1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
91 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
93 bed
= get_elf_backend_data (abfd
);
94 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
99 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
103 struct elf_link_hash_entry
*h
;
104 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
105 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
107 /* This function may be called more than once. */
108 s
= bfd_get_section_by_name (abfd
, ".got");
109 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
112 flags
= bed
->dynamic_sec_flags
;
114 s
= bfd_make_section_with_flags (abfd
,
115 (bed
->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed
->dynamic_sec_flags
120 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
124 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
126 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
130 if (bed
->want_got_plt
)
132 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
134 || !bfd_set_section_alignment (abfd
, s
,
135 bed
->s
->log_file_align
))
140 /* The first bit of the global offset table is the header. */
141 s
->size
+= bed
->got_header_size
;
143 if (bed
->want_got_sym
)
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info
)->hgot
= h
;
159 /* Create a strtab to hold the dynamic symbol names. */
161 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
163 struct elf_link_hash_table
*hash_table
;
165 hash_table
= elf_hash_table (info
);
166 if (hash_table
->dynobj
== NULL
)
167 hash_table
->dynobj
= abfd
;
169 if (hash_table
->dynstr
== NULL
)
171 hash_table
->dynstr
= _bfd_elf_strtab_init ();
172 if (hash_table
->dynstr
== NULL
)
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
186 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
190 const struct elf_backend_data
*bed
;
192 if (! is_elf_hash_table (info
->hash
))
195 if (elf_hash_table (info
)->dynamic_sections_created
)
198 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
201 abfd
= elf_hash_table (info
)->dynobj
;
202 bed
= get_elf_backend_data (abfd
);
204 flags
= bed
->dynamic_sec_flags
;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info
->executable
)
210 s
= bfd_make_section_with_flags (abfd
, ".interp",
211 flags
| SEC_READONLY
);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
219 flags
| SEC_READONLY
);
221 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
224 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
225 flags
| SEC_READONLY
);
227 || ! bfd_set_section_alignment (abfd
, s
, 1))
230 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
231 flags
| SEC_READONLY
);
233 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
236 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
237 flags
| SEC_READONLY
);
239 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
242 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
243 flags
| SEC_READONLY
);
247 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
249 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
263 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
265 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
267 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
270 if (info
->emit_gnu_hash
)
272 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
273 flags
| SEC_READONLY
);
275 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed
->s
->arch_size
== 64)
281 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
283 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
292 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
297 /* Create dynamic sections when linking against a dynamic object. */
300 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
302 flagword flags
, pltflags
;
303 struct elf_link_hash_entry
*h
;
305 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
306 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags
= bed
->dynamic_sec_flags
;
313 if (bed
->plt_not_loaded
)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
319 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
320 if (bed
->plt_readonly
)
321 pltflags
|= SEC_READONLY
;
323 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
325 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 if (bed
->want_plt_sym
)
333 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info
)->hplt
= h
;
340 s
= bfd_make_section_with_flags (abfd
,
341 (bed
->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags
| SEC_READONLY
);
345 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
349 if (! _bfd_elf_create_got_section (abfd
, info
))
352 if (bed
->want_dynbss
)
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
362 | SEC_LINKER_CREATED
));
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
379 s
= bfd_make_section_with_flags (abfd
,
380 (bed
->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags
| SEC_READONLY
);
384 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
402 struct elf_link_hash_entry
*h
)
404 if (h
->dynindx
== -1)
406 struct elf_strtab_hash
*dynstr
;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h
->other
))
419 if (h
->root
.type
!= bfd_link_hash_undefined
420 && h
->root
.type
!= bfd_link_hash_undefweak
)
423 if (!elf_hash_table (info
)->is_relocatable_executable
)
431 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
432 ++elf_hash_table (info
)->dynsymcount
;
434 dynstr
= elf_hash_table (info
)->dynstr
;
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
443 /* We don't put any version information in the dynamic string
445 name
= h
->root
.root
.string
;
446 p
= strchr (name
, ELF_VER_CHR
);
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
455 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
460 if (indx
== (bfd_size_type
) -1)
462 h
->dynstr_index
= indx
;
468 /* Mark a symbol dynamic. */
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
472 struct elf_link_hash_entry
*h
,
473 Elf_Internal_Sym
*sym
)
475 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
477 /* It may be called more than once on the same H. */
478 if(h
->dynamic
|| info
->relocatable
)
481 if ((info
->dynamic_data
482 && (h
->type
== STT_OBJECT
484 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
486 && h
->root
.type
== bfd_link_hash_new
487 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
495 bfd_elf_record_link_assignment (bfd
*output_bfd
,
496 struct bfd_link_info
*info
,
501 struct elf_link_hash_entry
*h
, *hv
;
502 struct elf_link_hash_table
*htab
;
503 const struct elf_backend_data
*bed
;
505 if (!is_elf_hash_table (info
->hash
))
508 htab
= elf_hash_table (info
);
509 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
513 switch (h
->root
.type
)
515 case bfd_link_hash_defined
:
516 case bfd_link_hash_defweak
:
517 case bfd_link_hash_common
:
519 case bfd_link_hash_undefweak
:
520 case bfd_link_hash_undefined
:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h
->root
.type
= bfd_link_hash_new
;
525 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
526 bfd_link_repair_undef_list (&htab
->root
);
528 case bfd_link_hash_new
:
529 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
532 case bfd_link_hash_indirect
:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed
= get_elf_backend_data (output_bfd
);
537 while (hv
->root
.type
== bfd_link_hash_indirect
538 || hv
->root
.type
== bfd_link_hash_warning
)
539 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
540 /* We don't need to update h->root.u since linker will set them
542 h
->root
.type
= bfd_link_hash_undefined
;
543 hv
->root
.type
= bfd_link_hash_indirect
;
544 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
545 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
547 case bfd_link_hash_warning
:
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
559 h
->root
.type
= bfd_link_hash_undefined
;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
568 h
->verinfo
.verdef
= NULL
;
572 if (provide
&& hidden
)
574 bed
= get_elf_backend_data (output_bfd
);
575 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
576 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info
->relocatable
583 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
590 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h
->u
.weakdef
!= NULL
600 && h
->u
.weakdef
->dynindx
== -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
620 struct elf_link_local_dynamic_entry
*entry
;
621 struct elf_link_hash_table
*eht
;
622 struct elf_strtab_hash
*dynstr
;
623 unsigned long dynstr_index
;
625 Elf_External_Sym_Shndx eshndx
;
626 char esym
[sizeof (Elf64_External_Sym
)];
628 if (! is_elf_hash_table (info
->hash
))
631 /* See if the entry exists already. */
632 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
633 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
636 amt
= sizeof (*entry
);
637 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
643 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
645 bfd_release (input_bfd
, entry
);
649 if (entry
->isym
.st_shndx
!= SHN_UNDEF
650 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
654 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
655 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd
, entry
);
664 name
= (bfd_elf_string_from_elf_section
665 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
666 entry
->isym
.st_name
));
668 dynstr
= elf_hash_table (info
)->dynstr
;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
677 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
678 if (dynstr_index
== (unsigned long) -1)
680 entry
->isym
.st_name
= dynstr_index
;
682 eht
= elf_hash_table (info
);
684 entry
->next
= eht
->dynlocal
;
685 eht
->dynlocal
= entry
;
686 entry
->input_bfd
= input_bfd
;
687 entry
->input_indx
= input_indx
;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
706 struct elf_link_local_dynamic_entry
*e
;
708 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
709 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
722 size_t *count
= (size_t *) data
;
724 if (h
->root
.type
== bfd_link_hash_warning
)
725 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
730 if (h
->dynindx
!= -1)
731 h
->dynindx
= ++(*count
);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
744 size_t *count
= (size_t *) data
;
746 if (h
->root
.type
== bfd_link_hash_warning
)
747 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
749 if (!h
->forced_local
)
752 if (h
->dynindx
!= -1)
753 h
->dynindx
= ++(*count
);
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
761 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
762 struct bfd_link_info
*info
,
765 struct elf_link_hash_table
*htab
;
767 switch (elf_section_data (p
)->this_hdr
.sh_type
)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab
= elf_hash_table (info
);
775 if (p
== htab
->tls_sec
)
778 if (htab
->text_index_section
!= NULL
)
779 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
781 if (strcmp (p
->name
, ".got") == 0
782 || strcmp (p
->name
, ".got.plt") == 0
783 || strcmp (p
->name
, ".plt") == 0)
787 if (htab
->dynobj
!= NULL
788 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
789 && (ip
->flags
& SEC_LINKER_CREATED
)
790 && ip
->output_section
== p
)
795 /* There shouldn't be section relative relocations
796 against any other section. */
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
809 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
810 struct bfd_link_info
*info
,
811 unsigned long *section_sym_count
)
813 unsigned long dynsymcount
= 0;
815 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
817 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
819 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
820 if ((p
->flags
& SEC_EXCLUDE
) == 0
821 && (p
->flags
& SEC_ALLOC
) != 0
822 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
823 elf_section_data (p
)->dynindx
= ++dynsymcount
;
825 elf_section_data (p
)->dynindx
= 0;
827 *section_sym_count
= dynsymcount
;
829 elf_link_hash_traverse (elf_hash_table (info
),
830 elf_link_renumber_local_hash_table_dynsyms
,
833 if (elf_hash_table (info
)->dynlocal
)
835 struct elf_link_local_dynamic_entry
*p
;
836 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
837 p
->dynindx
= ++dynsymcount
;
840 elf_link_hash_traverse (elf_hash_table (info
),
841 elf_link_renumber_hash_table_dynsyms
,
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount
!= 0)
850 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
854 /* Merge st_other field. */
857 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
858 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
861 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed
->elf_backend_merge_symbol_attribute
)
867 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
875 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
876 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
877 isym
->st_other
= (STV_HIDDEN
878 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
882 unsigned char hvis
, symvis
, other
, nvis
;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis
= ELF_ST_VISIBILITY (h
->other
);
890 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
896 nvis
= hvis
< symvis
? hvis
: symvis
;
898 h
->other
= other
| nvis
;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
915 _bfd_elf_merge_symbol (bfd
*abfd
,
916 struct bfd_link_info
*info
,
918 Elf_Internal_Sym
*sym
,
921 unsigned int *pold_alignment
,
922 struct elf_link_hash_entry
**sym_hash
,
924 bfd_boolean
*override
,
925 bfd_boolean
*type_change_ok
,
926 bfd_boolean
*size_change_ok
)
928 asection
*sec
, *oldsec
;
929 struct elf_link_hash_entry
*h
;
930 struct elf_link_hash_entry
*flip
;
933 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
934 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
935 const struct elf_backend_data
*bed
;
941 bind
= ELF_ST_BIND (sym
->st_info
);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
946 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
952 if (! bfd_is_und_section (sec
))
953 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
955 h
= ((struct elf_link_hash_entry
*)
956 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
961 bed
= get_elf_backend_data (abfd
);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
968 /* For merging, we only care about real symbols. */
970 while (h
->root
.type
== bfd_link_hash_indirect
971 || h
->root
.type
== bfd_link_hash_warning
)
972 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
977 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h
->root
.type
== bfd_link_hash_new
)
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
992 switch (h
->root
.type
)
999 case bfd_link_hash_undefined
:
1000 case bfd_link_hash_undefweak
:
1001 oldbfd
= h
->root
.u
.undef
.abfd
;
1005 case bfd_link_hash_defined
:
1006 case bfd_link_hash_defweak
:
1007 oldbfd
= h
->root
.u
.def
.section
->owner
;
1008 oldsec
= h
->root
.u
.def
.section
;
1011 case bfd_link_hash_common
:
1012 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1013 oldsec
= h
->root
.u
.c
.p
->section
;
1017 /* Differentiate strong and weak symbols. */
1018 newweak
= bind
== STB_WEAK
;
1019 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1020 || h
->root
.type
== bfd_link_hash_undefweak
);
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1029 && (newweak
|| oldweak
)
1030 && ((abfd
->flags
& DYNAMIC
) == 0
1031 || !h
->def_regular
))
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1037 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1041 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1042 else if (oldsec
!= NULL
)
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1052 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1054 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1055 && h
->root
.type
!= bfd_link_hash_undefweak
1056 && h
->root
.type
!= bfd_link_hash_common
);
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1061 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1062 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1064 oldfunc
= (h
->type
!= STT_NOTYPE
1065 && bed
->is_function_type (h
->type
));
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment
== NULL
1073 && !info
->export_dynamic
1078 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1079 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1080 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1081 && h
->type
!= STT_NOTYPE
1082 && !(newfunc
&& oldfunc
))
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1090 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1091 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1095 bfd_boolean ntdef
, tdef
;
1096 asection
*ntsec
, *tsec
;
1098 if (h
->type
== STT_TLS
)
1118 (*_bfd_error_handler
)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1121 else if (!tdef
&& !ntdef
)
1122 (*_bfd_error_handler
)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd
, ntbfd
, h
->root
.root
.string
);
1126 (*_bfd_error_handler
)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1130 (*_bfd_error_handler
)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1134 bfd_set_error (bfd_error_bad_value
);
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn
&& !h
->dynamic_def
)
1143 if (!bfd_is_und_section (sec
))
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h
->ref_dynamic
)
1152 if (bind
== STB_WEAK
)
1153 h
->dynamic_weak
= 1;
1155 else if (bind
!= STB_WEAK
)
1156 h
->dynamic_weak
= 0;
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1163 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1164 && !bfd_is_und_section (sec
))
1167 /* Make sure this symbol is dynamic. */
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1174 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1179 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1193 struct elf_link_hash_entry
*vh
= *sym_hash
;
1195 vh
->root
.type
= h
->root
.type
;
1196 h
->root
.type
= bfd_link_hash_indirect
;
1197 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1202 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1203 vh
->dynamic_def
= 1;
1204 vh
->ref_dynamic
= 1;
1208 h
->root
.type
= vh
->root
.type
;
1209 vh
->ref_dynamic
= 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1221 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1222 && bfd_is_und_section (sec
))
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1230 h
->root
.type
= bfd_link_hash_undefined
;
1231 h
->root
.u
.undef
.abfd
= abfd
;
1235 h
->root
.type
= bfd_link_hash_new
;
1236 h
->root
.u
.undef
.abfd
= NULL
;
1245 /* FIXME: Should we check type and size for protected symbol? */
1251 if (bind
== STB_GNU_UNIQUE
)
1252 h
->unique_global
= 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef
&& !newdyn
&& olddyn
)
1267 if (olddef
&& newdyn
)
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc
&& oldfunc
)
1272 *type_change_ok
= TRUE
;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1281 && h
->root
.type
== bfd_link_hash_undefined
))
1282 *type_change_ok
= TRUE
;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1288 || h
->root
.type
== bfd_link_hash_undefined
)
1289 *size_change_ok
= TRUE
;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1317 && (sec
->flags
& SEC_ALLOC
) != 0
1318 && (sec
->flags
& SEC_LOAD
) == 0
1321 newdyncommon
= TRUE
;
1323 newdyncommon
= FALSE
;
1327 && h
->root
.type
== bfd_link_hash_defined
1329 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1330 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1333 olddyncommon
= TRUE
;
1335 olddyncommon
= FALSE
;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed
->merge_symbol
1340 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1341 pold_alignment
, skip
, override
,
1342 type_change_ok
, size_change_ok
,
1343 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1345 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1355 && sym
->st_size
!= h
->size
)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info
->callbacks
->multiple_common
)
1364 (info
, &h
->root
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1367 if (sym
->st_size
> h
->size
)
1368 h
->size
= sym
->st_size
;
1370 *size_change_ok
= TRUE
;
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
1385 object to override a weak symbol in a shared object. */
1390 || (h
->root
.type
== bfd_link_hash_common
1391 && (newweak
|| newfunc
))))
1395 newdyncommon
= FALSE
;
1397 *psec
= sec
= bfd_und_section_ptr
;
1398 *size_change_ok
= TRUE
;
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
1406 if (h
->root
.type
== bfd_link_hash_common
)
1407 *type_change_ok
= TRUE
;
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1417 && h
->root
.type
== bfd_link_hash_common
)
1421 newdyncommon
= FALSE
;
1422 *pvalue
= sym
->st_size
;
1423 *psec
= sec
= bed
->common_section (oldsec
);
1424 *size_change_ok
= TRUE
;
1427 /* Skip weak definitions of symbols that are already defined. */
1428 if (newdef
&& olddef
&& newweak
)
1430 /* Don't skip new non-IR weak syms. */
1431 if (!((oldbfd
->flags
& BFD_PLUGIN
) != 0
1432 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1435 /* Merge st_other. If the symbol already has a dynamic index,
1436 but visibility says it should not be visible, turn it into a
1438 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1439 if (h
->dynindx
!= -1)
1440 switch (ELF_ST_VISIBILITY (h
->other
))
1444 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1449 /* If the old symbol is from a dynamic object, and the new symbol is
1450 a definition which is not from a dynamic object, then the new
1451 symbol overrides the old symbol. Symbols from regular files
1452 always take precedence over symbols from dynamic objects, even if
1453 they are defined after the dynamic object in the link.
