1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
37 #include "elf-vxworks.h"
39 /* Get the ECOFF swapping routines. */
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
50 (1) absolute addresses
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
82 /* The input bfd in which the symbol is defined. */
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
89 /* If abfd == NULL, an address that must be stored in the got. */
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
97 struct mips_elf_link_hash_entry
*h
;
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type
;
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
113 /* This structure is used to hold .got information when linking. */
117 /* The global symbol in the GOT with the lowest index in the dynamic
119 struct elf_link_hash_entry
*global_gotsym
;
120 /* The number of global .got entries. */
121 unsigned int global_gotno
;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno
;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno
;
127 /* The number of local .got entries. */
128 unsigned int local_gotno
;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno
;
131 /* A hash table holding members of the got. */
132 struct htab
*got_entries
;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab
*bfd2got
;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info
*next
;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset
;
146 /* Map an input bfd to a got in a multi-got link. */
148 struct mips_elf_bfd2got_hash
{
150 struct mips_got_info
*g
;
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
156 struct mips_elf_got_per_bfd_arg
158 /* A hashtable that maps bfds to gots. */
160 /* The output bfd. */
162 /* The link information. */
163 struct bfd_link_info
*info
;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
167 struct mips_got_info
*primary
;
168 /* A non-primary got we're trying to merge with other input bfd's
170 struct mips_got_info
*current
;
171 /* The maximum number of got entries that can be addressed with a
173 unsigned int max_count
;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count
;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count
;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
182 unsigned int global_count
;
185 /* Another structure used to pass arguments for got entries traversal. */
187 struct mips_elf_set_global_got_offset_arg
189 struct mips_got_info
*g
;
191 unsigned int needed_relocs
;
192 struct bfd_link_info
*info
;
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
198 struct mips_elf_count_tls_arg
200 struct bfd_link_info
*info
;
204 struct _mips_elf_section_data
206 struct bfd_elf_section_data elf
;
209 struct mips_got_info
*got_info
;
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
220 struct mips_elf_hash_sort_data
222 /* The symbol in the global GOT with the lowest dynamic symbol table
224 struct elf_link_hash_entry
*low
;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx
;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx
;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx
;
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
240 struct mips_elf_link_hash_entry
242 struct elf_link_hash_entry root
;
244 /* External symbol information. */
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
249 unsigned int possibly_dynamic_relocs
;
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc
;
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
259 bfd_boolean no_fn_stub
;
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub
;
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection
*call_fp_stub
;
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local
;
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target
;
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target
;
289 #define GOT_TLS_LDM 2
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type
;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset
;
303 /* MIPS ELF linker hash table. */
305 struct mips_elf_link_hash_table
307 struct elf_link_hash_table root
;
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count
;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size
;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head
;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen
;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks
;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size
;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size
;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size
;
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
357 /* Structure used to pass information to mips_elf_output_extsym. */
362 struct bfd_link_info
*info
;
363 struct ecoff_debug_info
*debug
;
364 const struct ecoff_debug_swap
*swap
;
368 /* The names of the runtime procedure table symbols used on IRIX5. */
370 static const char * const mips_elf_dynsym_rtproc_names
[] =
373 "_procedure_string_table",
374 "_procedure_table_size",
378 /* These structures are used to generate the .compact_rel section on
383 unsigned long id1
; /* Always one? */
384 unsigned long num
; /* Number of compact relocation entries. */
385 unsigned long id2
; /* Always two? */
386 unsigned long offset
; /* The file offset of the first relocation. */
387 unsigned long reserved0
; /* Zero? */
388 unsigned long reserved1
; /* Zero? */
397 bfd_byte reserved0
[4];
398 bfd_byte reserved1
[4];
399 } Elf32_External_compact_rel
;
403 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype
: 4; /* Relocation types. See below. */
405 unsigned int dist2to
: 8;
406 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst
; /* KONST field. See below. */
408 unsigned long vaddr
; /* VADDR to be relocated. */
413 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype
: 4; /* Relocation types. See below. */
415 unsigned int dist2to
: 8;
416 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst
; /* KONST field. See below. */
425 } Elf32_External_crinfo
;
431 } Elf32_External_crinfo2
;
433 /* These are the constants used to swap the bitfields in a crinfo. */
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
473 typedef struct runtime_pdr
{
474 bfd_vma adr
; /* Memory address of start of procedure. */
475 long regmask
; /* Save register mask. */
476 long regoffset
; /* Save register offset. */
477 long fregmask
; /* Save floating point register mask. */
478 long fregoffset
; /* Save floating point register offset. */
479 long frameoffset
; /* Frame size. */
480 short framereg
; /* Frame pointer register. */
481 short pcreg
; /* Offset or reg of return pc. */
482 long irpss
; /* Index into the runtime string table. */
484 struct exception_info
*exception_info
;/* Pointer to exception array. */
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
489 static struct mips_got_entry
*mips_elf_create_local_got_entry
490 (bfd
*, struct bfd_link_info
*, bfd
*, struct mips_got_info
*, asection
*,
491 asection
*, bfd_vma
, unsigned long, struct mips_elf_link_hash_entry
*, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry
*, void *);
494 static bfd_vma mips_elf_high
496 static bfd_boolean mips16_stub_section_p
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
500 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
501 bfd_vma
*, asection
*);
502 static hashval_t mips_elf_got_entry_hash
504 static bfd_vma mips_elf_adjust_gp
505 (bfd
*, struct mips_got_info
*, bfd
*);
506 static struct mips_got_info
*mips_elf_got_for_ibfd
507 (struct mips_got_info
*, bfd
*);
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd
*reldyn_sorting_bfd
;
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
623 /* The maximum size of the GOT for it to be addressable using 16-bit
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
648 /* The name of the dynamic interpreter. This is put in the .interp
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
669 #define ELF_R_TYPE(bfd, i) \
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
707 We record any stubs that we find in the symbol table. */
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry
[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry
[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry
[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry
[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
755 /* Look up an entry in a MIPS ELF linker hash table. */
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
762 /* Traverse a MIPS ELF linker hash table. */
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
782 dtprel_base (struct bfd_link_info
*info
)
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info
)->tls_sec
== NULL
)
787 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
791 tprel_base (struct bfd_link_info
*info
)
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info
)->tls_sec
== NULL
)
796 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
799 /* Create an entry in a MIPS ELF linker hash table. */
801 static struct bfd_hash_entry
*
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
803 struct bfd_hash_table
*table
, const char *string
)
805 struct mips_elf_link_hash_entry
*ret
=
806 (struct mips_elf_link_hash_entry
*) entry
;
808 /* Allocate the structure if it has not already been allocated by a
811 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
813 return (struct bfd_hash_entry
*) ret
;
815 /* Call the allocation method of the superclass. */
816 ret
= ((struct mips_elf_link_hash_entry
*)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
821 /* Set local fields. */
822 memset (&ret
->esym
, 0, sizeof (EXTR
));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
826 ret
->possibly_dynamic_relocs
= 0;
827 ret
->readonly_reloc
= FALSE
;
828 ret
->no_fn_stub
= FALSE
;
830 ret
->need_fn_stub
= FALSE
;
831 ret
->call_stub
= NULL
;
832 ret
->call_fp_stub
= NULL
;
833 ret
->forced_local
= FALSE
;
834 ret
->is_branch_target
= FALSE
;
835 ret
->is_relocation_target
= FALSE
;
836 ret
->tls_type
= GOT_NORMAL
;
839 return (struct bfd_hash_entry
*) ret
;
843 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
845 if (!sec
->used_by_bfd
)
847 struct _mips_elf_section_data
*sdata
;
848 bfd_size_type amt
= sizeof (*sdata
);
850 sdata
= bfd_zalloc (abfd
, amt
);
853 sec
->used_by_bfd
= sdata
;
856 return _bfd_elf_new_section_hook (abfd
, sec
);
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
863 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
864 struct ecoff_debug_info
*debug
)
867 const struct ecoff_debug_swap
*swap
;
870 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
871 memset (debug
, 0, sizeof (*debug
));
873 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
874 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
877 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
878 swap
->external_hdr_size
))
881 symhdr
= &debug
->symbolic_header
;
882 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
884 /* The symbolic header contains absolute file offsets and sizes to
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
900 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
902 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
903 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
904 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
905 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
907 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
908 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
909 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
910 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
911 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
921 if (debug
->line
!= NULL
)
923 if (debug
->external_dnr
!= NULL
)
924 free (debug
->external_dnr
);
925 if (debug
->external_pdr
!= NULL
)
926 free (debug
->external_pdr
);
927 if (debug
->external_sym
!= NULL
)
928 free (debug
->external_sym
);
929 if (debug
->external_opt
!= NULL
)
930 free (debug
->external_opt
);
931 if (debug
->external_aux
!= NULL
)
932 free (debug
->external_aux
);
933 if (debug
->ss
!= NULL
)
935 if (debug
->ssext
!= NULL
)
937 if (debug
->external_fdr
!= NULL
)
938 free (debug
->external_fdr
);
939 if (debug
->external_rfd
!= NULL
)
940 free (debug
->external_rfd
);
941 if (debug
->external_ext
!= NULL
)
942 free (debug
->external_ext
);
946 /* Swap RPDR (runtime procedure table entry) for output. */
949 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
951 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
952 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
953 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
954 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
955 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
956 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
958 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
959 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
961 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
964 /* Create a runtime procedure table from the .mdebug section. */
967 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
968 struct bfd_link_info
*info
, asection
*s
,
969 struct ecoff_debug_info
*debug
)
971 const struct ecoff_debug_swap
*swap
;
972 HDRR
*hdr
= &debug
->symbolic_header
;
974 struct rpdr_ext
*erp
;
976 struct pdr_ext
*epdr
;
977 struct sym_ext
*esym
;
982 unsigned long sindex
;
986 const char *no_name_func
= _("static procedure (no name)");
994 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
996 sindex
= strlen (no_name_func
) + 1;
1000 size
= swap
->external_pdr_size
;
1002 epdr
= bfd_malloc (size
* count
);
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1009 size
= sizeof (RPDR
);
1010 rp
= rpdr
= bfd_malloc (size
* count
);
1014 size
= sizeof (char *);
1015 sv
= bfd_malloc (size
* count
);
1019 count
= hdr
->isymMax
;
1020 size
= swap
->external_sym_size
;
1021 esym
= bfd_malloc (size
* count
);
1025 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1028 count
= hdr
->issMax
;
1029 ss
= bfd_malloc (count
);
1032 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1035 count
= hdr
->ipdMax
;
1036 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1038 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1039 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1040 rp
->adr
= sym
.value
;
1041 rp
->regmask
= pdr
.regmask
;
1042 rp
->regoffset
= pdr
.regoffset
;
1043 rp
->fregmask
= pdr
.fregmask
;
1044 rp
->fregoffset
= pdr
.fregoffset
;
1045 rp
->frameoffset
= pdr
.frameoffset
;
1046 rp
->framereg
= pdr
.framereg
;
1047 rp
->pcreg
= pdr
.pcreg
;
1049 sv
[i
] = ss
+ sym
.iss
;
1050 sindex
+= strlen (sv
[i
]) + 1;
1054 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1055 size
= BFD_ALIGN (size
, 16);
1056 rtproc
= bfd_alloc (abfd
, size
);
1059 mips_elf_hash_table (info
)->procedure_count
= 0;
1063 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1066 memset (erp
, 0, sizeof (struct rpdr_ext
));
1068 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1069 strcpy (str
, no_name_func
);
1070 str
+= strlen (no_name_func
) + 1;
1071 for (i
= 0; i
< count
; i
++)
1073 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1074 strcpy (str
, sv
[i
]);
1075 str
+= strlen (sv
[i
]) + 1;
1077 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1079 /* Set the size and contents of .rtproc section. */
1081 s
->contents
= rtproc
;
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s
->map_head
.link_order
= NULL
;
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry
*h
,
1119 void *data ATTRIBUTE_UNUSED
)
1121 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1122 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1124 if (h
->fn_stub
!= NULL
1125 && ! h
->need_fn_stub
)
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h
->fn_stub
->size
= 0;
1131 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1132 h
->fn_stub
->reloc_count
= 0;
1133 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1136 if (h
->call_stub
!= NULL
1137 && h
->root
.other
== STO_MIPS16
)
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h
->call_stub
->size
= 0;
1143 h
->call_stub
->flags
&= ~SEC_RELOC
;
1144 h
->call_stub
->reloc_count
= 0;
1145 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1148 if (h
->call_fp_stub
!= NULL
1149 && h
->root
.other
== STO_MIPS16
)
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h
->call_fp_stub
->size
= 0;
1155 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1156 h
->call_fp_stub
->reloc_count
= 0;
1157 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1167 The format of these instructions is:
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1173 +-----------------------------------------------+
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1201 +--------+----------------------+
1205 +--------+----------------------+
1208 +----------+------+-------------+
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1231 EXTEND is the five bit value 11110. Major is the instruction
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1249 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1250 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1252 bfd_vma extend
, insn
, val
;
1254 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1255 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend
= bfd_get_16 (abfd
, data
);
1260 insn
= bfd_get_16 (abfd
, data
+ 2);
1261 if (r_type
== R_MIPS16_26
)
1264 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1265 | ((extend
& 0x1f) << 21) | insn
;
1267 val
= extend
<< 16 | insn
;
1270 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1271 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1272 bfd_put_32 (abfd
, val
, data
);
1276 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1277 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1279 bfd_vma extend
, insn
, val
;
1281 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1282 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1285 val
= bfd_get_32 (abfd
, data
);
1286 if (r_type
== R_MIPS16_26
)
1290 insn
= val
& 0xffff;
1291 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1292 | ((val
>> 21) & 0x1f);
1296 insn
= val
& 0xffff;
1302 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1303 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1305 bfd_put_16 (abfd
, insn
, data
+ 2);
1306 bfd_put_16 (abfd
, extend
, data
);
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1311 arelent
*reloc_entry
, asection
*input_section
,
1312 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1316 bfd_reloc_status_type status
;
1318 if (bfd_is_com_section (symbol
->section
))
1321 relocation
= symbol
->value
;
1323 relocation
+= symbol
->section
->output_section
->vma
;
1324 relocation
+= symbol
->section
->output_offset
;
1326 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1327 return bfd_reloc_outofrange
;
1329 /* Set val to the offset into the section or symbol. */
1330 val
= reloc_entry
->addend
;
1332 _bfd_mips_elf_sign_extend (val
, 16);
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1338 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1339 val
+= relocation
- gp
;
1341 if (reloc_entry
->howto
->partial_inplace
)
1343 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1345 + reloc_entry
->address
);
1346 if (status
!= bfd_reloc_ok
)
1350 reloc_entry
->addend
= val
;
1353 reloc_entry
->address
+= input_section
->output_offset
;
1355 return bfd_reloc_ok
;
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1365 struct mips_hi16
*next
;
1367 asection
*input_section
;
1371 /* FIXME: This should not be a static variable. */
1373 static struct mips_hi16
*mips_hi16_list
;
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1386 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
1387 asection
*input_section
, bfd
*output_bfd
,
1388 char **error_message ATTRIBUTE_UNUSED
)
1390 struct mips_hi16
*n
;
1392 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1393 return bfd_reloc_outofrange
;
1395 n
= bfd_malloc (sizeof *n
);
1397 return bfd_reloc_outofrange
;
1399 n
->next
= mips_hi16_list
;
1401 n
->input_section
= input_section
;
1402 n
->rel
= *reloc_entry
;
1405 if (output_bfd
!= NULL
)
1406 reloc_entry
->address
+= input_section
->output_offset
;
1408 return bfd_reloc_ok
;
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1417 void *data
, asection
*input_section
,
1418 bfd
*output_bfd
, char **error_message
)
1420 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol
))
1422 || bfd_is_com_section (bfd_get_section (symbol
)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1425 input_section
, output_bfd
,
1428 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1429 input_section
, output_bfd
, error_message
);
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1438 void *data
, asection
*input_section
,
1439 bfd
*output_bfd
, char **error_message
)
1442 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1444 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1445 return bfd_reloc_outofrange
;
1447 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1449 vallo
= bfd_get_32 (abfd
, location
);
1450 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1453 while (mips_hi16_list
!= NULL
)
1455 bfd_reloc_status_type ret
;
1456 struct mips_hi16
*hi
;
1458 hi
= mips_hi16_list
;
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
1466 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
1472 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
1473 hi
->input_section
, output_bfd
,
1475 if (ret
!= bfd_reloc_ok
)
1478 mips_hi16_list
= hi
->next
;
1482 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1483 input_section
, output_bfd
,
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1493 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
1494 asection
*input_section
, bfd
*output_bfd
,
1495 char **error_message ATTRIBUTE_UNUSED
)
1498 bfd_reloc_status_type status
;
1499 bfd_boolean relocatable
;
1501 relocatable
= (output_bfd
!= NULL
);
1503 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1504 return bfd_reloc_outofrange
;
1506 /* Build up the field adjustment in VAL. */
1508 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val
+= symbol
->section
->output_section
->vma
;
1514 val
+= symbol
->section
->output_offset
;
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val
+= symbol
->value
;
1522 if (reloc_entry
->howto
->pc_relative
)
1524 val
-= input_section
->output_section
->vma
;
1525 val
-= input_section
->output_offset
;
1526 val
-= reloc_entry
->address
;
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
1535 reloc_entry
->addend
+= val
;
1538 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1540 /* Add in the separate addend, if any. */
1541 val
+= reloc_entry
->addend
;
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1546 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1548 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1551 if (status
!= bfd_reloc_ok
)
1556 reloc_entry
->address
+= input_section
->output_offset
;
1558 return bfd_reloc_ok
;
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1565 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
1568 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
1569 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
1573 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
1574 Elf32_External_gptab
*ex
)
1576 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
1577 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
1581 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
1582 Elf32_External_compact_rel
*ex
)
1584 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1585 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1586 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1587 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1588 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1589 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1593 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
1594 Elf32_External_crinfo
*ex
)
1598 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1599 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1600 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1601 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1602 H_PUT_32 (abfd
, l
, ex
->info
);
1603 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1604 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1612 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
1615 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1616 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1617 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1618 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1619 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1620 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1624 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
1625 Elf32_External_RegInfo
*ex
)
1627 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1628 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1629 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1630 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1631 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1632 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1642 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
1643 Elf64_Internal_RegInfo
*in
)
1645 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1646 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1647 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1648 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1649 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1650 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1651 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1655 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
1656 Elf64_External_RegInfo
*ex
)
1658 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1659 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1660 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1661 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1662 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1663 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1664 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1667 /* Swap in an options header. */
1670 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
1671 Elf_Internal_Options
*in
)
1673 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1674 in
->size
= H_GET_8 (abfd
, ex
->size
);
1675 in
->section
= H_GET_16 (abfd
, ex
->section
);
1676 in
->info
= H_GET_32 (abfd
, ex
->info
);
1679 /* Swap out an options header. */
1682 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
1683 Elf_External_Options
*ex
)
1685 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1686 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1687 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1688 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1695 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
1697 Elf_Internal_Rela int_reloc1
;
1698 Elf_Internal_Rela int_reloc2
;
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
1704 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
1708 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
1710 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
1719 const void *arg2 ATTRIBUTE_UNUSED
)
1722 Elf_Internal_Rela int_reloc1
[3];
1723 Elf_Internal_Rela int_reloc2
[3];
1725 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1726 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
1727 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1728 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
1730 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
1732 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
1735 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
1737 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
1763 struct extsym_info
*einfo
= data
;
1765 asection
*sec
, *output_section
;
1767 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1768 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1770 if (h
->root
.indx
== -2)
1772 else if ((h
->root
.def_dynamic
1773 || h
->root
.ref_dynamic
1774 || h
->root
.type
== bfd_link_hash_new
)
1775 && !h
->root
.def_regular
1776 && !h
->root
.ref_regular
)
1778 else if (einfo
->info
->strip
== strip_all
1779 || (einfo
->info
->strip
== strip_some
1780 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1781 h
->root
.root
.root
.string
,
1782 FALSE
, FALSE
) == NULL
))
1790 if (h
->esym
.ifd
== -2)
1793 h
->esym
.cobol_main
= 0;
1794 h
->esym
.weakext
= 0;
1795 h
->esym
.reserved
= 0;
1796 h
->esym
.ifd
= ifdNil
;
1797 h
->esym
.asym
.value
= 0;
1798 h
->esym
.asym
.st
= stGlobal
;
1800 if (h
->root
.root
.type
== bfd_link_hash_undefined
1801 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1805 /* Use undefined class. Also, set class and type for some
1807 name
= h
->root
.root
.root
.string
;
1808 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1809 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1811 h
->esym
.asym
.sc
= scData
;
1812 h
->esym
.asym
.st
= stLabel
;
1813 h
->esym
.asym
.value
= 0;
1815 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1817 h
->esym
.asym
.sc
= scAbs
;
1818 h
->esym
.asym
.st
= stLabel
;
1819 h
->esym
.asym
.value
=
1820 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1822 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
1824 h
->esym
.asym
.sc
= scAbs
;
1825 h
->esym
.asym
.st
= stLabel
;
1826 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1829 h
->esym
.asym
.sc
= scUndefined
;
1831 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1832 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1833 h
->esym
.asym
.sc
= scAbs
;
1838 sec
= h
->root
.root
.u
.def
.section
;
1839 output_section
= sec
->output_section
;
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section
== NULL
)
1844 h
->esym
.asym
.sc
= scUndefined
;
1847 name
= bfd_section_name (output_section
->owner
, output_section
);
1849 if (strcmp (name
, ".text") == 0)
1850 h
->esym
.asym
.sc
= scText
;
1851 else if (strcmp (name
, ".data") == 0)
1852 h
->esym
.asym
.sc
= scData
;
1853 else if (strcmp (name
, ".sdata") == 0)
1854 h
->esym
.asym
.sc
= scSData
;
1855 else if (strcmp (name
, ".rodata") == 0
1856 || strcmp (name
, ".rdata") == 0)
1857 h
->esym
.asym
.sc
= scRData
;
1858 else if (strcmp (name
, ".bss") == 0)
1859 h
->esym
.asym
.sc
= scBss
;
1860 else if (strcmp (name
, ".sbss") == 0)
1861 h
->esym
.asym
.sc
= scSBss
;
1862 else if (strcmp (name
, ".init") == 0)
1863 h
->esym
.asym
.sc
= scInit
;
1864 else if (strcmp (name
, ".fini") == 0)
1865 h
->esym
.asym
.sc
= scFini
;
1867 h
->esym
.asym
.sc
= scAbs
;
1871 h
->esym
.asym
.reserved
= 0;
1872 h
->esym
.asym
.index
= indexNil
;
1875 if (h
->root
.root
.type
== bfd_link_hash_common
)
1876 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1877 else if (h
->root
.root
.type
== bfd_link_hash_defined
1878 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1880 if (h
->esym
.asym
.sc
== scCommon
)
1881 h
->esym
.asym
.sc
= scBss
;
1882 else if (h
->esym
.asym
.sc
== scSCommon
)
1883 h
->esym
.asym
.sc
= scSBss
;
1885 sec
= h
->root
.root
.u
.def
.section
;
1886 output_section
= sec
->output_section
;
1887 if (output_section
!= NULL
)
1888 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1889 + sec
->output_offset
1890 + output_section
->vma
);
1892 h
->esym
.asym
.value
= 0;
1894 else if (h
->root
.needs_plt
)
1896 struct mips_elf_link_hash_entry
*hd
= h
;
1897 bfd_boolean no_fn_stub
= h
->no_fn_stub
;
1899 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1901 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1902 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1907 /* Set type and value for a symbol with a function stub. */
1908 h
->esym
.asym
.st
= stProc
;
1909 sec
= hd
->root
.root
.u
.def
.section
;
1911 h
->esym
.asym
.value
= 0;
1914 output_section
= sec
->output_section
;
1915 if (output_section
!= NULL
)
1916 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1917 + sec
->output_offset
1918 + output_section
->vma
);
1920 h
->esym
.asym
.value
= 0;
1925 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1926 h
->root
.root
.root
.string
,
1929 einfo
->failed
= TRUE
;
1936 /* A comparison routine used to sort .gptab entries. */
1939 gptab_compare (const void *p1
, const void *p2
)
1941 const Elf32_gptab
*a1
= p1
;
1942 const Elf32_gptab
*a2
= p2
;
1944 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1947 /* Functions to manage the got entry hash table. */
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr
)
1956 return addr
+ (addr
>> 32);
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1967 mips_elf_got_entry_hash (const void *entry_
)
1969 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1971 return entry
->symndx
1972 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
1973 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
1975 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
1976 : entry
->d
.h
->root
.root
.root
.hash
));
1980 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
1982 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1983 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1989 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
1990 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
1991 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
1992 : e1
->d
.h
== e2
->d
.h
);
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
2001 mips_elf_multi_got_entry_hash (const void *entry_
)
2003 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2005 return entry
->symndx
2007 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2008 : entry
->symndx
>= 0
2009 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2010 ? (GOT_TLS_LDM
<< 17)
2012 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2013 : entry
->d
.h
->root
.root
.root
.hash
);
2017 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2019 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2020 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2022 /* Any two LDM entries match. */
2023 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2030 return e1
->symndx
== e2
->symndx
2031 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2032 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2033 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2034 : e1
->d
.h
== e2
->d
.h
);
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2042 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2048 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2049 dynobj
= elf_hash_table (info
)->dynobj
;
2050 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2051 if (sreloc
== NULL
&& create_p
)
2053 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2058 | SEC_LINKER_CREATED
2061 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2068 /* Returns the GOT section for ABFD. */
2071 mips_elf_got_section (bfd
*abfd
, bfd_boolean maybe_excluded
)
2073 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
2075 || (! maybe_excluded
&& (sgot
->flags
& SEC_EXCLUDE
) != 0))
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2084 static struct mips_got_info
*
2085 mips_elf_got_info (bfd
*abfd
, asection
**sgotp
)
2088 struct mips_got_info
*g
;
2090 sgot
= mips_elf_got_section (abfd
, TRUE
);
2091 BFD_ASSERT (sgot
!= NULL
);
2092 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
2093 g
= mips_elf_section_data (sgot
)->u
