1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry
*h
;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type
;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
118 struct mips_got_page_range
120 struct mips_got_page_range
*next
;
121 bfd_signed_vma min_addend
;
122 bfd_signed_vma max_addend
;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
131 /* The index of the symbol, as stored in the relocation r_info. */
133 /* The ranges for this page entry. */
134 struct mips_got_page_range
*ranges
;
135 /* The maximum number of page entries needed for RANGES. */
139 /* This structure is used to hold .got information when linking. */
143 /* The global symbol in the GOT with the lowest index in the dynamic
145 struct elf_link_hash_entry
*global_gotsym
;
146 /* The number of global .got entries. */
147 unsigned int global_gotno
;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno
;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno
;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno
;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno
;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno
;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno
;
161 /* A hash table holding members of the got. */
162 struct htab
*got_entries
;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab
*got_page_entries
;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab
*bfd2got
;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info
*next
;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset
;
178 /* Map an input bfd to a got in a multi-got link. */
180 struct mips_elf_bfd2got_hash
{
182 struct mips_got_info
*g
;
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
188 struct mips_elf_got_per_bfd_arg
190 /* A hashtable that maps bfds to gots. */
192 /* The output bfd. */
194 /* The link information. */
195 struct bfd_link_info
*info
;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 struct mips_got_info
*primary
;
200 /* A non-primary got we're trying to merge with other input bfd's
202 struct mips_got_info
*current
;
203 /* The maximum number of got entries that can be addressed with a
205 unsigned int max_count
;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages
;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
212 unsigned int global_count
;
215 /* Another structure used to pass arguments for got entries traversal. */
217 struct mips_elf_set_global_got_offset_arg
219 struct mips_got_info
*g
;
221 unsigned int needed_relocs
;
222 struct bfd_link_info
*info
;
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
228 struct mips_elf_count_tls_arg
230 struct bfd_link_info
*info
;
234 struct _mips_elf_section_data
236 struct bfd_elf_section_data elf
;
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
269 #define GGA_RELOC_ONLY 1
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
276 addiu $25,$25,%lo(func)
278 immediately before a PIC function "func". The second is to add:
282 addiu $25,$25,%lo(func)
284 to a separate trampoline section.
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub
{
290 /* The generated section that contains this stub. */
291 asection
*stub_section
;
293 /* The offset of the stub from the start of STUB_SECTION. */
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry
*h
;
301 /* Macros for populating a mips_elf_la25_stub. */
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
310 struct mips_elf_hash_sort_data
312 /* The symbol in the global GOT with the lowest dynamic symbol table
314 struct elf_link_hash_entry
*low
;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx
;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx
;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx
;
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
330 struct mips_elf_link_hash_entry
332 struct elf_link_hash_entry root
;
334 /* External symbol information. */
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub
*la25_stub
;
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
342 unsigned int possibly_dynamic_relocs
;
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection
*call_fp_stub
;
358 #define GOT_TLS_LDM 2
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type
;
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset
;
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area
: 2;
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc
: 1;
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs
: 1;
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub
: 1;
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub
: 1;
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches
: 1;
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub
: 1;
404 /* MIPS ELF linker hash table. */
406 struct mips_elf_link_hash_table
408 struct elf_link_hash_table root
;
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count
;
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size
;
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head
;
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen
;
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs
;
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks
;
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported
;
440 /* Shortcuts to some dynamic sections, or NULL if they are not
451 /* The master GOT information. */
452 struct mips_got_info
*got_info
;
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size
;
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size
;
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count
;
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size
;
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno
;
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection
*strampoline
;
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
482 The function returns the new section on success, otherwise it
484 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info
{
489 /* The usual link-wide information. */
490 struct bfd_link_info
*info
;
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
512 /* Structure used to pass information to mips_elf_output_extsym. */
517 struct bfd_link_info
*info
;
518 struct ecoff_debug_info
*debug
;
519 const struct ecoff_debug_swap
*swap
;
523 /* The names of the runtime procedure table symbols used on IRIX5. */
525 static const char * const mips_elf_dynsym_rtproc_names
[] =
528 "_procedure_string_table",
529 "_procedure_table_size",
533 /* These structures are used to generate the .compact_rel section on
538 unsigned long id1
; /* Always one? */
539 unsigned long num
; /* Number of compact relocation entries. */
540 unsigned long id2
; /* Always two? */
541 unsigned long offset
; /* The file offset of the first relocation. */
542 unsigned long reserved0
; /* Zero? */
543 unsigned long reserved1
; /* Zero? */
552 bfd_byte reserved0
[4];
553 bfd_byte reserved1
[4];
554 } Elf32_External_compact_rel
;
558 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype
: 4; /* Relocation types. See below. */
560 unsigned int dist2to
: 8;
561 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst
; /* KONST field. See below. */
563 unsigned long vaddr
; /* VADDR to be relocated. */
568 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype
: 4; /* Relocation types. See below. */
570 unsigned int dist2to
: 8;
571 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst
; /* KONST field. See below. */
580 } Elf32_External_crinfo
;
586 } Elf32_External_crinfo2
;
588 /* These are the constants used to swap the bitfields in a crinfo. */
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
628 typedef struct runtime_pdr
{
629 bfd_vma adr
; /* Memory address of start of procedure. */
630 long regmask
; /* Save register mask. */
631 long regoffset
; /* Save register offset. */
632 long fregmask
; /* Save floating point register mask. */
633 long fregoffset
; /* Save floating point register offset. */
634 long frameoffset
; /* Frame size. */
635 short framereg
; /* Frame pointer register. */
636 short pcreg
; /* Offset or reg of return pc. */
637 long irpss
; /* Index into the runtime string table. */
639 struct exception_info
*exception_info
;/* Pointer to exception array. */
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
644 static struct mips_got_entry
*mips_elf_create_local_got_entry
645 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
646 struct mips_elf_link_hash_entry
*, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry
*, void *);
649 static bfd_vma mips_elf_high
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
653 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
654 bfd_vma
*, asection
*);
655 static hashval_t mips_elf_got_entry_hash
657 static bfd_vma mips_elf_adjust_gp
658 (bfd
*, struct mips_got_info
*, bfd
*);
659 static struct mips_got_info
*mips_elf_got_for_ibfd
660 (struct mips_got_info
*, bfd
*);
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd
*reldyn_sorting_bfd
;
665 /* True if ABFD is for CPUs with load interlocking that include
666 non-MIPS1 CPUs and R3900. */
667 #define LOAD_INTERLOCKS_P(abfd) \
668 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
669 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
671 /* True if ABFD is a PIC object. */
672 #define PIC_OBJECT_P(abfd) \
673 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
675 /* Nonzero if ABFD is using the N32 ABI. */
676 #define ABI_N32_P(abfd) \
677 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
679 /* Nonzero if ABFD is using the N64 ABI. */
680 #define ABI_64_P(abfd) \
681 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
683 /* Nonzero if ABFD is using NewABI conventions. */
684 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
686 /* The IRIX compatibility level we are striving for. */
687 #define IRIX_COMPAT(abfd) \
688 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
690 /* Whether we are trying to be compatible with IRIX at all. */
691 #define SGI_COMPAT(abfd) \
692 (IRIX_COMPAT (abfd) != ict_none)
694 /* The name of the options section. */
695 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
696 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
698 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
699 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
700 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
701 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
703 /* Whether the section is readonly. */
704 #define MIPS_ELF_READONLY_SECTION(sec) \
705 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
706 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
708 /* The name of the stub section. */
709 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
711 /* The size of an external REL relocation. */
712 #define MIPS_ELF_REL_SIZE(abfd) \
713 (get_elf_backend_data (abfd)->s->sizeof_rel)
715 /* The size of an external RELA relocation. */
716 #define MIPS_ELF_RELA_SIZE(abfd) \
717 (get_elf_backend_data (abfd)->s->sizeof_rela)
719 /* The size of an external dynamic table entry. */
720 #define MIPS_ELF_DYN_SIZE(abfd) \
721 (get_elf_backend_data (abfd)->s->sizeof_dyn)
723 /* The size of a GOT entry. */
724 #define MIPS_ELF_GOT_SIZE(abfd) \
725 (get_elf_backend_data (abfd)->s->arch_size / 8)
727 /* The size of a symbol-table entry. */
728 #define MIPS_ELF_SYM_SIZE(abfd) \
729 (get_elf_backend_data (abfd)->s->sizeof_sym)
731 /* The default alignment for sections, as a power of two. */
732 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
733 (get_elf_backend_data (abfd)->s->log_file_align)
735 /* Get word-sized data. */
736 #define MIPS_ELF_GET_WORD(abfd, ptr) \
737 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
739 /* Put out word-sized data. */
740 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
742 ? bfd_put_64 (abfd, val, ptr) \
743 : bfd_put_32 (abfd, val, ptr))
745 /* The opcode for word-sized loads (LW or LD). */
746 #define MIPS_ELF_LOAD_WORD(abfd) \
747 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
749 /* Add a dynamic symbol table-entry. */
750 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
751 _bfd_elf_add_dynamic_entry (info, tag, val)
753 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
754 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
756 /* Determine whether the internal relocation of index REL_IDX is REL
757 (zero) or RELA (non-zero). The assumption is that, if there are
758 two relocation sections for this section, one of them is REL and
759 the other is RELA. If the index of the relocation we're testing is
760 in range for the first relocation section, check that the external
761 relocation size is that for RELA. It is also assumed that, if
762 rel_idx is not in range for the first section, and this first
763 section contains REL relocs, then the relocation is in the second
764 section, that is RELA. */
765 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
766 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
767 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
768 > (bfd_vma)(rel_idx)) \
769 == (elf_section_data (sec)->rel_hdr.sh_entsize \
770 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
771 : sizeof (Elf32_External_Rela))))
773 /* The name of the dynamic relocation section. */
774 #define MIPS_ELF_REL_DYN_NAME(INFO) \
775 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
777 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
778 from smaller values. Start with zero, widen, *then* decrement. */
779 #define MINUS_ONE (((bfd_vma)0) - 1)
780 #define MINUS_TWO (((bfd_vma)0) - 2)
782 /* The value to write into got[1] for SVR4 targets, to identify it is
783 a GNU object. The dynamic linker can then use got[1] to store the
785 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
786 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
788 /* The offset of $gp from the beginning of the .got section. */
789 #define ELF_MIPS_GP_OFFSET(INFO) \
790 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
792 /* The maximum size of the GOT for it to be addressable using 16-bit
794 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
796 /* Instructions which appear in a stub. */
797 #define STUB_LW(abfd) \
799 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
800 : 0x8f998010)) /* lw t9,0x8010(gp) */
801 #define STUB_MOVE(abfd) \
803 ? 0x03e0782d /* daddu t7,ra */ \
804 : 0x03e07821)) /* addu t7,ra */
805 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
806 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
807 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
808 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
809 #define STUB_LI16S(abfd, VAL) \
811 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
812 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
814 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
815 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
817 /* The name of the dynamic interpreter. This is put in the .interp
820 #define ELF_DYNAMIC_INTERPRETER(abfd) \
821 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
822 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
823 : "/usr/lib/libc.so.1")
826 #define MNAME(bfd,pre,pos) \
827 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
828 #define ELF_R_SYM(bfd, i) \
829 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
830 #define ELF_R_TYPE(bfd, i) \
831 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
832 #define ELF_R_INFO(bfd, s, t) \
833 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
835 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
836 #define ELF_R_SYM(bfd, i) \
838 #define ELF_R_TYPE(bfd, i) \
840 #define ELF_R_INFO(bfd, s, t) \
841 (ELF32_R_INFO (s, t))
844 /* The mips16 compiler uses a couple of special sections to handle
845 floating point arguments.
847 Section names that look like .mips16.fn.FNNAME contain stubs that
848 copy floating point arguments from the fp regs to the gp regs and
849 then jump to FNNAME. If any 32 bit function calls FNNAME, the
850 call should be redirected to the stub instead. If no 32 bit
851 function calls FNNAME, the stub should be discarded. We need to
852 consider any reference to the function, not just a call, because
853 if the address of the function is taken we will need the stub,
854 since the address might be passed to a 32 bit function.
856 Section names that look like .mips16.call.FNNAME contain stubs
857 that copy floating point arguments from the gp regs to the fp
858 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
859 then any 16 bit function that calls FNNAME should be redirected
860 to the stub instead. If FNNAME is not a 32 bit function, the
861 stub should be discarded.
863 .mips16.call.fp.FNNAME sections are similar, but contain stubs
864 which call FNNAME and then copy the return value from the fp regs
865 to the gp regs. These stubs store the return value in $18 while
866 calling FNNAME; any function which might call one of these stubs
867 must arrange to save $18 around the call. (This case is not
868 needed for 32 bit functions that call 16 bit functions, because
869 16 bit functions always return floating point values in both
872 Note that in all cases FNNAME might be defined statically.
873 Therefore, FNNAME is not used literally. Instead, the relocation
874 information will indicate which symbol the section is for.
876 We record any stubs that we find in the symbol table. */
878 #define FN_STUB ".mips16.fn."
879 #define CALL_STUB ".mips16.call."
880 #define CALL_FP_STUB ".mips16.call.fp."
882 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
883 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
884 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
886 /* The format of the first PLT entry in an O32 executable. */
887 static const bfd_vma mips_o32_exec_plt0_entry
[] =
889 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
890 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
891 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
892 0x031cc023, /* subu $24, $24, $28 */
893 0x03e07821, /* move $15, $31 */
894 0x0018c082, /* srl $24, $24, 2 */
895 0x0320f809, /* jalr $25 */
896 0x2718fffe /* subu $24, $24, 2 */
899 /* The format of the first PLT entry in an N32 executable. Different
900 because gp ($28) is not available; we use t2 ($14) instead. */
901 static const bfd_vma mips_n32_exec_plt0_entry
[] =
903 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
904 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
905 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
906 0x030ec023, /* subu $24, $24, $14 */
907 0x03e07821, /* move $15, $31 */
908 0x0018c082, /* srl $24, $24, 2 */
909 0x0320f809, /* jalr $25 */
910 0x2718fffe /* subu $24, $24, 2 */
913 /* The format of the first PLT entry in an N64 executable. Different
914 from N32 because of the increased size of GOT entries. */
915 static const bfd_vma mips_n64_exec_plt0_entry
[] =
917 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
918 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
919 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
920 0x030ec023, /* subu $24, $24, $14 */
921 0x03e07821, /* move $15, $31 */
922 0x0018c0c2, /* srl $24, $24, 3 */
923 0x0320f809, /* jalr $25 */
924 0x2718fffe /* subu $24, $24, 2 */
927 /* The format of subsequent PLT entries. */
928 static const bfd_vma mips_exec_plt_entry
[] =
930 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
931 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
932 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
933 0x03200008 /* jr $25 */
936 /* The format of the first PLT entry in a VxWorks executable. */
937 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
939 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
940 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
941 0x8f390008, /* lw t9, 8(t9) */
942 0x00000000, /* nop */
943 0x03200008, /* jr t9 */
947 /* The format of subsequent PLT entries. */
948 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
950 0x10000000, /* b .PLT_resolver */
951 0x24180000, /* li t8, <pltindex> */
952 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
953 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
954 0x8f390000, /* lw t9, 0(t9) */
955 0x00000000, /* nop */
956 0x03200008, /* jr t9 */
960 /* The format of the first PLT entry in a VxWorks shared object. */
961 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
963 0x8f990008, /* lw t9, 8(gp) */
964 0x00000000, /* nop */
965 0x03200008, /* jr t9 */
966 0x00000000, /* nop */
967 0x00000000, /* nop */
971 /* The format of subsequent PLT entries. */
972 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
974 0x10000000, /* b .PLT_resolver */
975 0x24180000 /* li t8, <pltindex> */
978 /* Look up an entry in a MIPS ELF linker hash table. */
980 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
981 ((struct mips_elf_link_hash_entry *) \
982 elf_link_hash_lookup (&(table)->root, (string), (create), \
985 /* Traverse a MIPS ELF linker hash table. */
987 #define mips_elf_link_hash_traverse(table, func, info) \
988 (elf_link_hash_traverse \
990 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
993 /* Get the MIPS ELF linker hash table from a link_info structure. */
995 #define mips_elf_hash_table(p) \
996 ((struct mips_elf_link_hash_table *) ((p)->hash))
998 /* Find the base offsets for thread-local storage in this object,
999 for GD/LD and IE/LE respectively. */
1001 #define TP_OFFSET 0x7000
1002 #define DTP_OFFSET 0x8000
1005 dtprel_base (struct bfd_link_info
*info
)
1007 /* If tls_sec is NULL, we should have signalled an error already. */
1008 if (elf_hash_table (info
)->tls_sec
== NULL
)
1010 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1014 tprel_base (struct bfd_link_info
*info
)
1016 /* If tls_sec is NULL, we should have signalled an error already. */
1017 if (elf_hash_table (info
)->tls_sec
== NULL
)
1019 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1022 /* Create an entry in a MIPS ELF linker hash table. */
1024 static struct bfd_hash_entry
*
1025 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1026 struct bfd_hash_table
*table
, const char *string
)
1028 struct mips_elf_link_hash_entry
*ret
=
1029 (struct mips_elf_link_hash_entry
*) entry
;
1031 /* Allocate the structure if it has not already been allocated by a
1034 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1036 return (struct bfd_hash_entry
*) ret
;
1038 /* Call the allocation method of the superclass. */
1039 ret
= ((struct mips_elf_link_hash_entry
*)
1040 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1044 /* Set local fields. */
1045 memset (&ret
->esym
, 0, sizeof (EXTR
));
1046 /* We use -2 as a marker to indicate that the information has
1047 not been set. -1 means there is no associated ifd. */
1050 ret
->possibly_dynamic_relocs
= 0;
1051 ret
->fn_stub
= NULL
;
1052 ret
->call_stub
= NULL
;
1053 ret
->call_fp_stub
= NULL
;
1054 ret
->tls_type
= GOT_NORMAL
;
1055 ret
->global_got_area
= GGA_NONE
;
1056 ret
->readonly_reloc
= FALSE
;
1057 ret
->has_static_relocs
= FALSE
;
1058 ret
->no_fn_stub
= FALSE
;
1059 ret
->need_fn_stub
= FALSE
;
1060 ret
->has_nonpic_branches
= FALSE
;
1061 ret
->needs_lazy_stub
= FALSE
;
1064 return (struct bfd_hash_entry
*) ret
;
1068 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1070 if (!sec
->used_by_bfd
)
1072 struct _mips_elf_section_data
*sdata
;
1073 bfd_size_type amt
= sizeof (*sdata
);
1075 sdata
= bfd_zalloc (abfd
, amt
);
1078 sec
->used_by_bfd
= sdata
;
1081 return _bfd_elf_new_section_hook (abfd
, sec
);
1084 /* Read ECOFF debugging information from a .mdebug section into a
1085 ecoff_debug_info structure. */
1088 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1089 struct ecoff_debug_info
*debug
)
1092 const struct ecoff_debug_swap
*swap
;
1095 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1096 memset (debug
, 0, sizeof (*debug
));
1098 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1099 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1102 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1103 swap
->external_hdr_size
))
1106 symhdr
= &debug
->symbolic_header
;
1107 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1109 /* The symbolic header contains absolute file offsets and sizes to
1111 #define READ(ptr, offset, count, size, type) \
1112 if (symhdr->count == 0) \
1113 debug->ptr = NULL; \
1116 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1117 debug->ptr = bfd_malloc (amt); \
1118 if (debug->ptr == NULL) \
1119 goto error_return; \
1120 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1121 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1122 goto error_return; \
1125 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1126 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1127 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1128 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1129 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1130 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1132 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1133 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1134 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1135 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1136 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1144 if (ext_hdr
!= NULL
)
1146 if (debug
->line
!= NULL
)
1148 if (debug
->external_dnr
!= NULL
)
1149 free (debug
->external_dnr
);
1150 if (debug
->external_pdr
!= NULL
)
1151 free (debug
->external_pdr
);
1152 if (debug
->external_sym
!= NULL
)
1153 free (debug
->external_sym
);
1154 if (debug
->external_opt
!= NULL
)
1155 free (debug
->external_opt
);
1156 if (debug
->external_aux
!= NULL
)
1157 free (debug
->external_aux
);
1158 if (debug
->ss
!= NULL
)
1160 if (debug
->ssext
!= NULL
)
1161 free (debug
->ssext
);
1162 if (debug
->external_fdr
!= NULL
)
1163 free (debug
->external_fdr
);
1164 if (debug
->external_rfd
!= NULL
)
1165 free (debug
->external_rfd
);
1166 if (debug
->external_ext
!= NULL
)
1167 free (debug
->external_ext
);
1171 /* Swap RPDR (runtime procedure table entry) for output. */
1174 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1176 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1177 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1178 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1179 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1180 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1181 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1183 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1184 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1186 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1189 /* Create a runtime procedure table from the .mdebug section. */
1192 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1193 struct bfd_link_info
*info
, asection
*s
,
1194 struct ecoff_debug_info
*debug
)
1196 const struct ecoff_debug_swap
*swap
;
1197 HDRR
*hdr
= &debug
->symbolic_header
;
1199 struct rpdr_ext
*erp
;
1201 struct pdr_ext
*epdr
;
1202 struct sym_ext
*esym
;
1206 bfd_size_type count
;
1207 unsigned long sindex
;
1211 const char *no_name_func
= _("static procedure (no name)");
1219 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1221 sindex
= strlen (no_name_func
) + 1;
1222 count
= hdr
->ipdMax
;
1225 size
= swap
->external_pdr_size
;
1227 epdr
= bfd_malloc (size
* count
);
1231 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1234 size
= sizeof (RPDR
);
1235 rp
= rpdr
= bfd_malloc (size
* count
);
1239 size
= sizeof (char *);
1240 sv
= bfd_malloc (size
* count
);
1244 count
= hdr
->isymMax
;
1245 size
= swap
->external_sym_size
;
1246 esym
= bfd_malloc (size
* count
);
1250 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1253 count
= hdr
->issMax
;
1254 ss
= bfd_malloc (count
);
1257 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1260 count
= hdr
->ipdMax
;
1261 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1263 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1264 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1265 rp
->adr
= sym
.value
;
1266 rp
->regmask
= pdr
.regmask
;
1267 rp
->regoffset
= pdr
.regoffset
;
1268 rp
->fregmask
= pdr
.fregmask
;
1269 rp
->fregoffset
= pdr
.fregoffset
;
1270 rp
->frameoffset
= pdr
.frameoffset
;
1271 rp
->framereg
= pdr
.framereg
;
1272 rp
->pcreg
= pdr
.pcreg
;
1274 sv
[i
] = ss
+ sym
.iss
;
1275 sindex
+= strlen (sv
[i
]) + 1;
1279 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1280 size
= BFD_ALIGN (size
, 16);
1281 rtproc
= bfd_alloc (abfd
, size
);
1284 mips_elf_hash_table (info
)->procedure_count
= 0;
1288 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1291 memset (erp
, 0, sizeof (struct rpdr_ext
));
1293 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1294 strcpy (str
, no_name_func
);
1295 str
+= strlen (no_name_func
) + 1;
1296 for (i
= 0; i
< count
; i
++)
1298 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1299 strcpy (str
, sv
[i
]);
1300 str
+= strlen (sv
[i
]) + 1;
1302 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1304 /* Set the size and contents of .rtproc section. */
1306 s
->contents
= rtproc
;
1308 /* Skip this section later on (I don't think this currently
1309 matters, but someday it might). */
1310 s
->map_head
.link_order
= NULL
;
1339 /* We're going to create a stub for H. Create a symbol for the stub's
1340 value and size, to help make the disassembly easier to read. */
1343 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1344 struct mips_elf_link_hash_entry
*h
,
1345 const char *prefix
, asection
*s
, bfd_vma value
,
1348 struct bfd_link_hash_entry
*bh
;
1349 struct elf_link_hash_entry
*elfh
;
1352 /* Create a new symbol. */
1353 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1355 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1356 BSF_LOCAL
, s
, value
, NULL
,
1360 /* Make it a local function. */
1361 elfh
= (struct elf_link_hash_entry
*) bh
;
1362 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1364 elfh
->forced_local
= 1;
1368 /* We're about to redefine H. Create a symbol to represent H's
1369 current value and size, to help make the disassembly easier
1373 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1374 struct mips_elf_link_hash_entry
*h
,
1377 struct bfd_link_hash_entry
*bh
;
1378 struct elf_link_hash_entry
*elfh
;
1383 /* Read the symbol's value. */
1384 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1385 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1386 s
= h
->root
.root
.u
.def
.section
;
1387 value
= h
->root
.root
.u
.def
.value
;
1389 /* Create a new symbol. */
1390 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1392 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1393 BSF_LOCAL
, s
, value
, NULL
,
1397 /* Make it local and copy the other attributes from H. */
1398 elfh
= (struct elf_link_hash_entry
*) bh
;
1399 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1400 elfh
->other
= h
->root
.other
;
1401 elfh
->size
= h
->root
.size
;
1402 elfh
->forced_local
= 1;
1406 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1407 function rather than to a hard-float stub. */
1410 section_allows_mips16_refs_p (asection
*section
)
1414 name
= bfd_get_section_name (section
->owner
, section
);
1415 return (FN_STUB_P (name
)
1416 || CALL_STUB_P (name
)
1417 || CALL_FP_STUB_P (name
)
1418 || strcmp (name
, ".pdr") == 0);
1421 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1422 stub section of some kind. Return the R_SYMNDX of the target
1423 function, or 0 if we can't decide which function that is. */
1425 static unsigned long
1426 mips16_stub_symndx (asection
*sec ATTRIBUTE_UNUSED
,
1427 const Elf_Internal_Rela
*relocs
,
1428 const Elf_Internal_Rela
*relend
)
1430 const Elf_Internal_Rela
*rel
;
1432 /* Trust the first R_MIPS_NONE relocation, if any. */
1433 for (rel
= relocs
; rel
< relend
; rel
++)
1434 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1435 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1437 /* Otherwise trust the first relocation, whatever its kind. This is
1438 the traditional behavior. */
1439 if (relocs
< relend
)
1440 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1445 /* Check the mips16 stubs for a particular symbol, and see if we can
1449 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1450 struct mips_elf_link_hash_entry
*h
)
1452 /* Dynamic symbols must use the standard call interface, in case other
1453 objects try to call them. */
1454 if (h
->fn_stub
!= NULL
1455 && h
->root
.dynindx
!= -1)
1457 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1458 h
->need_fn_stub
= TRUE
;
1461 if (h
->fn_stub
!= NULL
1462 && ! h
->need_fn_stub
)
1464 /* We don't need the fn_stub; the only references to this symbol
1465 are 16 bit calls. Clobber the size to 0 to prevent it from
1466 being included in the link. */
1467 h
->fn_stub
->size
= 0;
1468 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1469 h
->fn_stub
->reloc_count
= 0;
1470 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1473 if (h
->call_stub
!= NULL
1474 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1476 /* We don't need the call_stub; this is a 16 bit function, so
1477 calls from other 16 bit functions are OK. Clobber the size
1478 to 0 to prevent it from being included in the link. */
1479 h
->call_stub
->size
= 0;
1480 h
->call_stub
->flags
&= ~SEC_RELOC
;
1481 h
->call_stub
->reloc_count
= 0;
1482 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1485 if (h
->call_fp_stub
!= NULL
1486 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1488 /* We don't need the call_stub; this is a 16 bit function, so
1489 calls from other 16 bit functions are OK. Clobber the size
1490 to 0 to prevent it from being included in the link. */
1491 h
->call_fp_stub
->size
= 0;
1492 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1493 h
->call_fp_stub
->reloc_count
= 0;
1494 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1498 /* Hashtable callbacks for mips_elf_la25_stubs. */
1501 mips_elf_la25_stub_hash (const void *entry_
)
1503 const struct mips_elf_la25_stub
*entry
;
1505 entry
= (struct mips_elf_la25_stub
*) entry_
;
1506 return entry
->h
->root
.root
.u
.def
.section
->id
1507 + entry
->h
->root
.root
.u
.def
.value
;
1511 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1513 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1515 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1516 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1517 return ((entry1
->h
->root
.root
.u
.def
.section
1518 == entry2
->h
->root
.root
.u
.def
.section
)
1519 && (entry1
->h
->root
.root
.u
.def
.value
1520 == entry2
->h
->root
.root
.u
.def
.value
));
1523 /* Called by the linker to set up the la25 stub-creation code. FN is
1524 the linker's implementation of add_stub_function. Return true on
1528 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1529 asection
*(*fn
) (const char *, asection
*,
1532 struct mips_elf_link_hash_table
*htab
;
1534 htab
= mips_elf_hash_table (info
);
1535 htab
->add_stub_section
= fn
;
1536 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1537 mips_elf_la25_stub_eq
, NULL
);
1538 if (htab
->la25_stubs
== NULL
)
1544 /* Return true if H is a locally-defined PIC function, in the sense
1545 that it might need $25 to be valid on entry. Note that MIPS16
1546 functions never need $25 to be valid on entry; they set up $gp
1547 using PC-relative instructions instead. */
1550 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1552 return ((h
->root
.root
.type
== bfd_link_hash_defined
1553 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1554 && h
->root
.def_regular
1555 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1556 && !ELF_ST_IS_MIPS16 (h
->root
.other
)
1557 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1558 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1561 /* STUB describes an la25 stub that we have decided to implement
1562 by inserting an LUI/ADDIU pair before the target function.
1563 Create the section and redirect the function symbol to it. */
1566 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1567 struct bfd_link_info
*info
)
1569 struct mips_elf_link_hash_table
*htab
;
1571 asection
*s
, *input_section
;
1574 htab
= mips_elf_hash_table (info
);
1576 /* Create a unique name for the new section. */
1577 name
= bfd_malloc (11 + sizeof (".text.stub."));
1580 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1582 /* Create the section. */
1583 input_section
= stub
->h
->root
.root
.u
.def
.section
;
1584 s
= htab
->add_stub_section (name
, input_section
,
1585 input_section
->output_section
);
1589 /* Make sure that any padding goes before the stub. */
1590 align
= input_section
->alignment_power
;
1591 if (!bfd_set_section_alignment (s
->owner
, s
, align
))
1594 s
->size
= (1 << align
) - 8;
1596 /* Create a symbol for the stub. */
1597 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1598 stub
->stub_section
= s
;
1599 stub
->offset
= s
->size
;
1601 /* Allocate room for it. */
1606 /* STUB describes an la25 stub that we have decided to implement
1607 with a separate trampoline. Allocate room for it and redirect
1608 the function symbol to it. */
1611 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1612 struct bfd_link_info
*info
)
1614 struct mips_elf_link_hash_table
*htab
;
1617 htab
= mips_elf_hash_table (info
);
1619 /* Create a trampoline section, if we haven't already. */
1620 s
= htab
->strampoline
;
1623 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1624 s
= htab
->add_stub_section (".text", NULL
,
1625 input_section
->output_section
);
1626 if (s
== NULL
|| !bfd_set_section_alignment (s
->owner
, s
, 4))
1628 htab
->strampoline
= s
;
1631 /* Create a symbol for the stub. */
1632 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1633 stub
->stub_section
= s
;
1634 stub
->offset
= s
->size
;
1636 /* Allocate room for it. */
1641 /* H describes a symbol that needs an la25 stub. Make sure that an
1642 appropriate stub exists and point H at it. */
1645 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1646 struct mips_elf_link_hash_entry
*h
)
1648 struct mips_elf_link_hash_table
*htab
;
1649 struct mips_elf_la25_stub search
, *stub
;
1650 bfd_boolean use_trampoline_p
;
1655 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1656 of the section and if we would need no more than 2 nops. */
1657 s
= h
->root
.root
.u
.def
.section
;
1658 value
= h
->root
.root
.u
.def
.value
;
1659 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
1661 /* Describe the stub we want. */
1662 search
.stub_section
= NULL
;
1666 /* See if we've already created an equivalent stub. */
1667 htab
= mips_elf_hash_table (info
);
1668 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
1672 stub
= (struct mips_elf_la25_stub
*) *slot
;
1675 /* We can reuse the existing stub. */
1676 h
->la25_stub
= stub
;
1680 /* Create a permanent copy of ENTRY and add it to the hash table. */
1681 stub
= bfd_malloc (sizeof (search
));
1687 h
->la25_stub
= stub
;
1688 return (use_trampoline_p
1689 ? mips_elf_add_la25_trampoline (stub
, info
)
1690 : mips_elf_add_la25_intro (stub
, info
));
1693 /* A mips_elf_link_hash_traverse callback that is called before sizing
1694 sections. DATA points to a mips_htab_traverse_info structure. */
1697 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
1699 struct mips_htab_traverse_info
*hti
;
1701 hti
= (struct mips_htab_traverse_info
*) data
;
1702 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1703 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1705 if (!hti
->info
->relocatable
)
1706 mips_elf_check_mips16_stubs (hti
->info
, h
);
1708 if (mips_elf_local_pic_function_p (h
))
1710 /* H is a function that might need $25 to be valid on entry.
1711 If we're creating a non-PIC relocatable object, mark H as
1712 being PIC. If we're creating a non-relocatable object with
1713 non-PIC branches and jumps to H, make sure that H has an la25
1715 if (hti
->info
->relocatable
)
1717 if (!PIC_OBJECT_P (hti
->output_bfd
))
1718 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
1720 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
1729 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1730 Most mips16 instructions are 16 bits, but these instructions
1733 The format of these instructions is:
1735 +--------------+--------------------------------+
1736 | JALX | X| Imm 20:16 | Imm 25:21 |
1737 +--------------+--------------------------------+
1739 +-----------------------------------------------+
1741 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1742 Note that the immediate value in the first word is swapped.
1744 When producing a relocatable object file, R_MIPS16_26 is
1745 handled mostly like R_MIPS_26. In particular, the addend is
1746 stored as a straight 26-bit value in a 32-bit instruction.
1747 (gas makes life simpler for itself by never adjusting a
1748 R_MIPS16_26 reloc to be against a section, so the addend is
1749 always zero). However, the 32 bit instruction is stored as 2
1750 16-bit values, rather than a single 32-bit value. In a
1751 big-endian file, the result is the same; in a little-endian
1752 file, the two 16-bit halves of the 32 bit value are swapped.
1753 This is so that a disassembler can recognize the jal
1756 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1757 instruction stored as two 16-bit values. The addend A is the
1758 contents of the targ26 field. The calculation is the same as
1759 R_MIPS_26. When storing the calculated value, reorder the
1760 immediate value as shown above, and don't forget to store the
1761 value as two 16-bit values.
1763 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1767 +--------+----------------------+
1771 +--------+----------------------+
1774 +----------+------+-------------+
1778 +----------+--------------------+
1779 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1780 ((sub1 << 16) | sub2)).
1782 When producing a relocatable object file, the calculation is
1783 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1784 When producing a fully linked file, the calculation is
1785 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1786 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1788 The table below lists the other MIPS16 instruction relocations.