1455 As above, we again permit a common symbol in a regular object to
1456 override a definition in a shared object if the shared object
1457 symbol is a function or is weak. */
1462 || (bfd_is_com_section (sec
)
1463 && (oldweak
|| oldfunc
)))
1468 /* Change the hash table entry to undefined, and let
1469 _bfd_generic_link_add_one_symbol do the right thing with the
1472 h
->root
.type
= bfd_link_hash_undefined
;
1473 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1474 *size_change_ok
= TRUE
;
1477 olddyncommon
= FALSE
;
1479 /* We again permit a type change when a common symbol may be
1480 overriding a function. */
1482 if (bfd_is_com_section (sec
))
1486 /* If a common symbol overrides a function, make sure
1487 that it isn't defined dynamically nor has type
1490 h
->type
= STT_NOTYPE
;
1492 *type_change_ok
= TRUE
;
1495 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1498 /* This union may have been set to be non-NULL when this symbol
1499 was seen in a dynamic object. We must force the union to be
1500 NULL, so that it is correct for a regular symbol. */
1501 h
->verinfo
.vertree
= NULL
;
1504 /* Handle the special case of a new common symbol merging with an
1505 old symbol that looks like it might be a common symbol defined in
1506 a shared object. Note that we have already handled the case in
1507 which a new common symbol should simply override the definition
1508 in the shared library. */
1511 && bfd_is_com_section (sec
)
1514 /* It would be best if we could set the hash table entry to a
1515 common symbol, but we don't know what to use for the section
1516 or the alignment. */
1517 if (! ((*info
->callbacks
->multiple_common
)
1518 (info
, &h
->root
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1521 /* If the presumed common symbol in the dynamic object is
1522 larger, pretend that the new symbol has its size. */
1524 if (h
->size
> *pvalue
)
1527 /* We need to remember the alignment required by the symbol
1528 in the dynamic object. */
1529 BFD_ASSERT (pold_alignment
);
1530 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1533 olddyncommon
= FALSE
;
1535 h
->root
.type
= bfd_link_hash_undefined
;
1536 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1538 *size_change_ok
= TRUE
;
1539 *type_change_ok
= TRUE
;
1541 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1544 h
->verinfo
.vertree
= NULL
;
1549 /* Handle the case where we had a versioned symbol in a dynamic
1550 library and now find a definition in a normal object. In this
1551 case, we make the versioned symbol point to the normal one. */
1552 flip
->root
.type
= h
->root
.type
;
1553 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1554 h
->root
.type
= bfd_link_hash_indirect
;
1555 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1556 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1560 flip
->ref_dynamic
= 1;
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1573 _bfd_elf_add_default_symbol (bfd
*abfd
,
1574 struct bfd_link_info
*info
,
1575 struct elf_link_hash_entry
*h
,
1577 Elf_Internal_Sym
*sym
,
1580 bfd_boolean
*dynsym
,
1581 bfd_boolean override
)
1583 bfd_boolean type_change_ok
;
1584 bfd_boolean size_change_ok
;
1587 struct elf_link_hash_entry
*hi
;
1588 struct bfd_link_hash_entry
*bh
;
1589 const struct elf_backend_data
*bed
;
1590 bfd_boolean collect
;
1591 bfd_boolean dynamic
;
1593 size_t len
, shortlen
;
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p
= strchr (name
, ELF_VER_CHR
);
1601 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1610 BFD_ASSERT (hi
!= NULL
);
1613 while (hi
->root
.type
== bfd_link_hash_indirect
1614 || hi
->root
.type
== bfd_link_hash_warning
)
1616 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1622 bed
= get_elf_backend_data (abfd
);
1623 collect
= bed
->collect
;
1624 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1626 shortlen
= p
- name
;
1627 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1628 if (shortname
== NULL
)
1630 memcpy (shortname
, name
, shortlen
);
1631 shortname
[shortlen
] = '\0';
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok
= FALSE
;
1638 size_change_ok
= FALSE
;
1640 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1641 NULL
, &hi
, &skip
, &override
,
1642 &type_change_ok
, &size_change_ok
))
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1653 0, name
, FALSE
, collect
, &bh
)))
1655 hi
= (struct elf_link_hash_entry
*) bh
;
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1677 while (hi
->root
.type
== bfd_link_hash_indirect
1678 || hi
->root
.type
== bfd_link_hash_warning
)
1679 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1681 h
->root
.type
= bfd_link_hash_indirect
;
1682 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1686 hi
->ref_dynamic
= 1;
1690 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1700 /* Check if HI is a warning symbol. */
1701 if (hi
->root
.type
== bfd_link_hash_warning
)
1702 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1708 if (hi
->root
.type
== bfd_link_hash_indirect
)
1710 struct elf_link_hash_entry
*ht
;
1712 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1713 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1715 /* See if the new flags lead us to realize that the symbol must
1721 if (! info
->executable
1727 if (hi
->ref_regular
)
1733 /* We also need to define an indirection from the nondefault version
1737 len
= strlen (name
);
1738 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1739 if (shortname
== NULL
)
1741 memcpy (shortname
, name
, shortlen
);
1742 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok
= FALSE
;
1746 size_change_ok
= FALSE
;
1748 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1749 NULL
, &hi
, &skip
, &override
,
1750 &type_change_ok
, &size_change_ok
))
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi
->root
.type
!= bfd_link_hash_defined
1762 && hi
->root
.type
!= bfd_link_hash_defweak
)
1763 (*_bfd_error_handler
)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info
, abfd
, shortname
, BSF_INDIRECT
,
1772 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1774 hi
= (struct elf_link_hash_entry
*) bh
;
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1780 if (hi
->root
.type
== bfd_link_hash_indirect
)
1782 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1784 /* See if the new flags lead us to realize that the symbol
1790 if (! info
->executable
1796 if (hi
->ref_regular
)
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1812 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1814 /* Ignore this if we won't export it. */
1815 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h
->root
.type
== bfd_link_hash_indirect
)
1822 if (h
->root
.type
== bfd_link_hash_warning
)
1823 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1825 if (h
->dynindx
== -1
1831 if (eif
->verdefs
== NULL
1832 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1835 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1855 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1856 Elf_Internal_Verneed
*t
;
1857 Elf_Internal_Vernaux
*a
;
1860 if (h
->root
.type
== bfd_link_hash_warning
)
1861 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1863 /* We only care about symbols defined in shared objects with version
1868 || h
->verinfo
.verdef
== NULL
)
1871 /* See if we already know about this version. */
1872 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1876 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1879 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1880 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1886 /* This is a new version. Add it to tree we are building. */
1891 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1894 rinfo
->failed
= TRUE
;
1898 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1899 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1900 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1904 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1907 rinfo
->failed
= TRUE
;
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1915 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1917 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1918 a
->vna_nextptr
= t
->vn_auxptr
;
1920 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1923 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1938 struct elf_info_failed
*sinfo
;
1939 struct bfd_link_info
*info
;
1940 const struct elf_backend_data
*bed
;
1941 struct elf_info_failed eif
;
1945 sinfo
= (struct elf_info_failed
*) data
;
1948 if (h
->root
.type
== bfd_link_hash_warning
)
1949 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1951 /* Fix the symbol flags. */
1954 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1957 sinfo
->failed
= TRUE
;
1961 /* We only need version numbers for symbols defined in regular
1963 if (!h
->def_regular
)
1966 bed
= get_elf_backend_data (info
->output_bfd
);
1967 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1968 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1970 struct bfd_elf_version_tree
*t
;
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1978 if (*p
== ELF_VER_CHR
)
1984 /* If there is no version string, we can just return out. */
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1995 if (strcmp (t
->name
, p
) == 0)
1999 struct bfd_elf_version_expr
*d
;
2001 len
= p
- h
->root
.root
.string
;
2002 alc
= (char *) bfd_malloc (len
);
2005 sinfo
->failed
= TRUE
;
2008 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2009 alc
[len
- 1] = '\0';
2010 if (alc
[len
- 2] == ELF_VER_CHR
)
2011 alc
[len
- 2] = '\0';
2013 h
->verinfo
.vertree
= t
;
2017 if (t
->globals
.list
!= NULL
)
2018 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2020 /* See if there is anything to force this symbol to
2022 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2024 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2027 && ! info
->export_dynamic
)
2028 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t
== NULL
&& info
->executable
)
2040 struct bfd_elf_version_tree
**pp
;
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h
->dynindx
== -1)
2049 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2052 sinfo
->failed
= TRUE
;
2057 t
->name_indx
= (unsigned int) -1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2064 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2066 t
->vernum
= version_index
;
2070 h
->verinfo
.vertree
= t
;
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler
)
2077 (_("%B: version node not found for symbol %s"),
2078 info
->output_bfd
, h
->root
.root
.string
);
2079 bfd_set_error (bfd_error_bad_value
);
2080 sinfo
->failed
= TRUE
;
2088 /* If we don't have a version for this symbol, see if we can find
2090 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2094 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2095 h
->root
.root
.string
, &hide
);
2096 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2097 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2110 Returns FALSE if something goes wrong. */
2113 elf_link_read_relocs_from_section (bfd
*abfd
,
2115 Elf_Internal_Shdr
*shdr
,
2116 void *external_relocs
,
2117 Elf_Internal_Rela
*internal_relocs
)
2119 const struct elf_backend_data
*bed
;
2120 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2121 const bfd_byte
*erela
;
2122 const bfd_byte
*erelaend
;
2123 Elf_Internal_Rela
*irela
;
2124 Elf_Internal_Shdr
*symtab_hdr
;
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2135 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2136 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2138 bed
= get_elf_backend_data (abfd
);
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2142 swap_in
= bed
->s
->swap_reloc_in
;
2143 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2144 swap_in
= bed
->s
->swap_reloca_in
;
2147 bfd_set_error (bfd_error_wrong_format
);
2151 erela
= (const bfd_byte
*) external_relocs
;
2152 erelaend
= erela
+ shdr
->sh_size
;
2153 irela
= internal_relocs
;
2154 while (erela
< erelaend
)
2158 (*swap_in
) (abfd
, erela
, irela
);
2159 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2160 if (bed
->s
->arch_size
== 64)
2164 if ((size_t) r_symndx
>= nsyms
)
2166 (*_bfd_error_handler
)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2170 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2171 bfd_set_error (bfd_error_bad_value
);
2175 else if (r_symndx
!= STN_UNDEF
)
2177 (*_bfd_error_handler
)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2181 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2182 bfd_set_error (bfd_error_bad_value
);
2185 irela
+= bed
->s
->int_rels_per_ext_rel
;
2186 erela
+= shdr
->sh_entsize
;
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 RELA_HDR relocations. */
2203 _bfd_elf_link_read_relocs (bfd
*abfd
,
2205 void *external_relocs
,
2206 Elf_Internal_Rela
*internal_relocs
,
2207 bfd_boolean keep_memory
)
2209 void *alloc1
= NULL
;
2210 Elf_Internal_Rela
*alloc2
= NULL
;
2211 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2212 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
2213 Elf_Internal_Rela
*internal_rela_relocs
;
2215 if (esdo
->relocs
!= NULL
)
2216 return esdo
->relocs
;
2218 if (o
->reloc_count
== 0)
2221 if (internal_relocs
== NULL
)
2225 size
= o
->reloc_count
;
2226 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2228 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2230 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2231 if (internal_relocs
== NULL
)
2235 if (external_relocs
== NULL
)
2237 bfd_size_type size
= 0;
2240 size
+= esdo
->rel
.hdr
->sh_size
;
2242 size
+= esdo
->rela
.hdr
->sh_size
;
2244 alloc1
= bfd_malloc (size
);
2247 external_relocs
= alloc1
;
2250 internal_rela_relocs
= internal_relocs
;
2253 if (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rel
.hdr
,
2257 external_relocs
= (((bfd_byte
*) external_relocs
)
2258 + esdo
->rel
.hdr
->sh_size
);
2259 internal_rela_relocs
+= (NUM_SHDR_ENTRIES (esdo
->rel
.hdr
)
2260 * bed
->s
->int_rels_per_ext_rel
);
2264 && (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rela
.hdr
,
2266 internal_rela_relocs
)))
2269 /* Cache the results for next time, if we can. */
2271 esdo
->relocs
= internal_relocs
;
2276 /* Don't free alloc2, since if it was allocated we are passing it
2277 back (under the name of internal_relocs). */
2279 return internal_relocs
;
2287 bfd_release (abfd
, alloc2
);
2294 /* Compute the size of, and allocate space for, REL_HDR which is the
2295 section header for a section containing relocations for O. */
2298 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2299 struct bfd_elf_section_reloc_data
*reldata
)
2301 Elf_Internal_Shdr
*rel_hdr
= reldata
->hdr
;
2303 /* That allows us to calculate the size of the section. */
2304 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reldata
->count
;
2306 /* The contents field must last into write_object_contents, so we
2307 allocate it with bfd_alloc rather than malloc. Also since we
2308 cannot be sure that the contents will actually be filled in,
2309 we zero the allocated space. */
2310 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2311 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2314 if (reldata
->hashes
== NULL
&& reldata
->count
)
2316 struct elf_link_hash_entry
**p
;
2318 p
= (struct elf_link_hash_entry
**)
2319 bfd_zmalloc (reldata
->count
* sizeof (struct elf_link_hash_entry
*));
2323 reldata
->hashes
= p
;
2329 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2330 originated from the section given by INPUT_REL_HDR) to the
2334 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2335 asection
*input_section
,
2336 Elf_Internal_Shdr
*input_rel_hdr
,
2337 Elf_Internal_Rela
*internal_relocs
,
2338 struct elf_link_hash_entry
**rel_hash
2341 Elf_Internal_Rela
*irela
;
2342 Elf_Internal_Rela
*irelaend
;
2344 struct bfd_elf_section_reloc_data
*output_reldata
;
2345 asection
*output_section
;
2346 const struct elf_backend_data
*bed
;
2347 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2348 struct bfd_elf_section_data
*esdo
;
2350 output_section
= input_section
->output_section
;
2352 bed
= get_elf_backend_data (output_bfd
);
2353 esdo
= elf_section_data (output_section
);
2354 if (esdo
->rel
.hdr
&& esdo
->rel
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2356 output_reldata
= &esdo
->rel
;
2357 swap_out
= bed
->s
->swap_reloc_out
;
2359 else if (esdo
->rela
.hdr
2360 && esdo
->rela
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2362 output_reldata
= &esdo
->rela
;
2363 swap_out
= bed
->s
->swap_reloca_out
;
2367 (*_bfd_error_handler
)
2368 (_("%B: relocation size mismatch in %B section %A"),
2369 output_bfd
, input_section
->owner
, input_section
);
2370 bfd_set_error (bfd_error_wrong_format
);
2374 erel
= output_reldata
->hdr
->contents
;
2375 erel
+= output_reldata
->count
* input_rel_hdr
->sh_entsize
;
2376 irela
= internal_relocs
;
2377 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2378 * bed
->s
->int_rels_per_ext_rel
);
2379 while (irela
< irelaend
)
2381 (*swap_out
) (output_bfd
, irela
, erel
);
2382 irela
+= bed
->s
->int_rels_per_ext_rel
;
2383 erel
+= input_rel_hdr
->sh_entsize
;
2386 /* Bump the counter, so that we know where to add the next set of
2388 output_reldata
->count
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2393 /* Make weak undefined symbols in PIE dynamic. */
2396 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2397 struct elf_link_hash_entry
*h
)
2401 && h
->root
.type
== bfd_link_hash_undefweak
)
2402 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2407 /* Fix up the flags for a symbol. This handles various cases which
2408 can only be fixed after all the input files are seen. This is
2409 currently called by both adjust_dynamic_symbol and
2410 assign_sym_version, which is unnecessary but perhaps more robust in
2411 the face of future changes. */
2414 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2415 struct elf_info_failed
*eif
)
2417 const struct elf_backend_data
*bed
;
2419 /* If this symbol was mentioned in a non-ELF file, try to set
2420 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2421 permit a non-ELF file to correctly refer to a symbol defined in
2422 an ELF dynamic object. */
2425 while (h
->root
.type
== bfd_link_hash_indirect
)
2426 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2428 if (h
->root
.type
!= bfd_link_hash_defined
2429 && h
->root
.type
!= bfd_link_hash_defweak
)
2432 h
->ref_regular_nonweak
= 1;
2436 if (h
->root
.u
.def
.section
->owner
!= NULL
2437 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2438 == bfd_target_elf_flavour
))
2441 h
->ref_regular_nonweak
= 1;
2447 if (h
->dynindx
== -1
2451 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2460 /* Unfortunately, NON_ELF is only correct if the symbol
2461 was first seen in a non-ELF file. Fortunately, if the symbol
2462 was first seen in an ELF file, we're probably OK unless the
2463 symbol was defined in a non-ELF file. Catch that case here.