.got_info
;
2094 BFD_ASSERT (g
!= NULL
);
2097 *sgotp
= (sgot
->flags
& SEC_EXCLUDE
) == 0 ? sgot
: NULL
;
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2107 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2108 struct elf_link_hash_entry
*h
)
2112 bfd_boolean need_relocs
= FALSE
;
2113 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2115 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2116 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2119 if ((info
->shared
|| indx
!= 0)
2121 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2122 || h
->root
.type
!= bfd_link_hash_undefweak
))
2128 if (tls_type
& GOT_TLS_GD
)
2135 if (tls_type
& GOT_TLS_IE
)
2138 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2148 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2150 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2151 struct mips_elf_count_tls_arg
*arg
= arg2
;
2153 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2154 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2163 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2165 struct mips_elf_link_hash_entry
*hm
2166 = (struct mips_elf_link_hash_entry
*) arg1
;
2167 struct mips_elf_count_tls_arg
*arg
= arg2
;
2169 if (hm
->tls_type
& GOT_TLS_GD
)
2171 if (hm
->tls_type
& GOT_TLS_IE
)
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2181 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2183 struct mips_elf_link_hash_entry
*hm
2184 = (struct mips_elf_link_hash_entry
*) arg1
;
2185 struct mips_elf_count_tls_arg
*arg
= arg2
;
2187 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2192 /* Output a simple dynamic relocation into SRELOC. */
2195 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2201 Elf_Internal_Rela rel
[3];
2203 memset (rel
, 0, sizeof (rel
));
2205 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2206 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2208 if (ABI_64_P (output_bfd
))
2210 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2211 (output_bfd
, &rel
[0],
2213 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd
, &rel
[0],
2219 + sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
2220 ++sreloc
->reloc_count
;
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2226 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2227 unsigned char *tls_type_p
,
2228 struct bfd_link_info
*info
,
2229 struct mips_elf_link_hash_entry
*h
,
2233 asection
*sreloc
, *sgot
;
2234 bfd_vma offset
, offset2
;
2236 bfd_boolean need_relocs
= FALSE
;
2238 dynobj
= elf_hash_table (info
)->dynobj
;
2239 sgot
= mips_elf_got_section (dynobj
, FALSE
);
2244 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2247 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2248 indx
= h
->root
.dynindx
;
2251 if (*tls_type_p
& GOT_TLS_DONE
)
2254 if ((info
->shared
|| indx
!= 0)
2256 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2257 || h
->root
.type
!= bfd_link_hash_undefweak
))
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2264 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2266 /* Emit necessary relocations. */
2267 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2269 /* General Dynamic. */
2270 if (*tls_type_p
& GOT_TLS_GD
)
2272 offset
= got_offset
;
2273 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2277 mips_elf_output_dynamic_relocation
2278 (abfd
, sreloc
, indx
,
2279 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2280 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2283 mips_elf_output_dynamic_relocation
2284 (abfd
, sreloc
, indx
,
2285 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2286 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2288 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2289 sgot
->contents
+ offset2
);
2293 MIPS_ELF_PUT_WORD (abfd
, 1,
2294 sgot
->contents
+ offset
);
2295 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2296 sgot
->contents
+ offset2
);
2299 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2302 /* Initial Exec model. */
2303 if (*tls_type_p
& GOT_TLS_IE
)
2305 offset
= got_offset
;
2310 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2311 sgot
->contents
+ offset
);
2313 MIPS_ELF_PUT_WORD (abfd
, 0,
2314 sgot
->contents
+ offset
);
2316 mips_elf_output_dynamic_relocation
2317 (abfd
, sreloc
, indx
,
2318 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2319 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2322 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2323 sgot
->contents
+ offset
);
2326 if (*tls_type_p
& GOT_TLS_LDM
)
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd
, 0,
2331 sgot
->contents
+ got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd
));
2335 MIPS_ELF_PUT_WORD (abfd
, 1,
2336 sgot
->contents
+ got_offset
);
2338 mips_elf_output_dynamic_relocation
2339 (abfd
, sreloc
, indx
,
2340 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2341 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2344 *tls_type_p
|= GOT_TLS_DONE
;
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2353 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2354 int r_type
, struct bfd_link_info
*info
,
2355 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2357 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2358 || r_type
== R_MIPS_TLS_LDM
);
2360 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2362 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2364 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2365 if (*tls_type
& GOT_TLS_GD
)
2366 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2371 if (r_type
== R_MIPS_TLS_GD
)
2373 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2377 if (r_type
== R_MIPS_TLS_LDM
)
2379 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2391 mips_elf_gotplt_index (struct bfd_link_info
*info
,
2392 struct elf_link_hash_entry
*h
)
2394 bfd_vma plt_index
, got_address
, got_value
;
2395 struct mips_elf_link_hash_table
*htab
;
2397 htab
= mips_elf_hash_table (info
);
2398 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address
= (htab
->sgotplt
->output_section
->vma
2405 + htab
->sgotplt
->output_offset
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
2410 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
2411 + htab
->root
.hgot
->root
.u
.def
.value
);
2413 return got_address
- got_value
;
2416 /* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
2423 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2424 asection
*input_section
, bfd_vma value
,
2425 unsigned long r_symndx
,
2426 struct mips_elf_link_hash_entry
*h
, int r_type
)
2429 struct mips_got_info
*g
;
2430 struct mips_got_entry
*entry
;
2432 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2434 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2435 input_section
, value
,
2436 r_symndx
, h
, r_type
);
2440 if (TLS_RELOC_P (r_type
))
2442 if (entry
->symndx
== -1 && g
->next
== NULL
)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
2446 r_type
, info
, h
, value
);
2448 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
2449 r_type
, info
, h
, value
);
2452 return entry
->gotidx
;
2455 /* Returns the GOT index for the global symbol indicated by H. */
2458 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
2459 int r_type
, struct bfd_link_info
*info
)
2463 struct mips_got_info
*g
, *gg
;
2464 long global_got_dynindx
= 0;
2466 gg
= g
= mips_elf_got_info (abfd
, &sgot
);
2467 if (g
->bfd2got
&& ibfd
)
2469 struct mips_got_entry e
, *p
;
2471 BFD_ASSERT (h
->dynindx
>= 0);
2473 g
= mips_elf_got_for_ibfd (g
, ibfd
);
2474 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
2478 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
2481 p
= htab_find (g
->got_entries
, &e
);
2483 BFD_ASSERT (p
->gotidx
> 0);
2485 if (TLS_RELOC_P (r_type
))
2487 bfd_vma value
= MINUS_ONE
;
2488 if ((h
->root
.type
== bfd_link_hash_defined
2489 || h
->root
.type
== bfd_link_hash_defweak
)
2490 && h
->root
.u
.def
.section
->output_section
)
2491 value
= (h
->root
.u
.def
.value
2492 + h
->root
.u
.def
.section
->output_offset
2493 + h
->root
.u
.def
.section
->output_section
->vma
);
2495 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
2496 info
, e
.d
.h
, value
);
2503 if (gg
->global_gotsym
!= NULL
)
2504 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
2506 if (TLS_RELOC_P (r_type
))
2508 struct mips_elf_link_hash_entry
*hm
2509 = (struct mips_elf_link_hash_entry
*) h
;
2510 bfd_vma value
= MINUS_ONE
;
2512 if ((h
->root
.type
== bfd_link_hash_defined
2513 || h
->root
.type
== bfd_link_hash_defweak
)
2514 && h
->root
.u
.def
.section
->output_section
)
2515 value
= (h
->root
.u
.def
.value
2516 + h
->root
.u
.def
.section
->output_offset
2517 + h
->root
.u
.def
.section
->output_section
->vma
);
2519 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
2520 r_type
, info
, hm
, value
);
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2528 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
2529 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
2530 * MIPS_ELF_GOT_SIZE (abfd
));
2532 BFD_ASSERT (index
< sgot
->size
);
2537 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
2545 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2546 asection
*input_section
, bfd_vma value
, bfd_vma
*offsetp
)
2549 struct mips_got_info
*g
;
2550 bfd_vma page
, index
;
2551 struct mips_got_entry
*entry
;
2553 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2555 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
2556 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2557 input_section
, page
, 0,
2558 NULL
, R_MIPS_GOT_PAGE
);
2563 index
= entry
->gotidx
;
2566 *offsetp
= value
- entry
->d
.address
;
2571 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2577 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2578 asection
*input_section
, bfd_vma value
,
2579 bfd_boolean external
)
2582 struct mips_got_info
*g
;
2583 struct mips_got_entry
*entry
;
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2590 value
= mips_elf_high (value
) << 16;
2592 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2594 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2595 input_section
, value
, 0,
2596 NULL
, R_MIPS_GOT16
);
2598 return entry
->gotidx
;
2603 /* Returns the offset for the entry at the INDEXth position
2607 mips_elf_got_offset_from_index (bfd
*dynobj
, bfd
*output_bfd
,
2608 bfd
*input_bfd
, bfd_vma index
)
2612 struct mips_got_info
*g
;
2614 g
= mips_elf_got_info (dynobj
, &sgot
);
2615 gp
= _bfd_get_gp_value (output_bfd
)
2616 + mips_elf_adjust_gp (output_bfd
, g
, input_bfd
);
2618 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
2621 /* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2626 static struct mips_got_entry
*
2627 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
2628 bfd
*ibfd
, struct mips_got_info
*gg
,
2629 asection
*sgot
, asection
*input_section
,
2630 bfd_vma value
, unsigned long r_symndx
,
2631 struct mips_elf_link_hash_entry
*h
,
2634 struct mips_got_entry entry
, **loc
;
2635 struct mips_got_info
*g
;
2636 struct mips_elf_link_hash_table
*htab
;
2638 htab
= mips_elf_hash_table (info
);
2642 entry
.d
.address
= value
;
2645 g
= mips_elf_got_for_ibfd (gg
, ibfd
);
2648 g
= mips_elf_got_for_ibfd (gg
, abfd
);
2649 BFD_ASSERT (g
!= NULL
);
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
2656 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
2657 if (TLS_RELOC_P (r_type
))
2659 struct mips_got_entry
*p
;
2662 if (r_type
== R_MIPS_TLS_LDM
)
2664 entry
.tls_type
= GOT_TLS_LDM
;
2670 entry
.symndx
= r_symndx
;
2676 p
= (struct mips_got_entry
*)
2677 htab_find (g
->got_entries
, &entry
);
2683 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2688 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
2691 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2696 memcpy (*loc
, &entry
, sizeof entry
);
2698 if (g
->assigned_gotno
>= g
->local_gotno
)
2700 (*loc
)->gotidx
= -1;
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler
)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value
);
2708 MIPS_ELF_PUT_WORD (abfd
, value
,
2709 (sgot
->contents
+ entry
.gotidx
));
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab
->is_vxworks
)
2718 Elf_Internal_Rela outrel
;
2719 asection
*s
, *output_section
;
2721 bfd_vma got_address
;
2724 s
= mips_elf_rel_dyn_section (info
, FALSE
);
2725 output_section
= input_section
->output_section
;
2726 dynindx
= elf_section_data (output_section
)->dynindx
;
2727 got_address
= (sgot
->output_section
->vma
2728 + sgot
->output_offset
2731 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2732 outrel
.r_offset
= got_address
;
2733 outrel
.r_info
= ELF32_R_INFO (dynindx
, R_MIPS_32
);
2734 outrel
.r_addend
= value
- output_section
->vma
;
2735 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
2741 /* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2749 mips_elf_sort_hash_table (struct bfd_link_info
*info
, unsigned long max_local
)
2751 struct mips_elf_hash_sort_data hsd
;
2752 struct mips_got_info
*g
;
2755 dynobj
= elf_hash_table (info
)->dynobj
;
2757 g
= mips_elf_got_info (dynobj
, NULL
);
2760 hsd
.max_unref_got_dynindx
=
2761 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g
->next
? g
->assigned_gotno
: 0);
2770 hsd
.max_non_got_dynindx
= max_local
;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
2772 elf_hash_table (info
)),
2773 mips_elf_sort_hash_table_f
,
2776 /* There should have been enough room in the symbol table to
2777 accommodate both the GOT and non-GOT symbols. */
2778 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
2779 BFD_ASSERT ((unsigned long)hsd
.max_unref_got_dynindx
2780 <= elf_hash_table (info
)->dynsymcount
);
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
2784 g
->global_gotsym
= hsd
.low
;
2789 /* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2794 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
2796 struct mips_elf_hash_sort_data
*hsd
= data
;
2798 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2799 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2801 /* Symbols without dynamic symbol table entries aren't interesting
2803 if (h
->root
.dynindx
== -1)
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2810 if (h
->root
.got
.offset
== 2)
2812 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2814 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
2815 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2816 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
2818 else if (h
->root
.got
.offset
!= 1)
2819 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
2822 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2824 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
2825 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2831 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2836 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
2837 bfd
*abfd
, struct bfd_link_info
*info
,
2838 struct mips_got_info
*g
,
2839 unsigned char tls_flag
)
2841 struct mips_got_entry entry
, **loc
;
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2845 if (h
->dynindx
== -1)
2847 switch (ELF_ST_VISIBILITY (h
->other
))
2851 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
2854 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g
!= NULL
);
2863 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
2866 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
2873 (*loc
)->tls_type
|= tls_flag
;
2877 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2883 entry
.tls_type
= tls_flag
;
2885 memcpy (*loc
, &entry
, sizeof entry
);
2887 if (h
->got
.offset
!= MINUS_ONE
)
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
2899 /* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2903 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
2904 struct mips_got_info
*g
,
2905 unsigned char tls_flag
)
2907 struct mips_got_entry entry
, **loc
;
2910 entry
.symndx
= symndx
;
2911 entry
.d
.addend
= addend
;
2912 entry
.tls_type
= tls_flag
;
2913 loc
= (struct mips_got_entry
**)
2914 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
2918 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
2921 (*loc
)->tls_type
|= tls_flag
;
2923 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
2926 (*loc
)->tls_type
|= tls_flag
;
2934 entry
.tls_type
= tls_flag
;
2935 if (tls_flag
== GOT_TLS_IE
)
2937 else if (tls_flag
== GOT_TLS_GD
)
2939 else if (g
->tls_ldm_offset
== MINUS_ONE
)
2941 g
->tls_ldm_offset
= MINUS_TWO
;
2947 entry
.gotidx
= g
->local_gotno
++;
2951 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2956 memcpy (*loc
, &entry
, sizeof entry
);
2961 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2964 mips_elf_bfd2got_entry_hash (const void *entry_
)
2966 const struct mips_elf_bfd2got_hash
*entry
2967 = (struct mips_elf_bfd2got_hash
*)entry_
;
2969 return entry
->bfd
->id
;
2972 /* Check whether two hash entries have the same bfd. */
2975 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
2977 const struct mips_elf_bfd2got_hash
*e1
2978 = (const struct mips_elf_bfd2got_hash
*)entry1
;
2979 const struct mips_elf_bfd2got_hash
*e2
2980 = (const struct mips_elf_bfd2got_hash
*)entry2
;
2982 return e1
->bfd
== e2
->bfd
;
2985 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2986 be the master GOT data. */
2988 static struct mips_got_info
*
2989 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
2991 struct mips_elf_bfd2got_hash e
, *p
;
2997 p
= htab_find (g
->bfd2got
, &e
);
2998 return p
? p
->g
: NULL
;
3001 /* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3006 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
3008 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3009 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3010 htab_t bfd2got
= arg
->bfd2got
;
3011 struct mips_got_info
*g
;
3012 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3017 bfdgot_entry
.bfd
= entry
->abfd
;
3018 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
3019 bfdgot
= (struct mips_elf_bfd2got_hash
*)*bfdgotp
;
3025 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
3026 (arg
->obfd
, sizeof (struct mips_elf_bfd2got_hash
));
3036 bfdgot
->bfd
= entry
->abfd
;
3037 bfdgot
->g
= g
= (struct mips_got_info
*)
3038 bfd_alloc (arg
->obfd
, sizeof (struct mips_got_info
));
3045 g
->global_gotsym
= NULL
;
3046 g
->global_gotno
= 0;
3048 g
->assigned_gotno
= -1;
3050 g
->tls_assigned_gotno
= 0;
3051 g
->tls_ldm_offset
= MINUS_ONE
;
3052 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3053 mips_elf_multi_got_entry_eq
, NULL
);
3054 if (g
->got_entries
== NULL
)
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
3066 if (*entryp
!= NULL
)
3071 if (entry
->tls_type
)
3073 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3075 if (entry
->tls_type
& GOT_TLS_IE
)
3078 else if (entry
->symndx
>= 0 || entry
->d
.h
->forced_local
)
3086 /* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3094 mips_elf_merge_gots (void **bfd2got_
, void *p
)
3096 struct mips_elf_bfd2got_hash
*bfd2got
3097 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
3098 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3099 unsigned int lcount
= bfd2got
->g
->local_gotno
;
3100 unsigned int gcount
= bfd2got
->g
->global_gotno
;
3101 unsigned int tcount
= bfd2got
->g
->tls_gotno
;
3102 unsigned int maxcnt
= arg
->max_count
;
3103 bfd_boolean too_many_for_tls
= FALSE
;
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3111 unsigned int primary_total
= lcount
+ tcount
+ arg
->global_count
;
3112 if (primary_total
> maxcnt
)
3113 too_many_for_tls
= TRUE
;
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
3118 if (! arg
->primary
&& lcount
+ gcount
+ tcount
<= maxcnt
3119 && ! too_many_for_tls
)
3121 arg
->primary
= bfd2got
->g
;
3122 arg
->primary_count
= lcount
+ gcount
;
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
3127 else if (arg
->primary
&& ! too_many_for_tls
3128 && (arg
->primary_count
+ lcount
+ gcount
+ tcount
) <= maxcnt
)
3130 struct mips_got_info
*g
= bfd2got
->g
;
3131 int old_lcount
= arg
->primary
->local_gotno
;
3132 int old_gcount
= arg
->primary
->global_gotno
;
3133 int old_tcount
= arg
->primary
->tls_gotno
;
3135 bfd2got
->g
= arg
->primary
;
3137 htab_traverse (g
->got_entries
,
3138 mips_elf_make_got_per_bfd
,
3140 if (arg
->obfd
== NULL
)
3143 htab_delete (g
->got_entries
);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3148 BFD_ASSERT (old_lcount
+ lcount
>= arg
->primary
->local_gotno
);
3149 BFD_ASSERT (old_gcount
+ gcount
>= arg
->primary
->global_gotno
);
3150 BFD_ASSERT (old_tcount
+ tcount
>= arg
->primary
->tls_gotno
);
3152 arg
->primary_count
= arg
->primary
->local_gotno
3153 + arg
->primary
->global_gotno
+ arg
->primary
->tls_gotno
;
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg
->current
3157 && arg
->current_count
+ lcount
+ gcount
+ tcount
<= maxcnt
)
3159 struct mips_got_info
*g
= bfd2got
->g
;
3160 int old_lcount
= arg
->current
->local_gotno
;
3161 int old_gcount
= arg
->current
->global_gotno
;
3162 int old_tcount
= arg
->current
->tls_gotno
;
3164 bfd2got
->g
= arg
->current
;
3166 htab_traverse (g
->got_entries
,
3167 mips_elf_make_got_per_bfd
,
3169 if (arg
->obfd
== NULL
)
3172 htab_delete (g
->got_entries
);
3174 BFD_ASSERT (old_lcount
+ lcount
>= arg
->current
->local_gotno
);
3175 BFD_ASSERT (old_gcount
+ gcount
>= arg
->current
->global_gotno
);
3176 BFD_ASSERT (old_tcount
+ tcount
>= arg
->current
->tls_gotno
);
3178 arg
->current_count
= arg
->current
->local_gotno
3179 + arg
->current
->global_gotno
+ arg
->current
->tls_gotno
;
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3186 bfd2got
->g
->next
= arg
->current
;
3187 arg
->current
= bfd2got
->g
;
3189 arg
->current_count
= lcount
+ gcount
+ 2 * tcount
;
3195 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
3199 mips_elf_initialize_tls_index (void **entryp
, void *p
)
3201 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3202 struct mips_got_info
*g
= p
;
3205 /* We're only interested in TLS symbols. */
3206 if (entry
->tls_type
== 0)
3209 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
3211 if (entry
->symndx
== -1 && g
->next
== NULL
)
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
3217 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
3218 entry
->d
.h
->tls_got_offset
= next_index
;
3222 if (entry
->tls_type
& GOT_TLS_LDM
)
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
3229 entry
->gotidx
= g
->tls_ldm_offset
;
3232 g
->tls_ldm_offset
= next_index
;
3234 entry
->gotidx
= next_index
;
3237 /* Account for the entries we've just allocated. */
3238 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3239 g
->tls_assigned_gotno
+= 2;
3240 if (entry
->tls_type
& GOT_TLS_IE
)
3241 g
->tls_assigned_gotno
+= 1;
3246 /* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3257 marked as not eligible for lazy resolution through a function
3260 mips_elf_set_global_got_offset (void **entryp
, void *p
)
3262 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3263 struct mips_elf_set_global_got_offset_arg
*arg
3264 = (struct mips_elf_set_global_got_offset_arg
*)p
;
3265 struct mips_got_info
*g
= arg
->g
;
3267 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
3268 arg
->needed_relocs
+=
3269 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
3270 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
3272 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1
3273 && entry
->d
.h
->root
.dynindx
!= -1
3274 && entry
->d
.h
->tls_type
== GOT_NORMAL
)
3278 BFD_ASSERT (g
->global_gotsym
== NULL
);
3280 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
3281 if (arg
->info
->shared
3282 || (elf_hash_table (arg
->info
)->dynamic_sections_created
3283 && entry
->d
.h
->root
.def_dynamic
3284 && !entry
->d
.h
->root
.def_regular
))
3285 ++arg
->needed_relocs
;
3288 entry
->d
.h
->root
.got
.offset
= arg
->value
;
3294 /* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3297 mips_elf_set_no_stub (void **entryp
, void *p ATTRIBUTE_UNUSED
)
3299 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3301 if (entry
->abfd
!= NULL
3302 && entry
->symndx
== -1
3303 && entry
->d
.h
->root
.dynindx
!= -1)
3304 entry
->d
.h
->no_fn_stub
= TRUE
;
3309 /* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3316 mips_elf_resolve_final_got_entry (void **entryp
, void *p
)
3318 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3319 htab_t got_entries
= *(htab_t
*)p
;
3321 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3323 struct mips_elf_link_hash_entry
*h
= entry
->d
.h
;
3325 while (h
->root
.root
.type
== bfd_link_hash_indirect
3326 || h
->root
.root
.type
== bfd_link_hash_warning
)
3327 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3329 if (entry
->d
.h
== h
)
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries
, entry
))
3338 htab_clear_slot (got_entries
, entryp
);
3339 entryp
= htab_find_slot (got_entries
, entry
, INSERT
);
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3345 *(htab_t
*)p
= NULL
;
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3355 /* Turn indirect got entries in a got_entries table into their final
3358 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3364 got_entries
= g
->got_entries
;
3366 htab_traverse (got_entries
,
3367 mips_elf_resolve_final_got_entry
,
3370 while (got_entries
== NULL
);
3373 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3376 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
3378 if (g
->bfd2got
== NULL
)
3381 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3385 BFD_ASSERT (g
->next
);
3389 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
3390 * MIPS_ELF_GOT_SIZE (abfd
);
3393 /* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3397 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
3398 struct mips_got_info
*g
, asection
*got
,
3399 bfd_size_type pages
)
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
3403 struct mips_got_info
*gg
;
3404 unsigned int assign
;
3406 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
3407 mips_elf_bfd2got_entry_eq
, NULL
);
3408 if (g
->bfd2got
== NULL
)
3411 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
3412 got_per_bfd_arg
.obfd
= abfd
;
3413 got_per_bfd_arg
.info
= info
;
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
3417 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
3418 if (got_per_bfd_arg
.obfd
== NULL
)
3421 got_per_bfd_arg
.current
= NULL
;
3422 got_per_bfd_arg
.primary
= NULL
;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
3426 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
3427 / MIPS_ELF_GOT_SIZE (abfd
))
3428 - MIPS_RESERVED_GOTNO (info
) - pages
);
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3432 got_per_bfd_arg
.global_count
= g
->global_gotno
;
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
3438 if (got_per_bfd_arg
.obfd
== NULL
)
3441 /* If we do not find any suitable primary GOT, create an empty one. */
3442 if (got_per_bfd_arg
.primary
== NULL
)
3444 g
->next
= (struct mips_got_info
*)
3445 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
3446 if (g
->next
== NULL
)
3449 g
->next
->global_gotsym
= NULL
;
3450 g
->next
->global_gotno
= 0;
3451 g
->next
->local_gotno
= 0;
3452 g
->next
->tls_gotno
= 0;
3453 g
->next
->assigned_gotno
= 0;
3454 g
->next
->tls_assigned_gotno
= 0;
3455 g
->next
->tls_ldm_offset
= MINUS_ONE
;
3456 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3457 mips_elf_multi_got_entry_eq
,
3459 if (g
->next
->got_entries
== NULL
)
3461 g
->next
->bfd2got
= NULL
;
3464 g
->next
= got_per_bfd_arg
.primary
;
3465 g
->next
->next
= got_per_bfd_arg
.current
;
3467 /* GG is now the master GOT, and G is the primary GOT. */
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3477 struct mips_elf_bfd2got_hash
*bfdgot
;
3480 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
3481 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
3488 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
3490 BFD_ASSERT (*bfdgotp
== NULL
);
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3513 gg
->assigned_gotno
= gg
->global_gotno
- g
->global_gotno
;
3514 g
->global_gotno
= gg
->global_gotno
;
3515 set_got_offset_arg
.value
= 2;
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg
->assigned_gotno
= 0;
3526 set_got_offset_arg
.value
= -1;
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg
.g
= NULL
;
3532 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
3533 &set_got_offset_arg
);
3534 set_got_offset_arg
.value
= 1;
3535 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
3536 &set_got_offset_arg
);
3537 if (! mips_elf_sort_hash_table (info
, 1))
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg
->local_gotno
= -g
->global_gotno
;
3554 gg
->global_gotno
= g
->global_gotno
;
3561 struct mips_got_info
*gn
;
3563 assign
+= MIPS_RESERVED_GOTNO (info
);
3564 g
->assigned_gotno
= assign
;
3565 g
->local_gotno
+= assign
+ pages
;
3566 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
3578 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3586 htab_traverse (g
->got_entries
, mips_elf_set_no_stub
, NULL
);
3590 got
->size
= (gg
->next
->local_gotno
3591 + gg
->next
->global_gotno
3592 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
3598 /* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3601 static const Elf_Internal_Rela
*
3602 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
3603 const Elf_Internal_Rela
*relocation
,
3604 const Elf_Internal_Rela
*relend
)
3606 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
3608 while (relocation
< relend
)
3610 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
3611 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
3617 /* We didn't find it. */
3618 bfd_set_error (bfd_error_bad_value
);
3622 /* Return whether a relocation is against a local symbol. */
3625 mips_elf_local_relocation_p (bfd
*input_bfd
,
3626 const Elf_Internal_Rela
*relocation
,
3627 asection
**local_sections
,
3628 bfd_boolean check_forced
)
3630 unsigned long r_symndx
;
3631 Elf_Internal_Shdr
*symtab_hdr
;
3632 struct mips_elf_link_hash_entry
*h
;
3635 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3636 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3637 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
3639 if (r_symndx
< extsymoff
)
3641 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
3646 /* Look up the hash table to check whether the symbol
3647 was forced local. */
3648 h
= (struct mips_elf_link_hash_entry
*)
3649 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
3650 /* Find the real hash-table entry for this symbol. */
3651 while (h
->root
.root
.type
== bfd_link_hash_indirect
3652 || h
->root
.root
.type
== bfd_link_hash_warning
)
3653 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3654 if (h
->root
.forced_local
)
3661 /* Sign-extend VALUE, which has the indicated number of BITS. */
3664 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
3666 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
3667 /* VALUE is negative. */
3668 value
|= ((bfd_vma
) - 1) << bits
;
3673 /* Return non-zero if the indicated VALUE has overflowed the maximum
3674 range expressible by a signed number with the indicated number of
3678 mips_elf_overflow_p (bfd_vma value
, int bits
)
3680 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
3682 if (svalue
> (1 << (bits
- 1)) - 1)
3683 /* The value is too big. */
3685 else if (svalue
< -(1 << (bits
- 1)))
3686 /* The value is too small. */
3693 /* Calculate the %high function. */
3696 mips_elf_high (bfd_vma value
)
3698 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
3701 /* Calculate the %higher function. */
3704 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
3707 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
3714 /* Calculate the %highest function. */
3717 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
3720 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3727 /* Create the .compact_rel section. */
3730 mips_elf_create_compact_rel_section
3731 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3734 register asection
*s
;
3736 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
3738 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
3741 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
3743 || ! bfd_set_section_alignment (abfd
, s
,
3744 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
3747 s
->size
= sizeof (Elf32_External_compact_rel
);
3753 /* Create the .got section to hold the global offset table. */
3756 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
,
3757 bfd_boolean maybe_exclude
)
3760 register asection
*s
;
3761 struct elf_link_hash_entry
*h
;
3762 struct bfd_link_hash_entry
*bh
;
3763 struct mips_got_info
*g
;
3765 struct mips_elf_link_hash_table
*htab
;
3767 htab
= mips_elf_hash_table (info
);
3769 /* This function may be called more than once. */
3770 s
= mips_elf_got_section (abfd
, TRUE
);
3773 if (! maybe_exclude
)
3774 s
->flags
&= ~SEC_EXCLUDE
;
3778 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
3779 | SEC_LINKER_CREATED
);
3782 flags
|= SEC_EXCLUDE
;
3784 /* We have to use an alignment of 2**4 here because this is hardcoded
3785 in the function stub generation and in the linker script. */
3786 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
3788 || ! bfd_set_section_alignment (abfd
, s
, 4))
3791 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3792 linker script because we don't want to define the symbol if we
3793 are not creating a global offset table. */
3795 if (! (_bfd_generic_link_add_one_symbol
3796 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
3797 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
3800 h
= (struct elf_link_hash_entry
*) bh
;
3803 h
->type
= STT_OBJECT
;
3804 elf_hash_table (info
)->hgot
= h
;
3807 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
3810 amt
= sizeof (struct mips_got_info
);
3811 g
= bfd_alloc (abfd
, amt
);
3814 g
->global_gotsym
= NULL
;
3815 g
->global_gotno
= 0;
3817 g
->local_gotno
= MIPS_RESERVED_GOTNO (info
);
3818 g
->assigned_gotno
= MIPS_RESERVED_GOTNO (info
);
3821 g
->tls_ldm_offset
= MINUS_ONE
;
3822 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3823 mips_elf_got_entry_eq
, NULL
);
3824 if (g
->got_entries
== NULL
)
3826 mips_elf_section_data (s
)->u
.got_info
= g
;
3827 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
3828 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3830 /* VxWorks also needs a .got.plt section. */
3831 if (htab
->is_vxworks
)
3833 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
3834 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
3835 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3836 if (s
== NULL
|| !bfd_set_section_alignment (abfd
, s
, 4))
3844 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3845 __GOTT_INDEX__ symbols. These symbols are only special for
3846 shared objects; they are not used in executables. */
3849 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
3851 return (mips_elf_hash_table (info
)->is_vxworks
3853 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
3854 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
3857 /* Calculate the value produced by the RELOCATION (which comes from
3858 the INPUT_BFD). The ADDEND is the addend to use for this
3859 RELOCATION; RELOCATION->R_ADDEND is ignored.
3861 The result of the relocation calculation is stored in VALUEP.
3862 REQUIRE_JALXP indicates whether or not the opcode used with this
3863 relocation must be JALX.
