2000-03-01 H.J. Lu <hjl@gnu.org>
[binutils.git] / bfd / elf64-sparc.c
blob46e777552f2aac9c5d42088a1aa3f662bafa9332
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
26 /* This is defined if one wants to build upward compatible binaries
27 with the original sparc64-elf toolchain. The support is kept in for
28 now but is turned off by default. dje 970930 */
29 /*#define SPARC64_OLD_RELOCS*/
31 #include "elf/sparc.h"
33 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
34 #define MINUS_ONE (~ (bfd_vma) 0)
36 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
37 PARAMS((bfd *));
38 static reloc_howto_type *sparc64_elf_reloc_type_lookup
39 PARAMS ((bfd *, bfd_reloc_code_real_type));
40 static void sparc64_elf_info_to_howto
41 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43 static void sparc64_elf_build_plt
44 PARAMS((bfd *, unsigned char *, int));
45 static bfd_vma sparc64_elf_plt_entry_offset
46 PARAMS((int));
47 static bfd_vma sparc64_elf_plt_ptr_offset
48 PARAMS((int, int));
50 static boolean sparc64_elf_check_relocs
51 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
52 const Elf_Internal_Rela *));
53 static boolean sparc64_elf_adjust_dynamic_symbol
54 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
55 static boolean sparc64_elf_size_dynamic_sections
56 PARAMS((bfd *, struct bfd_link_info *));
57 static int sparc64_elf_get_symbol_type
58 PARAMS (( Elf_Internal_Sym *, int));
59 static boolean sparc64_elf_add_symbol_hook
60 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
61 const char **, flagword *, asection **, bfd_vma *));
62 static void sparc64_elf_symbol_processing
63 PARAMS ((bfd *, asymbol *));
65 static boolean sparc64_elf_merge_private_bfd_data
66 PARAMS ((bfd *, bfd *));
68 static boolean sparc64_elf_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean sparc64_elf_object_p PARAMS ((bfd *));
72 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
73 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
74 static boolean sparc64_elf_slurp_one_reloc_table
75 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
76 static boolean sparc64_elf_slurp_reloc_table
77 PARAMS ((bfd *, asection *, asymbol **, boolean));
78 static long sparc64_elf_canonicalize_dynamic_reloc
79 PARAMS ((bfd *, arelent **, asymbol **));
80 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
82 /* The relocation "howto" table. */
84 static bfd_reloc_status_type sparc_elf_notsup_reloc
85 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
86 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
87 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
88 static bfd_reloc_status_type sparc_elf_hix22_reloc
89 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
90 static bfd_reloc_status_type sparc_elf_lox10_reloc
91 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static reloc_howto_type sparc64_elf_howto_table[] =
95 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
96 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
97 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
98 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
99 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
102 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
103 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
104 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
105 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
106 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
107 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
108 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
109 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
113 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
114 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
115 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
116 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
117 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
118 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
119 #ifndef SPARC64_OLD_RELOCS
120 /* These aren't implemented yet. */
121 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
122 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
123 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
124 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
127 #endif
128 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
130 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
131 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
132 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
133 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
135 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
139 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
140 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
141 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
142 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
143 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
144 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
145 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
146 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
147 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
148 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
149 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
150 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
151 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
152 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
153 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
156 struct elf_reloc_map {
157 bfd_reloc_code_real_type bfd_reloc_val;
158 unsigned char elf_reloc_val;
161 static CONST struct elf_reloc_map sparc_reloc_map[] =
163 { BFD_RELOC_NONE, R_SPARC_NONE, },
164 { BFD_RELOC_16, R_SPARC_16, },
165 { BFD_RELOC_8, R_SPARC_8 },
166 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
167 { BFD_RELOC_CTOR, R_SPARC_64 },
168 { BFD_RELOC_32, R_SPARC_32 },
169 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
170 { BFD_RELOC_HI22, R_SPARC_HI22 },
171 { BFD_RELOC_LO10, R_SPARC_LO10, },
172 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
173 { BFD_RELOC_SPARC22, R_SPARC_22 },
174 { BFD_RELOC_SPARC13, R_SPARC_13 },
175 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
176 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
177 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
178 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
179 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
180 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
181 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
182 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
183 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
184 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
185 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
186 /* ??? Doesn't dwarf use this? */
187 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
188 {BFD_RELOC_SPARC_10, R_SPARC_10},
189 {BFD_RELOC_SPARC_11, R_SPARC_11},
190 {BFD_RELOC_SPARC_64, R_SPARC_64},
191 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
192 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
193 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
194 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
195 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
196 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
197 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
198 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
199 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
200 {BFD_RELOC_SPARC_7, R_SPARC_7},
201 {BFD_RELOC_SPARC_5, R_SPARC_5},
202 {BFD_RELOC_SPARC_6, R_SPARC_6},
203 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
204 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
205 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
206 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
207 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
208 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
209 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
210 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
213 static reloc_howto_type *
214 sparc64_elf_reloc_type_lookup (abfd, code)
215 bfd *abfd;
216 bfd_reloc_code_real_type code;
218 unsigned int i;
219 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
221 if (sparc_reloc_map[i].bfd_reloc_val == code)
222 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
224 return 0;
227 static void
228 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
229 bfd *abfd;
230 arelent *cache_ptr;
231 Elf64_Internal_Rela *dst;
233 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
234 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
237 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
238 section can represent up to two relocs, we must tell the user to allocate
239 more space. */
241 static long
242 sparc64_elf_get_reloc_upper_bound (abfd, sec)
243 bfd *abfd;
244 asection *sec;
246 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
249 static long
250 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
251 bfd *abfd;
253 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
256 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
257 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
258 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
259 for the same location, R_SPARC_LO10 and R_SPARC_13. */
261 static boolean
262 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
263 bfd *abfd;
264 asection *asect;
265 Elf_Internal_Shdr *rel_hdr;
266 asymbol **symbols;
267 boolean dynamic;
269 struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
270 PTR allocated = NULL;
271 bfd_byte *native_relocs;
272 arelent *relent;
273 unsigned int i;
274 int entsize;
275 bfd_size_type count;
276 arelent *relents;
278 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
279 if (allocated == NULL)
280 goto error_return;
282 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
283 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
284 != rel_hdr->sh_size))
285 goto error_return;
287 native_relocs = (bfd_byte *) allocated;
289 relents = asect->relocation + asect->reloc_count;
291 entsize = rel_hdr->sh_entsize;
292 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
294 count = rel_hdr->sh_size / entsize;
296 for (i = 0, relent = relents; i < count;
297 i++, relent++, native_relocs += entsize)
299 Elf_Internal_Rela rela;
301 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
303 /* The address of an ELF reloc is section relative for an object
304 file, and absolute for an executable file or shared library.
305 The address of a normal BFD reloc is always section relative,
306 and the address of a dynamic reloc is absolute.. */
307 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
308 relent->address = rela.r_offset;
309 else
310 relent->address = rela.r_offset - asect->vma;
312 if (ELF64_R_SYM (rela.r_info) == 0)
313 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
314 else
316 asymbol **ps, *s;
318 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
319 s = *ps;
321 /* Canonicalize ELF section symbols. FIXME: Why? */
322 if ((s->flags & BSF_SECTION_SYM) == 0)
323 relent->sym_ptr_ptr = ps;
324 else
325 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
328 relent->addend = rela.r_addend;
330 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
331 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
333 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
334 relent[1].address = relent->address;
335 relent++;
336 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
337 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
338 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
340 else
341 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
344 asect->reloc_count += relent - relents;
346 if (allocated != NULL)
347 free (allocated);
349 return true;
351 error_return:
352 if (allocated != NULL)
353 free (allocated);
354 return false;
357 /* Read in and swap the external relocs. */
359 static boolean
360 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
361 bfd *abfd;
362 asection *asect;
363 asymbol **symbols;
364 boolean dynamic;
366 struct bfd_elf_section_data * const d = elf_section_data (asect);
367 Elf_Internal_Shdr *rel_hdr;
368 Elf_Internal_Shdr *rel_hdr2;
370 if (asect->relocation != NULL)
371 return true;
373 if (! dynamic)
375 if ((asect->flags & SEC_RELOC) == 0
376 || asect->reloc_count == 0)
377 return true;
379 rel_hdr = &d->rel_hdr;
380 rel_hdr2 = d->rel_hdr2;
382 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
383 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
385 else
387 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
388 case because relocations against this section may use the
389 dynamic symbol table, and in that case bfd_section_from_shdr
390 in elf.c does not update the RELOC_COUNT. */
391 if (asect->_raw_size == 0)
392 return true;
394 rel_hdr = &d->this_hdr;
395 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
396 rel_hdr2 = NULL;
399 asect->relocation = ((arelent *)
400 bfd_alloc (abfd,
401 asect->reloc_count * 2 * sizeof (arelent)));
402 if (asect->relocation == NULL)
403 return false;
405 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
406 asect->reloc_count = 0;
408 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
409 dynamic))
410 return false;
412 if (rel_hdr2
413 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
414 dynamic))
415 return false;
417 return true;
420 /* Canonicalize the dynamic relocation entries. Note that we return
421 the dynamic relocations as a single block, although they are
422 actually associated with particular sections; the interface, which
423 was designed for SunOS style shared libraries, expects that there
424 is only one set of dynamic relocs. Any section that was actually
425 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
426 the dynamic symbol table, is considered to be a dynamic reloc
427 section. */
429 static long
430 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
431 bfd *abfd;
432 arelent **storage;
433 asymbol **syms;
435 asection *s;
436 long ret;
438 if (elf_dynsymtab (abfd) == 0)
440 bfd_set_error (bfd_error_invalid_operation);
441 return -1;
444 ret = 0;
445 for (s = abfd->sections; s != NULL; s = s->next)
447 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
448 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
450 arelent *p;
451 long count, i;
453 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
454 return -1;
455 count = s->reloc_count;
456 p = s->relocation;
457 for (i = 0; i < count; i++)
458 *storage++ = p++;
459 ret += count;
463 *storage = NULL;
465 return ret;
468 /* Write out the relocs. */
470 static void
471 sparc64_elf_write_relocs (abfd, sec, data)
472 bfd *abfd;
473 asection *sec;
474 PTR data;
476 boolean *failedp = (boolean *) data;
477 Elf_Internal_Shdr *rela_hdr;
478 Elf64_External_Rela *outbound_relocas, *src_rela;
479 unsigned int idx, count;
480 asymbol *last_sym = 0;
481 int last_sym_idx = 0;
483 /* If we have already failed, don't do anything. */
484 if (*failedp)
485 return;
487 if ((sec->flags & SEC_RELOC) == 0)
488 return;
490 /* The linker backend writes the relocs out itself, and sets the
491 reloc_count field to zero to inhibit writing them here. Also,
492 sometimes the SEC_RELOC flag gets set even when there aren't any
493 relocs. */
494 if (sec->reloc_count == 0)
495 return;
497 /* We can combine two relocs that refer to the same address
498 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
499 latter is R_SPARC_13 with no associated symbol. */
500 count = 0;
501 for (idx = 0; idx < sec->reloc_count; idx++)
503 bfd_vma addr;
504 unsigned int i;
506 ++count;
508 addr = sec->orelocation[idx]->address;
509 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
510 && idx < sec->reloc_count - 1)
512 arelent *r = sec->orelocation[idx + 1];
514 if (r->howto->type == R_SPARC_13
515 && r->address == addr
516 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
517 && (*r->sym_ptr_ptr)->value == 0)
518 ++idx;
522 rela_hdr = &elf_section_data (sec)->rel_hdr;
524 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
525 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
526 if (rela_hdr->contents == NULL)
528 *failedp = true;
529 return;
532 /* Figure out whether the relocations are RELA or REL relocations. */
533 if (rela_hdr->sh_type != SHT_RELA)
534 abort ();
536 /* orelocation has the data, reloc_count has the count... */
537 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
538 src_rela = outbound_relocas;
540 for (idx = 0; idx < sec->reloc_count; idx++)
542 Elf_Internal_Rela dst_rela;
543 arelent *ptr;
544 asymbol *sym;
545 int n;
547 ptr = sec->orelocation[idx];
549 /* The address of an ELF reloc is section relative for an object
550 file, and absolute for an executable file or shared library.