1789 Each one is calculated in the same way as the non-MIPS16 relocation
1790 given on the right, but using the extended MIPS16 layout of 16-bit
1793 R_MIPS16_GPREL R_MIPS_GPREL16
1794 R_MIPS16_GOT16 R_MIPS_GOT16
1795 R_MIPS16_CALL16 R_MIPS_CALL16
1796 R_MIPS16_HI16 R_MIPS_HI16
1797 R_MIPS16_LO16 R_MIPS_LO16
1799 A typical instruction will have a format like this:
1801 +--------------+--------------------------------+
1802 | EXTEND | Imm 10:5 | Imm 15:11 |
1803 +--------------+--------------------------------+
1804 | Major | rx | ry | Imm 4:0 |
1805 +--------------+--------------------------------+
1807 EXTEND is the five bit value 11110. Major is the instruction
1810 All we need to do here is shuffle the bits appropriately.
1811 As above, the two 16-bit halves must be swapped on a
1812 little-endian system. */
1814 static inline bfd_boolean
1815 mips16_reloc_p (int r_type
)
1820 case R_MIPS16_GPREL
:
1821 case R_MIPS16_GOT16
:
1822 case R_MIPS16_CALL16
:
1832 static inline bfd_boolean
1833 got16_reloc_p (int r_type
)
1835 return r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS16_GOT16
;
1838 static inline bfd_boolean
1839 call16_reloc_p (int r_type
)
1841 return r_type
== R_MIPS_CALL16
|| r_type
== R_MIPS16_CALL16
;
1844 static inline bfd_boolean
1845 hi16_reloc_p (int r_type
)
1847 return r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
;
1850 static inline bfd_boolean
1851 lo16_reloc_p (int r_type
)
1853 return r_type
== R_MIPS_LO16
|| r_type
== R_MIPS16_LO16
;
1856 static inline bfd_boolean
1857 mips16_call_reloc_p (int r_type
)
1859 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
1863 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1864 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1866 bfd_vma extend
, insn
, val
;
1868 if (!mips16_reloc_p (r_type
))
1871 /* Pick up the mips16 extend instruction and the real instruction. */
1872 extend
= bfd_get_16 (abfd
, data
);
1873 insn
= bfd_get_16 (abfd
, data
+ 2);
1874 if (r_type
== R_MIPS16_26
)
1877 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1878 | ((extend
& 0x1f) << 21) | insn
;
1880 val
= extend
<< 16 | insn
;
1883 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1884 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1885 bfd_put_32 (abfd
, val
, data
);
1889 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1890 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1892 bfd_vma extend
, insn
, val
;
1894 if (!mips16_reloc_p (r_type
))
1897 val
= bfd_get_32 (abfd
, data
);
1898 if (r_type
== R_MIPS16_26
)
1902 insn
= val
& 0xffff;
1903 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1904 | ((val
>> 21) & 0x1f);
1908 insn
= val
& 0xffff;
1914 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1915 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1917 bfd_put_16 (abfd
, insn
, data
+ 2);
1918 bfd_put_16 (abfd
, extend
, data
);
1921 bfd_reloc_status_type
1922 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1923 arelent
*reloc_entry
, asection
*input_section
,
1924 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1928 bfd_reloc_status_type status
;
1930 if (bfd_is_com_section (symbol
->section
))
1933 relocation
= symbol
->value
;
1935 relocation
+= symbol
->section
->output_section
->vma
;
1936 relocation
+= symbol
->section
->output_offset
;
1938 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1939 return bfd_reloc_outofrange
;
1941 /* Set val to the offset into the section or symbol. */
1942 val
= reloc_entry
->addend
;
1944 _bfd_mips_elf_sign_extend (val
, 16);
1946 /* Adjust val for the final section location and GP value. If we
1947 are producing relocatable output, we don't want to do this for
1948 an external symbol. */
1950 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1951 val
+= relocation
- gp
;
1953 if (reloc_entry
->howto
->partial_inplace
)
1955 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1957 + reloc_entry
->address
);
1958 if (status
!= bfd_reloc_ok
)
1962 reloc_entry
->addend
= val
;
1965 reloc_entry
->address
+= input_section
->output_offset
;
1967 return bfd_reloc_ok
;
1970 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1971 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1972 that contains the relocation field and DATA points to the start of
1977 struct mips_hi16
*next
;
1979 asection
*input_section
;
1983 /* FIXME: This should not be a static variable. */
1985 static struct mips_hi16
*mips_hi16_list
;
1987 /* A howto special_function for REL *HI16 relocations. We can only
1988 calculate the correct value once we've seen the partnering
1989 *LO16 relocation, so just save the information for later.
1991 The ABI requires that the *LO16 immediately follow the *HI16.
1992 However, as a GNU extension, we permit an arbitrary number of
1993 *HI16s to be associated with a single *LO16. This significantly
1994 simplies the relocation handling in gcc. */
1996 bfd_reloc_status_type
1997 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1998 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
1999 asection
*input_section
, bfd
*output_bfd
,
2000 char **error_message ATTRIBUTE_UNUSED
)
2002 struct mips_hi16
*n
;
2004 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2005 return bfd_reloc_outofrange
;
2007 n
= bfd_malloc (sizeof *n
);
2009 return bfd_reloc_outofrange
;
2011 n
->next
= mips_hi16_list
;
2013 n
->input_section
= input_section
;
2014 n
->rel
= *reloc_entry
;
2017 if (output_bfd
!= NULL
)
2018 reloc_entry
->address
+= input_section
->output_offset
;
2020 return bfd_reloc_ok
;
2023 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2024 like any other 16-bit relocation when applied to global symbols, but is
2025 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2027 bfd_reloc_status_type
2028 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2029 void *data
, asection
*input_section
,
2030 bfd
*output_bfd
, char **error_message
)
2032 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2033 || bfd_is_und_section (bfd_get_section (symbol
))
2034 || bfd_is_com_section (bfd_get_section (symbol
)))
2035 /* The relocation is against a global symbol. */
2036 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2037 input_section
, output_bfd
,
2040 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2041 input_section
, output_bfd
, error_message
);
2044 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2045 is a straightforward 16 bit inplace relocation, but we must deal with
2046 any partnering high-part relocations as well. */
2048 bfd_reloc_status_type
2049 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2050 void *data
, asection
*input_section
,
2051 bfd
*output_bfd
, char **error_message
)
2054 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2056 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2057 return bfd_reloc_outofrange
;
2059 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2061 vallo
= bfd_get_32 (abfd
, location
);
2062 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2065 while (mips_hi16_list
!= NULL
)
2067 bfd_reloc_status_type ret
;
2068 struct mips_hi16
*hi
;
2070 hi
= mips_hi16_list
;
2072 /* R_MIPS*_GOT16 relocations are something of a special case. We
2073 want to install the addend in the same way as for a R_MIPS*_HI16
2074 relocation (with a rightshift of 16). However, since GOT16
2075 relocations can also be used with global symbols, their howto
2076 has a rightshift of 0. */
2077 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2078 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2079 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2080 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2082 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2083 carry or borrow will induce a change of +1 or -1 in the high part. */
2084 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2086 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2087 hi
->input_section
, output_bfd
,
2089 if (ret
!= bfd_reloc_ok
)
2092 mips_hi16_list
= hi
->next
;
2096 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2097 input_section
, output_bfd
,
2101 /* A generic howto special_function. This calculates and installs the
2102 relocation itself, thus avoiding the oft-discussed problems in
2103 bfd_perform_relocation and bfd_install_relocation. */
2105 bfd_reloc_status_type
2106 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2107 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2108 asection
*input_section
, bfd
*output_bfd
,
2109 char **error_message ATTRIBUTE_UNUSED
)
2112 bfd_reloc_status_type status
;
2113 bfd_boolean relocatable
;
2115 relocatable
= (output_bfd
!= NULL
);
2117 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2118 return bfd_reloc_outofrange
;
2120 /* Build up the field adjustment in VAL. */
2122 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2124 /* Either we're calculating the final field value or we have a
2125 relocation against a section symbol. Add in the section's
2126 offset or address. */
2127 val
+= symbol
->section
->output_section
->vma
;
2128 val
+= symbol
->section
->output_offset
;
2133 /* We're calculating the final field value. Add in the symbol's value
2134 and, if pc-relative, subtract the address of the field itself. */
2135 val
+= symbol
->value
;
2136 if (reloc_entry
->howto
->pc_relative
)
2138 val
-= input_section
->output_section
->vma
;
2139 val
-= input_section
->output_offset
;
2140 val
-= reloc_entry
->address
;
2144 /* VAL is now the final adjustment. If we're keeping this relocation
2145 in the output file, and if the relocation uses a separate addend,
2146 we just need to add VAL to that addend. Otherwise we need to add
2147 VAL to the relocation field itself. */
2148 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2149 reloc_entry
->addend
+= val
;
2152 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2154 /* Add in the separate addend, if any. */
2155 val
+= reloc_entry
->addend
;
2157 /* Add VAL to the relocation field. */
2158 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2160 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2162 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2165 if (status
!= bfd_reloc_ok
)
2170 reloc_entry
->address
+= input_section
->output_offset
;
2172 return bfd_reloc_ok
;
2175 /* Swap an entry in a .gptab section. Note that these routines rely
2176 on the equivalence of the two elements of the union. */
2179 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2182 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2183 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2187 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2188 Elf32_External_gptab
*ex
)
2190 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2191 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2195 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2196 Elf32_External_compact_rel
*ex
)
2198 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2199 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2200 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2201 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2202 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2203 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2207 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2208 Elf32_External_crinfo
*ex
)
2212 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2213 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2214 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2215 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2216 H_PUT_32 (abfd
, l
, ex
->info
);
2217 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2218 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2222 routines swap this structure in and out. They are used outside of
2223 BFD, so they are globally visible. */
2226 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2229 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2230 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2231 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2232 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2233 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2234 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2238 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2239 Elf32_External_RegInfo
*ex
)
2241 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2242 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2243 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2244 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2245 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2246 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2249 /* In the 64 bit ABI, the .MIPS.options section holds register
2250 information in an Elf64_Reginfo structure. These routines swap
2251 them in and out. They are globally visible because they are used
2252 outside of BFD. These routines are here so that gas can call them
2253 without worrying about whether the 64 bit ABI has been included. */
2256 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2257 Elf64_Internal_RegInfo
*in
)
2259 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2260 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2261 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2262 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2263 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2264 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2265 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2269 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2270 Elf64_External_RegInfo
*ex
)
2272 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2273 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2274 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2275 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2276 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2277 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2278 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2281 /* Swap in an options header. */
2284 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2285 Elf_Internal_Options
*in
)
2287 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2288 in
->size
= H_GET_8 (abfd
, ex
->size
);
2289 in
->section
= H_GET_16 (abfd
, ex
->section
);
2290 in
->info
= H_GET_32 (abfd
, ex
->info
);
2293 /* Swap out an options header. */
2296 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2297 Elf_External_Options
*ex
)
2299 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2300 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2301 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2302 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2305 /* This function is called via qsort() to sort the dynamic relocation
2306 entries by increasing r_symndx value. */
2309 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2311 Elf_Internal_Rela int_reloc1
;
2312 Elf_Internal_Rela int_reloc2
;
2315 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2316 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2318 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2322 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2324 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2329 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2332 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2333 const void *arg2 ATTRIBUTE_UNUSED
)
2336 Elf_Internal_Rela int_reloc1
[3];
2337 Elf_Internal_Rela int_reloc2
[3];
2339 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2340 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2341 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2342 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2344 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2346 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2349 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2351 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2360 /* This routine is used to write out ECOFF debugging external symbol
2361 information. It is called via mips_elf_link_hash_traverse. The
2362 ECOFF external symbol information must match the ELF external
2363 symbol information. Unfortunately, at this point we don't know
2364 whether a symbol is required by reloc information, so the two
2365 tables may wind up being different. We must sort out the external
2366 symbol information before we can set the final size of the .mdebug
2367 section, and we must set the size of the .mdebug section before we
2368 can relocate any sections, and we can't know which symbols are
2369 required by relocation until we relocate the sections.
2370 Fortunately, it is relatively unlikely that any symbol will be
2371 stripped but required by a reloc. In particular, it can not happen
2372 when generating a final executable. */
2375 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2377 struct extsym_info
*einfo
= data
;
2379 asection
*sec
, *output_section
;
2381 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2382 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2384 if (h
->root
.indx
== -2)
2386 else if ((h
->root
.def_dynamic
2387 || h
->root
.ref_dynamic
2388 || h
->root
.type
== bfd_link_hash_new
)
2389 && !h
->root
.def_regular
2390 && !h
->root
.ref_regular
)
2392 else if (einfo
->info
->strip
== strip_all
2393 || (einfo
->info
->strip
== strip_some
2394 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2395 h
->root
.root
.root
.string
,
2396 FALSE
, FALSE
) == NULL
))
2404 if (h
->esym
.ifd
== -2)
2407 h
->esym
.cobol_main
= 0;
2408 h
->esym
.weakext
= 0;
2409 h
->esym
.reserved
= 0;
2410 h
->esym
.ifd
= ifdNil
;
2411 h
->esym
.asym
.value
= 0;
2412 h
->esym
.asym
.st
= stGlobal
;
2414 if (h
->root
.root
.type
== bfd_link_hash_undefined
2415 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2419 /* Use undefined class. Also, set class and type for some
2421 name
= h
->root
.root
.root
.string
;
2422 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2423 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2425 h
->esym
.asym
.sc
= scData
;
2426 h
->esym
.asym
.st
= stLabel
;
2427 h
->esym
.asym
.value
= 0;
2429 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2431 h
->esym
.asym
.sc
= scAbs
;
2432 h
->esym
.asym
.st
= stLabel
;
2433 h
->esym
.asym
.value
=
2434 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2436 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
2438 h
->esym
.asym
.sc
= scAbs
;
2439 h
->esym
.asym
.st
= stLabel
;
2440 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
2443 h
->esym
.asym
.sc
= scUndefined
;
2445 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2446 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2447 h
->esym
.asym
.sc
= scAbs
;
2452 sec
= h
->root
.root
.u
.def
.section
;
2453 output_section
= sec
->output_section
;
2455 /* When making a shared library and symbol h is the one from
2456 the another shared library, OUTPUT_SECTION may be null. */
2457 if (output_section
== NULL
)
2458 h
->esym
.asym
.sc
= scUndefined
;
2461 name
= bfd_section_name (output_section
->owner
, output_section
);
2463 if (strcmp (name
, ".text") == 0)
2464 h
->esym
.asym
.sc
= scText
;
2465 else if (strcmp (name
, ".data") == 0)
2466 h
->esym
.asym
.sc
= scData
;
2467 else if (strcmp (name
, ".sdata") == 0)
2468 h
->esym
.asym
.sc
= scSData
;
2469 else if (strcmp (name
, ".rodata") == 0
2470 || strcmp (name
, ".rdata") == 0)
2471 h
->esym
.asym
.sc
= scRData
;
2472 else if (strcmp (name
, ".bss") == 0)
2473 h
->esym
.asym
.sc
= scBss
;
2474 else if (strcmp (name
, ".sbss") == 0)
2475 h
->esym
.asym
.sc
= scSBss
;
2476 else if (strcmp (name
, ".init") == 0)
2477 h
->esym
.asym
.sc
= scInit
;
2478 else if (strcmp (name
, ".fini") == 0)
2479 h
->esym
.asym
.sc
= scFini
;
2481 h
->esym
.asym
.sc
= scAbs
;
2485 h
->esym
.asym
.reserved
= 0;
2486 h
->esym
.asym
.index
= indexNil
;
2489 if (h
->root
.root
.type
== bfd_link_hash_common
)
2490 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
2491 else if (h
->root
.root
.type
== bfd_link_hash_defined
2492 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2494 if (h
->esym
.asym
.sc
== scCommon
)
2495 h
->esym
.asym
.sc
= scBss
;
2496 else if (h
->esym
.asym
.sc
== scSCommon
)
2497 h
->esym
.asym
.sc
= scSBss
;
2499 sec
= h
->root
.root
.u
.def
.section
;
2500 output_section
= sec
->output_section
;
2501 if (output_section
!= NULL
)
2502 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
2503 + sec
->output_offset
2504 + output_section
->vma
);
2506 h
->esym
.asym
.value
= 0;
2510 struct mips_elf_link_hash_entry
*hd
= h
;
2512 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
2513 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
2515 if (hd
->needs_lazy_stub
)
2517 /* Set type and value for a symbol with a function stub. */
2518 h
->esym
.asym
.st
= stProc
;
2519 sec
= hd
->root
.root
.u
.def
.section
;
2521 h
->esym
.asym
.value
= 0;
2524 output_section
= sec
->output_section
;
2525 if (output_section
!= NULL
)
2526 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
2527 + sec
->output_offset
2528 + output_section
->vma
);
2530 h
->esym
.asym
.value
= 0;
2535 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
2536 h
->root
.root
.root
.string
,
2539 einfo
->failed
= TRUE
;
2546 /* A comparison routine used to sort .gptab entries. */
2549 gptab_compare (const void *p1
, const void *p2
)
2551 const Elf32_gptab
*a1
= p1
;
2552 const Elf32_gptab
*a2
= p2
;
2554 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
2557 /* Functions to manage the got entry hash table. */
2559 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2562 static INLINE hashval_t
2563 mips_elf_hash_bfd_vma (bfd_vma addr
)
2566 return addr
+ (addr
>> 32);
2572 /* got_entries only match if they're identical, except for gotidx, so
2573 use all fields to compute the hash, and compare the appropriate
2577 mips_elf_got_entry_hash (const void *entry_
)
2579 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2581 return entry
->symndx
2582 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
2583 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
2585 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
2586 : entry
->d
.h
->root
.root
.root
.hash
));
2590 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
2592 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2593 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2595 /* An LDM entry can only match another LDM entry. */
2596 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2599 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
2600 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
2601 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
2602 : e1
->d
.h
== e2
->d
.h
);
2605 /* multi_got_entries are still a match in the case of global objects,
2606 even if the input bfd in which they're referenced differs, so the
2607 hash computation and compare functions are adjusted
2611 mips_elf_multi_got_entry_hash (const void *entry_
)
2613 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2615 return entry
->symndx
2617 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2618 : entry
->symndx
>= 0
2619 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2620 ? (GOT_TLS_LDM
<< 17)
2622 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2623 : entry
->d
.h
->root
.root
.root
.hash
);
2627 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2629 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2630 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2632 /* Any two LDM entries match. */
2633 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2636 /* Nothing else matches an LDM entry. */
2637 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2640 return e1
->symndx
== e2
->symndx
2641 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2642 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2643 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2644 : e1
->d
.h
== e2
->d
.h
);
2648 mips_got_page_entry_hash (const void *entry_
)
2650 const struct mips_got_page_entry
*entry
;
2652 entry
= (const struct mips_got_page_entry
*) entry_
;
2653 return entry
->abfd
->id
+ entry
->symndx
;
2657 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
2659 const struct mips_got_page_entry
*entry1
, *entry2
;
2661 entry1
= (const struct mips_got_page_entry
*) entry1_
;
2662 entry2
= (const struct mips_got_page_entry
*) entry2_
;
2663 return entry1
->abfd
== entry2
->abfd
&& entry1
->symndx
== entry2
->symndx
;
2666 /* Return the dynamic relocation section. If it doesn't exist, try to
2667 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2668 if creation fails. */
2671 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2677 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2678 dynobj
= elf_hash_table (info
)->dynobj
;
2679 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2680 if (sreloc
== NULL
&& create_p
)
2682 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2687 | SEC_LINKER_CREATED
2690 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2691 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2697 /* Count the number of relocations needed for a TLS GOT entry, with
2698 access types from TLS_TYPE, and symbol H (or a local symbol if H
2702 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2703 struct elf_link_hash_entry
*h
)
2707 bfd_boolean need_relocs
= FALSE
;
2708 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2710 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2711 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2714 if ((info
->shared
|| indx
!= 0)
2716 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2717 || h
->root
.type
!= bfd_link_hash_undefweak
))
2723 if (tls_type
& GOT_TLS_GD
)
2730 if (tls_type
& GOT_TLS_IE
)
2733 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2739 /* Count the number of TLS relocations required for the GOT entry in
2740 ARG1, if it describes a local symbol. */
2743 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2745 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2746 struct mips_elf_count_tls_arg
*arg
= arg2
;
2748 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2749 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2754 /* Count the number of TLS GOT entries required for the global (or
2755 forced-local) symbol in ARG1. */
2758 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2760 struct mips_elf_link_hash_entry
*hm
2761 = (struct mips_elf_link_hash_entry
*) arg1
;
2762 struct mips_elf_count_tls_arg
*arg
= arg2
;
2764 if (hm
->tls_type
& GOT_TLS_GD
)
2766 if (hm
->tls_type
& GOT_TLS_IE
)
2772 /* Count the number of TLS relocations required for the global (or
2773 forced-local) symbol in ARG1. */
2776 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2778 struct mips_elf_link_hash_entry
*hm
2779 = (struct mips_elf_link_hash_entry
*) arg1
;
2780 struct mips_elf_count_tls_arg
*arg
= arg2
;
2782 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2787 /* Output a simple dynamic relocation into SRELOC. */
2790 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2792 unsigned long reloc_index
,
2797 Elf_Internal_Rela rel
[3];
2799 memset (rel
, 0, sizeof (rel
));
2801 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2802 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2804 if (ABI_64_P (output_bfd
))
2806 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2807 (output_bfd
, &rel
[0],
2809 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
2812 bfd_elf32_swap_reloc_out
2813 (output_bfd
, &rel
[0],
2815 + reloc_index
* sizeof (Elf32_External_Rel
)));
2818 /* Initialize a set of TLS GOT entries for one symbol. */
2821 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2822 unsigned char *tls_type_p
,
2823 struct bfd_link_info
*info
,
2824 struct mips_elf_link_hash_entry
*h
,
2827 struct mips_elf_link_hash_table
*htab
;
2829 asection
*sreloc
, *sgot
;
2830 bfd_vma offset
, offset2
;
2831 bfd_boolean need_relocs
= FALSE
;
2833 htab
= mips_elf_hash_table (info
);
2839 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2841 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2842 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2843 indx
= h
->root
.dynindx
;
2846 if (*tls_type_p
& GOT_TLS_DONE
)
2849 if ((info
->shared
|| indx
!= 0)
2851 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2852 || h
->root
.type
!= bfd_link_hash_undefweak
))
2855 /* MINUS_ONE means the symbol is not defined in this object. It may not
2856 be defined at all; assume that the value doesn't matter in that
2857 case. Otherwise complain if we would use the value. */
2858 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2859 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2861 /* Emit necessary relocations. */
2862 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2864 /* General Dynamic. */
2865 if (*tls_type_p
& GOT_TLS_GD
)
2867 offset
= got_offset
;
2868 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2872 mips_elf_output_dynamic_relocation
2873 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2874 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2875 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2878 mips_elf_output_dynamic_relocation
2879 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2880 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2881 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2883 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2884 sgot
->contents
+ offset2
);
2888 MIPS_ELF_PUT_WORD (abfd
, 1,
2889 sgot
->contents
+ offset
);
2890 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2891 sgot
->contents
+ offset2
);
2894 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2897 /* Initial Exec model. */
2898 if (*tls_type_p
& GOT_TLS_IE
)
2900 offset
= got_offset
;
2905 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2906 sgot
->contents
+ offset
);
2908 MIPS_ELF_PUT_WORD (abfd
, 0,
2909 sgot
->contents
+ offset
);
2911 mips_elf_output_dynamic_relocation
2912 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2913 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2914 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2917 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2918 sgot
->contents
+ offset
);
2921 if (*tls_type_p
& GOT_TLS_LDM
)
2923 /* The initial offset is zero, and the LD offsets will include the
2924 bias by DTP_OFFSET. */
2925 MIPS_ELF_PUT_WORD (abfd
, 0,
2926 sgot
->contents
+ got_offset
2927 + MIPS_ELF_GOT_SIZE (abfd
));
2930 MIPS_ELF_PUT_WORD (abfd
, 1,
2931 sgot
->contents
+ got_offset
);
2933 mips_elf_output_dynamic_relocation
2934 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2935 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2936 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2939 *tls_type_p
|= GOT_TLS_DONE
;
2942 /* Return the GOT index to use for a relocation of type R_TYPE against
2943 a symbol accessed using TLS_TYPE models. The GOT entries for this
2944 symbol in this GOT start at GOT_INDEX. This function initializes the
2945 GOT entries and corresponding relocations. */
2948 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2949 int r_type
, struct bfd_link_info
*info
,
2950 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2952 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2953 || r_type
== R_MIPS_TLS_LDM
);
2955 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2957 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2959 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2960 if (*tls_type
& GOT_TLS_GD
)
2961 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2966 if (r_type
== R_MIPS_TLS_GD
)
2968 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2972 if (r_type
== R_MIPS_TLS_LDM
)
2974 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2981 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2982 for global symbol H. .got.plt comes before the GOT, so the offset
2983 will be negative. */
2986 mips_elf_gotplt_index (struct bfd_link_info
*info
,
2987 struct elf_link_hash_entry
*h
)
2989 bfd_vma plt_index
, got_address
, got_value
;
2990 struct mips_elf_link_hash_table
*htab
;
2992 htab
= mips_elf_hash_table (info
);
2993 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
2995 /* This function only works for VxWorks, because a non-VxWorks .got.plt
2996 section starts with reserved entries. */
2997 BFD_ASSERT (htab
->is_vxworks
);
2999 /* Calculate the index of the symbol's PLT entry. */
3000 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
3002 /* Calculate the address of the associated .got.plt entry. */
3003 got_address
= (htab
->sgotplt
->output_section
->vma
3004 + htab
->sgotplt
->output_offset
3007 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3008 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3009 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3010 + htab
->root
.hgot
->root
.u
.def
.value
);
3012 return got_address
- got_value
;
3015 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3016 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3017 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3018 offset can be found. */
3021 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3022 bfd_vma value
, unsigned long r_symndx
,
3023 struct mips_elf_link_hash_entry
*h
, int r_type
)
3025 struct mips_elf_link_hash_table
*htab
;
3026 struct mips_got_entry
*entry
;
3028 htab
= mips_elf_hash_table (info
);
3029 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3030 r_symndx
, h
, r_type
);
3034 if (TLS_RELOC_P (r_type
))
3036 if (entry
->symndx
== -1 && htab
->got_info
->next
== NULL
)
3037 /* A type (3) entry in the single-GOT case. We use the symbol's
3038 hash table entry to track the index. */
3039 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
3040 r_type
, info
, h
, value
);
3042 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
3043 r_type
, info
, h
, value
);
3046 return entry
->gotidx
;
3049 /* Returns the GOT index for the global symbol indicated by H. */
3052 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
3053 int r_type
, struct bfd_link_info
*info
)
3055 struct mips_elf_link_hash_table
*htab
;
3057 struct mips_got_info
*g
, *gg
;
3058 long global_got_dynindx
= 0;
3060 htab
= mips_elf_hash_table (info
);
3061 gg
= g
= htab
->got_info
;
3062 if (g
->bfd2got
&& ibfd
)
3064 struct mips_got_entry e
, *p
;
3066 BFD_ASSERT (h
->dynindx
>= 0);
3068 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3069 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
3073 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
3076 p
= htab_find (g
->got_entries
, &e
);
3078 BFD_ASSERT (p
->gotidx
> 0);
3080 if (TLS_RELOC_P (r_type
))
3082 bfd_vma value
= MINUS_ONE
;
3083 if ((h
->root
.type
== bfd_link_hash_defined
3084 || h
->root
.type
== bfd_link_hash_defweak
)
3085 && h
->root
.u
.def
.section
->output_section
)
3086 value
= (h
->root
.u
.def
.value
3087 + h
->root
.u
.def
.section
->output_offset
3088 + h
->root
.u
.def
.section
->output_section
->vma
);
3090 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
3091 info
, e
.d
.h
, value
);
3098 if (gg
->global_gotsym
!= NULL
)
3099 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
3101 if (TLS_RELOC_P (r_type
))
3103 struct mips_elf_link_hash_entry
*hm
3104 = (struct mips_elf_link_hash_entry
*) h
;
3105 bfd_vma value
= MINUS_ONE
;
3107 if ((h
->root
.type
== bfd_link_hash_defined
3108 || h
->root
.type
== bfd_link_hash_defweak
)
3109 && h
->root
.u
.def
.section
->output_section
)
3110 value
= (h
->root
.u
.def
.value
3111 + h
->root
.u
.def
.section
->output_offset
3112 + h
->root
.u
.def
.section
->output_section
->vma
);
3114 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
3115 r_type
, info
, hm
, value
);
3119 /* Once we determine the global GOT entry with the lowest dynamic
3120 symbol table index, we must put all dynamic symbols with greater
3121 indices into the GOT. That makes it easy to calculate the GOT
3123 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3124 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3125 * MIPS_ELF_GOT_SIZE (abfd
));
3127 BFD_ASSERT (index
< htab
->sgot
->size
);
3132 /* Find a GOT page entry that points to within 32KB of VALUE. These
3133 entries are supposed to be placed at small offsets in the GOT, i.e.,
3134 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3135 entry could be created. If OFFSETP is nonnull, use it to return the
3136 offset of the GOT entry from VALUE. */
3139 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3140 bfd_vma value
, bfd_vma
*offsetp
)
3142 bfd_vma page
, index
;
3143 struct mips_got_entry
*entry
;
3145 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3146 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3147 NULL
, R_MIPS_GOT_PAGE
);
3152 index
= entry
->gotidx
;
3155 *offsetp
= value
- entry
->d
.address
;
3160 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3161 EXTERNAL is true if the relocation was against a global symbol
3162 that has been forced local. */
3165 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3166 bfd_vma value
, bfd_boolean external
)
3168 struct mips_got_entry
*entry
;
3170 /* GOT16 relocations against local symbols are followed by a LO16
3171 relocation; those against global symbols are not. Thus if the
3172 symbol was originally local, the GOT16 relocation should load the
3173 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3175 value
= mips_elf_high (value
) << 16;
3177 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3178 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3179 same in all cases. */
3180 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3181 NULL
, R_MIPS_GOT16
);
3183 return entry
->gotidx
;
3188 /* Returns the offset for the entry at the INDEXth position
3192 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3193 bfd
*input_bfd
, bfd_vma index
)
3195 struct mips_elf_link_hash_table
*htab
;
3199 htab
= mips_elf_hash_table (info
);
3201 gp
= _bfd_get_gp_value (output_bfd
)
3202 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3204 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
3207 /* Create and return a local GOT entry for VALUE, which was calculated
3208 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3209 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3212 static struct mips_got_entry
*
3213 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3214 bfd
*ibfd
, bfd_vma value
,
3215 unsigned long r_symndx
,
3216 struct mips_elf_link_hash_entry
*h
,
3219 struct mips_got_entry entry
, **loc
;
3220 struct mips_got_info
*g
;
3221 struct mips_elf_link_hash_table
*htab
;
3223 htab
= mips_elf_hash_table (info
);
3227 entry
.d
.address
= value
;
3230 g
= mips_elf_got_for_ibfd (htab
->got_info
, ibfd
);
3233 g
= mips_elf_got_for_ibfd (htab
->got_info
, abfd
);
3234 BFD_ASSERT (g
!= NULL
);
3237 /* We might have a symbol, H, if it has been forced local. Use the
3238 global entry then. It doesn't matter whether an entry is local
3239 or global for TLS, since the dynamic linker does not
3240 automatically relocate TLS GOT entries. */
3241 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
3242 if (TLS_RELOC_P (r_type
))
3244 struct mips_got_entry
*p
;
3247 if (r_type
== R_MIPS_TLS_LDM
)
3249 entry
.tls_type
= GOT_TLS_LDM
;
3255 entry
.symndx
= r_symndx
;
3261 p
= (struct mips_got_entry
*)
3262 htab_find (g
->got_entries
, &entry
);
3268 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3273 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
3276 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3281 memcpy (*loc
, &entry
, sizeof entry
);
3283 if (g
->assigned_gotno
> g
->local_gotno
)
3285 (*loc
)->gotidx
= -1;
3286 /* We didn't allocate enough space in the GOT. */
3287 (*_bfd_error_handler
)
3288 (_("not enough GOT space for local GOT entries"));
3289 bfd_set_error (bfd_error_bad_value
);
3293 MIPS_ELF_PUT_WORD (abfd
, value
,
3294 (htab
->sgot
->contents
+ entry
.gotidx
));
3296 /* These GOT entries need a dynamic relocation on VxWorks. */
3297 if (htab
->is_vxworks
)
3299 Elf_Internal_Rela outrel
;
3302 bfd_vma got_address
;
3304 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3305 got_address
= (htab
->sgot
->output_section
->vma
3306 + htab
->sgot
->output_offset
3309 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3310 outrel
.r_offset
= got_address
;
3311 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3312 outrel
.r_addend
= value
;
3313 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
3319 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3320 The number might be exact or a worst-case estimate, depending on how
3321 much information is available to elf_backend_omit_section_dynsym at
3322 the current linking stage. */
3324 static bfd_size_type
3325 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3327 bfd_size_type count
;
3330 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
3333 const struct elf_backend_data
*bed
;
3335 bed
= get_elf_backend_data (output_bfd
);
3336 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3337 if ((p
->flags
& SEC_EXCLUDE
) == 0
3338 && (p
->flags
& SEC_ALLOC
) != 0
3339 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3345 /* Sort the dynamic symbol table so that symbols that need GOT entries
3346 appear towards the end. */
3349 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3351 struct mips_elf_link_hash_table
*htab
;
3352 struct mips_elf_hash_sort_data hsd
;
3353 struct mips_got_info
*g
;
3355 if (elf_hash_table (info
)->dynsymcount
== 0)
3358 htab
= mips_elf_hash_table (info
);
3364 hsd
.max_unref_got_dynindx
3365 = hsd
.min_got_dynindx
3366 = (elf_hash_table (info
)->dynsymcount
- g
->reloc_only_gotno
);
3367 hsd
.max_non_got_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3368 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
3369 elf_hash_table (info
)),
3370 mips_elf_sort_hash_table_f
,
3373 /* There should have been enough room in the symbol table to
3374 accommodate both the GOT and non-GOT symbols. */
3375 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3376 BFD_ASSERT ((unsigned long) hsd
.max_unref_got_dynindx
3377 == elf_hash_table (info
)->dynsymcount
);
3378 BFD_ASSERT (elf_hash_table (info
)->dynsymcount
- hsd
.min_got_dynindx
3379 == g
->global_gotno
);
3381 /* Now we know which dynamic symbol has the lowest dynamic symbol
3382 table index in the GOT. */
3383 g
->global_gotsym
= hsd
.low
;
3388 /* If H needs a GOT entry, assign it the highest available dynamic
3389 index. Otherwise, assign it the lowest available dynamic
3393 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3395 struct mips_elf_hash_sort_data
*hsd
= data
;
3397 if (h
->root
.root
.type
== bfd_link_hash_warning
)
3398 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3400 /* Symbols without dynamic symbol table entries aren't interesting
3402 if (h
->root
.dynindx
== -1)
3405 switch (h
->global_got_area
)
3408 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3412 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3414 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3415 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3418 case GGA_RELOC_ONLY
:
3419 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3421 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3422 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3423 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3430 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3431 symbol table index lower than any we've seen to date, record it for
3435 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
3436 bfd
*abfd
, struct bfd_link_info
*info
,
3437 unsigned char tls_flag
)
3439 struct mips_elf_link_hash_table
*htab
;
3440 struct mips_elf_link_hash_entry
*hmips
;
3441 struct mips_got_entry entry
, **loc
;
3442 struct mips_got_info
*g
;
3444 htab
= mips_elf_hash_table (info
);
3445 hmips
= (struct mips_elf_link_hash_entry
*) h
;
3447 /* A global symbol in the GOT must also be in the dynamic symbol
3449 if (h
->dynindx
== -1)
3451 switch (ELF_ST_VISIBILITY (h
->other
))
3455 _bfd_elf_link_hash_hide_symbol (info
, h
, TRUE
);
3458 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
3462 /* Make sure we have a GOT to put this entry into. */
3464 BFD_ASSERT (g
!= NULL
);
3468 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3471 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3474 /* If we've already marked this entry as needing GOT space, we don't
3475 need to do it again. */
3478 (*loc
)->tls_type
|= tls_flag
;
3482 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3488 entry
.tls_type
= tls_flag
;
3490 memcpy (*loc
, &entry
, sizeof entry
);
3493 hmips
->global_got_area
= GGA_NORMAL
;
3498 /* Reserve space in G for a GOT entry containing the value of symbol
3499 SYMNDX in input bfd ABDF, plus ADDEND. */
3502 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
3503 struct bfd_link_info
*info
,
3504 unsigned char tls_flag
)
3506 struct mips_elf_link_hash_table
*htab
;
3507 struct mips_got_info
*g
;
3508 struct mips_got_entry entry
, **loc
;
3510 htab
= mips_elf_hash_table (info
);
3512 BFD_ASSERT (g
!= NULL
);
3515 entry
.symndx
= symndx
;
3516 entry
.d
.addend
= addend
;
3517 entry
.tls_type
= tls_flag
;
3518 loc
= (struct mips_got_entry
**)
3519 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
3523 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
3526 (*loc
)->tls_type
|= tls_flag
;
3528 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
3531 (*loc
)->tls_type
|= tls_flag
;
3539 entry
.tls_type
= tls_flag
;
3540 if (tls_flag
== GOT_TLS_IE
)
3542 else if (tls_flag
== GOT_TLS_GD
)
3544 else if (g
->tls_ldm_offset
== MINUS_ONE
)
3546 g
->tls_ldm_offset
= MINUS_TWO
;
3552 entry
.gotidx
= g
->local_gotno
++;
3556 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3561 memcpy (*loc
, &entry
, sizeof entry
);
3566 /* Return the maximum number of GOT page entries required for RANGE. */
3569 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
3571 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
3574 /* Record that ABFD has a page relocation against symbol SYMNDX and
3575 that ADDEND is the addend for that relocation.
