfd_mach_mips5, bfd_mach_mips8000 },
12284 { bfd_mach_mips10000, bfd_mach_mips8000 },
12285 { bfd_mach_mips5000, bfd_mach_mips8000 },
12286 { bfd_mach_mips7000, bfd_mach_mips8000 },
12287 { bfd_mach_mips9000, bfd_mach_mips8000 },
12289 /* VR4100 extensions. */
12290 { bfd_mach_mips4120, bfd_mach_mips4100 },
12291 { bfd_mach_mips4111, bfd_mach_mips4100 },
12293 /* MIPS III extensions. */
12294 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12295 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12296 { bfd_mach_mips8000, bfd_mach_mips4000 },
12297 { bfd_mach_mips4650, bfd_mach_mips4000 },
12298 { bfd_mach_mips4600, bfd_mach_mips4000 },
12299 { bfd_mach_mips4400, bfd_mach_mips4000 },
12300 { bfd_mach_mips4300, bfd_mach_mips4000 },
12301 { bfd_mach_mips4100, bfd_mach_mips4000 },
12302 { bfd_mach_mips4010, bfd_mach_mips4000 },
12304 /* MIPS32 extensions. */
12305 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12307 /* MIPS II extensions. */
12308 { bfd_mach_mips4000, bfd_mach_mips6000 },
12309 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12311 /* MIPS I extensions. */
12312 { bfd_mach_mips6000, bfd_mach_mips3000 },
12313 { bfd_mach_mips3900, bfd_mach_mips3000 }
12317 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12319 static bfd_boolean
12320 mips_mach_extends_p (unsigned long base, unsigned long extension)
12322 size_t i;
12324 if (extension == base)
12325 return TRUE;
12327 if (base == bfd_mach_mipsisa32
12328 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12329 return TRUE;
12331 if (base == bfd_mach_mipsisa32r2
12332 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12333 return TRUE;
12335 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12336 if (extension == mips_mach_extensions[i].extension)
12338 extension = mips_mach_extensions[i].base;
12339 if (extension == base)
12340 return TRUE;
12343 return FALSE;
12347 /* Return true if the given ELF header flags describe a 32-bit binary. */
12349 static bfd_boolean
12350 mips_32bit_flags_p (flagword flags)
12352 return ((flags & EF_MIPS_32BITMODE) != 0
12353 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12354 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12355 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12356 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12357 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12358 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12362 /* Merge object attributes from IBFD into OBFD. Raise an error if
12363 there are conflicting attributes. */
12364 static bfd_boolean
12365 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12367 obj_attribute *in_attr;
12368 obj_attribute *out_attr;
12370 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12372 /* This is the first object. Copy the attributes. */
12373 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12375 /* Use the Tag_null value to indicate the attributes have been
12376 initialized. */
12377 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12379 return TRUE;
12382 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12383 non-conflicting ones. */
12384 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12385 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12386 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12388 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12389 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12390 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12391 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12393 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12394 _bfd_error_handler
12395 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12396 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12397 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12398 _bfd_error_handler
12399 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12400 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12401 else
12402 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12404 case 1:
12405 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12407 case 2:
12408 _bfd_error_handler
12409 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12410 obfd, ibfd);