3865 This function returns bfd_reloc_continue if the caller need take no
3866 further action regarding this relocation, bfd_reloc_notsupported if
3867 something goes dramatically wrong, bfd_reloc_overflow if an
3868 overflow occurs, and bfd_reloc_ok to indicate success. */
3870 static bfd_reloc_status_type
3871 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
3872 asection
*input_section
,
3873 struct bfd_link_info
*info
,
3874 const Elf_Internal_Rela
*relocation
,
3875 bfd_vma addend
, reloc_howto_type
*howto
,
3876 Elf_Internal_Sym
*local_syms
,
3877 asection
**local_sections
, bfd_vma
*valuep
,
3878 const char **namep
, bfd_boolean
*require_jalxp
,
3879 bfd_boolean save_addend
)
3881 /* The eventual value we will return. */
3883 /* The address of the symbol against which the relocation is
3886 /* The final GP value to be used for the relocatable, executable, or
3887 shared object file being produced. */
3888 bfd_vma gp
= MINUS_ONE
;
3889 /* The place (section offset or address) of the storage unit being
3892 /* The value of GP used to create the relocatable object. */
3893 bfd_vma gp0
= MINUS_ONE
;
3894 /* The offset into the global offset table at which the address of
3895 the relocation entry symbol, adjusted by the addend, resides
3896 during execution. */
3897 bfd_vma g
= MINUS_ONE
;
3898 /* The section in which the symbol referenced by the relocation is
3900 asection
*sec
= NULL
;
3901 struct mips_elf_link_hash_entry
*h
= NULL
;
3902 /* TRUE if the symbol referred to by this relocation is a local
3904 bfd_boolean local_p
, was_local_p
;
3905 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3906 bfd_boolean gp_disp_p
= FALSE
;
3907 /* TRUE if the symbol referred to by this relocation is
3908 "__gnu_local_gp". */
3909 bfd_boolean gnu_local_gp_p
= FALSE
;
3910 Elf_Internal_Shdr
*symtab_hdr
;
3912 unsigned long r_symndx
;
3914 /* TRUE if overflow occurred during the calculation of the
3915 relocation value. */
3916 bfd_boolean overflowed_p
;
3917 /* TRUE if this relocation refers to a MIPS16 function. */
3918 bfd_boolean target_is_16_bit_code_p
= FALSE
;
3919 struct mips_elf_link_hash_table
*htab
;
3922 dynobj
= elf_hash_table (info
)->dynobj
;
3923 htab
= mips_elf_hash_table (info
);
3925 /* Parse the relocation. */
3926 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3927 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3928 p
= (input_section
->output_section
->vma
3929 + input_section
->output_offset
3930 + relocation
->r_offset
);
3932 /* Assume that there will be no overflow. */
3933 overflowed_p
= FALSE
;
3935 /* Figure out whether or not the symbol is local, and get the offset
3936 used in the array of hash table entries. */
3937 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3938 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3939 local_sections
, FALSE
);
3940 was_local_p
= local_p
;
3941 if (! elf_bad_symtab (input_bfd
))
3942 extsymoff
= symtab_hdr
->sh_info
;
3945 /* The symbol table does not follow the rule that local symbols
3946 must come before globals. */
3950 /* Figure out the value of the symbol. */
3953 Elf_Internal_Sym
*sym
;
3955 sym
= local_syms
+ r_symndx
;
3956 sec
= local_sections
[r_symndx
];
3958 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3959 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
3960 || (sec
->flags
& SEC_MERGE
))
3961 symbol
+= sym
->st_value
;
3962 if ((sec
->flags
& SEC_MERGE
)
3963 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3965 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
3967 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
3970 /* MIPS16 text labels should be treated as odd. */
3971 if (sym
->st_other
== STO_MIPS16
)
3974 /* Record the name of this symbol, for our caller. */
3975 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
3976 symtab_hdr
->sh_link
,
3979 *namep
= bfd_section_name (input_bfd
, sec
);
3981 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
3985 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3987 /* For global symbols we look up the symbol in the hash-table. */
3988 h
= ((struct mips_elf_link_hash_entry
*)
3989 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
3990 /* Find the real hash-table entry for this symbol. */
3991 while (h
->root
.root
.type
== bfd_link_hash_indirect
3992 || h
->root
.root
.type
== bfd_link_hash_warning
)
3993 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3995 /* Record the name of this symbol, for our caller. */
3996 *namep
= h
->root
.root
.root
.string
;
3998 /* See if this is the special _gp_disp symbol. Note that such a
3999 symbol must always be a global symbol. */
4000 if (strcmp (*namep
, "_gp_disp") == 0
4001 && ! NEWABI_P (input_bfd
))
4003 /* Relocations against _gp_disp are permitted only with
4004 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4005 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
4006 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
4007 return bfd_reloc_notsupported
;
4011 /* See if this is the special _gp symbol. Note that such a
4012 symbol must always be a global symbol. */
4013 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
4014 gnu_local_gp_p
= TRUE
;
4017 /* If this symbol is defined, calculate its address. Note that
4018 _gp_disp is a magic symbol, always implicitly defined by the
4019 linker, so it's inappropriate to check to see whether or not
4021 else if ((h
->root
.root
.type
== bfd_link_hash_defined
4022 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4023 && h
->root
.root
.u
.def
.section
)
4025 sec
= h
->root
.root
.u
.def
.section
;
4026 if (sec
->output_section
)
4027 symbol
= (h
->root
.root
.u
.def
.value
4028 + sec
->output_section
->vma
4029 + sec
->output_offset
);
4031 symbol
= h
->root
.root
.u
.def
.value
;
4033 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
4034 /* We allow relocations against undefined weak symbols, giving
4035 it the value zero, so that you can undefined weak functions
4036 and check to see if they exist by looking at their
4039 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
4040 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
4042 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
4043 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4045 /* If this is a dynamic link, we should have created a
4046 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4047 in in _bfd_mips_elf_create_dynamic_sections.
4048 Otherwise, we should define the symbol with a value of 0.
4049 FIXME: It should probably get into the symbol table
4051 BFD_ASSERT (! info
->shared
);
4052 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
4055 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
4057 /* This is an optional symbol - an Irix specific extension to the
4058 ELF spec. Ignore it for now.
4059 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4060 than simply ignoring them, but we do not handle this for now.
4061 For information see the "64-bit ELF Object File Specification"
4062 which is available from here:
4063 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4068 if (! ((*info
->callbacks
->undefined_symbol
)
4069 (info
, h
->root
.root
.root
.string
, input_bfd
,
4070 input_section
, relocation
->r_offset
,
4071 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
4072 || ELF_ST_VISIBILITY (h
->root
.other
))))
4073 return bfd_reloc_undefined
;
4077 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
4080 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4081 need to redirect the call to the stub, unless we're already *in*
4083 if (r_type
!= R_MIPS16_26
&& !info
->relocatable
4084 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
4086 && elf_tdata (input_bfd
)->local_stubs
!= NULL
4087 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
4088 && !mips16_stub_section_p (input_bfd
, input_section
))
4090 /* This is a 32- or 64-bit call to a 16-bit function. We should
4091 have already noticed that we were going to need the
4094 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
4097 BFD_ASSERT (h
->need_fn_stub
);
4101 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4102 /* The target is 16-bit, but the stub isn't. */
4103 target_is_16_bit_code_p
= FALSE
;
4105 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4106 need to redirect the call to the stub. */
4107 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
4109 && ((h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
4111 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
4112 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
4113 && !target_is_16_bit_code_p
)
4116 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
4119 /* If both call_stub and call_fp_stub are defined, we can figure
4120 out which one to use by checking which one appears in the input
4122 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
4127 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
4129 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
4131 sec
= h
->call_fp_stub
;
4138 else if (h
->call_stub
!= NULL
)
4141 sec
= h
->call_fp_stub
;
4144 BFD_ASSERT (sec
->size
> 0);
4145 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4148 /* Calls from 16-bit code to 32-bit code and vice versa require the
4149 special jalx instruction. */
4150 *require_jalxp
= (!info
->relocatable
4151 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
4152 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
4154 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4155 local_sections
, TRUE
);
4157 /* If we haven't already determined the GOT offset, or the GP value,
4158 and we're going to need it, get it now. */
4161 case R_MIPS_GOT_PAGE
:
4162 case R_MIPS_GOT_OFST
:
4163 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4165 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
4166 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
4172 case R_MIPS_GOT_DISP
:
4173 case R_MIPS_GOT_HI16
:
4174 case R_MIPS_CALL_HI16
:
4175 case R_MIPS_GOT_LO16
:
4176 case R_MIPS_CALL_LO16
:
4178 case R_MIPS_TLS_GOTTPREL
:
4179 case R_MIPS_TLS_LDM
:
4180 /* Find the index into the GOT where this value is located. */
4181 if (r_type
== R_MIPS_TLS_LDM
)
4183 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
4184 sec
, 0, 0, NULL
, r_type
);
4186 return bfd_reloc_outofrange
;
4190 /* On VxWorks, CALL relocations should refer to the .got.plt
4191 entry, which is initialized to point at the PLT stub. */
4192 if (htab
->is_vxworks
4193 && (r_type
== R_MIPS_CALL_HI16
4194 || r_type
== R_MIPS_CALL_LO16
4195 || r_type
== R_MIPS_CALL16
))
4197 BFD_ASSERT (addend
== 0);
4198 BFD_ASSERT (h
->root
.needs_plt
);
4199 g
= mips_elf_gotplt_index (info
, &h
->root
);
4203 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4204 GOT_PAGE relocation that decays to GOT_DISP because the
4205 symbol turns out to be global. The addend is then added
4207 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
4208 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
4209 &h
->root
, r_type
, info
);
4210 if (h
->tls_type
== GOT_NORMAL
4211 && (! elf_hash_table(info
)->dynamic_sections_created
4213 && (info
->symbolic
|| h
->root
.forced_local
)
4214 && h
->root
.def_regular
)))
4216 /* This is a static link or a -Bsymbolic link. The
4217 symbol is defined locally, or was forced to be local.
4218 We must initialize this entry in the GOT. */
4219 asection
*sgot
= mips_elf_got_section (dynobj
, FALSE
);
4220 MIPS_ELF_PUT_WORD (dynobj
, symbol
, sgot
->contents
+ g
);
4224 else if (!htab
->is_vxworks
4225 && (r_type
== R_MIPS_CALL16
|| (r_type
== R_MIPS_GOT16
)))
4226 /* The calculation below does not involve "g". */
4230 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
, sec
,
4231 symbol
+ addend
, r_symndx
, h
, r_type
);
4233 return bfd_reloc_outofrange
;
4236 /* Convert GOT indices to actual offsets. */
4237 g
= mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, g
);
4242 case R_MIPS_GPREL16
:
4243 case R_MIPS_GPREL32
:
4244 case R_MIPS_LITERAL
:
4247 case R_MIPS16_GPREL
:
4248 gp0
= _bfd_get_gp_value (input_bfd
);
4249 gp
= _bfd_get_gp_value (abfd
);
4251 gp
+= mips_elf_adjust_gp (abfd
, mips_elf_got_info (dynobj
, NULL
),
4262 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4263 symbols are resolved by the loader. Add them to .rela.dyn. */
4264 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
4266 Elf_Internal_Rela outrel
;
4270 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4271 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4273 outrel
.r_offset
= (input_section
->output_section
->vma
4274 + input_section
->output_offset
4275 + relocation
->r_offset
);
4276 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
4277 outrel
.r_addend
= addend
;
4278 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
4280 return bfd_reloc_ok
;
4283 /* Figure out what kind of relocation is being performed. */
4287 return bfd_reloc_continue
;
4290 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
4291 overflowed_p
= mips_elf_overflow_p (value
, 16);
4298 || (!htab
->is_vxworks
4299 && htab
->root
.dynamic_sections_created
4301 && h
->root
.def_dynamic
4302 && !h
->root
.def_regular
))
4304 && (input_section
->flags
& SEC_ALLOC
) != 0)
4306 /* If we're creating a shared library, or this relocation is
4307 against a symbol in a shared library, then we can't know
4308 where the symbol will end up. So, we create a relocation
4309 record in the output, and leave the job up to the dynamic
4312 In VxWorks executables, references to external symbols
4313 are handled using copy relocs or PLT stubs, so there's
4314 no need to add a dynamic relocation here. */
4316 if (!mips_elf_create_dynamic_relocation (abfd
,
4324 return bfd_reloc_undefined
;
4326 else if (r_symndx
== 0)
4327 /* r_symndx will be zero only for relocs against symbols
4328 from removed linkonce sections, or sections discarded by
4333 if (r_type
!= R_MIPS_REL32
)
4334 value
= symbol
+ addend
;
4338 value
&= howto
->dst_mask
;
4342 value
= symbol
+ addend
- p
;
4343 value
&= howto
->dst_mask
;
4347 /* The calculation for R_MIPS16_26 is just the same as for an
4348 R_MIPS_26. It's only the storage of the relocated field into
4349 the output file that's different. That's handled in
4350 mips_elf_perform_relocation. So, we just fall through to the
4351 R_MIPS_26 case here. */
4354 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
4357 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
4358 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
4359 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
4361 value
&= howto
->dst_mask
;
4364 case R_MIPS_TLS_DTPREL_HI16
:
4365 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
4369 case R_MIPS_TLS_DTPREL_LO16
:
4370 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
4373 case R_MIPS_TLS_TPREL_HI16
:
4374 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
4378 case R_MIPS_TLS_TPREL_LO16
:
4379 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
4386 value
= mips_elf_high (addend
+ symbol
);
4387 value
&= howto
->dst_mask
;
4391 /* For MIPS16 ABI code we generate this sequence
4392 0: li $v0,%hi(_gp_disp)
4393 4: addiupc $v1,%lo(_gp_disp)
4397 So the offsets of hi and lo relocs are the same, but the
4398 $pc is four higher than $t9 would be, so reduce
4399 both reloc addends by 4. */
4400 if (r_type
== R_MIPS16_HI16
)
4401 value
= mips_elf_high (addend
+ gp
- p
- 4);
4403 value
= mips_elf_high (addend
+ gp
- p
);
4404 overflowed_p
= mips_elf_overflow_p (value
, 16);
4411 value
= (symbol
+ addend
) & howto
->dst_mask
;
4414 /* See the comment for R_MIPS16_HI16 above for the reason
4415 for this conditional. */
4416 if (r_type
== R_MIPS16_LO16
)
4417 value
= addend
+ gp
- p
;
4419 value
= addend
+ gp
- p
+ 4;
4420 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4421 for overflow. But, on, say, IRIX5, relocations against
4422 _gp_disp are normally generated from the .cpload
4423 pseudo-op. It generates code that normally looks like
4426 lui $gp,%hi(_gp_disp)
4427 addiu $gp,$gp,%lo(_gp_disp)
4430 Here $t9 holds the address of the function being called,
4431 as required by the MIPS ELF ABI. The R_MIPS_LO16
4432 relocation can easily overflow in this situation, but the
4433 R_MIPS_HI16 relocation will handle the overflow.
4434 Therefore, we consider this a bug in the MIPS ABI, and do
4435 not check for overflow here. */
4439 case R_MIPS_LITERAL
:
4440 /* Because we don't merge literal sections, we can handle this
4441 just like R_MIPS_GPREL16. In the long run, we should merge
4442 shared literals, and then we will need to additional work
4447 case R_MIPS16_GPREL
:
4448 /* The R_MIPS16_GPREL performs the same calculation as
4449 R_MIPS_GPREL16, but stores the relocated bits in a different
4450 order. We don't need to do anything special here; the
4451 differences are handled in mips_elf_perform_relocation. */
4452 case R_MIPS_GPREL16
:
4453 /* Only sign-extend the addend if it was extracted from the
4454 instruction. If the addend was separate, leave it alone,
4455 otherwise we may lose significant bits. */
4456 if (howto
->partial_inplace
)
4457 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
4458 value
= symbol
+ addend
- gp
;
4459 /* If the symbol was local, any earlier relocatable links will
4460 have adjusted its addend with the gp offset, so compensate
4461 for that now. Don't do it for symbols forced local in this
4462 link, though, since they won't have had the gp offset applied
4466 overflowed_p
= mips_elf_overflow_p (value
, 16);
4471 /* VxWorks does not have separate local and global semantics for
4472 R_MIPS_GOT16; every relocation evaluates to "G". */
4473 if (!htab
->is_vxworks
&& local_p
)
4477 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
4478 local_sections
, FALSE
);
4479 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
, sec
,
4480 symbol
+ addend
, forced
);
4481 if (value
== MINUS_ONE
)
4482 return bfd_reloc_outofrange
;
4484 = mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, value
);
4485 overflowed_p
= mips_elf_overflow_p (value
, 16);
4492 case R_MIPS_TLS_GOTTPREL
:
4493 case R_MIPS_TLS_LDM
:
4494 case R_MIPS_GOT_DISP
:
4497 overflowed_p
= mips_elf_overflow_p (value
, 16);
4500 case R_MIPS_GPREL32
:
4501 value
= (addend
+ symbol
+ gp0
- gp
);
4503 value
&= howto
->dst_mask
;
4507 case R_MIPS_GNU_REL16_S2
:
4508 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
4509 overflowed_p
= mips_elf_overflow_p (value
, 18);
4510 value
>>= howto
->rightshift
;
4511 value
&= howto
->dst_mask
;
4514 case R_MIPS_GOT_HI16
:
4515 case R_MIPS_CALL_HI16
:
4516 /* We're allowed to handle these two relocations identically.
4517 The dynamic linker is allowed to handle the CALL relocations
4518 differently by creating a lazy evaluation stub. */
4520 value
= mips_elf_high (value
);
4521 value
&= howto
->dst_mask
;
4524 case R_MIPS_GOT_LO16
:
4525 case R_MIPS_CALL_LO16
:
4526 value
= g
& howto
->dst_mask
;
4529 case R_MIPS_GOT_PAGE
:
4530 /* GOT_PAGE relocations that reference non-local symbols decay
4531 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4535 value
= mips_elf_got_page (abfd
, input_bfd
, info
, sec
,
4536 symbol
+ addend
, NULL
);
4537 if (value
== MINUS_ONE
)
4538 return bfd_reloc_outofrange
;
4539 value
= mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, value
);
4540 overflowed_p
= mips_elf_overflow_p (value
, 16);
4543 case R_MIPS_GOT_OFST
:
4545 mips_elf_got_page (abfd
, input_bfd
, info
, sec
,
4546 symbol
+ addend
, &value
);
4549 overflowed_p
= mips_elf_overflow_p (value
, 16);
4553 value
= symbol
- addend
;
4554 value
&= howto
->dst_mask
;
4558 value
= mips_elf_higher (addend
+ symbol
);
4559 value
&= howto
->dst_mask
;
4562 case R_MIPS_HIGHEST
:
4563 value
= mips_elf_highest (addend
+ symbol
);
4564 value
&= howto
->dst_mask
;
4567 case R_MIPS_SCN_DISP
:
4568 value
= symbol
+ addend
- sec
->output_offset
;
4569 value
&= howto
->dst_mask
;
4573 /* This relocation is only a hint. In some cases, we optimize
4574 it into a bal instruction. But we don't try to optimize
4575 branches to the PLT; that will wind up wasting time. */
4576 if (h
!= NULL
&& h
->root
.plt
.offset
!= (bfd_vma
) -1)
4577 return bfd_reloc_continue
;
4578 value
= symbol
+ addend
;
4582 case R_MIPS_GNU_VTINHERIT
:
4583 case R_MIPS_GNU_VTENTRY
:
4584 /* We don't do anything with these at present. */
4585 return bfd_reloc_continue
;
4588 /* An unrecognized relocation type. */
4589 return bfd_reloc_notsupported
;
4592 /* Store the VALUE for our caller. */
4594 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
4597 /* Obtain the field relocated by RELOCATION. */
4600 mips_elf_obtain_contents (reloc_howto_type
*howto
,
4601 const Elf_Internal_Rela
*relocation
,
4602 bfd
*input_bfd
, bfd_byte
*contents
)
4605 bfd_byte
*location
= contents
+ relocation
->r_offset
;
4607 /* Obtain the bytes. */
4608 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
4613 /* It has been determined that the result of the RELOCATION is the
4614 VALUE. Use HOWTO to place VALUE into the output file at the
4615 appropriate position. The SECTION is the section to which the
4616 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4617 for the relocation must be either JAL or JALX, and it is
4618 unconditionally converted to JALX.
4620 Returns FALSE if anything goes wrong. */
4623 mips_elf_perform_relocation (struct bfd_link_info
*info
,
4624 reloc_howto_type
*howto
,
4625 const Elf_Internal_Rela
*relocation
,
4626 bfd_vma value
, bfd
*input_bfd
,
4627 asection
*input_section
, bfd_byte
*contents
,
4628 bfd_boolean require_jalx
)
4632 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4634 /* Figure out where the relocation is occurring. */
4635 location
= contents
+ relocation
->r_offset
;
4637 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
4639 /* Obtain the current value. */
4640 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
4642 /* Clear the field we are setting. */
4643 x
&= ~howto
->dst_mask
;
4645 /* Set the field. */
4646 x
|= (value
& howto
->dst_mask
);
4648 /* If required, turn JAL into JALX. */
4652 bfd_vma opcode
= x
>> 26;
4653 bfd_vma jalx_opcode
;
4655 /* Check to see if the opcode is already JAL or JALX. */
4656 if (r_type
== R_MIPS16_26
)
4658 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
4663 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
4667 /* If the opcode is not JAL or JALX, there's a problem. */
4670 (*_bfd_error_handler
)
4671 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4674 (unsigned long) relocation
->r_offset
);
4675 bfd_set_error (bfd_error_bad_value
);
4679 /* Make this the JALX opcode. */
4680 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
4683 /* On the RM9000, bal is faster than jal, because bal uses branch
4684 prediction hardware. If we are linking for the RM9000, and we
4685 see jal, and bal fits, use it instead. Note that this
4686 transformation should be safe for all architectures. */
4687 if (bfd_get_mach (input_bfd
) == bfd_mach_mips9000
4688 && !info
->relocatable
4690 && ((r_type
== R_MIPS_26
&& (x
>> 26) == 0x3) /* jal addr */
4691 || (r_type
== R_MIPS_JALR
&& x
== 0x0320f809))) /* jalr t9 */
4697 addr
= (input_section
->output_section
->vma
4698 + input_section
->output_offset
4699 + relocation
->r_offset
4701 if (r_type
== R_MIPS_26
)
4702 dest
= (value
<< 2) | ((addr
>> 28) << 28);
4706 if (off
<= 0x1ffff && off
>= -0x20000)
4707 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
4710 /* Put the value into the output. */
4711 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
4713 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
4719 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4722 mips16_stub_section_p (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*section
)
4724 const char *name
= bfd_get_section_name (abfd
, section
);
4726 return FN_STUB_P (name
) || CALL_STUB_P (name
) || CALL_FP_STUB_P (name
);
4729 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4732 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
4736 struct mips_elf_link_hash_table
*htab
;
4738 htab
= mips_elf_hash_table (info
);
4739 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4740 BFD_ASSERT (s
!= NULL
);
4742 if (htab
->is_vxworks
)
4743 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
4748 /* Make room for a null element. */
4749 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4752 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4756 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4757 is the original relocation, which is now being transformed into a
4758 dynamic relocation. The ADDENDP is adjusted if necessary; the
4759 caller should store the result in place of the original addend. */
4762 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
4763 struct bfd_link_info
*info
,
4764 const Elf_Internal_Rela
*rel
,
4765 struct mips_elf_link_hash_entry
*h
,
4766 asection
*sec
, bfd_vma symbol
,
4767 bfd_vma
*addendp
, asection
*input_section
)
4769 Elf_Internal_Rela outrel
[3];
4774 bfd_boolean defined_p
;
4775 struct mips_elf_link_hash_table
*htab
;
4777 htab
= mips_elf_hash_table (info
);
4778 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
4779 dynobj
= elf_hash_table (info
)->dynobj
;
4780 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
4781 BFD_ASSERT (sreloc
!= NULL
);
4782 BFD_ASSERT (sreloc
->contents
!= NULL
);
4783 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
4786 outrel
[0].r_offset
=
4787 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
4788 outrel
[1].r_offset
=
4789 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
4790 outrel
[2].r_offset
=
4791 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
4793 if (outrel
[0].r_offset
== MINUS_ONE
)
4794 /* The relocation field has been deleted. */
4797 if (outrel
[0].r_offset
== MINUS_TWO
)
4799 /* The relocation field has been converted into a relative value of
4800 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4801 the field to be fully relocated, so add in the symbol's value. */
4806 /* We must now calculate the dynamic symbol table index to use
4807 in the relocation. */
4809 && (!h
->root
.def_regular
4810 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
4812 indx
= h
->root
.dynindx
;
4813 if (SGI_COMPAT (output_bfd
))
4814 defined_p
= h
->root
.def_regular
;
4816 /* ??? glibc's ld.so just adds the final GOT entry to the
4817 relocation field. It therefore treats relocs against
4818 defined symbols in the same way as relocs against
4819 undefined symbols. */
4824 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
4826 else if (sec
== NULL
|| sec
->owner
== NULL
)
4828 bfd_set_error (bfd_error_bad_value
);
4833 indx
= elf_section_data (sec
->output_section
)->dynindx
;
4836 asection
*osec
= htab
->root
.text_index_section
;
4837 indx
= elf_section_data (osec
)->dynindx
;
4843 /* Instead of generating a relocation using the section
4844 symbol, we may as well make it a fully relative
4845 relocation. We want to avoid generating relocations to
4846 local symbols because we used to generate them
4847 incorrectly, without adding the original symbol value,
4848 which is mandated by the ABI for section symbols. In
4849 order to give dynamic loaders and applications time to
4850 phase out the incorrect use, we refrain from emitting
4851 section-relative relocations. It's not like they're
4852 useful, after all. This should be a bit more efficient
4854 /* ??? Although this behavior is compatible with glibc's ld.so,
4855 the ABI says that relocations against STN_UNDEF should have
4856 a symbol value of 0. Irix rld honors this, so relocations
4857 against STN_UNDEF have no effect. */
4858 if (!SGI_COMPAT (output_bfd
))
4863 /* If the relocation was previously an absolute relocation and
4864 this symbol will not be referred to by the relocation, we must
4865 adjust it by the value we give it in the dynamic symbol table.
4866 Otherwise leave the job up to the dynamic linker. */
4867 if (defined_p
&& r_type
!= R_MIPS_REL32
)
4870 if (htab
->is_vxworks
)
4871 /* VxWorks uses non-relative relocations for this. */
4872 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
4874 /* The relocation is always an REL32 relocation because we don't
4875 know where the shared library will wind up at load-time. */
4876 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
4879 /* For strict adherence to the ABI specification, we should
4880 generate a R_MIPS_64 relocation record by itself before the
4881 _REL32/_64 record as well, such that the addend is read in as
4882 a 64-bit value (REL32 is a 32-bit relocation, after all).
4883 However, since none of the existing ELF64 MIPS dynamic
4884 loaders seems to care, we don't waste space with these
4885 artificial relocations. If this turns out to not be true,
4886 mips_elf_allocate_dynamic_relocation() should be tweaked so
4887 as to make room for a pair of dynamic relocations per
4888 invocation if ABI_64_P, and here we should generate an
4889 additional relocation record with R_MIPS_64 by itself for a
4890 NULL symbol before this relocation record. */
4891 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
4892 ABI_64_P (output_bfd
)
4895 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
4897 /* Adjust the output offset of the relocation to reference the
4898 correct location in the output file. */
4899 outrel
[0].r_offset
+= (input_section
->output_section
->vma
4900 + input_section
->output_offset
);
4901 outrel
[1].r_offset
+= (input_section
->output_section
->vma
4902 + input_section
->output_offset
);
4903 outrel
[2].r_offset
+= (input_section
->output_section
->vma
4904 + input_section
->output_offset
);
4906 /* Put the relocation back out. We have to use the special
4907 relocation outputter in the 64-bit case since the 64-bit
4908 relocation format is non-standard. */
4909 if (ABI_64_P (output_bfd
))
4911 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
4912 (output_bfd
, &outrel
[0],
4914 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
4916 else if (htab
->is_vxworks
)
4918 /* VxWorks uses RELA rather than REL dynamic relocations. */
4919 outrel
[0].r_addend
= *addendp
;
4920 bfd_elf32_swap_reloca_out
4921 (output_bfd
, &outrel
[0],
4923 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
4926 bfd_elf32_swap_reloc_out
4927 (output_bfd
, &outrel
[0],
4928 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
4930 /* We've now added another relocation. */
4931 ++sreloc
->reloc_count
;
4933 /* Make sure the output section is writable. The dynamic linker
4934 will be writing to it. */
4935 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
4938 /* On IRIX5, make an entry of compact relocation info. */
4939 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
4941 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
4946 Elf32_crinfo cptrel
;
4948 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
4949 cptrel
.vaddr
= (rel
->r_offset
4950 + input_section
->output_section
->vma
4951 + input_section
->output_offset
);
4952 if (r_type
== R_MIPS_REL32
)
4953 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
4955 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
4956 mips_elf_set_cr_dist2to (cptrel
, 0);
4957 cptrel
.konst
= *addendp
;
4959 cr
= (scpt
->contents
4960 + sizeof (Elf32_External_compact_rel
));
4961 mips_elf_set_cr_relvaddr (cptrel
, 0);
4962 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
4963 ((Elf32_External_crinfo
*) cr
4964 + scpt
->reloc_count
));
4965 ++scpt
->reloc_count
;
4969 /* If we've written this relocation for a readonly section,
4970 we need to set DF_TEXTREL again, so that we do not delete the
4972 if (MIPS_ELF_READONLY_SECTION (input_section
))
4973 info
->flags
|= DF_TEXTREL
;
4978 /* Return the MACH for a MIPS e_flags value. */
4981 _bfd_elf_mips_mach (flagword flags
)
4983 switch (flags
& EF_MIPS_MACH
)
4985 case E_MIPS_MACH_3900
:
4986 return bfd_mach_mips3900
;
4988 case E_MIPS_MACH_4010
:
4989 return bfd_mach_mips4010
;
4991 case E_MIPS_MACH_4100
:
4992 return bfd_mach_mips4100
;
4994 case E_MIPS_MACH_4111
:
4995 return bfd_mach_mips4111
;
4997 case E_MIPS_MACH_4120
:
4998 return bfd_mach_mips4120
;
5000 case E_MIPS_MACH_4650
:
5001 return bfd_mach_mips4650
;
5003 case E_MIPS_MACH_5400
:
5004 return bfd_mach_mips5400
;
5006 case E_MIPS_MACH_5500
:
5007 return bfd_mach_mips5500
;
5009 case E_MIPS_MACH_9000
:
5010 return bfd_mach_mips9000
;
5012 case E_MIPS_MACH_SB1
:
5013 return bfd_mach_mips_sb1
;
5016 switch (flags
& EF_MIPS_ARCH
)
5020 return bfd_mach_mips3000
;
5023 return bfd_mach_mips6000
;
5026 return bfd_mach_mips4000
;
5029 return bfd_mach_mips8000
;
5032 return bfd_mach_mips5
;
5034 case E_MIPS_ARCH_32
:
5035 return bfd_mach_mipsisa32
;
5037 case E_MIPS_ARCH_64
:
5038 return bfd_mach_mipsisa64
;
5040 case E_MIPS_ARCH_32R2
:
5041 return bfd_mach_mipsisa32r2
;
5043 case E_MIPS_ARCH_64R2
:
5044 return bfd_mach_mipsisa64r2
;
5051 /* Return printable name for ABI. */
5053 static INLINE
char *
5054 elf_mips_abi_name (bfd
*abfd
)
5058 flags
= elf_elfheader (abfd
)->e_flags
;
5059 switch (flags
& EF_MIPS_ABI
)
5062 if (ABI_N32_P (abfd
))
5064 else if (ABI_64_P (abfd
))
5068 case E_MIPS_ABI_O32
:
5070 case E_MIPS_ABI_O64
:
5072 case E_MIPS_ABI_EABI32
:
5074 case E_MIPS_ABI_EABI64
:
5077 return "unknown abi";
5081 /* MIPS ELF uses two common sections. One is the usual one, and the
5082 other is for small objects. All the small objects are kept
5083 together, and then referenced via the gp pointer, which yields
5084 faster assembler code. This is what we use for the small common
5085 section. This approach is copied from ecoff.c. */
5086 static asection mips_elf_scom_section
;
5087 static asymbol mips_elf_scom_symbol
;
5088 static asymbol
*mips_elf_scom_symbol_ptr
;
5090 /* MIPS ELF also uses an acommon section, which represents an
5091 allocated common symbol which may be overridden by a
5092 definition in a shared library. */
5093 static asection mips_elf_acom_section
;
5094 static asymbol mips_elf_acom_symbol
;
5095 static asymbol
*mips_elf_acom_symbol_ptr
;
5097 /* Handle the special MIPS section numbers that a symbol may use.