3577 This function creates an upper bound on the number of GOT slots
3578 required; no attempt is made to combine references to non-overridable
3579 global symbols across multiple input files. */
3582 mips_elf_record_got_page_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3583 long symndx
, bfd_signed_vma addend
)
3585 struct mips_elf_link_hash_table
*htab
;
3586 struct mips_got_info
*g
;
3587 struct mips_got_page_entry lookup
, *entry
;
3588 struct mips_got_page_range
**range_ptr
, *range
;
3589 bfd_vma old_pages
, new_pages
;
3592 htab
= mips_elf_hash_table (info
);
3594 BFD_ASSERT (g
!= NULL
);
3596 /* Find the mips_got_page_entry hash table entry for this symbol. */
3598 lookup
.symndx
= symndx
;
3599 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
3603 /* Create a mips_got_page_entry if this is the first time we've
3605 entry
= (struct mips_got_page_entry
*) *loc
;
3608 entry
= bfd_alloc (abfd
, sizeof (*entry
));
3613 entry
->symndx
= symndx
;
3614 entry
->ranges
= NULL
;
3615 entry
->num_pages
= 0;
3619 /* Skip over ranges whose maximum extent cannot share a page entry
3621 range_ptr
= &entry
->ranges
;
3622 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
3623 range_ptr
= &(*range_ptr
)->next
;
3625 /* If we scanned to the end of the list, or found a range whose
3626 minimum extent cannot share a page entry with ADDEND, create
3627 a new singleton range. */
3629 if (!range
|| addend
< range
->min_addend
- 0xffff)
3631 range
= bfd_alloc (abfd
, sizeof (*range
));
3635 range
->next
= *range_ptr
;
3636 range
->min_addend
= addend
;
3637 range
->max_addend
= addend
;
3645 /* Remember how many pages the old range contributed. */
3646 old_pages
= mips_elf_pages_for_range (range
);
3648 /* Update the ranges. */
3649 if (addend
< range
->min_addend
)
3650 range
->min_addend
= addend
;
3651 else if (addend
> range
->max_addend
)
3653 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
3655 old_pages
+= mips_elf_pages_for_range (range
->next
);
3656 range
->max_addend
= range
->next
->max_addend
;
3657 range
->next
= range
->next
->next
;
3660 range
->max_addend
= addend
;
3663 /* Record any change in the total estimate. */
3664 new_pages
= mips_elf_pages_for_range (range
);
3665 if (old_pages
!= new_pages
)
3667 entry
->num_pages
+= new_pages
- old_pages
;
3668 g
->page_gotno
+= new_pages
- old_pages
;
3674 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3677 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
3681 struct mips_elf_link_hash_table
*htab
;
3683 htab
= mips_elf_hash_table (info
);
3684 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3685 BFD_ASSERT (s
!= NULL
);
3687 if (htab
->is_vxworks
)
3688 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
3693 /* Make room for a null element. */
3694 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
3697 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3701 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3702 if the GOT entry is for an indirect or warning symbol. */
3705 mips_elf_check_recreate_got (void **entryp
, void *data
)
3707 struct mips_got_entry
*entry
;
3708 bfd_boolean
*must_recreate
;
3710 entry
= (struct mips_got_entry
*) *entryp
;
3711 must_recreate
= (bfd_boolean
*) data
;
3712 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3714 struct mips_elf_link_hash_entry
*h
;
3717 if (h
->root
.root
.type
== bfd_link_hash_indirect
3718 || h
->root
.root
.type
== bfd_link_hash_warning
)
3720 *must_recreate
= TRUE
;
3727 /* A htab_traverse callback for GOT entries. Add all entries to
3728 hash table *DATA, converting entries for indirect and warning
3729 symbols into entries for the target symbol. Set *DATA to null
3733 mips_elf_recreate_got (void **entryp
, void *data
)
3736 struct mips_got_entry
*entry
;
3739 new_got
= (htab_t
*) data
;
3740 entry
= (struct mips_got_entry
*) *entryp
;
3741 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3743 struct mips_elf_link_hash_entry
*h
;
3746 while (h
->root
.root
.type
== bfd_link_hash_indirect
3747 || h
->root
.root
.type
== bfd_link_hash_warning
)
3749 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
3750 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3754 slot
= htab_find_slot (*new_got
, entry
, INSERT
);
3767 /* If any entries in G->got_entries are for indirect or warning symbols,
3768 replace them with entries for the target symbol. */
3771 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3773 bfd_boolean must_recreate
;
3776 must_recreate
= FALSE
;
3777 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &must_recreate
);
3780 new_got
= htab_create (htab_size (g
->got_entries
),
3781 mips_elf_got_entry_hash
,
3782 mips_elf_got_entry_eq
, NULL
);
3783 htab_traverse (g
->got_entries
, mips_elf_recreate_got
, &new_got
);
3784 if (new_got
== NULL
)
3787 /* Each entry in g->got_entries has either been copied to new_got
3788 or freed. Now delete the hash table itself. */
3789 htab_delete (g
->got_entries
);
3790 g
->got_entries
= new_got
;
3795 /* A mips_elf_link_hash_traverse callback for which DATA points
3796 to a mips_got_info. Count the number of type (3) entries. */
3799 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
3801 struct mips_got_info
*g
;
3803 g
= (struct mips_got_info
*) data
;
3804 if (h
->global_got_area
!= GGA_NONE
)
3806 if (h
->root
.forced_local
|| h
->root
.dynindx
== -1)
3808 /* We no longer need this entry if it was only used for
3809 relocations; those relocations will be against the
3810 null or section symbol instead of H. */
3811 if (h
->global_got_area
!= GGA_RELOC_ONLY
)
3813 h
->global_got_area
= GGA_NONE
;
3818 if (h
->global_got_area
== GGA_RELOC_ONLY
)
3819 g
->reloc_only_gotno
++;
3825 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3828 mips_elf_bfd2got_entry_hash (const void *entry_
)
3830 const struct mips_elf_bfd2got_hash
*entry
3831 = (struct mips_elf_bfd2got_hash
*)entry_
;
3833 return entry
->bfd
->id
;
3836 /* Check whether two hash entries have the same bfd. */
3839 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
3841 const struct mips_elf_bfd2got_hash
*e1
3842 = (const struct mips_elf_bfd2got_hash
*)entry1
;
3843 const struct mips_elf_bfd2got_hash
*e2
3844 = (const struct mips_elf_bfd2got_hash
*)entry2
;
3846 return e1
->bfd
== e2
->bfd
;
3849 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3850 be the master GOT data. */
3852 static struct mips_got_info
*
3853 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
3855 struct mips_elf_bfd2got_hash e
, *p
;
3861 p
= htab_find (g
->bfd2got
, &e
);
3862 return p
? p
->g
: NULL
;
3865 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3866 Return NULL if an error occured. */
3868 static struct mips_got_info
*
3869 mips_elf_get_got_for_bfd (struct htab
*bfd2got
, bfd
*output_bfd
,
3872 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
3873 struct mips_got_info
*g
;
3876 bfdgot_entry
.bfd
= input_bfd
;
3877 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
3878 bfdgot
= (struct mips_elf_bfd2got_hash
*) *bfdgotp
;
3882 bfdgot
= ((struct mips_elf_bfd2got_hash
*)
3883 bfd_alloc (output_bfd
, sizeof (struct mips_elf_bfd2got_hash
)));
3889 g
= ((struct mips_got_info
*)
3890 bfd_alloc (output_bfd
, sizeof (struct mips_got_info
)));
3894 bfdgot
->bfd
= input_bfd
;
3897 g
->global_gotsym
= NULL
;
3898 g
->global_gotno
= 0;
3899 g
->reloc_only_gotno
= 0;
3902 g
->assigned_gotno
= -1;
3904 g
->tls_assigned_gotno
= 0;
3905 g
->tls_ldm_offset
= MINUS_ONE
;
3906 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3907 mips_elf_multi_got_entry_eq
, NULL
);
3908 if (g
->got_entries
== NULL
)
3911 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
3912 mips_got_page_entry_eq
, NULL
);
3913 if (g
->got_page_entries
== NULL
)
3923 /* A htab_traverse callback for the entries in the master got.
3924 Create one separate got for each bfd that has entries in the global
3925 got, such that we can tell how many local and global entries each
3929 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
3931 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3932 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3933 struct mips_got_info
*g
;
3935 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3942 /* Insert the GOT entry in the bfd's got entry hash table. */
3943 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
3944 if (*entryp
!= NULL
)
3949 if (entry
->tls_type
)
3951 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3953 if (entry
->tls_type
& GOT_TLS_IE
)
3956 else if (entry
->symndx
>= 0 || entry
->d
.h
->root
.forced_local
)
3964 /* A htab_traverse callback for the page entries in the master got.
3965 Associate each page entry with the bfd's got. */
3968 mips_elf_make_got_pages_per_bfd (void **entryp
, void *p
)
3970 struct mips_got_page_entry
*entry
= (struct mips_got_page_entry
*) *entryp
;
3971 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*) p
;
3972 struct mips_got_info
*g
;
3974 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3981 /* Insert the GOT entry in the bfd's got entry hash table. */
3982 entryp
= htab_find_slot (g
->got_page_entries
, entry
, INSERT
);
3983 if (*entryp
!= NULL
)
3987 g
->page_gotno
+= entry
->num_pages
;
3991 /* Consider merging the got described by BFD2GOT with TO, using the
3992 information given by ARG. Return -1 if this would lead to overflow,
3993 1 if they were merged successfully, and 0 if a merge failed due to
3994 lack of memory. (These values are chosen so that nonnegative return
3995 values can be returned by a htab_traverse callback.) */
3998 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash
*bfd2got
,
3999 struct mips_got_info
*to
,
4000 struct mips_elf_got_per_bfd_arg
*arg
)
4002 struct mips_got_info
*from
= bfd2got
->g
;
4003 unsigned int estimate
;
4005 /* Work out how many page entries we would need for the combined GOT. */
4006 estimate
= arg
->max_pages
;
4007 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4008 estimate
= from
->page_gotno
+ to
->page_gotno
;
4010 /* And conservatively estimate how many local, global and TLS entries
4012 estimate
+= (from
->local_gotno
4013 + from
->global_gotno
4019 /* Bail out if the combined GOT might be too big. */
4020 if (estimate
> arg
->max_count
)
4023 /* Commit to the merge. Record that TO is now the bfd for this got. */
4026 /* Transfer the bfd's got information from FROM to TO. */
4027 htab_traverse (from
->got_entries
, mips_elf_make_got_per_bfd
, arg
);
4028 if (arg
->obfd
== NULL
)
4031 htab_traverse (from
->got_page_entries
, mips_elf_make_got_pages_per_bfd
, arg
);
4032 if (arg
->obfd
== NULL
)
4035 /* We don't have to worry about releasing memory of the actual
4036 got entries, since they're all in the master got_entries hash
4038 htab_delete (from
->got_entries
);
4039 htab_delete (from
->got_page_entries
);
4043 /* Attempt to merge gots of different input bfds. Try to use as much
4044 as possible of the primary got, since it doesn't require explicit
4045 dynamic relocations, but don't use bfds that would reference global
4046 symbols out of the addressable range. Failing the primary got,
4047 attempt to merge with the current got, or finish the current got
4048 and then make make the new got current. */
4051 mips_elf_merge_gots (void **bfd2got_
, void *p
)
4053 struct mips_elf_bfd2got_hash
*bfd2got
4054 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
4055 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4056 struct mips_got_info
*g
;
4057 unsigned int estimate
;
4062 /* Work out the number of page, local and TLS entries. */
4063 estimate
= arg
->max_pages
;
4064 if (estimate
> g
->page_gotno
)
4065 estimate
= g
->page_gotno
;
4066 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4068 /* We place TLS GOT entries after both locals and globals. The globals
4069 for the primary GOT may overflow the normal GOT size limit, so be
4070 sure not to merge a GOT which requires TLS with the primary GOT in that
4071 case. This doesn't affect non-primary GOTs. */
4072 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4074 if (estimate
<= arg
->max_count
)
4076 /* If we don't have a primary GOT, use it as
4077 a starting point for the primary GOT. */
4080 arg
->primary
= bfd2got
->g
;
4084 /* Try merging with the primary GOT. */
4085 result
= mips_elf_merge_got_with (bfd2got
, arg
->primary
, arg
);
4090 /* If we can merge with the last-created got, do it. */
4093 result
= mips_elf_merge_got_with (bfd2got
, arg
->current
, arg
);
4098 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4099 fits; if it turns out that it doesn't, we'll get relocation
4100 overflows anyway. */
4101 g
->next
= arg
->current
;
4107 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4108 is null iff there is just a single GOT. */
4111 mips_elf_initialize_tls_index (void **entryp
, void *p
)
4113 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4114 struct mips_got_info
*g
= p
;
4116 unsigned char tls_type
;
4118 /* We're only interested in TLS symbols. */
4119 if (entry
->tls_type
== 0)
4122 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
4124 if (entry
->symndx
== -1 && g
->next
== NULL
)
4126 /* A type (3) got entry in the single-GOT case. We use the symbol's
4127 hash table entry to track its index. */
4128 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
4130 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
4131 entry
->d
.h
->tls_got_offset
= next_index
;
4132 tls_type
= entry
->d
.h
->tls_type
;
4136 if (entry
->tls_type
& GOT_TLS_LDM
)
4138 /* There are separate mips_got_entry objects for each input bfd
4139 that requires an LDM entry. Make sure that all LDM entries in
4140 a GOT resolve to the same index. */
4141 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
4143 entry
->gotidx
= g
->tls_ldm_offset
;
4146 g
->tls_ldm_offset
= next_index
;
4148 entry
->gotidx
= next_index
;
4149 tls_type
= entry
->tls_type
;
4152 /* Account for the entries we've just allocated. */
4153 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4154 g
->tls_assigned_gotno
+= 2;
4155 if (tls_type
& GOT_TLS_IE
)
4156 g
->tls_assigned_gotno
+= 1;
4161 /* If passed a NULL mips_got_info in the argument, set the marker used
4162 to tell whether a global symbol needs a got entry (in the primary
4163 got) to the given VALUE.
4165 If passed a pointer G to a mips_got_info in the argument (it must
4166 not be the primary GOT), compute the offset from the beginning of
4167 the (primary) GOT section to the entry in G corresponding to the
4168 global symbol. G's assigned_gotno must contain the index of the
4169 first available global GOT entry in G. VALUE must contain the size
4170 of a GOT entry in bytes. For each global GOT entry that requires a
4171 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4172 marked as not eligible for lazy resolution through a function
4175 mips_elf_set_global_got_offset (void **entryp
, void *p
)
4177 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4178 struct mips_elf_set_global_got_offset_arg
*arg
4179 = (struct mips_elf_set_global_got_offset_arg
*)p
;
4180 struct mips_got_info
*g
= arg
->g
;
4182 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
4183 arg
->needed_relocs
+=
4184 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
4185 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
4187 if (entry
->abfd
!= NULL
4188 && entry
->symndx
== -1
4189 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4193 BFD_ASSERT (g
->global_gotsym
== NULL
);
4195 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
4196 if (arg
->info
->shared
4197 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4198 && entry
->d
.h
->root
.def_dynamic
4199 && !entry
->d
.h
->root
.def_regular
))
4200 ++arg
->needed_relocs
;
4203 entry
->d
.h
->global_got_area
= arg
->value
;
4209 /* A htab_traverse callback for GOT entries for which DATA is the
4210 bfd_link_info. Forbid any global symbols from having traditional
4211 lazy-binding stubs. */
4214 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4216 struct bfd_link_info
*info
;
4217 struct mips_elf_link_hash_table
*htab
;
4218 struct mips_got_entry
*entry
;
4220 entry
= (struct mips_got_entry
*) *entryp
;
4221 info
= (struct bfd_link_info
*) data
;
4222 htab
= mips_elf_hash_table (info
);
4223 if (entry
->abfd
!= NULL
4224 && entry
->symndx
== -1
4225 && entry
->d
.h
->needs_lazy_stub
)
4227 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4228 htab
->lazy_stub_count
--;
4234 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4237 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4239 if (g
->bfd2got
== NULL
)
4242 g
= mips_elf_got_for_ibfd (g
, ibfd
);
4246 BFD_ASSERT (g
->next
);
4250 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4251 * MIPS_ELF_GOT_SIZE (abfd
);
4254 /* Turn a single GOT that is too big for 16-bit addressing into
4255 a sequence of GOTs, each one 16-bit addressable. */
4258 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4259 asection
*got
, bfd_size_type pages
)
4261 struct mips_elf_link_hash_table
*htab
;
4262 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4263 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
4264 struct mips_got_info
*g
, *gg
;
4265 unsigned int assign
, needed_relocs
;
4268 dynobj
= elf_hash_table (info
)->dynobj
;
4269 htab
= mips_elf_hash_table (info
);
4271 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
4272 mips_elf_bfd2got_entry_eq
, NULL
);
4273 if (g
->bfd2got
== NULL
)
4276 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
4277 got_per_bfd_arg
.obfd
= abfd
;
4278 got_per_bfd_arg
.info
= info
;
4280 /* Count how many GOT entries each input bfd requires, creating a
4281 map from bfd to got info while at that. */
4282 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
4283 if (got_per_bfd_arg
.obfd
== NULL
)
4286 /* Also count how many page entries each input bfd requires. */
4287 htab_traverse (g
->got_page_entries
, mips_elf_make_got_pages_per_bfd
,
4289 if (got_per_bfd_arg
.obfd
== NULL
)
4292 got_per_bfd_arg
.current
= NULL
;
4293 got_per_bfd_arg
.primary
= NULL
;
4294 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4295 / MIPS_ELF_GOT_SIZE (abfd
))
4296 - htab
->reserved_gotno
);
4297 got_per_bfd_arg
.max_pages
= pages
;
4298 /* The number of globals that will be included in the primary GOT.
4299 See the calls to mips_elf_set_global_got_offset below for more
4301 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4303 /* Try to merge the GOTs of input bfds together, as long as they
4304 don't seem to exceed the maximum GOT size, choosing one of them
4305 to be the primary GOT. */
4306 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
4307 if (got_per_bfd_arg
.obfd
== NULL
)
4310 /* If we do not find any suitable primary GOT, create an empty one. */
4311 if (got_per_bfd_arg
.primary
== NULL
)
4313 g
->next
= (struct mips_got_info
*)
4314 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
4315 if (g
->next
== NULL
)
4318 g
->next
->global_gotsym
= NULL
;
4319 g
->next
->global_gotno
= 0;
4320 g
->next
->reloc_only_gotno
= 0;
4321 g
->next
->local_gotno
= 0;
4322 g
->next
->page_gotno
= 0;
4323 g
->next
->tls_gotno
= 0;
4324 g
->next
->assigned_gotno
= 0;
4325 g
->next
->tls_assigned_gotno
= 0;
4326 g
->next
->tls_ldm_offset
= MINUS_ONE
;
4327 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
4328 mips_elf_multi_got_entry_eq
,
4330 if (g
->next
->got_entries
== NULL
)
4332 g
->next
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4333 mips_got_page_entry_eq
,
4335 if (g
->next
->got_page_entries
== NULL
)
4337 g
->next
->bfd2got
= NULL
;
4340 g
->next
= got_per_bfd_arg
.primary
;
4341 g
->next
->next
= got_per_bfd_arg
.current
;
4343 /* GG is now the master GOT, and G is the primary GOT. */
4347 /* Map the output bfd to the primary got. That's what we're going
4348 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4349 didn't mark in check_relocs, and we want a quick way to find it.
4350 We can't just use gg->next because we're going to reverse the
4353 struct mips_elf_bfd2got_hash
*bfdgot
;
4356 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
4357 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
4364 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
4366 BFD_ASSERT (*bfdgotp
== NULL
);
4370 /* Every symbol that is referenced in a dynamic relocation must be
4371 present in the primary GOT, so arrange for them to appear after
4372 those that are actually referenced. */
4373 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4374 g
->global_gotno
= gg
->global_gotno
;
4376 set_got_offset_arg
.g
= NULL
;
4377 set_got_offset_arg
.value
= GGA_RELOC_ONLY
;
4378 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
4379 &set_got_offset_arg
);
4380 set_got_offset_arg
.value
= GGA_NORMAL
;
4381 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
4382 &set_got_offset_arg
);
4384 /* Now go through the GOTs assigning them offset ranges.
4385 [assigned_gotno, local_gotno[ will be set to the range of local
4386 entries in each GOT. We can then compute the end of a GOT by
4387 adding local_gotno to global_gotno. We reverse the list and make
4388 it circular since then we'll be able to quickly compute the
4389 beginning of a GOT, by computing the end of its predecessor. To
4390 avoid special cases for the primary GOT, while still preserving
4391 assertions that are valid for both single- and multi-got links,
4392 we arrange for the main got struct to have the right number of
4393 global entries, but set its local_gotno such that the initial
4394 offset of the primary GOT is zero. Remember that the primary GOT
4395 will become the last item in the circular linked list, so it
4396 points back to the master GOT. */
4397 gg
->local_gotno
= -g
->global_gotno
;
4398 gg
->global_gotno
= g
->global_gotno
;
4405 struct mips_got_info
*gn
;
4407 assign
+= htab
->reserved_gotno
;
4408 g
->assigned_gotno
= assign
;
4409 g
->local_gotno
+= assign
;
4410 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4411 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4413 /* Take g out of the direct list, and push it onto the reversed
4414 list that gg points to. g->next is guaranteed to be nonnull after
4415 this operation, as required by mips_elf_initialize_tls_index. */
4420 /* Set up any TLS entries. We always place the TLS entries after
4421 all non-TLS entries. */
4422 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
4423 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
4425 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4428 /* Forbid global symbols in every non-primary GOT from having
4429 lazy-binding stubs. */
4431 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
4435 got
->size
= (gg
->next
->local_gotno
4436 + gg
->next
->global_gotno
4437 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
4440 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4441 set_got_offset_arg
.info
= info
;
4442 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
4444 unsigned int save_assign
;
4446 /* Assign offsets to global GOT entries. */
4447 save_assign
= g
->assigned_gotno
;
4448 g
->assigned_gotno
= g
->local_gotno
;
4449 set_got_offset_arg
.g
= g
;
4450 set_got_offset_arg
.needed_relocs
= 0;
4451 htab_traverse (g
->got_entries
,
4452 mips_elf_set_global_got_offset
,
4453 &set_got_offset_arg
);
4454 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
4455 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
<= g
->global_gotno
);
4457 g
->assigned_gotno
= save_assign
;
4460 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
4461 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
4462 + g
->next
->global_gotno
4463 + g
->next
->tls_gotno
4464 + htab
->reserved_gotno
);
4469 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
4476 /* Returns the first relocation of type r_type found, beginning with
4477 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4479 static const Elf_Internal_Rela
*
4480 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
4481 const Elf_Internal_Rela
*relocation
,
4482 const Elf_Internal_Rela
*relend
)
4484 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
4486 while (relocation
< relend
)
4488 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
4489 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
4495 /* We didn't find it. */
4499 /* Return whether a relocation is against a local symbol. */
4502 mips_elf_local_relocation_p (bfd
*input_bfd
,
4503 const Elf_Internal_Rela
*relocation
,
4504 asection
**local_sections
,
4505 bfd_boolean check_forced
)
4507 unsigned long r_symndx
;
4508 Elf_Internal_Shdr
*symtab_hdr
;
4509 struct mips_elf_link_hash_entry
*h
;
4512 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4513 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4514 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
4516 if (r_symndx
< extsymoff
)
4518 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
4523 /* Look up the hash table to check whether the symbol
4524 was forced local. */
4525 h
= (struct mips_elf_link_hash_entry
*)
4526 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
4527 /* Find the real hash-table entry for this symbol. */
4528 while (h
->root
.root
.type
== bfd_link_hash_indirect
4529 || h
->root
.root
.type
== bfd_link_hash_warning
)
4530 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4531 if (h
->root
.forced_local
)
4538 /* Sign-extend VALUE, which has the indicated number of BITS. */
4541 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
4543 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
4544 /* VALUE is negative. */
4545 value
|= ((bfd_vma
) - 1) << bits
;
4550 /* Return non-zero if the indicated VALUE has overflowed the maximum
4551 range expressible by a signed number with the indicated number of
4555 mips_elf_overflow_p (bfd_vma value
, int bits
)
4557 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
4559 if (svalue
> (1 << (bits
- 1)) - 1)
4560 /* The value is too big. */
4562 else if (svalue
< -(1 << (bits
- 1)))
4563 /* The value is too small. */
4570 /* Calculate the %high function. */
4573 mips_elf_high (bfd_vma value
)
4575 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
4578 /* Calculate the %higher function. */
4581 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
4584 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
4591 /* Calculate the %highest function. */
4594 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
4597 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4604 /* Create the .compact_rel section. */
4607 mips_elf_create_compact_rel_section
4608 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4611 register asection
*s
;
4613 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
4615 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
4618 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
4620 || ! bfd_set_section_alignment (abfd
, s
,
4621 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4624 s
->size
= sizeof (Elf32_External_compact_rel
);
4630 /* Create the .got section to hold the global offset table. */
4633 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
4636 register asection
*s
;
4637 struct elf_link_hash_entry
*h
;
4638 struct bfd_link_hash_entry
*bh
;
4639 struct mips_got_info
*g
;
4641 struct mips_elf_link_hash_table
*htab
;
4643 htab
= mips_elf_hash_table (info
);
4645 /* This function may be called more than once. */
4649 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4650 | SEC_LINKER_CREATED
);
4652 /* We have to use an alignment of 2**4 here because this is hardcoded
4653 in the function stub generation and in the linker script. */
4654 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
4656 || ! bfd_set_section_alignment (abfd
, s
, 4))
4660 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4661 linker script because we don't want to define the symbol if we
4662 are not creating a global offset table. */
4664 if (! (_bfd_generic_link_add_one_symbol
4665 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
4666 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
4669 h
= (struct elf_link_hash_entry
*) bh
;
4672 h
->type
= STT_OBJECT
;
4673 elf_hash_table (info
)->hgot
= h
;
4676 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
4679 amt
= sizeof (struct mips_got_info
);
4680 g
= bfd_alloc (abfd
, amt
);
4683 g
->global_gotsym
= NULL
;
4684 g
->global_gotno
= 0;
4685 g
->reloc_only_gotno
= 0;
4689 g
->assigned_gotno
= 0;
4692 g
->tls_ldm_offset
= MINUS_ONE
;
4693 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
4694 mips_elf_got_entry_eq
, NULL
);
4695 if (g
->got_entries
== NULL
)
4697 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4698 mips_got_page_entry_eq
, NULL
);
4699 if (g
->got_page_entries
== NULL
)
4702 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
4703 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4705 /* We also need a .got.plt section when generating PLTs. */
4706 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
4707 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
4708 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
4716 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4717 __GOTT_INDEX__ symbols. These symbols are only special for
4718 shared objects; they are not used in executables. */
4721 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
4723 return (mips_elf_hash_table (info
)->is_vxworks
4725 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
4726 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
4729 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4730 require an la25 stub. See also mips_elf_local_pic_function_p,
4731 which determines whether the destination function ever requires a
4735 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
)
4737 /* We specifically ignore branches and jumps from EF_PIC objects,
4738 where the onus is on the compiler or programmer to perform any
4739 necessary initialization of $25. Sometimes such initialization
4740 is unnecessary; for example, -mno-shared functions do not use
4741 the incoming value of $25, and may therefore be called directly. */
4742 if (PIC_OBJECT_P (input_bfd
))
4757 /* Calculate the value produced by the RELOCATION (which comes from
4758 the INPUT_BFD). The ADDEND is the addend to use for this
4759 RELOCATION; RELOCATION->R_ADDEND is ignored.
4761 The result of the relocation calculation is stored in VALUEP.
4762 REQUIRE_JALXP indicates whether or not the opcode used with this
4763 relocation must be JALX.
4765 This function returns bfd_reloc_continue if the caller need take no
4766 further action regarding this relocation, bfd_reloc_notsupported if
4767 something goes dramatically wrong, bfd_reloc_overflow if an
4768 overflow occurs, and bfd_reloc_ok to indicate success. */
4770 static bfd_reloc_status_type
4771 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
4772 asection
*input_section
,
4773 struct bfd_link_info
*info
,
4774 const Elf_Internal_Rela
*relocation
,
4775 bfd_vma addend
, reloc_howto_type
*howto
,
4776 Elf_Internal_Sym
*local_syms
,
4777 asection
**local_sections
, bfd_vma
*valuep
,
4778 const char **namep
, bfd_boolean
*require_jalxp
,
4779 bfd_boolean save_addend
)
4781 /* The eventual value we will return. */
4783 /* The address of the symbol against which the relocation is
4786 /* The final GP value to be used for the relocatable, executable, or
4787 shared object file being produced. */
4789 /* The place (section offset or address) of the storage unit being
4792 /* The value of GP used to create the relocatable object. */
4794 /* The offset into the global offset table at which the address of
4795 the relocation entry symbol, adjusted by the addend, resides
4796 during execution. */
4797 bfd_vma g
= MINUS_ONE
;
4798 /* The section in which the symbol referenced by the relocation is
4800 asection
*sec
= NULL
;
4801 struct mips_elf_link_hash_entry
*h
= NULL
;
4802 /* TRUE if the symbol referred to by this relocation is a local
4804 bfd_boolean local_p
, was_local_p
;
4805 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4806 bfd_boolean gp_disp_p
= FALSE
;
4807 /* TRUE if the symbol referred to by this relocation is
4808 "__gnu_local_gp". */
4809 bfd_boolean gnu_local_gp_p
= FALSE
;
4810 Elf_Internal_Shdr
*symtab_hdr
;
4812 unsigned long r_symndx
;
4814 /* TRUE if overflow occurred during the calculation of the
4815 relocation value. */
4816 bfd_boolean overflowed_p
;
4817 /* TRUE if this relocation refers to a MIPS16 function. */
4818 bfd_boolean target_is_16_bit_code_p
= FALSE
;
4819 struct mips_elf_link_hash_table
*htab
;
4822 dynobj
= elf_hash_table (info
)->dynobj
;
4823 htab
= mips_elf_hash_table (info
);
4825 /* Parse the relocation. */
4826 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4827 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4828 p
= (input_section
->output_section
->vma
4829 + input_section
->output_offset
4830 + relocation
->r_offset
);
4832 /* Assume that there will be no overflow. */
4833 overflowed_p
= FALSE
;
4835 /* Figure out whether or not the symbol is local, and get the offset
4836 used in the array of hash table entries. */
4837 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4838 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4839 local_sections
, FALSE
);
4840 was_local_p
= local_p
;
4841 if (! elf_bad_symtab (input_bfd
))
4842 extsymoff
= symtab_hdr
->sh_info
;
4845 /* The symbol table does not follow the rule that local symbols
4846 must come before globals. */
4850 /* Figure out the value of the symbol. */
4853 Elf_Internal_Sym
*sym
;
4855 sym
= local_syms
+ r_symndx
;
4856 sec
= local_sections
[r_symndx
];
4858 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4859 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
4860 || (sec
->flags
& SEC_MERGE
))
4861 symbol
+= sym
->st_value
;
4862 if ((sec
->flags
& SEC_MERGE
)
4863 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
4865 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
4867 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
4870 /* MIPS16 text labels should be treated as odd. */
4871 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
4874 /* Record the name of this symbol, for our caller. */
4875 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
4876 symtab_hdr
->sh_link
,
4879 *namep
= bfd_section_name (input_bfd
, sec
);
4881 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
4885 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4887 /* For global symbols we look up the symbol in the hash-table. */
4888 h
= ((struct mips_elf_link_hash_entry
*)
4889 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
4890 /* Find the real hash-table entry for this symbol. */
4891 while (h
->root
.root
.type
== bfd_link_hash_indirect
4892 || h
->root
.root
.type
== bfd_link_hash_warning
)
4893 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4895 /* Record the name of this symbol, for our caller. */
4896 *namep
= h
->root
.root
.root
.string
;
4898 /* See if this is the special _gp_disp symbol. Note that such a
4899 symbol must always be a global symbol. */
4900 if (strcmp (*namep
, "_gp_disp") == 0
4901 && ! NEWABI_P (input_bfd
))
4903 /* Relocations against _gp_disp are permitted only with
4904 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4905 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
4906 return bfd_reloc_notsupported
;
4910 /* See if this is the special _gp symbol. Note that such a
4911 symbol must always be a global symbol. */
4912 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
4913 gnu_local_gp_p
= TRUE
;
4916 /* If this symbol is defined, calculate its address. Note that
4917 _gp_disp is a magic symbol, always implicitly defined by the
4918 linker, so it's inappropriate to check to see whether or not
4920 else if ((h
->root
.root
.type
== bfd_link_hash_defined
4921 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4922 && h
->root
.root
.u
.def
.section
)
4924 sec
= h
->root
.root
.u
.def
.section
;
4925 if (sec
->output_section
)
4926 symbol
= (h
->root
.root
.u
.def
.value
4927 + sec
->output_section
->vma
4928 + sec
->output_offset
);
4930 symbol
= h
->root
.root
.u
.def
.value
;
4932 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
4933 /* We allow relocations against undefined weak symbols, giving
4934 it the value zero, so that you can undefined weak functions
4935 and check to see if they exist by looking at their
4938 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
4939 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
4941 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
4942 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4944 /* If this is a dynamic link, we should have created a
4945 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4946 in in _bfd_mips_elf_create_dynamic_sections.
4947 Otherwise, we should define the symbol with a value of 0.
4948 FIXME: It should probably get into the symbol table
4950 BFD_ASSERT (! info
->shared
);
4951 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
4954 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
4956 /* This is an optional symbol - an Irix specific extension to the
4957 ELF spec. Ignore it for now.
4958 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4959 than simply ignoring them, but we do not handle this for now.
4960 For information see the "64-bit ELF Object File Specification"
4961 which is available from here:
4962 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4967 if (! ((*info
->callbacks
->undefined_symbol
)
4968 (info
, h
->root
.root
.root
.string
, input_bfd
,
4969 input_section
, relocation
->r_offset
,
4970 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
4971 || ELF_ST_VISIBILITY (h
->root
.other
))))
4972 return bfd_reloc_undefined
;
4976 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
4979 /* If this is a reference to a 16-bit function with a stub, we need
4980 to redirect the relocation to the stub unless:
4982 (a) the relocation is for a MIPS16 JAL;
4984 (b) the relocation is for a MIPS16 PIC call, and there are no
4985 non-MIPS16 uses of the GOT slot; or
4987 (c) the section allows direct references to MIPS16 functions. */
4988 if (r_type
!= R_MIPS16_26
4989 && !info
->relocatable
4991 && h
->fn_stub
!= NULL
4992 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
4994 && elf_tdata (input_bfd
)->local_stubs
!= NULL
4995 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
4996 && !section_allows_mips16_refs_p (input_section
))
4998 /* This is a 32- or 64-bit call to a 16-bit function. We should
4999 have already noticed that we were going to need the
5002 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5005 BFD_ASSERT (h
->need_fn_stub
);
5009 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5010 /* The target is 16-bit, but the stub isn't. */
5011 target_is_16_bit_code_p
= FALSE
;
5013 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5014 need to redirect the call to the stub. Note that we specifically
5015 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5016 use an indirect stub instead. */
5017 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
5018 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5020 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5021 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5022 && !target_is_16_bit_code_p
)
5025 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5028 /* If both call_stub and call_fp_stub are defined, we can figure
5029 out which one to use by checking which one appears in the input
5031 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5036 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5038 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
5040 sec
= h
->call_fp_stub
;
5047 else if (h
->call_stub
!= NULL
)
5050 sec
= h
->call_fp_stub
;
5053 BFD_ASSERT (sec
->size
> 0);
5054 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5056 /* If this is a direct call to a PIC function, redirect to the
5058 else if (h
!= NULL
&& h
->la25_stub
5059 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
))
5060 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5061 + h
->la25_stub
->stub_section
->output_offset
5062 + h
->la25_stub
->offset
);
5064 /* Calls from 16-bit code to 32-bit code and vice versa require the
5065 special jalx instruction. */
5066 *require_jalxp
= (!info
->relocatable
5067 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
5068 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
5070 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5071 local_sections
, TRUE
);
5073 gp0
= _bfd_get_gp_value (input_bfd
);
5074 gp
= _bfd_get_gp_value (abfd
);
5076 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5081 /* If we haven't already determined the GOT offset, oand we're going
5082 to need it, get it now. */
5085 case R_MIPS_GOT_PAGE
:
5086 case R_MIPS_GOT_OFST
:
5087 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5089 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
5090 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
5094 case R_MIPS16_CALL16
:
5095 case R_MIPS16_GOT16
:
5098 case R_MIPS_GOT_DISP
:
5099 case R_MIPS_GOT_HI16
:
5100 case R_MIPS_CALL_HI16
:
5101 case R_MIPS_GOT_LO16
:
5102 case R_MIPS_CALL_LO16
:
5104 case R_MIPS_TLS_GOTTPREL
:
5105 case R_MIPS_TLS_LDM
:
5106 /* Find the index into the GOT where this value is located. */
5107 if (r_type
== R_MIPS_TLS_LDM
)
5109 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5110 0, 0, NULL
, r_type
);
5112 return bfd_reloc_outofrange
;
5116 /* On VxWorks, CALL relocations should refer to the .got.plt
5117 entry, which is initialized to point at the PLT stub. */
5118 if (htab
->is_vxworks
5119 && (r_type
== R_MIPS_CALL_HI16
5120 || r_type
== R_MIPS_CALL_LO16
5121 || call16_reloc_p (r_type
)))
5123 BFD_ASSERT (addend
== 0);
5124 BFD_ASSERT (h
->root
.needs_plt
);
5125 g
= mips_elf_gotplt_index (info
, &h
->root
);
5129 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5130 GOT_PAGE relocation that decays to GOT_DISP because the
5131 symbol turns out to be global. The addend is then added
5133 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
5134 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
5135 &h
->root
, r_type
, info
);
5136 if (h
->tls_type
== GOT_NORMAL
5137 && (! elf_hash_table(info
)->dynamic_sections_created
5139 && (info
->symbolic
|| h
->root
.forced_local
)
5140 && h
->root
.def_regular
)))
5141 /* This is a static link or a -Bsymbolic link. The
5142 symbol is defined locally, or was forced to be local.