12411 break;
12413 case 3:
12414 _bfd_error_handler
12415 (_("Warning: %B uses hard float, %B uses soft float"),
12416 obfd, ibfd);
12417 break;
12419 case 4:
12420 _bfd_error_handler
12421 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12422 obfd, ibfd);
12423 break;
12425 default:
12426 abort ();
12428 break;
12430 case 2:
12431 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12433 case 1:
12434 _bfd_error_handler
12435 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12436 ibfd, obfd);
12437 break;
12439 case 3:
12440 _bfd_error_handler
12441 (_("Warning: %B uses hard float, %B uses soft float"),
12442 obfd, ibfd);
12443 break;
12445 case 4:
12446 _bfd_error_handler
12447 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12448 obfd, ibfd);
12449 break;
12451 default:
12452 abort ();
12454 break;
12456 case 3:
12457 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12459 case 1:
12460 case 2:
12461 case 4:
12462 _bfd_error_handler
12463 (_("Warning: %B uses hard float, %B uses soft float"),
12464 ibfd, obfd);
12465 break;
12467 default:
12468 abort ();
12470 break;
12472 case 4:
12473 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12475 case 1:
12476 _bfd_error_handler
12477 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12478 ibfd, obfd);
12479 break;
12481 case 2:
12482 _bfd_error_handler
12483 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12484 ibfd, obfd);
12485 break;
12487 case 3:
12488 _bfd_error_handler
12489 (_("Warning: %B uses hard float, %B uses soft float"),
12490 obfd, ibfd);
12491 break;
12493 default:
12494 abort ();
12496 break;
12498 default:
12499 abort ();
12503 /* Merge Tag_compatibility attributes and any common GNU ones. */
12504 _bfd_elf_merge_object_attributes (ibfd, obfd);
12506 return TRUE;
12509 /* Merge backend specific data from an object file to the output
12510 object file when linking. */
12512 bfd_boolean
12513 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12515 flagword old_flags;
12516 flagword new_flags;
12517 bfd_boolean ok;
12518 bfd_boolean null_input_bfd = TRUE;
12519 asection *sec;
12521 /* Check if we have the same endianess */
12522 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12524 (*_bfd_error_handler)
12525 (_("%B: endianness incompatible with that of the selected emulation"),
12526 ibfd);
12527 return FALSE;
12530 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12531 return TRUE;
12533 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12535 (*_bfd_error_handler)
12536 (_("%B: ABI is incompatible with that of the selected emulation"),
12537 ibfd);
12538 return FALSE;
12541 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12542 return FALSE;
12544 new_flags = elf_elfheader (ibfd)->e_flags;
12545 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12546 old_flags = elf_elfheader (obfd)->e_flags;
12548 if (! elf_flags_init (obfd))
12550 elf_flags_init (obfd) = TRUE;
12551 elf_elfheader (obfd)->e_flags = new_flags;
12552 elf_elfheader (obfd)->e_ident[EI_CLASS]
12553 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12555 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12556 && (bfd_get_arch_info (obfd)->the_default
12557 || mips_mach_extends_p (bfd_get_mach (obfd),
12558 bfd_get_mach (ibfd))))
12560 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12561 bfd_get_mach (ibfd)))
12562 return FALSE;
12565 return TRUE;
12568 /* Check flag compatibility. */
12570 new_flags &= ~EF_MIPS_NOREORDER;
12571 old_flags &= ~EF_MIPS_NOREORDER;
12573 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12574 doesn't seem to matter. */
12575 new_flags &= ~EF_MIPS_XGOT;
12576 old_flags &= ~EF_MIPS_XGOT;
12578 /* MIPSpro generates ucode info in n64 objects. Again, we should
12579 just be able to ignore this. */
12580 new_flags &= ~EF_MIPS_UCODE;
12581 old_flags &= ~EF_MIPS_UCODE;
12583 /* DSOs should only be linked with CPIC code. */
12584 if ((ibfd->flags & DYNAMIC) != 0)
12585 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12587 if (new_flags == old_flags)
12588 return TRUE;
12590 /* Check to see if the input BFD actually contains any sections.