551 The address of a BFD reloc is always section relative. */
552 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
553 dst_rela.r_offset = ptr->address;
554 else
555 dst_rela.r_offset = ptr->address + sec->vma;
557 sym = *ptr->sym_ptr_ptr;
558 if (sym == last_sym)
559 n = last_sym_idx;
560 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
561 n = STN_UNDEF;
562 else
564 last_sym = sym;
565 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
566 if (n < 0)
568 *failedp = true;
569 return;
571 last_sym_idx = n;
574 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
575 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
576 && ! _bfd_elf_validate_reloc (abfd, ptr))
578 *failedp = true;
579 return;
582 if (ptr->howto->type == R_SPARC_LO10
583 && idx < sec->reloc_count - 1)
585 arelent *r = sec->orelocation[idx + 1];
587 if (r->howto->type == R_SPARC_13
588 && r->address == ptr->address
589 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
590 && (*r->sym_ptr_ptr)->value == 0)
592 idx++;
593 dst_rela.r_info
594 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
595 R_SPARC_OLO10));
597 else
598 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
600 else
601 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603 dst_rela.r_addend = ptr->addend;
604 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
605 ++src_rela;
609 /* Sparc64 ELF linker hash table. */
611 struct sparc64_elf_app_reg
613 unsigned char bind;
614 unsigned short shndx;
615 bfd *abfd;
616 char *name;
619 struct sparc64_elf_link_hash_table
621 struct elf_link_hash_table root;
623 struct sparc64_elf_app_reg app_regs [4];
626 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
628 #define sparc64_elf_hash_table(p) \
629 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
631 /* Create a Sparc64 ELF linker hash table. */
633 static struct bfd_link_hash_table *
634 sparc64_elf_bfd_link_hash_table_create (abfd)
635 bfd *abfd;
637 struct sparc64_elf_link_hash_table *ret;
639 ret = ((struct sparc64_elf_link_hash_table *)
640 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
641 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
642 return NULL;
644 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
645 _bfd_elf_link_hash_newfunc))
647 bfd_release (abfd, ret);
648 return NULL;
651 return &ret->root.root;
655 /* Utility for performing the standard initial work of an instruction
656 relocation.
657 *PRELOCATION will contain the relocated item.
658 *PINSN will contain the instruction from the input stream.
659 If the result is `bfd_reloc_other' the caller can continue with
660 performing the relocation. Otherwise it must stop and return the
661 value to its caller. */
663 static bfd_reloc_status_type
664 init_insn_reloc (abfd,
665 reloc_entry,
666 symbol,
667 data,
668 input_section,
669 output_bfd,
670 prelocation,
671 pinsn)
672 bfd *abfd;
673 arelent *reloc_entry;
674 asymbol *symbol;
675 PTR data;
676 asection *input_section;
677 bfd *output_bfd;
678 bfd_vma *prelocation;
679 bfd_vma *pinsn;
681 bfd_vma relocation;
682 reloc_howto_type *howto = reloc_entry->howto;
684 if (output_bfd != (bfd *) NULL
685 && (symbol->flags & BSF_SECTION_SYM) == 0
686 && (! howto->partial_inplace
687 || reloc_entry->addend == 0))
689 reloc_entry->address += input_section->output_offset;
690 return bfd_reloc_ok;
693 /* This works because partial_inplace == false. */
694 if (output_bfd != NULL)
695 return bfd_reloc_continue;
697 if (reloc_entry->address > input_section->_cooked_size)
698 return bfd_reloc_outofrange;
700 relocation = (symbol->value
701 + symbol->section->output_section->vma
702 + symbol->section->output_offset);
703 relocation += reloc_entry->addend;
704 if (howto->pc_relative)
706 relocation -= (input_section->output_section->vma
707 + input_section->output_offset);
708 relocation -= reloc_entry->address;
711 *prelocation = relocation;
712 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
713 return bfd_reloc_other;
716 /* For unsupported relocs. */
718 static bfd_reloc_status_type
719 sparc_elf_notsup_reloc (abfd,
720 reloc_entry,
721 symbol,
722 data,
723 input_section,
724 output_bfd,
725 error_message)
726 bfd *abfd;
727 arelent *reloc_entry;
728 asymbol *symbol;
729 PTR data;
730 asection *input_section;
731 bfd *output_bfd;
732 char **error_message;
734 return bfd_reloc_notsupported;
737 /* Handle the WDISP16 reloc. */
739 static bfd_reloc_status_type
740 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
741 output_bfd, error_message)
742 bfd *abfd;
743 arelent *reloc_entry;
744 asymbol *symbol;
745 PTR data;
746 asection *input_section;
747 bfd *output_bfd;
748 char **error_message;
750 bfd_vma relocation;
751 bfd_vma insn;
752 bfd_reloc_status_type status;
754 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
755 input_section, output_bfd, &relocation, &insn);
756 if (status != bfd_reloc_other)
757 return status;
759 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
760 | ((relocation >> 2) & 0x3fff));
761 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
763 if ((bfd_signed_vma) relocation < - 0x40000
764 || (bfd_signed_vma) relocation > 0x3ffff)
765 return bfd_reloc_overflow;
766 else
767 return bfd_reloc_ok;
770 /* Handle the HIX22 reloc. */
772 static bfd_reloc_status_type
773 sparc_elf_hix22_reloc (abfd,
774 reloc_entry,
775 symbol,
776 data,
777 input_section,
778 output_bfd,
779 error_message)
780 bfd *abfd;
781 arelent *reloc_entry;
782 asymbol *symbol;
783 PTR data;
784 asection *input_section;
785 bfd *output_bfd;
786 char **error_message;
788 bfd_vma relocation;
789 bfd_vma insn;
790 bfd_reloc_status_type status;
792 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
793 input_section, output_bfd, &relocation, &insn);
794 if (status != bfd_reloc_other)
795 return status;
797 relocation ^= MINUS_ONE;
798 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
799 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
801 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
802 return bfd_reloc_overflow;
803 else
804 return bfd_reloc_ok;
807 /* Handle the LOX10 reloc. */
809 static bfd_reloc_status_type
810 sparc_elf_lox10_reloc (abfd,
811 reloc_entry,
812 symbol,
813 data,
814 input_section,
815 output_bfd,
816 error_message)
817 bfd *abfd;
818 arelent *reloc_entry;
819 asymbol *symbol;
820 PTR data;
821 asection *input_section;
822 bfd *output_bfd;
823 char **error_message;
825 bfd_vma relocation;
826 bfd_vma insn;
827 bfd_reloc_status_type status;
829 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
830 input_section, output_bfd, &relocation, &insn);
831 if (status != bfd_reloc_other)
832 return status;
834 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
835 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
837 return bfd_reloc_ok;
840 /* PLT/GOT stuff */
842 /* Both the headers and the entries are icache aligned. */
843 #define PLT_ENTRY_SIZE 32
844 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
845 #define LARGE_PLT_THRESHOLD 32768
846 #define GOT_RESERVED_ENTRIES 1
848 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
851 /* Fill in the .plt section. */
853 static void
854 sparc64_elf_build_plt (output_bfd, contents, nentries)
855 bfd *output_bfd;
856 unsigned char *contents;
857 int nentries;
859 const unsigned int nop = 0x01000000;
860 int i, j;
862 /* The first four entries are reserved, and are initially undefined.