2464 FIXME: We're still in trouble if the symbol was first seen in
2465 a dynamic object, and then later in a non-ELF regular object. */
2466 if ((h
->root
.type
== bfd_link_hash_defined
2467 || h
->root
.type
== bfd_link_hash_defweak
)
2469 && (h
->root
.u
.def
.section
->owner
!= NULL
2470 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2471 != bfd_target_elf_flavour
)
2472 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2473 && !h
->def_dynamic
)))
2477 /* Backend specific symbol fixup. */
2478 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2479 if (bed
->elf_backend_fixup_symbol
2480 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2483 /* If this is a final link, and the symbol was defined as a common
2484 symbol in a regular object file, and there was no definition in
2485 any dynamic object, then the linker will have allocated space for
2486 the symbol in a common section but the DEF_REGULAR
2487 flag will not have been set. */
2488 if (h
->root
.type
== bfd_link_hash_defined
2492 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2495 /* If -Bsymbolic was used (which means to bind references to global
2496 symbols to the definition within the shared object), and this
2497 symbol was defined in a regular object, then it actually doesn't
2498 need a PLT entry. Likewise, if the symbol has non-default
2499 visibility. If the symbol has hidden or internal visibility, we
2500 will force it local. */
2502 && eif
->info
->shared
2503 && is_elf_hash_table (eif
->info
->hash
)
2504 && (SYMBOLIC_BIND (eif
->info
, h
)
2505 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2508 bfd_boolean force_local
;
2510 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2511 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2512 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2515 /* If a weak undefined symbol has non-default visibility, we also
2516 hide it from the dynamic linker. */
2517 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2518 && h
->root
.type
== bfd_link_hash_undefweak
)
2519 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2521 /* If this is a weak defined symbol in a dynamic object, and we know
2522 the real definition in the dynamic object, copy interesting flags
2523 over to the real definition. */
2524 if (h
->u
.weakdef
!= NULL
)
2526 struct elf_link_hash_entry
*weakdef
;
2528 weakdef
= h
->u
.weakdef
;
2529 if (h
->root
.type
== bfd_link_hash_indirect
)
2530 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2532 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2533 || h
->root
.type
== bfd_link_hash_defweak
);
2534 BFD_ASSERT (weakdef
->def_dynamic
);
2536 /* If the real definition is defined by a regular object file,
2537 don't do anything special. See the longer description in
2538 _bfd_elf_adjust_dynamic_symbol, below. */
2539 if (weakdef
->def_regular
)
2540 h
->u
.weakdef
= NULL
;
2543 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2544 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2545 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2552 /* Make the backend pick a good value for a dynamic symbol. This is
2553 called via elf_link_hash_traverse, and also calls itself
2557 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2559 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2561 const struct elf_backend_data
*bed
;
2563 if (! is_elf_hash_table (eif
->info
->hash
))
2566 if (h
->root
.type
== bfd_link_hash_warning
)
2568 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2569 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2571 /* When warning symbols are created, they **replace** the "real"
2572 entry in the hash table, thus we never get to see the real
2573 symbol in a hash traversal. So look at it now. */
2574 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2577 /* Ignore indirect symbols. These are added by the versioning code. */
2578 if (h
->root
.type
== bfd_link_hash_indirect
)
2581 /* Fix the symbol flags. */
2582 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2585 /* If this symbol does not require a PLT entry, and it is not
2586 defined by a dynamic object, or is not referenced by a regular
2587 object, ignore it. We do have to handle a weak defined symbol,
2588 even if no regular object refers to it, if we decided to add it
2589 to the dynamic symbol table. FIXME: Do we normally need to worry
2590 about symbols which are defined by one dynamic object and
2591 referenced by another one? */
2593 && h
->type
!= STT_GNU_IFUNC
2597 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2599 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2603 /* If we've already adjusted this symbol, don't do it again. This
2604 can happen via a recursive call. */
2605 if (h
->dynamic_adjusted
)
2608 /* Don't look at this symbol again. Note that we must set this
2609 after checking the above conditions, because we may look at a
2610 symbol once, decide not to do anything, and then get called
2611 recursively later after REF_REGULAR is set below. */
2612 h
->dynamic_adjusted
= 1;
2614 /* If this is a weak definition, and we know a real definition, and
2615 the real symbol is not itself defined by a regular object file,
2616 then get a good value for the real definition. We handle the
2617 real symbol first, for the convenience of the backend routine.
2619 Note that there is a confusing case here. If the real definition
2620 is defined by a regular object file, we don't get the real symbol
2621 from the dynamic object, but we do get the weak symbol. If the
2622 processor backend uses a COPY reloc, then if some routine in the
2623 dynamic object changes the real symbol, we will not see that
2624 change in the corresponding weak symbol. This is the way other
2625 ELF linkers work as well, and seems to be a result of the shared
2628 I will clarify this issue. Most SVR4 shared libraries define the
2629 variable _timezone and define timezone as a weak synonym. The
2630 tzset call changes _timezone. If you write
2631 extern int timezone;
2633 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2634 you might expect that, since timezone is a synonym for _timezone,
2635 the same number will print both times. However, if the processor
2636 backend uses a COPY reloc, then actually timezone will be copied
2637 into your process image, and, since you define _timezone
2638 yourself, _timezone will not. Thus timezone and _timezone will
2639 wind up at different memory locations. The tzset call will set
2640 _timezone, leaving timezone unchanged. */
2642 if (h
->u
.weakdef
!= NULL
)
2644 /* If we get to this point, we know there is an implicit
2645 reference by a regular object file via the weak symbol H.
2646 FIXME: Is this really true? What if the traversal finds
2647 H->U.WEAKDEF before it finds H? */
2648 h
->u
.weakdef
->ref_regular
= 1;
2650 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2654 /* If a symbol has no type and no size and does not require a PLT
2655 entry, then we are probably about to do the wrong thing here: we
2656 are probably going to create a COPY reloc for an empty object.
2657 This case can arise when a shared object is built with assembly
2658 code, and the assembly code fails to set the symbol type. */
2660 && h
->type
== STT_NOTYPE
2662 (*_bfd_error_handler
)
2663 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2664 h
->root
.root
.string
);
2666 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2667 bed
= get_elf_backend_data (dynobj
);
2669 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2678 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2682 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2685 unsigned int power_of_two
;
2687 asection
*sec
= h
->root
.u
.def
.section
;
2689 /* The section aligment of definition is the maximum alignment
2690 requirement of symbols defined in the section. Since we don't
2691 know the symbol alignment requirement, we start with the
2692 maximum alignment and check low bits of the symbol address
2693 for the minimum alignment. */
2694 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2695 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2696 while ((h
->root
.u
.def
.value
& mask
) != 0)
2702 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2705 /* Adjust the section alignment if needed. */
2706 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2711 /* We make sure that the symbol will be aligned properly. */
2712 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2714 /* Define the symbol as being at this point in DYNBSS. */
2715 h
->root
.u
.def
.section
= dynbss
;
2716 h
->root
.u
.def
.value
= dynbss
->size
;
2718 /* Increment the size of DYNBSS to make room for the symbol. */
2719 dynbss
->size
+= h
->size
;
2724 /* Adjust all external symbols pointing into SEC_MERGE sections
2725 to reflect the object merging within the sections. */
2728 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2732 if (h
->root
.type
== bfd_link_hash_warning
)
2733 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2735 if ((h
->root
.type
== bfd_link_hash_defined
2736 || h
->root
.type
== bfd_link_hash_defweak
)
2737 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2738 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2740 bfd
*output_bfd
= (bfd
*) data
;
2742 h
->root
.u
.def
.value
=
2743 _bfd_merged_section_offset (output_bfd
,
2744 &h
->root
.u
.def
.section
,
2745 elf_section_data (sec
)->sec_info
,
2746 h
->root
.u
.def
.value
);
2752 /* Returns false if the symbol referred to by H should be considered
2753 to resolve local to the current module, and true if it should be
2754 considered to bind dynamically. */
2757 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2758 struct bfd_link_info
*info
,
2759 bfd_boolean not_local_protected
)
2761 bfd_boolean binding_stays_local_p
;
2762 const struct elf_backend_data
*bed
;
2763 struct elf_link_hash_table
*hash_table
;
2768 while (h
->root
.type
== bfd_link_hash_indirect
2769 || h
->root
.type
== bfd_link_hash_warning
)
2770 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2772 /* If it was forced local, then clearly it's not dynamic. */
2773 if (h
->dynindx
== -1)
2775 if (h
->forced_local
)
2778 /* Identify the cases where name binding rules say that a
2779 visible symbol resolves locally. */
2780 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2782 switch (ELF_ST_VISIBILITY (h
->other
))
2789 hash_table
= elf_hash_table (info
);
2790 if (!is_elf_hash_table (hash_table
))
2793 bed
= get_elf_backend_data (hash_table
->dynobj
);
2795 /* Proper resolution for function pointer equality may require
2796 that these symbols perhaps be resolved dynamically, even though
2797 we should be resolving them to the current module. */
2798 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
2799 binding_stays_local_p
= TRUE
;
2806 /* If it isn't defined locally, then clearly it's dynamic. */
2807 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2810 /* Otherwise, the symbol is dynamic if binding rules don't tell
2811 us that it remains local. */
2812 return !binding_stays_local_p
;
2815 /* Return true if the symbol referred to by H should be considered
2816 to resolve local to the current module, and false otherwise. Differs
2817 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2818 undefined symbols. The two functions are virtually identical except
2819 for the place where forced_local and dynindx == -1 are tested. If
2820 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2821 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2822 the symbol is local only for defined symbols.
2823 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2824 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2825 treatment of undefined weak symbols. For those that do not make
2826 undefined weak symbols dynamic, both functions may return false. */
2829 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2830 struct bfd_link_info
*info
,
2831 bfd_boolean local_protected
)
2833 const struct elf_backend_data
*bed
;
2834 struct elf_link_hash_table
*hash_table
;
2836 /* If it's a local sym, of course we resolve locally. */
2840 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2841 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2842 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2845 /* Common symbols that become definitions don't get the DEF_REGULAR
2846 flag set, so test it first, and don't bail out. */
2847 if (ELF_COMMON_DEF_P (h
))
2849 /* If we don't have a definition in a regular file, then we can't
2850 resolve locally. The sym is either undefined or dynamic. */
2851 else if (!h
->def_regular
)
2854 /* Forced local symbols resolve locally. */
2855 if (h
->forced_local
)
2858 /* As do non-dynamic symbols. */
2859 if (h
->dynindx
== -1)
2862 /* At this point, we know the symbol is defined and dynamic. In an
2863 executable it must resolve locally, likewise when building symbolic
2864 shared libraries. */
2865 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2868 /* Now deal with defined dynamic symbols in shared libraries. Ones
2869 with default visibility might not resolve locally. */
2870 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2873 hash_table
= elf_hash_table (info
);
2874 if (!is_elf_hash_table (hash_table
))
2877 bed
= get_elf_backend_data (hash_table
->dynobj
);
2879 /* STV_PROTECTED non-function symbols are local. */
2880 if (!bed
->is_function_type (h
->type
))
2883 /* Function pointer equality tests may require that STV_PROTECTED
2884 symbols be treated as dynamic symbols. If the address of a
2885 function not defined in an executable is set to that function's
2886 plt entry in the executable, then the address of the function in
2887 a shared library must also be the plt entry in the executable. */
2888 return local_protected
;
2891 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2892 aligned. Returns the first TLS output section. */
2894 struct bfd_section
*
2895 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2897 struct bfd_section
*sec
, *tls
;
2898 unsigned int align
= 0;
2900 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2901 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2905 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2906 if (sec
->alignment_power
> align
)
2907 align
= sec
->alignment_power
;
2909 elf_hash_table (info
)->tls_sec
= tls
;
2911 /* Ensure the alignment of the first section is the largest alignment,
2912 so that the tls segment starts aligned. */
2914 tls
->alignment_power
= align
;
2919 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2921 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2922 Elf_Internal_Sym
*sym
)
2924 const struct elf_backend_data
*bed
;
2926 /* Local symbols do not count, but target specific ones might. */
2927 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2928 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2931 bed
= get_elf_backend_data (abfd
);
2932 /* Function symbols do not count. */
2933 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2936 /* If the section is undefined, then so is the symbol. */
2937 if (sym
->st_shndx
== SHN_UNDEF
)
2940 /* If the symbol is defined in the common section, then
2941 it is a common definition and so does not count. */
2942 if (bed
->common_definition (sym
))
2945 /* If the symbol is in a target specific section then we
2946 must rely upon the backend to tell us what it is. */
2947 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2948 /* FIXME - this function is not coded yet:
2950 return _bfd_is_global_symbol_definition (abfd, sym);
2952 Instead for now assume that the definition is not global,
2953 Even if this is wrong, at least the linker will behave
2954 in the same way that it used to do. */
2960 /* Search the symbol table of the archive element of the archive ABFD
2961 whose archive map contains a mention of SYMDEF, and determine if
2962 the symbol is defined in this element. */
2964 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2966 Elf_Internal_Shdr
* hdr
;
2967 bfd_size_type symcount
;
2968 bfd_size_type extsymcount
;
2969 bfd_size_type extsymoff
;
2970 Elf_Internal_Sym
*isymbuf
;
2971 Elf_Internal_Sym
*isym
;
2972 Elf_Internal_Sym
*isymend
;
2975 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2979 if (! bfd_check_format (abfd
, bfd_object
))
2982 /* If we have already included the element containing this symbol in the
2983 link then we do not need to include it again. Just claim that any symbol
2984 it contains is not a definition, so that our caller will not decide to
2985 (re)include this element. */
2986 if (abfd
->archive_pass
)
2989 /* Select the appropriate symbol table. */
2990 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2991 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2993 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2995 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2997 /* The sh_info field of the symtab header tells us where the
2998 external symbols start. We don't care about the local symbols. */
2999 if (elf_bad_symtab (abfd
))
3001 extsymcount
= symcount
;
3006 extsymcount
= symcount
- hdr
->sh_info
;
3007 extsymoff
= hdr
->sh_info
;
3010 if (extsymcount
== 0)
3013 /* Read in the symbol table. */
3014 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3016 if (isymbuf
== NULL
)
3019 /* Scan the symbol table looking for SYMDEF. */
3021 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3025 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3030 if (strcmp (name
, symdef
->name
) == 0)
3032 result
= is_global_data_symbol_definition (abfd
, isym
);
3042 /* Add an entry to the .dynamic table. */
3045 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3049 struct elf_link_hash_table
*hash_table
;
3050 const struct elf_backend_data
*bed
;
3052 bfd_size_type newsize
;
3053 bfd_byte
*newcontents
;
3054 Elf_Internal_Dyn dyn
;
3056 hash_table
= elf_hash_table (info
);
3057 if (! is_elf_hash_table (hash_table
))
3060 bed
= get_elf_backend_data (hash_table
->dynobj
);
3061 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3062 BFD_ASSERT (s
!= NULL
);
3064 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3065 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3066 if (newcontents
== NULL
)
3070 dyn
.d_un
.d_val
= val
;
3071 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3074 s
->contents
= newcontents
;
3079 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3080 otherwise just check whether one already exists. Returns -1 on error,
3081 1 if a DT_NEEDED tag already exists, and 0 on success. */
3084 elf_add_dt_needed_tag (bfd
*abfd
,
3085 struct bfd_link_info
*info
,
3089 struct elf_link_hash_table
*hash_table
;
3090 bfd_size_type oldsize
;
3091 bfd_size_type strindex
;
3093 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3096 hash_table
= elf_hash_table (info
);
3097 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3098 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3099 if (strindex
== (bfd_size_type
) -1)
3102 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3105 const struct elf_backend_data
*bed
;
3108 bed
= get_elf_backend_data (hash_table
->dynobj
);
3109 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3111 for (extdyn
= sdyn
->contents
;
3112 extdyn
< sdyn
->contents
+ sdyn
->size
;
3113 extdyn
+= bed
->s
->sizeof_dyn
)
3115 Elf_Internal_Dyn dyn
;
3117 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3118 if (dyn
.d_tag
== DT_NEEDED
3119 && dyn
.d_un
.d_val
== strindex
)
3121 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3129 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3132 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3136 /* We were just checking for existence of the tag. */
3137 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3143 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3145 for (; needed
!= NULL
; needed
= needed
->next
)
3146 if (strcmp (soname
, needed
->name
) == 0)
3152 /* Sort symbol by value and section. */
3154 elf_sort_symbol (const void *arg1
, const void *arg2
)
3156 const struct elf_link_hash_entry
*h1
;
3157 const struct elf_link_hash_entry
*h2
;
3158 bfd_signed_vma vdiff
;
3160 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3161 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3162 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3164 return vdiff
> 0 ? 1 : -1;
3167 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3169 return sdiff
> 0 ? 1 : -1;
3174 /* This function is used to adjust offsets into .dynstr for
3175 dynamic symbols. This is called via elf_link_hash_traverse. */
3178 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3180 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3182 if (h
->root
.type
== bfd_link_hash_warning
)
3183 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3185 if (h
->dynindx
!= -1)
3186 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3190 /* Assign string offsets in .dynstr, update all structures referencing
3194 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3196 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3197 struct elf_link_local_dynamic_entry
*entry
;
3198 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3199 bfd
*dynobj
= hash_table
->dynobj
;
3202 const struct elf_backend_data
*bed
;
3205 _bfd_elf_strtab_finalize (dynstr
);
3206 size
= _bfd_elf_strtab_size (dynstr
);
3208 bed
= get_elf_backend_data (dynobj
);
3209 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3210 BFD_ASSERT (sdyn
!= NULL
);
3212 /* Update all .dynamic entries referencing .dynstr strings. */
3213 for (extdyn
= sdyn
->contents
;
3214 extdyn
< sdyn
->contents
+ sdyn
->size
;
3215 extdyn
+= bed
->s
->sizeof_dyn
)
3217 Elf_Internal_Dyn dyn
;
3219 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3223 dyn
.d_un
.d_val
= size
;
3233 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3238 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3241 /* Now update local dynamic symbols. */
3242 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3243 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3244 entry
->isym
.st_name
);
3246 /* And the rest of dynamic symbols. */
3247 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3249 /* Adjust version definitions. */
3250 if (elf_tdata (output_bfd
)->cverdefs
)
3255 Elf_Internal_Verdef def
;
3256 Elf_Internal_Verdaux defaux
;
3258 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3262 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3264 p
+= sizeof (Elf_External_Verdef
);
3265 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3267 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3269 _bfd_elf_swap_verdaux_in (output_bfd
,
3270 (Elf_External_Verdaux
*) p
, &defaux
);
3271 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3273 _bfd_elf_swap_verdaux_out (output_bfd
,
3274 &defaux
, (Elf_External_Verdaux
*) p
);
3275 p
+= sizeof (Elf_External_Verdaux
);
3278 while (def
.vd_next
);
3281 /* Adjust version references. */
3282 if (elf_tdata (output_bfd
)->verref
)
3287 Elf_Internal_Verneed need
;
3288 Elf_Internal_Vernaux needaux
;
3290 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3294 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3296 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3297 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3298 (Elf_External_Verneed
*) p
);
3299 p
+= sizeof (Elf_External_Verneed
);
3300 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3302 _bfd_elf_swap_vernaux_in (output_bfd
,
3303 (Elf_External_Vernaux
*) p
, &needaux
);
3304 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3306 _bfd_elf_swap_vernaux_out (output_bfd
,
3308 (Elf_External_Vernaux
*) p
);
3309 p
+= sizeof (Elf_External_Vernaux
);
3312 while (need
.vn_next
);
3318 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3319 The default is to only match when the INPUT and OUTPUT are exactly
3323 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3324 const bfd_target
*output
)
3326 return input
== output
;
3329 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3330 This version is used when different targets for the same architecture
3331 are virtually identical. */
3334 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3335 const bfd_target
*output
)
3337 const struct elf_backend_data
*obed
, *ibed
;
3339 if (input
== output
)
3342 ibed
= xvec_get_elf_backend_data (input
);
3343 obed
= xvec_get_elf_backend_data (output
);
3345 if (ibed
->arch
!= obed
->arch
)
3348 /* If both backends are using this function, deem them compatible. */
3349 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3352 /* Add symbols from an ELF object file to the linker hash table. */
3355 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3357 Elf_Internal_Ehdr
*ehdr
;
3358 Elf_Internal_Shdr
*hdr
;
3359 bfd_size_type symcount
;
3360 bfd_size_type extsymcount
;
3361 bfd_size_type extsymoff
;
3362 struct elf_link_hash_entry
**sym_hash
;
3363 bfd_boolean dynamic
;
3364 Elf_External_Versym
*extversym
= NULL
;
3365 Elf_External_Versym
*ever
;
3366 struct elf_link_hash_entry
*weaks
;
3367 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3368 bfd_size_type nondeflt_vers_cnt
= 0;
3369 Elf_Internal_Sym
*isymbuf
= NULL
;
3370 Elf_Internal_Sym
*isym
;
3371 Elf_Internal_Sym
*isymend
;
3372 const struct elf_backend_data
*bed
;
3373 bfd_boolean add_needed
;
3374 struct elf_link_hash_table
*htab
;
3376 void *alloc_mark
= NULL
;
3377 struct bfd_hash_entry
**old_table
= NULL
;
3378 unsigned int old_size
= 0;
3379 unsigned int old_count
= 0;
3380 void *old_tab
= NULL
;
3383 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3384 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3385 long old_dynsymcount
= 0;
3387 size_t hashsize
= 0;
3389 htab
= elf_hash_table (info
);
3390 bed
= get_elf_backend_data (abfd
);
3392 if ((abfd
->flags
& DYNAMIC
) == 0)
3398 /* You can't use -r against a dynamic object. Also, there's no
3399 hope of using a dynamic object which does not exactly match
3400 the format of the output file. */
3401 if (info
->relocatable
3402 || !is_elf_hash_table (htab
)
3403 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3405 if (info
->relocatable
)
3406 bfd_set_error (bfd_error_invalid_operation
);
3408 bfd_set_error (bfd_error_wrong_format
);
3413 ehdr
= elf_elfheader (abfd
);
3414 if (info
->warn_alternate_em
3415 && bed
->elf_machine_code
!= ehdr
->e_machine
3416 && ((bed
->elf_machine_alt1
!= 0
3417 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3418 || (bed
->elf_machine_alt2
!= 0
3419 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3420 info
->callbacks
->einfo
3421 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3422 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3424 /* As a GNU extension, any input sections which are named
3425 .gnu.warning.SYMBOL are treated as warning symbols for the given
3426 symbol. This differs from .gnu.warning sections, which generate
3427 warnings when they are included in an output file. */
3428 /* PR 12761: Also generate this warning when building shared libraries. */
3429 if (info
->executable
|| info
->shared
)
3433 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3437 name
= bfd_get_section_name (abfd
, s
);
3438 if (CONST_STRNEQ (name
, ".gnu.warning."))