12591 If not, its flags may not have been initialised either, but it cannot
12592 actually cause any incompatibility. */
12593 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12595 /* Ignore synthetic sections and empty .text, .data and .bss sections
12596 which are automatically generated by gas. */
12597 if (strcmp (sec->name, ".reginfo")
12598 && strcmp (sec->name, ".mdebug")
12599 && (sec->size != 0
12600 || (strcmp (sec->name, ".text")
12601 && strcmp (sec->name, ".data")
12602 && strcmp (sec->name, ".bss"))))
12604 null_input_bfd = FALSE;
12605 break;
12608 if (null_input_bfd)
12609 return TRUE;
12611 ok = TRUE;
12613 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12614 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12616 (*_bfd_error_handler)
12617 (_("%B: warning: linking abicalls files with non-abicalls files"),
12618 ibfd);
12619 ok = TRUE;
12622 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12623 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12624 if (! (new_flags & EF_MIPS_PIC))
12625 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12627 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12628 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12630 /* Compare the ISAs. */
12631 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12633 (*_bfd_error_handler)
12634 (_("%B: linking 32-bit code with 64-bit code"),
12635 ibfd);
12636 ok = FALSE;
12638 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12640 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12641 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12643 /* Copy the architecture info from IBFD to OBFD. Also copy
12644 the 32-bit flag (if set) so that we continue to recognise
12645 OBFD as a 32-bit binary. */
12646 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12647 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12648 elf_elfheader (obfd)->e_flags
12649 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12651 /* Copy across the ABI flags if OBFD doesn't use them
12652 and if that was what caused us to treat IBFD as 32-bit. */
12653 if ((old_flags & EF_MIPS_ABI) == 0
12654 && mips_32bit_flags_p (new_flags)
12655 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12656 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12658 else
12660 /* The ISAs aren't compatible. */
12661 (*_bfd_error_handler)
12662 (_("%B: linking %s module with previous %s modules"),
12663 ibfd,
12664 bfd_printable_name (ibfd),
12665 bfd_printable_name (obfd));
12666 ok = FALSE;
12670 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12671 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12673 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12674 does set EI_CLASS differently from any 32-bit ABI. */
12675 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12676 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12677 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12679 /* Only error if both are set (to different values). */
12680 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12681 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12682 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12684 (*_bfd_error_handler)
12685 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12686 ibfd,
12687 elf_mips_abi_name (ibfd),
12688 elf_mips_abi_name (obfd));
12689 ok = FALSE;
12691 new_flags &= ~EF_MIPS_ABI;
12692 old_flags &= ~EF_MIPS_ABI;
12695 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12696 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12698 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12700 new_flags &= ~ EF_MIPS_ARCH_ASE;
12701 old_flags &= ~ EF_MIPS_ARCH_ASE;
12704 /* Warn about any other mismatches */
12705 if (new_flags != old_flags)
12707 (*_bfd_error_handler)
12708 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12709 ibfd, (unsigned long) new_flags,
12710 (unsigned long) old_flags);
12711 ok = FALSE;
12714 if (! ok)
12716 bfd_set_error (bfd_error_bad_value);
12717 return FALSE;
12720 return TRUE;
12723 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12725 bfd_boolean
12726 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12728 BFD_ASSERT (!elf_flags_init (abfd)