863 We fill them with `illtrap 0' to force ld.so to do something. */
865 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
866 bfd_put_32 (output_bfd, 0, contents+i*4);
868 /* The first 32768 entries are close enough to plt1 to get there via
869 a straight branch. */
871 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
873 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
874 unsigned int sethi, ba;
876 /* sethi (. - plt0), %g1 */
877 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
879 /* ba,a,pt %xcc, plt1 */
880 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
882 bfd_put_32 (output_bfd, sethi, entry);
883 bfd_put_32 (output_bfd, ba, entry+4);
884 bfd_put_32 (output_bfd, nop, entry+8);
885 bfd_put_32 (output_bfd, nop, entry+12);
886 bfd_put_32 (output_bfd, nop, entry+16);
887 bfd_put_32 (output_bfd, nop, entry+20);
888 bfd_put_32 (output_bfd, nop, entry+24);
889 bfd_put_32 (output_bfd, nop, entry+28);
892 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
893 160: 160 entries and 160 pointers. This is to separate code from data,
894 which is much friendlier on the cache. */
896 for (; i < nentries; i += 160)
898 int block = (i + 160 <= nentries ? 160 : nentries - i);
899 for (j = 0; j < block; ++j)
901 unsigned char *entry, *ptr;
902 unsigned int ldx;
904 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
905 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
907 /* ldx [%o7 + ptr - entry+4], %g1 */
908 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
910 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
911 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
912 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
913 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
914 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
915 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
917 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
922 /* Return the offset of a particular plt entry within the .plt section. */
924 static bfd_vma
925 sparc64_elf_plt_entry_offset (index)
926 int index;
928 int block, ofs;
930 if (index < LARGE_PLT_THRESHOLD)
931 return index * PLT_ENTRY_SIZE;
933 /* See above for details. */
935 block = (index - LARGE_PLT_THRESHOLD) / 160;
936 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
938 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
939 + ofs * 6*4);
942 static bfd_vma
943 sparc64_elf_plt_ptr_offset (index, max)
944 int index, max;
946 int block, ofs, last;
948 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
950 /* See above for details. */
952 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
953 + LARGE_PLT_THRESHOLD;
954 ofs = index - block;
955 if (block + 160 > max)
956 last = (max - LARGE_PLT_THRESHOLD) % 160;
957 else
958 last = 160;
960 return (block * PLT_ENTRY_SIZE
961 + last * 6*4
962 + ofs * 8);
967 /* Look through the relocs for a section during the first phase, and
968 allocate space in the global offset table or procedure linkage
969 table. */
971 static boolean
972 sparc64_elf_check_relocs (abfd, info, sec, relocs)
973 bfd *abfd;
974 struct bfd_link_info *info;
975 asection *sec;
976 const Elf_Internal_Rela *relocs;
978 bfd *dynobj;
979 Elf_Internal_Shdr *symtab_hdr;
980 struct elf_link_hash_entry **sym_hashes;
981 bfd_vma *local_got_offsets;
982 const Elf_Internal_Rela *rel;
983 const Elf_Internal_Rela *rel_end;
984 asection *sgot;
985 asection *srelgot;
986 asection *sreloc;
988 if (info->relocateable || !(sec->flags & SEC_ALLOC))
989 return true;
991 dynobj = elf_hash_table (info)->dynobj;
992 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
993 sym_hashes = elf_sym_hashes (abfd);
994 local_got_offsets = elf_local_got_offsets (abfd);
996 sgot = NULL;
997 srelgot = NULL;
998 sreloc = NULL;
1000 rel_end = relocs + sec->reloc_count;
1001 for (rel = relocs; rel < rel_end; rel++)
1003 unsigned long r_symndx;
1004 struct elf_link_hash_entry *h;
1006 r_symndx = ELF64_R_SYM (rel->r_info);
1007 if (r_symndx < symtab_hdr->sh_info)
1008 h = NULL;
1009 else
1010 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 switch (ELF64_R_TYPE_ID (rel->r_info))
1014 case R_SPARC_GOT10:
1015 case R_SPARC_GOT13:
1016 case R_SPARC_GOT22:
1017 /* This symbol requires a global offset table entry. */
1019 if (dynobj == NULL)
1021 /* Create the .got section. */
1022 elf_hash_table (info)->dynobj = dynobj = abfd;
1023 if (! _bfd_elf_create_got_section (dynobj, info))
1024 return false;
1027 if (sgot == NULL)
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 BFD_ASSERT (sgot != NULL);
1033 if (srelgot == NULL && (h != NULL || info->shared))
1035 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1036 if (srelgot == NULL)
1038 srelgot = bfd_make_section (dynobj, ".rela.got");
1039 if (srelgot == NULL
1040 || ! bfd_set_section_flags (dynobj, srelgot,
1041 (SEC_ALLOC
1042 | SEC_LOAD
1043 | SEC_HAS_CONTENTS
1044 | SEC_IN_MEMORY
1045 | SEC_LINKER_CREATED
1046 | SEC_READONLY))
1047 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1048 return false;
1052 if (h != NULL)
1054 if (h->got.offset != (bfd_vma) -1)
1056 /* We have already allocated space in the .got. */
1057 break;
1059 h->got.offset = sgot->_raw_size;
1061 /* Make sure this symbol is output as a dynamic symbol. */
1062 if (h->dynindx == -1)
1064 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1065 return false;
1068 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1070 else
1072 /* This is a global offset table entry for a local
1073 symbol. */
1074 if (local_got_offsets == NULL)
1076 size_t size;
1077 register unsigned int i;
1079 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1080 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1081 if (local_got_offsets == NULL)
1082 return false;
1083 elf_local_got_offsets (abfd) = local_got_offsets;
1084 for (i = 0; i < symtab_hdr->sh_info; i++)
1085 local_got_offsets[i] = (bfd_vma) -1;
1087 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1089 /* We have already allocated space in the .got. */
1090 break;
1092 local_got_offsets[r_symndx] = sgot->_raw_size;
1094 if (info->shared)
1096 /* If we are generating a shared object, we need to
1097 output a R_SPARC_RELATIVE reloc so that the
1098 dynamic linker can adjust this GOT entry. */
1099 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1103 sgot->_raw_size += 8;
1105 #if 0
1106 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107 unsigned numbers. If we permit ourselves to modify
1108 code so we get sethi/xor, this could work.
1109 Question: do we consider conditionally re-enabling
1110 this for -fpic, once we know about object code models? */
1111 /* If the .got section is more than 0x1000 bytes, we add
1112 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113 bit relocations have a greater chance of working. */
1114 if (sgot->_raw_size >= 0x1000
1115 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1116 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1117 #endif
1119 break;
1121 case R_SPARC_WPLT30:
1122 case R_SPARC_PLT32:
1123 case R_SPARC_HIPLT22:
1124 case R_SPARC_LOPLT10:
1125 case R_SPARC_PCPLT32:
1126 case R_SPARC_PCPLT22:
1127 case R_SPARC_PCPLT10:
1128 case R_SPARC_PLT64:
1129 /* This symbol requires a procedure linkage table entry. We
1130 actually build the entry in adjust_dynamic_symbol,
1131 because this might be a case of linking PIC code without
1132 linking in any dynamic objects, in which case we don't
1133 need to generate a procedure linkage table after all. */
1135 if (h == NULL)
1137 /* It does not make sense to have a procedure linkage
1138 table entry for a local symbol. */
1139 bfd_set_error (bfd_error_bad_value);
1140 return false;
1143 /* Make sure this symbol is output as a dynamic symbol. */
1144 if (h->dynindx == -1)
1146 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1147 return false;
1150 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1151 break;
1153 case R_SPARC_PC10:
1154 case R_SPARC_PC22:
1155 case R_SPARC_PC_HH22:
1156 case R_SPARC_PC_HM10:
1157 case R_SPARC_PC_LM22:
1158 if (h != NULL
1159 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1160 break;
1161 /* Fall through. */
1162 case R_SPARC_DISP8:
1163 case R_SPARC_DISP16:
1164 case R_SPARC_DISP32:
1165 case R_SPARC_DISP64:
1166 case R_SPARC_WDISP30:
1167 case R_SPARC_WDISP22:
1168 case R_SPARC_WDISP19:
1169 case R_SPARC_WDISP16:
1170 if (h == NULL)
1171 break;
1172 /* Fall through. */
1173 case R_SPARC_8:
1174 case R_SPARC_16:
1175 case R_SPARC_32:
1176 case R_SPARC_HI22:
1177 case R_SPARC_22:
1178 case R_SPARC_13:
1179 case R_SPARC_LO10:
1180 case R_SPARC_UA32:
1181 case R_SPARC_10:
1182 case R_SPARC_11:
1183 case R_SPARC_64:
1184 case R_SPARC_OLO10:
1185 case R_SPARC_HH22:
1186 case R_SPARC_HM10:
1187 case R_SPARC_LM22:
1188 case R_SPARC_7:
1189 case R_SPARC_5:
1190 case R_SPARC_6:
1191 case R_SPARC_HIX22:
1192 case R_SPARC_LOX10:
1193 case R_SPARC_H44:
1194 case R_SPARC_M44:
1195 case R_SPARC_L44:
1196 case R_SPARC_UA64:
1197 case R_SPARC_UA16:
1198 /* When creating a shared object, we must copy these relocs
1199 into the output file. We create a reloc section in
1200 dynobj and make room for the reloc.
1202 But don't do this for debugging sections -- this shows up
1203 with DWARF2 -- first because they are not loaded, and
1204 second because DWARF sez the debug info is not to be
1205 biased by the load address. */
1206 if (info->shared && (sec->flags & SEC_ALLOC))
1208 if (sreloc == NULL)
1210 const char *name;
1212 name = (bfd_elf_string_from_elf_section
1213 (abfd,
1214 elf_elfheader (abfd)->e_shstrndx,
1215 elf_section_data (sec)->rel_hdr.sh_name));
1216 if (name == NULL)
1217 return false;
1219 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1220 && strcmp (bfd_get_section_name (abfd, sec),
1221 name + 5) == 0);
1223 sreloc = bfd_get_section_by_name (dynobj, name);
1224 if (sreloc == NULL)
1226 flagword flags;
1228 sreloc = bfd_make_section (dynobj, name);
1229 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1230 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1231 if ((sec->flags & SEC_ALLOC) != 0)
1232 flags |= SEC_ALLOC | SEC_LOAD;
1233 if (sreloc == NULL
1234 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1235 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1236 return false;
1240 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1242 break;
1244 case R_SPARC_REGISTER:
1245 /* Nothing to do. */
1246 break;
1248 default:
1249 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1250 bfd_get_filename(abfd),
1251 ELF64_R_TYPE_ID (rel->r_info));
1252 return false;
1256 return true;
1259 /* Hook called by the linker routine which adds symbols from an object
1260 file. We use it for STT_REGISTER symbols. */
1262 static boolean
1263 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1264 bfd *abfd;
1265 struct bfd_link_info *info;
1266 const Elf_Internal_Sym *sym;
1267 const char **namep;
1268 flagword *flagsp;
1269 asection **secp;
1270 bfd_vma *valp;
1272 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1274 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1276 int reg;
1277 struct sparc64_elf_app_reg *p;
1279 reg = (int)sym->st_value;
1280 switch (reg & ~1)
1282 case 2: reg -= 2; break;
1283 case 6: reg -= 4; break;
1284 default:
1285 (*_bfd_error_handler)
1286 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287 bfd_get_filename (abfd));
1288 return false;
1291 if (info->hash->creator != abfd->xvec
1292 || (abfd->flags & DYNAMIC) != 0)
1294 /* STT_REGISTER only works when linking an elf64_sparc object.