5143 We must initialize this entry in the GOT. */
5144 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->sgot
->contents
+ g
);
5147 else if (!htab
->is_vxworks
5148 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5149 /* The calculation below does not involve "g". */
5153 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5154 symbol
+ addend
, r_symndx
, h
, r_type
);
5156 return bfd_reloc_outofrange
;
5159 /* Convert GOT indices to actual offsets. */
5160 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5164 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5165 symbols are resolved by the loader. Add them to .rela.dyn. */
5166 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5168 Elf_Internal_Rela outrel
;
5172 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5173 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5175 outrel
.r_offset
= (input_section
->output_section
->vma
5176 + input_section
->output_offset
5177 + relocation
->r_offset
);
5178 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5179 outrel
.r_addend
= addend
;
5180 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5182 /* If we've written this relocation for a readonly section,
5183 we need to set DF_TEXTREL again, so that we do not delete the
5185 if (MIPS_ELF_READONLY_SECTION (input_section
))
5186 info
->flags
|= DF_TEXTREL
;
5189 return bfd_reloc_ok
;
5192 /* Figure out what kind of relocation is being performed. */
5196 return bfd_reloc_continue
;
5199 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
5200 overflowed_p
= mips_elf_overflow_p (value
, 16);
5207 || (htab
->root
.dynamic_sections_created
5209 && h
->root
.def_dynamic
5210 && !h
->root
.def_regular
5211 && !h
->has_static_relocs
))
5214 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5215 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5216 && (input_section
->flags
& SEC_ALLOC
) != 0)
5218 /* If we're creating a shared library, then we can't know
5219 where the symbol will end up. So, we create a relocation
5220 record in the output, and leave the job up to the dynamic
5221 linker. We must do the same for executable references to
5222 shared library symbols, unless we've decided to use copy
5223 relocs or PLTs instead. */
5225 if (!mips_elf_create_dynamic_relocation (abfd
,
5233 return bfd_reloc_undefined
;
5237 if (r_type
!= R_MIPS_REL32
)
5238 value
= symbol
+ addend
;
5242 value
&= howto
->dst_mask
;
5246 value
= symbol
+ addend
- p
;
5247 value
&= howto
->dst_mask
;
5251 /* The calculation for R_MIPS16_26 is just the same as for an
5252 R_MIPS_26. It's only the storage of the relocated field into
5253 the output file that's different. That's handled in
5254 mips_elf_perform_relocation. So, we just fall through to the
5255 R_MIPS_26 case here. */
5258 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
5261 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
5262 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5263 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
5265 value
&= howto
->dst_mask
;
5268 case R_MIPS_TLS_DTPREL_HI16
:
5269 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
5273 case R_MIPS_TLS_DTPREL_LO16
:
5274 case R_MIPS_TLS_DTPREL32
:
5275 case R_MIPS_TLS_DTPREL64
:
5276 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
5279 case R_MIPS_TLS_TPREL_HI16
:
5280 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
5284 case R_MIPS_TLS_TPREL_LO16
:
5285 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
5292 value
= mips_elf_high (addend
+ symbol
);
5293 value
&= howto
->dst_mask
;
5297 /* For MIPS16 ABI code we generate this sequence
5298 0: li $v0,%hi(_gp_disp)
5299 4: addiupc $v1,%lo(_gp_disp)
5303 So the offsets of hi and lo relocs are the same, but the
5304 $pc is four higher than $t9 would be, so reduce
5305 both reloc addends by 4. */
5306 if (r_type
== R_MIPS16_HI16
)
5307 value
= mips_elf_high (addend
+ gp
- p
- 4);
5309 value
= mips_elf_high (addend
+ gp
- p
);
5310 overflowed_p
= mips_elf_overflow_p (value
, 16);
5317 value
= (symbol
+ addend
) & howto
->dst_mask
;
5320 /* See the comment for R_MIPS16_HI16 above for the reason
5321 for this conditional. */
5322 if (r_type
== R_MIPS16_LO16
)
5323 value
= addend
+ gp
- p
;
5325 value
= addend
+ gp
- p
+ 4;
5326 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5327 for overflow. But, on, say, IRIX5, relocations against
5328 _gp_disp are normally generated from the .cpload
5329 pseudo-op. It generates code that normally looks like
5332 lui $gp,%hi(_gp_disp)
5333 addiu $gp,$gp,%lo(_gp_disp)
5336 Here $t9 holds the address of the function being called,
5337 as required by the MIPS ELF ABI. The R_MIPS_LO16
5338 relocation can easily overflow in this situation, but the
5339 R_MIPS_HI16 relocation will handle the overflow.
5340 Therefore, we consider this a bug in the MIPS ABI, and do
5341 not check for overflow here. */
5345 case R_MIPS_LITERAL
:
5346 /* Because we don't merge literal sections, we can handle this
5347 just like R_MIPS_GPREL16. In the long run, we should merge
5348 shared literals, and then we will need to additional work
5353 case R_MIPS16_GPREL
:
5354 /* The R_MIPS16_GPREL performs the same calculation as
5355 R_MIPS_GPREL16, but stores the relocated bits in a different
5356 order. We don't need to do anything special here; the
5357 differences are handled in mips_elf_perform_relocation. */
5358 case R_MIPS_GPREL16
:
5359 /* Only sign-extend the addend if it was extracted from the
5360 instruction. If the addend was separate, leave it alone,
5361 otherwise we may lose significant bits. */
5362 if (howto
->partial_inplace
)
5363 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5364 value
= symbol
+ addend
- gp
;
5365 /* If the symbol was local, any earlier relocatable links will
5366 have adjusted its addend with the gp offset, so compensate
5367 for that now. Don't do it for symbols forced local in this
5368 link, though, since they won't have had the gp offset applied
5372 overflowed_p
= mips_elf_overflow_p (value
, 16);
5375 case R_MIPS16_GOT16
:
5376 case R_MIPS16_CALL16
:
5379 /* VxWorks does not have separate local and global semantics for
5380 R_MIPS*_GOT16; every relocation evaluates to "G". */
5381 if (!htab
->is_vxworks
&& local_p
)
5385 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
5386 local_sections
, FALSE
);
5387 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
5388 symbol
+ addend
, forced
);
5389 if (value
== MINUS_ONE
)
5390 return bfd_reloc_outofrange
;
5392 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5393 overflowed_p
= mips_elf_overflow_p (value
, 16);
5400 case R_MIPS_TLS_GOTTPREL
:
5401 case R_MIPS_TLS_LDM
:
5402 case R_MIPS_GOT_DISP
:
5405 overflowed_p
= mips_elf_overflow_p (value
, 16);
5408 case R_MIPS_GPREL32
:
5409 value
= (addend
+ symbol
+ gp0
- gp
);
5411 value
&= howto
->dst_mask
;
5415 case R_MIPS_GNU_REL16_S2
:
5416 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
5417 overflowed_p
= mips_elf_overflow_p (value
, 18);
5418 value
>>= howto
->rightshift
;
5419 value
&= howto
->dst_mask
;
5422 case R_MIPS_GOT_HI16
:
5423 case R_MIPS_CALL_HI16
:
5424 /* We're allowed to handle these two relocations identically.
5425 The dynamic linker is allowed to handle the CALL relocations
5426 differently by creating a lazy evaluation stub. */
5428 value
= mips_elf_high (value
);
5429 value
&= howto
->dst_mask
;
5432 case R_MIPS_GOT_LO16
:
5433 case R_MIPS_CALL_LO16
:
5434 value
= g
& howto
->dst_mask
;
5437 case R_MIPS_GOT_PAGE
:
5438 /* GOT_PAGE relocations that reference non-local symbols decay
5439 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5443 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
5444 if (value
== MINUS_ONE
)
5445 return bfd_reloc_outofrange
;
5446 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5447 overflowed_p
= mips_elf_overflow_p (value
, 16);
5450 case R_MIPS_GOT_OFST
:
5452 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
5455 overflowed_p
= mips_elf_overflow_p (value
, 16);
5459 value
= symbol
- addend
;
5460 value
&= howto
->dst_mask
;
5464 value
= mips_elf_higher (addend
+ symbol
);
5465 value
&= howto
->dst_mask
;
5468 case R_MIPS_HIGHEST
:
5469 value
= mips_elf_highest (addend
+ symbol
);
5470 value
&= howto
->dst_mask
;
5473 case R_MIPS_SCN_DISP
:
5474 value
= symbol
+ addend
- sec
->output_offset
;
5475 value
&= howto
->dst_mask
;
5479 /* This relocation is only a hint. In some cases, we optimize
5480 it into a bal instruction. But we don't try to optimize
5481 branches to the PLT; that will wind up wasting time. */
5482 if (h
!= NULL
&& h
->root
.plt
.offset
!= (bfd_vma
) -1)
5483 return bfd_reloc_continue
;
5484 value
= symbol
+ addend
;
5488 case R_MIPS_GNU_VTINHERIT
:
5489 case R_MIPS_GNU_VTENTRY
:
5490 /* We don't do anything with these at present. */
5491 return bfd_reloc_continue
;
5494 /* An unrecognized relocation type. */
5495 return bfd_reloc_notsupported
;
5498 /* Store the VALUE for our caller. */
5500 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
5503 /* Obtain the field relocated by RELOCATION. */
5506 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5507 const Elf_Internal_Rela
*relocation
,
5508 bfd
*input_bfd
, bfd_byte
*contents
)
5511 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5513 /* Obtain the bytes. */
5514 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
5519 /* It has been determined that the result of the RELOCATION is the
5520 VALUE. Use HOWTO to place VALUE into the output file at the
5521 appropriate position. The SECTION is the section to which the
5522 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5523 for the relocation must be either JAL or JALX, and it is
5524 unconditionally converted to JALX.
5526 Returns FALSE if anything goes wrong. */
5529 mips_elf_perform_relocation (struct bfd_link_info
*info
,
5530 reloc_howto_type
*howto
,
5531 const Elf_Internal_Rela
*relocation
,
5532 bfd_vma value
, bfd
*input_bfd
,
5533 asection
*input_section
, bfd_byte
*contents
,
5534 bfd_boolean require_jalx
)
5538 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5540 /* Figure out where the relocation is occurring. */
5541 location
= contents
+ relocation
->r_offset
;
5543 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5545 /* Obtain the current value. */
5546 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5548 /* Clear the field we are setting. */
5549 x
&= ~howto
->dst_mask
;
5551 /* Set the field. */
5552 x
|= (value
& howto
->dst_mask
);
5554 /* If required, turn JAL into JALX. */
5558 bfd_vma opcode
= x
>> 26;
5559 bfd_vma jalx_opcode
;
5561 /* Check to see if the opcode is already JAL or JALX. */
5562 if (r_type
== R_MIPS16_26
)
5564 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
5569 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
5573 /* If the opcode is not JAL or JALX, there's a problem. */
5576 (*_bfd_error_handler
)
5577 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5580 (unsigned long) relocation
->r_offset
);
5581 bfd_set_error (bfd_error_bad_value
);
5585 /* Make this the JALX opcode. */
5586 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
5589 /* On the RM9000, bal is faster than jal, because bal uses branch
5590 prediction hardware. If we are linking for the RM9000, and we
5591 see jal, and bal fits, use it instead. Note that this
5592 transformation should be safe for all architectures. */
5593 if (bfd_get_mach (input_bfd
) == bfd_mach_mips9000
5594 && !info
->relocatable
5596 && ((r_type
== R_MIPS_26
&& (x
>> 26) == 0x3) /* jal addr */
5597 || (r_type
== R_MIPS_JALR
&& x
== 0x0320f809))) /* jalr t9 */
5603 addr
= (input_section
->output_section
->vma
5604 + input_section
->output_offset
5605 + relocation
->r_offset
5607 if (r_type
== R_MIPS_26
)
5608 dest
= (value
<< 2) | ((addr
>> 28) << 28);
5612 if (off
<= 0x1ffff && off
>= -0x20000)
5613 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
5616 /* Put the value into the output. */
5617 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
5619 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
5625 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5626 is the original relocation, which is now being transformed into a
5627 dynamic relocation. The ADDENDP is adjusted if necessary; the
5628 caller should store the result in place of the original addend. */
5631 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
5632 struct bfd_link_info
*info
,
5633 const Elf_Internal_Rela
*rel
,
5634 struct mips_elf_link_hash_entry
*h
,
5635 asection
*sec
, bfd_vma symbol
,
5636 bfd_vma
*addendp
, asection
*input_section
)
5638 Elf_Internal_Rela outrel
[3];
5643 bfd_boolean defined_p
;
5644 struct mips_elf_link_hash_table
*htab
;
5646 htab
= mips_elf_hash_table (info
);
5647 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
5648 dynobj
= elf_hash_table (info
)->dynobj
;
5649 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
5650 BFD_ASSERT (sreloc
!= NULL
);
5651 BFD_ASSERT (sreloc
->contents
!= NULL
);
5652 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
5655 outrel
[0].r_offset
=
5656 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
5657 if (ABI_64_P (output_bfd
))
5659 outrel
[1].r_offset
=
5660 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
5661 outrel
[2].r_offset
=
5662 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
5665 if (outrel
[0].r_offset
== MINUS_ONE
)
5666 /* The relocation field has been deleted. */
5669 if (outrel
[0].r_offset
== MINUS_TWO
)
5671 /* The relocation field has been converted into a relative value of
5672 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5673 the field to be fully relocated, so add in the symbol's value. */
5678 /* We must now calculate the dynamic symbol table index to use
5679 in the relocation. */
5681 && (!h
->root
.def_regular
5682 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
5684 indx
= h
->root
.dynindx
;
5685 if (SGI_COMPAT (output_bfd
))
5686 defined_p
= h
->root
.def_regular
;
5688 /* ??? glibc's ld.so just adds the final GOT entry to the
5689 relocation field. It therefore treats relocs against
5690 defined symbols in the same way as relocs against
5691 undefined symbols. */
5696 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
5698 else if (sec
== NULL
|| sec
->owner
== NULL
)
5700 bfd_set_error (bfd_error_bad_value
);
5705 indx
= elf_section_data (sec
->output_section
)->dynindx
;
5708 asection
*osec
= htab
->root
.text_index_section
;
5709 indx
= elf_section_data (osec
)->dynindx
;
5715 /* Instead of generating a relocation using the section
5716 symbol, we may as well make it a fully relative
5717 relocation. We want to avoid generating relocations to
5718 local symbols because we used to generate them
5719 incorrectly, without adding the original symbol value,
5720 which is mandated by the ABI for section symbols. In
5721 order to give dynamic loaders and applications time to
5722 phase out the incorrect use, we refrain from emitting
5723 section-relative relocations. It's not like they're
5724 useful, after all. This should be a bit more efficient
5726 /* ??? Although this behavior is compatible with glibc's ld.so,
5727 the ABI says that relocations against STN_UNDEF should have
5728 a symbol value of 0. Irix rld honors this, so relocations
5729 against STN_UNDEF have no effect. */
5730 if (!SGI_COMPAT (output_bfd
))
5735 /* If the relocation was previously an absolute relocation and
5736 this symbol will not be referred to by the relocation, we must
5737 adjust it by the value we give it in the dynamic symbol table.
5738 Otherwise leave the job up to the dynamic linker. */
5739 if (defined_p
&& r_type
!= R_MIPS_REL32
)
5742 if (htab
->is_vxworks
)
5743 /* VxWorks uses non-relative relocations for this. */
5744 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
5746 /* The relocation is always an REL32 relocation because we don't
5747 know where the shared library will wind up at load-time. */
5748 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
5751 /* For strict adherence to the ABI specification, we should
5752 generate a R_MIPS_64 relocation record by itself before the
5753 _REL32/_64 record as well, such that the addend is read in as
5754 a 64-bit value (REL32 is a 32-bit relocation, after all).
5755 However, since none of the existing ELF64 MIPS dynamic
5756 loaders seems to care, we don't waste space with these
5757 artificial relocations. If this turns out to not be true,
5758 mips_elf_allocate_dynamic_relocation() should be tweaked so
5759 as to make room for a pair of dynamic relocations per
5760 invocation if ABI_64_P, and here we should generate an
5761 additional relocation record with R_MIPS_64 by itself for a
5762 NULL symbol before this relocation record. */
5763 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
5764 ABI_64_P (output_bfd
)
5767 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
5769 /* Adjust the output offset of the relocation to reference the
5770 correct location in the output file. */
5771 outrel
[0].r_offset
+= (input_section
->output_section
->vma
5772 + input_section
->output_offset
);
5773 outrel
[1].r_offset
+= (input_section
->output_section
->vma
5774 + input_section
->output_offset
);
5775 outrel
[2].r_offset
+= (input_section
->output_section
->vma
5776 + input_section
->output_offset
);
5778 /* Put the relocation back out. We have to use the special
5779 relocation outputter in the 64-bit case since the 64-bit
5780 relocation format is non-standard. */
5781 if (ABI_64_P (output_bfd
))
5783 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
5784 (output_bfd
, &outrel
[0],
5786 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
5788 else if (htab
->is_vxworks
)
5790 /* VxWorks uses RELA rather than REL dynamic relocations. */
5791 outrel
[0].r_addend
= *addendp
;
5792 bfd_elf32_swap_reloca_out
5793 (output_bfd
, &outrel
[0],
5795 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
5798 bfd_elf32_swap_reloc_out
5799 (output_bfd
, &outrel
[0],
5800 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
5802 /* We've now added another relocation. */
5803 ++sreloc
->reloc_count
;
5805 /* Make sure the output section is writable. The dynamic linker
5806 will be writing to it. */
5807 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
5810 /* On IRIX5, make an entry of compact relocation info. */
5811 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
5813 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5818 Elf32_crinfo cptrel
;
5820 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
5821 cptrel
.vaddr
= (rel
->r_offset
5822 + input_section
->output_section
->vma
5823 + input_section
->output_offset
);
5824 if (r_type
== R_MIPS_REL32
)
5825 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
5827 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
5828 mips_elf_set_cr_dist2to (cptrel
, 0);
5829 cptrel
.konst
= *addendp
;
5831 cr
= (scpt
->contents
5832 + sizeof (Elf32_External_compact_rel
));
5833 mips_elf_set_cr_relvaddr (cptrel
, 0);
5834 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
5835 ((Elf32_External_crinfo
*) cr
5836 + scpt
->reloc_count
));
5837 ++scpt
->reloc_count
;
5841 /* If we've written this relocation for a readonly section,
5842 we need to set DF_TEXTREL again, so that we do not delete the
5844 if (MIPS_ELF_READONLY_SECTION (input_section
))
5845 info
->flags
|= DF_TEXTREL
;
5850 /* Return the MACH for a MIPS e_flags value. */
5853 _bfd_elf_mips_mach (flagword flags
)
5855 switch (flags
& EF_MIPS_MACH
)
5857 case E_MIPS_MACH_3900
:
5858 return bfd_mach_mips3900
;
5860 case E_MIPS_MACH_4010
:
5861 return bfd_mach_mips4010
;
5863 case E_MIPS_MACH_4100
:
5864 return bfd_mach_mips4100
;
5866 case E_MIPS_MACH_4111
:
5867 return bfd_mach_mips4111
;
5869 case E_MIPS_MACH_4120
:
5870 return bfd_mach_mips4120
;
5872 case E_MIPS_MACH_4650
:
5873 return bfd_mach_mips4650
;
5875 case E_MIPS_MACH_5400
:
5876 return bfd_mach_mips5400
;
5878 case E_MIPS_MACH_5500
:
5879 return bfd_mach_mips5500
;
5881 case E_MIPS_MACH_9000
:
5882 return bfd_mach_mips9000
;
5884 case E_MIPS_MACH_SB1
:
5885 return bfd_mach_mips_sb1
;
5887 case E_MIPS_MACH_LS2E
:
5888 return bfd_mach_mips_loongson_2e
;
5890 case E_MIPS_MACH_LS2F
:
5891 return bfd_mach_mips_loongson_2f
;
5893 case E_MIPS_MACH_OCTEON
:
5894 return bfd_mach_mips_octeon
;
5896 case E_MIPS_MACH_XLR
:
5897 return bfd_mach_mips_xlr
;
5900 switch (flags
& EF_MIPS_ARCH
)
5904 return bfd_mach_mips3000
;
5907 return bfd_mach_mips6000
;
5910 return bfd_mach_mips4000
;
5913 return bfd_mach_mips8000
;
5916 return bfd_mach_mips5
;
5918 case E_MIPS_ARCH_32
:
5919 return bfd_mach_mipsisa32
;
5921 case E_MIPS_ARCH_64
:
5922 return bfd_mach_mipsisa64
;
5924 case E_MIPS_ARCH_32R2
:
5925 return bfd_mach_mipsisa32r2
;
5927 case E_MIPS_ARCH_64R2
:
5928 return bfd_mach_mipsisa64r2
;
5935 /* Return printable name for ABI. */
5937 static INLINE
char *
5938 elf_mips_abi_name (bfd
*abfd
)
5942 flags
= elf_elfheader (abfd
)->e_flags
;
5943 switch (flags
& EF_MIPS_ABI
)
5946 if (ABI_N32_P (abfd
))
5948 else if (ABI_64_P (abfd
))
5952 case E_MIPS_ABI_O32
:
5954 case E_MIPS_ABI_O64
:
5956 case E_MIPS_ABI_EABI32
:
5958 case E_MIPS_ABI_EABI64
:
5961 return "unknown abi";
5965 /* MIPS ELF uses two common sections. One is the usual one, and the
5966 other is for small objects. All the small objects are kept
5967 together, and then referenced via the gp pointer, which yields
5968 faster assembler code. This is what we use for the small common
5969 section. This approach is copied from ecoff.c. */
5970 static asection mips_elf_scom_section
;
5971 static asymbol mips_elf_scom_symbol
;
5972 static asymbol
*mips_elf_scom_symbol_ptr
;
5974 /* MIPS ELF also uses an acommon section, which represents an
5975 allocated common symbol which may be overridden by a
5976 definition in a shared library. */
5977 static asection mips_elf_acom_section
;
5978 static asymbol mips_elf_acom_symbol
;
5979 static asymbol
*mips_elf_acom_symbol_ptr
;
5981 /* This is used for both the 32-bit and the 64-bit ABI. */
5984 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
5986 elf_symbol_type
*elfsym
;
5988 /* Handle the special MIPS section numbers that a symbol may use. */
5989 elfsym
= (elf_symbol_type
*) asym
;
5990 switch (elfsym
->internal_elf_sym
.st_shndx
)
5992 case SHN_MIPS_ACOMMON
:
5993 /* This section is used in a dynamically linked executable file.
5994 It is an allocated common section. The dynamic linker can
5995 either resolve these symbols to something in a shared
5996 library, or it can just leave them here. For our purposes,
5997 we can consider these symbols to be in a new section. */
5998 if (mips_elf_acom_section
.name
== NULL
)
6000 /* Initialize the acommon section. */
6001 mips_elf_acom_section
.name
= ".acommon";
6002 mips_elf_acom_section
.flags
= SEC_ALLOC
;
6003 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
6004 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
6005 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
6006 mips_elf_acom_symbol
.name
= ".acommon";
6007 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
6008 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
6009 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
6011 asym
->section
= &mips_elf_acom_section
;
6015 /* Common symbols less than the GP size are automatically
6016 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6017 if (asym
->value
> elf_gp_size (abfd
)
6018 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
6019 || IRIX_COMPAT (abfd
) == ict_irix6
)
6022 case SHN_MIPS_SCOMMON
:
6023 if (mips_elf_scom_section
.name
== NULL
)
6025 /* Initialize the small common section. */
6026 mips_elf_scom_section
.name
= ".scommon";
6027 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
6028 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
6029 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
6030 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
6031 mips_elf_scom_symbol
.name
= ".scommon";
6032 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
6033 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
6034 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
6036 asym
->section
= &mips_elf_scom_section
;
6037 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
6040 case SHN_MIPS_SUNDEFINED
:
6041 asym
->section
= bfd_und_section_ptr
;
6046 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
6048 BFD_ASSERT (SGI_COMPAT (abfd
));
6049 if (section
!= NULL
)
6051 asym
->section
= section
;
6052 /* MIPS_TEXT is a bit special, the address is not an offset
6053 to the base of the .text section. So substract the section
6054 base address to make it an offset. */
6055 asym
->value
-= section
->vma
;
6062 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
6064 BFD_ASSERT (SGI_COMPAT (abfd
));
6065 if (section
!= NULL
)
6067 asym
->section
= section
;
6068 /* MIPS_DATA is a bit special, the address is not an offset
6069 to the base of the .data section. So substract the section
6070 base address to make it an offset. */
6071 asym
->value
-= section
->vma
;
6077 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6078 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
6079 && (asym
->value
& 1) != 0)
6082 elfsym
->internal_elf_sym
.st_other
6083 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
6087 /* Implement elf_backend_eh_frame_address_size. This differs from
6088 the default in the way it handles EABI64.
6090 EABI64 was originally specified as an LP64 ABI, and that is what
6091 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6092 historically accepted the combination of -mabi=eabi and -mlong32,
6093 and this ILP32 variation has become semi-official over time.
6094 Both forms use elf32 and have pointer-sized FDE addresses.
6096 If an EABI object was generated by GCC 4.0 or above, it will have
6097 an empty .gcc_compiled_longXX section, where XX is the size of longs
6098 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6099 have no special marking to distinguish them from LP64 objects.
6101 We don't want users of the official LP64 ABI to be punished for the
6102 existence of the ILP32 variant, but at the same time, we don't want
6103 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6104 We therefore take the following approach:
6106 - If ABFD contains a .gcc_compiled_longXX section, use it to
6107 determine the pointer size.
6109 - Otherwise check the type of the first relocation. Assume that
6110 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6114 The second check is enough to detect LP64 objects generated by pre-4.0
6115 compilers because, in the kind of output generated by those compilers,
6116 the first relocation will be associated with either a CIE personality
6117 routine or an FDE start address. Furthermore, the compilers never
6118 used a special (non-pointer) encoding for this ABI.
6120 Checking the relocation type should also be safe because there is no
6121 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6125 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
6127 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
6129 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
6131 bfd_boolean long32_p
, long64_p
;
6133 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
6134 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
6135 if (long32_p
&& long64_p
)
6142 if (sec
->reloc_count
> 0
6143 && elf_section_data (sec
)->relocs
!= NULL
6144 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
6153 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6154 relocations against two unnamed section symbols to resolve to the
6155 same address. For example, if we have code like:
6157 lw $4,%got_disp(.data)($gp)
6158 lw $25,%got_disp(.text)($gp)
6161 then the linker will resolve both relocations to .data and the program
6162 will jump there rather than to .text.
6164 We can work around this problem by giving names to local section symbols.
6165 This is also what the MIPSpro tools do. */
6168 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
6170 return SGI_COMPAT (abfd
);
6173 /* Work over a section just before writing it out. This routine is
6174 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6175 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6179 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
6181 if (hdr
->sh_type
== SHT_MIPS_REGINFO
6182 && hdr
->sh_size
> 0)
6186 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
6187 BFD_ASSERT (hdr
->contents
== NULL
);
6190 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
6193 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6194 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6198 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
6199 && hdr
->bfd_section
!= NULL
6200 && mips_elf_section_data (hdr
->bfd_section
) != NULL
6201 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
6203 bfd_byte
*contents
, *l
, *lend
;
6205 /* We stored the section contents in the tdata field in the
6206 set_section_contents routine. We save the section contents
6207 so that we don't have to read them again.
6208 At this point we know that elf_gp is set, so we can look
6209 through the section contents to see if there is an
6210 ODK_REGINFO structure. */
6212 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
6214 lend
= contents
+ hdr
->sh_size
;
6215 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6217 Elf_Internal_Options intopt
;
6219 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6221 if (intopt
.size
< sizeof (Elf_External_Options
))
6223 (*_bfd_error_handler
)
6224 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6225 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6228 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6235 + sizeof (Elf_External_Options
)
6236 + (sizeof (Elf64_External_RegInfo
) - 8)),
6239 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
6240 if (bfd_bwrite (buf
, 8, abfd
) != 8)
6243 else if (intopt
.kind
== ODK_REGINFO
)
6250 + sizeof (Elf_External_Options
)
6251 + (sizeof (Elf32_External_RegInfo
) - 4)),
6254 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6255 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6262 if (hdr
->bfd_section
!= NULL
)
6264 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
6266 /* .sbss is not handled specially here because the GNU/Linux
6267 prelinker can convert .sbss from NOBITS to PROGBITS and
6268 changing it back to NOBITS breaks the binary. The entry in
6269 _bfd_mips_elf_special_sections will ensure the correct flags
6270 are set on .sbss if BFD creates it without reading it from an
6271 input file, and without special handling here the flags set
6272 on it in an input file will be followed. */
6273 if (strcmp (name
, ".sdata") == 0
6274 || strcmp (name
, ".lit8") == 0
6275 || strcmp (name
, ".lit4") == 0)
6277 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
6278 hdr
->sh_type
= SHT_PROGBITS
;
6280 else if (strcmp (name
, ".srdata") == 0)
6282 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
6283 hdr
->sh_type
= SHT_PROGBITS
;
6285 else if (strcmp (name
, ".compact_rel") == 0)
6288 hdr
->sh_type
= SHT_PROGBITS
;
6290 else if (strcmp (name
, ".rtproc") == 0)
6292 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
6294 unsigned int adjust
;
6296 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
6298 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
6306 /* Handle a MIPS specific section when reading an object file. This
6307 is called when elfcode.h finds a section with an unknown type.
6308 This routine supports both the 32-bit and 64-bit ELF ABI.
6310 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6314 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
6315 Elf_Internal_Shdr
*hdr
,
6321 /* There ought to be a place to keep ELF backend specific flags, but
6322 at the moment there isn't one. We just keep track of the
6323 sections by their name, instead. Fortunately, the ABI gives
6324 suggested names for all the MIPS specific sections, so we will
6325 probably get away with this. */
6326 switch (hdr
->sh_type
)
6328 case SHT_MIPS_LIBLIST
:
6329 if (strcmp (name
, ".liblist") != 0)
6333 if (strcmp (name
, ".msym") != 0)
6336 case SHT_MIPS_CONFLICT
:
6337 if (strcmp (name
, ".conflict") != 0)
6340 case SHT_MIPS_GPTAB
:
6341 if (! CONST_STRNEQ (name
, ".gptab."))
6344 case SHT_MIPS_UCODE
:
6345 if (strcmp (name
, ".ucode") != 0)
6348 case SHT_MIPS_DEBUG
:
6349 if (strcmp (name
, ".mdebug") != 0)
6351 flags
= SEC_DEBUGGING
;
6353 case SHT_MIPS_REGINFO
:
6354 if (strcmp (name
, ".reginfo") != 0
6355 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
6357 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
6359 case SHT_MIPS_IFACE
:
6360 if (strcmp (name
, ".MIPS.interfaces") != 0)
6363 case SHT_MIPS_CONTENT
:
6364 if (! CONST_STRNEQ (name
, ".MIPS.content"))
6367 case SHT_MIPS_OPTIONS
:
6368 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6371 case SHT_MIPS_DWARF
:
6372 if (! CONST_STRNEQ (name
, ".debug_")
6373 && ! CONST_STRNEQ (name
, ".zdebug_"))
6376 case SHT_MIPS_SYMBOL_LIB
:
6377 if (strcmp (name
, ".MIPS.symlib") != 0)
6380 case SHT_MIPS_EVENTS
:
6381 if (! CONST_STRNEQ (name
, ".MIPS.events")
6382 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
6389 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
6394 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
6395 (bfd_get_section_flags (abfd
,
6401 /* FIXME: We should record sh_info for a .gptab section. */
6403 /* For a .reginfo section, set the gp value in the tdata information
6404 from the contents of this section. We need the gp value while
6405 processing relocs, so we just get it now. The .reginfo section
6406 is not used in the 64-bit MIPS ELF ABI. */
6407 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
6409 Elf32_External_RegInfo ext
;
6412 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
6413 &ext
, 0, sizeof ext
))
6415 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
6416 elf_gp (abfd
) = s
.ri_gp_value
;
6419 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6420 set the gp value based on what we find. We may see both
6421 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6422 they should agree. */
6423 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
6425 bfd_byte
*contents
, *l
, *lend
;
6427 contents
= bfd_malloc (hdr
->sh_size
);
6428 if (contents
== NULL
)
6430 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
6437 lend
= contents
+ hdr
->sh_size
;
6438 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6440 Elf_Internal_Options intopt
;
6442 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6444 if (intopt
.size
< sizeof (Elf_External_Options
))
6446 (*_bfd_error_handler
)
6447 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6448 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6451 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6453 Elf64_Internal_RegInfo intreg
;
6455 bfd_mips_elf64_swap_reginfo_in
6457 ((Elf64_External_RegInfo
*)
6458 (l
+ sizeof (Elf_External_Options
))),
6460 elf_gp (abfd
) = intreg
.ri_gp_value
;
6462 else if (intopt
.kind
== ODK_REGINFO
)
6464 Elf32_RegInfo intreg
;
6466 bfd_mips_elf32_swap_reginfo_in
6468 ((Elf32_External_RegInfo
*)
6469 (l
+ sizeof (Elf_External_Options
))),
6471 elf_gp (abfd
) = intreg
.ri_gp_value
;
6481 /* Set the correct type for a MIPS ELF section. We do this by the
6482 section name, which is a hack, but ought to work. This routine is
6483 used by both the 32-bit and the 64-bit ABI. */
6486 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
6488 const char *name
= bfd_get_section_name (abfd
, sec
);
6490 if (strcmp (name
, ".liblist") == 0)
6492 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
6493 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
6494 /* The sh_link field is set in final_write_processing. */
6496 else if (strcmp (name
, ".conflict") == 0)
6497 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
6498 else if (CONST_STRNEQ (name
, ".gptab."))
6500 hdr
->sh_type
= SHT_MIPS_GPTAB
;
6501 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
6502 /* The sh_info field is set in final_write_processing. */
6504 else if (strcmp (name
, ".ucode") == 0)
6505 hdr
->sh_type
= SHT_MIPS_UCODE
;
6506 else if (strcmp (name
, ".mdebug") == 0)
6508 hdr
->sh_type
= SHT_MIPS_DEBUG
;
6509 /* In a shared object on IRIX 5.3, the .mdebug section has an
6510 entsize of 0. FIXME: Does this matter? */
6511 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
6512 hdr
->sh_entsize
= 0;
6514 hdr
->sh_entsize
= 1;
6516 else if (strcmp (name
, ".reginfo") == 0)
6518 hdr
->sh_type
= SHT_MIPS_REGINFO
;
6519 /* In a shared object on IRIX 5.3, the .reginfo section has an
6520 entsize of 0x18. FIXME: Does this matter? */
6521 if (SGI_COMPAT (abfd
))
6523 if ((abfd
->flags
& DYNAMIC
) != 0)
6524 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6526 hdr
->sh_entsize
= 1;
6529 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6531 else if (SGI_COMPAT (abfd
)
6532 && (strcmp (name
, ".hash") == 0
6533 || strcmp (name
, ".dynamic") == 0
6534 || strcmp (name
, ".dynstr") == 0))
6536 if (SGI_COMPAT (abfd
))
6537 hdr
->sh_entsize
= 0;
6539 /* This isn't how the IRIX6 linker behaves. */
6540 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
6543 else if (strcmp (name
, ".got") == 0
6544 || strcmp (name
, ".srdata") == 0
6545 || strcmp (name
, ".sdata") == 0
6546 || strcmp (name
, ".sbss") == 0
6547 || strcmp (name
, ".lit4") == 0
6548 || strcmp (name
, ".lit8") == 0)
6549 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
6550 else if (strcmp (name
, ".MIPS.interfaces") == 0)
6552 hdr
->sh_type
= SHT_MIPS_IFACE
;
6553 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6555 else if (CONST_STRNEQ (name
, ".MIPS.content"))
6557 hdr
->sh_type
= SHT_MIPS_CONTENT
;
6558 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6559 /* The sh_info field is set in final_write_processing. */
6561 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6563 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
6564 hdr
->sh_entsize
= 1;
6565 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6567 else if (CONST_STRNEQ (name
, ".debug_")
6568 || CONST_STRNEQ (name
, ".zdebug_"))
6570 hdr
->sh_type
= SHT_MIPS_DWARF
;
6572 /* Irix facilities such as libexc expect a single .debug_frame
6573 per executable, the system ones have NOSTRIP set and the linker
6574 doesn't merge sections with different flags so ... */
6575 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
6576 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6578 else if (strcmp (name
, ".MIPS.symlib") == 0)
6580 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
6581 /* The sh_link and sh_info fields are set in
6582 final_write_processing. */
6584 else if (CONST_STRNEQ (name
, ".MIPS.events")
6585 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
6587 hdr
->sh_type
= SHT_MIPS_EVENTS
;
6588 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6589 /* The sh_link field is set in final_write_processing. */
6591 else if (strcmp (name
, ".msym") == 0)
6593 hdr
->sh_type
= SHT_MIPS_MSYM
;
6594 hdr
->sh_flags
|= SHF_ALLOC
;
6595 hdr
->sh_entsize
= 8;
6598 /* The generic elf_fake_sections will set up REL_HDR using the default
6599 kind of relocations. We used to set up a second header for the
6600 non-default kind of relocations here, but only NewABI would use
6601 these, and the IRIX ld doesn't like resulting empty RELA sections.