3443 name
+= sizeof ".gnu.warning." - 1;
3445 /* If this is a shared object, then look up the symbol
3446 in the hash table. If it is there, and it is already
3447 been defined, then we will not be using the entry
3448 from this shared object, so we don't need to warn.
3449 FIXME: If we see the definition in a regular object
3450 later on, we will warn, but we shouldn't. The only
3451 fix is to keep track of what warnings we are supposed
3452 to emit, and then handle them all at the end of the
3456 struct elf_link_hash_entry
*h
;
3458 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3460 /* FIXME: What about bfd_link_hash_common? */
3462 && (h
->root
.type
== bfd_link_hash_defined
3463 || h
->root
.type
== bfd_link_hash_defweak
))
3465 /* We don't want to issue this warning. Clobber
3466 the section size so that the warning does not
3467 get copied into the output file. */
3474 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3478 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3483 if (! (_bfd_generic_link_add_one_symbol
3484 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3485 FALSE
, bed
->collect
, NULL
)))
3488 if (! info
->relocatable
)
3490 /* Clobber the section size so that the warning does
3491 not get copied into the output file. */
3494 /* Also set SEC_EXCLUDE, so that symbols defined in
3495 the warning section don't get copied to the output. */
3496 s
->flags
|= SEC_EXCLUDE
;
3505 /* If we are creating a shared library, create all the dynamic
3506 sections immediately. We need to attach them to something,
3507 so we attach them to this BFD, provided it is the right
3508 format. FIXME: If there are no input BFD's of the same
3509 format as the output, we can't make a shared library. */
3511 && is_elf_hash_table (htab
)
3512 && info
->output_bfd
->xvec
== abfd
->xvec
3513 && !htab
->dynamic_sections_created
)
3515 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3519 else if (!is_elf_hash_table (htab
))
3524 const char *soname
= NULL
;
3526 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3529 /* ld --just-symbols and dynamic objects don't mix very well.
3530 ld shouldn't allow it. */
3531 if ((s
= abfd
->sections
) != NULL
3532 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3535 /* If this dynamic lib was specified on the command line with
3536 --as-needed in effect, then we don't want to add a DT_NEEDED
3537 tag unless the lib is actually used. Similary for libs brought
3538 in by another lib's DT_NEEDED. When --no-add-needed is used
3539 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3540 any dynamic library in DT_NEEDED tags in the dynamic lib at
3542 add_needed
= (elf_dyn_lib_class (abfd
)
3543 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3544 | DYN_NO_NEEDED
)) == 0;
3546 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3551 unsigned int elfsec
;
3552 unsigned long shlink
;
3554 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3561 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3562 if (elfsec
== SHN_BAD
)
3563 goto error_free_dyn
;
3564 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3566 for (extdyn
= dynbuf
;
3567 extdyn
< dynbuf
+ s
->size
;
3568 extdyn
+= bed
->s
->sizeof_dyn
)
3570 Elf_Internal_Dyn dyn
;
3572 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3573 if (dyn
.d_tag
== DT_SONAME
)
3575 unsigned int tagv
= dyn
.d_un
.d_val
;
3576 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3578 goto error_free_dyn
;
3580 if (dyn
.d_tag
== DT_NEEDED
)
3582 struct bfd_link_needed_list
*n
, **pn
;
3584 unsigned int tagv
= dyn
.d_un
.d_val
;
3586 amt
= sizeof (struct bfd_link_needed_list
);
3587 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3588 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3589 if (n
== NULL
|| fnm
== NULL
)
3590 goto error_free_dyn
;
3591 amt
= strlen (fnm
) + 1;
3592 anm
= (char *) bfd_alloc (abfd
, amt
);
3594 goto error_free_dyn
;
3595 memcpy (anm
, fnm
, amt
);
3599 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3603 if (dyn
.d_tag
== DT_RUNPATH
)
3605 struct bfd_link_needed_list
*n
, **pn
;
3607 unsigned int tagv
= dyn
.d_un
.d_val
;
3609 amt
= sizeof (struct bfd_link_needed_list
);
3610 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3611 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3612 if (n
== NULL
|| fnm
== NULL
)
3613 goto error_free_dyn
;
3614 amt
= strlen (fnm
) + 1;
3615 anm
= (char *) bfd_alloc (abfd
, amt
);
3617 goto error_free_dyn
;
3618 memcpy (anm
, fnm
, amt
);
3622 for (pn
= & runpath
;
3628 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3629 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3631 struct bfd_link_needed_list
*n
, **pn
;
3633 unsigned int tagv
= dyn
.d_un
.d_val
;
3635 amt
= sizeof (struct bfd_link_needed_list
);
3636 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3637 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3638 if (n
== NULL
|| fnm
== NULL
)
3639 goto error_free_dyn
;
3640 amt
= strlen (fnm
) + 1;
3641 anm
= (char *) bfd_alloc (abfd
, amt
);
3643 goto error_free_dyn
;
3644 memcpy (anm
, fnm
, amt
);
3654 if (dyn
.d_tag
== DT_AUDIT
)
3656 unsigned int tagv
= dyn
.d_un
.d_val
;
3657 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3664 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3665 frees all more recently bfd_alloc'd blocks as well. */
3671 struct bfd_link_needed_list
**pn
;
3672 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3677 /* We do not want to include any of the sections in a dynamic
3678 object in the output file. We hack by simply clobbering the
3679 list of sections in the BFD. This could be handled more
3680 cleanly by, say, a new section flag; the existing
3681 SEC_NEVER_LOAD flag is not the one we want, because that one
3682 still implies that the section takes up space in the output
3684 bfd_section_list_clear (abfd
);
3686 /* Find the name to use in a DT_NEEDED entry that refers to this
3687 object. If the object has a DT_SONAME entry, we use it.
3688 Otherwise, if the generic linker stuck something in
3689 elf_dt_name, we use that. Otherwise, we just use the file
3691 if (soname
== NULL
|| *soname
== '\0')
3693 soname
= elf_dt_name (abfd
);
3694 if (soname
== NULL
|| *soname
== '\0')
3695 soname
= bfd_get_filename (abfd
);
3698 /* Save the SONAME because sometimes the linker emulation code
3699 will need to know it. */
3700 elf_dt_name (abfd
) = soname
;
3702 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3706 /* If we have already included this dynamic object in the
3707 link, just ignore it. There is no reason to include a
3708 particular dynamic object more than once. */
3712 /* Save the DT_AUDIT entry for the linker emulation code. */
3713 elf_dt_audit (abfd
) = audit
;
3716 /* If this is a dynamic object, we always link against the .dynsym
3717 symbol table, not the .symtab symbol table. The dynamic linker
3718 will only see the .dynsym symbol table, so there is no reason to
3719 look at .symtab for a dynamic object. */
3721 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3722 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3724 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3726 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3728 /* The sh_info field of the symtab header tells us where the
3729 external symbols start. We don't care about the local symbols at
3731 if (elf_bad_symtab (abfd
))
3733 extsymcount
= symcount
;
3738 extsymcount
= symcount
- hdr
->sh_info
;
3739 extsymoff
= hdr
->sh_info
;
3743 if (extsymcount
!= 0)
3745 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3747 if (isymbuf
== NULL
)
3750 /* We store a pointer to the hash table entry for each external
3752 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3753 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3754 if (sym_hash
== NULL
)
3755 goto error_free_sym
;
3756 elf_sym_hashes (abfd
) = sym_hash
;
3761 /* Read in any version definitions. */
3762 if (!_bfd_elf_slurp_version_tables (abfd
,
3763 info
->default_imported_symver
))
3764 goto error_free_sym
;
3766 /* Read in the symbol versions, but don't bother to convert them
3767 to internal format. */
3768 if (elf_dynversym (abfd
) != 0)
3770 Elf_Internal_Shdr
*versymhdr
;
3772 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3773 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3774 if (extversym
== NULL
)
3775 goto error_free_sym
;
3776 amt
= versymhdr
->sh_size
;
3777 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3778 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3779 goto error_free_vers
;
3783 /* If we are loading an as-needed shared lib, save the symbol table
3784 state before we start adding symbols. If the lib turns out
3785 to be unneeded, restore the state. */
3786 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3791 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3793 struct bfd_hash_entry
*p
;
3794 struct elf_link_hash_entry
*h
;
3796 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3798 h
= (struct elf_link_hash_entry
*) p
;
3799 entsize
+= htab
->root
.table
.entsize
;
3800 if (h
->root
.type
== bfd_link_hash_warning
)
3801 entsize
+= htab
->root
.table
.entsize
;
3805 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3806 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3807 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3808 if (old_tab
== NULL
)
3809 goto error_free_vers
;
3811 /* Remember the current objalloc pointer, so that all mem for
3812 symbols added can later be reclaimed. */
3813 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3814 if (alloc_mark
== NULL
)
3815 goto error_free_vers
;
3817 /* Make a special call to the linker "notice" function to
3818 tell it that we are about to handle an as-needed lib. */
3819 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3820 notice_as_needed
, 0, NULL
))
3821 goto error_free_vers
;
3823 /* Clone the symbol table and sym hashes. Remember some
3824 pointers into the symbol table, and dynamic symbol count. */
3825 old_hash
= (char *) old_tab
+ tabsize
;
3826 old_ent
= (char *) old_hash
+ hashsize
;
3827 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3828 memcpy (old_hash
, sym_hash
, hashsize
);
3829 old_undefs
= htab
->root
.undefs
;
3830 old_undefs_tail
= htab
->root
.undefs_tail
;
3831 old_table
= htab
->root
.table
.table
;
3832 old_size
= htab
->root
.table
.size
;
3833 old_count
= htab
->root
.table
.count
;
3834 old_dynsymcount
= htab
->dynsymcount
;
3836 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3838 struct bfd_hash_entry
*p
;
3839 struct elf_link_hash_entry
*h
;
3841 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3843 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3844 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3845 h
= (struct elf_link_hash_entry
*) p
;
3846 if (h
->root
.type
== bfd_link_hash_warning
)
3848 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3849 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3856 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3857 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3859 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3863 asection
*sec
, *new_sec
;
3866 struct elf_link_hash_entry
*h
;
3867 bfd_boolean definition
;
3868 bfd_boolean size_change_ok
;
3869 bfd_boolean type_change_ok
;
3870 bfd_boolean new_weakdef
;
3871 bfd_boolean override
;
3873 unsigned int old_alignment
;
3875 bfd
* undef_bfd
= NULL
;
3879 flags
= BSF_NO_FLAGS
;
3881 value
= isym
->st_value
;
3883 common
= bed
->common_definition (isym
);
3885 bind
= ELF_ST_BIND (isym
->st_info
);
3889 /* This should be impossible, since ELF requires that all
3890 global symbols follow all local symbols, and that sh_info
3891 point to the first global symbol. Unfortunately, Irix 5
3896 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3904 case STB_GNU_UNIQUE
:
3905 flags
= BSF_GNU_UNIQUE
;
3909 /* Leave it up to the processor backend. */
3913 if (isym
->st_shndx
== SHN_UNDEF
)
3914 sec
= bfd_und_section_ptr
;
3915 else if (isym
->st_shndx
== SHN_ABS
)
3916 sec
= bfd_abs_section_ptr
;
3917 else if (isym
->st_shndx
== SHN_COMMON
)
3919 sec
= bfd_com_section_ptr
;
3920 /* What ELF calls the size we call the value. What ELF
3921 calls the value we call the alignment. */
3922 value
= isym
->st_size
;
3926 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3928 sec
= bfd_abs_section_ptr
;
3929 else if (sec
->kept_section
)
3931 /* Symbols from discarded section are undefined. We keep
3933 sec
= bfd_und_section_ptr
;
3934 isym
->st_shndx
= SHN_UNDEF
;
3936 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3940 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3943 goto error_free_vers
;
3945 if (isym
->st_shndx
== SHN_COMMON
3946 && (abfd
->flags
& BFD_PLUGIN
) != 0)
3948 asection
*xc
= bfd_get_section_by_name (abfd
, "COMMON");
3952 flagword sflags
= (SEC_ALLOC
| SEC_IS_COMMON
| SEC_KEEP
3954 xc
= bfd_make_section_with_flags (abfd
, "COMMON", sflags
);
3956 goto error_free_vers
;
3960 else if (isym
->st_shndx
== SHN_COMMON
3961 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3962 && !info
->relocatable
)
3964 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3968 flagword sflags
= (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_IS_COMMON
3969 | SEC_LINKER_CREATED
);
3970 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon", sflags
);
3972 goto error_free_vers
;
3976 else if (bed
->elf_add_symbol_hook
)
3978 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3980 goto error_free_vers
;
3982 /* The hook function sets the name to NULL if this symbol
3983 should be skipped for some reason. */
3988 /* Sanity check that all possibilities were handled. */
3991 bfd_set_error (bfd_error_bad_value
);
3992 goto error_free_vers
;
3995 if (bfd_is_und_section (sec
)
3996 || bfd_is_com_section (sec
))
4001 size_change_ok
= FALSE
;
4002 type_change_ok
= bed
->type_change_ok
;
4007 if (is_elf_hash_table (htab
))
4009 Elf_Internal_Versym iver
;
4010 unsigned int vernum
= 0;
4013 /* If this is a definition of a symbol which was previously
4014 referenced in a non-weak manner then make a note of the bfd
4015 that contained the reference. This is used if we need to
4016 refer to the source of the reference later on. */
4017 if (! bfd_is_und_section (sec
))
4019 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4022 && h
->root
.type
== bfd_link_hash_undefined
4023 && h
->root
.u
.undef
.abfd
)
4024 undef_bfd
= h
->root
.u
.undef
.abfd
;
4029 if (info
->default_imported_symver
)
4030 /* Use the default symbol version created earlier. */
4031 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4036 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4038 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4040 /* If this is a hidden symbol, or if it is not version
4041 1, we append the version name to the symbol name.