1295 If STT_REGISTER comes from a dynamic object, don't put it into
1296 the output bfd. The dynamic linker will recheck it. */
1297 *namep = NULL;
1298 return true;
1301 p = sparc64_elf_hash_table(info)->app_regs + reg;
1303 if (p->name != NULL && strcmp (p->name, *namep))
1305 (*_bfd_error_handler)
1306 (_("Register %%g%d used incompatibly: "
1307 "previously declared in %s to %s, in %s redefined to %s"),
1308 (int)sym->st_value,
1309 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1310 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1311 return false;
1314 if (p->name == NULL)
1316 if (**namep)
1318 struct elf_link_hash_entry *h;
1320 h = (struct elf_link_hash_entry *)
1321 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1323 if (h != NULL)
1325 unsigned char type = h->type;
1327 if (type > STT_FUNC) type = 0;
1328 (*_bfd_error_handler)
1329 (_("Symbol `%s' has differing types: "
1330 "previously %s, REGISTER in %s"),
1331 *namep, stt_types [type], bfd_get_filename (abfd));
1332 return false;
1335 p->name = bfd_hash_allocate (&info->hash->table,
1336 strlen (*namep) + 1);
1337 if (!p->name)
1338 return false;
1340 strcpy (p->name, *namep);
1342 else
1343 p->name = "";
1344 p->bind = ELF_ST_BIND (sym->st_info);
1345 p->abfd = abfd;
1346 p->shndx = sym->st_shndx;
1348 else
1350 if (p->bind == STB_WEAK
1351 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1353 p->bind = STB_GLOBAL;
1354 p->abfd = abfd;
1357 *namep = NULL;
1358 return true;
1360 else if (! *namep || ! **namep)
1361 return true;
1362 else
1364 int i;
1365 struct sparc64_elf_app_reg *p;
1367 p = sparc64_elf_hash_table(info)->app_regs;
1368 for (i = 0; i < 4; i++, p++)
1369 if (p->name != NULL && ! strcmp (p->name, *namep))
1371 unsigned char type = ELF_ST_TYPE (sym->st_info);
1373 if (type > STT_FUNC) type = 0;
1374 (*_bfd_error_handler)
1375 (_("Symbol `%s' has differing types: "
1376 "REGISTER in %s, %s in %s"),
1377 *namep, bfd_get_filename (p->abfd), stt_types [type],
1378 bfd_get_filename (abfd));
1379 return false;
1382 return true;
1385 /* This function takes care of emiting STT_REGISTER symbols
1386 which we cannot easily keep in the symbol hash table. */
1388 static boolean
1389 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1390 bfd *output_bfd;
1391 struct bfd_link_info *info;
1392 PTR finfo;
1393 boolean (*func) PARAMS ((PTR, const char *,
1394 Elf_Internal_Sym *, asection *));
1396 int reg;
1397 struct sparc64_elf_app_reg *app_regs =
1398 sparc64_elf_hash_table(info)->app_regs;
1399 Elf_Internal_Sym sym;
1401 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402 at the end of the dynlocal list, so they came at the end of the local
1403 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1404 to back up symtab->sh_info. */
1405 if (elf_hash_table (info)->dynlocal)
1407 bfd * dynobj = elf_hash_table (info)->dynobj;
1408 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1409 struct elf_link_local_dynamic_entry *e;
1411 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1412 if (e->input_indx == -1)
1413 break;
1414 if (e)
1416 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1417 = e->dynindx;
1421 if (info->strip == strip_all)
1422 return true;
1424 for (reg = 0; reg < 4; reg++)
1425 if (app_regs [reg].name != NULL)
1427 if (info->strip == strip_some
1428 && bfd_hash_lookup (info->keep_hash,
1429 app_regs [reg].name,
1430 false, false) == NULL)
1431 continue;
1433 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1434 sym.st_size = 0;
1435 sym.st_other = 0;
1436 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1437 sym.st_shndx = app_regs [reg].shndx;
1438 if (! (*func) (finfo, app_regs [reg].name, &sym,
1439 sym.st_shndx == SHN_ABS
1440 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1441 return false;
1444 return true;
1447 static int
1448 sparc64_elf_get_symbol_type (elf_sym, type)
1449 Elf_Internal_Sym * elf_sym;
1450 int type;
1452 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1453 return STT_REGISTER;
1454 else
1455 return type;
1458 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459 even in SHN_UNDEF section. */
1461 static void
1462 sparc64_elf_symbol_processing (abfd, asym)
1463 bfd *abfd;
1464 asymbol *asym;
1466 elf_symbol_type *elfsym;
1468 elfsym = (elf_symbol_type *) asym;
1469 if (elfsym->internal_elf_sym.st_info
1470 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1472 asym->flags |= BSF_GLOBAL;
1476 /* Adjust a symbol defined by a dynamic object and referenced by a
1477 regular object. The current definition is in some section of the
1478 dynamic object, but we're not including those sections. We have to
1479 change the definition to something the rest of the link can
1480 understand. */
1482 static boolean
1483 sparc64_elf_adjust_dynamic_symbol (info, h)
1484 struct bfd_link_info *info;
1485 struct elf_link_hash_entry *h;
1487 bfd *dynobj;
1488 asection *s;
1489 unsigned int power_of_two;
1491 dynobj = elf_hash_table (info)->dynobj;
1493 /* Make sure we know what is going on here. */
1494 BFD_ASSERT (dynobj != NULL
1495 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1496 || h->weakdef != NULL
1497 || ((h->elf_link_hash_flags
1498 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1499 && (h->elf_link_hash_flags
1500 & ELF_LINK_HASH_REF_REGULAR) != 0
1501 && (h->elf_link_hash_flags
1502 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1504 /* If this is a function, put it in the procedure linkage table. We
1505 will fill in the contents of the procedure linkage table later
1506 (although we could actually do it here). The STT_NOTYPE
1507 condition is a hack specifically for the Oracle libraries
1508 delivered for Solaris; for some inexplicable reason, they define
1509 some of their functions as STT_NOTYPE when they really should be
1510 STT_FUNC. */
1511 if (h->type == STT_FUNC
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1513 || (h->type == STT_NOTYPE
1514 && (h->root.type == bfd_link_hash_defined
1515 || h->root.type == bfd_link_hash_defweak)
1516 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1518 if (! elf_hash_table (info)->dynamic_sections_created)
1520 /* This case can occur if we saw a WPLT30 reloc in an input
1521 file, but none of the input files were dynamic objects.
1522 In such a case, we don't actually need to build a
1523 procedure linkage table, and we can just do a WDISP30
1524 reloc instead. */
1525 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1526 return true;
1529 s = bfd_get_section_by_name (dynobj, ".plt");
1530 BFD_ASSERT (s != NULL);
1532 /* The first four bit in .plt is reserved. */
1533 if (s->_raw_size == 0)
1534 s->_raw_size = PLT_HEADER_SIZE;
1536 /* If this symbol is not defined in a regular file, and we are
1537 not generating a shared library, then set the symbol to this
1538 location in the .plt. This is required to make function
1539 pointers compare as equal between the normal executable and
1540 the shared library. */
1541 if (! info->shared
1542 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1544 h->root.u.def.section = s;
1545 h->root.u.def.value = s->_raw_size;
1548 /* To simplify matters later, just store the plt index here. */
1549 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1551 /* Make room for this entry. */
1552 s->_raw_size += PLT_ENTRY_SIZE;
1554 /* We also need to make an entry in the .rela.plt section. */
1556 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1557 BFD_ASSERT (s != NULL);
1559 /* The first plt entries are reserved, and the relocations must
1560 pair up exactly. */
1561 if (s->_raw_size == 0)
1562 s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1563 * sizeof (Elf64_External_Rela));
1565 s->_raw_size += sizeof (Elf64_External_Rela);
1567 /* The procedure linkage table size is bounded by the magnitude
1568 of the offset we can describe in the entry. */
1569 if (s->_raw_size >= (bfd_vma)1 << 32)
1571 bfd_set_error (bfd_error_bad_value);
1572 return false;
1575 return true;
1578 /* If this is a weak symbol, and there is a real definition, the
1579 processor independent code will have arranged for us to see the
1580 real definition first, and we can just use the same value. */
1581 if (h->weakdef != NULL)
1583 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1584 || h->weakdef->root.type == bfd_link_hash_defweak);
1585 h->root.u.def.section = h->weakdef->root.u.def.section;
1586 h->root.u.def.value = h->weakdef->root.u.def.value;
1587 return true;
1590 /* This is a reference to a symbol defined by a dynamic object which
1591 is not a function. */
1593 /* If we are creating a shared library, we must presume that the
1594 only references to the symbol are via the global offset table.