6602 Thus we create those header only on demand now. */
6607 /* Given a BFD section, try to locate the corresponding ELF section
6608 index. This is used by both the 32-bit and the 64-bit ABI.
6609 Actually, it's not clear to me that the 64-bit ABI supports these,
6610 but for non-PIC objects we will certainly want support for at least
6611 the .scommon section. */
6614 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
6615 asection
*sec
, int *retval
)
6617 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
6619 *retval
= SHN_MIPS_SCOMMON
;
6622 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
6624 *retval
= SHN_MIPS_ACOMMON
;
6630 /* Hook called by the linker routine which adds symbols from an object
6631 file. We must handle the special MIPS section numbers here. */
6634 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
6635 Elf_Internal_Sym
*sym
, const char **namep
,
6636 flagword
*flagsp ATTRIBUTE_UNUSED
,
6637 asection
**secp
, bfd_vma
*valp
)
6639 if (SGI_COMPAT (abfd
)
6640 && (abfd
->flags
& DYNAMIC
) != 0
6641 && strcmp (*namep
, "_rld_new_interface") == 0)
6643 /* Skip IRIX5 rld entry name. */
6648 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6649 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6650 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6651 a magic symbol resolved by the linker, we ignore this bogus definition
6652 of _gp_disp. New ABI objects do not suffer from this problem so this
6653 is not done for them. */
6655 && (sym
->st_shndx
== SHN_ABS
)
6656 && (strcmp (*namep
, "_gp_disp") == 0))
6662 switch (sym
->st_shndx
)
6665 /* Common symbols less than the GP size are automatically
6666 treated as SHN_MIPS_SCOMMON symbols. */
6667 if (sym
->st_size
> elf_gp_size (abfd
)
6668 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
6669 || IRIX_COMPAT (abfd
) == ict_irix6
)
6672 case SHN_MIPS_SCOMMON
:
6673 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
6674 (*secp
)->flags
|= SEC_IS_COMMON
;
6675 *valp
= sym
->st_size
;
6679 /* This section is used in a shared object. */
6680 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
6682 asymbol
*elf_text_symbol
;
6683 asection
*elf_text_section
;
6684 bfd_size_type amt
= sizeof (asection
);
6686 elf_text_section
= bfd_zalloc (abfd
, amt
);
6687 if (elf_text_section
== NULL
)
6690 amt
= sizeof (asymbol
);
6691 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
6692 if (elf_text_symbol
== NULL
)
6695 /* Initialize the section. */
6697 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
6698 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
6700 elf_text_section
->symbol
= elf_text_symbol
;
6701 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
6703 elf_text_section
->name
= ".text";
6704 elf_text_section
->flags
= SEC_NO_FLAGS
;
6705 elf_text_section
->output_section
= NULL
;
6706 elf_text_section
->owner
= abfd
;
6707 elf_text_symbol
->name
= ".text";
6708 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6709 elf_text_symbol
->section
= elf_text_section
;
6711 /* This code used to do *secp = bfd_und_section_ptr if
6712 info->shared. I don't know why, and that doesn't make sense,
6713 so I took it out. */
6714 *secp
= elf_tdata (abfd
)->elf_text_section
;
6717 case SHN_MIPS_ACOMMON
:
6718 /* Fall through. XXX Can we treat this as allocated data? */
6720 /* This section is used in a shared object. */
6721 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
6723 asymbol
*elf_data_symbol
;
6724 asection
*elf_data_section
;
6725 bfd_size_type amt
= sizeof (asection
);
6727 elf_data_section
= bfd_zalloc (abfd
, amt
);
6728 if (elf_data_section
== NULL
)
6731 amt
= sizeof (asymbol
);
6732 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
6733 if (elf_data_symbol
== NULL
)
6736 /* Initialize the section. */
6738 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
6739 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
6741 elf_data_section
->symbol
= elf_data_symbol
;
6742 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
6744 elf_data_section
->name
= ".data";
6745 elf_data_section
->flags
= SEC_NO_FLAGS
;
6746 elf_data_section
->output_section
= NULL
;
6747 elf_data_section
->owner
= abfd
;
6748 elf_data_symbol
->name
= ".data";
6749 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6750 elf_data_symbol
->section
= elf_data_section
;
6752 /* This code used to do *secp = bfd_und_section_ptr if
6753 info->shared. I don't know why, and that doesn't make sense,
6754 so I took it out. */
6755 *secp
= elf_tdata (abfd
)->elf_data_section
;
6758 case SHN_MIPS_SUNDEFINED
:
6759 *secp
= bfd_und_section_ptr
;
6763 if (SGI_COMPAT (abfd
)
6765 && info
->output_bfd
->xvec
== abfd
->xvec
6766 && strcmp (*namep
, "__rld_obj_head") == 0)
6768 struct elf_link_hash_entry
*h
;
6769 struct bfd_link_hash_entry
*bh
;
6771 /* Mark __rld_obj_head as dynamic. */
6773 if (! (_bfd_generic_link_add_one_symbol
6774 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
6775 get_elf_backend_data (abfd
)->collect
, &bh
)))
6778 h
= (struct elf_link_hash_entry
*) bh
;
6781 h
->type
= STT_OBJECT
;
6783 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6786 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
6789 /* If this is a mips16 text symbol, add 1 to the value to make it
6790 odd. This will cause something like .word SYM to come up with
6791 the right value when it is loaded into the PC. */
6792 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6798 /* This hook function is called before the linker writes out a global
6799 symbol. We mark symbols as small common if appropriate. This is
6800 also where we undo the increment of the value for a mips16 symbol. */
6803 _bfd_mips_elf_link_output_symbol_hook
6804 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
6805 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
6806 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
6808 /* If we see a common symbol, which implies a relocatable link, then
6809 if a symbol was small common in an input file, mark it as small
6810 common in the output file. */
6811 if (sym
->st_shndx
== SHN_COMMON
6812 && strcmp (input_sec
->name
, ".scommon") == 0)
6813 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
6815 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6816 sym
->st_value
&= ~1;
6821 /* Functions for the dynamic linker. */
6823 /* Create dynamic sections when linking against a dynamic object. */
6826 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6828 struct elf_link_hash_entry
*h
;
6829 struct bfd_link_hash_entry
*bh
;
6831 register asection
*s
;
6832 const char * const *namep
;
6833 struct mips_elf_link_hash_table
*htab
;
6835 htab
= mips_elf_hash_table (info
);
6836 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
6837 | SEC_LINKER_CREATED
| SEC_READONLY
);
6839 /* The psABI requires a read-only .dynamic section, but the VxWorks
6841 if (!htab
->is_vxworks
)
6843 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6846 if (! bfd_set_section_flags (abfd
, s
, flags
))
6851 /* We need to create .got section. */
6852 if (!mips_elf_create_got_section (abfd
, info
))
6855 if (! mips_elf_rel_dyn_section (info
, TRUE
))
6858 /* Create .stub section. */
6859 s
= bfd_make_section_with_flags (abfd
,
6860 MIPS_ELF_STUB_SECTION_NAME (abfd
),
6863 || ! bfd_set_section_alignment (abfd
, s
,
6864 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6868 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
6870 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
6872 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
6873 flags
&~ (flagword
) SEC_READONLY
);
6875 || ! bfd_set_section_alignment (abfd
, s
,
6876 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6880 /* On IRIX5, we adjust add some additional symbols and change the
6881 alignments of several sections. There is no ABI documentation
6882 indicating that this is necessary on IRIX6, nor any evidence that
6883 the linker takes such action. */
6884 if (IRIX_COMPAT (abfd
) == ict_irix5
)
6886 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
6889 if (! (_bfd_generic_link_add_one_symbol
6890 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
6891 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6894 h
= (struct elf_link_hash_entry
*) bh
;
6897 h
->type
= STT_SECTION
;
6899 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6903 /* We need to create a .compact_rel section. */
6904 if (SGI_COMPAT (abfd
))
6906 if (!mips_elf_create_compact_rel_section (abfd
, info
))
6910 /* Change alignments of some sections. */
6911 s
= bfd_get_section_by_name (abfd
, ".hash");
6913 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6914 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6916 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6917 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6919 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6920 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6922 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6923 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6925 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6932 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6934 if (!(_bfd_generic_link_add_one_symbol
6935 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
6936 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6939 h
= (struct elf_link_hash_entry
*) bh
;
6942 h
->type
= STT_SECTION
;
6944 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6947 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
6949 /* __rld_map is a four byte word located in the .data section
6950 and is filled in by the rtld to contain a pointer to
6951 the _r_debug structure. Its symbol value will be set in
6952 _bfd_mips_elf_finish_dynamic_symbol. */
6953 s
= bfd_get_section_by_name (abfd
, ".rld_map");
6954 BFD_ASSERT (s
!= NULL
);
6956 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
6958 if (!(_bfd_generic_link_add_one_symbol
6959 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
6960 get_elf_backend_data (abfd
)->collect
, &bh
)))
6963 h
= (struct elf_link_hash_entry
*) bh
;
6966 h
->type
= STT_OBJECT
;
6968 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6973 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6974 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6975 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
6978 /* Cache the sections created above. */
6979 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
6980 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
6981 if (htab
->is_vxworks
)
6983 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
6984 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
6987 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
6989 || (htab
->is_vxworks
&& !htab
->srelbss
&& !info
->shared
)
6994 if (htab
->is_vxworks
)
6996 /* Do the usual VxWorks handling. */
6997 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
7000 /* Work out the PLT sizes. */
7003 htab
->plt_header_size
7004 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
7005 htab
->plt_entry_size
7006 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
7010 htab
->plt_header_size
7011 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
7012 htab
->plt_entry_size
7013 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
7016 else if (!info
->shared
)
7018 /* All variants of the plt0 entry are the same size. */
7019 htab
->plt_header_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
7020 htab
->plt_entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
7026 /* Return true if relocation REL against section SEC is a REL rather than
7027 RELA relocation. RELOCS is the first relocation in the section and
7028 ABFD is the bfd that contains SEC. */
7031 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
7032 const Elf_Internal_Rela
*relocs
,
7033 const Elf_Internal_Rela
*rel
)
7035 Elf_Internal_Shdr
*rel_hdr
;
7036 const struct elf_backend_data
*bed
;
7038 /* To determine which flavor or relocation this is, we depend on the
7039 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7040 rel_hdr
= &elf_section_data (sec
)->rel_hdr
;
7041 bed
= get_elf_backend_data (abfd
);
7042 if ((size_t) (rel
- relocs
)
7043 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7044 rel_hdr
= elf_section_data (sec
)->rel_hdr2
;
7045 return rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (abfd
);
7048 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7049 HOWTO is the relocation's howto and CONTENTS points to the contents
7050 of the section that REL is against. */
7053 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
7054 reloc_howto_type
*howto
, bfd_byte
*contents
)
7057 unsigned int r_type
;
7060 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7061 location
= contents
+ rel
->r_offset
;
7063 /* Get the addend, which is stored in the input file. */
7064 _bfd_mips16_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
7065 addend
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
7066 _bfd_mips16_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
7068 return addend
& howto
->src_mask
;
7071 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7072 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7073 and update *ADDEND with the final addend. Return true on success
7074 or false if the LO16 could not be found. RELEND is the exclusive
7075 upper bound on the relocations for REL's section. */
7078 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
7079 const Elf_Internal_Rela
*rel
,
7080 const Elf_Internal_Rela
*relend
,
7081 bfd_byte
*contents
, bfd_vma
*addend
)
7083 unsigned int r_type
, lo16_type
;
7084 const Elf_Internal_Rela
*lo16_relocation
;
7085 reloc_howto_type
*lo16_howto
;
7088 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7089 if (mips16_reloc_p (r_type
))
7090 lo16_type
= R_MIPS16_LO16
;
7092 lo16_type
= R_MIPS_LO16
;
7094 /* The combined value is the sum of the HI16 addend, left-shifted by
7095 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7096 code does a `lui' of the HI16 value, and then an `addiu' of the
7099 Scan ahead to find a matching LO16 relocation.
7101 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7102 be immediately following. However, for the IRIX6 ABI, the next
7103 relocation may be a composed relocation consisting of several
7104 relocations for the same address. In that case, the R_MIPS_LO16
7105 relocation may occur as one of these. We permit a similar
7106 extension in general, as that is useful for GCC.
7108 In some cases GCC dead code elimination removes the LO16 but keeps
7109 the corresponding HI16. This is strictly speaking a violation of
7110 the ABI but not immediately harmful. */
7111 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
7112 if (lo16_relocation
== NULL
)
7115 /* Obtain the addend kept there. */
7116 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
7117 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
7119 l
<<= lo16_howto
->rightshift
;
7120 l
= _bfd_mips_elf_sign_extend (l
, 16);
7127 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7128 store the contents in *CONTENTS on success. Assume that *CONTENTS
7129 already holds the contents if it is nonull on entry. */
7132 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
7137 /* Get cached copy if it exists. */
7138 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7140 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
7144 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
7147 /* Look through the relocs for a section during the first phase, and
7148 allocate space in the global offset table. */
7151 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
7152 asection
*sec
, const Elf_Internal_Rela
*relocs
)
7156 Elf_Internal_Shdr
*symtab_hdr
;
7157 struct elf_link_hash_entry
**sym_hashes
;
7159 const Elf_Internal_Rela
*rel
;
7160 const Elf_Internal_Rela
*rel_end
;
7162 const struct elf_backend_data
*bed
;
7163 struct mips_elf_link_hash_table
*htab
;
7166 reloc_howto_type
*howto
;
7168 if (info
->relocatable
)
7171 htab
= mips_elf_hash_table (info
);
7172 dynobj
= elf_hash_table (info
)->dynobj
;
7173 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7174 sym_hashes
= elf_sym_hashes (abfd
);
7175 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7177 bed
= get_elf_backend_data (abfd
);
7178 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7180 /* Check for the mips16 stub sections. */
7182 name
= bfd_get_section_name (abfd
, sec
);
7183 if (FN_STUB_P (name
))
7185 unsigned long r_symndx
;
7187 /* Look at the relocation information to figure out which symbol
7190 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7193 (*_bfd_error_handler
)
7194 (_("%B: Warning: cannot determine the target function for"
7195 " stub section `%s'"),
7197 bfd_set_error (bfd_error_bad_value
);
7201 if (r_symndx
< extsymoff
7202 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7206 /* This stub is for a local symbol. This stub will only be
7207 needed if there is some relocation in this BFD, other
7208 than a 16 bit function call, which refers to this symbol. */
7209 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7211 Elf_Internal_Rela
*sec_relocs
;
7212 const Elf_Internal_Rela
*r
, *rend
;
7214 /* We can ignore stub sections when looking for relocs. */
7215 if ((o
->flags
& SEC_RELOC
) == 0
7216 || o
->reloc_count
== 0
7217 || section_allows_mips16_refs_p (o
))
7221 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7223 if (sec_relocs
== NULL
)
7226 rend
= sec_relocs
+ o
->reloc_count
;
7227 for (r
= sec_relocs
; r
< rend
; r
++)
7228 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7229 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
7232 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7241 /* There is no non-call reloc for this stub, so we do
7242 not need it. Since this function is called before
7243 the linker maps input sections to output sections, we
7244 can easily discard it by setting the SEC_EXCLUDE
7246 sec
->flags
|= SEC_EXCLUDE
;
7250 /* Record this stub in an array of local symbol stubs for
7252 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7254 unsigned long symcount
;
7258 if (elf_bad_symtab (abfd
))
7259 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7261 symcount
= symtab_hdr
->sh_info
;
7262 amt
= symcount
* sizeof (asection
*);
7263 n
= bfd_zalloc (abfd
, amt
);
7266 elf_tdata (abfd
)->local_stubs
= n
;
7269 sec
->flags
|= SEC_KEEP
;
7270 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7272 /* We don't need to set mips16_stubs_seen in this case.
7273 That flag is used to see whether we need to look through
7274 the global symbol table for stubs. We don't need to set
7275 it here, because we just have a local stub. */
7279 struct mips_elf_link_hash_entry
*h
;
7281 h
= ((struct mips_elf_link_hash_entry
*)
7282 sym_hashes
[r_symndx
- extsymoff
]);
7284 while (h
->root
.root
.type
== bfd_link_hash_indirect
7285 || h
->root
.root
.type
== bfd_link_hash_warning
)
7286 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7288 /* H is the symbol this stub is for. */
7290 /* If we already have an appropriate stub for this function, we
7291 don't need another one, so we can discard this one. Since
7292 this function is called before the linker maps input sections
7293 to output sections, we can easily discard it by setting the
7294 SEC_EXCLUDE flag. */
7295 if (h
->fn_stub
!= NULL
)
7297 sec
->flags
|= SEC_EXCLUDE
;
7301 sec
->flags
|= SEC_KEEP
;
7303 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7306 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
7308 unsigned long r_symndx
;
7309 struct mips_elf_link_hash_entry
*h
;
7312 /* Look at the relocation information to figure out which symbol
7315 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7318 (*_bfd_error_handler
)
7319 (_("%B: Warning: cannot determine the target function for"
7320 " stub section `%s'"),
7322 bfd_set_error (bfd_error_bad_value
);
7326 if (r_symndx
< extsymoff
7327 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7331 /* This stub is for a local symbol. This stub will only be
7332 needed if there is some relocation (R_MIPS16_26) in this BFD
7333 that refers to this symbol. */
7334 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7336 Elf_Internal_Rela
*sec_relocs
;
7337 const Elf_Internal_Rela
*r
, *rend
;
7339 /* We can ignore stub sections when looking for relocs. */
7340 if ((o
->flags
& SEC_RELOC
) == 0
7341 || o
->reloc_count
== 0
7342 || section_allows_mips16_refs_p (o
))
7346 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7348 if (sec_relocs
== NULL
)
7351 rend
= sec_relocs
+ o
->reloc_count
;
7352 for (r
= sec_relocs
; r
< rend
; r
++)
7353 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7354 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
7357 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7366 /* There is no non-call reloc for this stub, so we do
7367 not need it. Since this function is called before
7368 the linker maps input sections to output sections, we
7369 can easily discard it by setting the SEC_EXCLUDE
7371 sec
->flags
|= SEC_EXCLUDE
;
7375 /* Record this stub in an array of local symbol call_stubs for
7377 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
7379 unsigned long symcount
;
7383 if (elf_bad_symtab (abfd
))
7384 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7386 symcount
= symtab_hdr
->sh_info
;
7387 amt
= symcount
* sizeof (asection
*);
7388 n
= bfd_zalloc (abfd
, amt
);
7391 elf_tdata (abfd
)->local_call_stubs
= n
;
7394 sec
->flags
|= SEC_KEEP
;
7395 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
7397 /* We don't need to set mips16_stubs_seen in this case.
7398 That flag is used to see whether we need to look through
7399 the global symbol table for stubs. We don't need to set
7400 it here, because we just have a local stub. */
7404 h
= ((struct mips_elf_link_hash_entry
*)
7405 sym_hashes
[r_symndx
- extsymoff
]);
7407 /* H is the symbol this stub is for. */
7409 if (CALL_FP_STUB_P (name
))
7410 loc
= &h
->call_fp_stub
;
7412 loc
= &h
->call_stub
;
7414 /* If we already have an appropriate stub for this function, we
7415 don't need another one, so we can discard this one. Since
7416 this function is called before the linker maps input sections
7417 to output sections, we can easily discard it by setting the
7418 SEC_EXCLUDE flag. */
7421 sec
->flags
|= SEC_EXCLUDE
;
7425 sec
->flags
|= SEC_KEEP
;
7427 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7433 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7435 unsigned long r_symndx
;
7436 unsigned int r_type
;
7437 struct elf_link_hash_entry
*h
;
7438 bfd_boolean can_make_dynamic_p
;
7440 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
7441 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7443 if (r_symndx
< extsymoff
)
7445 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
7447 (*_bfd_error_handler
)
7448 (_("%B: Malformed reloc detected for section %s"),
7450 bfd_set_error (bfd_error_bad_value
);
7455 h
= sym_hashes
[r_symndx
- extsymoff
];
7457 && (h
->root
.type
== bfd_link_hash_indirect
7458 || h
->root
.type
== bfd_link_hash_warning
))
7459 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7462 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7463 relocation into a dynamic one. */
7464 can_make_dynamic_p
= FALSE
;
7467 case R_MIPS16_GOT16
:
7468 case R_MIPS16_CALL16
:
7471 case R_MIPS_CALL_HI16
:
7472 case R_MIPS_CALL_LO16
:
7473 case R_MIPS_GOT_HI16
:
7474 case R_MIPS_GOT_LO16
:
7475 case R_MIPS_GOT_PAGE
:
7476 case R_MIPS_GOT_OFST
:
7477 case R_MIPS_GOT_DISP
:
7478 case R_MIPS_TLS_GOTTPREL
:
7480 case R_MIPS_TLS_LDM
:
7482 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7483 if (!mips_elf_create_got_section (dynobj
, info
))
7485 if (htab
->is_vxworks
&& !info
->shared
)
7487 (*_bfd_error_handler
)
7488 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7489 abfd
, (unsigned long) rel
->r_offset
);
7490 bfd_set_error (bfd_error_bad_value
);
7498 /* In VxWorks executables, references to external symbols
7499 must be handled using copy relocs or PLT entries; it is not
7500 possible to convert this relocation into a dynamic one.
7502 For executables that use PLTs and copy-relocs, we have a
7503 choice between converting the relocation into a dynamic
7504 one or using copy relocations or PLT entries. It is
7505 usually better to do the former, unless the relocation is
7506 against a read-only section. */
7509 && !htab
->is_vxworks
7510 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
7511 && !(!info
->nocopyreloc
7512 && !PIC_OBJECT_P (abfd
)
7513 && MIPS_ELF_READONLY_SECTION (sec
))))
7514 && (sec
->flags
& SEC_ALLOC
) != 0)
7516 can_make_dynamic_p
= TRUE
;
7518 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7524 /* Most static relocations require pointer equality, except
7527 h
->pointer_equality_needed
= TRUE
;
7534 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= TRUE
;
7540 /* Relocations against the special VxWorks __GOTT_BASE__ and
7541 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7542 room for them in .rela.dyn. */
7543 if (is_gott_symbol (info
, h
))
7547 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7551 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7552 if (MIPS_ELF_READONLY_SECTION (sec
))
7553 /* We tell the dynamic linker that there are
7554 relocations against the text segment. */
7555 info
->flags
|= DF_TEXTREL
;
7558 else if (r_type
== R_MIPS_CALL_LO16
7559 || r_type
== R_MIPS_GOT_LO16
7560 || r_type
== R_MIPS_GOT_DISP
7561 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
7563 /* We may need a local GOT entry for this relocation. We
7564 don't count R_MIPS_GOT_PAGE because we can estimate the
7565 maximum number of pages needed by looking at the size of
7566 the segment. Similar comments apply to R_MIPS*_GOT16 and
7567 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7568 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7569 R_MIPS_CALL_HI16 because these are always followed by an
7570 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7571 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7572 rel
->r_addend
, info
, 0))
7576 if (h
!= NULL
&& mips_elf_relocation_needs_la25_stub (abfd
, r_type
))
7577 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
7582 case R_MIPS16_CALL16
:
7585 (*_bfd_error_handler
)
7586 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7587 abfd
, (unsigned long) rel
->r_offset
);
7588 bfd_set_error (bfd_error_bad_value
);
7593 case R_MIPS_CALL_HI16
:
7594 case R_MIPS_CALL_LO16
:
7597 /* VxWorks call relocations point at the function's .got.plt
7598 entry, which will be allocated by adjust_dynamic_symbol.
7599 Otherwise, this symbol requires a global GOT entry. */
7600 if ((!htab
->is_vxworks
|| h
->forced_local
)
7601 && !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7604 /* We need a stub, not a plt entry for the undefined
7605 function. But we record it as if it needs plt. See
7606 _bfd_elf_adjust_dynamic_symbol. */
7612 case R_MIPS_GOT_PAGE
:
7613 /* If this is a global, overridable symbol, GOT_PAGE will
7614 decay to GOT_DISP, so we'll need a GOT entry for it. */
7617 struct mips_elf_link_hash_entry
*hmips
=
7618 (struct mips_elf_link_hash_entry
*) h
;
7620 /* This symbol is definitely not overridable. */
7621 if (hmips
->root
.def_regular
7622 && ! (info
->shared
&& ! info
->symbolic
7623 && ! hmips
->root
.forced_local
))
7628 case R_MIPS16_GOT16
:
7630 case R_MIPS_GOT_HI16
:
7631 case R_MIPS_GOT_LO16
:
7632 if (!h
|| r_type
== R_MIPS_GOT_PAGE
)
7634 /* This relocation needs (or may need, if h != NULL) a
7635 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7636 know for sure until we know whether the symbol is
7638 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
7640 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
7642 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7643 addend
= mips_elf_read_rel_addend (abfd
, rel
,
7645 if (r_type
== R_MIPS_GOT16
)
7646 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
7649 addend
<<= howto
->rightshift
;
7652 addend
= rel
->r_addend
;
7653 if (!mips_elf_record_got_page_entry (info
, abfd
, r_symndx
,
7660 case R_MIPS_GOT_DISP
:
7661 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7665 case R_MIPS_TLS_GOTTPREL
:
7667 info
->flags
|= DF_STATIC_TLS
;
7670 case R_MIPS_TLS_LDM
:
7671 if (r_type
== R_MIPS_TLS_LDM
)
7679 /* This symbol requires a global offset table entry, or two
7680 for TLS GD relocations. */
7682 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
7684 : r_type
== R_MIPS_TLS_LDM
7689 struct mips_elf_link_hash_entry
*hmips
=
7690 (struct mips_elf_link_hash_entry
*) h
;
7691 hmips
->tls_type
|= flag
;
7693 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
,
7699 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
7701 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7712 /* In VxWorks executables, references to external symbols
7713 are handled using copy relocs or PLT stubs, so there's
7714 no need to add a .rela.dyn entry for this relocation. */
7715 if (can_make_dynamic_p
)
7719 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7723 if (info
->shared
&& h
== NULL
)
7725 /* When creating a shared object, we must copy these
7726 reloc types into the output file as R_MIPS_REL32
7727 relocs. Make room for this reloc in .rel(a).dyn. */
7728 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7729 if (MIPS_ELF_READONLY_SECTION (sec
))
7730 /* We tell the dynamic linker that there are
7731 relocations against the text segment. */
7732 info
->flags
|= DF_TEXTREL
;
7736 struct mips_elf_link_hash_entry
*hmips
;
7738 /* For a shared object, we must copy this relocation
7739 unless the symbol turns out to be undefined and
7740 weak with non-default visibility, in which case
7741 it will be left as zero.
7743 We could elide R_MIPS_REL32 for locally binding symbols
7744 in shared libraries, but do not yet do so.
7746 For an executable, we only need to copy this
7747 reloc if the symbol is defined in a dynamic
7749 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7750 ++hmips
->possibly_dynamic_relocs
;
7751 if (MIPS_ELF_READONLY_SECTION (sec
))
7752 /* We need it to tell the dynamic linker if there
7753 are relocations against the text segment. */
7754 hmips
->readonly_reloc
= TRUE
;
7758 if (SGI_COMPAT (abfd
))
7759 mips_elf_hash_table (info
)->compact_rel_size
+=
7760 sizeof (Elf32_External_crinfo
);
7764 case R_MIPS_GPREL16
:
7765 case R_MIPS_LITERAL
:
7766 case R_MIPS_GPREL32
:
7767 if (SGI_COMPAT (abfd
))
7768 mips_elf_hash_table (info
)->compact_rel_size
+=
7769 sizeof (Elf32_External_crinfo
);
7772 /* This relocation describes the C++ object vtable hierarchy.
7773 Reconstruct it for later use during GC. */
7774 case R_MIPS_GNU_VTINHERIT
:
7775 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
7779 /* This relocation describes which C++ vtable entries are actually
7780 used. Record for later use during GC. */
7781 case R_MIPS_GNU_VTENTRY
:
7782 BFD_ASSERT (h
!= NULL
);
7784 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
7792 /* We must not create a stub for a symbol that has relocations
7793 related to taking the function's address. This doesn't apply to
7794 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7795 a normal .got entry. */
7796 if (!htab
->is_vxworks
&& h
!= NULL
)
7800 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
7802 case R_MIPS16_CALL16
:
7804 case R_MIPS_CALL_HI16
:
7805 case R_MIPS_CALL_LO16
:
7810 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7811 if there is one. We only need to handle global symbols here;
7812 we decide whether to keep or delete stubs for local symbols
7813 when processing the stub's relocations. */
7815 && !mips16_call_reloc_p (r_type
)
7816 && !section_allows_mips16_refs_p (sec
))
7818 struct mips_elf_link_hash_entry
*mh
;
7820 mh
= (struct mips_elf_link_hash_entry
*) h
;
7821 mh
->need_fn_stub
= TRUE
;
7824 /* Refuse some position-dependent relocations when creating a
7825 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7826 not PIC, but we can create dynamic relocations and the result
7827 will be fine. Also do not refuse R_MIPS_LO16, which can be
7828 combined with R_MIPS_GOT16. */
7836 case R_MIPS_HIGHEST
:
7837 /* Don't refuse a high part relocation if it's against
7838 no symbol (e.g. part of a compound relocation). */
7842 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7843 and has a special meaning. */
7844 if (!NEWABI_P (abfd
) && h
!= NULL
7845 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
7852 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7853 (*_bfd_error_handler
)
7854 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7856 (h
) ? h
->root
.root
.string
: "a local symbol");
7857 bfd_set_error (bfd_error_bad_value
);
7869 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
7870 struct bfd_link_info
*link_info
,
7873 Elf_Internal_Rela
*internal_relocs
;
7874 Elf_Internal_Rela
*irel
, *irelend
;
7875 Elf_Internal_Shdr
*symtab_hdr
;
7876 bfd_byte
*contents
= NULL
;
7878 bfd_boolean changed_contents
= FALSE
;
7879 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
7880 Elf_Internal_Sym
*isymbuf
= NULL
;
7882 /* We are not currently changing any sizes, so only one pass. */
7885 if (link_info
->relocatable
)
7888 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
7889 link_info
->keep_memory
);
7890 if (internal_relocs
== NULL
)
7893 irelend
= internal_relocs
+ sec
->reloc_count
7894 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
7895 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7896 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7898 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
7901 bfd_signed_vma sym_offset
;
7902 unsigned int r_type
;
7903 unsigned long r_symndx
;
7905 unsigned long instruction
;
7907 /* Turn jalr into bgezal, and jr into beq, if they're marked
7908 with a JALR relocation, that indicate where they jump to.
7909 This saves some pipeline bubbles. */
7910 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
7911 if (r_type
!= R_MIPS_JALR
)
7914 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
7915 /* Compute the address of the jump target. */
7916 if (r_symndx
>= extsymoff
)
7918 struct mips_elf_link_hash_entry
*h
7919 = ((struct mips_elf_link_hash_entry
*)
7920 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
7922 while (h
->root
.root
.type
== bfd_link_hash_indirect
7923 || h
->root
.root
.type
== bfd_link_hash_warning
)
7924 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7926 /* If a symbol is undefined, or if it may be overridden,
7928 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
7929 || h
->root
.root
.type
== bfd_link_hash_defweak
)
7930 && h
->root
.root
.u
.def
.section
)
7931 || (link_info
->shared
&& ! link_info
->symbolic
7932 && !h
->root
.forced_local
))
7935 sym_sec
= h
->root
.root
.u
.def
.section
;
7936 if (sym_sec
->output_section
)
7937 symval
= (h
->root
.root
.u
.def
.value
7938 + sym_sec
->output_section
->vma
7939 + sym_sec
->output_offset
);
7941 symval
= h
->root
.root
.u
.def
.value
;
7945 Elf_Internal_Sym
*isym
;
7947 /* Read this BFD's symbols if we haven't done so already. */
7948 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
7950 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
7951 if (isymbuf
== NULL
)
7952 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
7953 symtab_hdr
->sh_info
, 0,
7955 if (isymbuf
== NULL
)
7959 isym
= isymbuf
+ r_symndx
;
7960 if (isym
->st_shndx
== SHN_UNDEF
)
7962 else if (isym
->st_shndx
== SHN_ABS
)
7963 sym_sec
= bfd_abs_section_ptr
;
7964 else if (isym
->st_shndx
== SHN_COMMON
)
7965 sym_sec
= bfd_com_section_ptr
;
7968 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
7969 symval
= isym
->st_value
7970 + sym_sec
->output_section
->vma
7971 + sym_sec
->output_offset
;
7974 /* Compute branch offset, from delay slot of the jump to the
7976 sym_offset
= (symval
+ irel
->r_addend
)
7977 - (sec_start
+ irel
->r_offset
+ 4);
7979 /* Branch offset must be properly aligned. */
7980 if ((sym_offset
& 3) != 0)
7985 /* Check that it's in range. */
7986 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
7989 /* Get the section contents if we haven't done so already. */
7990 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
7993 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
7995 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7996 if ((instruction
& 0xfc1fffff) == 0x0000f809)
7997 instruction
= 0x04110000;
7998 /* If it was jr <reg>, turn it into b <target>. */
7999 else if ((instruction
& 0xfc1fffff) == 0x00000008)
8000 instruction
= 0x10000000;
8004 instruction
|= (sym_offset
& 0xffff);
8005 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
8006 changed_contents
= TRUE
;
8009 if (contents
!= NULL
8010 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8012 if (!changed_contents
&& !link_info
->keep_memory
)
8016 /* Cache the section contents for elf_link_input_bfd. */
8017 elf_section_data (sec
)->this_hdr
.contents
= contents
;
8023 if (contents
!= NULL
8024 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8029 /* Allocate space for global sym dynamic relocs. */
8032 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
8034 struct bfd_link_info
*info
= inf
;
8036 struct mips_elf_link_hash_entry
*hmips
;
8037 struct mips_elf_link_hash_table
*htab
;
8039 htab
= mips_elf_hash_table (info
);
8040 dynobj
= elf_hash_table (info
)->dynobj
;
8041 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8043 /* VxWorks executables are handled elsewhere; we only need to
8044 allocate relocations in shared objects. */
8045 if (htab
->is_vxworks
&& !info
->shared
)
8048 /* Ignore indirect and warning symbols. All relocations against
8049 such symbols will be redirected to the target symbol. */
8050 if (h
->root
.type
== bfd_link_hash_indirect
8051 || h
->root
.type
== bfd_link_hash_warning
)
8054 /* If this symbol is defined in a dynamic object, or we are creating
8055 a shared library, we will need to copy any R_MIPS_32 or
8056 R_MIPS_REL32 relocs against it into the output file. */
8057 if (! info
->relocatable
8058 && hmips
->possibly_dynamic_relocs
!= 0
8059 && (h
->root
.type
== bfd_link_hash_defweak
8063 bfd_boolean do_copy
= TRUE
;
8065 if (h
->root
.type
== bfd_link_hash_undefweak
)
8067 /* Do not copy relocations for undefined weak symbols with
8068 non-default visibility. */
8069 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
8072 /* Make sure undefined weak symbols are output as a dynamic
8074 else if (h
->dynindx
== -1 && !h
->forced_local
)
8076 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8083 /* Even though we don't directly need a GOT entry for this symbol,
8084 a symbol must have a dynamic symbol table index greater that
8085 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8086 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
8087 hmips
->global_got_area
= GGA_RELOC_ONLY
;
8089 mips_elf_allocate_dynamic_relocations
8090 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
8091 if (hmips
->readonly_reloc
)
8092 /* We tell the dynamic linker that there are relocations
8093 against the text segment. */
8094 info
->flags
|= DF_TEXTREL
;
8101 /* Adjust a symbol defined by a dynamic object and referenced by a
8102 regular object. The current definition is in some section of the
8103 dynamic object, but we're not including those sections. We have to
8104 change the definition to something the rest of the link can
8108 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
8109 struct elf_link_hash_entry
*h
)
8112 struct mips_elf_link_hash_entry
*hmips
;
8113 struct mips_elf_link_hash_table
*htab
;
8115 htab
= mips_elf_hash_table (info
);
8116 dynobj
= elf_hash_table (info
)->dynobj
;
8117 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8119 /* Make sure we know what is going on here. */
8120 BFD_ASSERT (dynobj
!= NULL
8122 || h
->u
.weakdef
!= NULL
8125 && !h
->def_regular
)));
8127 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8129 /* If there are call relocations against an externally-defined symbol,
8130 see whether we can create a MIPS lazy-binding stub for it. We can
8131 only do this if all references to the function are through call
8132 relocations, and in that case, the traditional lazy-binding stubs
8133 are much more efficient than PLT entries.