4042 However, we do not modify a non-hidden absolute symbol
4043 if it is not a function, because it might be the version
4044 symbol itself. FIXME: What if it isn't? */
4045 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4047 && (!bfd_is_abs_section (sec
)
4048 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4051 size_t namelen
, verlen
, newlen
;
4054 if (isym
->st_shndx
!= SHN_UNDEF
)
4056 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4058 else if (vernum
> 1)
4060 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4066 (*_bfd_error_handler
)
4067 (_("%B: %s: invalid version %u (max %d)"),
4069 elf_tdata (abfd
)->cverdefs
);
4070 bfd_set_error (bfd_error_bad_value
);
4071 goto error_free_vers
;
4076 /* We cannot simply test for the number of
4077 entries in the VERNEED section since the
4078 numbers for the needed versions do not start
4080 Elf_Internal_Verneed
*t
;
4083 for (t
= elf_tdata (abfd
)->verref
;
4087 Elf_Internal_Vernaux
*a
;
4089 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4091 if (a
->vna_other
== vernum
)
4093 verstr
= a
->vna_nodename
;
4102 (*_bfd_error_handler
)
4103 (_("%B: %s: invalid needed version %d"),
4104 abfd
, name
, vernum
);
4105 bfd_set_error (bfd_error_bad_value
);
4106 goto error_free_vers
;
4110 namelen
= strlen (name
);
4111 verlen
= strlen (verstr
);
4112 newlen
= namelen
+ verlen
+ 2;
4113 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4114 && isym
->st_shndx
!= SHN_UNDEF
)
4117 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4118 if (newname
== NULL
)
4119 goto error_free_vers
;
4120 memcpy (newname
, name
, namelen
);
4121 p
= newname
+ namelen
;
4123 /* If this is a defined non-hidden version symbol,
4124 we add another @ to the name. This indicates the
4125 default version of the symbol. */
4126 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4127 && isym
->st_shndx
!= SHN_UNDEF
)
4129 memcpy (p
, verstr
, verlen
+ 1);
4134 /* If necessary, make a second attempt to locate the bfd
4135 containing an unresolved, non-weak reference to the
4137 if (! bfd_is_und_section (sec
) && undef_bfd
== NULL
)
4139 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4142 && h
->root
.type
== bfd_link_hash_undefined
4143 && h
->root
.u
.undef
.abfd
)
4144 undef_bfd
= h
->root
.u
.undef
.abfd
;
4147 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4148 &value
, &old_alignment
,
4149 sym_hash
, &skip
, &override
,
4150 &type_change_ok
, &size_change_ok
))
4151 goto error_free_vers
;
4160 while (h
->root
.type
== bfd_link_hash_indirect
4161 || h
->root
.type
== bfd_link_hash_warning
)
4162 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4164 /* Remember the old alignment if this is a common symbol, so
4165 that we don't reduce the alignment later on. We can't
4166 check later, because _bfd_generic_link_add_one_symbol
4167 will set a default for the alignment which we want to
4168 override. We also remember the old bfd where the existing
4169 definition comes from. */
4170 switch (h
->root
.type
)
4175 case bfd_link_hash_defined
:
4176 case bfd_link_hash_defweak
:
4177 old_bfd
= h
->root
.u
.def
.section
->owner
;
4180 case bfd_link_hash_common
:
4181 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4182 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4186 if (elf_tdata (abfd
)->verdef
!= NULL
4190 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4193 if (! (_bfd_generic_link_add_one_symbol
4194 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4195 (struct bfd_link_hash_entry
**) sym_hash
)))
4196 goto error_free_vers
;
4199 while (h
->root
.type
== bfd_link_hash_indirect
4200 || h
->root
.type
== bfd_link_hash_warning
)
4201 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4204 if (is_elf_hash_table (htab
))
4205 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4207 new_weakdef
= FALSE
;
4210 && (flags
& BSF_WEAK
) != 0
4211 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4212 && is_elf_hash_table (htab
)
4213 && h
->u
.weakdef
== NULL
)
4215 /* Keep a list of all weak defined non function symbols from
4216 a dynamic object, using the weakdef field. Later in this
4217 function we will set the weakdef field to the correct
4218 value. We only put non-function symbols from dynamic
4219 objects on this list, because that happens to be the only
4220 time we need to know the normal symbol corresponding to a
4221 weak symbol, and the information is time consuming to
4222 figure out. If the weakdef field is not already NULL,
4223 then this symbol was already defined by some previous
4224 dynamic object, and we will be using that previous
4225 definition anyhow. */
4227 h
->u
.weakdef
= weaks
;
4232 /* Set the alignment of a common symbol. */
4233 if ((common
|| bfd_is_com_section (sec
))
4234 && h
->root
.type
== bfd_link_hash_common
)
4239 align
= bfd_log2 (isym
->st_value
);
4242 /* The new symbol is a common symbol in a shared object.
4243 We need to get the alignment from the section. */
4244 align
= new_sec
->alignment_power
;
4246 if (align
> old_alignment
)
4247 h
->root
.u
.c
.p
->alignment_power
= align
;
4249 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4252 if (is_elf_hash_table (htab
))
4256 /* Check the alignment when a common symbol is involved. This
4257 can change when a common symbol is overridden by a normal
4258 definition or a common symbol is ignored due to the old
4259 normal definition. We need to make sure the maximum
4260 alignment is maintained. */
4261 if ((old_alignment
|| common
)
4262 && h
->root
.type
!= bfd_link_hash_common
)
4264 unsigned int common_align
;
4265 unsigned int normal_align
;
4266 unsigned int symbol_align
;
4270 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4271 if (h
->root
.u
.def
.section
->owner
!= NULL
4272 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4274 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4275 if (normal_align
> symbol_align
)
4276 normal_align
= symbol_align
;
4279 normal_align
= symbol_align
;
4283 common_align
= old_alignment
;
4284 common_bfd
= old_bfd
;
4289 common_align
= bfd_log2 (isym
->st_value
);
4291 normal_bfd
= old_bfd
;
4294 if (normal_align
< common_align
)
4296 /* PR binutils/2735 */
4297 if (normal_bfd
== NULL
)
4298 (*_bfd_error_handler
)
4299 (_("Warning: alignment %u of common symbol `%s' in %B"
4300 " is greater than the alignment (%u) of its section %A"),
4301 common_bfd
, h
->root
.u
.def
.section
,
4302 1 << common_align
, name
, 1 << normal_align
);
4304 (*_bfd_error_handler
)
4305 (_("Warning: alignment %u of symbol `%s' in %B"
4306 " is smaller than %u in %B"),
4307 normal_bfd
, common_bfd
,
4308 1 << normal_align
, name
, 1 << common_align
);
4312 /* Remember the symbol size if it isn't undefined. */
4313 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4314 && (definition
|| h
->size
== 0))
4317 && h
->size
!= isym
->st_size
4318 && ! size_change_ok
)
4319 (*_bfd_error_handler
)
4320 (_("Warning: size of symbol `%s' changed"
4321 " from %lu in %B to %lu in %B"),
4323 name
, (unsigned long) h
->size
,
4324 (unsigned long) isym
->st_size
);
4326 h
->size
= isym
->st_size
;
4329 /* If this is a common symbol, then we always want H->SIZE
4330 to be the size of the common symbol. The code just above
4331 won't fix the size if a common symbol becomes larger. We
4332 don't warn about a size change here, because that is
4333 covered by --warn-common. Allow changed between different
4335 if (h
->root
.type
== bfd_link_hash_common
)
4336 h
->size
= h
->root
.u
.c
.size
;
4338 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4339 && (definition
|| h
->type
== STT_NOTYPE
))
4341 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4343 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4345 if (type
== STT_GNU_IFUNC
4346 && (abfd
->flags
& DYNAMIC
) != 0)
4349 if (h
->type
!= type
)
4351 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4352 (*_bfd_error_handler
)
4353 (_("Warning: type of symbol `%s' changed"
4354 " from %d to %d in %B"),
4355 abfd
, name
, h
->type
, type
);
4361 /* Merge st_other field. */
4362 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4364 /* Set a flag in the hash table entry indicating the type of
4365 reference or definition we just found. Keep a count of
4366 the number of dynamic symbols we find. A dynamic symbol
4367 is one which is referenced or defined by both a regular
4368 object and a shared object. */
4375 if (bind
!= STB_WEAK
)
4376 h
->ref_regular_nonweak
= 1;
4388 if (! info
->executable
4401 || (h
->u
.weakdef
!= NULL
4403 && h
->u
.weakdef
->dynindx
!= -1))
4407 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4409 /* We don't want to make debug symbol dynamic. */
4414 h
->target_internal
= isym
->st_target_internal
;
4416 /* Check to see if we need to add an indirect symbol for
4417 the default name. */
4418 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4419 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4420 &sec
, &value
, &dynsym
,
4422 goto error_free_vers
;
4424 if (definition
&& !dynamic
)
4426 char *p
= strchr (name
, ELF_VER_CHR
);
4427 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4429 /* Queue non-default versions so that .symver x, x@FOO
4430 aliases can be checked. */
4433 amt
= ((isymend
- isym
+ 1)
4434 * sizeof (struct elf_link_hash_entry
*));
4436 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4438 goto error_free_vers
;
4440 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4444 if (dynsym
&& h
->dynindx
== -1)
4446 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4447 goto error_free_vers
;
4448 if (h
->u
.weakdef
!= NULL
4450 && h
->u
.weakdef
->dynindx
== -1)
4452 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4453 goto error_free_vers
;
4456 else if (dynsym
&& h
->dynindx
!= -1)
4457 /* If the symbol already has a dynamic index, but
4458 visibility says it should not be visible, turn it into
4460 switch (ELF_ST_VISIBILITY (h
->other
))
4464 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4474 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4475 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4478 const char *soname
= elf_dt_name (abfd
);
4480 /* A symbol from a library loaded via DT_NEEDED of some
4481 other library is referenced by a regular object.
4482 Add a DT_NEEDED entry for it. Issue an error if
4483 --no-add-needed is used and the reference was not
4485 if (undef_bfd
!= NULL
4486 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4488 (*_bfd_error_handler
)
4489 (_("%B: undefined reference to symbol '%s'"),
4491 (*_bfd_error_handler
)
4492 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4494 bfd_set_error (bfd_error_invalid_operation
);
4495 goto error_free_vers
;
4498 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4499 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4502 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4504 goto error_free_vers
;
4506 BFD_ASSERT (ret
== 0);
4511 if (extversym
!= NULL
)
4517 if (isymbuf
!= NULL
)
4523 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4527 /* Restore the symbol table. */
4528 if (bed
->as_needed_cleanup
)
4529 (*bed
->as_needed_cleanup
) (abfd
, info
);
4530 old_hash
= (char *) old_tab
+ tabsize
;
4531 old_ent
= (char *) old_hash
+ hashsize
;
4532 sym_hash
= elf_sym_hashes (abfd
);
4533 htab
->root
.table
.table
= old_table
;
4534 htab
->root
.table
.size
= old_size
;
4535 htab
->root
.table
.count
= old_count
;
4536 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4537 memcpy (sym_hash
, old_hash
, hashsize
);
4538 htab
->root
.undefs
= old_undefs
;
4539 htab
->root
.undefs_tail
= old_undefs_tail
;
4540 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4542 struct bfd_hash_entry
*p
;
4543 struct elf_link_hash_entry
*h
;
4545 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4547 h
= (struct elf_link_hash_entry
*) p
;
4548 if (h
->root
.type
== bfd_link_hash_warning
)
4549 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4550 if (h
->dynindx
>= old_dynsymcount
)
4551 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4553 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4554 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4555 h
= (struct elf_link_hash_entry
*) p
;
4556 if (h
->root
.type
== bfd_link_hash_warning
)
4558 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4559 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4564 /* Make a special call to the linker "notice" function to
4565 tell it that symbols added for crefs may need to be removed. */
4566 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4567 notice_not_needed
, 0, NULL
))
4568 goto error_free_vers
;
4571 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4573 if (nondeflt_vers
!= NULL
)
4574 free (nondeflt_vers
);
4578 if (old_tab
!= NULL
)
4580 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4581 notice_needed
, 0, NULL
))
4582 goto error_free_vers
;
4587 /* Now that all the symbols from this input file are created, handle
4588 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4589 if (nondeflt_vers
!= NULL
)
4591 bfd_size_type cnt
, symidx
;
4593 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4595 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4596 char *shortname
, *p
;
4598 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4600 || (h
->root
.type
!= bfd_link_hash_defined
4601 && h
->root
.type
!= bfd_link_hash_defweak
))
4604 amt
= p
- h
->root
.root
.string
;
4605 shortname
= (char *) bfd_malloc (amt
+ 1);
4607 goto error_free_vers
;
4608 memcpy (shortname
, h
->root
.root
.string
, amt
);
4609 shortname
[amt
] = '\0';
4611 hi
= (struct elf_link_hash_entry
*)
4612 bfd_link_hash_lookup (&htab
->root
, shortname
,
4613 FALSE
, FALSE
, FALSE
);
4615 && hi
->root
.type
== h
->root
.type
4616 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4617 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4619 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4620 hi
->root
.type
= bfd_link_hash_indirect
;
4621 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4622 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4623 sym_hash
= elf_sym_hashes (abfd
);
4625 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4626 if (sym_hash
[symidx
] == hi
)
4628 sym_hash
[symidx
] = h
;
4634 free (nondeflt_vers
);
4635 nondeflt_vers
= NULL
;
4638 /* Now set the weakdefs field correctly for all the weak defined
4639 symbols we found. The only way to do this is to search all the
4640 symbols. Since we only need the information for non functions in
4641 dynamic objects, that's the only time we actually put anything on
4642 the list WEAKS. We need this information so that if a regular
4643 object refers to a symbol defined weakly in a dynamic object, the
4644 real symbol in the dynamic object is also put in the dynamic
4645 symbols; we also must arrange for both symbols to point to the
4646 same memory location. We could handle the general case of symbol
4647 aliasing, but a general symbol alias can only be generated in
4648 assembler code, handling it correctly would be very time
4649 consuming, and other ELF linkers don't handle general aliasing
4653 struct elf_link_hash_entry
**hpp
;
4654 struct elf_link_hash_entry
**hppend
;
4655 struct elf_link_hash_entry
**sorted_sym_hash
;
4656 struct elf_link_hash_entry
*h
;
4659 /* Since we have to search the whole symbol list for each weak
4660 defined symbol, search time for N weak defined symbols will be
4661 O(N^2). Binary search will cut it down to O(NlogN). */
4662 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4663 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4664 if (sorted_sym_hash
== NULL
)
4666 sym_hash
= sorted_sym_hash
;
4667 hpp
= elf_sym_hashes (abfd
);
4668 hppend
= hpp
+ extsymcount
;
4670 for (; hpp
< hppend
; hpp
++)
4674 && h
->root
.type
== bfd_link_hash_defined
4675 && !bed
->is_function_type (h
->type
))
4683 qsort (sorted_sym_hash
, sym_count
,
4684 sizeof (struct elf_link_hash_entry
*),
4687 while (weaks
!= NULL
)
4689 struct elf_link_hash_entry
*hlook
;
4696 weaks
= hlook
->u
.weakdef
;
4697 hlook
->u
.weakdef
= NULL
;
4699 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4700 || hlook
->root
.type
== bfd_link_hash_defweak
4701 || hlook
->root
.type
== bfd_link_hash_common
4702 || hlook
->root
.type
== bfd_link_hash_indirect
);
4703 slook
= hlook
->root
.u
.def
.section
;
4704 vlook
= hlook
->root
.u
.def
.value
;
4711 bfd_signed_vma vdiff
;
4713 h
= sorted_sym_hash
[idx
];
4714 vdiff
= vlook
- h
->root
.u
.def
.value
;
4721 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4734 /* We didn't find a value/section match. */
4738 for (i
= ilook
; i
< sym_count
; i
++)
4740 h
= sorted_sym_hash
[i
];
4742 /* Stop if value or section doesn't match. */
4743 if (h
->root
.u
.def
.value
!= vlook
4744 || h
->root
.u
.def
.section
!= slook
)
4746 else if (h
!= hlook
)
4748 hlook
->u
.weakdef
= h
;
4750 /* If the weak definition is in the list of dynamic
4751 symbols, make sure the real definition is put
4753 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4755 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4758 free (sorted_sym_hash
);
4763 /* If the real definition is in the list of dynamic
4764 symbols, make sure the weak definition is put
4765 there as well. If we don't do this, then the
4766 dynamic loader might not merge the entries for the
4767 real definition and the weak definition. */
4768 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4770 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4771 goto err_free_sym_hash
;
4778 free (sorted_sym_hash
);
4781 if (bed
->check_directives
4782 && !(*bed
->check_directives
) (abfd
, info
))
4785 /* If this object is the same format as the output object, and it is
4786 not a shared library, then let the backend look through the
4789 This is required to build global offset table entries and to
4790 arrange for dynamic relocs. It is not required for the
4791 particular common case of linking non PIC code, even when linking
4792 against shared libraries, but unfortunately there is no way of
4793 knowing whether an object file has been compiled PIC or not.