5098 This is used for both the 32-bit and the 64-bit ABI. */
5101 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
5103 elf_symbol_type
*elfsym
;
5105 elfsym
= (elf_symbol_type
*) asym
;
5106 switch (elfsym
->internal_elf_sym
.st_shndx
)
5108 case SHN_MIPS_ACOMMON
:
5109 /* This section is used in a dynamically linked executable file.
5110 It is an allocated common section. The dynamic linker can
5111 either resolve these symbols to something in a shared
5112 library, or it can just leave them here. For our purposes,
5113 we can consider these symbols to be in a new section. */
5114 if (mips_elf_acom_section
.name
== NULL
)
5116 /* Initialize the acommon section. */
5117 mips_elf_acom_section
.name
= ".acommon";
5118 mips_elf_acom_section
.flags
= SEC_ALLOC
;
5119 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
5120 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
5121 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
5122 mips_elf_acom_symbol
.name
= ".acommon";
5123 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
5124 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
5125 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
5127 asym
->section
= &mips_elf_acom_section
;
5131 /* Common symbols less than the GP size are automatically
5132 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5133 if (asym
->value
> elf_gp_size (abfd
)
5134 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
5135 || IRIX_COMPAT (abfd
) == ict_irix6
)
5138 case SHN_MIPS_SCOMMON
:
5139 if (mips_elf_scom_section
.name
== NULL
)
5141 /* Initialize the small common section. */
5142 mips_elf_scom_section
.name
= ".scommon";
5143 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
5144 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
5145 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
5146 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
5147 mips_elf_scom_symbol
.name
= ".scommon";
5148 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
5149 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
5150 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
5152 asym
->section
= &mips_elf_scom_section
;
5153 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
5156 case SHN_MIPS_SUNDEFINED
:
5157 asym
->section
= bfd_und_section_ptr
;
5162 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
5164 BFD_ASSERT (SGI_COMPAT (abfd
));
5165 if (section
!= NULL
)
5167 asym
->section
= section
;
5168 /* MIPS_TEXT is a bit special, the address is not an offset
5169 to the base of the .text section. So substract the section
5170 base address to make it an offset. */
5171 asym
->value
-= section
->vma
;
5178 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
5180 BFD_ASSERT (SGI_COMPAT (abfd
));
5181 if (section
!= NULL
)
5183 asym
->section
= section
;
5184 /* MIPS_DATA is a bit special, the address is not an offset
5185 to the base of the .data section. So substract the section
5186 base address to make it an offset. */
5187 asym
->value
-= section
->vma
;
5194 /* Implement elf_backend_eh_frame_address_size. This differs from
5195 the default in the way it handles EABI64.
5197 EABI64 was originally specified as an LP64 ABI, and that is what
5198 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5199 historically accepted the combination of -mabi=eabi and -mlong32,
5200 and this ILP32 variation has become semi-official over time.
5201 Both forms use elf32 and have pointer-sized FDE addresses.
5203 If an EABI object was generated by GCC 4.0 or above, it will have
5204 an empty .gcc_compiled_longXX section, where XX is the size of longs
5205 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5206 have no special marking to distinguish them from LP64 objects.
5208 We don't want users of the official LP64 ABI to be punished for the
5209 existence of the ILP32 variant, but at the same time, we don't want
5210 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5211 We therefore take the following approach:
5213 - If ABFD contains a .gcc_compiled_longXX section, use it to
5214 determine the pointer size.
5216 - Otherwise check the type of the first relocation. Assume that
5217 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5221 The second check is enough to detect LP64 objects generated by pre-4.0
5222 compilers because, in the kind of output generated by those compilers,
5223 the first relocation will be associated with either a CIE personality
5224 routine or an FDE start address. Furthermore, the compilers never
5225 used a special (non-pointer) encoding for this ABI.
5227 Checking the relocation type should also be safe because there is no
5228 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5232 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
5234 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
5236 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
5238 bfd_boolean long32_p
, long64_p
;
5240 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
5241 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
5242 if (long32_p
&& long64_p
)
5249 if (sec
->reloc_count
> 0
5250 && elf_section_data (sec
)->relocs
!= NULL
5251 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
5260 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5261 relocations against two unnamed section symbols to resolve to the
5262 same address. For example, if we have code like:
5264 lw $4,%got_disp(.data)($gp)
5265 lw $25,%got_disp(.text)($gp)
5268 then the linker will resolve both relocations to .data and the program
5269 will jump there rather than to .text.
5271 We can work around this problem by giving names to local section symbols.
5272 This is also what the MIPSpro tools do. */
5275 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
5277 return SGI_COMPAT (abfd
);
5280 /* Work over a section just before writing it out. This routine is
5281 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5282 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5286 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
5288 if (hdr
->sh_type
== SHT_MIPS_REGINFO
5289 && hdr
->sh_size
> 0)
5293 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
5294 BFD_ASSERT (hdr
->contents
== NULL
);
5297 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
5300 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5301 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5305 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
5306 && hdr
->bfd_section
!= NULL
5307 && mips_elf_section_data (hdr
->bfd_section
) != NULL
5308 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
5310 bfd_byte
*contents
, *l
, *lend
;
5312 /* We stored the section contents in the tdata field in the
5313 set_section_contents routine. We save the section contents
5314 so that we don't have to read them again.
5315 At this point we know that elf_gp is set, so we can look
5316 through the section contents to see if there is an
5317 ODK_REGINFO structure. */
5319 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
5321 lend
= contents
+ hdr
->sh_size
;
5322 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5324 Elf_Internal_Options intopt
;
5326 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5328 if (intopt
.size
< sizeof (Elf_External_Options
))
5330 (*_bfd_error_handler
)
5331 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5332 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5335 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5342 + sizeof (Elf_External_Options
)
5343 + (sizeof (Elf64_External_RegInfo
) - 8)),
5346 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
5347 if (bfd_bwrite (buf
, 8, abfd
) != 8)
5350 else if (intopt
.kind
== ODK_REGINFO
)
5357 + sizeof (Elf_External_Options
)
5358 + (sizeof (Elf32_External_RegInfo
) - 4)),
5361 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5362 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5369 if (hdr
->bfd_section
!= NULL
)
5371 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
5373 if (strcmp (name
, ".sdata") == 0
5374 || strcmp (name
, ".lit8") == 0
5375 || strcmp (name
, ".lit4") == 0)
5377 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5378 hdr
->sh_type
= SHT_PROGBITS
;
5380 else if (strcmp (name
, ".sbss") == 0)
5382 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5383 hdr
->sh_type
= SHT_NOBITS
;
5385 else if (strcmp (name
, ".srdata") == 0)
5387 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
5388 hdr
->sh_type
= SHT_PROGBITS
;
5390 else if (strcmp (name
, ".compact_rel") == 0)
5393 hdr
->sh_type
= SHT_PROGBITS
;
5395 else if (strcmp (name
, ".rtproc") == 0)
5397 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
5399 unsigned int adjust
;
5401 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
5403 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
5411 /* Handle a MIPS specific section when reading an object file. This
5412 is called when elfcode.h finds a section with an unknown type.
5413 This routine supports both the 32-bit and 64-bit ELF ABI.
5415 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5419 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
5420 Elf_Internal_Shdr
*hdr
,
5426 /* There ought to be a place to keep ELF backend specific flags, but
5427 at the moment there isn't one. We just keep track of the
5428 sections by their name, instead. Fortunately, the ABI gives
5429 suggested names for all the MIPS specific sections, so we will
5430 probably get away with this. */
5431 switch (hdr
->sh_type
)
5433 case SHT_MIPS_LIBLIST
:
5434 if (strcmp (name
, ".liblist") != 0)
5438 if (strcmp (name
, ".msym") != 0)
5441 case SHT_MIPS_CONFLICT
:
5442 if (strcmp (name
, ".conflict") != 0)
5445 case SHT_MIPS_GPTAB
:
5446 if (! CONST_STRNEQ (name
, ".gptab."))
5449 case SHT_MIPS_UCODE
:
5450 if (strcmp (name
, ".ucode") != 0)
5453 case SHT_MIPS_DEBUG
:
5454 if (strcmp (name
, ".mdebug") != 0)
5456 flags
= SEC_DEBUGGING
;
5458 case SHT_MIPS_REGINFO
:
5459 if (strcmp (name
, ".reginfo") != 0
5460 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
5462 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
5464 case SHT_MIPS_IFACE
:
5465 if (strcmp (name
, ".MIPS.interfaces") != 0)
5468 case SHT_MIPS_CONTENT
:
5469 if (! CONST_STRNEQ (name
, ".MIPS.content"))
5472 case SHT_MIPS_OPTIONS
:
5473 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5476 case SHT_MIPS_DWARF
:
5477 if (! CONST_STRNEQ (name
, ".debug_"))
5480 case SHT_MIPS_SYMBOL_LIB
:
5481 if (strcmp (name
, ".MIPS.symlib") != 0)
5484 case SHT_MIPS_EVENTS
:
5485 if (! CONST_STRNEQ (name
, ".MIPS.events")
5486 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
5493 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
5498 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
5499 (bfd_get_section_flags (abfd
,
5505 /* FIXME: We should record sh_info for a .gptab section. */
5507 /* For a .reginfo section, set the gp value in the tdata information
5508 from the contents of this section. We need the gp value while
5509 processing relocs, so we just get it now. The .reginfo section
5510 is not used in the 64-bit MIPS ELF ABI. */
5511 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
5513 Elf32_External_RegInfo ext
;
5516 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
5517 &ext
, 0, sizeof ext
))
5519 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
5520 elf_gp (abfd
) = s
.ri_gp_value
;
5523 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5524 set the gp value based on what we find. We may see both
5525 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5526 they should agree. */
5527 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
5529 bfd_byte
*contents
, *l
, *lend
;
5531 contents
= bfd_malloc (hdr
->sh_size
);
5532 if (contents
== NULL
)
5534 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
5541 lend
= contents
+ hdr
->sh_size
;
5542 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5544 Elf_Internal_Options intopt
;
5546 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5548 if (intopt
.size
< sizeof (Elf_External_Options
))
5550 (*_bfd_error_handler
)
5551 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5552 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5555 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5557 Elf64_Internal_RegInfo intreg
;
5559 bfd_mips_elf64_swap_reginfo_in
5561 ((Elf64_External_RegInfo
*)
5562 (l
+ sizeof (Elf_External_Options
))),
5564 elf_gp (abfd
) = intreg
.ri_gp_value
;
5566 else if (intopt
.kind
== ODK_REGINFO
)
5568 Elf32_RegInfo intreg
;
5570 bfd_mips_elf32_swap_reginfo_in
5572 ((Elf32_External_RegInfo
*)
5573 (l
+ sizeof (Elf_External_Options
))),
5575 elf_gp (abfd
) = intreg
.ri_gp_value
;
5585 /* Set the correct type for a MIPS ELF section. We do this by the
5586 section name, which is a hack, but ought to work. This routine is
5587 used by both the 32-bit and the 64-bit ABI. */
5590 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
5592 register const char *name
;
5593 unsigned int sh_type
;
5595 name
= bfd_get_section_name (abfd
, sec
);
5596 sh_type
= hdr
->sh_type
;
5598 if (strcmp (name
, ".liblist") == 0)
5600 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
5601 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
5602 /* The sh_link field is set in final_write_processing. */
5604 else if (strcmp (name
, ".conflict") == 0)
5605 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
5606 else if (CONST_STRNEQ (name
, ".gptab."))
5608 hdr
->sh_type
= SHT_MIPS_GPTAB
;
5609 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
5610 /* The sh_info field is set in final_write_processing. */
5612 else if (strcmp (name
, ".ucode") == 0)
5613 hdr
->sh_type
= SHT_MIPS_UCODE
;
5614 else if (strcmp (name
, ".mdebug") == 0)
5616 hdr
->sh_type
= SHT_MIPS_DEBUG
;
5617 /* In a shared object on IRIX 5.3, the .mdebug section has an
5618 entsize of 0. FIXME: Does this matter? */
5619 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
5620 hdr
->sh_entsize
= 0;
5622 hdr
->sh_entsize
= 1;
5624 else if (strcmp (name
, ".reginfo") == 0)
5626 hdr
->sh_type
= SHT_MIPS_REGINFO
;
5627 /* In a shared object on IRIX 5.3, the .reginfo section has an
5628 entsize of 0x18. FIXME: Does this matter? */
5629 if (SGI_COMPAT (abfd
))
5631 if ((abfd
->flags
& DYNAMIC
) != 0)
5632 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5634 hdr
->sh_entsize
= 1;
5637 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5639 else if (SGI_COMPAT (abfd
)
5640 && (strcmp (name
, ".hash") == 0
5641 || strcmp (name
, ".dynamic") == 0
5642 || strcmp (name
, ".dynstr") == 0))
5644 if (SGI_COMPAT (abfd
))
5645 hdr
->sh_entsize
= 0;
5647 /* This isn't how the IRIX6 linker behaves. */
5648 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
5651 else if (strcmp (name
, ".got") == 0
5652 || strcmp (name
, ".srdata") == 0
5653 || strcmp (name
, ".sdata") == 0
5654 || strcmp (name
, ".sbss") == 0
5655 || strcmp (name
, ".lit4") == 0
5656 || strcmp (name
, ".lit8") == 0)
5657 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
5658 else if (strcmp (name
, ".MIPS.interfaces") == 0)
5660 hdr
->sh_type
= SHT_MIPS_IFACE
;
5661 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5663 else if (CONST_STRNEQ (name
, ".MIPS.content"))
5665 hdr
->sh_type
= SHT_MIPS_CONTENT
;
5666 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5667 /* The sh_info field is set in final_write_processing. */
5669 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5671 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
5672 hdr
->sh_entsize
= 1;
5673 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5675 else if (CONST_STRNEQ (name
, ".debug_"))
5676 hdr
->sh_type
= SHT_MIPS_DWARF
;
5677 else if (strcmp (name
, ".MIPS.symlib") == 0)
5679 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
5680 /* The sh_link and sh_info fields are set in
5681 final_write_processing. */
5683 else if (CONST_STRNEQ (name
, ".MIPS.events")
5684 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
5686 hdr
->sh_type
= SHT_MIPS_EVENTS
;
5687 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5688 /* The sh_link field is set in final_write_processing. */
5690 else if (strcmp (name
, ".msym") == 0)
5692 hdr
->sh_type
= SHT_MIPS_MSYM
;
5693 hdr
->sh_flags
|= SHF_ALLOC
;
5694 hdr
->sh_entsize
= 8;
5697 /* In the unlikely event a special section is empty it has to lose its
5698 special meaning. This may happen e.g. when using `strip' with the
5699 "--only-keep-debug" option. */
5700 if (sec
->size
> 0 && !(sec
->flags
& SEC_HAS_CONTENTS
))
5701 hdr
->sh_type
= sh_type
;
5703 /* The generic elf_fake_sections will set up REL_HDR using the default
5704 kind of relocations. We used to set up a second header for the
5705 non-default kind of relocations here, but only NewABI would use
5706 these, and the IRIX ld doesn't like resulting empty RELA sections.
5707 Thus we create those header only on demand now. */
5712 /* Given a BFD section, try to locate the corresponding ELF section
5713 index. This is used by both the 32-bit and the 64-bit ABI.
5714 Actually, it's not clear to me that the 64-bit ABI supports these,
5715 but for non-PIC objects we will certainly want support for at least
5716 the .scommon section. */
5719 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
5720 asection
*sec
, int *retval
)
5722 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
5724 *retval
= SHN_MIPS_SCOMMON
;
5727 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
5729 *retval
= SHN_MIPS_ACOMMON
;
5735 /* Hook called by the linker routine which adds symbols from an object
5736 file. We must handle the special MIPS section numbers here. */
5739 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
5740 Elf_Internal_Sym
*sym
, const char **namep
,
5741 flagword
*flagsp ATTRIBUTE_UNUSED
,
5742 asection
**secp
, bfd_vma
*valp
)
5744 if (SGI_COMPAT (abfd
)
5745 && (abfd
->flags
& DYNAMIC
) != 0
5746 && strcmp (*namep
, "_rld_new_interface") == 0)
5748 /* Skip IRIX5 rld entry name. */
5753 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5754 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5755 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5756 a magic symbol resolved by the linker, we ignore this bogus definition
5757 of _gp_disp. New ABI objects do not suffer from this problem so this
5758 is not done for them. */
5760 && (sym
->st_shndx
== SHN_ABS
)
5761 && (strcmp (*namep
, "_gp_disp") == 0))
5767 switch (sym
->st_shndx
)
5770 /* Common symbols less than the GP size are automatically
5771 treated as SHN_MIPS_SCOMMON symbols. */
5772 if (sym
->st_size
> elf_gp_size (abfd
)
5773 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
5774 || IRIX_COMPAT (abfd
) == ict_irix6
)
5777 case SHN_MIPS_SCOMMON
:
5778 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
5779 (*secp
)->flags
|= SEC_IS_COMMON
;
5780 *valp
= sym
->st_size
;
5784 /* This section is used in a shared object. */
5785 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
5787 asymbol
*elf_text_symbol
;
5788 asection
*elf_text_section
;
5789 bfd_size_type amt
= sizeof (asection
);
5791 elf_text_section
= bfd_zalloc (abfd
, amt
);
5792 if (elf_text_section
== NULL
)
5795 amt
= sizeof (asymbol
);
5796 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
5797 if (elf_text_symbol
== NULL
)
5800 /* Initialize the section. */
5802 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
5803 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
5805 elf_text_section
->symbol
= elf_text_symbol
;
5806 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
5808 elf_text_section
->name
= ".text";
5809 elf_text_section
->flags
= SEC_NO_FLAGS
;
5810 elf_text_section
->output_section
= NULL
;
5811 elf_text_section
->owner
= abfd
;
5812 elf_text_symbol
->name
= ".text";
5813 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5814 elf_text_symbol
->section
= elf_text_section
;
5816 /* This code used to do *secp = bfd_und_section_ptr if
5817 info->shared. I don't know why, and that doesn't make sense,
5818 so I took it out. */
5819 *secp
= elf_tdata (abfd
)->elf_text_section
;
5822 case SHN_MIPS_ACOMMON
:
5823 /* Fall through. XXX Can we treat this as allocated data? */
5825 /* This section is used in a shared object. */
5826 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
5828 asymbol
*elf_data_symbol
;
5829 asection
*elf_data_section
;
5830 bfd_size_type amt
= sizeof (asection
);
5832 elf_data_section
= bfd_zalloc (abfd
, amt
);
5833 if (elf_data_section
== NULL
)
5836 amt
= sizeof (asymbol
);
5837 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
5838 if (elf_data_symbol
== NULL
)
5841 /* Initialize the section. */
5843 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
5844 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
5846 elf_data_section
->symbol
= elf_data_symbol
;
5847 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
5849 elf_data_section
->name
= ".data";
5850 elf_data_section
->flags
= SEC_NO_FLAGS
;
5851 elf_data_section
->output_section
= NULL
;
5852 elf_data_section
->owner
= abfd
;
5853 elf_data_symbol
->name
= ".data";
5854 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5855 elf_data_symbol
->section
= elf_data_section
;
5857 /* This code used to do *secp = bfd_und_section_ptr if
5858 info->shared. I don't know why, and that doesn't make sense,
5859 so I took it out. */
5860 *secp
= elf_tdata (abfd
)->elf_data_section
;
5863 case SHN_MIPS_SUNDEFINED
:
5864 *secp
= bfd_und_section_ptr
;
5868 if (SGI_COMPAT (abfd
)
5870 && info
->hash
->creator
== abfd
->xvec
5871 && strcmp (*namep
, "__rld_obj_head") == 0)
5873 struct elf_link_hash_entry
*h
;
5874 struct bfd_link_hash_entry
*bh
;
5876 /* Mark __rld_obj_head as dynamic. */
5878 if (! (_bfd_generic_link_add_one_symbol
5879 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
5880 get_elf_backend_data (abfd
)->collect
, &bh
)))
5883 h
= (struct elf_link_hash_entry
*) bh
;
5886 h
->type
= STT_OBJECT
;
5888 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5891 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
5894 /* If this is a mips16 text symbol, add 1 to the value to make it
5895 odd. This will cause something like .word SYM to come up with
5896 the right value when it is loaded into the PC. */
5897 if (sym
->st_other
== STO_MIPS16
)
5903 /* This hook function is called before the linker writes out a global
5904 symbol. We mark symbols as small common if appropriate. This is
5905 also where we undo the increment of the value for a mips16 symbol. */
5908 _bfd_mips_elf_link_output_symbol_hook
5909 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5910 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
5911 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
5913 /* If we see a common symbol, which implies a relocatable link, then
5914 if a symbol was small common in an input file, mark it as small
5915 common in the output file. */
5916 if (sym
->st_shndx
== SHN_COMMON
5917 && strcmp (input_sec
->name
, ".scommon") == 0)
5918 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
5920 if (sym
->st_other
== STO_MIPS16
)
5921 sym
->st_value
&= ~1;
5926 /* Functions for the dynamic linker. */
5928 /* Create dynamic sections when linking against a dynamic object. */
5931 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
5933 struct elf_link_hash_entry
*h
;
5934 struct bfd_link_hash_entry
*bh
;
5936 register asection
*s
;
5937 const char * const *namep
;
5938 struct mips_elf_link_hash_table
*htab
;
5940 htab
= mips_elf_hash_table (info
);
5941 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5942 | SEC_LINKER_CREATED
| SEC_READONLY
);
5944 /* The psABI requires a read-only .dynamic section, but the VxWorks
5946 if (!htab
->is_vxworks
)
5948 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5951 if (! bfd_set_section_flags (abfd
, s
, flags
))
5956 /* We need to create .got section. */
5957 if (! mips_elf_create_got_section (abfd
, info
, FALSE
))
5960 if (! mips_elf_rel_dyn_section (info
, TRUE
))
5963 /* Create .stub section. */
5964 if (bfd_get_section_by_name (abfd
,
5965 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
5967 s
= bfd_make_section_with_flags (abfd
,
5968 MIPS_ELF_STUB_SECTION_NAME (abfd
),
5971 || ! bfd_set_section_alignment (abfd
, s
,
5972 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5976 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
5978 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
5980 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
5981 flags
&~ (flagword
) SEC_READONLY
);
5983 || ! bfd_set_section_alignment (abfd
, s
,
5984 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5988 /* On IRIX5, we adjust add some additional symbols and change the
5989 alignments of several sections. There is no ABI documentation
5990 indicating that this is necessary on IRIX6, nor any evidence that
5991 the linker takes such action. */
5992 if (IRIX_COMPAT (abfd
) == ict_irix5
)
5994 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
5997 if (! (_bfd_generic_link_add_one_symbol
5998 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
5999 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6002 h
= (struct elf_link_hash_entry
*) bh
;
6005 h
->type
= STT_SECTION
;
6007 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6011 /* We need to create a .compact_rel section. */
6012 if (SGI_COMPAT (abfd
))
6014 if (!mips_elf_create_compact_rel_section (abfd
, info
))
6018 /* Change alignments of some sections. */
6019 s
= bfd_get_section_by_name (abfd
, ".hash");
6021 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6022 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6024 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6025 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6027 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6028 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6030 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6031 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6033 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6040 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6042 if (!(_bfd_generic_link_add_one_symbol
6043 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
6044 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6047 h
= (struct elf_link_hash_entry
*) bh
;
6050 h
->type
= STT_SECTION
;
6052 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6055 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
6057 /* __rld_map is a four byte word located in the .data section
6058 and is filled in by the rtld to contain a pointer to
6059 the _r_debug structure. Its symbol value will be set in
6060 _bfd_mips_elf_finish_dynamic_symbol. */
6061 s
= bfd_get_section_by_name (abfd
, ".rld_map");
6062 BFD_ASSERT (s
!= NULL
);
6064 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
6066 if (!(_bfd_generic_link_add_one_symbol
6067 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
6068 get_elf_backend_data (abfd
)->collect
, &bh
)))
6071 h
= (struct elf_link_hash_entry
*) bh
;
6074 h
->type
= STT_OBJECT
;
6076 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6081 if (htab
->is_vxworks
)
6083 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6084 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6085 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
6088 /* Cache the sections created above. */
6089 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
6090 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
6091 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
6092 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
6094 || (!htab
->srelbss
&& !info
->shared
)
6099 /* Do the usual VxWorks handling. */
6100 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
6103 /* Work out the PLT sizes. */
6106 htab
->plt_header_size
6107 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
6108 htab
->plt_entry_size
6109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
6113 htab
->plt_header_size
6114 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
6115 htab
->plt_entry_size
6116 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
6123 /* Look through the relocs for a section during the first phase, and
6124 allocate space in the global offset table. */
6127 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
6128 asection
*sec
, const Elf_Internal_Rela
*relocs
)
6132 Elf_Internal_Shdr
*symtab_hdr
;
6133 struct elf_link_hash_entry
**sym_hashes
;
6134 struct mips_got_info
*g
;
6136 const Elf_Internal_Rela
*rel
;
6137 const Elf_Internal_Rela
*rel_end
;
6140 const struct elf_backend_data
*bed
;
6141 struct mips_elf_link_hash_table
*htab
;
6143 if (info
->relocatable
)
6146 htab
= mips_elf_hash_table (info
);
6147 dynobj
= elf_hash_table (info
)->dynobj
;
6148 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6149 sym_hashes
= elf_sym_hashes (abfd
);
6150 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6152 /* Check for the mips16 stub sections. */
6154 name
= bfd_get_section_name (abfd
, sec
);
6155 if (FN_STUB_P (name
))
6157 unsigned long r_symndx
;
6159 /* Look at the relocation information to figure out which symbol
6162 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
6164 if (r_symndx
< extsymoff
6165 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
6169 /* This stub is for a local symbol. This stub will only be
6170 needed if there is some relocation in this BFD, other
6171 than a 16 bit function call, which refers to this symbol. */
6172 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
6174 Elf_Internal_Rela
*sec_relocs
;
6175 const Elf_Internal_Rela
*r
, *rend
;
6177 /* We can ignore stub sections when looking for relocs. */
6178 if ((o
->flags
& SEC_RELOC
) == 0
6179 || o
->reloc_count
== 0
6180 || mips16_stub_section_p (abfd
, o
))
6184 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
6186 if (sec_relocs
== NULL
)
6189 rend
= sec_relocs
+ o
->reloc_count
;
6190 for (r
= sec_relocs
; r
< rend
; r
++)
6191 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
6192 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
6195 if (elf_section_data (o
)->relocs
!= sec_relocs
)
6204 /* There is no non-call reloc for this stub, so we do
6205 not need it. Since this function is called before
6206 the linker maps input sections to output sections, we
6207 can easily discard it by setting the SEC_EXCLUDE
6209 sec
->flags
|= SEC_EXCLUDE
;
6213 /* Record this stub in an array of local symbol stubs for
6215 if (elf_tdata (abfd
)->local_stubs
== NULL
)
6217 unsigned long symcount
;
6221 if (elf_bad_symtab (abfd
))
6222 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
6224 symcount
= symtab_hdr
->sh_info
;
6225 amt
= symcount
* sizeof (asection
*);
6226 n
= bfd_zalloc (abfd
, amt
);
6229 elf_tdata (abfd
)->local_stubs
= n
;
6232 sec
->flags
|= SEC_KEEP
;
6233 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
6235 /* We don't need to set mips16_stubs_seen in this case.