8135 Traditional stubs are only available on SVR4 psABI-based systems;
8136 VxWorks always uses PLTs instead. */
8137 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
8139 if (! elf_hash_table (info
)->dynamic_sections_created
)
8142 /* If this symbol is not defined in a regular file, then set
8143 the symbol to the stub location. This is required to make
8144 function pointers compare as equal between the normal
8145 executable and the shared library. */
8146 if (!h
->def_regular
)
8148 hmips
->needs_lazy_stub
= TRUE
;
8149 htab
->lazy_stub_count
++;
8153 /* As above, VxWorks requires PLT entries for externally-defined
8154 functions that are only accessed through call relocations.
8156 Both VxWorks and non-VxWorks targets also need PLT entries if there
8157 are static-only relocations against an externally-defined function.
8158 This can technically occur for shared libraries if there are
8159 branches to the symbol, although it is unlikely that this will be
8160 used in practice due to the short ranges involved. It can occur
8161 for any relative or absolute relocation in executables; in that
8162 case, the PLT entry becomes the function's canonical address. */
8163 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
8164 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
8165 && htab
->use_plts_and_copy_relocs
8166 && !SYMBOL_CALLS_LOCAL (info
, h
)
8167 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
8168 && h
->root
.type
== bfd_link_hash_undefweak
))
8170 /* If this is the first symbol to need a PLT entry, allocate room
8172 if (htab
->splt
->size
== 0)
8174 BFD_ASSERT (htab
->sgotplt
->size
== 0);
8176 /* If we're using the PLT additions to the psABI, each PLT
8177 entry is 16 bytes and the PLT0 entry is 32 bytes.
8178 Encourage better cache usage by aligning. We do this
8179 lazily to avoid pessimizing traditional objects. */
8180 if (!htab
->is_vxworks
8181 && !bfd_set_section_alignment (dynobj
, htab
->splt
, 5))
8184 /* Make sure that .got.plt is word-aligned. We do this lazily
8185 for the same reason as above. */
8186 if (!bfd_set_section_alignment (dynobj
, htab
->sgotplt
,
8187 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
8190 htab
->splt
->size
+= htab
->plt_header_size
;
8192 /* On non-VxWorks targets, the first two entries in .got.plt
8194 if (!htab
->is_vxworks
)
8195 htab
->sgotplt
->size
+= 2 * MIPS_ELF_GOT_SIZE (dynobj
);
8197 /* On VxWorks, also allocate room for the header's
8198 .rela.plt.unloaded entries. */
8199 if (htab
->is_vxworks
&& !info
->shared
)
8200 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
8203 /* Assign the next .plt entry to this symbol. */
8204 h
->plt
.offset
= htab
->splt
->size
;
8205 htab
->splt
->size
+= htab
->plt_entry_size
;
8207 /* If the output file has no definition of the symbol, set the
8208 symbol's value to the address of the stub. */
8209 if (!info
->shared
&& !h
->def_regular
)
8211 h
->root
.u
.def
.section
= htab
->splt
;
8212 h
->root
.u
.def
.value
= h
->plt
.offset
;
8213 /* For VxWorks, point at the PLT load stub rather than the
8214 lazy resolution stub; this stub will become the canonical
8215 function address. */
8216 if (htab
->is_vxworks
)
8217 h
->root
.u
.def
.value
+= 8;
8220 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8222 htab
->sgotplt
->size
+= MIPS_ELF_GOT_SIZE (dynobj
);
8223 htab
->srelplt
->size
+= (htab
->is_vxworks
8224 ? MIPS_ELF_RELA_SIZE (dynobj
)
8225 : MIPS_ELF_REL_SIZE (dynobj
));
8227 /* Make room for the .rela.plt.unloaded relocations. */
8228 if (htab
->is_vxworks
&& !info
->shared
)
8229 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
8231 /* All relocations against this symbol that could have been made
8232 dynamic will now refer to the PLT entry instead. */
8233 hmips
->possibly_dynamic_relocs
= 0;
8238 /* If this is a weak symbol, and there is a real definition, the
8239 processor independent code will have arranged for us to see the
8240 real definition first, and we can just use the same value. */
8241 if (h
->u
.weakdef
!= NULL
)
8243 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
8244 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
8245 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
8246 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
8250 /* Otherwise, there is nothing further to do for symbols defined
8251 in regular objects. */
8255 /* There's also nothing more to do if we'll convert all relocations
8256 against this symbol into dynamic relocations. */
8257 if (!hmips
->has_static_relocs
)
8260 /* We're now relying on copy relocations. Complain if we have
8261 some that we can't convert. */
8262 if (!htab
->use_plts_and_copy_relocs
|| info
->shared
)
8264 (*_bfd_error_handler
) (_("non-dynamic relocations refer to "
8265 "dynamic symbol %s"),
8266 h
->root
.root
.string
);
8267 bfd_set_error (bfd_error_bad_value
);
8271 /* We must allocate the symbol in our .dynbss section, which will
8272 become part of the .bss section of the executable. There will be
8273 an entry for this symbol in the .dynsym section. The dynamic
8274 object will contain position independent code, so all references
8275 from the dynamic object to this symbol will go through the global
8276 offset table. The dynamic linker will use the .dynsym entry to
8277 determine the address it must put in the global offset table, so
8278 both the dynamic object and the regular object will refer to the
8279 same memory location for the variable. */
8281 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
8283 if (htab
->is_vxworks
)
8284 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
8286 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8290 /* All relocations against this symbol that could have been made
8291 dynamic will now refer to the local copy instead. */
8292 hmips
->possibly_dynamic_relocs
= 0;
8294 return _bfd_elf_adjust_dynamic_copy (h
, htab
->sdynbss
);
8297 /* This function is called after all the input files have been read,
8298 and the input sections have been assigned to output sections. We
8299 check for any mips16 stub sections that we can discard. */
8302 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
8303 struct bfd_link_info
*info
)
8306 struct mips_elf_link_hash_table
*htab
;
8307 struct mips_htab_traverse_info hti
;
8309 htab
= mips_elf_hash_table (info
);
8311 /* The .reginfo section has a fixed size. */
8312 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8314 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
8317 hti
.output_bfd
= output_bfd
;
8319 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8320 mips_elf_check_symbols
, &hti
);
8327 /* If the link uses a GOT, lay it out and work out its size. */
8330 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
8334 struct mips_got_info
*g
;
8335 bfd_size_type loadable_size
= 0;
8336 bfd_size_type page_gotno
;
8338 struct mips_elf_count_tls_arg count_tls_arg
;
8339 struct mips_elf_link_hash_table
*htab
;
8341 htab
= mips_elf_hash_table (info
);
8346 dynobj
= elf_hash_table (info
)->dynobj
;
8349 /* Allocate room for the reserved entries. VxWorks always reserves
8350 3 entries; other objects only reserve 2 entries. */
8351 BFD_ASSERT (g
->assigned_gotno
== 0);
8352 if (htab
->is_vxworks
)
8353 htab
->reserved_gotno
= 3;
8355 htab
->reserved_gotno
= 2;
8356 g
->local_gotno
+= htab
->reserved_gotno
;
8357 g
->assigned_gotno
= htab
->reserved_gotno
;
8359 /* Replace entries for indirect and warning symbols with entries for
8360 the target symbol. */
8361 if (!mips_elf_resolve_final_got_entries (g
))
8364 /* Count the number of GOT symbols. */
8365 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, g
);
8367 /* Calculate the total loadable size of the output. That
8368 will give us the maximum number of GOT_PAGE entries
8370 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8372 asection
*subsection
;
8374 for (subsection
= sub
->sections
;
8376 subsection
= subsection
->next
)
8378 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8380 loadable_size
+= ((subsection
->size
+ 0xf)
8381 &~ (bfd_size_type
) 0xf);
8385 if (htab
->is_vxworks
)
8386 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8387 relocations against local symbols evaluate to "G", and the EABI does
8388 not include R_MIPS_GOT_PAGE. */
8391 /* Assume there are two loadable segments consisting of contiguous
8392 sections. Is 5 enough? */
8393 page_gotno
= (loadable_size
>> 16) + 5;
8395 /* Choose the smaller of the two estimates; both are intended to be
8397 if (page_gotno
> g
->page_gotno
)
8398 page_gotno
= g
->page_gotno
;
8400 g
->local_gotno
+= page_gotno
;
8401 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8402 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8404 /* We need to calculate tls_gotno for global symbols at this point
8405 instead of building it up earlier, to avoid doublecounting
8406 entries for one global symbol from multiple input files. */
8407 count_tls_arg
.info
= info
;
8408 count_tls_arg
.needed
= 0;
8409 elf_link_hash_traverse (elf_hash_table (info
),
8410 mips_elf_count_global_tls_entries
,
8412 g
->tls_gotno
+= count_tls_arg
.needed
;
8413 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8415 /* VxWorks does not support multiple GOTs. It initializes $gp to
8416 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8418 if (htab
->is_vxworks
)
8420 /* VxWorks executables do not need a GOT. */
8423 /* Each VxWorks GOT entry needs an explicit relocation. */
8426 count
= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
8428 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
8431 else if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
8433 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
8438 struct mips_elf_count_tls_arg arg
;
8440 /* Set up TLS entries. */
8441 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
8442 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
8444 /* Allocate room for the TLS relocations. */
8447 htab_traverse (g
->got_entries
, mips_elf_count_local_tls_relocs
, &arg
);
8448 elf_link_hash_traverse (elf_hash_table (info
),
8449 mips_elf_count_global_tls_relocs
,
8452 mips_elf_allocate_dynamic_relocations (dynobj
, info
, arg
.needed
);
8458 /* Estimate the size of the .MIPS.stubs section. */
8461 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
8463 struct mips_elf_link_hash_table
*htab
;
8464 bfd_size_type dynsymcount
;
8466 htab
= mips_elf_hash_table (info
);
8467 if (htab
->lazy_stub_count
== 0)
8470 /* IRIX rld assumes that a function stub isn't at the end of the .text
8471 section, so add a dummy entry to the end. */
8472 htab
->lazy_stub_count
++;
8474 /* Get a worst-case estimate of the number of dynamic symbols needed.
8475 At this point, dynsymcount does not account for section symbols
8476 and count_section_dynsyms may overestimate the number that will
8478 dynsymcount
= (elf_hash_table (info
)->dynsymcount
8479 + count_section_dynsyms (output_bfd
, info
));
8481 /* Determine the size of one stub entry. */
8482 htab
->function_stub_size
= (dynsymcount
> 0x10000
8483 ? MIPS_FUNCTION_STUB_BIG_SIZE
8484 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
8486 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
8489 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8490 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8491 allocate an entry in the stubs section. */
8494 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void **data
)
8496 struct mips_elf_link_hash_table
*htab
;
8498 htab
= (struct mips_elf_link_hash_table
*) data
;
8499 if (h
->needs_lazy_stub
)
8501 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
8502 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
;
8503 h
->root
.plt
.offset
= htab
->sstubs
->size
;
8504 htab
->sstubs
->size
+= htab
->function_stub_size
;
8509 /* Allocate offsets in the stubs section to each symbol that needs one.
8510 Set the final size of the .MIPS.stub section. */
8513 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
8515 struct mips_elf_link_hash_table
*htab
;
8517 htab
= mips_elf_hash_table (info
);
8518 if (htab
->lazy_stub_count
== 0)
8521 htab
->sstubs
->size
= 0;
8522 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8523 mips_elf_allocate_lazy_stub
, htab
);
8524 htab
->sstubs
->size
+= htab
->function_stub_size
;
8525 BFD_ASSERT (htab
->sstubs
->size
8526 == htab
->lazy_stub_count
* htab
->function_stub_size
);
8529 /* Set the sizes of the dynamic sections. */
8532 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
8533 struct bfd_link_info
*info
)
8536 asection
*s
, *sreldyn
;
8537 bfd_boolean reltext
;
8538 struct mips_elf_link_hash_table
*htab
;
8540 htab
= mips_elf_hash_table (info
);
8541 dynobj
= elf_hash_table (info
)->dynobj
;
8542 BFD_ASSERT (dynobj
!= NULL
);
8544 if (elf_hash_table (info
)->dynamic_sections_created
)
8546 /* Set the contents of the .interp section to the interpreter. */
8547 if (info
->executable
)
8549 s
= bfd_get_section_by_name (dynobj
, ".interp");
8550 BFD_ASSERT (s
!= NULL
);
8552 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
8554 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
8557 /* Create a symbol for the PLT, if we know that we are using it. */
8558 if (htab
->splt
&& htab
->splt
->size
> 0 && htab
->root
.hplt
== NULL
)
8560 struct elf_link_hash_entry
*h
;
8562 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
8564 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->splt
,
8565 "_PROCEDURE_LINKAGE_TABLE_");
8566 htab
->root
.hplt
= h
;
8573 /* Allocate space for global sym dynamic relocs. */
8574 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, (PTR
) info
);
8576 mips_elf_estimate_stub_size (output_bfd
, info
);
8578 if (!mips_elf_lay_out_got (output_bfd
, info
))
8581 mips_elf_lay_out_lazy_stubs (info
);
8583 /* The check_relocs and adjust_dynamic_symbol entry points have
8584 determined the sizes of the various dynamic sections. Allocate
8587 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8591 /* It's OK to base decisions on the section name, because none
8592 of the dynobj section names depend upon the input files. */
8593 name
= bfd_get_section_name (dynobj
, s
);
8595 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8598 if (CONST_STRNEQ (name
, ".rel"))
8602 const char *outname
;
8605 /* If this relocation section applies to a read only
8606 section, then we probably need a DT_TEXTREL entry.
8607 If the relocation section is .rel(a).dyn, we always
8608 assert a DT_TEXTREL entry rather than testing whether
8609 there exists a relocation to a read only section or
8611 outname
= bfd_get_section_name (output_bfd
,
8613 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
8615 && (target
->flags
& SEC_READONLY
) != 0
8616 && (target
->flags
& SEC_ALLOC
) != 0)
8617 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
8620 /* We use the reloc_count field as a counter if we need
8621 to copy relocs into the output file. */
8622 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
8625 /* If combreloc is enabled, elf_link_sort_relocs() will
8626 sort relocations, but in a different way than we do,
8627 and before we're done creating relocations. Also, it
8628 will move them around between input sections'
8629 relocation's contents, so our sorting would be
8630 broken, so don't let it run. */
8631 info
->combreloc
= 0;
8634 else if (! info
->shared
8635 && ! mips_elf_hash_table (info
)->use_rld_obj_head
8636 && CONST_STRNEQ (name
, ".rld_map"))
8638 /* We add a room for __rld_map. It will be filled in by the
8639 rtld to contain a pointer to the _r_debug structure. */
8642 else if (SGI_COMPAT (output_bfd
)
8643 && CONST_STRNEQ (name
, ".compact_rel"))
8644 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
8645 else if (s
== htab
->splt
)
8647 /* If the last PLT entry has a branch delay slot, allocate
8648 room for an extra nop to fill the delay slot. This is
8649 for CPUs without load interlocking. */
8650 if (! LOAD_INTERLOCKS_P (output_bfd
)
8651 && ! htab
->is_vxworks
&& s
->size
> 0)
8654 else if (! CONST_STRNEQ (name
, ".init")
8656 && s
!= htab
->sgotplt
8657 && s
!= htab
->sstubs
8658 && s
!= htab
->sdynbss
)
8660 /* It's not one of our sections, so don't allocate space. */
8666 s
->flags
|= SEC_EXCLUDE
;
8670 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
8673 /* Allocate memory for the section contents. */
8674 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
8675 if (s
->contents
== NULL
)
8677 bfd_set_error (bfd_error_no_memory
);
8682 if (elf_hash_table (info
)->dynamic_sections_created
)
8684 /* Add some entries to the .dynamic section. We fill in the
8685 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8686 must add the entries now so that we get the correct size for
8687 the .dynamic section. */
8689 /* SGI object has the equivalence of DT_DEBUG in the
8690 DT_MIPS_RLD_MAP entry. This must come first because glibc
8691 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8692 looks at the first one it sees. */
8694 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
8697 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8698 used by the debugger. */
8699 if (info
->executable
8700 && !SGI_COMPAT (output_bfd
)
8701 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
8704 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
8705 info
->flags
|= DF_TEXTREL
;
8707 if ((info
->flags
& DF_TEXTREL
) != 0)
8709 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
8712 /* Clear the DF_TEXTREL flag. It will be set again if we
8713 write out an actual text relocation; we may not, because
8714 at this point we do not know whether e.g. any .eh_frame
8715 absolute relocations have been converted to PC-relative. */
8716 info
->flags
&= ~DF_TEXTREL
;
8719 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
8722 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
8723 if (htab
->is_vxworks
)
8725 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8726 use any of the DT_MIPS_* tags. */
8727 if (sreldyn
&& sreldyn
->size
> 0)
8729 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
8732 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
8735 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
8741 if (sreldyn
&& sreldyn
->size
> 0)
8743 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
8746 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
8749 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
8753 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
8756 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
8759 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
8762 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
8765 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
8768 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
8771 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
8774 if (IRIX_COMPAT (dynobj
) == ict_irix5
8775 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
8778 if (IRIX_COMPAT (dynobj
) == ict_irix6
8779 && (bfd_get_section_by_name
8780 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
8781 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
8784 if (htab
->splt
->size
> 0)
8786 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
8789 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
8792 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
8795 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
8798 if (htab
->is_vxworks
8799 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
8806 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8807 Adjust its R_ADDEND field so that it is correct for the output file.
8808 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8809 and sections respectively; both use symbol indexes. */
8812 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
8813 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
8814 asection
**local_sections
, Elf_Internal_Rela
*rel
)
8816 unsigned int r_type
, r_symndx
;
8817 Elf_Internal_Sym
*sym
;
8820 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8822 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8823 if (r_type
== R_MIPS16_GPREL
8824 || r_type
== R_MIPS_GPREL16
8825 || r_type
== R_MIPS_GPREL32
8826 || r_type
== R_MIPS_LITERAL
)
8828 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
8829 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
8832 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
8833 sym
= local_syms
+ r_symndx
;
8835 /* Adjust REL's addend to account for section merging. */
8836 if (!info
->relocatable
)
8838 sec
= local_sections
[r_symndx
];
8839 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8842 /* This would normally be done by the rela_normal code in elflink.c. */
8843 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8844 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
8848 /* Relocate a MIPS ELF section. */
8851 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
8852 bfd
*input_bfd
, asection
*input_section
,
8853 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
8854 Elf_Internal_Sym
*local_syms
,
8855 asection
**local_sections
)
8857 Elf_Internal_Rela
*rel
;
8858 const Elf_Internal_Rela
*relend
;
8860 bfd_boolean use_saved_addend_p
= FALSE
;
8861 const struct elf_backend_data
*bed
;
8863 bed
= get_elf_backend_data (output_bfd
);
8864 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8865 for (rel
= relocs
; rel
< relend
; ++rel
)
8869 reloc_howto_type
*howto
;
8870 bfd_boolean require_jalx
;
8871 /* TRUE if the relocation is a RELA relocation, rather than a
8873 bfd_boolean rela_relocation_p
= TRUE
;
8874 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8876 unsigned long r_symndx
;
8878 Elf_Internal_Shdr
*symtab_hdr
;
8879 struct elf_link_hash_entry
*h
;
8881 /* Find the relocation howto for this relocation. */
8882 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
8883 NEWABI_P (input_bfd
)
8884 && (MIPS_RELOC_RELA_P
8885 (input_bfd
, input_section
,
8888 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
8889 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8890 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8892 sec
= local_sections
[r_symndx
];
8897 unsigned long extsymoff
;
8900 if (!elf_bad_symtab (input_bfd
))
8901 extsymoff
= symtab_hdr
->sh_info
;
8902 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
8903 while (h
->root
.type
== bfd_link_hash_indirect
8904 || h
->root
.type
== bfd_link_hash_warning
)
8905 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8908 if (h
->root
.type
== bfd_link_hash_defined
8909 || h
->root
.type
== bfd_link_hash_defweak
)
8910 sec
= h
->root
.u
.def
.section
;
8913 if (sec
!= NULL
&& elf_discarded_section (sec
))
8915 /* For relocs against symbols from removed linkonce sections,
8916 or sections discarded by a linker script, we just want the
8917 section contents zeroed. Avoid any special processing. */
8918 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8924 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
8926 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8927 64-bit code, but make sure all their addresses are in the
8928 lowermost or uppermost 32-bit section of the 64-bit address
8929 space. Thus, when they use an R_MIPS_64 they mean what is
8930 usually meant by R_MIPS_32, with the exception that the
8931 stored value is sign-extended to 64 bits. */
8932 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
8934 /* On big-endian systems, we need to lie about the position
8936 if (bfd_big_endian (input_bfd
))
8940 if (!use_saved_addend_p
)
8942 /* If these relocations were originally of the REL variety,
8943 we must pull the addend out of the field that will be
8944 relocated. Otherwise, we simply use the contents of the
8946 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
8949 rela_relocation_p
= FALSE
;
8950 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
8952 if (hi16_reloc_p (r_type
)
8953 || (got16_reloc_p (r_type
)
8954 && mips_elf_local_relocation_p (input_bfd
, rel
,
8955 local_sections
, FALSE
)))
8957 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
8963 name
= h
->root
.root
.string
;
8965 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
8966 local_syms
+ r_symndx
,
8968 (*_bfd_error_handler
)
8969 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8970 input_bfd
, input_section
, name
, howto
->name
,
8975 addend
<<= howto
->rightshift
;
8978 addend
= rel
->r_addend
;
8979 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
8980 local_syms
, local_sections
, rel
);
8983 if (info
->relocatable
)
8985 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
8986 && bfd_big_endian (input_bfd
))
8989 if (!rela_relocation_p
&& rel
->r_addend
)
8991 addend
+= rel
->r_addend
;
8992 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
8993 addend
= mips_elf_high (addend
);
8994 else if (r_type
== R_MIPS_HIGHER
)
8995 addend
= mips_elf_higher (addend
);
8996 else if (r_type
== R_MIPS_HIGHEST
)
8997 addend
= mips_elf_highest (addend
);
8999 addend
>>= howto
->rightshift
;
9001 /* We use the source mask, rather than the destination
9002 mask because the place to which we are writing will be
9003 source of the addend in the final link. */
9004 addend
&= howto
->src_mask
;
9006 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9007 /* See the comment above about using R_MIPS_64 in the 32-bit
9008 ABI. Here, we need to update the addend. It would be
9009 possible to get away with just using the R_MIPS_32 reloc
9010 but for endianness. */
9016 if (addend
& ((bfd_vma
) 1 << 31))
9018 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9025 /* If we don't know that we have a 64-bit type,
9026 do two separate stores. */
9027 if (bfd_big_endian (input_bfd
))
9029 /* Store the sign-bits (which are most significant)
9031 low_bits
= sign_bits
;
9037 high_bits
= sign_bits
;
9039 bfd_put_32 (input_bfd
, low_bits
,
9040 contents
+ rel
->r_offset
);
9041 bfd_put_32 (input_bfd
, high_bits
,
9042 contents
+ rel
->r_offset
+ 4);
9046 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
9047 input_bfd
, input_section
,
9052 /* Go on to the next relocation. */
9056 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9057 relocations for the same offset. In that case we are
9058 supposed to treat the output of each relocation as the addend
9060 if (rel
+ 1 < relend
9061 && rel
->r_offset
== rel
[1].r_offset
9062 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
9063 use_saved_addend_p
= TRUE
;
9065 use_saved_addend_p
= FALSE
;
9067 /* Figure out what value we are supposed to relocate. */
9068 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
9069 input_section
, info
, rel
,
9070 addend
, howto
, local_syms
,
9071 local_sections
, &value
,
9072 &name
, &require_jalx
,
9073 use_saved_addend_p
))
9075 case bfd_reloc_continue
:
9076 /* There's nothing to do. */
9079 case bfd_reloc_undefined
:
9080 /* mips_elf_calculate_relocation already called the
9081 undefined_symbol callback. There's no real point in
9082 trying to perform the relocation at this point, so we
9083 just skip ahead to the next relocation. */
9086 case bfd_reloc_notsupported
:
9087 msg
= _("internal error: unsupported relocation error");
9088 info
->callbacks
->warning
9089 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
9092 case bfd_reloc_overflow
:
9093 if (use_saved_addend_p
)
9094 /* Ignore overflow until we reach the last relocation for
9095 a given location. */
9099 struct mips_elf_link_hash_table
*htab
;
9101 htab
= mips_elf_hash_table (info
);
9102 BFD_ASSERT (name
!= NULL
);
9103 if (!htab
->small_data_overflow_reported
9104 && (howto
->type
== R_MIPS_GPREL16
9105 || howto
->type
== R_MIPS_LITERAL
))
9108 _("small-data section exceeds 64KB;"
9109 " lower small-data size limit (see option -G)");
9111 htab
->small_data_overflow_reported
= TRUE
;
9112 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
9114 if (! ((*info
->callbacks
->reloc_overflow
)
9115 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
9116 input_bfd
, input_section
, rel
->r_offset
)))
9129 /* If we've got another relocation for the address, keep going
9130 until we reach the last one. */
9131 if (use_saved_addend_p
)
9137 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9138 /* See the comment above about using R_MIPS_64 in the 32-bit
9139 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9140 that calculated the right value. Now, however, we
9141 sign-extend the 32-bit result to 64-bits, and store it as a
9142 64-bit value. We are especially generous here in that we
9143 go to extreme lengths to support this usage on systems with
9144 only a 32-bit VMA. */
9150 if (value
& ((bfd_vma
) 1 << 31))
9152 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9159 /* If we don't know that we have a 64-bit type,
9160 do two separate stores. */
9161 if (bfd_big_endian (input_bfd
))
9163 /* Undo what we did above. */
9165 /* Store the sign-bits (which are most significant)
9167 low_bits
= sign_bits
;
9173 high_bits
= sign_bits
;
9175 bfd_put_32 (input_bfd
, low_bits
,
9176 contents
+ rel
->r_offset
);
9177 bfd_put_32 (input_bfd
, high_bits
,
9178 contents
+ rel
->r_offset
+ 4);
9182 /* Actually perform the relocation. */
9183 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
9184 input_bfd
, input_section
,
9185 contents
, require_jalx
))
9192 /* A function that iterates over each entry in la25_stubs and fills
9193 in the code for each one. DATA points to a mips_htab_traverse_info. */
9196 mips_elf_create_la25_stub (void **slot
, void *data
)
9198 struct mips_htab_traverse_info
*hti
;
9199 struct mips_elf_link_hash_table
*htab
;
9200 struct mips_elf_la25_stub
*stub
;
9203 bfd_vma offset
, target
, target_high
, target_low
;
9205 stub
= (struct mips_elf_la25_stub
*) *slot
;
9206 hti
= (struct mips_htab_traverse_info
*) data
;
9207 htab
= mips_elf_hash_table (hti
->info
);
9209 /* Create the section contents, if we haven't already. */
9210 s
= stub
->stub_section
;
9214 loc
= bfd_malloc (s
->size
);
9223 /* Work out where in the section this stub should go. */
9224 offset
= stub
->offset
;
9226 /* Work out the target address. */
9227 target
= (stub
->h
->root
.root
.u
.def
.section
->output_section
->vma
9228 + stub
->h
->root
.root
.u
.def
.section
->output_offset
9229 + stub
->h
->root
.root
.u
.def
.value
);
9230 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
9231 target_low
= (target
& 0xffff);
9233 if (stub
->stub_section
!= htab
->strampoline
)
9235 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9236 of the section and write the two instructions at the end. */
9237 memset (loc
, 0, offset
);
9239 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9240 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
9244 /* This is trampoline. */
9246 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9247 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
9248 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
9249 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
9254 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9255 adjust it appropriately now. */
9258 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
9259 const char *name
, Elf_Internal_Sym
*sym
)
9261 /* The linker script takes care of providing names and values for
9262 these, but we must place them into the right sections. */
9263 static const char* const text_section_symbols
[] = {
9266 "__dso_displacement",
9268 "__program_header_table",
9272 static const char* const data_section_symbols
[] = {
9280 const char* const *p
;
9283 for (i
= 0; i
< 2; ++i
)
9284 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
9287 if (strcmp (*p
, name
) == 0)
9289 /* All of these symbols are given type STT_SECTION by the
9291 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9292 sym
->st_other
= STO_PROTECTED
;
9294 /* The IRIX linker puts these symbols in special sections. */
9296 sym
->st_shndx
= SHN_MIPS_TEXT
;
9298 sym
->st_shndx
= SHN_MIPS_DATA
;
9304 /* Finish up dynamic symbol handling. We set the contents of various
9305 dynamic sections here. */
9308 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
9309 struct bfd_link_info
*info
,
9310 struct elf_link_hash_entry
*h
,
9311 Elf_Internal_Sym
*sym
)
9315 struct mips_got_info
*g
, *gg
;
9318 struct mips_elf_link_hash_table
*htab
;
9319 struct mips_elf_link_hash_entry
*hmips
;
9321 htab
= mips_elf_hash_table (info
);
9322 dynobj
= elf_hash_table (info
)->dynobj
;
9323 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9325 BFD_ASSERT (!htab
->is_vxworks
);
9327 if (h
->plt
.offset
!= MINUS_ONE
&& hmips
->no_fn_stub
)
9329 /* We've decided to create a PLT entry for this symbol. */
9331 bfd_vma header_address
, plt_index
, got_address
;
9332 bfd_vma got_address_high
, got_address_low
, load
;
9333 const bfd_vma
*plt_entry
;
9335 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9336 BFD_ASSERT (h
->dynindx
!= -1);
9337 BFD_ASSERT (htab
->splt
!= NULL
);
9338 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9339 BFD_ASSERT (!h
->def_regular
);
9341 /* Calculate the address of the PLT header. */
9342 header_address
= (htab
->splt
->output_section
->vma
9343 + htab
->splt
->output_offset
);
9345 /* Calculate the index of the entry. */
9346 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9347 / htab
->plt_entry_size
);
9349 /* Calculate the address of the .got.plt entry. */
9350 got_address
= (htab
->sgotplt
->output_section
->vma
9351 + htab
->sgotplt
->output_offset
9352 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9353 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9354 got_address_low
= got_address
& 0xffff;
9356 /* Initially point the .got.plt entry at the PLT header. */
9357 loc
= (htab
->sgotplt
->contents
9358 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9359 if (ABI_64_P (output_bfd
))
9360 bfd_put_64 (output_bfd
, header_address
, loc
);
9362 bfd_put_32 (output_bfd
, header_address
, loc
);
9364 /* Find out where the .plt entry should go. */
9365 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9367 /* Pick the load opcode. */
9368 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
9370 /* Fill in the PLT entry itself. */
9371 plt_entry
= mips_exec_plt_entry
;
9372 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
9373 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
, loc
+ 4);
9375 if (! LOAD_INTERLOCKS_P (output_bfd
))
9377 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
9378 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9382 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
9383 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 12);
9386 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9387 mips_elf_output_dynamic_relocation (output_bfd
, htab
->srelplt
,
9388 plt_index
, h
->dynindx
,
9389 R_MIPS_JUMP_SLOT
, got_address
);
9391 /* We distinguish between PLT entries and lazy-binding stubs by
9392 giving the former an st_other value of STO_MIPS_PLT. Set the
9393 flag and leave the value if there are any relocations in the
9394 binary where pointer equality matters. */
9395 sym
->st_shndx
= SHN_UNDEF
;
9396 if (h
->pointer_equality_needed
)
9397 sym
->st_other
= STO_MIPS_PLT
;
9401 else if (h
->plt
.offset
!= MINUS_ONE
)
9403 /* We've decided to create a lazy-binding stub. */
9404 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
9406 /* This symbol has a stub. Set it up. */
9408 BFD_ASSERT (h
->dynindx
!= -1);
9410 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9411 || (h
->dynindx
<= 0xffff));
9413 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9414 sign extension at runtime in the stub, resulting in a negative
9416 if (h
->dynindx
& ~0x7fffffff)
9419 /* Fill the stub. */
9421 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
9423 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
9425 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9427 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
9431 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
9434 /* If a large stub is not required and sign extension is not a
9435 problem, then use legacy code in the stub. */
9436 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9437 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
9438 else if (h
->dynindx
& ~0x7fff)
9439 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
9441 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
9444 BFD_ASSERT (h
->plt
.offset
<= htab
->sstubs
->size
);
9445 memcpy (htab
->sstubs
->contents
+ h
->plt
.offset
,
9446 stub
, htab
->function_stub_size
);
9448 /* Mark the symbol as undefined. plt.offset != -1 occurs
9449 only for the referenced symbol. */
9450 sym
->st_shndx
= SHN_UNDEF
;
9452 /* The run-time linker uses the st_value field of the symbol
9453 to reset the global offset table entry for this external
9454 to its stub address when unlinking a shared object. */
9455 sym
->st_value
= (htab
->sstubs
->output_section
->vma
9456 + htab
->sstubs
->output_offset
9460 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9461 refer to the stub, since only the stub uses the standard calling
9463 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
9465 BFD_ASSERT (hmips
->need_fn_stub
);
9466 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
9467 + hmips
->fn_stub
->output_offset
);
9468 sym
->st_size
= hmips
->fn_stub
->size
;
9469 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
9472 BFD_ASSERT (h
->dynindx
!= -1
9473 || h
->forced_local
);
9477 BFD_ASSERT (g
!= NULL
);
9479 /* Run through the global symbol table, creating GOT entries for all
9480 the symbols that need them. */
9481 if (g
->global_gotsym
!= NULL
9482 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9487 value
= sym
->st_value
;
9488 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9489 R_MIPS_GOT16
, info
);
9490 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
9493 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
9495 struct mips_got_entry e
, *p
;
9501 e
.abfd
= output_bfd
;
9506 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
9509 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
9514 || (elf_hash_table (info
)->dynamic_sections_created
9516 && p
->d
.h
->root
.def_dynamic
9517 && !p
->d
.h
->root
.def_regular
))
9519 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9520 the various compatibility problems, it's easier to mock
9521 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9522 mips_elf_create_dynamic_relocation to calculate the
9523 appropriate addend. */
9524 Elf_Internal_Rela rel
[3];
9526 memset (rel
, 0, sizeof (rel
));
9527 if (ABI_64_P (output_bfd
))
9528 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
9530 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
9531 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
9534 if (! (mips_elf_create_dynamic_relocation
9535 (output_bfd
, info
, rel
,
9536 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
9540 entry
= sym
->st_value
;
9541 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
9546 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9547 name
= h
->root
.root
.string
;
9548 if (strcmp (name
, "_DYNAMIC") == 0
9549 || h
== elf_hash_table (info
)->hgot
)
9550 sym
->st_shndx
= SHN_ABS
;
9551 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
9552 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
9554 sym
->st_shndx
= SHN_ABS
;
9555 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9558 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
9560 sym
->st_shndx
= SHN_ABS
;
9561 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9562 sym
->st_value
= elf_gp (output_bfd
);
9564 else if (SGI_COMPAT (output_bfd
))
9566 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
9567 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
9569 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9570 sym
->st_other
= STO_PROTECTED
;
9572 sym
->st_shndx
= SHN_MIPS_DATA
;
9574 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
9576 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9577 sym
->st_other
= STO_PROTECTED
;
9578 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
9579 sym
->st_shndx
= SHN_ABS
;
9581 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
9583 if (h
->type
== STT_FUNC
)
9584 sym
->st_shndx
= SHN_MIPS_TEXT
;
9585 else if (h
->type
== STT_OBJECT
)
9586 sym
->st_shndx
= SHN_MIPS_DATA
;
9590 /* Emit a copy reloc, if needed. */
9596 BFD_ASSERT (h
->dynindx
!= -1);
9597 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9599 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9600 symval
= (h
->root
.u
.def
.section
->output_section
->vma
9601 + h
->root
.u
.def
.section
->output_offset
9602 + h