1595 For such cases we need not do anything here; the relocations will
1596 be handled correctly by relocate_section. */
1597 if (info->shared)
1598 return true;
1600 /* We must allocate the symbol in our .dynbss section, which will
1601 become part of the .bss section of the executable. There will be
1602 an entry for this symbol in the .dynsym section. The dynamic
1603 object will contain position independent code, so all references
1604 from the dynamic object to this symbol will go through the global
1605 offset table. The dynamic linker will use the .dynsym entry to
1606 determine the address it must put in the global offset table, so
1607 both the dynamic object and the regular object will refer to the
1608 same memory location for the variable. */
1610 s = bfd_get_section_by_name (dynobj, ".dynbss");
1611 BFD_ASSERT (s != NULL);
1613 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1614 to copy the initial value out of the dynamic object and into the
1615 runtime process image. We need to remember the offset into the
1616 .rel.bss section we are going to use. */
1617 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1619 asection *srel;
1621 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1622 BFD_ASSERT (srel != NULL);
1623 srel->_raw_size += sizeof (Elf64_External_Rela);
1624 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1627 /* We need to figure out the alignment required for this symbol. I
1628 have no idea how ELF linkers handle this. 16-bytes is the size
1629 of the largest type that requires hard alignment -- long double. */
1630 power_of_two = bfd_log2 (h->size);
1631 if (power_of_two > 4)
1632 power_of_two = 4;
1634 /* Apply the required alignment. */
1635 s->_raw_size = BFD_ALIGN (s->_raw_size,
1636 (bfd_size_type) (1 << power_of_two));
1637 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1639 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1640 return false;
1643 /* Define the symbol as being at this point in the section. */
1644 h->root.u.def.section = s;
1645 h->root.u.def.value = s->_raw_size;
1647 /* Increment the section size to make room for the symbol. */
1648 s->_raw_size += h->size;
1650 return true;
1653 /* Set the sizes of the dynamic sections. */
1655 static boolean
1656 sparc64_elf_size_dynamic_sections (output_bfd, info)
1657 bfd *output_bfd;
1658 struct bfd_link_info *info;
1660 bfd *dynobj;
1661 asection *s;
1662 boolean reltext;
1663 boolean relplt;
1665 dynobj = elf_hash_table (info)->dynobj;
1666 BFD_ASSERT (dynobj != NULL);
1668 if (elf_hash_table (info)->dynamic_sections_created)
1670 /* Set the contents of the .interp section to the interpreter. */
1671 if (! info->shared)
1673 s = bfd_get_section_by_name (dynobj, ".interp");
1674 BFD_ASSERT (s != NULL);
1675 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1676 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1679 else
1681 /* We may have created entries in the .rela.got section.
1682 However, if we are not creating the dynamic sections, we will
1683 not actually use these entries. Reset the size of .rela.got,
1684 which will cause it to get stripped from the output file
1685 below. */
1686 s = bfd_get_section_by_name (dynobj, ".rela.got");
1687 if (s != NULL)
1688 s->_raw_size = 0;
1691 /* The check_relocs and adjust_dynamic_symbol entry points have
1692 determined the sizes of the various dynamic sections. Allocate
1693 memory for them. */
1694 reltext = false;
1695 relplt = false;
1696 for (s = dynobj->sections; s != NULL; s = s->next)
1698 const char *name;
1699 boolean strip;
1701 if ((s->flags & SEC_LINKER_CREATED) == 0)
1702 continue;
1704 /* It's OK to base decisions on the section name, because none
1705 of the dynobj section names depend upon the input files. */
1706 name = bfd_get_section_name (dynobj, s);
1708 strip = false;
1710 if (strncmp (name, ".rela", 5) == 0)
1712 if (s->_raw_size == 0)
1714 /* If we don't need this section, strip it from the
1715 output file. This is to handle .rela.bss and
1716 .rel.plt. We must create it in
1717 create_dynamic_sections, because it must be created
1718 before the linker maps input sections to output
1719 sections. The linker does that before
1720 adjust_dynamic_symbol is called, and it is that
1721 function which decides whether anything needs to go
1722 into these sections. */
1723 strip = true;
1725 else
1727 const char *outname;
1728 asection *target;
1730 /* If this relocation section applies to a read only
1731 section, then we probably need a DT_TEXTREL entry. */
1732 outname = bfd_get_section_name (output_bfd,
1733 s->output_section);
1734 target = bfd_get_section_by_name (output_bfd, outname + 5);
1735 if (target != NULL
1736 && (target->flags & SEC_READONLY) != 0)
1737 reltext = true;
1739 if (strcmp (name, ".rela.plt") == 0)
1740 relplt = true;
1742 /* We use the reloc_count field as a counter if we need
1743 to copy relocs into the output file. */
1744 s->reloc_count = 0;
1747 else if (strcmp (name, ".plt") != 0
1748 && strncmp (name, ".got", 4) != 0)
1750 /* It's not one of our sections, so don't allocate space. */
1751 continue;
1754 if (strip)
1756 _bfd_strip_section_from_output (info, s);
1757 continue;
1760 /* Allocate memory for the section contents. Zero the memory
1761 for the benefit of .rela.plt, which has 4 unused entries
1762 at the beginning, and we don't want garbage. */
1763 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1764 if (s->contents == NULL && s->_raw_size != 0)
1765 return false;
1768 if (elf_hash_table (info)->dynamic_sections_created)
1770 /* Add some entries to the .dynamic section. We fill in the
1771 values later, in sparc64_elf_finish_dynamic_sections, but we
1772 must add the entries now so that we get the correct size for
1773 the .dynamic section. The DT_DEBUG entry is filled in by the
1774 dynamic linker and used by the debugger. */
1775 int reg;
1776 struct sparc64_elf_app_reg * app_regs;
1777 struct bfd_strtab_hash *dynstr;
1778 struct elf_link_hash_table *eht = elf_hash_table (info);
1780 if (! info->shared)
1782 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1783 return false;
1786 if (relplt)
1788 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1792 return false;
1795 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1796 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1798 sizeof (Elf64_External_Rela)))
1799 return false;
1801 if (reltext)
1803 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1804 return false;
1807 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1808 entries if needed. */
1809 app_regs = sparc64_elf_hash_table (info)->app_regs;
1810 dynstr = eht->dynstr;
1812 for (reg = 0; reg < 4; reg++)
1813 if (app_regs [reg].name != NULL)
1815 struct elf_link_local_dynamic_entry *entry, *e;
1817 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1818 return false;
1820 entry = (struct elf_link_local_dynamic_entry *)
1821 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1822 if (entry == NULL)
1823 return false;
1825 /* We cheat here a little bit: the symbol will not be local, so we
1826 put it at the end of the dynlocal linked list. We will fix it
1827 later on, as we have to fix other fields anyway. */
1828 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1829 entry->isym.st_size = 0;
1830 if (*app_regs [reg].name != '\0')
1831 entry->isym.st_name
1832 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1833 else
1834 entry->isym.st_name = 0;
1835 entry->isym.st_other = 0;
1836 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1837 STT_REGISTER);
1838 entry->isym.st_shndx = app_regs [reg].shndx;
1839 entry->next = NULL;
1840 entry->input_bfd = output_bfd;
1841 entry->input_indx = -1;
1843 if (eht->dynlocal == NULL)
1844 eht->dynlocal = entry;
1845 else
1847 for (e = eht->dynlocal; e->next; e = e->next)
1849 e->next = entry;
1851 eht->dynsymcount++;
1855 return true;
1858 /* Relocate a SPARC64 ELF section. */
1860 static boolean
1861 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1862 contents, relocs, local_syms, local_sections)
1863 bfd *output_bfd;
1864 struct bfd_link_info *info;
1865 bfd *input_bfd;
1866 asection *input_section;
1867 bfd_byte *contents;
1868 Elf_Internal_Rela *relocs;
1869 Elf_Internal_Sym *local_syms;
1870 asection **local_sections;
1872 bfd *dynobj;
1873 Elf_Internal_Shdr *symtab_hdr;
1874 struct elf_link_hash_entry **sym_hashes;
1875 bfd_vma *local_got_offsets;
1876 bfd_vma got_base;
1877 asection *sgot;
1878 asection *splt;
1879 asection *sreloc;
1880 Elf_Internal_Rela *rel;
1881 Elf_Internal_Rela *relend;
1883 dynobj = elf_hash_table (info)->dynobj;
1884 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1885 sym_hashes = elf_sym_hashes (input_bfd);
1886 local_got_offsets = elf_local_got_offsets (input_bfd);
1888 if (elf_hash_table(info)->hgot == NULL)
1889 got_base = 0;
1890 else
1891 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1893 sgot = splt = sreloc = NULL;
1895 rel = relocs;
1896 relend = relocs + input_section->reloc_count;
1897 for (; rel < relend; rel++)
1899 int r_type;
1900 reloc_howto_type *howto;
1901 long r_symndx;
1902 struct elf_link_hash_entry *h;
1903 Elf_Internal_Sym *sym;
1904 asection *sec;
1905 bfd_vma relocation;
1906 bfd_reloc_status_type r;
1908 r_type = ELF64_R_TYPE_ID (rel->r_info);
1909 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1911 bfd_set_error (bfd_error_bad_value);
1912 return false;
1914 howto = sparc64_elf_howto_table + r_type;
1916 r_symndx = ELF64_R_SYM (rel->r_info);
1918 if (info->relocateable)