6236 That flag is used to see whether we need to look through
6237 the global symbol table for stubs. We don't need to set
6238 it here, because we just have a local stub. */
6242 struct mips_elf_link_hash_entry
*h
;
6244 h
= ((struct mips_elf_link_hash_entry
*)
6245 sym_hashes
[r_symndx
- extsymoff
]);
6247 while (h
->root
.root
.type
== bfd_link_hash_indirect
6248 || h
->root
.root
.type
== bfd_link_hash_warning
)
6249 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6251 /* H is the symbol this stub is for. */
6253 /* If we already have an appropriate stub for this function, we
6254 don't need another one, so we can discard this one. Since
6255 this function is called before the linker maps input sections
6256 to output sections, we can easily discard it by setting the
6257 SEC_EXCLUDE flag. */
6258 if (h
->fn_stub
!= NULL
)
6260 sec
->flags
|= SEC_EXCLUDE
;
6264 sec
->flags
|= SEC_KEEP
;
6266 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
6269 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
6271 unsigned long r_symndx
;
6272 struct mips_elf_link_hash_entry
*h
;
6275 /* Look at the relocation information to figure out which symbol
6278 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
6280 if (r_symndx
< extsymoff
6281 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
6285 /* This stub is for a local symbol. This stub will only be
6286 needed if there is some relocation (R_MIPS16_26) in this BFD
6287 that refers to this symbol. */
6288 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
6290 Elf_Internal_Rela
*sec_relocs
;
6291 const Elf_Internal_Rela
*r
, *rend
;
6293 /* We can ignore stub sections when looking for relocs. */
6294 if ((o
->flags
& SEC_RELOC
) == 0
6295 || o
->reloc_count
== 0
6296 || mips16_stub_section_p (abfd
, o
))
6300 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
6302 if (sec_relocs
== NULL
)
6305 rend
= sec_relocs
+ o
->reloc_count
;
6306 for (r
= sec_relocs
; r
< rend
; r
++)
6307 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
6308 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
6311 if (elf_section_data (o
)->relocs
!= sec_relocs
)
6320 /* There is no non-call reloc for this stub, so we do
6321 not need it. Since this function is called before
6322 the linker maps input sections to output sections, we
6323 can easily discard it by setting the SEC_EXCLUDE
6325 sec
->flags
|= SEC_EXCLUDE
;
6329 /* Record this stub in an array of local symbol call_stubs for
6331 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
6333 unsigned long symcount
;
6337 if (elf_bad_symtab (abfd
))
6338 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
6340 symcount
= symtab_hdr
->sh_info
;
6341 amt
= symcount
* sizeof (asection
*);
6342 n
= bfd_zalloc (abfd
, amt
);
6345 elf_tdata (abfd
)->local_call_stubs
= n
;
6348 sec
->flags
|= SEC_KEEP
;
6349 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
6351 /* We don't need to set mips16_stubs_seen in this case.
6352 That flag is used to see whether we need to look through
6353 the global symbol table for stubs. We don't need to set
6354 it here, because we just have a local stub. */
6358 h
= ((struct mips_elf_link_hash_entry
*)
6359 sym_hashes
[r_symndx
- extsymoff
]);
6361 /* H is the symbol this stub is for. */
6363 if (CALL_FP_STUB_P (name
))
6364 loc
= &h
->call_fp_stub
;
6366 loc
= &h
->call_stub
;
6368 /* If we already have an appropriate stub for this function, we
6369 don't need another one, so we can discard this one. Since
6370 this function is called before the linker maps input sections
6371 to output sections, we can easily discard it by setting the
6372 SEC_EXCLUDE flag. */
6375 sec
->flags
|= SEC_EXCLUDE
;
6379 sec
->flags
|= SEC_KEEP
;
6381 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
6392 sgot
= mips_elf_got_section (dynobj
, FALSE
);
6397 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
6398 g
= mips_elf_section_data (sgot
)->u
.got_info
;
6399 BFD_ASSERT (g
!= NULL
);
6404 bed
= get_elf_backend_data (abfd
);
6405 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6406 for (rel
= relocs
; rel
< rel_end
; ++rel
)
6408 unsigned long r_symndx
;
6409 unsigned int r_type
;
6410 struct elf_link_hash_entry
*h
;
6412 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
6413 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
6415 if (r_symndx
< extsymoff
)
6417 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
6419 (*_bfd_error_handler
)
6420 (_("%B: Malformed reloc detected for section %s"),
6422 bfd_set_error (bfd_error_bad_value
);
6427 h
= sym_hashes
[r_symndx
- extsymoff
];
6429 /* This may be an indirect symbol created because of a version. */
6432 while (h
->root
.type
== bfd_link_hash_indirect
)
6433 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6437 /* Some relocs require a global offset table. */
6438 if (dynobj
== NULL
|| sgot
== NULL
)
6444 case R_MIPS_CALL_HI16
:
6445 case R_MIPS_CALL_LO16
:
6446 case R_MIPS_GOT_HI16
:
6447 case R_MIPS_GOT_LO16
:
6448 case R_MIPS_GOT_PAGE
:
6449 case R_MIPS_GOT_OFST
:
6450 case R_MIPS_GOT_DISP
:
6451 case R_MIPS_TLS_GOTTPREL
:
6453 case R_MIPS_TLS_LDM
:
6455 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6456 if (! mips_elf_create_got_section (dynobj
, info
, FALSE
))
6458 g
= mips_elf_got_info (dynobj
, &sgot
);
6459 if (htab
->is_vxworks
&& !info
->shared
)
6461 (*_bfd_error_handler
)
6462 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6463 abfd
, (unsigned long) rel
->r_offset
);
6464 bfd_set_error (bfd_error_bad_value
);
6472 /* In VxWorks executables, references to external symbols
6473 are handled using copy relocs or PLT stubs, so there's
6474 no need to add a dynamic relocation here. */
6476 && (info
->shared
|| (h
!= NULL
&& !htab
->is_vxworks
))
6477 && (sec
->flags
& SEC_ALLOC
) != 0)
6478 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6488 ((struct mips_elf_link_hash_entry
*) h
)->is_relocation_target
= TRUE
;
6490 /* Relocations against the special VxWorks __GOTT_BASE__ and
6491 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6492 room for them in .rela.dyn. */
6493 if (is_gott_symbol (info
, h
))
6497 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
6501 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
6504 else if (r_type
== R_MIPS_CALL_LO16
6505 || r_type
== R_MIPS_GOT_LO16
6506 || r_type
== R_MIPS_GOT_DISP
6507 || (r_type
== R_MIPS_GOT16
&& htab
->is_vxworks
))
6509 /* We may need a local GOT entry for this relocation. We
6510 don't count R_MIPS_GOT_PAGE because we can estimate the
6511 maximum number of pages needed by looking at the size of
6512 the segment. Similar comments apply to R_MIPS_GOT16 and
6513 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6514 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6515 R_MIPS_CALL_HI16 because these are always followed by an
6516 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6517 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6518 rel
->r_addend
, g
, 0))
6527 (*_bfd_error_handler
)
6528 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6529 abfd
, (unsigned long) rel
->r_offset
);
6530 bfd_set_error (bfd_error_bad_value
);
6535 case R_MIPS_CALL_HI16
:
6536 case R_MIPS_CALL_LO16
:
6539 /* VxWorks call relocations point the function's .got.plt
6540 entry, which will be allocated by adjust_dynamic_symbol.
6541 Otherwise, this symbol requires a global GOT entry. */
6542 if (!htab
->is_vxworks
6543 && !mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6546 /* We need a stub, not a plt entry for the undefined
6547 function. But we record it as if it needs plt. See
6548 _bfd_elf_adjust_dynamic_symbol. */
6554 case R_MIPS_GOT_PAGE
:
6555 /* If this is a global, overridable symbol, GOT_PAGE will
6556 decay to GOT_DISP, so we'll need a GOT entry for it. */
6561 struct mips_elf_link_hash_entry
*hmips
=
6562 (struct mips_elf_link_hash_entry
*) h
;
6564 while (hmips
->root
.root
.type
== bfd_link_hash_indirect
6565 || hmips
->root
.root
.type
== bfd_link_hash_warning
)
6566 hmips
= (struct mips_elf_link_hash_entry
*)
6567 hmips
->root
.root
.u
.i
.link
;
6569 if (hmips
->root
.def_regular
6570 && ! (info
->shared
&& ! info
->symbolic
6571 && ! hmips
->root
.forced_local
))
6577 case R_MIPS_GOT_HI16
:
6578 case R_MIPS_GOT_LO16
:
6579 case R_MIPS_GOT_DISP
:
6580 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6584 case R_MIPS_TLS_GOTTPREL
:
6586 info
->flags
|= DF_STATIC_TLS
;
6589 case R_MIPS_TLS_LDM
:
6590 if (r_type
== R_MIPS_TLS_LDM
)
6598 /* This symbol requires a global offset table entry, or two
6599 for TLS GD relocations. */
6601 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
6603 : r_type
== R_MIPS_TLS_LDM
6608 struct mips_elf_link_hash_entry
*hmips
=
6609 (struct mips_elf_link_hash_entry
*) h
;
6610 hmips
->tls_type
|= flag
;
6612 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, flag
))
6617 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
6619 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6620 rel
->r_addend
, g
, flag
))
6629 /* In VxWorks executables, references to external symbols
6630 are handled using copy relocs or PLT stubs, so there's
6631 no need to add a .rela.dyn entry for this relocation. */
6632 if ((info
->shared
|| (h
!= NULL
&& !htab
->is_vxworks
))
6633 && (sec
->flags
& SEC_ALLOC
) != 0)
6637 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
6643 /* When creating a shared object, we must copy these
6644 reloc types into the output file as R_MIPS_REL32
6645 relocs. Make room for this reloc in .rel(a).dyn. */
6646 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
6647 if (MIPS_ELF_READONLY_SECTION (sec
))
6648 /* We tell the dynamic linker that there are
6649 relocations against the text segment. */
6650 info
->flags
|= DF_TEXTREL
;
6654 struct mips_elf_link_hash_entry
*hmips
;
6656 /* We only need to copy this reloc if the symbol is
6657 defined in a dynamic object. */
6658 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6659 ++hmips
->possibly_dynamic_relocs
;
6660 if (MIPS_ELF_READONLY_SECTION (sec
))
6661 /* We need it to tell the dynamic linker if there
6662 are relocations against the text segment. */
6663 hmips
->readonly_reloc
= TRUE
;
6666 /* Even though we don't directly need a GOT entry for
6667 this symbol, a symbol must have a dynamic symbol
6668 table index greater that DT_MIPS_GOTSYM if there are
6669 dynamic relocations against it. This does not apply
6670 to VxWorks, which does not have the usual coupling
6671 between global GOT entries and .dynsym entries. */
6672 if (h
!= NULL
&& !htab
->is_vxworks
)
6675 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6676 if (! mips_elf_create_got_section (dynobj
, info
, TRUE
))
6678 g
= mips_elf_got_info (dynobj
, &sgot
);
6679 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6684 if (SGI_COMPAT (abfd
))
6685 mips_elf_hash_table (info
)->compact_rel_size
+=
6686 sizeof (Elf32_External_crinfo
);
6691 ((struct mips_elf_link_hash_entry
*) h
)->is_branch_target
= TRUE
;
6696 ((struct mips_elf_link_hash_entry
*) h
)->is_branch_target
= TRUE
;
6699 case R_MIPS_GPREL16
:
6700 case R_MIPS_LITERAL
:
6701 case R_MIPS_GPREL32
:
6702 if (SGI_COMPAT (abfd
))
6703 mips_elf_hash_table (info
)->compact_rel_size
+=
6704 sizeof (Elf32_External_crinfo
);
6707 /* This relocation describes the C++ object vtable hierarchy.
6708 Reconstruct it for later use during GC. */
6709 case R_MIPS_GNU_VTINHERIT
:
6710 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
6714 /* This relocation describes which C++ vtable entries are actually
6715 used. Record for later use during GC. */
6716 case R_MIPS_GNU_VTENTRY
:
6717 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
6725 /* We must not create a stub for a symbol that has relocations
6726 related to taking the function's address. This doesn't apply to
6727 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6728 a normal .got entry. */
6729 if (!htab
->is_vxworks
&& h
!= NULL
)
6733 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
6736 case R_MIPS_CALL_HI16
:
6737 case R_MIPS_CALL_LO16
:
6742 /* If this reloc is not a 16 bit call, and it has a global
6743 symbol, then we will need the fn_stub if there is one.
6744 References from a stub section do not count. */
6746 && r_type
!= R_MIPS16_26
6747 && !mips16_stub_section_p (abfd
, sec
))
6749 struct mips_elf_link_hash_entry
*mh
;
6751 mh
= (struct mips_elf_link_hash_entry
*) h
;
6752 mh
->need_fn_stub
= TRUE
;
6760 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
6761 struct bfd_link_info
*link_info
,
6764 Elf_Internal_Rela
*internal_relocs
;
6765 Elf_Internal_Rela
*irel
, *irelend
;
6766 Elf_Internal_Shdr
*symtab_hdr
;
6767 bfd_byte
*contents
= NULL
;
6769 bfd_boolean changed_contents
= FALSE
;
6770 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
6771 Elf_Internal_Sym
*isymbuf
= NULL
;
6773 /* We are not currently changing any sizes, so only one pass. */
6776 if (link_info
->relocatable
)
6779 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
6780 link_info
->keep_memory
);
6781 if (internal_relocs
== NULL
)
6784 irelend
= internal_relocs
+ sec
->reloc_count
6785 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
6786 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6787 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6789 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6792 bfd_signed_vma sym_offset
;
6793 unsigned int r_type
;
6794 unsigned long r_symndx
;
6796 unsigned long instruction
;
6798 /* Turn jalr into bgezal, and jr into beq, if they're marked
6799 with a JALR relocation, that indicate where they jump to.
6800 This saves some pipeline bubbles. */
6801 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
6802 if (r_type
!= R_MIPS_JALR
)
6805 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
6806 /* Compute the address of the jump target. */
6807 if (r_symndx
>= extsymoff
)
6809 struct mips_elf_link_hash_entry
*h
6810 = ((struct mips_elf_link_hash_entry
*)
6811 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
6813 while (h
->root
.root
.type
== bfd_link_hash_indirect
6814 || h
->root
.root
.type
== bfd_link_hash_warning
)
6815 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6817 /* If a symbol is undefined, or if it may be overridden,
6819 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
6820 || h
->root
.root
.type
== bfd_link_hash_defweak
)
6821 && h
->root
.root
.u
.def
.section
)
6822 || (link_info
->shared
&& ! link_info
->symbolic
6823 && !h
->root
.forced_local
))
6826 sym_sec
= h
->root
.root
.u
.def
.section
;
6827 if (sym_sec
->output_section
)
6828 symval
= (h
->root
.root
.u
.def
.value
6829 + sym_sec
->output_section
->vma
6830 + sym_sec
->output_offset
);
6832 symval
= h
->root
.root
.u
.def
.value
;
6836 Elf_Internal_Sym
*isym
;
6838 /* Read this BFD's symbols if we haven't done so already. */
6839 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
6841 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6842 if (isymbuf
== NULL
)
6843 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
6844 symtab_hdr
->sh_info
, 0,
6846 if (isymbuf
== NULL
)
6850 isym
= isymbuf
+ r_symndx
;
6851 if (isym
->st_shndx
== SHN_UNDEF
)
6853 else if (isym
->st_shndx
== SHN_ABS
)
6854 sym_sec
= bfd_abs_section_ptr
;
6855 else if (isym
->st_shndx
== SHN_COMMON
)
6856 sym_sec
= bfd_com_section_ptr
;
6859 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6860 symval
= isym
->st_value
6861 + sym_sec
->output_section
->vma
6862 + sym_sec
->output_offset
;
6865 /* Compute branch offset, from delay slot of the jump to the
6867 sym_offset
= (symval
+ irel
->r_addend
)
6868 - (sec_start
+ irel
->r_offset
+ 4);
6870 /* Branch offset must be properly aligned. */
6871 if ((sym_offset
& 3) != 0)
6876 /* Check that it's in range. */
6877 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
6880 /* Get the section contents if we haven't done so already. */
6881 if (contents
== NULL
)
6883 /* Get cached copy if it exists. */
6884 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6885 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6888 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6893 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
6895 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6896 if ((instruction
& 0xfc1fffff) == 0x0000f809)
6897 instruction
= 0x04110000;
6898 /* If it was jr <reg>, turn it into b <target>. */
6899 else if ((instruction
& 0xfc1fffff) == 0x00000008)
6900 instruction
= 0x10000000;
6904 instruction
|= (sym_offset
& 0xffff);
6905 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
6906 changed_contents
= TRUE
;
6909 if (contents
!= NULL
6910 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6912 if (!changed_contents
&& !link_info
->keep_memory
)
6916 /* Cache the section contents for elf_link_input_bfd. */
6917 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6923 if (contents
!= NULL
6924 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6929 /* Adjust a symbol defined by a dynamic object and referenced by a
6930 regular object. The current definition is in some section of the
6931 dynamic object, but we're not including those sections. We have to
6932 change the definition to something the rest of the link can
6936 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6937 struct elf_link_hash_entry
*h
)
6940 struct mips_elf_link_hash_entry
*hmips
;
6942 struct mips_elf_link_hash_table
*htab
;
6944 htab
= mips_elf_hash_table (info
);
6945 dynobj
= elf_hash_table (info
)->dynobj
;
6947 /* Make sure we know what is going on here. */
6948 BFD_ASSERT (dynobj
!= NULL
6950 || h
->u
.weakdef
!= NULL
6953 && !h
->def_regular
)));
6955 /* If this symbol is defined in a dynamic object, we need to copy
6956 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6958 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6959 if (! info
->relocatable
6960 && hmips
->possibly_dynamic_relocs
!= 0
6961 && (h
->root
.type
== bfd_link_hash_defweak
6962 || !h
->def_regular
))
6964 mips_elf_allocate_dynamic_relocations
6965 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
6966 if (hmips
->readonly_reloc
)
6967 /* We tell the dynamic linker that there are relocations
6968 against the text segment. */
6969 info
->flags
|= DF_TEXTREL
;
6972 /* For a function, create a stub, if allowed. */
6973 if (! hmips
->no_fn_stub
6976 if (! elf_hash_table (info
)->dynamic_sections_created
)
6979 /* If this symbol is not defined in a regular file, then set
6980 the symbol to the stub location. This is required to make
6981 function pointers compare as equal between the normal
6982 executable and the shared library. */
6983 if (!h
->def_regular
)
6985 /* We need .stub section. */
6986 s
= bfd_get_section_by_name (dynobj
,
6987 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6988 BFD_ASSERT (s
!= NULL
);
6990 h
->root
.u
.def
.section
= s
;
6991 h
->root
.u
.def
.value
= s
->size
;
6993 /* XXX Write this stub address somewhere. */
6994 h
->plt
.offset
= s
->size
;
6996 /* Make room for this stub code. */
6997 s
->size
+= htab
->function_stub_size
;
6999 /* The last half word of the stub will be filled with the index
7000 of this symbol in .dynsym section. */
7004 else if ((h
->type
== STT_FUNC
)
7007 /* This will set the entry for this symbol in the GOT to 0, and
7008 the dynamic linker will take care of this. */
7009 h
->root
.u
.def
.value
= 0;
7013 /* If this is a weak symbol, and there is a real definition, the
7014 processor independent code will have arranged for us to see the
7015 real definition first, and we can just use the same value. */
7016 if (h
->u
.weakdef
!= NULL
)
7018 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
7019 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
7020 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
7021 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
7025 /* This is a reference to a symbol defined by a dynamic object which
7026 is not a function. */
7031 /* Likewise, for VxWorks. */
7034 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info
*info
,
7035 struct elf_link_hash_entry
*h
)
7038 struct mips_elf_link_hash_entry
*hmips
;
7039 struct mips_elf_link_hash_table
*htab
;
7040 unsigned int power_of_two
;
7042 htab
= mips_elf_hash_table (info
);
7043 dynobj
= elf_hash_table (info
)->dynobj
;
7044 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7046 /* Make sure we know what is going on here. */
7047 BFD_ASSERT (dynobj
!= NULL
7050 || h
->u
.weakdef
!= NULL
7053 && !h
->def_regular
)));
7055 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7056 either (a) we want to branch to the symbol or (b) we're linking an
7057 executable that needs a canonical function address. In the latter
7058 case, the canonical address will be the address of the executable's
7060 if ((hmips
->is_branch_target
7062 && h
->type
== STT_FUNC
7063 && hmips
->is_relocation_target
))
7067 && !h
->forced_local
)
7070 /* Locally-binding symbols do not need a PLT stub; we can refer to
7071 the functions directly. */
7072 else if (h
->needs_plt
7073 && (SYMBOL_CALLS_LOCAL (info
, h
)
7074 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
7075 && h
->root
.type
== bfd_link_hash_undefweak
)))
7083 /* If this is the first symbol to need a PLT entry, allocate room
7084 for the header, and for the header's .rela.plt.unloaded entries. */
7085 if (htab
->splt
->size
== 0)
7087 htab
->splt
->size
+= htab
->plt_header_size
;
7089 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
7092 /* Assign the next .plt entry to this symbol. */
7093 h
->plt
.offset
= htab
->splt
->size
;
7094 htab
->splt
->size
+= htab
->plt_entry_size
;
7096 /* If the output file has no definition of the symbol, set the
7097 symbol's value to the address of the stub. For executables,
7098 point at the PLT load stub rather than the lazy resolution stub;
7099 this stub will become the canonical function address. */
7100 if (!h
->def_regular
)
7102 h
->root
.u
.def
.section
= htab
->splt
;
7103 h
->root
.u
.def
.value
= h
->plt
.offset
;
7105 h
->root
.u
.def
.value
+= 8;
7108 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7109 htab
->sgotplt
->size
+= 4;
7110 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
7112 /* Make room for the .rela.plt.unloaded relocations. */
7114 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
7119 /* If a function symbol is defined by a dynamic object, and we do not
7120 need a PLT stub for it, the symbol's value should be zero. */
7121 if (h
->type
== STT_FUNC
7126 h
->root
.u
.def
.value
= 0;
7130 /* If this is a weak symbol, and there is a real definition, the
7131 processor independent code will have arranged for us to see the
7132 real definition first, and we can just use the same value. */
7133 if (h
->u
.weakdef
!= NULL
)
7135 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
7136 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
7137 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
7138 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
7142 /* This is a reference to a symbol defined by a dynamic object which
7143 is not a function. */
7147 /* We must allocate the symbol in our .dynbss section, which will
7148 become part of the .bss section of the executable. There will be
7149 an entry for this symbol in the .dynsym section. The dynamic
7150 object will contain position independent code, so all references
7151 from the dynamic object to this symbol will go through the global
7152 offset table. The dynamic linker will use the .dynsym entry to
7153 determine the address it must put in the global offset table, so
7154 both the dynamic object and the regular object will refer to the
7155 same memory location for the variable. */
7157 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
7159 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
7163 /* We need to figure out the alignment required for this symbol. */
7164 power_of_two
= bfd_log2 (h
->size
);
7165 if (power_of_two
> 4)
7168 /* Apply the required alignment. */
7169 htab
->sdynbss
->size
= BFD_ALIGN (htab
->sdynbss
->size
,
7170 (bfd_size_type
) 1 << power_of_two
);
7171 if (power_of_two
> bfd_get_section_alignment (dynobj
, htab
->sdynbss
)
7172 && !bfd_set_section_alignment (dynobj
, htab
->sdynbss
, power_of_two
))
7175 /* Define the symbol as being at this point in the section. */
7176 h
->root
.u
.def
.section
= htab
->sdynbss
;
7177 h
->root
.u
.def
.value
= htab
->sdynbss
->size
;
7179 /* Increment the section size to make room for the symbol. */
7180 htab
->sdynbss
->size
+= h
->size
;
7185 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7186 The number might be exact or a worst-case estimate, depending on how
7187 much information is available to elf_backend_omit_section_dynsym at
7188 the current linking stage. */
7190 static bfd_size_type
7191 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
7193 bfd_size_type count
;
7196 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
7199 const struct elf_backend_data
*bed
;
7201 bed
= get_elf_backend_data (output_bfd
);
7202 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
7203 if ((p
->flags
& SEC_EXCLUDE
) == 0
7204 && (p
->flags
& SEC_ALLOC
) != 0
7205 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
7211 /* This function is called after all the input files have been read,
7212 and the input sections have been assigned to output sections. We
7213 check for any mips16 stub sections that we can discard. */
7216 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
7217 struct bfd_link_info
*info
)
7223 struct mips_got_info
*g
;
7225 bfd_size_type loadable_size
= 0;
7226 bfd_size_type local_gotno
;
7227 bfd_size_type dynsymcount
;
7229 struct mips_elf_count_tls_arg count_tls_arg
;
7230 struct mips_elf_link_hash_table
*htab
;
7232 htab
= mips_elf_hash_table (info
);
7234 /* The .reginfo section has a fixed size. */
7235 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
7237 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
7239 if (! (info
->relocatable
7240 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
))
7241 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
7242 mips_elf_check_mips16_stubs
, NULL
);
7244 dynobj
= elf_hash_table (info
)->dynobj
;
7246 /* Relocatable links don't have it. */
7249 g
= mips_elf_got_info (dynobj
, &s
);
7253 /* Calculate the total loadable size of the output. That
7254 will give us the maximum number of GOT_PAGE entries
7256 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
7258 asection
*subsection
;
7260 for (subsection
= sub
->sections
;
7262 subsection
= subsection
->next
)
7264 if ((subsection
->flags
& SEC_ALLOC
) == 0)
7266 loadable_size
+= ((subsection
->size
+ 0xf)
7267 &~ (bfd_size_type
) 0xf);
7271 /* There has to be a global GOT entry for every symbol with
7272 a dynamic symbol table index of DT_MIPS_GOTSYM or
7273 higher. Therefore, it make sense to put those symbols
7274 that need GOT entries at the end of the symbol table. We
7276 if (! mips_elf_sort_hash_table (info
, 1))
7279 if (g
->global_gotsym
!= NULL
)
7280 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
7282 /* If there are no global symbols, or none requiring
7283 relocations, then GLOBAL_GOTSYM will be NULL. */
7286 /* Get a worst-case estimate of the number of dynamic symbols needed.
7287 At this point, dynsymcount does not account for section symbols
7288 and count_section_dynsyms may overestimate the number that will
7290 dynsymcount
= (elf_hash_table (info
)->dynsymcount
7291 + count_section_dynsyms (output_bfd
, info
));
7293 /* Determine the size of one stub entry. */
7294 htab
->function_stub_size
= (dynsymcount
> 0x10000
7295 ? MIPS_FUNCTION_STUB_BIG_SIZE
7296 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
7298 /* In the worst case, we'll get one stub per dynamic symbol, plus
7299 one to account for the dummy entry at the end required by IRIX
7301 loadable_size
+= htab
->function_stub_size
* (i
+ 1);
7303 if (htab
->is_vxworks
)
7304 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7305 relocations against local symbols evaluate to "G", and the EABI does
7306 not include R_MIPS_GOT_PAGE. */
7309 /* Assume there are two loadable segments consisting of contiguous
7310 sections. Is 5 enough? */
7311 local_gotno
= (loadable_size
>> 16) + 5;
7313 g
->local_gotno
+= local_gotno
;
7314 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
7316 g
->global_gotno
= i
;
7317 s
->size
+= i
* MIPS_ELF_GOT_SIZE (output_bfd
);
7319 /* We need to calculate tls_gotno for global symbols at this point
7320 instead of building it up earlier, to avoid doublecounting
7321 entries for one global symbol from multiple input files. */
7322 count_tls_arg
.info
= info
;
7323 count_tls_arg
.needed
= 0;
7324 elf_link_hash_traverse (elf_hash_table (info
),
7325 mips_elf_count_global_tls_entries
,
7327 g
->tls_gotno
+= count_tls_arg
.needed
;
7328 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
7330 mips_elf_resolve_final_got_entries (g
);
7332 /* VxWorks does not support multiple GOTs. It initializes $gp to
7333 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7335 if (!htab
->is_vxworks
&& s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
7337 if (! mips_elf_multi_got (output_bfd
, info
, g
, s
, local_gotno
))
7342 /* Set up TLS entries for the first GOT. */
7343 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
7344 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
7350 /* Set the sizes of the dynamic sections. */
7353 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
7354 struct bfd_link_info
*info
)
7357 asection
*s
, *sreldyn
;
7358 bfd_boolean reltext
;
7359 struct mips_elf_link_hash_table
*htab
;
7361 htab
= mips_elf_hash_table (info
);
7362 dynobj
= elf_hash_table (info
)->dynobj
;
7363 BFD_ASSERT (dynobj
!= NULL
);
7365 if (elf_hash_table (info
)->dynamic_sections_created
)
7367 /* Set the contents of the .interp section to the interpreter. */
7368 if (info
->executable
)
7370 s
= bfd_get_section_by_name (dynobj
, ".interp");
7371 BFD_ASSERT (s
!= NULL
);
7373 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
7375 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
7379 /* The check_relocs and adjust_dynamic_symbol entry points have
7380 determined the sizes of the various dynamic sections. Allocate
7384 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
7388 /* It's OK to base decisions on the section name, because none
7389 of the dynobj section names depend upon the input files. */
7390 name
= bfd_get_section_name (dynobj
, s
);
7392 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
7395 if (CONST_STRNEQ (name
, ".rel"))
7399 const char *outname
;
7402 /* If this relocation section applies to a read only
7403 section, then we probably need a DT_TEXTREL entry.