->root
.u
.def
.value
);
9603 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
9604 h
->dynindx
, R_MIPS_COPY
, symval
);
9607 /* Handle the IRIX6-specific symbols. */
9608 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
9609 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
9613 if (! mips_elf_hash_table (info
)->use_rld_obj_head
9614 && (strcmp (name
, "__rld_map") == 0
9615 || strcmp (name
, "__RLD_MAP") == 0))
9617 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
9618 BFD_ASSERT (s
!= NULL
);
9619 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
9620 bfd_put_32 (output_bfd
, 0, s
->contents
);
9621 if (mips_elf_hash_table (info
)->rld_value
== 0)
9622 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9624 else if (mips_elf_hash_table (info
)->use_rld_obj_head
9625 && strcmp (name
, "__rld_obj_head") == 0)
9627 /* IRIX6 does not use a .rld_map section. */
9628 if (IRIX_COMPAT (output_bfd
) == ict_irix5
9629 || IRIX_COMPAT (output_bfd
) == ict_none
)
9630 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
9632 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9636 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9637 treat MIPS16 symbols like any other. */
9638 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9640 BFD_ASSERT (sym
->st_value
& 1);
9641 sym
->st_other
-= STO_MIPS16
;
9647 /* Likewise, for VxWorks. */
9650 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
9651 struct bfd_link_info
*info
,
9652 struct elf_link_hash_entry
*h
,
9653 Elf_Internal_Sym
*sym
)
9657 struct mips_got_info
*g
;
9658 struct mips_elf_link_hash_table
*htab
;
9660 htab
= mips_elf_hash_table (info
);
9661 dynobj
= elf_hash_table (info
)->dynobj
;
9663 if (h
->plt
.offset
!= (bfd_vma
) -1)
9666 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
9667 Elf_Internal_Rela rel
;
9668 static const bfd_vma
*plt_entry
;
9670 BFD_ASSERT (h
->dynindx
!= -1);
9671 BFD_ASSERT (htab
->splt
!= NULL
);
9672 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9674 /* Calculate the address of the .plt entry. */
9675 plt_address
= (htab
->splt
->output_section
->vma
9676 + htab
->splt
->output_offset
9679 /* Calculate the index of the entry. */
9680 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9681 / htab
->plt_entry_size
);
9683 /* Calculate the address of the .got.plt entry. */
9684 got_address
= (htab
->sgotplt
->output_section
->vma
9685 + htab
->sgotplt
->output_offset
9688 /* Calculate the offset of the .got.plt entry from
9689 _GLOBAL_OFFSET_TABLE_. */
9690 got_offset
= mips_elf_gotplt_index (info
, h
);
9692 /* Calculate the offset for the branch at the start of the PLT
9693 entry. The branch jumps to the beginning of .plt. */
9694 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
9696 /* Fill in the initial value of the .got.plt entry. */
9697 bfd_put_32 (output_bfd
, plt_address
,
9698 htab
->sgotplt
->contents
+ plt_index
* 4);
9700 /* Find out where the .plt entry should go. */
9701 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9705 plt_entry
= mips_vxworks_shared_plt_entry
;
9706 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9707 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9711 bfd_vma got_address_high
, got_address_low
;
9713 plt_entry
= mips_vxworks_exec_plt_entry
;
9714 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9715 got_address_low
= got_address
& 0xffff;
9717 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9718 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9719 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
9720 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
9721 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9722 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9723 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9724 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9726 loc
= (htab
->srelplt2
->contents
9727 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
9729 /* Emit a relocation for the .got.plt entry. */
9730 rel
.r_offset
= got_address
;
9731 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9732 rel
.r_addend
= h
->plt
.offset
;
9733 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9735 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9736 loc
+= sizeof (Elf32_External_Rela
);
9737 rel
.r_offset
= plt_address
+ 8;
9738 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9739 rel
.r_addend
= got_offset
;
9740 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9742 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9743 loc
+= sizeof (Elf32_External_Rela
);
9745 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9746 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9749 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9750 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
9751 rel
.r_offset
= got_address
;
9752 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
9754 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9756 if (!h
->def_regular
)
9757 sym
->st_shndx
= SHN_UNDEF
;
9760 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
9764 BFD_ASSERT (g
!= NULL
);
9766 /* See if this symbol has an entry in the GOT. */
9767 if (g
->global_gotsym
!= NULL
9768 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9771 Elf_Internal_Rela outrel
;
9775 /* Install the symbol value in the GOT. */
9776 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9777 R_MIPS_GOT16
, info
);
9778 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
9780 /* Add a dynamic relocation for it. */
9781 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9782 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
9783 outrel
.r_offset
= (sgot
->output_section
->vma
9784 + sgot
->output_offset
9786 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
9787 outrel
.r_addend
= 0;
9788 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
9791 /* Emit a copy reloc, if needed. */
9794 Elf_Internal_Rela rel
;
9796 BFD_ASSERT (h
->dynindx
!= -1);
9798 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
9799 + h
->root
.u
.def
.section
->output_offset
9800 + h
->root
.u
.def
.value
);
9801 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
9803 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
9804 htab
->srelbss
->contents
9805 + (htab
->srelbss
->reloc_count
9806 * sizeof (Elf32_External_Rela
)));
9807 ++htab
->srelbss
->reloc_count
;
9810 /* If this is a mips16 symbol, force the value to be even. */
9811 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9812 sym
->st_value
&= ~1;
9817 /* Write out a plt0 entry to the beginning of .plt. */
9820 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9823 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
9824 static const bfd_vma
*plt_entry
;
9825 struct mips_elf_link_hash_table
*htab
;
9827 htab
= mips_elf_hash_table (info
);
9828 if (ABI_64_P (output_bfd
))
9829 plt_entry
= mips_n64_exec_plt0_entry
;
9830 else if (ABI_N32_P (output_bfd
))
9831 plt_entry
= mips_n32_exec_plt0_entry
;
9833 plt_entry
= mips_o32_exec_plt0_entry
;
9835 /* Calculate the value of .got.plt. */
9836 gotplt_value
= (htab
->sgotplt
->output_section
->vma
9837 + htab
->sgotplt
->output_offset
);
9838 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
9839 gotplt_value_low
= gotplt_value
& 0xffff;
9841 /* The PLT sequence is not safe for N64 if .got.plt's address can
9842 not be loaded in two instructions. */
9843 BFD_ASSERT ((gotplt_value
& ~(bfd_vma
) 0x7fffffff) == 0
9844 || ~(gotplt_value
| 0x7fffffff) == 0);
9846 /* Install the PLT header. */
9847 loc
= htab
->splt
->contents
;
9848 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
9849 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
9850 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
9851 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9852 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9853 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9854 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9855 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9858 /* Install the PLT header for a VxWorks executable and finalize the
9859 contents of .rela.plt.unloaded. */
9862 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9864 Elf_Internal_Rela rela
;
9866 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
9867 static const bfd_vma
*plt_entry
;
9868 struct mips_elf_link_hash_table
*htab
;
9870 htab
= mips_elf_hash_table (info
);
9871 plt_entry
= mips_vxworks_exec_plt0_entry
;
9873 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9874 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
9875 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
9876 + htab
->root
.hgot
->root
.u
.def
.value
);
9878 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
9879 got_value_low
= got_value
& 0xffff;
9881 /* Calculate the address of the PLT header. */
9882 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
9884 /* Install the PLT header. */
9885 loc
= htab
->splt
->contents
;
9886 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
9887 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
9888 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
9889 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9890 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9891 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9893 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9894 loc
= htab
->srelplt2
->contents
;
9895 rela
.r_offset
= plt_address
;
9896 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9898 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9899 loc
+= sizeof (Elf32_External_Rela
);
9901 /* Output the relocation for the following addiu of
9902 %lo(_GLOBAL_OFFSET_TABLE_). */
9904 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9905 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9906 loc
+= sizeof (Elf32_External_Rela
);
9908 /* Fix up the remaining relocations. They may have the wrong
9909 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9910 in which symbols were output. */
9911 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
9913 Elf_Internal_Rela rel
;
9915 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9916 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9917 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9918 loc
+= sizeof (Elf32_External_Rela
);
9920 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9921 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9922 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9923 loc
+= sizeof (Elf32_External_Rela
);
9925 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9926 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9927 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9928 loc
+= sizeof (Elf32_External_Rela
);
9932 /* Install the PLT header for a VxWorks shared library. */
9935 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9938 struct mips_elf_link_hash_table
*htab
;
9940 htab
= mips_elf_hash_table (info
);
9942 /* We just need to copy the entry byte-by-byte. */
9943 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
9944 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
9945 htab
->splt
->contents
+ i
* 4);
9948 /* Finish up the dynamic sections. */
9951 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
9952 struct bfd_link_info
*info
)
9957 struct mips_got_info
*gg
, *g
;
9958 struct mips_elf_link_hash_table
*htab
;
9960 htab
= mips_elf_hash_table (info
);
9961 dynobj
= elf_hash_table (info
)->dynobj
;
9963 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
9966 gg
= htab
->got_info
;
9968 if (elf_hash_table (info
)->dynamic_sections_created
)
9971 int dyn_to_skip
= 0, dyn_skipped
= 0;
9973 BFD_ASSERT (sdyn
!= NULL
);
9974 BFD_ASSERT (gg
!= NULL
);
9976 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
9977 BFD_ASSERT (g
!= NULL
);
9979 for (b
= sdyn
->contents
;
9980 b
< sdyn
->contents
+ sdyn
->size
;
9981 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
9983 Elf_Internal_Dyn dyn
;
9987 bfd_boolean swap_out_p
;
9989 /* Read in the current dynamic entry. */
9990 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
9992 /* Assume that we're going to modify it and write it out. */
9998 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
10002 BFD_ASSERT (htab
->is_vxworks
);
10003 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
10007 /* Rewrite DT_STRSZ. */
10009 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
10014 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10017 case DT_MIPS_PLTGOT
:
10019 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10022 case DT_MIPS_RLD_VERSION
:
10023 dyn
.d_un
.d_val
= 1; /* XXX */
10026 case DT_MIPS_FLAGS
:
10027 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
10030 case DT_MIPS_TIME_STAMP
:
10034 dyn
.d_un
.d_val
= t
;
10038 case DT_MIPS_ICHECKSUM
:
10040 swap_out_p
= FALSE
;
10043 case DT_MIPS_IVERSION
:
10045 swap_out_p
= FALSE
;
10048 case DT_MIPS_BASE_ADDRESS
:
10049 s
= output_bfd
->sections
;
10050 BFD_ASSERT (s
!= NULL
);
10051 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
10054 case DT_MIPS_LOCAL_GOTNO
:
10055 dyn
.d_un
.d_val
= g
->local_gotno
;
10058 case DT_MIPS_UNREFEXTNO
:
10059 /* The index into the dynamic symbol table which is the
10060 entry of the first external symbol that is not
10061 referenced within the same object. */
10062 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
10065 case DT_MIPS_GOTSYM
:
10066 if (gg
->global_gotsym
)
10068 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
10071 /* In case if we don't have global got symbols we default
10072 to setting DT_MIPS_GOTSYM to the same value as
10073 DT_MIPS_SYMTABNO, so we just fall through. */
10075 case DT_MIPS_SYMTABNO
:
10077 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
10078 s
= bfd_get_section_by_name (output_bfd
, name
);
10079 BFD_ASSERT (s
!= NULL
);
10081 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
10084 case DT_MIPS_HIPAGENO
:
10085 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
10088 case DT_MIPS_RLD_MAP
:
10089 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
10092 case DT_MIPS_OPTIONS
:
10093 s
= (bfd_get_section_by_name
10094 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
10095 dyn
.d_un
.d_ptr
= s
->vma
;
10099 BFD_ASSERT (htab
->is_vxworks
);
10100 /* The count does not include the JUMP_SLOT relocations. */
10102 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
10106 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10107 if (htab
->is_vxworks
)
10108 dyn
.d_un
.d_val
= DT_RELA
;
10110 dyn
.d_un
.d_val
= DT_REL
;
10114 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10115 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
10119 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10120 dyn
.d_un
.d_ptr
= (htab
->srelplt
->output_section
->vma
10121 + htab
->srelplt
->output_offset
);
10125 /* If we didn't need any text relocations after all, delete
10126 the dynamic tag. */
10127 if (!(info
->flags
& DF_TEXTREL
))
10129 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
10130 swap_out_p
= FALSE
;
10135 /* If we didn't need any text relocations after all, clear
10136 DF_TEXTREL from DT_FLAGS. */
10137 if (!(info
->flags
& DF_TEXTREL
))
10138 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
10140 swap_out_p
= FALSE
;
10144 swap_out_p
= FALSE
;
10145 if (htab
->is_vxworks
10146 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10151 if (swap_out_p
|| dyn_skipped
)
10152 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10153 (dynobj
, &dyn
, b
- dyn_skipped
);
10157 dyn_skipped
+= dyn_to_skip
;
10162 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10163 if (dyn_skipped
> 0)
10164 memset (b
- dyn_skipped
, 0, dyn_skipped
);
10167 if (sgot
!= NULL
&& sgot
->size
> 0
10168 && !bfd_is_abs_section (sgot
->output_section
))
10170 if (htab
->is_vxworks
)
10172 /* The first entry of the global offset table points to the
10173 ".dynamic" section. The second is initialized by the
10174 loader and contains the shared library identifier.
10175 The third is also initialized by the loader and points
10176 to the lazy resolution stub. */
10177 MIPS_ELF_PUT_WORD (output_bfd
,
10178 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
10180 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10181 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10182 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10184 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
10188 /* The first entry of the global offset table will be filled at
10189 runtime. The second entry will be used by some runtime loaders.
10190 This isn't the case of IRIX rld. */
10191 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10192 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10193 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10196 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
10197 = MIPS_ELF_GOT_SIZE (output_bfd
);
10200 /* Generate dynamic relocations for the non-primary gots. */
10201 if (gg
!= NULL
&& gg
->next
)
10203 Elf_Internal_Rela rel
[3];
10204 bfd_vma addend
= 0;
10206 memset (rel
, 0, sizeof (rel
));
10207 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
10209 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
10211 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
10212 + g
->next
->tls_gotno
;
10214 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
10215 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10216 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10218 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10220 if (! info
->shared
)
10223 while (index
< g
->assigned_gotno
)
10225 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
10226 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
10227 if (!(mips_elf_create_dynamic_relocation
10228 (output_bfd
, info
, rel
, NULL
,
10229 bfd_abs_section_ptr
,
10230 0, &addend
, sgot
)))
10232 BFD_ASSERT (addend
== 0);
10237 /* The generation of dynamic relocations for the non-primary gots
10238 adds more dynamic relocations. We cannot count them until
10241 if (elf_hash_table (info
)->dynamic_sections_created
)
10244 bfd_boolean swap_out_p
;
10246 BFD_ASSERT (sdyn
!= NULL
);
10248 for (b
= sdyn
->contents
;
10249 b
< sdyn
->contents
+ sdyn
->size
;
10250 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10252 Elf_Internal_Dyn dyn
;
10255 /* Read in the current dynamic entry. */
10256 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10258 /* Assume that we're going to modify it and write it out. */
10264 /* Reduce DT_RELSZ to account for any relocations we
10265 decided not to make. This is for the n64 irix rld,
10266 which doesn't seem to apply any relocations if there
10267 are trailing null entries. */
10268 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10269 dyn
.d_un
.d_val
= (s
->reloc_count
10270 * (ABI_64_P (output_bfd
)
10271 ? sizeof (Elf64_Mips_External_Rel
)
10272 : sizeof (Elf32_External_Rel
)));
10273 /* Adjust the section size too. Tools like the prelinker
10274 can reasonably expect the values to the same. */
10275 elf_section_data (s
->output_section
)->this_hdr
.sh_size
10280 swap_out_p
= FALSE
;
10285 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10292 Elf32_compact_rel cpt
;
10294 if (SGI_COMPAT (output_bfd
))
10296 /* Write .compact_rel section out. */
10297 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
10301 cpt
.num
= s
->reloc_count
;
10303 cpt
.offset
= (s
->output_section
->filepos
10304 + sizeof (Elf32_External_compact_rel
));
10307 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
10308 ((Elf32_External_compact_rel
*)
10311 /* Clean up a dummy stub function entry in .text. */
10312 if (htab
->sstubs
!= NULL
)
10314 file_ptr dummy_offset
;
10316 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
10317 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
10318 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
10319 htab
->function_stub_size
);
10324 /* The psABI says that the dynamic relocations must be sorted in
10325 increasing order of r_symndx. The VxWorks EABI doesn't require
10326 this, and because the code below handles REL rather than RELA
10327 relocations, using it for VxWorks would be outright harmful. */
10328 if (!htab
->is_vxworks
)
10330 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10332 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
10334 reldyn_sorting_bfd
= output_bfd
;
10336 if (ABI_64_P (output_bfd
))
10337 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
10338 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
10339 sort_dynamic_relocs_64
);
10341 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
10342 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
10343 sort_dynamic_relocs
);
10348 if (htab
->splt
&& htab
->splt
->size
> 0)
10350 if (htab
->is_vxworks
)
10353 mips_vxworks_finish_shared_plt (output_bfd
, info
);
10355 mips_vxworks_finish_exec_plt (output_bfd
, info
);
10359 BFD_ASSERT (!info
->shared
);
10360 mips_finish_exec_plt (output_bfd
, info
);
10367 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10370 mips_set_isa_flags (bfd
*abfd
)
10374 switch (bfd_get_mach (abfd
))
10377 case bfd_mach_mips3000
:
10378 val
= E_MIPS_ARCH_1
;
10381 case bfd_mach_mips3900
:
10382 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
10385 case bfd_mach_mips6000
:
10386 val
= E_MIPS_ARCH_2
;
10389 case bfd_mach_mips4000
:
10390 case bfd_mach_mips4300
:
10391 case bfd_mach_mips4400
:
10392 case bfd_mach_mips4600
:
10393 val
= E_MIPS_ARCH_3
;
10396 case bfd_mach_mips4010
:
10397 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
10400 case bfd_mach_mips4100
:
10401 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
10404 case bfd_mach_mips4111
:
10405 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
10408 case bfd_mach_mips4120
:
10409 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
10412 case bfd_mach_mips4650
:
10413 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
10416 case bfd_mach_mips5400
:
10417 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
10420 case bfd_mach_mips5500
:
10421 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
10424 case bfd_mach_mips9000
:
10425 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
10428 case bfd_mach_mips5000
:
10429 case bfd_mach_mips7000
:
10430 case bfd_mach_mips8000
:
10431 case bfd_mach_mips10000
:
10432 case bfd_mach_mips12000
:
10433 case bfd_mach_mips14000
:
10434 case bfd_mach_mips16000
:
10435 val
= E_MIPS_ARCH_4
;
10438 case bfd_mach_mips5
:
10439 val
= E_MIPS_ARCH_5
;
10442 case bfd_mach_mips_loongson_2e
:
10443 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
10446 case bfd_mach_mips_loongson_2f
:
10447 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
10450 case bfd_mach_mips_sb1
:
10451 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
10454 case bfd_mach_mips_octeon
:
10455 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
10458 case bfd_mach_mips_xlr
:
10459 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
10462 case bfd_mach_mipsisa32
:
10463 val
= E_MIPS_ARCH_32
;
10466 case bfd_mach_mipsisa64
:
10467 val
= E_MIPS_ARCH_64
;
10470 case bfd_mach_mipsisa32r2
:
10471 val
= E_MIPS_ARCH_32R2
;
10474 case bfd_mach_mipsisa64r2
:
10475 val
= E_MIPS_ARCH_64R2
;
10478 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
10479 elf_elfheader (abfd
)->e_flags
|= val
;
10484 /* The final processing done just before writing out a MIPS ELF object
10485 file. This gets the MIPS architecture right based on the machine
10486 number. This is used by both the 32-bit and the 64-bit ABI. */
10489 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
10490 bfd_boolean linker ATTRIBUTE_UNUSED
)
10493 Elf_Internal_Shdr
**hdrpp
;
10497 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10498 is nonzero. This is for compatibility with old objects, which used
10499 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10500 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
10501 mips_set_isa_flags (abfd
);
10503 /* Set the sh_info field for .gptab sections and other appropriate
10504 info for each special section. */
10505 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
10506 i
< elf_numsections (abfd
);
10509 switch ((*hdrpp
)->sh_type
)
10511 case SHT_MIPS_MSYM
:
10512 case SHT_MIPS_LIBLIST
:
10513 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
10515 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10518 case SHT_MIPS_GPTAB
:
10519 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10520 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10521 BFD_ASSERT (name
!= NULL
10522 && CONST_STRNEQ (name
, ".gptab."));
10523 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
10524 BFD_ASSERT (sec
!= NULL
);
10525 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10528 case SHT_MIPS_CONTENT
:
10529 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10530 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10531 BFD_ASSERT (name
!= NULL
10532 && CONST_STRNEQ (name
, ".MIPS.content"));
10533 sec
= bfd_get_section_by_name (abfd
,
10534 name
+ sizeof ".MIPS.content" - 1);
10535 BFD_ASSERT (sec
!= NULL
);
10536 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10539 case SHT_MIPS_SYMBOL_LIB
:
10540 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
10542 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10543 sec
= bfd_get_section_by_name (abfd
, ".liblist");
10545 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10548 case SHT_MIPS_EVENTS
:
10549 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10550 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10551 BFD_ASSERT (name
!= NULL
);
10552 if (CONST_STRNEQ (name
, ".MIPS.events"))
10553 sec
= bfd_get_section_by_name (abfd
,
10554 name
+ sizeof ".MIPS.events" - 1);
10557 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
10558 sec
= bfd_get_section_by_name (abfd
,
10560 + sizeof ".MIPS.post_rel" - 1));
10562 BFD_ASSERT (sec
!= NULL
);
10563 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10570 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10574 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
10575 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
10580 /* See if we need a PT_MIPS_REGINFO segment. */
10581 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10582 if (s
&& (s
->flags
& SEC_LOAD
))
10585 /* See if we need a PT_MIPS_OPTIONS segment. */
10586 if (IRIX_COMPAT (abfd
) == ict_irix6
10587 && bfd_get_section_by_name (abfd
,
10588 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
10591 /* See if we need a PT_MIPS_RTPROC segment. */
10592 if (IRIX_COMPAT (abfd
) == ict_irix5
10593 && bfd_get_section_by_name (abfd
, ".dynamic")
10594 && bfd_get_section_by_name (abfd
, ".mdebug"))
10597 /* Allocate a PT_NULL header in dynamic objects. See
10598 _bfd_mips_elf_modify_segment_map for details. */
10599 if (!SGI_COMPAT (abfd
)
10600 && bfd_get_section_by_name (abfd
, ".dynamic"))
10606 /* Modify the segment map for an IRIX5 executable. */
10609 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
10610 struct bfd_link_info
*info
)
10613 struct elf_segment_map
*m
, **pm
;
10616 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10618 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10619 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10621 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10622 if (m
->p_type
== PT_MIPS_REGINFO
)
10627 m
= bfd_zalloc (abfd
, amt
);
10631 m
->p_type
= PT_MIPS_REGINFO
;
10633 m
->sections
[0] = s
;
10635 /* We want to put it after the PHDR and INTERP segments. */
10636 pm
= &elf_tdata (abfd
)->segment_map
;
10638 && ((*pm
)->p_type
== PT_PHDR
10639 || (*pm
)->p_type
== PT_INTERP
))
10647 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10648 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10649 PT_MIPS_OPTIONS segment immediately following the program header
10651 if (NEWABI_P (abfd
)
10652 /* On non-IRIX6 new abi, we'll have already created a segment
10653 for this section, so don't create another. I'm not sure this
10654 is not also the case for IRIX 6, but I can't test it right
10656 && IRIX_COMPAT (abfd
) == ict_irix6
)
10658 for (s
= abfd
->sections
; s
; s
= s
->next
)
10659 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
10664 struct elf_segment_map
*options_segment
;
10666 pm
= &elf_tdata (abfd
)->segment_map
;
10668 && ((*pm
)->p_type
== PT_PHDR
10669 || (*pm
)->p_type
== PT_INTERP
))
10672 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
10674 amt
= sizeof (struct elf_segment_map
);
10675 options_segment
= bfd_zalloc (abfd
, amt
);
10676 options_segment
->next
= *pm
;
10677 options_segment
->p_type
= PT_MIPS_OPTIONS
;
10678 options_segment
->p_flags
= PF_R
;
10679 options_segment
->p_flags_valid
= TRUE
;
10680 options_segment
->count
= 1;
10681 options_segment
->sections
[0] = s
;
10682 *pm
= options_segment
;
10688 if (IRIX_COMPAT (abfd
) == ict_irix5
)
10690 /* If there are .dynamic and .mdebug sections, we make a room
10691 for the RTPROC header. FIXME: Rewrite without section names. */
10692 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
10693 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
10694 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
10696 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10697 if (m
->p_type
== PT_MIPS_RTPROC
)
10702 m
= bfd_zalloc (abfd
, amt
);
10706 m
->p_type
= PT_MIPS_RTPROC
;
10708 s
= bfd_get_section_by_name (abfd
, ".rtproc");
10713 m
->p_flags_valid
= 1;
10718 m
->sections
[0] = s
;
10721 /* We want to put it after the DYNAMIC segment. */
10722 pm
= &elf_tdata (abfd
)->segment_map
;
10723 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
10733 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10734 .dynstr, .dynsym, and .hash sections, and everything in
10736 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
10738 if ((*pm
)->p_type
== PT_DYNAMIC
)
10741 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
10743 /* For a normal mips executable the permissions for the PT_DYNAMIC
10744 segment are read, write and execute. We do that here since
10745 the code in elf.c sets only the read permission. This matters
10746 sometimes for the dynamic linker. */
10747 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
10749 m
->p_flags
= PF_R
| PF_W
| PF_X
;
10750 m
->p_flags_valid
= 1;
10753 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10754 glibc's dynamic linker has traditionally derived the number of
10755 tags from the p_filesz field, and sometimes allocates stack
10756 arrays of that size. An overly-big PT_DYNAMIC segment can
10757 be actively harmful in such cases. Making PT_DYNAMIC contain
10758 other sections can also make life hard for the prelinker,
10759 which might move one of the other sections to a different
10760 PT_LOAD segment. */
10761 if (SGI_COMPAT (abfd
)
10764 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
10766 static const char *sec_names
[] =
10768 ".dynamic", ".dynstr", ".dynsym", ".hash"
10772 struct elf_segment_map
*n
;
10774 low
= ~(bfd_vma
) 0;
10776 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
10778 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
10779 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10786 if (high
< s
->vma
+ sz
)
10787 high
= s
->vma
+ sz
;
10792 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10793 if ((s
->flags
& SEC_LOAD
) != 0
10795 && s
->vma
+ s
->size
<= high
)
10798 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
10799 n
= bfd_zalloc (abfd
, amt
);
10806 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10808 if ((s
->flags
& SEC_LOAD
) != 0
10810 && s
->vma
+ s
->size
<= high
)
10812 n
->sections
[i
] = s
;
10821 /* Allocate a spare program header in dynamic objects so that tools
10822 like the prelinker can add an extra PT_LOAD entry.
10824 If the prelinker needs to make room for a new PT_LOAD entry, its
10825 standard procedure is to move the first (read-only) sections into
10826 the new (writable) segment. However, the MIPS ABI requires
10827 .dynamic to be in a read-only segment, and the section will often
10828 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10830 Although the prelinker could in principle move .dynamic to a
10831 writable segment, it seems better to allocate a spare program
10832 header instead, and avoid the need to move any sections.
10833 There is a long tradition of allocating spare dynamic tags,
10834 so allocating a spare program header seems like a natural
10837 If INFO is NULL, we may be copying an already prelinked binary
10838 with objcopy or strip, so do not add this header. */
10840 && !SGI_COMPAT (abfd
)
10841 && bfd_get_section_by_name (abfd
, ".dynamic"))
10843 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
10844 if ((*pm
)->p_type
== PT_NULL
)
10848 m
= bfd_zalloc (abfd
, sizeof (*m
));
10852 m
->p_type
= PT_NULL
;
10860 /* Return the section that should be marked against GC for a given
10864 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
10865 struct bfd_link_info
*info
,
10866 Elf_Internal_Rela
*rel
,
10867 struct elf_link_hash_entry
*h
,
10868 Elf_Internal_Sym
*sym
)
10870 /* ??? Do mips16 stub sections need to be handled special? */
10873 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
10875 case R_MIPS_GNU_VTINHERIT
:
10876 case R_MIPS_GNU_VTENTRY
:
10880 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10883 /* Update the got entry reference counts for the section being removed. */
10886 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
10887 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
10888 asection
*sec ATTRIBUTE_UNUSED
,
10889 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
10892 Elf_Internal_Shdr
*symtab_hdr
;
10893 struct elf_link_hash_entry
**sym_hashes
;
10894 bfd_signed_vma
*local_got_refcounts
;
10895 const Elf_Internal_Rela
*rel
, *relend
;
10896 unsigned long r_symndx
;
10897 struct elf_link_hash_entry
*h
;
10899 if (info
->relocatable
)
10902 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10903 sym_hashes
= elf_sym_hashes (abfd
);
10904 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10906 relend
= relocs
+ sec
->reloc_count
;
10907 for (rel
= relocs
; rel
< relend
; rel
++)
10908 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
10910 case R_MIPS16_GOT16
:
10911 case R_MIPS16_CALL16
:
10913 case R_MIPS_CALL16
:
10914 case R_MIPS_CALL_HI16
:
10915 case R_MIPS_CALL_LO16
:
10916 case R_MIPS_GOT_HI16
:
10917 case R_MIPS_GOT_LO16
:
10918 case R_MIPS_GOT_DISP
:
10919 case R_MIPS_GOT_PAGE
:
10920 case R_MIPS_GOT_OFST
:
10921 /* ??? It would seem that the existing MIPS code does no sort
10922 of reference counting or whatnot on its GOT and PLT entries,
10923 so it is not possible to garbage collect them at this time. */
10934 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10935 hiding the old indirect symbol. Process additional relocation
10936 information. Also called for weakdefs, in which case we just let
10937 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10940 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
10941 struct elf_link_hash_entry
*dir
,
10942 struct elf_link_hash_entry
*ind
)
10944 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
10946 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
10948 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
10949 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
10950 /* Any absolute non-dynamic relocations against an indirect or weak
10951 definition will be against the target symbol. */
10952 if (indmips
->has_static_relocs
)
10953 dirmips
->has_static_relocs
= TRUE
;
10955 if (ind
->root
.type
!= bfd_link_hash_indirect
)
10958 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
10959 if (indmips
->readonly_reloc
)
10960 dirmips
->readonly_reloc
= TRUE
;
10961 if (indmips
->no_fn_stub
)
10962 dirmips
->no_fn_stub
= TRUE
;
10963 if (indmips
->fn_stub
)
10965 dirmips
->fn_stub
= indmips
->fn_stub
;
10966 indmips
->fn_stub
= NULL
;
10968 if (indmips
->need_fn_stub
)
10970 dirmips
->need_fn_stub
= TRUE
;
10971 indmips
->need_fn_stub
= FALSE
;
10973 if (indmips
->call_stub
)
10975 dirmips
->call_stub
= indmips
->call_stub
;
10976 indmips
->call_stub
= NULL
;
10978 if (indmips
->call_fp_stub
)
10980 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
10981 indmips
->call_fp_stub
= NULL
;
10983 if (indmips
->global_got_area
< dirmips
->global_got_area
)
10984 dirmips
->global_got_area
= indmips
->global_got_area
;
10985 if (indmips
->global_got_area
< GGA_NONE
)
10986 indmips
->global_got_area
= GGA_NONE
;
10987 if (indmips
->has_nonpic_branches
)
10988 dirmips
->has_nonpic_branches
= TRUE
;
10990 if (dirmips
->tls_type
== 0)
10991 dirmips
->tls_type
= indmips
->tls_type
;
10994 #define PDR_SIZE 32
10997 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
10998 struct bfd_link_info
*info
)
11001 bfd_boolean ret
= FALSE
;
11002 unsigned char *tdata
;
11005 o
= bfd_get_section_by_name (abfd
, ".pdr");
11010 if (o
->size
% PDR_SIZE
!= 0)
11012 if (o
->output_section
!= NULL
11013 && bfd_is_abs_section (o
->output_section
))
11016 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
11020 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
11021 info
->keep_memory
);
11028 cookie
->rel
= cookie
->rels
;
11029 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
11031 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
11033 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
11042 mips_elf_section_data (o
)->u
.tdata
= tdata
;
11043 o
->size
-= skip
* PDR_SIZE
;
11049 if (! info
->keep_memory
)
11050 free (cookie
->rels
);
11056 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
11058 if (strcmp (sec
->name
, ".pdr") == 0)
11064 _bfd_mips_elf_write_section (bfd
*output_bfd
,
11065 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
11066 asection
*sec
, bfd_byte
*contents
)
11068 bfd_byte
*to
, *from
, *end
;
11071 if (strcmp (sec
->name
, ".pdr") != 0)
11074 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
11078 end
= contents
+ sec
->size
;
11079 for (from
= contents
, i
= 0;
11081 from
+= PDR_SIZE
, i
++)
11083 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
11086 memcpy (to
, from
, PDR_SIZE
);
11089 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
11090 sec
->output_offset
, sec
->size
);
11094 /* MIPS ELF uses a special find_nearest_line routine in order the
11095 handle the ECOFF debugging information. */
11097 struct mips_elf_find_line
11099 struct ecoff_debug_info d
;
11100 struct ecoff_find_line i
;
11104 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
11105 asymbol
**symbols
, bfd_vma offset
,
11106 const char **filename_ptr
,
11107 const char **functionname_ptr
,
11108 unsigned int *line_ptr
)
11112 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
11113 filename_ptr
, functionname_ptr
,
11117 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11118 filename_ptr
, functionname_ptr
,
11119 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
11120 &elf_tdata (abfd
)->dwarf2_find_line_info
))
11123 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
11126 flagword origflags
;
11127 struct mips_elf_find_line
*fi
;
11128 const struct ecoff_debug_swap
* const swap
=
11129 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
11131 /* If we are called during a link, mips_elf_final_link may have
11132 cleared the SEC_HAS_CONTENTS field. We force it back on here
11133 if appropriate (which it normally will be). */
11134 origflags
= msec
->flags
;
11135 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
11136 msec
->flags
|= SEC_HAS_CONTENTS
;
11138 fi
= elf_tdata (abfd
)->find_line_info
;
11141 bfd_size_type external_fdr_size
;
11144 struct fdr
*fdr_ptr
;
11145 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
11147 fi
= bfd_zalloc (abfd
, amt
);
11150 msec
->flags
= origflags
;
11154 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
11156 msec
->flags
= origflags
;
11160 /* Swap in the FDR information. */
11161 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
11162 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
11163 if (fi
->d
.fdr
== NULL
)
11165 msec
->flags
= origflags
;
11168 external_fdr_size
= swap
->external_fdr_size
;
11169 fdr_ptr
= fi
->d
.fdr
;
11170 fraw_src
= (char *) fi
->d
.external_fdr
;
11171 fraw_end
= (fraw_src
11172 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
11173 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
11174 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
11176 elf_tdata (abfd
)->find_line_info
= fi
;
11178 /* Note that we don't bother to ever free this information.