1920 /* This is a relocateable link. We don't have to change
1921 anything, unless the reloc is against a section symbol,
1922 in which case we have to adjust according to where the
1923 section symbol winds up in the output section. */
1924 if (r_symndx < symtab_hdr->sh_info)
1926 sym = local_syms + r_symndx;
1927 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1929 sec = local_sections[r_symndx];
1930 rel->r_addend += sec->output_offset + sym->st_value;
1934 continue;
1937 /* This is a final link. */
1938 h = NULL;
1939 sym = NULL;
1940 sec = NULL;
1941 if (r_symndx < symtab_hdr->sh_info)
1943 sym = local_syms + r_symndx;
1944 sec = local_sections[r_symndx];
1945 relocation = (sec->output_section->vma
1946 + sec->output_offset
1947 + sym->st_value);
1949 else
1951 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1952 while (h->root.type == bfd_link_hash_indirect
1953 || h->root.type == bfd_link_hash_warning)
1954 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1955 if (h->root.type == bfd_link_hash_defined
1956 || h->root.type == bfd_link_hash_defweak)
1958 boolean skip_it = false;
1959 sec = h->root.u.def.section;
1961 switch (r_type)
1963 case R_SPARC_WPLT30:
1964 case R_SPARC_PLT32:
1965 case R_SPARC_HIPLT22:
1966 case R_SPARC_LOPLT10:
1967 case R_SPARC_PCPLT32:
1968 case R_SPARC_PCPLT22:
1969 case R_SPARC_PCPLT10:
1970 case R_SPARC_PLT64:
1971 if (h->plt.offset != (bfd_vma) -1)
1972 skip_it = true;
1973 break;
1975 case R_SPARC_GOT10:
1976 case R_SPARC_GOT13:
1977 case R_SPARC_GOT22:
1978 if (elf_hash_table(info)->dynamic_sections_created
1979 && (!info->shared
1980 || (!info->symbolic && h->dynindx != -1)
1981 || !(h->elf_link_hash_flags
1982 & ELF_LINK_HASH_DEF_REGULAR)))
1983 skip_it = true;
1984 break;
1986 case R_SPARC_PC10:
1987 case R_SPARC_PC22:
1988 case R_SPARC_PC_HH22:
1989 case R_SPARC_PC_HM10:
1990 case R_SPARC_PC_LM22:
1991 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
1992 break;
1993 /* FALLTHRU */
1995 case R_SPARC_8:
1996 case R_SPARC_16:
1997 case R_SPARC_32:
1998 case R_SPARC_DISP8:
1999 case R_SPARC_DISP16:
2000 case R_SPARC_DISP32:
2001 case R_SPARC_WDISP30:
2002 case R_SPARC_WDISP22:
2003 case R_SPARC_HI22:
2004 case R_SPARC_22:
2005 case R_SPARC_13:
2006 case R_SPARC_LO10:
2007 case R_SPARC_UA32:
2008 case R_SPARC_10:
2009 case R_SPARC_11:
2010 case R_SPARC_64:
2011 case R_SPARC_OLO10:
2012 case R_SPARC_HH22:
2013 case R_SPARC_HM10:
2014 case R_SPARC_LM22:
2015 case R_SPARC_WDISP19:
2016 case R_SPARC_WDISP16:
2017 case R_SPARC_7:
2018 case R_SPARC_5:
2019 case R_SPARC_6:
2020 case R_SPARC_DISP64:
2021 case R_SPARC_HIX22:
2022 case R_SPARC_LOX10:
2023 case R_SPARC_H44:
2024 case R_SPARC_M44:
2025 case R_SPARC_L44:
2026 case R_SPARC_UA64:
2027 case R_SPARC_UA16:
2028 if (info->shared
2029 && ((!info->symbolic && h->dynindx != -1)
2030 || !(h->elf_link_hash_flags
2031 & ELF_LINK_HASH_DEF_REGULAR)))
2032 skip_it = true;
2033 break;
2036 if (skip_it)
2038 /* In these cases, we don't need the relocation
2039 value. We check specially because in some
2040 obscure cases sec->output_section will be NULL. */
2041 relocation = 0;
2043 else
2045 relocation = (h->root.u.def.value
2046 + sec->output_section->vma
2047 + sec->output_offset);
2050 else if (h->root.type == bfd_link_hash_undefweak)
2051 relocation = 0;
2052 else if (info->shared && !info->symbolic && !info->no_undefined)
2053 relocation = 0;
2054 else
2056 if (! ((*info->callbacks->undefined_symbol)
2057 (info, h->root.root.string, input_bfd,
2058 input_section, rel->r_offset,
2059 (!info->shared || info->no_undefined))))
2060 return false;
2061 relocation = 0;
2065 /* When generating a shared object, these relocations are copied
2066 into the output file to be resolved at run time. */
2067 if (info->shared && (input_section->flags & SEC_ALLOC))
2069 switch (r_type)
2071 case R_SPARC_PC10:
2072 case R_SPARC_PC22:
2073 case R_SPARC_PC_HH22:
2074 case R_SPARC_PC_HM10:
2075 case R_SPARC_PC_LM22:
2076 if (h != NULL
2077 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2078 break;
2079 /* Fall through. */
2080 case R_SPARC_DISP8:
2081 case R_SPARC_DISP16:
2082 case R_SPARC_DISP32:
2083 case R_SPARC_WDISP30:
2084 case R_SPARC_WDISP22:
2085 case R_SPARC_WDISP19:
2086 case R_SPARC_WDISP16:
2087 case R_SPARC_DISP64:
2088 if (h == NULL)
2089 break;
2090 /* Fall through. */
2091 case R_SPARC_8:
2092 case R_SPARC_16:
2093 case R_SPARC_32:
2094 case R_SPARC_HI22:
2095 case R_SPARC_22:
2096 case R_SPARC_13:
2097 case R_SPARC_LO10:
2098 case R_SPARC_UA32:
2099 case R_SPARC_10:
2100 case R_SPARC_11:
2101 case R_SPARC_64:
2102 case R_SPARC_OLO10:
2103 case R_SPARC_HH22:
2104 case R_SPARC_HM10:
2105 case R_SPARC_LM22:
2106 case R_SPARC_7:
2107 case R_SPARC_5:
2108 case R_SPARC_6:
2109 case R_SPARC_HIX22:
2110 case R_SPARC_LOX10:
2111 case R_SPARC_H44:
2112 case R_SPARC_M44:
2113 case R_SPARC_L44:
2114 case R_SPARC_UA64:
2115 case R_SPARC_UA16:
2117 Elf_Internal_Rela outrel;
2118 boolean skip;
2120 if (sreloc == NULL)
2122 const char *name =
2123 (bfd_elf_string_from_elf_section
2124 (input_bfd,
2125 elf_elfheader (input_bfd)->e_shstrndx,
2126 elf_section_data (input_section)->rel_hdr.sh_name));
2128 if (name == NULL)
2129 return false;
2131 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2132 && strcmp (bfd_get_section_name(input_bfd,
2133 input_section),
2134 name + 5) == 0);
2136 sreloc = bfd_get_section_by_name (dynobj, name);
2137 BFD_ASSERT (sreloc != NULL);
2140 skip = false;
2142 if (elf_section_data (input_section)->stab_info == NULL)
2143 outrel.r_offset = rel->r_offset;
2144 else
2146 bfd_vma off;
2148 off = (_bfd_stab_section_offset
2149 (output_bfd, &elf_hash_table (info)->stab_info,
2150 input_section,
2151 &elf_section_data (input_section)->stab_info,
2152 rel->r_offset));
2153 if (off == MINUS_ONE)
2154 skip = true;
2155 outrel.r_offset = off;
2158 outrel.r_offset += (input_section->output_section->vma
2159 + input_section->output_offset);
2161 /* Optimize unaligned reloc usage now that we know where
2162 it finally resides. */
2163 switch (r_type)
2165 case R_SPARC_16:
2166 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2167 break;
2168 case R_SPARC_UA16:
2169 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2170 break;
2171 case R_SPARC_32:
2172 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2173 break;
2174 case R_SPARC_UA32:
2175 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2176 break;
2177 case R_SPARC_64:
2178 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2179 break;
2180 case R_SPARC_UA64:
2181 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2182 break;
2185 if (skip)
2186 memset (&outrel, 0, sizeof outrel);
2187 /* h->dynindx may be -1 if the symbol was marked to
2188 become local. */
2189 else if (h != NULL
2190 && ((! info->symbolic && h->dynindx != -1)
2191 || (h->elf_link_hash_flags
2192 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2194 BFD_ASSERT (h->dynindx != -1);
2195 outrel.r_info
2196 = ELF64_R_INFO (h->dynindx,
2197 ELF64_R_TYPE_INFO (
2198 ELF64_R_TYPE_DATA (rel->r_info),
2199 r_type));
2200 outrel.r_addend = rel->r_addend;
2202 else
2204 if (r_type == R_SPARC_64)
2206 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2207 outrel.r_addend = relocation + rel->r_addend;
2209 else
2211 long indx;
2213 if (h == NULL)
2214 sec = local_sections[r_symndx];
2215 else
2217 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2218 || (h->root.type
2219 == bfd_link_hash_defweak));
2220 sec = h->root.u.def.section;
2222 if (sec != NULL && bfd_is_abs_section (sec))
2223 indx = 0;
2224 else if (sec == NULL || sec->owner == NULL)
2226 bfd_set_error (bfd_error_bad_value);
2227 return false;
2229 else
2231 asection *osec;
2233 osec = sec->output_section;
2234 indx = elf_section_data (osec)->dynindx;
2236 /* FIXME: we really should be able to link non-pic
2237 shared libraries. */
2238 if (indx == 0)
2240 BFD_FAIL ();
2241 (*_bfd_error_handler)
2242 (_("%s: probably compiled without -fPIC?"),
2243 bfd_get_filename (input_bfd));
2244 bfd_set_error (bfd_error_bad_value);
2245 return false;
2249 outrel.r_info
2250 = ELF64_R_INFO (indx,
2251 ELF64_R_TYPE_INFO (
2252 ELF64_R_TYPE_DATA (rel->r_info),
2253 r_type));
2254 outrel.r_addend = relocation + rel->r_addend;
2258 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2259 (((Elf64_External_Rela *)
2260 sreloc->contents)
2261 + sreloc->reloc_count));
2262 ++sreloc->reloc_count;
2264 /* This reloc will be computed at runtime, so there's no
2265 need to do anything now, unless this is a RELATIVE
2266 reloc in an unallocated section. */
2267 if (skip
2268 || (input_section->flags & SEC_ALLOC) != 0
2269 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2270 continue;
2272 break;
2276 switch (r_type)
2278 case R_SPARC_GOT10:
2279 case R_SPARC_GOT13:
2280 case R_SPARC_GOT22:
2281 /* Relocation is to the entry for this symbol in the global
2282 offset table. */
2283 if (sgot == NULL)
2285 sgot = bfd_get_section_by_name (dynobj, ".got");
2286 BFD_ASSERT (sgot != NULL);
2289 if (h != NULL)
2291 bfd_vma off = h->got.offset;
2292 BFD_ASSERT (off != (bfd_vma) -1);
2294 if (! elf_hash_table (info)->dynamic_sections_created
2295 || (info->shared
2296 && (info->symbolic || h->dynindx == -1)
2297 && (h->elf_link_hash_flags
2298 & ELF_LINK_HASH_DEF_REGULAR)))
2300 /* This is actually a static link, or it is a -Bsymbolic
2301 link and the symbol is defined locally, or the symbol
2302 was forced to be local because of a version file. We
2303 must initialize this entry in the global offset table.