7404 If the relocation section is .rel(a).dyn, we always
7405 assert a DT_TEXTREL entry rather than testing whether
7406 there exists a relocation to a read only section or
7408 outname
= bfd_get_section_name (output_bfd
,
7410 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
7412 && (target
->flags
& SEC_READONLY
) != 0
7413 && (target
->flags
& SEC_ALLOC
) != 0)
7414 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
7417 /* We use the reloc_count field as a counter if we need
7418 to copy relocs into the output file. */
7419 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
7422 /* If combreloc is enabled, elf_link_sort_relocs() will
7423 sort relocations, but in a different way than we do,
7424 and before we're done creating relocations. Also, it
7425 will move them around between input sections'
7426 relocation's contents, so our sorting would be
7427 broken, so don't let it run. */
7428 info
->combreloc
= 0;
7431 else if (htab
->is_vxworks
&& strcmp (name
, ".got") == 0)
7433 /* Executables do not need a GOT. */
7436 /* Allocate relocations for all but the reserved entries. */
7437 struct mips_got_info
*g
;
7440 g
= mips_elf_got_info (dynobj
, NULL
);
7441 count
= (g
->global_gotno
7443 - MIPS_RESERVED_GOTNO (info
));
7444 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
7447 else if (!htab
->is_vxworks
&& CONST_STRNEQ (name
, ".got"))
7449 /* _bfd_mips_elf_always_size_sections() has already done
7450 most of the work, but some symbols may have been mapped
7451 to versions that we must now resolve in the got_entries
7453 struct mips_got_info
*gg
= mips_elf_got_info (dynobj
, NULL
);
7454 struct mips_got_info
*g
= gg
;
7455 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
7456 unsigned int needed_relocs
= 0;
7460 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
7461 set_got_offset_arg
.info
= info
;
7463 /* NOTE 2005-02-03: How can this call, or the next, ever
7464 find any indirect entries to resolve? They were all
7465 resolved in mips_elf_multi_got. */
7466 mips_elf_resolve_final_got_entries (gg
);
7467 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
7469 unsigned int save_assign
;
7471 mips_elf_resolve_final_got_entries (g
);
7473 /* Assign offsets to global GOT entries. */
7474 save_assign
= g
->assigned_gotno
;
7475 g
->assigned_gotno
= g
->local_gotno
;
7476 set_got_offset_arg
.g
= g
;
7477 set_got_offset_arg
.needed_relocs
= 0;
7478 htab_traverse (g
->got_entries
,
7479 mips_elf_set_global_got_offset
,
7480 &set_got_offset_arg
);
7481 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
7482 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
7483 <= g
->global_gotno
);
7485 g
->assigned_gotno
= save_assign
;
7488 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
7489 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
7490 + g
->next
->global_gotno
7491 + g
->next
->tls_gotno
7492 + MIPS_RESERVED_GOTNO (info
));
7498 struct mips_elf_count_tls_arg arg
;
7502 htab_traverse (gg
->got_entries
, mips_elf_count_local_tls_relocs
,
7504 elf_link_hash_traverse (elf_hash_table (info
),
7505 mips_elf_count_global_tls_relocs
,
7508 needed_relocs
+= arg
.needed
;
7512 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
7515 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
7517 /* IRIX rld assumes that the function stub isn't at the end
7518 of .text section. So put a dummy. XXX */
7519 s
->size
+= htab
->function_stub_size
;
7521 else if (! info
->shared
7522 && ! mips_elf_hash_table (info
)->use_rld_obj_head
7523 && CONST_STRNEQ (name
, ".rld_map"))
7525 /* We add a room for __rld_map. It will be filled in by the
7526 rtld to contain a pointer to the _r_debug structure. */
7529 else if (SGI_COMPAT (output_bfd
)
7530 && CONST_STRNEQ (name
, ".compact_rel"))
7531 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
7532 else if (! CONST_STRNEQ (name
, ".init")
7533 && s
!= htab
->sgotplt
7536 /* It's not one of our sections, so don't allocate space. */
7542 s
->flags
|= SEC_EXCLUDE
;
7546 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
7549 /* Allocate memory for this section last, since we may increase its
7551 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
7557 /* Allocate memory for the section contents. */
7558 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
7559 if (s
->contents
== NULL
)
7561 bfd_set_error (bfd_error_no_memory
);
7566 /* Allocate memory for the .rel(a).dyn section. */
7567 if (sreldyn
!= NULL
)
7569 sreldyn
->contents
= bfd_zalloc (dynobj
, sreldyn
->size
);
7570 if (sreldyn
->contents
== NULL
)
7572 bfd_set_error (bfd_error_no_memory
);
7577 if (elf_hash_table (info
)->dynamic_sections_created
)
7579 /* Add some entries to the .dynamic section. We fill in the
7580 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7581 must add the entries now so that we get the correct size for
7582 the .dynamic section. The DT_DEBUG entry is filled in by the
7583 dynamic linker and used by the debugger. */
7584 if (info
->executable
)
7586 /* SGI object has the equivalence of DT_DEBUG in the
7587 DT_MIPS_RLD_MAP entry. */
7588 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
7590 if (!SGI_COMPAT (output_bfd
))
7592 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
7597 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
7598 info
->flags
|= DF_TEXTREL
;
7600 if ((info
->flags
& DF_TEXTREL
) != 0)
7602 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
7605 /* Clear the DF_TEXTREL flag. It will be set again if we
7606 write out an actual text relocation; we may not, because
7607 at this point we do not know whether e.g. any .eh_frame
7608 absolute relocations have been converted to PC-relative. */
7609 info
->flags
&= ~DF_TEXTREL
;
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
7615 if (htab
->is_vxworks
)
7617 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7618 use any of the DT_MIPS_* tags. */
7619 if (mips_elf_rel_dyn_section (info
, FALSE
))
7621 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
7624 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
7630 if (htab
->splt
->size
> 0)
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
7635 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
7638 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
7644 if (mips_elf_rel_dyn_section (info
, FALSE
))
7646 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
7649 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
7652 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
7659 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
7662 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
7665 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
7668 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
7671 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
7674 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
7677 if (IRIX_COMPAT (dynobj
) == ict_irix5
7678 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
7681 if (IRIX_COMPAT (dynobj
) == ict_irix6
7682 && (bfd_get_section_by_name
7683 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
7684 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
7692 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7693 Adjust its R_ADDEND field so that it is correct for the output file.
7694 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7695 and sections respectively; both use symbol indexes. */
7698 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
7699 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
7700 asection
**local_sections
, Elf_Internal_Rela
*rel
)
7702 unsigned int r_type
, r_symndx
;
7703 Elf_Internal_Sym
*sym
;
7706 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
7708 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
7709 if (r_type
== R_MIPS16_GPREL
7710 || r_type
== R_MIPS_GPREL16
7711 || r_type
== R_MIPS_GPREL32
7712 || r_type
== R_MIPS_LITERAL
)
7714 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
7715 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
7718 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
7719 sym
= local_syms
+ r_symndx
;
7721 /* Adjust REL's addend to account for section merging. */
7722 if (!info
->relocatable
)
7724 sec
= local_sections
[r_symndx
];
7725 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
7728 /* This would normally be done by the rela_normal code in elflink.c. */
7729 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7730 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
7734 /* Relocate a MIPS ELF section. */
7737 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
7738 bfd
*input_bfd
, asection
*input_section
,
7739 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
7740 Elf_Internal_Sym
*local_syms
,
7741 asection
**local_sections
)
7743 Elf_Internal_Rela
*rel
;
7744 const Elf_Internal_Rela
*relend
;
7746 bfd_boolean use_saved_addend_p
= FALSE
;
7747 const struct elf_backend_data
*bed
;
7749 bed
= get_elf_backend_data (output_bfd
);
7750 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7751 for (rel
= relocs
; rel
< relend
; ++rel
)
7755 reloc_howto_type
*howto
;
7756 bfd_boolean require_jalx
;
7757 /* TRUE if the relocation is a RELA relocation, rather than a
7759 bfd_boolean rela_relocation_p
= TRUE
;
7760 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
7763 /* Find the relocation howto for this relocation. */
7764 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
7766 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7767 64-bit code, but make sure all their addresses are in the
7768 lowermost or uppermost 32-bit section of the 64-bit address
7769 space. Thus, when they use an R_MIPS_64 they mean what is
7770 usually meant by R_MIPS_32, with the exception that the
7771 stored value is sign-extended to 64 bits. */
7772 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
7774 /* On big-endian systems, we need to lie about the position
7776 if (bfd_big_endian (input_bfd
))
7780 /* NewABI defaults to RELA relocations. */
7781 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
7782 NEWABI_P (input_bfd
)
7783 && (MIPS_RELOC_RELA_P
7784 (input_bfd
, input_section
,
7787 if (!use_saved_addend_p
)
7789 Elf_Internal_Shdr
*rel_hdr
;
7791 /* If these relocations were originally of the REL variety,
7792 we must pull the addend out of the field that will be
7793 relocated. Otherwise, we simply use the contents of the
7794 RELA relocation. To determine which flavor or relocation
7795 this is, we depend on the fact that the INPUT_SECTION's
7796 REL_HDR is read before its REL_HDR2. */
7797 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
7798 if ((size_t) (rel
- relocs
)
7799 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7800 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
7801 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
7803 bfd_byte
*location
= contents
+ rel
->r_offset
;
7805 /* Note that this is a REL relocation. */
7806 rela_relocation_p
= FALSE
;
7808 /* Get the addend, which is stored in the input file. */
7809 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
,
7811 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
7813 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, FALSE
,
7816 addend
&= howto
->src_mask
;
7818 /* For some kinds of relocations, the ADDEND is a
7819 combination of the addend stored in two different
7821 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
7822 || (r_type
== R_MIPS_GOT16
7823 && mips_elf_local_relocation_p (input_bfd
, rel
,
7824 local_sections
, FALSE
)))
7827 const Elf_Internal_Rela
*lo16_relocation
;
7828 reloc_howto_type
*lo16_howto
;
7829 bfd_byte
*lo16_location
;
7832 if (r_type
== R_MIPS16_HI16
)
7833 lo16_type
= R_MIPS16_LO16
;
7835 lo16_type
= R_MIPS_LO16
;
7837 /* The combined value is the sum of the HI16 addend,
7838 left-shifted by sixteen bits, and the LO16
7839 addend, sign extended. (Usually, the code does
7840 a `lui' of the HI16 value, and then an `addiu' of
7843 Scan ahead to find a matching LO16 relocation.
7845 According to the MIPS ELF ABI, the R_MIPS_LO16
7846 relocation must be immediately following.
7847 However, for the IRIX6 ABI, the next relocation
7848 may be a composed relocation consisting of
7849 several relocations for the same address. In
7850 that case, the R_MIPS_LO16 relocation may occur
7851 as one of these. We permit a similar extension
7852 in general, as that is useful for GCC. */
7853 lo16_relocation
= mips_elf_next_relocation (input_bfd
,
7856 if (lo16_relocation
== NULL
)
7859 lo16_location
= contents
+ lo16_relocation
->r_offset
;
7861 /* Obtain the addend kept there. */
7862 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
,
7864 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, lo16_type
, FALSE
,
7866 l
= mips_elf_obtain_contents (lo16_howto
, lo16_relocation
,
7867 input_bfd
, contents
);
7868 _bfd_mips16_elf_reloc_shuffle (input_bfd
, lo16_type
, FALSE
,
7870 l
&= lo16_howto
->src_mask
;
7871 l
<<= lo16_howto
->rightshift
;
7872 l
= _bfd_mips_elf_sign_extend (l
, 16);
7876 /* Compute the combined addend. */
7880 addend
<<= howto
->rightshift
;
7883 addend
= rel
->r_addend
;
7884 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
7885 local_syms
, local_sections
, rel
);
7888 if (info
->relocatable
)
7890 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
7891 && bfd_big_endian (input_bfd
))
7894 if (!rela_relocation_p
&& rel
->r_addend
)
7896 addend
+= rel
->r_addend
;
7897 if (r_type
== R_MIPS_HI16
7898 || r_type
== R_MIPS_GOT16
)
7899 addend
= mips_elf_high (addend
);
7900 else if (r_type
== R_MIPS_HIGHER
)
7901 addend
= mips_elf_higher (addend
);
7902 else if (r_type
== R_MIPS_HIGHEST
)
7903 addend
= mips_elf_highest (addend
);
7905 addend
>>= howto
->rightshift
;
7907 /* We use the source mask, rather than the destination
7908 mask because the place to which we are writing will be
7909 source of the addend in the final link. */
7910 addend
&= howto
->src_mask
;
7912 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7913 /* See the comment above about using R_MIPS_64 in the 32-bit
7914 ABI. Here, we need to update the addend. It would be
7915 possible to get away with just using the R_MIPS_32 reloc
7916 but for endianness. */
7922 if (addend
& ((bfd_vma
) 1 << 31))
7924 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7931 /* If we don't know that we have a 64-bit type,
7932 do two separate stores. */
7933 if (bfd_big_endian (input_bfd
))
7935 /* Store the sign-bits (which are most significant)
7937 low_bits
= sign_bits
;
7943 high_bits
= sign_bits
;
7945 bfd_put_32 (input_bfd
, low_bits
,
7946 contents
+ rel
->r_offset
);
7947 bfd_put_32 (input_bfd
, high_bits
,
7948 contents
+ rel
->r_offset
+ 4);
7952 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
7953 input_bfd
, input_section
,
7958 /* Go on to the next relocation. */
7962 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7963 relocations for the same offset. In that case we are
7964 supposed to treat the output of each relocation as the addend
7966 if (rel
+ 1 < relend
7967 && rel
->r_offset
== rel
[1].r_offset
7968 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
7969 use_saved_addend_p
= TRUE
;
7971 use_saved_addend_p
= FALSE
;
7973 /* Figure out what value we are supposed to relocate. */
7974 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
7975 input_section
, info
, rel
,
7976 addend
, howto
, local_syms
,
7977 local_sections
, &value
,
7978 &name
, &require_jalx
,
7979 use_saved_addend_p
))
7981 case bfd_reloc_continue
:
7982 /* There's nothing to do. */
7985 case bfd_reloc_undefined
:
7986 /* mips_elf_calculate_relocation already called the
7987 undefined_symbol callback. There's no real point in
7988 trying to perform the relocation at this point, so we
7989 just skip ahead to the next relocation. */
7992 case bfd_reloc_notsupported
:
7993 msg
= _("internal error: unsupported relocation error");
7994 info
->callbacks
->warning
7995 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
7998 case bfd_reloc_overflow
:
7999 if (use_saved_addend_p
)
8000 /* Ignore overflow until we reach the last relocation for
8001 a given location. */
8005 BFD_ASSERT (name
!= NULL
);
8006 if (! ((*info
->callbacks
->reloc_overflow
)
8007 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
8008 input_bfd
, input_section
, rel
->r_offset
)))
8021 /* If we've got another relocation for the address, keep going
8022 until we reach the last one. */
8023 if (use_saved_addend_p
)
8029 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
8030 /* See the comment above about using R_MIPS_64 in the 32-bit
8031 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8032 that calculated the right value. Now, however, we
8033 sign-extend the 32-bit result to 64-bits, and store it as a
8034 64-bit value. We are especially generous here in that we
8035 go to extreme lengths to support this usage on systems with
8036 only a 32-bit VMA. */
8042 if (value
& ((bfd_vma
) 1 << 31))
8044 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
8051 /* If we don't know that we have a 64-bit type,
8052 do two separate stores. */
8053 if (bfd_big_endian (input_bfd
))
8055 /* Undo what we did above. */
8057 /* Store the sign-bits (which are most significant)
8059 low_bits
= sign_bits
;
8065 high_bits
= sign_bits
;
8067 bfd_put_32 (input_bfd
, low_bits
,
8068 contents
+ rel
->r_offset
);
8069 bfd_put_32 (input_bfd
, high_bits
,
8070 contents
+ rel
->r_offset
+ 4);
8074 /* Actually perform the relocation. */
8075 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
8076 input_bfd
, input_section
,
8077 contents
, require_jalx
))
8084 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8085 adjust it appropriately now. */
8088 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
8089 const char *name
, Elf_Internal_Sym
*sym
)
8091 /* The linker script takes care of providing names and values for
8092 these, but we must place them into the right sections. */
8093 static const char* const text_section_symbols
[] = {
8096 "__dso_displacement",
8098 "__program_header_table",
8102 static const char* const data_section_symbols
[] = {
8110 const char* const *p
;
8113 for (i
= 0; i
< 2; ++i
)
8114 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
8117 if (strcmp (*p
, name
) == 0)
8119 /* All of these symbols are given type STT_SECTION by the
8121 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8122 sym
->st_other
= STO_PROTECTED
;
8124 /* The IRIX linker puts these symbols in special sections. */
8126 sym
->st_shndx
= SHN_MIPS_TEXT
;
8128 sym
->st_shndx
= SHN_MIPS_DATA
;
8134 /* Finish up dynamic symbol handling. We set the contents of various
8135 dynamic sections here. */
8138 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
8139 struct bfd_link_info
*info
,
8140 struct elf_link_hash_entry
*h
,
8141 Elf_Internal_Sym
*sym
)
8145 struct mips_got_info
*g
, *gg
;
8148 struct mips_elf_link_hash_table
*htab
;
8150 htab
= mips_elf_hash_table (info
);
8151 dynobj
= elf_hash_table (info
)->dynobj
;
8153 if (h
->plt
.offset
!= MINUS_ONE
)
8156 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
8158 /* This symbol has a stub. Set it up. */
8160 BFD_ASSERT (h
->dynindx
!= -1);
8162 s
= bfd_get_section_by_name (dynobj
,
8163 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8164 BFD_ASSERT (s
!= NULL
);
8166 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
8167 || (h
->dynindx
<= 0xffff));
8169 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8170 sign extension at runtime in the stub, resulting in a negative
8172 if (h
->dynindx
& ~0x7fffffff)
8175 /* Fill the stub. */
8177 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
8179 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
8181 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
8183 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
8187 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
8190 /* If a large stub is not required and sign extension is not a
8191 problem, then use legacy code in the stub. */
8192 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
8193 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
8194 else if (h
->dynindx
& ~0x7fff)
8195 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
8197 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
8200 BFD_ASSERT (h
->plt
.offset
<= s
->size
);
8201 memcpy (s
->contents
+ h
->plt
.offset
, stub
, htab
->function_stub_size
);
8203 /* Mark the symbol as undefined. plt.offset != -1 occurs
8204 only for the referenced symbol. */
8205 sym
->st_shndx
= SHN_UNDEF
;
8207 /* The run-time linker uses the st_value field of the symbol
8208 to reset the global offset table entry for this external
8209 to its stub address when unlinking a shared object. */
8210 sym
->st_value
= (s
->output_section
->vma
+ s
->output_offset
8214 BFD_ASSERT (h
->dynindx
!= -1
8215 || h
->forced_local
);
8217 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8218 BFD_ASSERT (sgot
!= NULL
);
8219 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8220 g
= mips_elf_section_data (sgot
)->u
.got_info
;
8221 BFD_ASSERT (g
!= NULL
);
8223 /* Run through the global symbol table, creating GOT entries for all
8224 the symbols that need them. */
8225 if (g
->global_gotsym
!= NULL
8226 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8231 value
= sym
->st_value
;
8232 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
, R_MIPS_GOT16
, info
);
8233 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
8236 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
8238 struct mips_got_entry e
, *p
;
8244 e
.abfd
= output_bfd
;
8246 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
8249 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
8252 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
8257 || (elf_hash_table (info
)->dynamic_sections_created
8259 && p
->d
.h
->root
.def_dynamic
8260 && !p
->d
.h
->root
.def_regular
))
8262 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8263 the various compatibility problems, it's easier to mock
8264 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8265 mips_elf_create_dynamic_relocation to calculate the
8266 appropriate addend. */
8267 Elf_Internal_Rela rel
[3];
8269 memset (rel
, 0, sizeof (rel
));
8270 if (ABI_64_P (output_bfd
))
8271 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
8273 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
8274 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
8277 if (! (mips_elf_create_dynamic_relocation
8278 (output_bfd
, info
, rel
,
8279 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
8283 entry
= sym
->st_value
;
8284 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
8289 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8290 name
= h
->root
.root
.string
;
8291 if (strcmp (name
, "_DYNAMIC") == 0
8292 || h
== elf_hash_table (info
)->hgot
)
8293 sym
->st_shndx
= SHN_ABS
;
8294 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
8295 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
8297 sym
->st_shndx
= SHN_ABS
;
8298 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8301 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
8303 sym
->st_shndx
= SHN_ABS
;
8304 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8305 sym
->st_value
= elf_gp (output_bfd
);
8307 else if (SGI_COMPAT (output_bfd
))
8309 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
8310 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
8312 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8313 sym
->st_other
= STO_PROTECTED
;
8315 sym
->st_shndx
= SHN_MIPS_DATA
;
8317 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
8319 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8320 sym
->st_other
= STO_PROTECTED
;
8321 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
8322 sym
->st_shndx
= SHN_ABS
;
8324 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
8326 if (h
->type
== STT_FUNC
)
8327 sym
->st_shndx
= SHN_MIPS_TEXT
;
8328 else if (h
->type
== STT_OBJECT
)
8329 sym
->st_shndx
= SHN_MIPS_DATA
;
8333 /* Handle the IRIX6-specific symbols. */
8334 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
8335 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
8339 if (! mips_elf_hash_table (info
)->use_rld_obj_head
8340 && (strcmp (name
, "__rld_map") == 0
8341 || strcmp (name
, "__RLD_MAP") == 0))
8343 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
8344 BFD_ASSERT (s
!= NULL
);
8345 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
8346 bfd_put_32 (output_bfd
, 0, s
->contents
);
8347 if (mips_elf_hash_table (info
)->rld_value
== 0)
8348 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8350 else if (mips_elf_hash_table (info
)->use_rld_obj_head
8351 && strcmp (name
, "__rld_obj_head") == 0)
8353 /* IRIX6 does not use a .rld_map section. */
8354 if (IRIX_COMPAT (output_bfd
) == ict_irix5
8355 || IRIX_COMPAT (output_bfd
) == ict_none
)
8356 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
8358 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8362 /* If this is a mips16 symbol, force the value to be even. */
8363 if (sym
->st_other
== STO_MIPS16
)
8364 sym
->st_value
&= ~1;
8369 /* Likewise, for VxWorks. */
8372 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
8373 struct bfd_link_info
*info
,
8374 struct elf_link_hash_entry
*h
,
8375 Elf_Internal_Sym
*sym
)
8379 struct mips_got_info
*g
;
8380 struct mips_elf_link_hash_table
*htab
;
8382 htab
= mips_elf_hash_table (info
);
8383 dynobj
= elf_hash_table (info
)->dynobj
;
8385 if (h
->plt
.offset
!= (bfd_vma
) -1)
8388 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
8389 Elf_Internal_Rela rel
;
8390 static const bfd_vma
*plt_entry
;
8392 BFD_ASSERT (h
->dynindx
!= -1);
8393 BFD_ASSERT (htab
->splt
!= NULL
);
8394 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
8396 /* Calculate the address of the .plt entry. */
8397 plt_address
= (htab
->splt
->output_section
->vma
8398 + htab
->splt
->output_offset
8401 /* Calculate the index of the entry. */
8402 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
8403 / htab
->plt_entry_size
);
8405 /* Calculate the address of the .got.plt entry. */
8406 got_address
= (htab
->sgotplt
->output_section
->vma
8407 + htab
->sgotplt
->output_offset
8410 /* Calculate the offset of the .got.plt entry from
8411 _GLOBAL_OFFSET_TABLE_. */
8412 got_offset
= mips_elf_gotplt_index (info
, h
);
8414 /* Calculate the offset for the branch at the start of the PLT
8415 entry. The branch jumps to the beginning of .plt. */
8416 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
8418 /* Fill in the initial value of the .got.plt entry. */
8419 bfd_put_32 (output_bfd
, plt_address
,
8420 htab
->sgotplt
->contents
+ plt_index
* 4);
8422 /* Find out where the .plt entry should go. */
8423 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
8427 plt_entry
= mips_vxworks_shared_plt_entry
;
8428 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
8429 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
8433 bfd_vma got_address_high
, got_address_low
;
8435 plt_entry
= mips_vxworks_exec_plt_entry
;
8436 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
8437 got_address_low
= got_address
& 0xffff;
8439 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
8440 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
8441 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
8442 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
8443 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
8444 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
8445 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
8446 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
8448 loc
= (htab
->srelplt2
->contents
8449 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
8451 /* Emit a relocation for the .got.plt entry. */
8452 rel
.r_offset
= got_address
;
8453 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
8454 rel
.r_addend
= h
->plt
.offset
;
8455 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8457 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8458 loc
+= sizeof (Elf32_External_Rela
);
8459 rel
.r_offset
= plt_address
+ 8;
8460 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8461 rel
.r_addend
= got_offset
;
8462 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8464 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8465 loc
+= sizeof (Elf32_External_Rela
);
8467 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8468 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8471 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8472 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
8473 rel
.r_offset
= got_address
;
8474 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
8476 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8478 if (!h
->def_regular
)
8479 sym
->st_shndx
= SHN_UNDEF
;
8482 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
8484 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8485 BFD_ASSERT (sgot
!= NULL
);
8486 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8487 g
= mips_elf_section_data (sgot
)->u
.got_info
;
8488 BFD_ASSERT (g
!= NULL
);
8490 /* See if this symbol has an entry in the GOT. */
8491 if (g
->global_gotsym
!= NULL
8492 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8495 Elf_Internal_Rela outrel
;
8499 /* Install the symbol value in the GOT. */
8500 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
8501 R_MIPS_GOT16
, info
);
8502 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
8504 /* Add a dynamic relocation for it. */
8505 s
= mips_elf_rel_dyn_section (info
, FALSE
);
8506 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
8507 outrel
.r_offset
= (sgot
->output_section
->vma
8508 + sgot
->output_offset
8510 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
8511 outrel
.r_addend
= 0;
8512 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
8515 /* Emit a copy reloc, if needed. */
8518 Elf_Internal_Rela rel
;
8520 BFD_ASSERT (h
->dynindx
!= -1);
8522 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
8523 + h
->root
.u
.def
.section
->output_offset
8524 + h
->root
.u
.def
.value
);
8525 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
8527 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
8528 htab
->srelbss
->contents
8529 + (htab
->srelbss
->reloc_count
8530 * sizeof (Elf32_External_Rela
)));
8531 ++htab
->srelbss
->reloc_count
;
8534 /* If this is a mips16 symbol, force the value to be even. */
8535 if (sym
->st_other
== STO_MIPS16
)
8536 sym
->st_value
&= ~1;
8541 /* Install the PLT header for a VxWorks executable and finalize the
8542 contents of .rela.plt.unloaded. */
8545 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
8547 Elf_Internal_Rela rela
;
8549 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
8550 static const bfd_vma
*plt_entry
;
8551 struct mips_elf_link_hash_table
*htab
;
8553 htab
= mips_elf_hash_table (info
);
8554 plt_entry
= mips_vxworks_exec_plt0_entry
;
8556 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8557 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
8558 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
8559 + htab
->root
.hgot
->root
.u
.def
.value
);
8561 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
8562 got_value_low
= got_value
& 0xffff;
8564 /* Calculate the address of the PLT header. */
8565 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
8567 /* Install the PLT header. */
8568 loc
= htab
->splt
->contents
;
8569 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
8570 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
8571 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
8572 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
8573 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
8574 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
8576 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8577 loc
= htab
->srelplt2
->contents
;
8578 rela
.r_offset
= plt_address
;
8579 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8581 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
8582 loc
+= sizeof (Elf32_External_Rela
);
8584 /* Output the relocation for the following addiu of
8585 %lo(_GLOBAL_OFFSET_TABLE_). */
8587 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8588 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
8589 loc
+= sizeof (Elf32_External_Rela
);
8591 /* Fix up the remaining relocations. They may have the wrong
8592 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8593 in which symbols were output. */
8594 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
8596 Elf_Internal_Rela rel
;
8598 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8599 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
8600 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8601 loc
+= sizeof (Elf32_External_Rela
);
8603 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8604 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8605 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8606 loc
+= sizeof (Elf32_External_Rela
);
8608 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8609 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8610 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8611 loc
+= sizeof (Elf32_External_Rela
);
8615 /* Install the PLT header for a VxWorks shared library. */
8618 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
8621 struct mips_elf_link_hash_table
*htab
;
8623 htab
= mips_elf_hash_table (info
);
8625 /* We just need to copy the entry byte-by-byte. */
8626 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
8627 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
8628 htab
->splt
->contents
+ i
* 4);
8631 /* Finish up the dynamic sections. */
8634 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
8635 struct bfd_link_info
*info
)
8640 struct mips_got_info
*gg
, *g
;
8641 struct mips_elf_link_hash_table
*htab
;
8643 htab
= mips_elf_hash_table (info
);
8644 dynobj
= elf_hash_table (info
)->dynobj
;
8646 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
8648 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8653 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8654 gg
= mips_elf_section_data (sgot
)->u
.got_info
;
8655 BFD_ASSERT (gg
!= NULL
);
8656 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
8657 BFD_ASSERT (g
!= NULL
);
8660 if (elf_hash_table (info
)->dynamic_sections_created
)
8663 int dyn_to_skip
= 0, dyn_skipped
= 0;
8665 BFD_ASSERT (sdyn
!= NULL
);
8666 BFD_ASSERT (g
!= NULL
);
8668 for (b
= sdyn
->contents
;
8669 b
< sdyn
->contents
+ sdyn
->size
;
8670 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8672 Elf_Internal_Dyn dyn
;
8676 bfd_boolean swap_out_p
;
8678 /* Read in the current dynamic entry. */
8679 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8681 /* Assume that we're going to modify it and write it out. */
8687 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
8691 BFD_ASSERT (htab
->is_vxworks
);
8692 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
8696 /* Rewrite DT_STRSZ. */
8698 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
8703 if (htab
->is_vxworks
)
8705 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8706 of the ".got" section in DYNOBJ. */
8707 s
= bfd_get_section_by_name (dynobj
, name
);
8708 BFD_ASSERT (s
!= NULL
);
8709 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
8713 s
= bfd_get_section_by_name (output_bfd
, name
);
8714 BFD_ASSERT (s
!= NULL
);
8715 dyn
.d_un
.d_ptr
= s
->vma
;
8719 case DT_MIPS_RLD_VERSION
:
8720 dyn
.d_un
.d_val
= 1; /* XXX */
8724 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
8727 case DT_MIPS_TIME_STAMP
:
8735 case DT_MIPS_ICHECKSUM
:
8740 case DT_MIPS_IVERSION
:
8745 case DT_MIPS_BASE_ADDRESS
:
8746 s
= output_bfd
->sections
;
8747 BFD_ASSERT (s
!= NULL
);
8748 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
8751 case DT_MIPS_LOCAL_GOTNO
:
8752 dyn
.d_un
.d_val
= g
->local_gotno
;
8755 case DT_MIPS_UNREFEXTNO
:
8756 /* The index into the dynamic symbol table which is the
8757 entry of the first external symbol that is not
8758 referenced within the same object. */
8759 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
8762 case DT_MIPS_GOTSYM
:
8763 if (gg
->global_gotsym
)
8765 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
8768 /* In case if we don't have global got symbols we default
8769 to setting DT_MIPS_GOTSYM to the same value as
8770 DT_MIPS_SYMTABNO, so we just fall through. */
8772 case DT_MIPS_SYMTABNO
:
8774 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
8775 s
= bfd_get_section_by_name (output_bfd
, name
);
8776 BFD_ASSERT (s
!= NULL
);
8778 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
8781 case DT_MIPS_HIPAGENO
:
8782 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO (info
);
8785 case DT_MIPS_RLD_MAP
:
8786 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
8789 case DT_MIPS_OPTIONS
:
8790 s
= (bfd_get_section_by_name
8791 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
8792 dyn
.d_un
.d_ptr
= s
->vma
;
8796 BFD_ASSERT (htab
->is_vxworks
);
8797 /* The count does not include the JUMP_SLOT relocations. */
8799 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
8803 BFD_ASSERT (htab
->is_vxworks
);
8804 dyn
.d_un
.d_val
= DT_RELA
;
8808 BFD_ASSERT (htab
->is_vxworks
);
8809 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
8813 BFD_ASSERT (htab
->is_vxworks
);
8814 dyn
.d_un
.d_val
= (htab
->srelplt
->output_section
->vma
8815 + htab
->srelplt
->output_offset
);
8819 /* If we didn't need any text relocations after all, delete
8821 if (!(info
->flags
& DF_TEXTREL
))
8823 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
8829 /* If we didn't need any text relocations after all, clear
8830 DF_TEXTREL from DT_FLAGS. */
8831 if (!(info
->flags
& DF_TEXTREL
))
8832 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
8842 if (swap_out_p
|| dyn_skipped
)
8843 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
8844 (dynobj
, &dyn
, b
- dyn_skipped
);
8848 dyn_skipped
+= dyn_to_skip
;
8853 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8854 if (dyn_skipped
> 0)
8855 memset (b
- dyn_skipped
, 0, dyn_skipped
);
8858 if (sgot
!= NULL
&& sgot
->size
> 0)
8860 if (htab
->is_vxworks
)
8862 /* The first entry of the global offset table points to the
8863 ".dynamic" section. The second is initialized by the
8864 loader and contains the shared library identifier.