4794 Looking through the relocs is not particularly time consuming.
4795 The problem is that we must either (1) keep the relocs in memory,
4796 which causes the linker to require additional runtime memory or
4797 (2) read the relocs twice from the input file, which wastes time.
4798 This would be a good case for using mmap.
4800 I have no idea how to handle linking PIC code into a file of a
4801 different format. It probably can't be done. */
4803 && is_elf_hash_table (htab
)
4804 && bed
->check_relocs
!= NULL
4805 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
4806 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4810 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4812 Elf_Internal_Rela
*internal_relocs
;
4815 if ((o
->flags
& SEC_RELOC
) == 0
4816 || o
->reloc_count
== 0
4817 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4818 && (o
->flags
& SEC_DEBUGGING
) != 0)
4819 || bfd_is_abs_section (o
->output_section
))
4822 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4824 if (internal_relocs
== NULL
)
4827 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4829 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4830 free (internal_relocs
);
4837 /* If this is a non-traditional link, try to optimize the handling
4838 of the .stab/.stabstr sections. */
4840 && ! info
->traditional_format
4841 && is_elf_hash_table (htab
)
4842 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4846 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4847 if (stabstr
!= NULL
)
4849 bfd_size_type string_offset
= 0;
4852 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4853 if (CONST_STRNEQ (stab
->name
, ".stab")
4854 && (!stab
->name
[5] ||
4855 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4856 && (stab
->flags
& SEC_MERGE
) == 0
4857 && !bfd_is_abs_section (stab
->output_section
))
4859 struct bfd_elf_section_data
*secdata
;
4861 secdata
= elf_section_data (stab
);
4862 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4863 stabstr
, &secdata
->sec_info
,
4866 if (secdata
->sec_info
)
4867 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4872 if (is_elf_hash_table (htab
) && add_needed
)
4874 /* Add this bfd to the loaded list. */
4875 struct elf_link_loaded_list
*n
;
4877 n
= (struct elf_link_loaded_list
*)
4878 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4882 n
->next
= htab
->loaded
;
4889 if (old_tab
!= NULL
)
4891 if (nondeflt_vers
!= NULL
)
4892 free (nondeflt_vers
);
4893 if (extversym
!= NULL
)
4896 if (isymbuf
!= NULL
)
4902 /* Return the linker hash table entry of a symbol that might be
4903 satisfied by an archive symbol. Return -1 on error. */
4905 struct elf_link_hash_entry
*
4906 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4907 struct bfd_link_info
*info
,
4910 struct elf_link_hash_entry
*h
;
4914 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, TRUE
);
4918 /* If this is a default version (the name contains @@), look up the
4919 symbol again with only one `@' as well as without the version.
4920 The effect is that references to the symbol with and without the
4921 version will be matched by the default symbol in the archive. */
4923 p
= strchr (name
, ELF_VER_CHR
);
4924 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4927 /* First check with only one `@'. */
4928 len
= strlen (name
);
4929 copy
= (char *) bfd_alloc (abfd
, len
);
4931 return (struct elf_link_hash_entry
*) 0 - 1;
4933 first
= p
- name
+ 1;
4934 memcpy (copy
, name
, first
);
4935 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4937 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, TRUE
);
4940 /* We also need to check references to the symbol without the
4942 copy
[first
- 1] = '\0';
4943 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4944 FALSE
, FALSE
, TRUE
);
4947 bfd_release (abfd
, copy
);
4951 /* Add symbols from an ELF archive file to the linker hash table. We
4952 don't use _bfd_generic_link_add_archive_symbols because of a
4953 problem which arises on UnixWare. The UnixWare libc.so is an
4954 archive which includes an entry libc.so.1 which defines a bunch of
4955 symbols. The libc.so archive also includes a number of other
4956 object files, which also define symbols, some of which are the same
4957 as those defined in libc.so.1. Correct linking requires that we
4958 consider each object file in turn, and include it if it defines any
4959 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4960 this; it looks through the list of undefined symbols, and includes
4961 any object file which defines them. When this algorithm is used on
4962 UnixWare, it winds up pulling in libc.so.1 early and defining a
4963 bunch of symbols. This means that some of the other objects in the
4964 archive are not included in the link, which is incorrect since they
4965 precede libc.so.1 in the archive.
4967 Fortunately, ELF archive handling is simpler than that done by
4968 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4969 oddities. In ELF, if we find a symbol in the archive map, and the
4970 symbol is currently undefined, we know that we must pull in that
4973 Unfortunately, we do have to make multiple passes over the symbol
4974 table until nothing further is resolved. */
4977 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4980 bfd_boolean
*defined
= NULL
;
4981 bfd_boolean
*included
= NULL
;
4985 const struct elf_backend_data
*bed
;
4986 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4987 (bfd
*, struct bfd_link_info
*, const char *);
4989 if (! bfd_has_map (abfd
))
4991 /* An empty archive is a special case. */
4992 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4994 bfd_set_error (bfd_error_no_armap
);
4998 /* Keep track of all symbols we know to be already defined, and all
4999 files we know to be already included. This is to speed up the
5000 second and subsequent passes. */
5001 c
= bfd_ardata (abfd
)->symdef_count
;
5005 amt
*= sizeof (bfd_boolean
);
5006 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
5007 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
5008 if (defined
== NULL
|| included
== NULL
)
5011 symdefs
= bfd_ardata (abfd
)->symdefs
;
5012 bed
= get_elf_backend_data (abfd
);
5013 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5026 symdefend
= symdef
+ c
;
5027 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5029 struct elf_link_hash_entry
*h
;
5031 struct bfd_link_hash_entry
*undefs_tail
;
5034 if (defined
[i
] || included
[i
])
5036 if (symdef
->file_offset
== last
)
5042 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5043 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5049 if (h
->root
.type
== bfd_link_hash_common
)
5051 /* We currently have a common symbol. The archive map contains
5052 a reference to this symbol, so we may want to include it. We
5053 only want to include it however, if this archive element
5054 contains a definition of the symbol, not just another common
5057 Unfortunately some archivers (including GNU ar) will put
5058 declarations of common symbols into their archive maps, as
5059 well as real definitions, so we cannot just go by the archive
5060 map alone. Instead we must read in the element's symbol
5061 table and check that to see what kind of symbol definition
5063 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5066 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5068 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5073 /* We need to include this archive member. */
5074 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5075 if (element
== NULL
)
5078 if (! bfd_check_format (element
, bfd_object
))
5081 /* Doublecheck that we have not included this object
5082 already--it should be impossible, but there may be
5083 something wrong with the archive. */
5084 if (element
->archive_pass
!= 0)
5086 bfd_set_error (bfd_error_bad_value
);
5089 element
->archive_pass
= 1;
5091 undefs_tail
= info
->hash
->undefs_tail
;
5093 if (!(*info
->callbacks
5094 ->add_archive_element
) (info
, element
, symdef
->name
, &element
))
5096 if (!bfd_link_add_symbols (element
, info
))
5099 /* If there are any new undefined symbols, we need to make
5100 another pass through the archive in order to see whether
5101 they can be defined. FIXME: This isn't perfect, because
5102 common symbols wind up on undefs_tail and because an
5103 undefined symbol which is defined later on in this pass
5104 does not require another pass. This isn't a bug, but it
5105 does make the code less efficient than it could be. */
5106 if (undefs_tail
!= info
->hash
->undefs_tail
)
5109 /* Look backward to mark all symbols from this object file
5110 which we have already seen in this pass. */
5114 included
[mark
] = TRUE
;
5119 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5121 /* We mark subsequent symbols from this object file as we go
5122 on through the loop. */
5123 last
= symdef
->file_offset
;
5134 if (defined
!= NULL
)
5136 if (included
!= NULL
)
5141 /* Given an ELF BFD, add symbols to the global hash table as
5145 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5147 switch (bfd_get_format (abfd
))
5150 return elf_link_add_object_symbols (abfd
, info
);
5152 return elf_link_add_archive_symbols (abfd
, info
);
5154 bfd_set_error (bfd_error_wrong_format
);
5159 struct hash_codes_info
5161 unsigned long *hashcodes
;
5165 /* This function will be called though elf_link_hash_traverse to store
5166 all hash value of the exported symbols in an array. */
5169 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5171 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5177 if (h
->root
.type
== bfd_link_hash_warning
)
5178 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5180 /* Ignore indirect symbols. These are added by the versioning code. */
5181 if (h
->dynindx
== -1)
5184 name
= h
->root
.root
.string
;
5185 p
= strchr (name
, ELF_VER_CHR
);
5188 alc
= (char *) bfd_malloc (p
- name
+ 1);
5194 memcpy (alc
, name
, p
- name
);
5195 alc
[p
- name
] = '\0';
5199 /* Compute the hash value. */
5200 ha
= bfd_elf_hash (name
);
5202 /* Store the found hash value in the array given as the argument. */
5203 *(inf
->hashcodes
)++ = ha
;
5205 /* And store it in the struct so that we can put it in the hash table
5207 h
->u
.elf_hash_value
= ha
;
5215 struct collect_gnu_hash_codes
5218 const struct elf_backend_data
*bed
;
5219 unsigned long int nsyms
;
5220 unsigned long int maskbits
;
5221 unsigned long int *hashcodes
;
5222 unsigned long int *hashval
;
5223 unsigned long int *indx
;
5224 unsigned long int *counts
;
5227 long int min_dynindx
;
5228 unsigned long int bucketcount
;
5229 unsigned long int symindx
;
5230 long int local_indx
;
5231 long int shift1
, shift2
;
5232 unsigned long int mask
;
5236 /* This function will be called though elf_link_hash_traverse to store
5237 all hash value of the exported symbols in an array. */
5240 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5242 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5248 if (h
->root
.type
== bfd_link_hash_warning
)
5249 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5251 /* Ignore indirect symbols. These are added by the versioning code. */
5252 if (h
->dynindx
== -1)
5255 /* Ignore also local symbols and undefined symbols. */
5256 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5259 name
= h
->root
.root
.string
;
5260 p
= strchr (name
, ELF_VER_CHR
);
5263 alc
= (char *) bfd_malloc (p
- name
+ 1);
5269 memcpy (alc
, name
, p
- name
);
5270 alc
[p
- name
] = '\0';
5274 /* Compute the hash value. */
5275 ha
= bfd_elf_gnu_hash (name
);
5277 /* Store the found hash value in the array for compute_bucket_count,
5278 and also for .dynsym reordering purposes. */
5279 s
->hashcodes
[s
->nsyms
] = ha
;
5280 s
->hashval
[h
->dynindx
] = ha
;
5282 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5283 s
->min_dynindx
= h
->dynindx
;
5291 /* This function will be called though elf_link_hash_traverse to do
5292 final dynaminc symbol renumbering. */
5295 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5297 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5298 unsigned long int bucket
;
5299 unsigned long int val
;
5301 if (h
->root
.type
== bfd_link_hash_warning
)
5302 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5304 /* Ignore indirect symbols. */
5305 if (h
->dynindx
== -1)
5308 /* Ignore also local symbols and undefined symbols. */
5309 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5311 if (h
->dynindx
>= s
->min_dynindx
)
5312 h
->dynindx
= s
->local_indx
++;
5316 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5317 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5318 & ((s
->maskbits
>> s
->shift1
) - 1);
5319 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5321 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5322 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5323 if (s
->counts
[bucket
] == 1)
5324 /* Last element terminates the chain. */
5326 bfd_put_32 (s
->output_bfd
, val
,
5327 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5328 --s
->counts
[bucket
];
5329 h
->dynindx
= s
->indx
[bucket
]++;
5333 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5336 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5338 return !(h
->forced_local
5339 || h
->root
.type
== bfd_link_hash_undefined
5340 || h
->root
.type
== bfd_link_hash_undefweak
5341 || ((h
->root
.type
== bfd_link_hash_defined
5342 || h
->root
.type
== bfd_link_hash_defweak
)
5343 && h
->root
.u
.def
.section
->output_section
== NULL
));
5346 /* Array used to determine the number of hash table buckets to use
5347 based on the number of symbols there are. If there are fewer than
5348 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5349 fewer than 37 we use 17 buckets, and so forth. We never use more
5350 than 32771 buckets. */
5352 static const size_t elf_buckets
[] =
5354 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5358 /* Compute bucket count for hashing table. We do not use a static set
5359 of possible tables sizes anymore. Instead we determine for all
5360 possible reasonable sizes of the table the outcome (i.e., the
5361 number of collisions etc) and choose the best solution. The
5362 weighting functions are not too simple to allow the table to grow
5363 without bounds. Instead one of the weighting factors is the size.