11179 find_nearest_line is either called all the time, as in
11180 objdump -l, so the information should be saved, or it is
11181 rarely called, as in ld error messages, so the memory
11182 wasted is unimportant. Still, it would probably be a
11183 good idea for free_cached_info to throw it away. */
11186 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
11187 &fi
->i
, filename_ptr
, functionname_ptr
,
11190 msec
->flags
= origflags
;
11194 msec
->flags
= origflags
;
11197 /* Fall back on the generic ELF find_nearest_line routine. */
11199 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
11200 filename_ptr
, functionname_ptr
,
11205 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
11206 const char **filename_ptr
,
11207 const char **functionname_ptr
,
11208 unsigned int *line_ptr
)
11211 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11212 functionname_ptr
, line_ptr
,
11213 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11218 /* When are writing out the .options or .MIPS.options section,
11219 remember the bytes we are writing out, so that we can install the
11220 GP value in the section_processing routine. */
11223 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
11224 const void *location
,
11225 file_ptr offset
, bfd_size_type count
)
11227 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
11231 if (elf_section_data (section
) == NULL
)
11233 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
11234 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
11235 if (elf_section_data (section
) == NULL
)
11238 c
= mips_elf_section_data (section
)->u
.tdata
;
11241 c
= bfd_zalloc (abfd
, section
->size
);
11244 mips_elf_section_data (section
)->u
.tdata
= c
;
11247 memcpy (c
+ offset
, location
, count
);
11250 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
11254 /* This is almost identical to bfd_generic_get_... except that some
11255 MIPS relocations need to be handled specially. Sigh. */
11258 _bfd_elf_mips_get_relocated_section_contents
11260 struct bfd_link_info
*link_info
,
11261 struct bfd_link_order
*link_order
,
11263 bfd_boolean relocatable
,
11266 /* Get enough memory to hold the stuff */
11267 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
11268 asection
*input_section
= link_order
->u
.indirect
.section
;
11271 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
11272 arelent
**reloc_vector
= NULL
;
11275 if (reloc_size
< 0)
11278 reloc_vector
= bfd_malloc (reloc_size
);
11279 if (reloc_vector
== NULL
&& reloc_size
!= 0)
11282 /* read in the section */
11283 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
11284 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
11287 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
11291 if (reloc_count
< 0)
11294 if (reloc_count
> 0)
11299 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
11302 struct bfd_hash_entry
*h
;
11303 struct bfd_link_hash_entry
*lh
;
11304 /* Skip all this stuff if we aren't mixing formats. */
11305 if (abfd
&& input_bfd
11306 && abfd
->xvec
== input_bfd
->xvec
)
11310 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
11311 lh
= (struct bfd_link_hash_entry
*) h
;
11318 case bfd_link_hash_undefined
:
11319 case bfd_link_hash_undefweak
:
11320 case bfd_link_hash_common
:
11323 case bfd_link_hash_defined
:
11324 case bfd_link_hash_defweak
:
11326 gp
= lh
->u
.def
.value
;
11328 case bfd_link_hash_indirect
:
11329 case bfd_link_hash_warning
:
11331 /* @@FIXME ignoring warning for now */
11333 case bfd_link_hash_new
:
11342 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
11344 char *error_message
= NULL
;
11345 bfd_reloc_status_type r
;
11347 /* Specific to MIPS: Deal with relocation types that require
11348 knowing the gp of the output bfd. */
11349 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
11351 /* If we've managed to find the gp and have a special
11352 function for the relocation then go ahead, else default
11353 to the generic handling. */
11355 && (*parent
)->howto
->special_function
11356 == _bfd_mips_elf32_gprel16_reloc
)
11357 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
11358 input_section
, relocatable
,
11361 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
11363 relocatable
? abfd
: NULL
,
11368 asection
*os
= input_section
->output_section
;
11370 /* A partial link, so keep the relocs */
11371 os
->orelocation
[os
->reloc_count
] = *parent
;
11375 if (r
!= bfd_reloc_ok
)
11379 case bfd_reloc_undefined
:
11380 if (!((*link_info
->callbacks
->undefined_symbol
)
11381 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11382 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
11385 case bfd_reloc_dangerous
:
11386 BFD_ASSERT (error_message
!= NULL
);
11387 if (!((*link_info
->callbacks
->reloc_dangerous
)
11388 (link_info
, error_message
, input_bfd
, input_section
,
11389 (*parent
)->address
)))
11392 case bfd_reloc_overflow
:
11393 if (!((*link_info
->callbacks
->reloc_overflow
)
11395 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11396 (*parent
)->howto
->name
, (*parent
)->addend
,
11397 input_bfd
, input_section
, (*parent
)->address
)))
11400 case bfd_reloc_outofrange
:
11409 if (reloc_vector
!= NULL
)
11410 free (reloc_vector
);
11414 if (reloc_vector
!= NULL
)
11415 free (reloc_vector
);
11419 /* Allocate ABFD's target-dependent data. */
11422 _bfd_mips_elf_mkobject (bfd
*abfd
)
11424 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
11428 /* Create a MIPS ELF linker hash table. */
11430 struct bfd_link_hash_table
*
11431 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
11433 struct mips_elf_link_hash_table
*ret
;
11434 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
11436 ret
= bfd_malloc (amt
);
11440 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
11441 mips_elf_link_hash_newfunc
,
11442 sizeof (struct mips_elf_link_hash_entry
)))
11449 /* We no longer use this. */
11450 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
11451 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
11453 ret
->procedure_count
= 0;
11454 ret
->compact_rel_size
= 0;
11455 ret
->use_rld_obj_head
= FALSE
;
11456 ret
->rld_value
= 0;
11457 ret
->mips16_stubs_seen
= FALSE
;
11458 ret
->use_plts_and_copy_relocs
= FALSE
;
11459 ret
->is_vxworks
= FALSE
;
11460 ret
->small_data_overflow_reported
= FALSE
;
11461 ret
->srelbss
= NULL
;
11462 ret
->sdynbss
= NULL
;
11463 ret
->srelplt
= NULL
;
11464 ret
->srelplt2
= NULL
;
11465 ret
->sgotplt
= NULL
;
11467 ret
->sstubs
= NULL
;
11469 ret
->got_info
= NULL
;
11470 ret
->plt_header_size
= 0;
11471 ret
->plt_entry_size
= 0;
11472 ret
->lazy_stub_count
= 0;
11473 ret
->function_stub_size
= 0;
11474 ret
->strampoline
= NULL
;
11475 ret
->la25_stubs
= NULL
;
11476 ret
->add_stub_section
= NULL
;
11478 return &ret
->root
.root
;
11481 /* Likewise, but indicate that the target is VxWorks. */
11483 struct bfd_link_hash_table
*
11484 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
11486 struct bfd_link_hash_table
*ret
;
11488 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
11491 struct mips_elf_link_hash_table
*htab
;
11493 htab
= (struct mips_elf_link_hash_table
*) ret
;
11494 htab
->use_plts_and_copy_relocs
= TRUE
;
11495 htab
->is_vxworks
= TRUE
;
11500 /* A function that the linker calls if we are allowed to use PLTs
11501 and copy relocs. */
11504 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
11506 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
11509 /* We need to use a special link routine to handle the .reginfo and
11510 the .mdebug sections. We need to merge all instances of these
11511 sections together, not write them all out sequentially. */
11514 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11517 struct bfd_link_order
*p
;
11518 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
11519 asection
*rtproc_sec
;
11520 Elf32_RegInfo reginfo
;
11521 struct ecoff_debug_info debug
;
11522 struct mips_htab_traverse_info hti
;
11523 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11524 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
11525 HDRR
*symhdr
= &debug
.symbolic_header
;
11526 void *mdebug_handle
= NULL
;
11531 struct mips_elf_link_hash_table
*htab
;
11533 static const char * const secname
[] =
11535 ".text", ".init", ".fini", ".data",
11536 ".rodata", ".sdata", ".sbss", ".bss"
11538 static const int sc
[] =
11540 scText
, scInit
, scFini
, scData
,
11541 scRData
, scSData
, scSBss
, scBss
11544 /* Sort the dynamic symbols so that those with GOT entries come after
11546 htab
= mips_elf_hash_table (info
);
11547 if (!mips_elf_sort_hash_table (abfd
, info
))
11550 /* Create any scheduled LA25 stubs. */
11552 hti
.output_bfd
= abfd
;
11554 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
11558 /* Get a value for the GP register. */
11559 if (elf_gp (abfd
) == 0)
11561 struct bfd_link_hash_entry
*h
;
11563 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
11564 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
11565 elf_gp (abfd
) = (h
->u
.def
.value
11566 + h
->u
.def
.section
->output_section
->vma
11567 + h
->u
.def
.section
->output_offset
);
11568 else if (htab
->is_vxworks
11569 && (h
= bfd_link_hash_lookup (info
->hash
,
11570 "_GLOBAL_OFFSET_TABLE_",
11571 FALSE
, FALSE
, TRUE
))
11572 && h
->type
== bfd_link_hash_defined
)
11573 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
11574 + h
->u
.def
.section
->output_offset
11576 else if (info
->relocatable
)
11578 bfd_vma lo
= MINUS_ONE
;
11580 /* Find the GP-relative section with the lowest offset. */
11581 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11583 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
11586 /* And calculate GP relative to that. */
11587 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
11591 /* If the relocate_section function needs to do a reloc
11592 involving the GP value, it should make a reloc_dangerous
11593 callback to warn that GP is not defined. */
11597 /* Go through the sections and collect the .reginfo and .mdebug
11599 reginfo_sec
= NULL
;
11601 gptab_data_sec
= NULL
;
11602 gptab_bss_sec
= NULL
;
11603 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11605 if (strcmp (o
->name
, ".reginfo") == 0)
11607 memset (®info
, 0, sizeof reginfo
);
11609 /* We have found the .reginfo section in the output file.
11610 Look through all the link_orders comprising it and merge
11611 the information together. */
11612 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11614 asection
*input_section
;
11616 Elf32_External_RegInfo ext
;
11619 if (p
->type
!= bfd_indirect_link_order
)
11621 if (p
->type
== bfd_data_link_order
)
11626 input_section
= p
->u
.indirect
.section
;
11627 input_bfd
= input_section
->owner
;
11629 if (! bfd_get_section_contents (input_bfd
, input_section
,
11630 &ext
, 0, sizeof ext
))
11633 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
11635 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
11636 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
11637 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
11638 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
11639 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
11641 /* ri_gp_value is set by the function
11642 mips_elf32_section_processing when the section is
11643 finally written out. */
11645 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11646 elf_link_input_bfd ignores this section. */
11647 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11650 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11651 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
11653 /* Skip this section later on (I don't think this currently
11654 matters, but someday it might). */
11655 o
->map_head
.link_order
= NULL
;
11660 if (strcmp (o
->name
, ".mdebug") == 0)
11662 struct extsym_info einfo
;
11665 /* We have found the .mdebug section in the output file.
11666 Look through all the link_orders comprising it and merge
11667 the information together. */
11668 symhdr
->magic
= swap
->sym_magic
;
11669 /* FIXME: What should the version stamp be? */
11670 symhdr
->vstamp
= 0;
11671 symhdr
->ilineMax
= 0;
11672 symhdr
->cbLine
= 0;
11673 symhdr
->idnMax
= 0;
11674 symhdr
->ipdMax
= 0;
11675 symhdr
->isymMax
= 0;
11676 symhdr
->ioptMax
= 0;
11677 symhdr
->iauxMax
= 0;
11678 symhdr
->issMax
= 0;
11679 symhdr
->issExtMax
= 0;
11680 symhdr
->ifdMax
= 0;
11682 symhdr
->iextMax
= 0;
11684 /* We accumulate the debugging information itself in the
11685 debug_info structure. */
11687 debug
.external_dnr
= NULL
;
11688 debug
.external_pdr
= NULL
;
11689 debug
.external_sym
= NULL
;
11690 debug
.external_opt
= NULL
;
11691 debug
.external_aux
= NULL
;
11693 debug
.ssext
= debug
.ssext_end
= NULL
;
11694 debug
.external_fdr
= NULL
;
11695 debug
.external_rfd
= NULL
;
11696 debug
.external_ext
= debug
.external_ext_end
= NULL
;
11698 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
11699 if (mdebug_handle
== NULL
)
11703 esym
.cobol_main
= 0;
11707 esym
.asym
.iss
= issNil
;
11708 esym
.asym
.st
= stLocal
;
11709 esym
.asym
.reserved
= 0;
11710 esym
.asym
.index
= indexNil
;
11712 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
11714 esym
.asym
.sc
= sc
[i
];
11715 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
11718 esym
.asym
.value
= s
->vma
;
11719 last
= s
->vma
+ s
->size
;
11722 esym
.asym
.value
= last
;
11723 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
11724 secname
[i
], &esym
))
11728 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11730 asection
*input_section
;
11732 const struct ecoff_debug_swap
*input_swap
;
11733 struct ecoff_debug_info input_debug
;
11737 if (p
->type
!= bfd_indirect_link_order
)
11739 if (p
->type
== bfd_data_link_order
)
11744 input_section
= p
->u
.indirect
.section
;
11745 input_bfd
= input_section
->owner
;
11747 if (!is_mips_elf (input_bfd
))
11749 /* I don't know what a non MIPS ELF bfd would be
11750 doing with a .mdebug section, but I don't really
11751 want to deal with it. */
11755 input_swap
= (get_elf_backend_data (input_bfd
)
11756 ->elf_backend_ecoff_debug_swap
);
11758 BFD_ASSERT (p
->size
== input_section
->size
);
11760 /* The ECOFF linking code expects that we have already
11761 read in the debugging information and set up an
11762 ecoff_debug_info structure, so we do that now. */
11763 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
11767 if (! (bfd_ecoff_debug_accumulate
11768 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
11769 &input_debug
, input_swap
, info
)))
11772 /* Loop through the external symbols. For each one with
11773 interesting information, try to find the symbol in
11774 the linker global hash table and save the information
11775 for the output external symbols. */
11776 eraw_src
= input_debug
.external_ext
;
11777 eraw_end
= (eraw_src
11778 + (input_debug
.symbolic_header
.iextMax
11779 * input_swap
->external_ext_size
));
11781 eraw_src
< eraw_end
;
11782 eraw_src
+= input_swap
->external_ext_size
)
11786 struct mips_elf_link_hash_entry
*h
;
11788 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
11789 if (ext
.asym
.sc
== scNil
11790 || ext
.asym
.sc
== scUndefined
11791 || ext
.asym
.sc
== scSUndefined
)
11794 name
= input_debug
.ssext
+ ext
.asym
.iss
;
11795 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
11796 name
, FALSE
, FALSE
, TRUE
);
11797 if (h
== NULL
|| h
->esym
.ifd
!= -2)
11802 BFD_ASSERT (ext
.ifd
11803 < input_debug
.symbolic_header
.ifdMax
);
11804 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
11810 /* Free up the information we just read. */
11811 free (input_debug
.line
);
11812 free (input_debug
.external_dnr
);
11813 free (input_debug
.external_pdr
);
11814 free (input_debug
.external_sym
);
11815 free (input_debug
.external_opt
);
11816 free (input_debug
.external_aux
);
11817 free (input_debug
.ss
);
11818 free (input_debug
.ssext
);
11819 free (input_debug
.external_fdr
);
11820 free (input_debug
.external_rfd
);
11821 free (input_debug
.external_ext
);
11823 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11824 elf_link_input_bfd ignores this section. */
11825 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11828 if (SGI_COMPAT (abfd
) && info
->shared
)
11830 /* Create .rtproc section. */
11831 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
11832 if (rtproc_sec
== NULL
)
11834 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
11835 | SEC_LINKER_CREATED
| SEC_READONLY
);
11837 rtproc_sec
= bfd_make_section_with_flags (abfd
,
11840 if (rtproc_sec
== NULL
11841 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
11845 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
11851 /* Build the external symbol information. */
11854 einfo
.debug
= &debug
;
11856 einfo
.failed
= FALSE
;
11857 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
11858 mips_elf_output_extsym
, &einfo
);
11862 /* Set the size of the .mdebug section. */
11863 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
11865 /* Skip this section later on (I don't think this currently
11866 matters, but someday it might). */
11867 o
->map_head
.link_order
= NULL
;
11872 if (CONST_STRNEQ (o
->name
, ".gptab."))
11874 const char *subname
;
11877 Elf32_External_gptab
*ext_tab
;
11880 /* The .gptab.sdata and .gptab.sbss sections hold
11881 information describing how the small data area would
11882 change depending upon the -G switch. These sections
11883 not used in executables files. */
11884 if (! info
->relocatable
)
11886 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11888 asection
*input_section
;
11890 if (p
->type
!= bfd_indirect_link_order
)
11892 if (p
->type
== bfd_data_link_order
)
11897 input_section
= p
->u
.indirect
.section
;
11899 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11900 elf_link_input_bfd ignores this section. */
11901 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11904 /* Skip this section later on (I don't think this
11905 currently matters, but someday it might). */
11906 o
->map_head
.link_order
= NULL
;
11908 /* Really remove the section. */
11909 bfd_section_list_remove (abfd
, o
);
11910 --abfd
->section_count
;
11915 /* There is one gptab for initialized data, and one for
11916 uninitialized data. */
11917 if (strcmp (o
->name
, ".gptab.sdata") == 0)
11918 gptab_data_sec
= o
;
11919 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
11923 (*_bfd_error_handler
)
11924 (_("%s: illegal section name `%s'"),
11925 bfd_get_filename (abfd
), o
->name
);
11926 bfd_set_error (bfd_error_nonrepresentable_section
);
11930 /* The linker script always combines .gptab.data and
11931 .gptab.sdata into .gptab.sdata, and likewise for
11932 .gptab.bss and .gptab.sbss. It is possible that there is
11933 no .sdata or .sbss section in the output file, in which
11934 case we must change the name of the output section. */
11935 subname
= o
->name
+ sizeof ".gptab" - 1;
11936 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
11938 if (o
== gptab_data_sec
)
11939 o
->name
= ".gptab.data";
11941 o
->name
= ".gptab.bss";
11942 subname
= o
->name
+ sizeof ".gptab" - 1;
11943 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
11946 /* Set up the first entry. */
11948 amt
= c
* sizeof (Elf32_gptab
);
11949 tab
= bfd_malloc (amt
);
11952 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
11953 tab
[0].gt_header
.gt_unused
= 0;
11955 /* Combine the input sections. */
11956 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11958 asection
*input_section
;
11960 bfd_size_type size
;
11961 unsigned long last
;
11962 bfd_size_type gpentry
;
11964 if (p
->type
!= bfd_indirect_link_order
)
11966 if (p
->type
== bfd_data_link_order
)
11971 input_section
= p
->u
.indirect
.section
;
11972 input_bfd
= input_section
->owner
;
11974 /* Combine the gptab entries for this input section one
11975 by one. We know that the input gptab entries are
11976 sorted by ascending -G value. */
11977 size
= input_section
->size
;
11979 for (gpentry
= sizeof (Elf32_External_gptab
);
11981 gpentry
+= sizeof (Elf32_External_gptab
))
11983 Elf32_External_gptab ext_gptab
;
11984 Elf32_gptab int_gptab
;
11990 if (! (bfd_get_section_contents
11991 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
11992 sizeof (Elf32_External_gptab
))))
11998 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
12000 val
= int_gptab
.gt_entry
.gt_g_value
;
12001 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
12004 for (look
= 1; look
< c
; look
++)
12006 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
12007 tab
[look
].gt_entry
.gt_bytes
+= add
;
12009 if (tab
[look
].gt_entry
.gt_g_value
== val
)
12015 Elf32_gptab
*new_tab
;
12018 /* We need a new table entry. */
12019 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
12020 new_tab
= bfd_realloc (tab
, amt
);
12021 if (new_tab
== NULL
)
12027 tab
[c
].gt_entry
.gt_g_value
= val
;
12028 tab
[c
].gt_entry
.gt_bytes
= add
;
12030 /* Merge in the size for the next smallest -G
12031 value, since that will be implied by this new
12034 for (look
= 1; look
< c
; look
++)
12036 if (tab
[look
].gt_entry
.gt_g_value
< val
12038 || (tab
[look
].gt_entry
.gt_g_value
12039 > tab
[max
].gt_entry
.gt_g_value
)))
12043 tab
[c
].gt_entry
.gt_bytes
+=
12044 tab
[max
].gt_entry
.gt_bytes
;
12049 last
= int_gptab
.gt_entry
.gt_bytes
;
12052 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12053 elf_link_input_bfd ignores this section. */
12054 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
12057 /* The table must be sorted by -G value. */
12059 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
12061 /* Swap out the table. */
12062 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
12063 ext_tab
= bfd_alloc (abfd
, amt
);
12064 if (ext_tab
== NULL
)
12070 for (j
= 0; j
< c
; j
++)
12071 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
12074 o
->size
= c
* sizeof (Elf32_External_gptab
);
12075 o
->contents
= (bfd_byte
*) ext_tab
;
12077 /* Skip this section later on (I don't think this currently
12078 matters, but someday it might). */
12079 o
->map_head
.link_order
= NULL
;
12083 /* Invoke the regular ELF backend linker to do all the work. */
12084 if (!bfd_elf_final_link (abfd
, info
))
12087 /* Now write out the computed sections. */
12089 if (reginfo_sec
!= NULL
)
12091 Elf32_External_RegInfo ext
;
12093 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
12094 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
12098 if (mdebug_sec
!= NULL
)
12100 BFD_ASSERT (abfd
->output_has_begun
);
12101 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
12103 mdebug_sec
->filepos
))
12106 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
12109 if (gptab_data_sec
!= NULL
)
12111 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
12112 gptab_data_sec
->contents
,
12113 0, gptab_data_sec
->size
))
12117 if (gptab_bss_sec
!= NULL
)
12119 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
12120 gptab_bss_sec
->contents
,
12121 0, gptab_bss_sec
->size
))
12125 if (SGI_COMPAT (abfd
))
12127 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
12128 if (rtproc_sec
!= NULL
)
12130 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
12131 rtproc_sec
->contents
,
12132 0, rtproc_sec
->size
))
12140 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12142 struct mips_mach_extension
{
12143 unsigned long extension
, base
;
12147 /* An array describing how BFD machines relate to one another. The entries
12148 are ordered topologically with MIPS I extensions listed last. */
12150 static const struct mips_mach_extension mips_mach_extensions
[] = {
12151 /* MIPS64r2 extensions. */
12152 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
12154 /* MIPS64 extensions. */
12155 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
12156 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
12157 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
12159 /* MIPS V extensions. */
12160 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
12162 /* R10000 extensions. */
12163 { bfd_mach_mips12000
, bfd_mach_mips10000
},
12164 { bfd_mach_mips14000
, bfd_mach_mips10000
},
12165 { bfd_mach_mips16000
, bfd_mach_mips10000
},
12167 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12168 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12169 better to allow vr5400 and vr5500 code to be merged anyway, since
12170 many libraries will just use the core ISA. Perhaps we could add
12171 some sort of ASE flag if this ever proves a problem. */
12172 { bfd_mach_mips5500
, bfd_mach_mips5400
},
12173 { bfd_mach_mips5400
, bfd_mach_mips5000
},
12175 /* MIPS IV extensions. */
12176 { bfd_mach_mips5
, bfd_mach_mips8000
},
12177 { bfd_mach_mips10000
, bfd_mach_mips8000
},
12178 { bfd_mach_mips5000
, bfd_mach_mips8000
},
12179 { bfd_mach_mips7000
, bfd_mach_mips8000
},
12180 { bfd_mach_mips9000
, bfd_mach_mips8000
},
12182 /* VR4100 extensions. */
12183 { bfd_mach_mips4120
, bfd_mach_mips4100
},
12184 { bfd_mach_mips4111
, bfd_mach_mips4100
},
12186 /* MIPS III extensions. */
12187 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
12188 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
12189 { bfd_mach_mips8000
, bfd_mach_mips4000
},
12190 { bfd_mach_mips4650
, bfd_mach_mips4000
},
12191 { bfd_mach_mips4600
, bfd_mach_mips4000
},
12192 { bfd_mach_mips4400
, bfd_mach_mips4000
},
12193 { bfd_mach_mips4300
, bfd_mach_mips4000
},
12194 { bfd_mach_mips4100
, bfd_mach_mips4000
},
12195 { bfd_mach_mips4010
, bfd_mach_mips4000
},
12197 /* MIPS32 extensions. */
12198 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
12200 /* MIPS II extensions. */
12201 { bfd_mach_mips4000
, bfd_mach_mips6000
},
12202 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
12204 /* MIPS I extensions. */
12205 { bfd_mach_mips6000
, bfd_mach_mips3000
},
12206 { bfd_mach_mips3900
, bfd_mach_mips3000
}
12210 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12213 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
12217 if (extension
== base
)
12220 if (base
== bfd_mach_mipsisa32
12221 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
12224 if (base
== bfd_mach_mipsisa32r2
12225 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
12228 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
12229 if (extension
== mips_mach_extensions
[i
].extension
)
12231 extension
= mips_mach_extensions
[i
].base
;
12232 if (extension
== base
)
12240 /* Return true if the given ELF header flags describe a 32-bit binary. */
12243 mips_32bit_flags_p (flagword flags
)
12245 return ((flags
& EF_MIPS_32BITMODE
) != 0
12246 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
12247 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
12248 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
12249 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
12250 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
12251 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
12255 /* Merge object attributes from IBFD into OBFD. Raise an error if
12256 there are conflicting attributes. */
12258 mips_elf_merge_obj_attributes (bfd
*ibfd
, bfd
*obfd
)
12260 obj_attribute
*in_attr
;
12261 obj_attribute
*out_attr
;
12263 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
12265 /* This is the first object. Copy the attributes. */
12266 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
12268 /* Use the Tag_null value to indicate the attributes have been
12270 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
12275 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12276 non-conflicting ones. */
12277 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
12278 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
12279 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12281 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
12282 if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12283 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
12284 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12286 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12288 (_("Warning: %B uses unknown floating point ABI %d"), ibfd
,
12289 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12290 else if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12292 (_("Warning: %B uses unknown floating point ABI %d"), obfd
,
12293 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12295 switch (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12298 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12302 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12308 (_("Warning: %B uses hard float, %B uses soft float"),
12314 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12324 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12328 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12334 (_("Warning: %B uses hard float, %B uses soft float"),
12340 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12350 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12356 (_("Warning: %B uses hard float, %B uses soft float"),
12366 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12370 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12376 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12382 (_("Warning: %B uses hard float, %B uses soft float"),
12396 /* Merge Tag_compatibility attributes and any common GNU ones. */
12397 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
12402 /* Merge backend specific data from an object file to the output
12403 object file when linking. */
12406 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
12408 flagword old_flags
;
12409 flagword new_flags
;
12411 bfd_boolean null_input_bfd
= TRUE
;
12414 /* Check if we have the same endianess */
12415 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
12417 (*_bfd_error_handler
)
12418 (_("%B: endianness incompatible with that of the selected emulation"),
12423 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
12426 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
12428 (*_bfd_error_handler
)
12429 (_("%B: ABI is incompatible with that of the selected emulation"),
12434 if (!mips_elf_merge_obj_attributes (ibfd
, obfd
))
12437 new_flags
= elf_elfheader (ibfd
)->e_flags
;
12438 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
12439 old_flags
= elf_elfheader (obfd
)->e_flags
;
12441 if (! elf_flags_init (obfd
))
12443 elf_flags_init (obfd
) = TRUE
;
12444 elf_elfheader (obfd
)->e_flags
= new_flags
;
12445 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
12446 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
12448 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
12449 && (bfd_get_arch_info (obfd
)->the_default
12450 || mips_mach_extends_p (bfd_get_mach (obfd
),
12451 bfd_get_mach (ibfd
))))
12453 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
12454 bfd_get_mach (ibfd
)))
12461 /* Check flag compatibility. */
12463 new_flags
&= ~EF_MIPS_NOREORDER
;
12464 old_flags
&= ~EF_MIPS_NOREORDER
;
12466 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12467 doesn't seem to matter. */
12468 new_flags
&= ~EF_MIPS_XGOT
;
12469 old_flags
&= ~EF_MIPS_XGOT
;
12471 /* MIPSpro generates ucode info in n64 objects. Again, we should
12472 just be able to ignore this. */
12473 new_flags
&= ~EF_MIPS_UCODE
;
12474 old_flags
&= ~EF_MIPS_UCODE
;
12476 /* DSOs should only be linked with CPIC code. */
12477 if ((ibfd
->flags
& DYNAMIC
) != 0)
12478 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
12480 if (new_flags
== old_flags
)
12483 /* Check to see if the input BFD actually contains any sections.
12484 If not, its flags may not have been initialised either, but it cannot
12485 actually cause any incompatibility. */
12486 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
12488 /* Ignore synthetic sections and empty .text, .data and .bss sections
12489 which are automatically generated by gas. */
12490 if (strcmp (sec
->name
, ".reginfo")
12491 && strcmp (sec
->name
, ".mdebug")
12493 || (strcmp (sec
->name
, ".text")
12494 && strcmp (sec
->name
, ".data")
12495 && strcmp (sec
->name
, ".bss"))))
12497 null_input_bfd
= FALSE
;
12501 if (null_input_bfd
)
12506 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
12507 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
12509 (*_bfd_error_handler
)
12510 (_("%B: warning: linking abicalls files with non-abicalls files"),
12515 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
12516 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
12517 if (! (new_flags
& EF_MIPS_PIC
))
12518 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
12520 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12521 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12523 /* Compare the ISAs. */
12524 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
12526 (*_bfd_error_handler
)
12527 (_("%B: linking 32-bit code with 64-bit code"),
12531 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
12533 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12534 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
12536 /* Copy the architecture info from IBFD to OBFD. Also copy
12537 the 32-bit flag (if set) so that we continue to recognise
12538 OBFD as a 32-bit binary. */
12539 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
12540 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12541 elf_elfheader (obfd
)->e_flags
12542 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12544 /* Copy across the ABI flags if OBFD doesn't use them
12545 and if that was what caused us to treat IBFD as 32-bit. */
12546 if ((old_flags
& EF_MIPS_ABI
) == 0
12547 && mips_32bit_flags_p (new_flags
)
12548 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
12549 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
12553 /* The ISAs aren't compatible. */
12554 (*_bfd_error_handler
)
12555 (_("%B: linking %s module with previous %s modules"),
12557 bfd_printable_name (ibfd
),
12558 bfd_printable_name (obfd
));
12563 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12564 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12566 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12567 does set EI_CLASS differently from any 32-bit ABI. */
12568 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
12569 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12570 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12572 /* Only error if both are set (to different values). */
12573 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
12574 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12575 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12577 (*_bfd_error_handler
)
12578 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12580 elf_mips_abi_name (ibfd
),
12581 elf_mips_abi_name (obfd
));
12584 new_flags
&= ~EF_MIPS_ABI
;
12585 old_flags
&= ~EF_MIPS_ABI
;
12588 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12589 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
12591 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
12593 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
12594 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
12597 /* Warn about any other mismatches */
12598 if (new_flags
!= old_flags
)
12600 (*_bfd_error_handler
)
12601 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12602 ibfd
, (unsigned long) new_flags
,
12603 (unsigned long) old_flags
);
12609 bfd_set_error (bfd_error_bad_value
);
12616 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12619 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
12621 BFD_ASSERT (!elf_flags_init (abfd
)
12622 || elf_elfheader (abfd
)->e_flags
== flags
);
12624 elf_elfheader (abfd
)->e_flags
= flags
;
12625 elf_flags_init (abfd
) = TRUE
;
12630 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
12634 default: return "";
12635 case DT_MIPS_RLD_VERSION
:
12636 return "MIPS_RLD_VERSION";
12637 case DT_MIPS_TIME_STAMP
:
12638 return "MIPS_TIME_STAMP";
12639 case DT_MIPS_ICHECKSUM
:
12640 return "MIPS_ICHECKSUM";
12641 case DT_MIPS_IVERSION
:
12642 return "MIPS_IVERSION";
12643 case DT_MIPS_FLAGS
:
12644 return "MIPS_FLAGS";
12645 case DT_MIPS_BASE_ADDRESS
:
12646 return "MIPS_BASE_ADDRESS";
12648 return "MIPS_MSYM";
12649 case DT_MIPS_CONFLICT
:
12650 return "MIPS_CONFLICT";
12651 case DT_MIPS_LIBLIST
:
12652 return "MIPS_LIBLIST";
12653 case DT_MIPS_LOCAL_GOTNO
:
12654 return "MIPS_LOCAL_GOTNO";
12655 case DT_MIPS_CONFLICTNO
:
12656 return "MIPS_CONFLICTNO";
12657 case DT_MIPS_LIBLISTNO
:
12658 return "MIPS_LIBLISTNO";
12659 case DT_MIPS_SYMTABNO
:
12660 return "MIPS_SYMTABNO";
12661 case DT_MIPS_UNREFEXTNO
:
12662 return "MIPS_UNREFEXTNO";
12663 case DT_MIPS_GOTSYM
:
12664 return "MIPS_GOTSYM";
12665 case DT_MIPS_HIPAGENO
:
12666 return "MIPS_HIPAGENO";
12667 case DT_MIPS_RLD_MAP
:
12668 return "MIPS_RLD_MAP";
12669 case DT_MIPS_DELTA_CLASS
:
12670 return "MIPS_DELTA_CLASS";
12671 case DT_MIPS_DELTA_CLASS_NO
:
12672 return "MIPS_DELTA_CLASS_NO";
12673 case DT_MIPS_DELTA_INSTANCE
:
12674 return "MIPS_DELTA_INSTANCE";
12675 case DT_MIPS_DELTA_INSTANCE_NO
:
12676 return "MIPS_DELTA_INSTANCE_NO";
12677 case DT_MIPS_DELTA_RELOC
:
12678 return "MIPS_DELTA_RELOC";
12679 case DT_MIPS_DELTA_RELOC_NO
:
12680 return "MIPS_DELTA_RELOC_NO";
12681 case DT_MIPS_DELTA_SYM
:
12682 return "MIPS_DELTA_SYM";
12683 case DT_MIPS_DELTA_SYM_NO
:
12684 return "MIPS_DELTA_SYM_NO";
12685 case DT_MIPS_DELTA_CLASSSYM
:
12686 return "MIPS_DELTA_CLASSSYM";
12687 case DT_MIPS_DELTA_CLASSSYM_NO
:
12688 return "MIPS_DELTA_CLASSSYM_NO";
12689 case DT_MIPS_CXX_FLAGS
:
12690 return "MIPS_CXX_FLAGS";
12691 case DT_MIPS_PIXIE_INIT
:
12692 return "MIPS_PIXIE_INIT";
12693 case DT_MIPS_SYMBOL_LIB
:
12694 return "MIPS_SYMBOL_LIB";
12695 case DT_MIPS_LOCALPAGE_GOTIDX
:
12696 return "MIPS_LOCALPAGE_GOTIDX";
12697 case DT_MIPS_LOCAL_GOTIDX
:
12698 return "MIPS_LOCAL_GOTIDX";
12699 case DT_MIPS_HIDDEN_GOTIDX
:
12700 return "MIPS_HIDDEN_GOTIDX";
12701 case DT_MIPS_PROTECTED_GOTIDX
:
12702 return "MIPS_PROTECTED_GOT_IDX";
12703 case DT_MIPS_OPTIONS
:
12704 return "MIPS_OPTIONS";
12705 case DT_MIPS_INTERFACE
:
12706 return "MIPS_INTERFACE";
12707 case DT_MIPS_DYNSTR_ALIGN
:
12708 return "DT_MIPS_DYNSTR_ALIGN";
12709 case DT_MIPS_INTERFACE_SIZE
:
12710 return "DT_MIPS_INTERFACE_SIZE";
12711 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
12712 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12713 case DT_MIPS_PERF_SUFFIX
:
12714 return "DT_MIPS_PERF_SUFFIX";
12715 case DT_MIPS_COMPACT_SIZE
:
12716 return "DT_MIPS_COMPACT_SIZE";
12717 case DT_MIPS_GP_VALUE
:
12718 return "DT_MIPS_GP_VALUE";
12719 case DT_MIPS_AUX_DYNAMIC
:
12720 return "DT_MIPS_AUX_DYNAMIC";
12721 case DT_MIPS_PLTGOT
:
12722 return "DT_MIPS_PLTGOT";
12723 case DT_MIPS_RWPLT
:
12724 return "DT_MIPS_RWPLT";
12729 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
12733 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
12735 /* Print normal ELF private data. */
12736 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
12738 /* xgettext:c-format */
12739 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
12741 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
12742 fprintf (file
, _(" [abi=O32]"));
12743 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
12744 fprintf (file
, _(" [abi=O64]"));
12745 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
12746 fprintf (file
, _(" [abi=EABI32]"));
12747 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
12748 fprintf (file
, _(" [abi=EABI64]"));
12749 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
12750 fprintf (file
, _(" [abi unknown]"));
12751 else if (ABI_N32_P (abfd
))
12752 fprintf (file
, _(" [abi=N32]"));
12753 else if (ABI_64_P (abfd
))
12754 fprintf (file
, _(" [abi=64]"));
12756 fprintf (file
, _(" [no abi set]"));
12758 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
12759 fprintf (file
, " [mips1]");
12760 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
12761 fprintf (file
, " [mips2]");
12762 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
12763 fprintf (file
, " [mips3]");
12764 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
12765 fprintf (file
, " [mips4]");
12766 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
12767 fprintf (file
, " [mips5]");
12768 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
12769 fprintf (file
, " [mips32]");
12770 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
12771 fprintf (file
, " [mips64]");
12772 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
12773 fprintf (file
, " [mips32r2]");
12774 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
12775 fprintf (file
, " [mips64r2]");
12777 fprintf (file
, _(" [unknown ISA]"));
12779 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
12780 fprintf (file
, " [mdmx]");
12782 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
12783 fprintf (file
, " [mips16]");
12785 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
12786 fprintf (file
, " [32bitmode]");
12788 fprintf (file
, _(" [not 32bitmode]"));
12790 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
12791 fprintf (file
, " [noreorder]");
12793 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
12794 fprintf (file
, " [PIC]");
12796 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
12797 fprintf (file
, " [CPIC]");
12799 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
12800 fprintf (file
, " [XGOT]");
12802 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
12803 fprintf (file
, " [UCODE]");
12805 fputc ('\n', file
);
12810 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
12812 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12813 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12814 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
12815 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12816 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12817 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
12818 { NULL
, 0, 0, 0, 0 }
12821 /* Merge non visibility st_other attributes. Ensure that the
12822 STO_OPTIONAL flag is copied into h->other, even if this is not a
12823 definiton of the symbol. */
12825 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
12826 const Elf_Internal_Sym
*isym
,
12827 bfd_boolean definition
,
12828 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
12830 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
12832 unsigned char other
;
12834 other
= (definition
? isym
->st_other
: h
->other
);
12835 other
&= ~ELF_ST_VISIBILITY (-1);
12836 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
12840 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
12841 h
->other
|= STO_OPTIONAL
;
12844 /* Decide whether an undefined symbol is special and can be ignored.
12845 This is the case for OPTIONAL symbols on IRIX. */
12847 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
12849 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
12853 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
12855 return (sym
->st_shndx
== SHN_COMMON
12856 || sym
->st_shndx
== SHN_MIPS_ACOMMON
12857 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
12860 /* Return address for Ith PLT stub in section PLT, for relocation REL
12861 or (bfd_vma) -1 if it should not be included. */
12864 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
12865 const arelent
*rel ATTRIBUTE_UNUSED
)
12868 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
12869 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
12873 _bfd_mips_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
12875 struct mips_elf_link_hash_table
*htab
;
12876 Elf_Internal_Ehdr
*i_ehdrp
;
12878 i_ehdrp
= elf_elfheader (abfd
);
12881 htab
= mips_elf_hash_table (link_info
);
12882 if (htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
12883 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;