8865 The third is also initialized by the loader and points
8866 to the lazy resolution stub. */
8867 MIPS_ELF_PUT_WORD (output_bfd
,
8868 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
8870 MIPS_ELF_PUT_WORD (output_bfd
, 0,
8871 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8872 MIPS_ELF_PUT_WORD (output_bfd
, 0,
8874 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
8878 /* The first entry of the global offset table will be filled at
8879 runtime. The second entry will be used by some runtime loaders.
8880 This isn't the case of IRIX rld. */
8881 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
8882 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
8883 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8886 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
8887 = MIPS_ELF_GOT_SIZE (output_bfd
);
8890 /* Generate dynamic relocations for the non-primary gots. */
8891 if (gg
!= NULL
&& gg
->next
)
8893 Elf_Internal_Rela rel
[3];
8896 memset (rel
, 0, sizeof (rel
));
8897 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
8899 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
8901 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
8902 + g
->next
->tls_gotno
;
8904 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
8905 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
8906 MIPS_ELF_PUT_WORD (output_bfd
, 0x80000000, sgot
->contents
8907 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
8912 while (index
< g
->assigned_gotno
)
8914 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
8915 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
8916 if (!(mips_elf_create_dynamic_relocation
8917 (output_bfd
, info
, rel
, NULL
,
8918 bfd_abs_section_ptr
,
8921 BFD_ASSERT (addend
== 0);
8926 /* The generation of dynamic relocations for the non-primary gots
8927 adds more dynamic relocations. We cannot count them until
8930 if (elf_hash_table (info
)->dynamic_sections_created
)
8933 bfd_boolean swap_out_p
;
8935 BFD_ASSERT (sdyn
!= NULL
);
8937 for (b
= sdyn
->contents
;
8938 b
< sdyn
->contents
+ sdyn
->size
;
8939 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8941 Elf_Internal_Dyn dyn
;
8944 /* Read in the current dynamic entry. */
8945 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8947 /* Assume that we're going to modify it and write it out. */
8953 /* Reduce DT_RELSZ to account for any relocations we
8954 decided not to make. This is for the n64 irix rld,
8955 which doesn't seem to apply any relocations if there
8956 are trailing null entries. */
8957 s
= mips_elf_rel_dyn_section (info
, FALSE
);
8958 dyn
.d_un
.d_val
= (s
->reloc_count
8959 * (ABI_64_P (output_bfd
)
8960 ? sizeof (Elf64_Mips_External_Rel
)
8961 : sizeof (Elf32_External_Rel
)));
8962 /* Adjust the section size too. Tools like the prelinker
8963 can reasonably expect the values to the same. */
8964 elf_section_data (s
->output_section
)->this_hdr
.sh_size
8974 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
8981 Elf32_compact_rel cpt
;
8983 if (SGI_COMPAT (output_bfd
))
8985 /* Write .compact_rel section out. */
8986 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
8990 cpt
.num
= s
->reloc_count
;
8992 cpt
.offset
= (s
->output_section
->filepos
8993 + sizeof (Elf32_External_compact_rel
));
8996 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
8997 ((Elf32_External_compact_rel
*)
9000 /* Clean up a dummy stub function entry in .text. */
9001 s
= bfd_get_section_by_name (dynobj
,
9002 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
9005 file_ptr dummy_offset
;
9007 BFD_ASSERT (s
->size
>= htab
->function_stub_size
);
9008 dummy_offset
= s
->size
- htab
->function_stub_size
;
9009 memset (s
->contents
+ dummy_offset
, 0,
9010 htab
->function_stub_size
);
9015 /* The psABI says that the dynamic relocations must be sorted in
9016 increasing order of r_symndx. The VxWorks EABI doesn't require
9017 this, and because the code below handles REL rather than RELA
9018 relocations, using it for VxWorks would be outright harmful. */
9019 if (!htab
->is_vxworks
)
9021 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9023 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
9025 reldyn_sorting_bfd
= output_bfd
;
9027 if (ABI_64_P (output_bfd
))
9028 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
9029 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
9030 sort_dynamic_relocs_64
);
9032 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
9033 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
9034 sort_dynamic_relocs
);
9039 if (htab
->is_vxworks
&& htab
->splt
->size
> 0)
9042 mips_vxworks_finish_shared_plt (output_bfd
, info
);
9044 mips_vxworks_finish_exec_plt (output_bfd
, info
);
9050 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9053 mips_set_isa_flags (bfd
*abfd
)
9057 switch (bfd_get_mach (abfd
))
9060 case bfd_mach_mips3000
:
9061 val
= E_MIPS_ARCH_1
;
9064 case bfd_mach_mips3900
:
9065 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
9068 case bfd_mach_mips6000
:
9069 val
= E_MIPS_ARCH_2
;
9072 case bfd_mach_mips4000
:
9073 case bfd_mach_mips4300
:
9074 case bfd_mach_mips4400
:
9075 case bfd_mach_mips4600
:
9076 val
= E_MIPS_ARCH_3
;
9079 case bfd_mach_mips4010
:
9080 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
9083 case bfd_mach_mips4100
:
9084 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
9087 case bfd_mach_mips4111
:
9088 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
9091 case bfd_mach_mips4120
:
9092 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
9095 case bfd_mach_mips4650
:
9096 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
9099 case bfd_mach_mips5400
:
9100 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
9103 case bfd_mach_mips5500
:
9104 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
9107 case bfd_mach_mips9000
:
9108 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
9111 case bfd_mach_mips5000
:
9112 case bfd_mach_mips7000
:
9113 case bfd_mach_mips8000
:
9114 case bfd_mach_mips10000
:
9115 case bfd_mach_mips12000
:
9116 val
= E_MIPS_ARCH_4
;
9119 case bfd_mach_mips5
:
9120 val
= E_MIPS_ARCH_5
;
9123 case bfd_mach_mips_sb1
:
9124 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
9127 case bfd_mach_mipsisa32
:
9128 val
= E_MIPS_ARCH_32
;
9131 case bfd_mach_mipsisa64
:
9132 val
= E_MIPS_ARCH_64
;
9135 case bfd_mach_mipsisa32r2
:
9136 val
= E_MIPS_ARCH_32R2
;
9139 case bfd_mach_mipsisa64r2
:
9140 val
= E_MIPS_ARCH_64R2
;
9143 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
9144 elf_elfheader (abfd
)->e_flags
|= val
;
9149 /* The final processing done just before writing out a MIPS ELF object
9150 file. This gets the MIPS architecture right based on the machine
9151 number. This is used by both the 32-bit and the 64-bit ABI. */
9154 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
9155 bfd_boolean linker ATTRIBUTE_UNUSED
)
9158 Elf_Internal_Shdr
**hdrpp
;
9162 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9163 is nonzero. This is for compatibility with old objects, which used
9164 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9165 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
9166 mips_set_isa_flags (abfd
);
9168 /* Set the sh_info field for .gptab sections and other appropriate
9169 info for each special section. */
9170 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
9171 i
< elf_numsections (abfd
);
9174 switch ((*hdrpp
)->sh_type
)
9177 case SHT_MIPS_LIBLIST
:
9178 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
9180 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9183 case SHT_MIPS_GPTAB
:
9184 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
9185 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
9186 BFD_ASSERT (name
!= NULL
9187 && CONST_STRNEQ (name
, ".gptab."));
9188 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
9189 BFD_ASSERT (sec
!= NULL
);
9190 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
9193 case SHT_MIPS_CONTENT
:
9194 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
9195 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
9196 BFD_ASSERT (name
!= NULL
9197 && CONST_STRNEQ (name
, ".MIPS.content"));
9198 sec
= bfd_get_section_by_name (abfd
,
9199 name
+ sizeof ".MIPS.content" - 1);
9200 BFD_ASSERT (sec
!= NULL
);
9201 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9204 case SHT_MIPS_SYMBOL_LIB
:
9205 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
9207 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9208 sec
= bfd_get_section_by_name (abfd
, ".liblist");
9210 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
9213 case SHT_MIPS_EVENTS
:
9214 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
9215 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
9216 BFD_ASSERT (name
!= NULL
);
9217 if (CONST_STRNEQ (name
, ".MIPS.events"))
9218 sec
= bfd_get_section_by_name (abfd
,
9219 name
+ sizeof ".MIPS.events" - 1);
9222 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
9223 sec
= bfd_get_section_by_name (abfd
,
9225 + sizeof ".MIPS.post_rel" - 1));
9227 BFD_ASSERT (sec
!= NULL
);
9228 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9235 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9239 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
9240 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
9245 /* See if we need a PT_MIPS_REGINFO segment. */
9246 s
= bfd_get_section_by_name (abfd
, ".reginfo");
9247 if (s
&& (s
->flags
& SEC_LOAD
))
9250 /* See if we need a PT_MIPS_OPTIONS segment. */
9251 if (IRIX_COMPAT (abfd
) == ict_irix6
9252 && bfd_get_section_by_name (abfd
,
9253 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
9256 /* See if we need a PT_MIPS_RTPROC segment. */
9257 if (IRIX_COMPAT (abfd
) == ict_irix5
9258 && bfd_get_section_by_name (abfd
, ".dynamic")
9259 && bfd_get_section_by_name (abfd
, ".mdebug"))
9262 /* Allocate a PT_NULL header in dynamic objects. See
9263 _bfd_mips_elf_modify_segment_map for details. */
9264 if (!SGI_COMPAT (abfd
)
9265 && bfd_get_section_by_name (abfd
, ".dynamic"))
9271 /* Modify the segment map for an IRIX5 executable. */
9274 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
9275 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
9278 struct elf_segment_map
*m
, **pm
;
9281 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9283 s
= bfd_get_section_by_name (abfd
, ".reginfo");
9284 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
9286 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
9287 if (m
->p_type
== PT_MIPS_REGINFO
)
9292 m
= bfd_zalloc (abfd
, amt
);
9296 m
->p_type
= PT_MIPS_REGINFO
;
9300 /* We want to put it after the PHDR and INTERP segments. */
9301 pm
= &elf_tdata (abfd
)->segment_map
;
9303 && ((*pm
)->p_type
== PT_PHDR
9304 || (*pm
)->p_type
== PT_INTERP
))
9312 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9313 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9314 PT_MIPS_OPTIONS segment immediately following the program header
9317 /* On non-IRIX6 new abi, we'll have already created a segment
9318 for this section, so don't create another. I'm not sure this
9319 is not also the case for IRIX 6, but I can't test it right
9321 && IRIX_COMPAT (abfd
) == ict_irix6
)
9323 for (s
= abfd
->sections
; s
; s
= s
->next
)
9324 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
9329 struct elf_segment_map
*options_segment
;
9331 pm
= &elf_tdata (abfd
)->segment_map
;
9333 && ((*pm
)->p_type
== PT_PHDR
9334 || (*pm
)->p_type
== PT_INTERP
))
9337 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
9339 amt
= sizeof (struct elf_segment_map
);
9340 options_segment
= bfd_zalloc (abfd
, amt
);
9341 options_segment
->next
= *pm
;
9342 options_segment
->p_type
= PT_MIPS_OPTIONS
;
9343 options_segment
->p_flags
= PF_R
;
9344 options_segment
->p_flags_valid
= TRUE
;
9345 options_segment
->count
= 1;
9346 options_segment
->sections
[0] = s
;
9347 *pm
= options_segment
;
9353 if (IRIX_COMPAT (abfd
) == ict_irix5
)
9355 /* If there are .dynamic and .mdebug sections, we make a room
9356 for the RTPROC header. FIXME: Rewrite without section names. */
9357 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
9358 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
9359 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
9361 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
9362 if (m
->p_type
== PT_MIPS_RTPROC
)
9367 m
= bfd_zalloc (abfd
, amt
);
9371 m
->p_type
= PT_MIPS_RTPROC
;
9373 s
= bfd_get_section_by_name (abfd
, ".rtproc");
9378 m
->p_flags_valid
= 1;
9386 /* We want to put it after the DYNAMIC segment. */
9387 pm
= &elf_tdata (abfd
)->segment_map
;
9388 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
9398 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9399 .dynstr, .dynsym, and .hash sections, and everything in
9401 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
9403 if ((*pm
)->p_type
== PT_DYNAMIC
)
9406 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
9408 /* For a normal mips executable the permissions for the PT_DYNAMIC
9409 segment are read, write and execute. We do that here since
9410 the code in elf.c sets only the read permission. This matters
9411 sometimes for the dynamic linker. */
9412 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
9414 m
->p_flags
= PF_R
| PF_W
| PF_X
;
9415 m
->p_flags_valid
= 1;
9418 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9419 glibc's dynamic linker has traditionally derived the number of
9420 tags from the p_filesz field, and sometimes allocates stack
9421 arrays of that size. An overly-big PT_DYNAMIC segment can
9422 be actively harmful in such cases. Making PT_DYNAMIC contain
9423 other sections can also make life hard for the prelinker,
9424 which might move one of the other sections to a different
9426 if (SGI_COMPAT (abfd
)
9429 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
9431 static const char *sec_names
[] =
9433 ".dynamic", ".dynstr", ".dynsym", ".hash"
9437 struct elf_segment_map
*n
;
9441 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
9443 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
9444 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
9451 if (high
< s
->vma
+ sz
)
9457 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
9458 if ((s
->flags
& SEC_LOAD
) != 0
9460 && s
->vma
+ s
->size
<= high
)
9463 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
9464 n
= bfd_zalloc (abfd
, amt
);
9471 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
9473 if ((s
->flags
& SEC_LOAD
) != 0
9475 && s
->vma
+ s
->size
<= high
)
9486 /* Allocate a spare program header in dynamic objects so that tools
9487 like the prelinker can add an extra PT_LOAD entry.
9489 If the prelinker needs to make room for a new PT_LOAD entry, its
9490 standard procedure is to move the first (read-only) sections into
9491 the new (writable) segment. However, the MIPS ABI requires
9492 .dynamic to be in a read-only segment, and the section will often
9493 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9495 Although the prelinker could in principle move .dynamic to a
9496 writable segment, it seems better to allocate a spare program
9497 header instead, and avoid the need to move any sections.
9498 There is a long tradition of allocating spare dynamic tags,
9499 so allocating a spare program header seems like a natural
9501 if (!SGI_COMPAT (abfd
)
9502 && bfd_get_section_by_name (abfd
, ".dynamic"))
9504 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
9505 if ((*pm
)->p_type
== PT_NULL
)
9509 m
= bfd_zalloc (abfd
, sizeof (*m
));
9513 m
->p_type
= PT_NULL
;
9521 /* Return the section that should be marked against GC for a given
9525 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
9526 struct bfd_link_info
*info
,
9527 Elf_Internal_Rela
*rel
,
9528 struct elf_link_hash_entry
*h
,
9529 Elf_Internal_Sym
*sym
)
9531 /* ??? Do mips16 stub sections need to be handled special? */
9534 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
9536 case R_MIPS_GNU_VTINHERIT
:
9537 case R_MIPS_GNU_VTENTRY
:
9541 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
9544 /* Update the got entry reference counts for the section being removed. */
9547 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
9548 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
9549 asection
*sec ATTRIBUTE_UNUSED
,
9550 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
9553 Elf_Internal_Shdr
*symtab_hdr
;
9554 struct elf_link_hash_entry
**sym_hashes
;
9555 bfd_signed_vma
*local_got_refcounts
;
9556 const Elf_Internal_Rela
*rel
, *relend
;
9557 unsigned long r_symndx
;
9558 struct elf_link_hash_entry
*h
;
9560 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9561 sym_hashes
= elf_sym_hashes (abfd
);
9562 local_got_refcounts
= elf_local_got_refcounts (abfd
);
9564 relend
= relocs
+ sec
->reloc_count
;
9565 for (rel
= relocs
; rel
< relend
; rel
++)
9566 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
9570 case R_MIPS_CALL_HI16
:
9571 case R_MIPS_CALL_LO16
:
9572 case R_MIPS_GOT_HI16
:
9573 case R_MIPS_GOT_LO16
:
9574 case R_MIPS_GOT_DISP
:
9575 case R_MIPS_GOT_PAGE
:
9576 case R_MIPS_GOT_OFST
:
9577 /* ??? It would seem that the existing MIPS code does no sort
9578 of reference counting or whatnot on its GOT and PLT entries,
9579 so it is not possible to garbage collect them at this time. */
9590 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9591 hiding the old indirect symbol. Process additional relocation
9592 information. Also called for weakdefs, in which case we just let
9593 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9596 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
9597 struct elf_link_hash_entry
*dir
,
9598 struct elf_link_hash_entry
*ind
)
9600 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
9602 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
9604 if (ind
->root
.type
!= bfd_link_hash_indirect
)
9607 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
9608 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
9609 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
9610 if (indmips
->readonly_reloc
)
9611 dirmips
->readonly_reloc
= TRUE
;
9612 if (indmips
->no_fn_stub
)
9613 dirmips
->no_fn_stub
= TRUE
;
9615 if (dirmips
->tls_type
== 0)
9616 dirmips
->tls_type
= indmips
->tls_type
;
9620 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
9621 struct elf_link_hash_entry
*entry
,
9622 bfd_boolean force_local
)
9626 struct mips_got_info
*g
;
9627 struct mips_elf_link_hash_entry
*h
;
9629 h
= (struct mips_elf_link_hash_entry
*) entry
;
9630 if (h
->forced_local
)
9632 h
->forced_local
= force_local
;
9634 dynobj
= elf_hash_table (info
)->dynobj
;
9635 if (dynobj
!= NULL
&& force_local
&& h
->root
.type
!= STT_TLS
9636 && (got
= mips_elf_got_section (dynobj
, TRUE
)) != NULL
9637 && (g
= mips_elf_section_data (got
)->u
.got_info
) != NULL
)
9641 struct mips_got_entry e
;
9642 struct mips_got_info
*gg
= g
;
9644 /* Since we're turning what used to be a global symbol into a
9645 local one, bump up the number of local entries of each GOT
9646 that had an entry for it. This will automatically decrease
9647 the number of global entries, since global_gotno is actually
9648 the upper limit of global entries. */
9654 for (g
= g
->next
; g
!= gg
; g
= g
->next
)
9655 if (htab_find (g
->got_entries
, &e
))
9657 BFD_ASSERT (g
->global_gotno
> 0);
9662 /* If this was a global symbol forced into the primary GOT, we
9663 no longer need an entry for it. We can't release the entry
9664 at this point, but we must at least stop counting it as one
9665 of the symbols that required a forced got entry. */
9666 if (h
->root
.got
.offset
== 2)
9668 BFD_ASSERT (gg
->assigned_gotno
> 0);
9669 gg
->assigned_gotno
--;
9672 else if (g
->global_gotno
== 0 && g
->global_gotsym
== NULL
)
9673 /* If we haven't got through GOT allocation yet, just bump up the
9674 number of local entries, as this symbol won't be counted as
9677 else if (h
->root
.got
.offset
== 1)
9679 /* If we're past non-multi-GOT allocation and this symbol had
9680 been marked for a global got entry, give it a local entry
9682 BFD_ASSERT (g
->global_gotno
> 0);
9688 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
9694 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
9695 struct bfd_link_info
*info
)
9698 bfd_boolean ret
= FALSE
;
9699 unsigned char *tdata
;
9702 o
= bfd_get_section_by_name (abfd
, ".pdr");
9707 if (o
->size
% PDR_SIZE
!= 0)
9709 if (o
->output_section
!= NULL
9710 && bfd_is_abs_section (o
->output_section
))
9713 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
9717 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
9725 cookie
->rel
= cookie
->rels
;
9726 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
9728 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
9730 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
9739 mips_elf_section_data (o
)->u
.tdata
= tdata
;
9740 o
->size
-= skip
* PDR_SIZE
;
9746 if (! info
->keep_memory
)
9747 free (cookie
->rels
);
9753 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
9755 if (strcmp (sec
->name
, ".pdr") == 0)
9761 _bfd_mips_elf_write_section (bfd
*output_bfd
,
9762 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
9763 asection
*sec
, bfd_byte
*contents
)
9765 bfd_byte
*to
, *from
, *end
;
9768 if (strcmp (sec
->name
, ".pdr") != 0)
9771 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
9775 end
= contents
+ sec
->size
;
9776 for (from
= contents
, i
= 0;
9778 from
+= PDR_SIZE
, i
++)
9780 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
9783 memcpy (to
, from
, PDR_SIZE
);
9786 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
9787 sec
->output_offset
, sec
->size
);
9791 /* MIPS ELF uses a special find_nearest_line routine in order the
9792 handle the ECOFF debugging information. */
9794 struct mips_elf_find_line
9796 struct ecoff_debug_info d
;
9797 struct ecoff_find_line i
;
9801 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
9802 asymbol
**symbols
, bfd_vma offset
,
9803 const char **filename_ptr
,
9804 const char **functionname_ptr
,
9805 unsigned int *line_ptr
)
9809 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
9810 filename_ptr
, functionname_ptr
,
9814 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
9815 filename_ptr
, functionname_ptr
,
9816 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
9817 &elf_tdata (abfd
)->dwarf2_find_line_info
))
9820 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
9824 struct mips_elf_find_line
*fi
;
9825 const struct ecoff_debug_swap
* const swap
=
9826 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
9828 /* If we are called during a link, mips_elf_final_link may have
9829 cleared the SEC_HAS_CONTENTS field. We force it back on here
9830 if appropriate (which it normally will be). */
9831 origflags
= msec
->flags
;
9832 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
9833 msec
->flags
|= SEC_HAS_CONTENTS
;
9835 fi
= elf_tdata (abfd
)->find_line_info
;
9838 bfd_size_type external_fdr_size
;
9841 struct fdr
*fdr_ptr
;
9842 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
9844 fi
= bfd_zalloc (abfd
, amt
);
9847 msec
->flags
= origflags
;
9851 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
9853 msec
->flags
= origflags
;
9857 /* Swap in the FDR information. */
9858 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
9859 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
9860 if (fi
->d
.fdr
== NULL
)
9862 msec
->flags
= origflags
;
9865 external_fdr_size
= swap
->external_fdr_size
;
9866 fdr_ptr
= fi
->d
.fdr
;
9867 fraw_src
= (char *) fi
->d
.external_fdr
;
9868 fraw_end
= (fraw_src
9869 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
9870 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
9871 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
9873 elf_tdata (abfd
)->find_line_info
= fi
;
9875 /* Note that we don't bother to ever free this information.