5364 Therefore the result is always a good payoff between few collisions
5365 (= short chain lengths) and table size. */
5367 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5368 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5369 unsigned long int nsyms
,
5372 size_t best_size
= 0;
5373 unsigned long int i
;
5375 /* We have a problem here. The following code to optimize the table
5376 size requires an integer type with more the 32 bits. If
5377 BFD_HOST_U_64_BIT is set we know about such a type. */
5378 #ifdef BFD_HOST_U_64_BIT
5383 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5384 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5385 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5386 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5387 unsigned long int *counts
;
5389 unsigned int no_improvement_count
= 0;
5391 /* Possible optimization parameters: if we have NSYMS symbols we say
5392 that the hashing table must at least have NSYMS/4 and at most
5394 minsize
= nsyms
/ 4;
5397 best_size
= maxsize
= nsyms
* 2;
5402 if ((best_size
& 31) == 0)
5406 /* Create array where we count the collisions in. We must use bfd_malloc
5407 since the size could be large. */
5409 amt
*= sizeof (unsigned long int);
5410 counts
= (unsigned long int *) bfd_malloc (amt
);
5414 /* Compute the "optimal" size for the hash table. The criteria is a
5415 minimal chain length. The minor criteria is (of course) the size
5417 for (i
= minsize
; i
< maxsize
; ++i
)
5419 /* Walk through the array of hashcodes and count the collisions. */
5420 BFD_HOST_U_64_BIT max
;
5421 unsigned long int j
;
5422 unsigned long int fact
;
5424 if (gnu_hash
&& (i
& 31) == 0)
5427 memset (counts
, '\0', i
* sizeof (unsigned long int));
5429 /* Determine how often each hash bucket is used. */
5430 for (j
= 0; j
< nsyms
; ++j
)
5431 ++counts
[hashcodes
[j
] % i
];
5433 /* For the weight function we need some information about the
5434 pagesize on the target. This is information need not be 100%
5435 accurate. Since this information is not available (so far) we
5436 define it here to a reasonable default value. If it is crucial
5437 to have a better value some day simply define this value. */
5438 # ifndef BFD_TARGET_PAGESIZE
5439 # define BFD_TARGET_PAGESIZE (4096)
5442 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5444 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5447 /* Variant 1: optimize for short chains. We add the squares
5448 of all the chain lengths (which favors many small chain
5449 over a few long chains). */
5450 for (j
= 0; j
< i
; ++j
)
5451 max
+= counts
[j
] * counts
[j
];
5453 /* This adds penalties for the overall size of the table. */
5454 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5457 /* Variant 2: Optimize a lot more for small table. Here we
5458 also add squares of the size but we also add penalties for
5459 empty slots (the +1 term). */
5460 for (j
= 0; j
< i
; ++j
)
5461 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5463 /* The overall size of the table is considered, but not as
5464 strong as in variant 1, where it is squared. */
5465 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5469 /* Compare with current best results. */
5470 if (max
< best_chlen
)
5474 no_improvement_count
= 0;
5476 /* PR 11843: Avoid futile long searches for the best bucket size
5477 when there are a large number of symbols. */
5478 else if (++no_improvement_count
== 100)
5485 #endif /* defined (BFD_HOST_U_64_BIT) */
5487 /* This is the fallback solution if no 64bit type is available or if we
5488 are not supposed to spend much time on optimizations. We select the
5489 bucket count using a fixed set of numbers. */
5490 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5492 best_size
= elf_buckets
[i
];
5493 if (nsyms
< elf_buckets
[i
+ 1])
5496 if (gnu_hash
&& best_size
< 2)
5503 /* Size any SHT_GROUP section for ld -r. */
5506 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
5510 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
5511 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
5512 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
5517 /* Set up the sizes and contents of the ELF dynamic sections. This is
5518 called by the ELF linker emulation before_allocation routine. We
5519 must set the sizes of the sections before the linker sets the
5520 addresses of the various sections. */
5523 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5526 const char *filter_shlib
,
5528 const char *depaudit
,
5529 const char * const *auxiliary_filters
,
5530 struct bfd_link_info
*info
,
5531 asection
**sinterpptr
,
5532 struct bfd_elf_version_tree
*verdefs
)
5534 bfd_size_type soname_indx
;
5536 const struct elf_backend_data
*bed
;
5537 struct elf_info_failed asvinfo
;
5541 soname_indx
= (bfd_size_type
) -1;
5543 if (!is_elf_hash_table (info
->hash
))
5546 bed
= get_elf_backend_data (output_bfd
);
5547 if (info
->execstack
)
5548 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5549 else if (info
->noexecstack
)
5550 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5554 asection
*notesec
= NULL
;
5557 for (inputobj
= info
->input_bfds
;
5559 inputobj
= inputobj
->link_next
)
5563 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5565 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5568 if (s
->flags
& SEC_CODE
)
5572 else if (bed
->default_execstack
)
5577 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5578 if (exec
&& info
->relocatable
5579 && notesec
->output_section
!= bfd_abs_section_ptr
)
5580 notesec
->output_section
->flags
|= SEC_CODE
;
5584 /* Any syms created from now on start with -1 in
5585 got.refcount/offset and plt.refcount/offset. */
5586 elf_hash_table (info
)->init_got_refcount
5587 = elf_hash_table (info
)->init_got_offset
;
5588 elf_hash_table (info
)->init_plt_refcount
5589 = elf_hash_table (info
)->init_plt_offset
;
5591 if (info
->relocatable
5592 && !_bfd_elf_size_group_sections (info
))
5595 /* The backend may have to create some sections regardless of whether
5596 we're dynamic or not. */
5597 if (bed
->elf_backend_always_size_sections
5598 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5601 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5604 dynobj
= elf_hash_table (info
)->dynobj
;
5606 /* If there were no dynamic objects in the link, there is nothing to
5611 if (elf_hash_table (info
)->dynamic_sections_created
)
5613 struct elf_info_failed eif
;
5614 struct elf_link_hash_entry
*h
;
5616 struct bfd_elf_version_tree
*t
;
5617 struct bfd_elf_version_expr
*d
;
5619 bfd_boolean all_defined
;
5621 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5622 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5626 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5628 if (soname_indx
== (bfd_size_type
) -1
5629 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5635 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5637 info
->flags
|= DF_SYMBOLIC
;
5644 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5646 if (indx
== (bfd_size_type
) -1
5647 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5650 if (info
->new_dtags
)
5652 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5653 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5658 if (filter_shlib
!= NULL
)
5662 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5663 filter_shlib
, TRUE
);
5664 if (indx
== (bfd_size_type
) -1
5665 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5669 if (auxiliary_filters
!= NULL
)
5671 const char * const *p
;
5673 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5677 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5679 if (indx
== (bfd_size_type
) -1
5680 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5689 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5691 if (indx
== (bfd_size_type
) -1
5692 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5696 if (depaudit
!= NULL
)
5700 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5702 if (indx
== (bfd_size_type
) -1
5703 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5708 eif
.verdefs
= verdefs
;
5711 /* If we are supposed to export all symbols into the dynamic symbol
5712 table (this is not the normal case), then do so. */
5713 if (info
->export_dynamic
5714 || (info
->executable
&& info
->dynamic
))
5716 elf_link_hash_traverse (elf_hash_table (info
),
5717 _bfd_elf_export_symbol
,
5723 /* Make all global versions with definition. */
5724 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5725 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5726 if (!d
->symver
&& d
->literal
)
5728 const char *verstr
, *name
;
5729 size_t namelen
, verlen
, newlen
;
5730 char *newname
, *p
, leading_char
;
5731 struct elf_link_hash_entry
*newh
;
5733 leading_char
= bfd_get_symbol_leading_char (output_bfd
);
5735 namelen
= strlen (name
) + (leading_char
!= '\0');
5737 verlen
= strlen (verstr
);
5738 newlen
= namelen
+ verlen
+ 3;
5740 newname
= (char *) bfd_malloc (newlen
);
5741 if (newname
== NULL
)
5743 newname
[0] = leading_char
;
5744 memcpy (newname
+ (leading_char
!= '\0'), name
, namelen
);
5746 /* Check the hidden versioned definition. */
5747 p
= newname
+ namelen
;
5749 memcpy (p
, verstr
, verlen
+ 1);
5750 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5751 newname
, FALSE
, FALSE
,
5754 || (newh
->root
.type
!= bfd_link_hash_defined
5755 && newh
->root
.type
!= bfd_link_hash_defweak
))
5757 /* Check the default versioned definition. */
5759 memcpy (p
, verstr
, verlen
+ 1);
5760 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5761 newname
, FALSE
, FALSE
,
5766 /* Mark this version if there is a definition and it is
5767 not defined in a shared object. */
5769 && !newh
->def_dynamic
5770 && (newh
->root
.type
== bfd_link_hash_defined
5771 || newh
->root
.type
== bfd_link_hash_defweak
))
5775 /* Attach all the symbols to their version information. */
5776 asvinfo
.info
= info
;
5777 asvinfo
.verdefs
= verdefs
;
5778 asvinfo
.failed
= FALSE
;
5780 elf_link_hash_traverse (elf_hash_table (info
),
5781 _bfd_elf_link_assign_sym_version
,
5786 if (!info
->allow_undefined_version
)
5788 /* Check if all global versions have a definition. */
5790 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5791 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5792 if (d
->literal
&& !d
->symver
&& !d
->script
)
5794 (*_bfd_error_handler
)
5795 (_("%s: undefined version: %s"),
5796 d
->pattern
, t
->name
);
5797 all_defined
= FALSE
;
5802 bfd_set_error (bfd_error_bad_value
);
5807 /* Find all symbols which were defined in a dynamic object and make
5808 the backend pick a reasonable value for them. */
5809 elf_link_hash_traverse (elf_hash_table (info
),
5810 _bfd_elf_adjust_dynamic_symbol
,
5815 /* Add some entries to the .dynamic section. We fill in some of the
5816 values later, in bfd_elf_final_link, but we must add the entries
5817 now so that we know the final size of the .dynamic section. */
5819 /* If there are initialization and/or finalization functions to
5820 call then add the corresponding DT_INIT/DT_FINI entries. */
5821 h
= (info
->init_function
5822 ? elf_link_hash_lookup (elf_hash_table (info
),
5823 info
->init_function
, FALSE
,
5830 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5833 h
= (info
->fini_function
5834 ? elf_link_hash_lookup (elf_hash_table (info
),
5835 info
->fini_function
, FALSE
,
5842 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5846 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5847 if (s
!= NULL
&& s
->linker_has_input
)
5849 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5850 if (! info
->executable
)
5855 for (sub
= info
->input_bfds
; sub
!= NULL
;
5856 sub
= sub
->link_next
)
5857 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5858 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5859 if (elf_section_data (o
)->this_hdr
.sh_type
5860 == SHT_PREINIT_ARRAY
)
5862 (*_bfd_error_handler
)
5863 (_("%B: .preinit_array section is not allowed in DSO"),
5868 bfd_set_error (bfd_error_nonrepresentable_section
);
5872 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5873 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5876 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5877 if (s
!= NULL
&& s
->linker_has_input
)
5879 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5880 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5883 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5884 if (s
!= NULL
&& s
->linker_has_input
)
5886 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5887 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5891 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5892 /* If .dynstr is excluded from the link, we don't want any of
5893 these tags. Strictly, we should be checking each section
5894 individually; This quick check covers for the case where
5895 someone does a /DISCARD/ : { *(*) }. */
5896 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5898 bfd_size_type strsize
;
5900 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5901 if ((info
->emit_hash
5902 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5903 || (info
->emit_gnu_hash
5904 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5905 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5906 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5907 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5908 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5909 bed
->s
->sizeof_sym
))
5914 /* The backend must work out the sizes of all the other dynamic
5916 if (bed
->elf_backend_size_dynamic_sections
5917 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5920 if (elf_hash_table (info
)->dynamic_sections_created
)
5922 unsigned long section_sym_count
;
5925 /* Set up the version definition section. */
5926 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5927 BFD_ASSERT (s
!= NULL
);
5929 /* We may have created additional version definitions if we are
5930 just linking a regular application. */
5931 verdefs
= asvinfo
.verdefs
;
5933 /* Skip anonymous version tag. */
5934 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5935 verdefs
= verdefs
->next
;
5937 if (verdefs
== NULL
&& !info
->create_default_symver
)
5938 s
->flags
|= SEC_EXCLUDE
;
5943 struct bfd_elf_version_tree
*t
;
5945 Elf_Internal_Verdef def
;
5946 Elf_Internal_Verdaux defaux
;
5947 struct bfd_link_hash_entry
*bh
;
5948 struct elf_link_hash_entry
*h
;
5954 /* Make space for the base version. */
5955 size
+= sizeof (Elf_External_Verdef
);
5956 size
+= sizeof (Elf_External_Verdaux
);
5959 /* Make space for the default version. */
5960 if (info
->create_default_symver
)
5962 size
+= sizeof (Elf_External_Verdef
);
5966 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5968 struct bfd_elf_version_deps
*n
;
5970 /* Don't emit base version twice. */
5974 size
+= sizeof (Elf_External_Verdef
);
5975 size
+= sizeof (Elf_External_Verdaux
);
5978 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5979 size
+= sizeof (Elf_External_Verdaux
);
5983 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
5984 if (s
->contents
== NULL
&& s
->size
!= 0)
5987 /* Fill in the version definition section. */
5991 def
.vd_version
= VER_DEF_CURRENT
;
5992 def
.vd_flags
= VER_FLG_BASE
;
5995 if (info
->create_default_symver
)
5997 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5998 def
.vd_next
= sizeof (Elf_External_Verdef
);
6002 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6003 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6004 + sizeof (Elf_External_Verdaux
));
6007 if (soname_indx
!= (bfd_size_type
) -1)
6009 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6011 def
.vd_hash
= bfd_elf_hash (soname
);
6012 defaux
.vda_name
= soname_indx
;
6019 name
= lbasename (output_bfd
->filename
);
6020 def
.vd_hash
= bfd_elf_hash (name
);
6021 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6023 if (indx
== (bfd_size_type
) -1)
6025 defaux
.vda_name
= indx
;
6027 defaux
.vda_next
= 0;
6029 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6030 (Elf_External_Verdef
*) p
);
6031 p
+= sizeof (Elf_External_Verdef
);
6032 if (info
->create_default_symver
)
6034 /* Add a symbol representing this version. */
6036 if (! (_bfd_generic_link_add_one_symbol
6037 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6039 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6041 h
= (struct elf_link_hash_entry
*) bh
;
6044 h
->type
= STT_OBJECT
;
6045 h
->verinfo
.vertree
= NULL
;
6047 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6050 /* Create a duplicate of the base version with the same
6051 aux block, but different flags. */
6054 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6056 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6057 + sizeof (Elf_External_Verdaux
));
6060 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6061 (Elf_External_Verdef
*) p
);
6062 p
+= sizeof (Elf_External_Verdef
);
6064 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6065 (Elf_External_Verdaux
*) p
);
6066 p
+= sizeof (Elf_External_Verdaux
);
6068 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6071 struct bfd_elf_version_deps
*n
;
6073 /* Don't emit the base version twice. */
6078 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6081 /* Add a symbol representing this version. */
6083 if (! (_bfd_generic_link_add_one_symbol
6084 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6086 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6088 h
= (struct elf_link_hash_entry
*) bh
;
6091 h
->type
= STT_OBJECT
;
6092 h
->verinfo
.vertree
= t
;
6094 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6097 def
.vd_version
= VER_DEF_CURRENT
;
6099 if (t
->globals
.list
== NULL
6100 && t
->locals
.list
== NULL
6102 def
.vd_flags
|= VER_FLG_WEAK
;
6103 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6104 def
.vd_cnt
= cdeps
+ 1;
6105 def
.vd_hash
= bfd_elf_hash (t
->name
);
6106 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6109 /* If a basever node is next, it *must* be the last node in
6110 the chain, otherwise Verdef construction breaks. */
6111 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6112 BFD_ASSERT (t
->next
->next
== NULL
);
6114 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6115 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6116 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6118 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6119 (Elf_External_Verdef
*) p
);
6120 p
+= sizeof (Elf_External_Verdef
);
6122 defaux
.vda_name
= h
->dynstr_index
;
6123 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6125 defaux
.vda_next
= 0;
6126 if (t
->deps
!= NULL
)
6127 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6128 t
->name_indx
= defaux
.vda_name
;
6130 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6131 (Elf_External_Verdaux
*) p
);
6132 p
+= sizeof (Elf_External_Verdaux
);
6134 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6136 if (n
->version_needed
== NULL
)
6138 /* This can happen if there was an error in the
6140 defaux
.vda_name
= 0;
6144 defaux
.vda_name
= n
->version_needed
->name_indx
;
6145 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6148 if (n
->next
== NULL
)
6149 defaux
.vda_next
= 0;
6151 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6153 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6154 (Elf_External_Verdaux
*) p
);
6155 p
+= sizeof (Elf_External_Verdaux
);
6159 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6160 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6163 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6166 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6168 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6171 else if (info
->flags
& DF_BIND_NOW
)
6173 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6179 if (info
->executable
)
6180 info
->flags_1
&= ~ (DF_1_INITFIRST
6183 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6187 /* Work out the size of the version reference section. */
6189 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6190 BFD_ASSERT (s
!= NULL
);
6192 struct elf_find_verdep_info sinfo
;
6195 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6196 if (sinfo
.vers
== 0)
6198 sinfo
.failed
= FALSE
;
6200 elf_link_hash_traverse (elf_hash_table (info
),
6201 _bfd_elf_link_find_version_dependencies
,
6206 if (elf_tdata (output_bfd
)->verref
== NULL
)
6207 s
->flags
|= SEC_EXCLUDE
;
6210 Elf_Internal_Verneed
*t
;
6215 /* Build the version dependency section. */
6218 for (t
= elf_tdata (output_bfd
)->verref
;
6222 Elf_Internal_Vernaux
*a
;
6224 size
+= sizeof (Elf_External_Verneed
);
6226 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6227 size
+= sizeof (Elf_External_Vernaux
);
6231 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6232 if (s
->contents
== NULL
)
6236 for (t
= elf_tdata (output_bfd
)->verref
;
6241 Elf_Internal_Vernaux
*a
;
6245 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6248 t
->vn_version
= VER_NEED_CURRENT
;
6250 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6251 elf_dt_name (t
->vn_bfd
) != NULL
6252 ? elf_dt_name (t
->vn_bfd
)
6253 : lbasename (t
->vn_bfd
->filename
),
6255 if (indx
== (bfd_size_type
) -1)
6258 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6259 if (t
->vn_nextref
== NULL
)
6262 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6263 + caux
* sizeof (Elf_External_Vernaux
));
6265 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6266 (Elf_External_Verneed
*) p
);
6267 p
+= sizeof (Elf_External_Verneed
);
6269 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6271 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6272 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6273 a
->vna_nodename
, FALSE
);
6274 if (indx
== (bfd_size_type
) -1)
6277 if (a
->vna_nextptr
== NULL
)
6280 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6282 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6283 (Elf_External_Vernaux
*) p
);
6284 p
+= sizeof (Elf_External_Vernaux
);
6288 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6289 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6292 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6296 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6297 && elf_tdata (output_bfd
)->cverdefs
== 0)
6298 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6299 §ion_sym_count
) == 0)
6301 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6302 s
->flags
|= SEC_EXCLUDE
;
6308 /* Find the first non-excluded output section. We'll use its
6309 section symbol for some emitted relocs. */
6311 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6315 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6316 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6317 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6319 elf_hash_table (info
)->text_index_section
= s
;
6324 /* Find two non-excluded output sections, one for code, one for data.
6325 We'll use their section symbols for some emitted relocs. */
6327 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6331 /* Data first, since setting text_index_section changes
6332 _bfd_elf_link_omit_section_dynsym. */
6333 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6334 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6335 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6337 elf_hash_table (info
)->data_index_section
= s
;
6341 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6342 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6343 == (SEC_ALLOC
| SEC_READONLY
))
6344 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6346 elf_hash_table (info
)->text_index_section
= s
;
6350 if (elf_hash_table (info
)->text_index_section
== NULL
)
6351 elf_hash_table (info
)->text_index_section
6352 = elf_hash_table (info
)->data_index_section
;
6356 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6358 const struct elf_backend_data
*bed
;
6360 if (!is_elf_hash_table (info
->hash
))
6363 bed
= get_elf_backend_data (output_bfd
);
6364 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6366 if (elf_hash_table (info
)->dynamic_sections_created
)
6370 bfd_size_type dynsymcount
;
6371 unsigned long section_sym_count
;
6372 unsigned int dtagcount
;
6374 dynobj
= elf_hash_table (info
)->dynobj
;
6376 /* Assign dynsym indicies. In a shared library we generate a
6377 section symbol for each output section, which come first.
6378 Next come all of the back-end allocated local dynamic syms,
6379 followed by the rest of the global symbols. */
6381 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6382 §ion_sym_count
);
6384 /* Work out the size of the symbol version section. */
6385 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6386 BFD_ASSERT (s
!= NULL
);
6387 if (dynsymcount
!= 0
6388 && (s
->flags
& SEC_EXCLUDE
) == 0)
6390 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6391 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6392 if (s
->contents
== NULL
)
6395 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6399 /* Set the size of the .dynsym and .hash sections. We counted
6400 the number of dynamic symbols in elf_link_add_object_symbols.