2304 Since the offset must always be a multiple of 8, we
2305 use the least significant bit to record whether we
2306 have initialized it already.
2308 When doing a dynamic link, we create a .rela.got
2309 relocation entry to initialize the value. This is
2310 done in the finish_dynamic_symbol routine. */
2312 if ((off & 1) != 0)
2313 off &= ~1;
2314 else
2316 bfd_put_64 (output_bfd, relocation,
2317 sgot->contents + off);
2318 h->got.offset |= 1;
2321 relocation = sgot->output_offset + off - got_base;
2323 else
2325 bfd_vma off;
2327 BFD_ASSERT (local_got_offsets != NULL);
2328 off = local_got_offsets[r_symndx];
2329 BFD_ASSERT (off != (bfd_vma) -1);
2331 /* The offset must always be a multiple of 8. We use
2332 the least significant bit to record whether we have
2333 already processed this entry. */
2334 if ((off & 1) != 0)
2335 off &= ~1;
2336 else
2338 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2339 local_got_offsets[r_symndx] |= 1;
2341 if (info->shared)
2343 asection *srelgot;
2344 Elf_Internal_Rela outrel;
2346 /* We need to generate a R_SPARC_RELATIVE reloc
2347 for the dynamic linker. */
2348 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2349 BFD_ASSERT (srelgot != NULL);
2351 outrel.r_offset = (sgot->output_section->vma
2352 + sgot->output_offset
2353 + off);
2354 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2355 outrel.r_addend = relocation;
2356 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2357 (((Elf64_External_Rela *)
2358 srelgot->contents)
2359 + srelgot->reloc_count));
2360 ++srelgot->reloc_count;
2363 relocation = sgot->output_offset + off - got_base;
2365 goto do_default;
2367 case R_SPARC_WPLT30:
2368 case R_SPARC_PLT32:
2369 case R_SPARC_HIPLT22:
2370 case R_SPARC_LOPLT10:
2371 case R_SPARC_PCPLT32:
2372 case R_SPARC_PCPLT22:
2373 case R_SPARC_PCPLT10:
2374 case R_SPARC_PLT64:
2375 /* Relocation is to the entry for this symbol in the
2376 procedure linkage table. */
2377 BFD_ASSERT (h != NULL);
2379 if (h->plt.offset == (bfd_vma) -1)
2381 /* We didn't make a PLT entry for this symbol. This
2382 happens when statically linking PIC code, or when
2383 using -Bsymbolic. */
2384 goto do_default;
2387 if (splt == NULL)
2389 splt = bfd_get_section_by_name (dynobj, ".plt");
2390 BFD_ASSERT (splt != NULL);
2393 relocation = (splt->output_section->vma
2394 + splt->output_offset
2395 + sparc64_elf_plt_entry_offset (h->plt.offset));
2396 goto do_default;
2398 case R_SPARC_OLO10:
2400 bfd_vma x;
2402 relocation += rel->r_addend;
2403 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2405 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2406 x = (x & ~0x1fff) | (relocation & 0x1fff);
2407 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2409 r = bfd_check_overflow (howto->complain_on_overflow,
2410 howto->bitsize, howto->rightshift,
2411 bfd_arch_bits_per_address (input_bfd),
2412 relocation);
2414 break;
2416 case R_SPARC_WDISP16:
2418 bfd_vma x;
2420 relocation += rel->r_addend;
2421 /* Adjust for pc-relative-ness. */
2422 relocation -= (input_section->output_section->vma
2423 + input_section->output_offset);
2424 relocation -= rel->r_offset;
2426 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2427 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2428 | ((relocation >> 2) & 0x3fff));
2429 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2431 r = bfd_check_overflow (howto->complain_on_overflow,
2432 howto->bitsize, howto->rightshift,
2433 bfd_arch_bits_per_address (input_bfd),
2434 relocation);
2436 break;
2438 case R_SPARC_HIX22:
2440 bfd_vma x;
2442 relocation += rel->r_addend;
2443 relocation = relocation ^ MINUS_ONE;
2445 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2446 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2447 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2449 r = bfd_check_overflow (howto->complain_on_overflow,
2450 howto->bitsize, howto->rightshift,
2451 bfd_arch_bits_per_address (input_bfd),
2452 relocation);
2454 break;
2456 case R_SPARC_LOX10:
2458 bfd_vma x;
2460 relocation += rel->r_addend;
2461 relocation = (relocation & 0x3ff) | 0x1c00;
2463 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2464 x = (x & ~0x1fff) | relocation;
2465 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2467 r = bfd_reloc_ok;
2469 break;
2471 default:
2472 do_default:
2473 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2474 contents, rel->r_offset,
2475 relocation, rel->r_addend);
2476 break;
2479 switch (r)
2481 case bfd_reloc_ok:
2482 break;
2484 default:
2485 case bfd_reloc_outofrange:
2486 abort ();
2488 case bfd_reloc_overflow:
2490 const char *name;
2492 if (h != NULL)
2494 if (h->root.type == bfd_link_hash_undefweak
2495 && howto->pc_relative)
2497 /* Assume this is a call protected by other code that
2498 detect the symbol is undefined. If this is the case,
2499 we can safely ignore the overflow. If not, the
2500 program is hosed anyway, and a little warning isn't
2501 going to help. */
2502 break;
2505 name = h->root.root.string;
2507 else
2509 name = (bfd_elf_string_from_elf_section
2510 (input_bfd,
2511 symtab_hdr->sh_link,
2512 sym->st_name));
2513 if (name == NULL)
2514 return false;
2515 if (*name == '\0')
2516 name = bfd_section_name (input_bfd, sec);
2518 if (! ((*info->callbacks->reloc_overflow)
2519 (info, name, howto->name, (bfd_vma) 0,
2520 input_bfd, input_section, rel->r_offset)))
2521 return false;
2523 break;
2527 return true;
2530 /* Finish up dynamic symbol handling. We set the contents of various
2531 dynamic sections here. */
2533 static boolean
2534 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2535 bfd *output_bfd;
2536 struct bfd_link_info *info;
2537 struct elf_link_hash_entry *h;
2538 Elf_Internal_Sym *sym;
2540 bfd *dynobj;
2542 dynobj = elf_hash_table (info)->dynobj;
2544 if (h->plt.offset != (bfd_vma) -1)
2546 asection *splt;
2547 asection *srela;
2548 Elf_Internal_Rela rela;
2550 /* This symbol has an entry in the PLT. Set it up. */
2552 BFD_ASSERT (h->dynindx != -1);
2554 splt = bfd_get_section_by_name (dynobj, ".plt");
2555 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2556 BFD_ASSERT (splt != NULL && srela != NULL);
2558 /* Fill in the entry in the .rela.plt section. */
2560 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2562 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2563 rela.r_addend = 0;
2565 else
2567 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2568 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2569 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2570 -(splt->output_section->vma + splt->output_offset);
2572 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2573 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2575 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2576 ((Elf64_External_Rela *) srela->contents
2577 + h->plt.offset));
2579 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2581 /* Mark the symbol as undefined, rather than as defined in
2582 the .plt section. Leave the value alone. */
2583 sym->st_shndx = SHN_UNDEF;
2587 if (h->got.offset != (bfd_vma) -1)
2589 asection *sgot;
2590 asection *srela;
2591 Elf_Internal_Rela rela;
2593 /* This symbol has an entry in the GOT. Set it up. */
2595 sgot = bfd_get_section_by_name (dynobj, ".got");
2596 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2597 BFD_ASSERT (sgot != NULL && srela != NULL);
2599 rela.r_offset = (sgot->output_section->vma
2600 + sgot->output_offset
2601 + (h->got.offset &~ 1));
2603 /* If this is a -Bsymbolic link, and the symbol is defined
2604 locally, we just want to emit a RELATIVE reloc. Likewise if
2605 the symbol was forced to be local because of a version file.