9876 find_nearest_line is either called all the time, as in
9877 objdump -l, so the information should be saved, or it is
9878 rarely called, as in ld error messages, so the memory
9879 wasted is unimportant. Still, it would probably be a
9880 good idea for free_cached_info to throw it away. */
9883 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
9884 &fi
->i
, filename_ptr
, functionname_ptr
,
9887 msec
->flags
= origflags
;
9891 msec
->flags
= origflags
;
9894 /* Fall back on the generic ELF find_nearest_line routine. */
9896 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
9897 filename_ptr
, functionname_ptr
,
9902 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
9903 const char **filename_ptr
,
9904 const char **functionname_ptr
,
9905 unsigned int *line_ptr
)
9908 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
9909 functionname_ptr
, line_ptr
,
9910 & elf_tdata (abfd
)->dwarf2_find_line_info
);
9915 /* When are writing out the .options or .MIPS.options section,
9916 remember the bytes we are writing out, so that we can install the
9917 GP value in the section_processing routine. */
9920 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
9921 const void *location
,
9922 file_ptr offset
, bfd_size_type count
)
9924 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
9928 if (elf_section_data (section
) == NULL
)
9930 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
9931 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
9932 if (elf_section_data (section
) == NULL
)
9935 c
= mips_elf_section_data (section
)->u
.tdata
;
9938 c
= bfd_zalloc (abfd
, section
->size
);
9941 mips_elf_section_data (section
)->u
.tdata
= c
;
9944 memcpy (c
+ offset
, location
, count
);
9947 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
9951 /* This is almost identical to bfd_generic_get_... except that some
9952 MIPS relocations need to be handled specially. Sigh. */
9955 _bfd_elf_mips_get_relocated_section_contents
9957 struct bfd_link_info
*link_info
,
9958 struct bfd_link_order
*link_order
,
9960 bfd_boolean relocatable
,
9963 /* Get enough memory to hold the stuff */
9964 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
9965 asection
*input_section
= link_order
->u
.indirect
.section
;
9968 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
9969 arelent
**reloc_vector
= NULL
;
9975 reloc_vector
= bfd_malloc (reloc_size
);
9976 if (reloc_vector
== NULL
&& reloc_size
!= 0)
9979 /* read in the section */
9980 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
9981 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
9984 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
9988 if (reloc_count
< 0)
9991 if (reloc_count
> 0)
9996 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
9999 struct bfd_hash_entry
*h
;
10000 struct bfd_link_hash_entry
*lh
;
10001 /* Skip all this stuff if we aren't mixing formats. */
10002 if (abfd
&& input_bfd
10003 && abfd
->xvec
== input_bfd
->xvec
)
10007 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
10008 lh
= (struct bfd_link_hash_entry
*) h
;
10015 case bfd_link_hash_undefined
:
10016 case bfd_link_hash_undefweak
:
10017 case bfd_link_hash_common
:
10020 case bfd_link_hash_defined
:
10021 case bfd_link_hash_defweak
:
10023 gp
= lh
->u
.def
.value
;
10025 case bfd_link_hash_indirect
:
10026 case bfd_link_hash_warning
:
10028 /* @@FIXME ignoring warning for now */
10030 case bfd_link_hash_new
:
10039 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
10041 char *error_message
= NULL
;
10042 bfd_reloc_status_type r
;
10044 /* Specific to MIPS: Deal with relocation types that require
10045 knowing the gp of the output bfd. */
10046 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
10048 /* If we've managed to find the gp and have a special
10049 function for the relocation then go ahead, else default
10050 to the generic handling. */
10052 && (*parent
)->howto
->special_function
10053 == _bfd_mips_elf32_gprel16_reloc
)
10054 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
10055 input_section
, relocatable
,
10058 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
10060 relocatable
? abfd
: NULL
,
10065 asection
*os
= input_section
->output_section
;
10067 /* A partial link, so keep the relocs */
10068 os
->orelocation
[os
->reloc_count
] = *parent
;
10072 if (r
!= bfd_reloc_ok
)
10076 case bfd_reloc_undefined
:
10077 if (!((*link_info
->callbacks
->undefined_symbol
)
10078 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
10079 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
10082 case bfd_reloc_dangerous
:
10083 BFD_ASSERT (error_message
!= NULL
);
10084 if (!((*link_info
->callbacks
->reloc_dangerous
)
10085 (link_info
, error_message
, input_bfd
, input_section
,
10086 (*parent
)->address
)))
10089 case bfd_reloc_overflow
:
10090 if (!((*link_info
->callbacks
->reloc_overflow
)
10092 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
10093 (*parent
)->howto
->name
, (*parent
)->addend
,
10094 input_bfd
, input_section
, (*parent
)->address
)))
10097 case bfd_reloc_outofrange
:
10106 if (reloc_vector
!= NULL
)
10107 free (reloc_vector
);
10111 if (reloc_vector
!= NULL
)
10112 free (reloc_vector
);
10116 /* Create a MIPS ELF linker hash table. */
10118 struct bfd_link_hash_table
*
10119 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
10121 struct mips_elf_link_hash_table
*ret
;
10122 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
10124 ret
= bfd_malloc (amt
);
10128 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
10129 mips_elf_link_hash_newfunc
,
10130 sizeof (struct mips_elf_link_hash_entry
)))
10137 /* We no longer use this. */
10138 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
10139 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
10141 ret
->procedure_count
= 0;
10142 ret
->compact_rel_size
= 0;
10143 ret
->use_rld_obj_head
= FALSE
;
10144 ret
->rld_value
= 0;
10145 ret
->mips16_stubs_seen
= FALSE
;
10146 ret
->is_vxworks
= FALSE
;
10147 ret
->srelbss
= NULL
;
10148 ret
->sdynbss
= NULL
;
10149 ret
->srelplt
= NULL
;
10150 ret
->srelplt2
= NULL
;
10151 ret
->sgotplt
= NULL
;
10153 ret
->plt_header_size
= 0;
10154 ret
->plt_entry_size
= 0;
10155 ret
->function_stub_size
= 0;
10157 return &ret
->root
.root
;
10160 /* Likewise, but indicate that the target is VxWorks. */
10162 struct bfd_link_hash_table
*
10163 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
10165 struct bfd_link_hash_table
*ret
;
10167 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
10170 struct mips_elf_link_hash_table
*htab
;
10172 htab
= (struct mips_elf_link_hash_table
*) ret
;
10173 htab
->is_vxworks
= 1;
10178 /* We need to use a special link routine to handle the .reginfo and
10179 the .mdebug sections. We need to merge all instances of these
10180 sections together, not write them all out sequentially. */
10183 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10186 struct bfd_link_order
*p
;
10187 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
10188 asection
*rtproc_sec
;
10189 Elf32_RegInfo reginfo
;
10190 struct ecoff_debug_info debug
;
10191 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10192 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
10193 HDRR
*symhdr
= &debug
.symbolic_header
;
10194 void *mdebug_handle
= NULL
;
10199 struct mips_elf_link_hash_table
*htab
;
10201 static const char * const secname
[] =
10203 ".text", ".init", ".fini", ".data",
10204 ".rodata", ".sdata", ".sbss", ".bss"
10206 static const int sc
[] =
10208 scText
, scInit
, scFini
, scData
,
10209 scRData
, scSData
, scSBss
, scBss
10212 /* We'd carefully arranged the dynamic symbol indices, and then the
10213 generic size_dynamic_sections renumbered them out from under us.
10214 Rather than trying somehow to prevent the renumbering, just do
10216 htab
= mips_elf_hash_table (info
);
10217 if (elf_hash_table (info
)->dynamic_sections_created
)
10221 struct mips_got_info
*g
;
10222 bfd_size_type dynsecsymcount
;
10224 /* When we resort, we must tell mips_elf_sort_hash_table what
10225 the lowest index it may use is. That's the number of section
10226 symbols we're going to add. The generic ELF linker only
10227 adds these symbols when building a shared object. Note that
10228 we count the sections after (possibly) removing the .options
10231 dynsecsymcount
= count_section_dynsyms (abfd
, info
);
10232 if (! mips_elf_sort_hash_table (info
, dynsecsymcount
+ 1))
10235 /* Make sure we didn't grow the global .got region. */
10236 dynobj
= elf_hash_table (info
)->dynobj
;
10237 got
= mips_elf_got_section (dynobj
, FALSE
);
10238 g
= mips_elf_section_data (got
)->u
.got_info
;
10240 if (g
->global_gotsym
!= NULL
)
10241 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
10242 - g
->global_gotsym
->dynindx
)
10243 <= g
->global_gotno
);
10246 /* Get a value for the GP register. */
10247 if (elf_gp (abfd
) == 0)
10249 struct bfd_link_hash_entry
*h
;
10251 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
10252 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
10253 elf_gp (abfd
) = (h
->u
.def
.value
10254 + h
->u
.def
.section
->output_section
->vma
10255 + h
->u
.def
.section
->output_offset
);
10256 else if (htab
->is_vxworks
10257 && (h
= bfd_link_hash_lookup (info
->hash
,
10258 "_GLOBAL_OFFSET_TABLE_",
10259 FALSE
, FALSE
, TRUE
))
10260 && h
->type
== bfd_link_hash_defined
)
10261 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
10262 + h
->u
.def
.section
->output_offset
10264 else if (info
->relocatable
)
10266 bfd_vma lo
= MINUS_ONE
;
10268 /* Find the GP-relative section with the lowest offset. */
10269 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10271 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
10274 /* And calculate GP relative to that. */
10275 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
10279 /* If the relocate_section function needs to do a reloc
10280 involving the GP value, it should make a reloc_dangerous
10281 callback to warn that GP is not defined. */
10285 /* Go through the sections and collect the .reginfo and .mdebug
10287 reginfo_sec
= NULL
;
10289 gptab_data_sec
= NULL
;
10290 gptab_bss_sec
= NULL
;
10291 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10293 if (strcmp (o
->name
, ".reginfo") == 0)
10295 memset (®info
, 0, sizeof reginfo
);
10297 /* We have found the .reginfo section in the output file.
10298 Look through all the link_orders comprising it and merge
10299 the information together. */
10300 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10302 asection
*input_section
;
10304 Elf32_External_RegInfo ext
;
10307 if (p
->type
!= bfd_indirect_link_order
)
10309 if (p
->type
== bfd_data_link_order
)
10314 input_section
= p
->u
.indirect
.section
;
10315 input_bfd
= input_section
->owner
;
10317 if (! bfd_get_section_contents (input_bfd
, input_section
,
10318 &ext
, 0, sizeof ext
))
10321 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
10323 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
10324 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
10325 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
10326 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
10327 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
10329 /* ri_gp_value is set by the function
10330 mips_elf32_section_processing when the section is
10331 finally written out. */
10333 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10334 elf_link_input_bfd ignores this section. */
10335 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10338 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10339 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
10341 /* Skip this section later on (I don't think this currently
10342 matters, but someday it might). */
10343 o
->map_head
.link_order
= NULL
;
10348 if (strcmp (o
->name
, ".mdebug") == 0)
10350 struct extsym_info einfo
;
10353 /* We have found the .mdebug section in the output file.
10354 Look through all the link_orders comprising it and merge
10355 the information together. */
10356 symhdr
->magic
= swap
->sym_magic
;
10357 /* FIXME: What should the version stamp be? */
10358 symhdr
->vstamp
= 0;
10359 symhdr
->ilineMax
= 0;
10360 symhdr
->cbLine
= 0;
10361 symhdr
->idnMax
= 0;
10362 symhdr
->ipdMax
= 0;
10363 symhdr
->isymMax
= 0;
10364 symhdr
->ioptMax
= 0;
10365 symhdr
->iauxMax
= 0;
10366 symhdr
->issMax
= 0;
10367 symhdr
->issExtMax
= 0;
10368 symhdr
->ifdMax
= 0;
10370 symhdr
->iextMax
= 0;
10372 /* We accumulate the debugging information itself in the
10373 debug_info structure. */
10375 debug
.external_dnr
= NULL
;
10376 debug
.external_pdr
= NULL
;
10377 debug
.external_sym
= NULL
;
10378 debug
.external_opt
= NULL
;
10379 debug
.external_aux
= NULL
;
10381 debug
.ssext
= debug
.ssext_end
= NULL
;
10382 debug
.external_fdr
= NULL
;
10383 debug
.external_rfd
= NULL
;
10384 debug
.external_ext
= debug
.external_ext_end
= NULL
;
10386 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
10387 if (mdebug_handle
== NULL
)
10391 esym
.cobol_main
= 0;
10395 esym
.asym
.iss
= issNil
;
10396 esym
.asym
.st
= stLocal
;
10397 esym
.asym
.reserved
= 0;
10398 esym
.asym
.index
= indexNil
;
10400 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
10402 esym
.asym
.sc
= sc
[i
];
10403 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
10406 esym
.asym
.value
= s
->vma
;
10407 last
= s
->vma
+ s
->size
;
10410 esym
.asym
.value
= last
;
10411 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
10412 secname
[i
], &esym
))
10416 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10418 asection
*input_section
;
10420 const struct ecoff_debug_swap
*input_swap
;
10421 struct ecoff_debug_info input_debug
;
10425 if (p
->type
!= bfd_indirect_link_order
)
10427 if (p
->type
== bfd_data_link_order
)
10432 input_section
= p
->u
.indirect
.section
;
10433 input_bfd
= input_section
->owner
;
10435 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
10436 || (get_elf_backend_data (input_bfd
)
10437 ->elf_backend_ecoff_debug_swap
) == NULL
)
10439 /* I don't know what a non MIPS ELF bfd would be
10440 doing with a .mdebug section, but I don't really
10441 want to deal with it. */
10445 input_swap
= (get_elf_backend_data (input_bfd
)
10446 ->elf_backend_ecoff_debug_swap
);
10448 BFD_ASSERT (p
->size
== input_section
->size
);
10450 /* The ECOFF linking code expects that we have already
10451 read in the debugging information and set up an
10452 ecoff_debug_info structure, so we do that now. */
10453 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
10457 if (! (bfd_ecoff_debug_accumulate
10458 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
10459 &input_debug
, input_swap
, info
)))
10462 /* Loop through the external symbols. For each one with
10463 interesting information, try to find the symbol in
10464 the linker global hash table and save the information
10465 for the output external symbols. */
10466 eraw_src
= input_debug
.external_ext
;
10467 eraw_end
= (eraw_src
10468 + (input_debug
.symbolic_header
.iextMax
10469 * input_swap
->external_ext_size
));
10471 eraw_src
< eraw_end
;
10472 eraw_src
+= input_swap
->external_ext_size
)
10476 struct mips_elf_link_hash_entry
*h
;
10478 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
10479 if (ext
.asym
.sc
== scNil
10480 || ext
.asym
.sc
== scUndefined
10481 || ext
.asym
.sc
== scSUndefined
)
10484 name
= input_debug
.ssext
+ ext
.asym
.iss
;
10485 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
10486 name
, FALSE
, FALSE
, TRUE
);
10487 if (h
== NULL
|| h
->esym
.ifd
!= -2)
10492 BFD_ASSERT (ext
.ifd
10493 < input_debug
.symbolic_header
.ifdMax
);
10494 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
10500 /* Free up the information we just read. */
10501 free (input_debug
.line
);
10502 free (input_debug
.external_dnr
);
10503 free (input_debug
.external_pdr
);
10504 free (input_debug
.external_sym
);
10505 free (input_debug
.external_opt
);
10506 free (input_debug
.external_aux
);
10507 free (input_debug
.ss
);
10508 free (input_debug
.ssext
);
10509 free (input_debug
.external_fdr
);
10510 free (input_debug
.external_rfd
);
10511 free (input_debug
.external_ext
);
10513 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10514 elf_link_input_bfd ignores this section. */
10515 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10518 if (SGI_COMPAT (abfd
) && info
->shared
)
10520 /* Create .rtproc section. */
10521 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
10522 if (rtproc_sec
== NULL
)
10524 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
10525 | SEC_LINKER_CREATED
| SEC_READONLY
);
10527 rtproc_sec
= bfd_make_section_with_flags (abfd
,
10530 if (rtproc_sec
== NULL
10531 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
10535 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
10541 /* Build the external symbol information. */
10544 einfo
.debug
= &debug
;
10546 einfo
.failed
= FALSE
;
10547 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
10548 mips_elf_output_extsym
, &einfo
);
10552 /* Set the size of the .mdebug section. */
10553 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
10555 /* Skip this section later on (I don't think this currently
10556 matters, but someday it might). */
10557 o
->map_head
.link_order
= NULL
;
10562 if (CONST_STRNEQ (o
->name
, ".gptab."))
10564 const char *subname
;
10567 Elf32_External_gptab
*ext_tab
;
10570 /* The .gptab.sdata and .gptab.sbss sections hold
10571 information describing how the small data area would
10572 change depending upon the -G switch. These sections
10573 not used in executables files. */
10574 if (! info
->relocatable
)
10576 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10578 asection
*input_section
;
10580 if (p
->type
!= bfd_indirect_link_order
)
10582 if (p
->type
== bfd_data_link_order
)
10587 input_section
= p
->u
.indirect
.section
;
10589 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10590 elf_link_input_bfd ignores this section. */
10591 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10594 /* Skip this section later on (I don't think this
10595 currently matters, but someday it might). */
10596 o
->map_head
.link_order
= NULL
;
10598 /* Really remove the section. */
10599 bfd_section_list_remove (abfd
, o
);
10600 --abfd
->section_count
;
10605 /* There is one gptab for initialized data, and one for
10606 uninitialized data. */
10607 if (strcmp (o
->name
, ".gptab.sdata") == 0)
10608 gptab_data_sec
= o
;
10609 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
10613 (*_bfd_error_handler
)
10614 (_("%s: illegal section name `%s'"),
10615 bfd_get_filename (abfd
), o
->name
);
10616 bfd_set_error (bfd_error_nonrepresentable_section
);
10620 /* The linker script always combines .gptab.data and
10621 .gptab.sdata into .gptab.sdata, and likewise for
10622 .gptab.bss and .gptab.sbss. It is possible that there is
10623 no .sdata or .sbss section in the output file, in which
10624 case we must change the name of the output section. */
10625 subname
= o
->name
+ sizeof ".gptab" - 1;
10626 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
10628 if (o
== gptab_data_sec
)
10629 o
->name
= ".gptab.data";
10631 o
->name
= ".gptab.bss";
10632 subname
= o
->name
+ sizeof ".gptab" - 1;
10633 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
10636 /* Set up the first entry. */
10638 amt
= c
* sizeof (Elf32_gptab
);
10639 tab
= bfd_malloc (amt
);
10642 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
10643 tab
[0].gt_header
.gt_unused
= 0;
10645 /* Combine the input sections. */
10646 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10648 asection
*input_section
;
10650 bfd_size_type size
;
10651 unsigned long last
;
10652 bfd_size_type gpentry
;
10654 if (p
->type
!= bfd_indirect_link_order
)
10656 if (p
->type
== bfd_data_link_order
)
10661 input_section
= p
->u
.indirect
.section
;
10662 input_bfd
= input_section
->owner
;
10664 /* Combine the gptab entries for this input section one
10665 by one. We know that the input gptab entries are
10666 sorted by ascending -G value. */
10667 size
= input_section
->size
;
10669 for (gpentry
= sizeof (Elf32_External_gptab
);
10671 gpentry
+= sizeof (Elf32_External_gptab
))
10673 Elf32_External_gptab ext_gptab
;
10674 Elf32_gptab int_gptab
;
10680 if (! (bfd_get_section_contents
10681 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
10682 sizeof (Elf32_External_gptab
))))
10688 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
10690 val
= int_gptab
.gt_entry
.gt_g_value
;
10691 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
10694 for (look
= 1; look
< c
; look
++)
10696 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
10697 tab
[look
].gt_entry
.gt_bytes
+= add
;
10699 if (tab
[look
].gt_entry
.gt_g_value
== val
)
10705 Elf32_gptab
*new_tab
;
10708 /* We need a new table entry. */
10709 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
10710 new_tab
= bfd_realloc (tab
, amt
);
10711 if (new_tab
== NULL
)
10717 tab
[c
].gt_entry
.gt_g_value
= val
;
10718 tab
[c
].gt_entry
.gt_bytes
= add
;
10720 /* Merge in the size for the next smallest -G
10721 value, since that will be implied by this new
10724 for (look
= 1; look
< c
; look
++)
10726 if (tab
[look
].gt_entry
.gt_g_value
< val
10728 || (tab
[look
].gt_entry
.gt_g_value
10729 > tab
[max
].gt_entry
.gt_g_value
)))
10733 tab
[c
].gt_entry
.gt_bytes
+=
10734 tab
[max
].gt_entry
.gt_bytes
;
10739 last
= int_gptab
.gt_entry
.gt_bytes
;
10742 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10743 elf_link_input_bfd ignores this section. */
10744 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10747 /* The table must be sorted by -G value. */
10749 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
10751 /* Swap out the table. */
10752 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
10753 ext_tab
= bfd_alloc (abfd
, amt
);
10754 if (ext_tab
== NULL
)
10760 for (j
= 0; j
< c
; j
++)
10761 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
10764 o
->size
= c
* sizeof (Elf32_External_gptab
);
10765 o
->contents
= (bfd_byte
*) ext_tab
;
10767 /* Skip this section later on (I don't think this currently
10768 matters, but someday it might). */
10769 o
->map_head
.link_order
= NULL
;
10773 /* Invoke the regular ELF backend linker to do all the work. */
10774 if (!bfd_elf_final_link (abfd
, info
))
10777 /* Now write out the computed sections. */
10779 if (reginfo_sec
!= NULL
)
10781 Elf32_External_RegInfo ext
;
10783 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
10784 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
10788 if (mdebug_sec
!= NULL
)
10790 BFD_ASSERT (abfd
->output_has_begun
);
10791 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
10793 mdebug_sec
->filepos
))
10796 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
10799 if (gptab_data_sec
!= NULL
)
10801 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
10802 gptab_data_sec
->contents
,
10803 0, gptab_data_sec
->size
))
10807 if (gptab_bss_sec
!= NULL
)
10809 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
10810 gptab_bss_sec
->contents
,
10811 0, gptab_bss_sec
->size
))
10815 if (SGI_COMPAT (abfd
))
10817 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
10818 if (rtproc_sec
!= NULL
)
10820 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
10821 rtproc_sec
->contents
,
10822 0, rtproc_sec
->size
))
10830 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10832 struct mips_mach_extension
{
10833 unsigned long extension
, base
;
10837 /* An array describing how BFD machines relate to one another. The entries
10838 are ordered topologically with MIPS I extensions listed last. */
10840 static const struct mips_mach_extension mips_mach_extensions
[] = {
10841 /* MIPS64 extensions. */
10842 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
10843 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
10845 /* MIPS V extensions. */
10846 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
10848 /* R10000 extensions. */
10849 { bfd_mach_mips12000
, bfd_mach_mips10000
},
10851 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10852 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10853 better to allow vr5400 and vr5500 code to be merged anyway, since
10854 many libraries will just use the core ISA. Perhaps we could add
10855 some sort of ASE flag if this ever proves a problem. */
10856 { bfd_mach_mips5500
, bfd_mach_mips5400
},
10857 { bfd_mach_mips5400
, bfd_mach_mips5000
},
10859 /* MIPS IV extensions. */
10860 { bfd_mach_mips5
, bfd_mach_mips8000
},
10861 { bfd_mach_mips10000
, bfd_mach_mips8000
},
10862 { bfd_mach_mips5000
, bfd_mach_mips8000
},
10863 { bfd_mach_mips7000
, bfd_mach_mips8000
},
10864 { bfd_mach_mips9000
, bfd_mach_mips8000
},
10866 /* VR4100 extensions. */
10867 { bfd_mach_mips4120
, bfd_mach_mips4100
},
10868 { bfd_mach_mips4111
, bfd_mach_mips4100
},
10870 /* MIPS III extensions. */
10871 { bfd_mach_mips8000
, bfd_mach_mips4000
},
10872 { bfd_mach_mips4650
, bfd_mach_mips4000
},
10873 { bfd_mach_mips4600
, bfd_mach_mips4000
},
10874 { bfd_mach_mips4400
, bfd_mach_mips4000
},
10875 { bfd_mach_mips4300
, bfd_mach_mips4000
},
10876 { bfd_mach_mips4100
, bfd_mach_mips4000
},
10877 { bfd_mach_mips4010
, bfd_mach_mips4000
},
10879 /* MIPS32 extensions. */
10880 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
10882 /* MIPS II extensions. */
10883 { bfd_mach_mips4000
, bfd_mach_mips6000
},
10884 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
10886 /* MIPS I extensions. */
10887 { bfd_mach_mips6000
, bfd_mach_mips3000
},
10888 { bfd_mach_mips3900
, bfd_mach_mips3000
}
10892 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10895 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
10899 if (extension
== base
)
10902 if (base
== bfd_mach_mipsisa32
10903 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
10906 if (base
== bfd_mach_mipsisa32r2
10907 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
10910 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
10911 if (extension
== mips_mach_extensions
[i
].extension
)
10913 extension
= mips_mach_extensions
[i
].base
;
10914 if (extension
== base
)
10922 /* Return true if the given ELF header flags describe a 32-bit binary. */
10925 mips_32bit_flags_p (flagword flags
)
10927 return ((flags
& EF_MIPS_32BITMODE
) != 0
10928 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
10929 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
10930 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
10931 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
10932 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
10933 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
10937 /* Merge backend specific data from an object file to the output
10938 object file when linking. */
10941 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
10943 flagword old_flags
;
10944 flagword new_flags
;
10946 bfd_boolean null_input_bfd
= TRUE
;
10949 /* Check if we have the same endianess */
10950 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
10952 (*_bfd_error_handler
)
10953 (_("%B: endianness incompatible with that of the selected emulation"),
10958 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
10959 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
10962 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
10964 (*_bfd_error_handler
)
10965 (_("%B: ABI is incompatible with that of the selected emulation"),
10970 new_flags
= elf_elfheader (ibfd
)->e_flags
;
10971 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
10972 old_flags
= elf_elfheader (obfd
)->e_flags
;
10974 if (! elf_flags_init (obfd
))
10976 elf_flags_init (obfd
) = TRUE
;
10977 elf_elfheader (obfd
)->e_flags
= new_flags
;
10978 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
10979 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
10981 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
10982 && (bfd_get_arch_info (obfd
)->the_default
10983 || mips_mach_extends_p (bfd_get_mach (obfd
),
10984 bfd_get_mach (ibfd
))))
10986 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
10987 bfd_get_mach (ibfd
)))
10994 /* Check flag compatibility. */
10996 new_flags
&= ~EF_MIPS_NOREORDER
;
10997 old_flags
&= ~EF_MIPS_NOREORDER
;
10999 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11000 doesn't seem to matter. */
11001 new_flags
&= ~EF_MIPS_XGOT
;
11002 old_flags
&= ~EF_MIPS_XGOT
;
11004 /* MIPSpro generates ucode info in n64 objects. Again, we should
11005 just be able to ignore this. */
11006 new_flags
&= ~EF_MIPS_UCODE
;
11007 old_flags
&= ~EF_MIPS_UCODE
;
11009 /* Don't care about the PIC flags from dynamic objects; they are
11011 if ((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0
11012 && (ibfd
->flags
& DYNAMIC
) != 0)
11013 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
11015 if (new_flags
== old_flags
)
11018 /* Check to see if the input BFD actually contains any sections.
11019 If not, its flags may not have been initialised either, but it cannot
11020 actually cause any incompatibility. */
11021 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
11023 /* Ignore synthetic sections and empty .text, .data and .bss sections
11024 which are automatically generated by gas. */
11025 if (strcmp (sec
->name
, ".reginfo")
11026 && strcmp (sec
->name
, ".mdebug")
11028 || (strcmp (sec
->name
, ".text")
11029 && strcmp (sec
->name
, ".data")
11030 && strcmp (sec
->name
, ".bss"))))
11032 null_input_bfd
= FALSE
;
11036 if (null_input_bfd
)
11041 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
11042 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
11044 (*_bfd_error_handler
)
11045 (_("%B: warning: linking PIC files with non-PIC files"),
11050 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
11051 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
11052 if (! (new_flags
& EF_MIPS_PIC
))
11053 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
11055 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
11056 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
11058 /* Compare the ISAs. */
11059 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
11061 (*_bfd_error_handler
)
11062 (_("%B: linking 32-bit code with 64-bit code"),
11066 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
11068 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11069 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
11071 /* Copy the architecture info from IBFD to OBFD. Also copy
11072 the 32-bit flag (if set) so that we continue to recognise
11073 OBFD as a 32-bit binary. */
11074 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
11075 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
11076 elf_elfheader (obfd
)->e_flags
11077 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
11079 /* Copy across the ABI flags if OBFD doesn't use them
11080 and if that was what caused us to treat IBFD as 32-bit. */
11081 if ((old_flags
& EF_MIPS_ABI
) == 0
11082 && mips_32bit_flags_p (new_flags
)
11083 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
11084 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
11088 /* The ISAs aren't compatible. */
11089 (*_bfd_error_handler
)
11090 (_("%B: linking %s module with previous %s modules"),
11092 bfd_printable_name (ibfd
),
11093 bfd_printable_name (obfd
));
11098 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
11099 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
11101 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11102 does set EI_CLASS differently from any 32-bit ABI. */
11103 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
11104 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
11105 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
11107 /* Only error if both are set (to different values). */
11108 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
11109 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
11110 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
11112 (*_bfd_error_handler
)
11113 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11115 elf_mips_abi_name (ibfd
),
11116 elf_mips_abi_name (obfd
));
11119 new_flags
&= ~EF_MIPS_ABI
;
11120 old_flags
&= ~EF_MIPS_ABI
;
11123 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11124 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
11126 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
11128 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
11129 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
11132 /* Warn about any other mismatches */
11133 if (new_flags
!= old_flags
)
11135 (*_bfd_error_handler
)
11136 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11137 ibfd
, (unsigned long) new_flags
,
11138 (unsigned long) old_flags
);
11144 bfd_set_error (bfd_error_bad_value
);
11151 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11154 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
11156 BFD_ASSERT (!elf_flags_init (abfd
)
11157 || elf_elfheader (abfd
)->e_flags
== flags
);
11159 elf_elfheader (abfd
)->e_flags
= flags
;
11160 elf_flags_init (abfd
) = TRUE
;
11165 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
11169 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
11171 /* Print normal ELF private data. */
11172 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
11174 /* xgettext:c-format */
11175 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
11177 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
11178 fprintf (file
, _(" [abi=O32]"));
11179 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
11180 fprintf (file
, _(" [abi=O64]"));
11181 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
11182 fprintf (file
, _(" [abi=EABI32]"));
11183 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
11184 fprintf (file
, _(" [abi=EABI64]"));
11185 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
11186 fprintf (file
, _(" [abi unknown]"));
11187 else if (ABI_N32_P (abfd
))
11188 fprintf (file
, _(" [abi=N32]"));
11189 else if (ABI_64_P (abfd
))
11190 fprintf (file
, _(" [abi=64]"));
11192 fprintf (file
, _(" [no abi set]"));
11194 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
11195 fprintf (file
, _(" [mips1]"));
11196 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
11197 fprintf (file
, _(" [mips2]"));
11198 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
11199 fprintf (file
, _(" [mips3]"));
11200 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
11201 fprintf (file
, _(" [mips4]"));
11202 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
11203 fprintf (file
, _(" [mips5]"));
11204 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
11205 fprintf (file
, _(" [mips32]"));
11206 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
11207 fprintf (file
, _(" [mips64]"));
11208 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
11209 fprintf (file
, _(" [mips32r2]"));
11210 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
11211 fprintf (file
, _(" [mips64r2]"));
11213 fprintf (file
, _(" [unknown ISA]"));
11215 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
11216 fprintf (file
, _(" [mdmx]"));
11218 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
11219 fprintf (file
, _(" [mips16]"));
11221 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
11222 fprintf (file
, _(" [32bitmode]"));
11224 fprintf (file
, _(" [not 32bitmode]"));
11226 fputc ('\n', file
);
11231 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
11233 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11234 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11235 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
11236 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11237 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11238 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
11239 { NULL
, 0, 0, 0, 0 }
11242 /* Merge non visibility st_other attributes. Ensure that the
11243 STO_OPTIONAL flag is copied into h->other, even if this is not a
11244 definiton of the symbol. */
11246 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
11247 const Elf_Internal_Sym
*isym
,
11248 bfd_boolean definition
,
11249 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
11251 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
11253 unsigned char other
;
11255 other
= (definition
? isym
->st_other
: h
->other
);
11256 other
&= ~ELF_ST_VISIBILITY (-1);
11257 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
11261 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
11262 h
->other
|= STO_OPTIONAL
;
11265 /* Decide whether an undefined symbol is special and can be ignored.
11266 This is the case for OPTIONAL symbols on IRIX. */
11268 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
11270 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
11274 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
11276 return (sym
->st_shndx
== SHN_COMMON
11277 || sym
->st_shndx
== SHN_MIPS_ACOMMON
11278 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);