12729 || elf_elfheader (abfd)->e_flags == flags);
12731 elf_elfheader (abfd)->e_flags = flags;
12732 elf_flags_init (abfd) = TRUE;
12733 return TRUE;
12736 char *
12737 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12739 switch (dtag)
12741 default: return "";
12742 case DT_MIPS_RLD_VERSION:
12743 return "MIPS_RLD_VERSION";
12744 case DT_MIPS_TIME_STAMP:
12745 return "MIPS_TIME_STAMP";
12746 case DT_MIPS_ICHECKSUM:
12747 return "MIPS_ICHECKSUM";
12748 case DT_MIPS_IVERSION:
12749 return "MIPS_IVERSION";
12750 case DT_MIPS_FLAGS:
12751 return "MIPS_FLAGS";
12752 case DT_MIPS_BASE_ADDRESS:
12753 return "MIPS_BASE_ADDRESS";
12754 case DT_MIPS_MSYM:
12755 return "MIPS_MSYM";
12756 case DT_MIPS_CONFLICT:
12757 return "MIPS_CONFLICT";
12758 case DT_MIPS_LIBLIST:
12759 return "MIPS_LIBLIST";
12760 case DT_MIPS_LOCAL_GOTNO:
12761 return "MIPS_LOCAL_GOTNO";
12762 case DT_MIPS_CONFLICTNO:
12763 return "MIPS_CONFLICTNO";
12764 case DT_MIPS_LIBLISTNO:
12765 return "MIPS_LIBLISTNO";
12766 case DT_MIPS_SYMTABNO:
12767 return "MIPS_SYMTABNO";
12768 case DT_MIPS_UNREFEXTNO:
12769 return "MIPS_UNREFEXTNO";
12770 case DT_MIPS_GOTSYM:
12771 return "MIPS_GOTSYM";
12772 case DT_MIPS_HIPAGENO:
12773 return "MIPS_HIPAGENO";
12774 case DT_MIPS_RLD_MAP:
12775 return "MIPS_RLD_MAP";
12776 case DT_MIPS_DELTA_CLASS:
12777 return "MIPS_DELTA_CLASS";
12778 case DT_MIPS_DELTA_CLASS_NO:
12779 return "MIPS_DELTA_CLASS_NO";
12780 case DT_MIPS_DELTA_INSTANCE:
12781 return "MIPS_DELTA_INSTANCE";
12782 case DT_MIPS_DELTA_INSTANCE_NO:
12783 return "MIPS_DELTA_INSTANCE_NO";
12784 case DT_MIPS_DELTA_RELOC:
12785 return "MIPS_DELTA_RELOC";
12786 case DT_MIPS_DELTA_RELOC_NO:
12787 return "MIPS_DELTA_RELOC_NO";
12788 case DT_MIPS_DELTA_SYM:
12789 return "MIPS_DELTA_SYM";
12790 case DT_MIPS_DELTA_SYM_NO:
12791 return "MIPS_DELTA_SYM_NO";
12792 case DT_MIPS_DELTA_CLASSSYM:
12793 return "MIPS_DELTA_CLASSSYM";
12794 case DT_MIPS_DELTA_CLASSSYM_NO:
12795 return "MIPS_DELTA_CLASSSYM_NO";
12796 case DT_MIPS_CXX_FLAGS:
12797 return "MIPS_CXX_FLAGS";
12798 case DT_MIPS_PIXIE_INIT:
12799 return "MIPS_PIXIE_INIT";
12800 case DT_MIPS_SYMBOL_LIB:
12801 return "MIPS_SYMBOL_LIB";
12802 case DT_MIPS_LOCALPAGE_GOTIDX:
12803 return "MIPS_LOCALPAGE_GOTIDX";
12804 case DT_MIPS_LOCAL_GOTIDX:
12805 return "MIPS_LOCAL_GOTIDX";
12806 case DT_MIPS_HIDDEN_GOTIDX:
12807 return "MIPS_HIDDEN_GOTIDX";
12808 case DT_MIPS_PROTECTED_GOTIDX:
12809 return "MIPS_PROTECTED_GOT_IDX";
12810 case DT_MIPS_OPTIONS:
12811 return "MIPS_OPTIONS";
12812 case DT_MIPS_INTERFACE:
12813 return "MIPS_INTERFACE";
12814 case DT_MIPS_DYNSTR_ALIGN:
12815 return "DT_MIPS_DYNSTR_ALIGN";
12816 case DT_MIPS_INTERFACE_SIZE:
12817 return "DT_MIPS_INTERFACE_SIZE";
12818 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12819 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12820 case DT_MIPS_PERF_SUFFIX:
12821 return "DT_MIPS_PERF_SUFFIX";
12822 case DT_MIPS_COMPACT_SIZE:
12823 return "DT_MIPS_COMPACT_SIZE";
12824 case DT_MIPS_GP_VALUE:
12825 return "DT_MIPS_GP_VALUE";
12826 case DT_MIPS_AUX_DYNAMIC:
12827 return "DT_MIPS_AUX_DYNAMIC";
12828 case DT_MIPS_PLTGOT:
12829 return "DT_MIPS_PLTGOT";
12830 case DT_MIPS_RWPLT:
12831 return "DT_MIPS_RWPLT";
12835 bfd_boolean
12836 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12838 FILE *file = ptr;
12840 BFD_ASSERT (abfd != NULL && ptr != NULL);
12842 /* Print normal ELF private data. */
12843 _bfd_elf_print_private_bfd_data (abfd, ptr);
12845 /* xgettext:c-format */
12846 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12848 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12849 fprintf (file, _(" [abi=O32]"));
12850 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12851 fprintf (file, _(" [abi=O64]"));
12852 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12853 fprintf (file, _(" [abi=EABI32]"));
12854 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12855 fprintf (file, _(" [abi=EABI64]"));
12856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12857 fprintf (file, _(" [abi unknown]"));
12858 else if (ABI_N32_P (abfd))
12859 fprintf (file, _(" [abi=N32]"));
12860 else if (ABI_64_P (abfd))
12861 fprintf (file, _(" [abi=64]"));