2606 The entry in the global offset table will already have been
2607 initialized in the relocate_section function. */
2608 if (info->shared
2609 && (info->symbolic || h->dynindx == -1)
2610 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2612 asection *sec = h->root.u.def.section;
2613 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2614 rela.r_addend = (h->root.u.def.value
2615 + sec->output_section->vma
2616 + sec->output_offset);
2618 else
2620 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2621 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2622 rela.r_addend = 0;
2625 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2626 ((Elf64_External_Rela *) srela->contents
2627 + srela->reloc_count));
2628 ++srela->reloc_count;
2631 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2633 asection *s;
2634 Elf_Internal_Rela rela;
2636 /* This symbols needs a copy reloc. Set it up. */
2638 BFD_ASSERT (h->dynindx != -1);
2640 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2641 ".rela.bss");
2642 BFD_ASSERT (s != NULL);
2644 rela.r_offset = (h->root.u.def.value
2645 + h->root.u.def.section->output_section->vma
2646 + h->root.u.def.section->output_offset);
2647 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2648 rela.r_addend = 0;
2649 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2650 ((Elf64_External_Rela *) s->contents
2651 + s->reloc_count));
2652 ++s->reloc_count;
2655 /* Mark some specially defined symbols as absolute. */
2656 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2657 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2658 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2659 sym->st_shndx = SHN_ABS;
2661 return true;
2664 /* Finish up the dynamic sections. */
2666 static boolean
2667 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2668 bfd *output_bfd;
2669 struct bfd_link_info *info;
2671 bfd *dynobj;
2672 int stt_regidx = -1;
2673 asection *sdyn;
2674 asection *sgot;
2676 dynobj = elf_hash_table (info)->dynobj;
2678 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2680 if (elf_hash_table (info)->dynamic_sections_created)
2682 asection *splt;
2683 Elf64_External_Dyn *dyncon, *dynconend;
2685 splt = bfd_get_section_by_name (dynobj, ".plt");
2686 BFD_ASSERT (splt != NULL && sdyn != NULL);
2688 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2689 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2690 for (; dyncon < dynconend; dyncon++)
2692 Elf_Internal_Dyn dyn;
2693 const char *name;
2694 boolean size;
2696 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2698 switch (dyn.d_tag)
2700 case DT_PLTGOT: name = ".plt"; size = false; break;
2701 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2702 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2703 case DT_SPARC_REGISTER:
2704 if (stt_regidx == -1)
2706 stt_regidx =
2707 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2708 if (stt_regidx == -1)
2709 return false;
2711 dyn.d_un.d_val = stt_regidx++;
2712 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2713 /* fallthrough */
2714 default: name = NULL; size = false; break;
2717 if (name != NULL)
2719 asection *s;
2721 s = bfd_get_section_by_name (output_bfd, name);
2722 if (s == NULL)
2723 dyn.d_un.d_val = 0;
2724 else
2726 if (! size)
2727 dyn.d_un.d_ptr = s->vma;
2728 else
2730 if (s->_cooked_size != 0)
2731 dyn.d_un.d_val = s->_cooked_size;
2732 else
2733 dyn.d_un.d_val = s->_raw_size;
2736 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2740 /* Initialize the contents of the .plt section. */
2741 if (splt->_raw_size > 0)
2743 sparc64_elf_build_plt(output_bfd, splt->contents,
2744 splt->_raw_size / PLT_ENTRY_SIZE);
2747 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2748 PLT_ENTRY_SIZE;
2751 /* Set the first entry in the global offset table to the address of
2752 the dynamic section. */
2753 sgot = bfd_get_section_by_name (dynobj, ".got");
2754 BFD_ASSERT (sgot != NULL);
2755 if (sgot->_raw_size > 0)
2757 if (sdyn == NULL)
2758 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2759 else
2760 bfd_put_64 (output_bfd,
2761 sdyn->output_section->vma + sdyn->output_offset,
2762 sgot->contents);
2765 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2767 return true;
2770 /* Functions for dealing with the e_flags field. */
2772 /* Merge backend specific data from an object file to the output
2773 object file when linking. */
2775 static boolean
2776 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2777 bfd *ibfd;
2778 bfd *obfd;
2780 boolean error;
2781 flagword new_flags, old_flags;
2782 int new_mm, old_mm;
2784 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2785 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2786 return true;
2788 new_flags = elf_elfheader (ibfd)->e_flags;
2789 old_flags = elf_elfheader (obfd)->e_flags;
2791 if (!elf_flags_init (obfd)) /* First call, no flags set */
2793 elf_flags_init (obfd) = true;
2794 elf_elfheader (obfd)->e_flags = new_flags;
2797 else if (new_flags == old_flags) /* Compatible flags are ok */
2800 else /* Incompatible flags */
2802 error = false;
2804 if ((ibfd->flags & DYNAMIC) != 0)
2806 /* We don't want dynamic objects memory ordering and
2807 architecture to have any role. That's what dynamic linker
2808 should do. */
2809 old_flags &= ~(EF_SPARCV9_MM | EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1);
2810 old_flags |= (new_flags
2811 & (EF_SPARCV9_MM
2812 | EF_SPARC_SUN_US1
2813 | EF_SPARC_HAL_R1));
2815 else
2817 /* Choose the highest architecture requirements. */
2818 old_flags |= (new_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2819 new_flags |= (old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2820 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2821 == (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2823 error = true;
2824 (*_bfd_error_handler)
2825 (_("%s: linking UltraSPARC specific with HAL specific code"),
2826 bfd_get_filename (ibfd));
2828 /* Choose the most restrictive memory ordering. */
2829 old_mm = (old_flags & EF_SPARCV9_MM);
2830 new_mm = (new_flags & EF_SPARCV9_MM);
2831 old_flags &= ~EF_SPARCV9_MM;
2832 new_flags &= ~EF_SPARCV9_MM;
2833 if (new_mm < old_mm)
2834 old_mm = new_mm;
2835 old_flags |= old_mm;
2836 new_flags |= old_mm;
2839 /* Warn about any other mismatches */
2840 if (new_flags != old_flags)
2842 error = true;
2843 (*_bfd_error_handler)
2844 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2845 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2848 elf_elfheader (obfd)->e_flags = old_flags;
2850 if (error)
2852 bfd_set_error (bfd_error_bad_value);
2853 return false;
2856 return true;
2859 /* Print a STT_REGISTER symbol to file FILE. */
2861 static const char *
2862 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2863 bfd *abfd;
2864 PTR filep;
2865 asymbol *symbol;
2867 FILE *file = (FILE *) filep;
2868 int reg, type;
2870 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2871 != STT_REGISTER)
2872 return NULL;
2874 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2875 type = symbol->flags;
2876 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2877 ((type & BSF_LOCAL)
2878 ? (type & BSF_GLOBAL) ? '!' : 'l'
2879 : (type & BSF_GLOBAL) ? 'g' : ' '),
2880 (type & BSF_WEAK) ? 'w' : ' ');
2881 if (symbol->name == NULL || symbol->name [0] == '\0')
2882 return "#scratch";
2883 else
2884 return symbol->name;
2887 /* Set the right machine number for a SPARC64 ELF file. */
2889 static boolean
2890 sparc64_elf_object_p (abfd)
2891 bfd *abfd;
2893 unsigned long mach = bfd_mach_sparc_v9;
2895 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
2896 mach = bfd_mach_sparc_v9a;
2897 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
2900 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
2901 standard ELF, because R_SPARC_OLO10 has secondary addend in
2902 ELF64_R_TYPE_DATA field. This structure is used to redirect the
2903 relocation handling routines. */
2905 const struct elf_size_info sparc64_elf_size_info =
2907 sizeof (Elf64_External_Ehdr),
2908 sizeof (Elf64_External_Phdr),
2909 sizeof (Elf64_External_Shdr),
2910 sizeof (Elf64_External_Rel),
2911 sizeof (Elf64_External_Rela),
2912 sizeof (Elf64_External_Sym),
2913 sizeof (Elf64_External_Dyn),
2914 sizeof (Elf_External_Note),
2915 4, /* hash-table entry size */
2916 /* internal relocations per external relocations.
2917 For link purposes we use just 1 internal per
2918 1 external, for assembly and slurp symbol table
2919 we use 2. */
2921 64, /* arch_size */
2922 8, /* file_align */
2923 ELFCLASS64,
2924 EV_CURRENT,
2925 bfd_elf64_write_out_phdrs,
2926 bfd_elf64_write_shdrs_and_ehdr,
2927 sparc64_elf_write_relocs,
2928 bfd_elf64_swap_symbol_out,
2929 sparc64_elf_slurp_reloc_table,
2930 bfd_elf64_slurp_symbol_table,
2931 bfd_elf64_swap_dyn_in,
2932 bfd_elf64_swap_dyn_out,
2933 NULL,
2934 NULL,
2935 NULL,
2936 NULL
2939 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
2940 #define TARGET_BIG_NAME "elf64-sparc"
2941 #define ELF_ARCH bfd_arch_sparc
2942 #define ELF_MAXPAGESIZE 0x100000
2944 /* This is the official ABI value. */
2945 #define ELF_MACHINE_CODE EM_SPARCV9
2947 /* This is the value that we used before the ABI was released. */
2948 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
2950 #define bfd_elf64_bfd_link_hash_table_create \
2951 sparc64_elf_bfd_link_hash_table_create
2953 #define elf_info_to_howto \
2954 sparc64_elf_info_to_howto
2955 #define bfd_elf64_get_reloc_upper_bound \
2956 sparc64_elf_get_reloc_upper_bound
2957 #define bfd_elf64_get_dynamic_reloc_upper_bound \
2958 sparc64_elf_get_dynamic_reloc_upper_bound
2959 #define bfd_elf64_canonicalize_dynamic_reloc \
2960 sparc64_elf_canonicalize_dynamic_reloc
2961 #define bfd_elf64_bfd_reloc_type_lookup \
2962 sparc64_elf_reloc_type_lookup
2964 #define elf_backend_create_dynamic_sections \
2965 _bfd_elf_create_dynamic_sections
2966 #define elf_backend_add_symbol_hook \
2967 sparc64_elf_add_symbol_hook
2968 #define elf_backend_get_symbol_type \
2969 sparc64_elf_get_symbol_type
2970 #define elf_backend_symbol_processing \
2971 sparc64_elf_symbol_processing
2972 #define elf_backend_check_relocs \
2973 sparc64_elf_check_relocs
2974 #define elf_backend_adjust_dynamic_symbol \
2975 sparc64_elf_adjust_dynamic_symbol
2976 #define elf_backend_size_dynamic_sections \
2977 sparc64_elf_size_dynamic_sections
2978 #define elf_backend_relocate_section \
2979 sparc64_elf_relocate_section
2980 #define elf_backend_finish_dynamic_symbol \
2981 sparc64_elf_finish_dynamic_symbol
2982 #define elf_backend_finish_dynamic_sections \
2983 sparc64_elf_finish_dynamic_sections
2984 #define elf_backend_print_symbol_all \
2985 sparc64_elf_print_symbol_all
2986 #define elf_backend_output_arch_syms \
2987 sparc64_elf_output_arch_syms
2989 #define bfd_elf64_bfd_merge_private_bfd_data \
2990 sparc64_elf_merge_private_bfd_data
2992 #define elf_backend_size_info \
2993 sparc64_elf_size_info
2994 #define elf_backend_object_p \
2995 sparc64_elf_object_p
2997 #define elf_backend_want_got_plt 0
2998 #define elf_backend_plt_readonly 0
2999 #define elf_backend_want_plt_sym 1
3001 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3002 #define elf_backend_plt_alignment 8
3004 #define elf_backend_got_header_size 8
3005 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3007 #include "elf64-target.h"