12862 else
12863 fprintf (file, _(" [no abi set]"));
12865 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12866 fprintf (file, " [mips1]");
12867 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12868 fprintf (file, " [mips2]");
12869 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12870 fprintf (file, " [mips3]");
12871 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12872 fprintf (file, " [mips4]");
12873 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12874 fprintf (file, " [mips5]");
12875 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12876 fprintf (file, " [mips32]");
12877 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12878 fprintf (file, " [mips64]");
12879 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12880 fprintf (file, " [mips32r2]");
12881 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12882 fprintf (file, " [mips64r2]");
12883 else
12884 fprintf (file, _(" [unknown ISA]"));
12886 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12887 fprintf (file, " [mdmx]");
12889 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12890 fprintf (file, " [mips16]");
12892 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12893 fprintf (file, " [32bitmode]");
12894 else
12895 fprintf (file, _(" [not 32bitmode]"));
12897 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12898 fprintf (file, " [noreorder]");
12900 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12901 fprintf (file, " [PIC]");
12903 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12904 fprintf (file, " [CPIC]");
12906 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12907 fprintf (file, " [XGOT]");
12909 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12910 fprintf (file, " [UCODE]");
12912 fputc ('\n', file);
12914 return TRUE;
12917 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12919 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12920 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12921 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12922 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12923 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12924 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12925 { NULL, 0, 0, 0, 0 }
12928 /* Merge non visibility st_other attributes. Ensure that the
12929 STO_OPTIONAL flag is copied into h->other, even if this is not a
12930 definiton of the symbol. */
12931 void
12932 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12933 const Elf_Internal_Sym *isym,
12934 bfd_boolean definition,
12935 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12937 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12939 unsigned char other;
12941 other = (definition ? isym->st_other : h->other);
12942 other &= ~ELF_ST_VISIBILITY (-1);
12943 h->other = other | ELF_ST_VISIBILITY (h->other);
12946 if (!definition
12947 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12948 h->other |= STO_OPTIONAL;
12951 /* Decide whether an undefined symbol is special and can be ignored.
12952 This is the case for OPTIONAL symbols on IRIX. */
12953 bfd_boolean
12954 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12956 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12959 bfd_boolean
12960 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12962 return (sym->st_shndx == SHN_COMMON
12963 || sym->st_shndx == SHN_MIPS_ACOMMON
12964 || sym->st_shndx == SHN_MIPS_SCOMMON);
12967 /* Return address for Ith PLT stub in section PLT, for relocation REL
12968 or (bfd_vma) -1 if it should not be included. */
12970 bfd_vma
12971 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12972 const arelent *rel ATTRIBUTE_UNUSED)
12974 return (plt->vma
12975 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12976 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12979 void
12980 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12982 struct mips_elf_link_hash_table *htab;
12983 Elf_Internal_Ehdr *i_ehdrp;
12985 i_ehdrp = elf_elfheader (abfd);
12986 if (link_info)
12988 htab = mips_elf_hash_table (link_info);
12989 BFD_ASSERT (htab != NULL);
12991 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12992 i_ehdrp->e_ident[EI_ABIVERSION] = 1;