6401 We will build the contents of .dynsym and .hash when we build
6402 the final symbol table, because until then we do not know the
6403 correct value to give the symbols. We built the .dynstr
6404 section as we went along in elf_link_add_object_symbols. */
6405 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6406 BFD_ASSERT (s
!= NULL
);
6407 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6409 if (dynsymcount
!= 0)
6411 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6412 if (s
->contents
== NULL
)
6415 /* The first entry in .dynsym is a dummy symbol.
6416 Clear all the section syms, in case we don't output them all. */
6417 ++section_sym_count
;
6418 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6421 elf_hash_table (info
)->bucketcount
= 0;
6423 /* Compute the size of the hashing table. As a side effect this
6424 computes the hash values for all the names we export. */
6425 if (info
->emit_hash
)
6427 unsigned long int *hashcodes
;
6428 struct hash_codes_info hashinf
;
6430 unsigned long int nsyms
;
6432 size_t hash_entry_size
;
6434 /* Compute the hash values for all exported symbols. At the same
6435 time store the values in an array so that we could use them for
6437 amt
= dynsymcount
* sizeof (unsigned long int);
6438 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6439 if (hashcodes
== NULL
)
6441 hashinf
.hashcodes
= hashcodes
;
6442 hashinf
.error
= FALSE
;
6444 /* Put all hash values in HASHCODES. */
6445 elf_link_hash_traverse (elf_hash_table (info
),
6446 elf_collect_hash_codes
, &hashinf
);
6453 nsyms
= hashinf
.hashcodes
- hashcodes
;
6455 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6458 if (bucketcount
== 0)
6461 elf_hash_table (info
)->bucketcount
= bucketcount
;
6463 s
= bfd_get_section_by_name (dynobj
, ".hash");
6464 BFD_ASSERT (s
!= NULL
);
6465 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6466 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6467 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6468 if (s
->contents
== NULL
)
6471 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6472 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6473 s
->contents
+ hash_entry_size
);
6476 if (info
->emit_gnu_hash
)
6479 unsigned char *contents
;
6480 struct collect_gnu_hash_codes cinfo
;
6484 memset (&cinfo
, 0, sizeof (cinfo
));
6486 /* Compute the hash values for all exported symbols. At the same
6487 time store the values in an array so that we could use them for
6489 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6490 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6491 if (cinfo
.hashcodes
== NULL
)
6494 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6495 cinfo
.min_dynindx
= -1;
6496 cinfo
.output_bfd
= output_bfd
;
6499 /* Put all hash values in HASHCODES. */
6500 elf_link_hash_traverse (elf_hash_table (info
),
6501 elf_collect_gnu_hash_codes
, &cinfo
);
6504 free (cinfo
.hashcodes
);
6509 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6511 if (bucketcount
== 0)
6513 free (cinfo
.hashcodes
);
6517 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6518 BFD_ASSERT (s
!= NULL
);
6520 if (cinfo
.nsyms
== 0)
6522 /* Empty .gnu.hash section is special. */
6523 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6524 free (cinfo
.hashcodes
);
6525 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6526 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6527 if (contents
== NULL
)
6529 s
->contents
= contents
;
6530 /* 1 empty bucket. */
6531 bfd_put_32 (output_bfd
, 1, contents
);
6532 /* SYMIDX above the special symbol 0. */
6533 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6534 /* Just one word for bitmask. */
6535 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6536 /* Only hash fn bloom filter. */
6537 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6538 /* No hashes are valid - empty bitmask. */
6539 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6540 /* No hashes in the only bucket. */
6541 bfd_put_32 (output_bfd
, 0,
6542 contents
+ 16 + bed
->s
->arch_size
/ 8);
6546 unsigned long int maskwords
, maskbitslog2
, x
;
6547 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6551 while ((x
>>= 1) != 0)
6553 if (maskbitslog2
< 3)
6555 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6556 maskbitslog2
= maskbitslog2
+ 3;
6558 maskbitslog2
= maskbitslog2
+ 2;
6559 if (bed
->s
->arch_size
== 64)
6561 if (maskbitslog2
== 5)
6567 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6568 cinfo
.shift2
= maskbitslog2
;
6569 cinfo
.maskbits
= 1 << maskbitslog2
;
6570 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6571 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6572 amt
+= maskwords
* sizeof (bfd_vma
);
6573 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6574 if (cinfo
.bitmask
== NULL
)
6576 free (cinfo
.hashcodes
);
6580 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6581 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6582 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6583 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6585 /* Determine how often each hash bucket is used. */
6586 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6587 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6588 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6590 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6591 if (cinfo
.counts
[i
] != 0)
6593 cinfo
.indx
[i
] = cnt
;
6594 cnt
+= cinfo
.counts
[i
];
6596 BFD_ASSERT (cnt
== dynsymcount
);
6597 cinfo
.bucketcount
= bucketcount
;
6598 cinfo
.local_indx
= cinfo
.min_dynindx
;
6600 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6601 s
->size
+= cinfo
.maskbits
/ 8;
6602 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6603 if (contents
== NULL
)
6605 free (cinfo
.bitmask
);
6606 free (cinfo
.hashcodes
);
6610 s
->contents
= contents
;
6611 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6612 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6613 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6614 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6615 contents
+= 16 + cinfo
.maskbits
/ 8;
6617 for (i
= 0; i
< bucketcount
; ++i
)
6619 if (cinfo
.counts
[i
] == 0)
6620 bfd_put_32 (output_bfd
, 0, contents
);
6622 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6626 cinfo
.contents
= contents
;
6628 /* Renumber dynamic symbols, populate .gnu.hash section. */
6629 elf_link_hash_traverse (elf_hash_table (info
),
6630 elf_renumber_gnu_hash_syms
, &cinfo
);
6632 contents
= s
->contents
+ 16;
6633 for (i
= 0; i
< maskwords
; ++i
)
6635 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6637 contents
+= bed
->s
->arch_size
/ 8;
6640 free (cinfo
.bitmask
);
6641 free (cinfo
.hashcodes
);
6645 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6646 BFD_ASSERT (s
!= NULL
);
6648 elf_finalize_dynstr (output_bfd
, info
);
6650 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6652 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6653 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6660 /* Indicate that we are only retrieving symbol values from this
6664 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6666 if (is_elf_hash_table (info
->hash
))
6667 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6668 _bfd_generic_link_just_syms (sec
, info
);
6671 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6674 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6677 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6678 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6681 /* Finish SHF_MERGE section merging. */
6684 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6689 if (!is_elf_hash_table (info
->hash
))
6692 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6693 if ((ibfd
->flags
& DYNAMIC
) == 0)
6694 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6695 if ((sec
->flags
& SEC_MERGE
) != 0
6696 && !bfd_is_abs_section (sec
->output_section
))
6698 struct bfd_elf_section_data
*secdata
;
6700 secdata
= elf_section_data (sec
);
6701 if (! _bfd_add_merge_section (abfd
,
6702 &elf_hash_table (info
)->merge_info
,
6703 sec
, &secdata
->sec_info
))
6705 else if (secdata
->sec_info
)
6706 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6709 if (elf_hash_table (info
)->merge_info
!= NULL
)
6710 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6711 merge_sections_remove_hook
);
6715 /* Create an entry in an ELF linker hash table. */
6717 struct bfd_hash_entry
*
6718 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6719 struct bfd_hash_table
*table
,
6722 /* Allocate the structure if it has not already been allocated by a
6726 entry
= (struct bfd_hash_entry
*)
6727 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6732 /* Call the allocation method of the superclass. */
6733 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6736 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6737 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6739 /* Set local fields. */
6742 ret
->got
= htab
->init_got_refcount
;
6743 ret
->plt
= htab
->init_plt_refcount
;
6744 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6745 - offsetof (struct elf_link_hash_entry
, size
)));
6746 /* Assume that we have been called by a non-ELF symbol reader.
6747 This flag is then reset by the code which reads an ELF input
6748 file. This ensures that a symbol created by a non-ELF symbol
6749 reader will have the flag set correctly. */
6756 /* Copy data from an indirect symbol to its direct symbol, hiding the
6757 old indirect symbol. Also used for copying flags to a weakdef. */
6760 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6761 struct elf_link_hash_entry
*dir
,
6762 struct elf_link_hash_entry
*ind
)
6764 struct elf_link_hash_table
*htab
;
6766 /* Copy down any references that we may have already seen to the
6767 symbol which just became indirect. */
6769 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6770 dir
->ref_regular
|= ind
->ref_regular
;
6771 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6772 dir
->non_got_ref
|= ind
->non_got_ref
;
6773 dir
->needs_plt
|= ind
->needs_plt
;
6774 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6776 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6779 /* Copy over the global and procedure linkage table refcount entries.
6780 These may have been already set up by a check_relocs routine. */
6781 htab
= elf_hash_table (info
);
6782 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6784 if (dir
->got
.refcount
< 0)
6785 dir
->got
.refcount
= 0;
6786 dir
->got
.refcount
+= ind
->got
.refcount
;
6787 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6790 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6792 if (dir
->plt
.refcount
< 0)
6793 dir
->plt
.refcount
= 0;
6794 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6795 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6798 if (ind
->dynindx
!= -1)
6800 if (dir
->dynindx
!= -1)
6801 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6802 dir
->dynindx
= ind
->dynindx
;
6803 dir
->dynstr_index
= ind
->dynstr_index
;
6805 ind
->dynstr_index
= 0;
6810 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6811 struct elf_link_hash_entry
*h
,
6812 bfd_boolean force_local
)
6814 /* STT_GNU_IFUNC symbol must go through PLT. */
6815 if (h
->type
!= STT_GNU_IFUNC
)
6817 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6822 h
->forced_local
= 1;
6823 if (h
->dynindx
!= -1)
6826 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6832 /* Initialize an ELF linker hash table. */
6835 _bfd_elf_link_hash_table_init
6836 (struct elf_link_hash_table
*table
,
6838 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6839 struct bfd_hash_table
*,
6841 unsigned int entsize
,
6842 enum elf_target_id target_id
)
6845 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6847 memset (table
, 0, sizeof * table
);
6848 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6849 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6850 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6851 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6852 /* The first dynamic symbol is a dummy. */
6853 table
->dynsymcount
= 1;
6855 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6857 table
->root
.type
= bfd_link_elf_hash_table
;
6858 table
->hash_table_id
= target_id
;
6863 /* Create an ELF linker hash table. */
6865 struct bfd_link_hash_table
*
6866 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6868 struct elf_link_hash_table
*ret
;
6869 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6871 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6875 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6876 sizeof (struct elf_link_hash_entry
),
6886 /* This is a hook for the ELF emulation code in the generic linker to
6887 tell the backend linker what file name to use for the DT_NEEDED
6888 entry for a dynamic object. */
6891 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6893 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6894 && bfd_get_format (abfd
) == bfd_object
)
6895 elf_dt_name (abfd
) = name
;
6899 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6902 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6903 && bfd_get_format (abfd
) == bfd_object
)
6904 lib_class
= elf_dyn_lib_class (abfd
);
6911 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6913 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6914 && bfd_get_format (abfd
) == bfd_object
)
6915 elf_dyn_lib_class (abfd
) = lib_class
;
6918 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6919 the linker ELF emulation code. */
6921 struct bfd_link_needed_list
*
6922 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6923 struct bfd_link_info
*info
)
6925 if (! is_elf_hash_table (info
->hash
))
6927 return elf_hash_table (info
)->needed
;
6930 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6931 hook for the linker ELF emulation code. */
6933 struct bfd_link_needed_list
*
6934 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6935 struct bfd_link_info
*info
)
6937 if (! is_elf_hash_table (info
->hash
))
6939 return elf_hash_table (info
)->runpath
;
6942 /* Get the name actually used for a dynamic object for a link. This
6943 is the SONAME entry if there is one. Otherwise, it is the string
6944 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6947 bfd_elf_get_dt_soname (bfd
*abfd
)
6949 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6950 && bfd_get_format (abfd
) == bfd_object
)
6951 return elf_dt_name (abfd
);
6955 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6956 the ELF linker emulation code. */
6959 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6960 struct bfd_link_needed_list
**pneeded
)
6963 bfd_byte
*dynbuf
= NULL
;
6964 unsigned int elfsec
;
6965 unsigned long shlink
;
6966 bfd_byte
*extdyn
, *extdynend
;
6968 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6972 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6973 || bfd_get_format (abfd
) != bfd_object
)
6976 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6977 if (s
== NULL
|| s
->size
== 0)
6980 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6983 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6984 if (elfsec
== SHN_BAD
)
6987 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6989 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6990 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6993 extdynend
= extdyn
+ s
->size
;
6994 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6996 Elf_Internal_Dyn dyn
;
6998 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
7000 if (dyn
.d_tag
== DT_NULL
)
7003 if (dyn
.d_tag
== DT_NEEDED
)
7006 struct bfd_link_needed_list
*l
;
7007 unsigned int tagv
= dyn
.d_un
.d_val
;
7010 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
7015 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
7036 struct elf_symbuf_symbol
7038 unsigned long st_name
; /* Symbol name, index in string tbl */
7039 unsigned char st_info
; /* Type and binding attributes */
7040 unsigned char st_other
; /* Visibilty, and target specific */
7043 struct elf_symbuf_head
7045 struct elf_symbuf_symbol
*ssym
;
7046 bfd_size_type count
;
7047 unsigned int st_shndx
;
7054 Elf_Internal_Sym
*isym
;
7055 struct elf_symbuf_symbol
*ssym
;
7060 /* Sort references to symbols by ascending section number. */
7063 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7065 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
7066 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
7068 return s1
->st_shndx
- s2
->st_shndx
;
7072 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7074 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7075 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7076 return strcmp (s1
->name
, s2
->name
);
7079 static struct elf_symbuf_head
*
7080 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
7082 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7083 struct elf_symbuf_symbol
*ssym
;
7084 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7085 bfd_size_type i
, shndx_count
, total_size
;
7087 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7091 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7092 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7093 *ind
++ = &isymbuf
[i
];
7096 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7097 elf_sort_elf_symbol
);
7100 if (indbufend
> indbuf
)
7101 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7102 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7105 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7106 + (indbufend
- indbuf
) * sizeof (*ssym
));
7107 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7108 if (ssymbuf
== NULL
)
7114 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7115 ssymbuf
->ssym
= NULL
;
7116 ssymbuf
->count
= shndx_count
;
7117 ssymbuf
->st_shndx
= 0;
7118 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7120 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7123 ssymhead
->ssym
= ssym
;
7124 ssymhead
->count
= 0;
7125 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7127 ssym
->st_name
= (*ind
)->st_name
;
7128 ssym
->st_info
= (*ind
)->st_info
;
7129 ssym
->st_other
= (*ind
)->st_other
;
7132 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7133 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7140 /* Check if 2 sections define the same set of local and global
7144 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7145 struct bfd_link_info
*info
)
7148 const struct elf_backend_data
*bed1
, *bed2
;
7149 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7150 bfd_size_type symcount1
, symcount2
;
7151 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7152 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7153 Elf_Internal_Sym
*isym
, *isymend
;
7154 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7155 bfd_size_type count1
, count2
, i
;
7156 unsigned int shndx1
, shndx2
;
7162 /* Both sections have to be in ELF. */
7163 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7164 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7167 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7170 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7171 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7172 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7175 bed1
= get_elf_backend_data (bfd1
);
7176 bed2
= get_elf_backend_data (bfd2
);
7177 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7178 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7179 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7180 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7182 if (symcount1
== 0 || symcount2
== 0)
7188 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7189 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7191 if (ssymbuf1
== NULL
)
7193 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7195 if (isymbuf1
== NULL
)
7198 if (!info
->reduce_memory_overheads
)
7199 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7200 = elf_create_symbuf (symcount1
, isymbuf1
);
7203 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7205 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7207 if (isymbuf2
== NULL
)
7210 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7211 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7212 = elf_create_symbuf (symcount2
, isymbuf2
);
7215 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7217 /* Optimized faster version. */
7218 bfd_size_type lo
, hi
, mid
;
7219 struct elf_symbol
*symp
;
7220 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7223 hi
= ssymbuf1
->count
;
7228 mid
= (lo
+ hi
) / 2;
7229 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7231 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7235 count1
= ssymbuf1
[mid
].count
;
7242 hi
= ssymbuf2
->count
;
7247 mid
= (lo
+ hi
) / 2;
7248 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7250 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7254 count2
= ssymbuf2
[mid
].count
;
7260 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7263 symtable1
= (struct elf_symbol
*)
7264 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7265 symtable2
= (struct elf_symbol
*)
7266 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7267 if (symtable1
== NULL
|| symtable2
== NULL
)
7271 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7272 ssym
< ssymend
; ssym
++, symp
++)
7274 symp
->u
.ssym
= ssym
;
7275 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7281 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7282 ssym
< ssymend
; ssym
++, symp
++)
7284 symp
->u
.ssym
= ssym
;
7285 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7290 /* Sort symbol by name. */
7291 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7292 elf_sym_name_compare
);
7293 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7294 elf_sym_name_compare
);
7296 for (i
= 0; i
< count1
; i
++)
7297 /* Two symbols must have the same binding, type and name. */
7298 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7299 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7300 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7307 symtable1
= (struct elf_symbol
*)
7308 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7309 symtable2
= (struct elf_symbol
*)
7310 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7311 if (symtable1
== NULL
|| symtable2
== NULL
)
7314 /* Count definitions in the section. */
7316 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7317 if (isym
->st_shndx
== shndx1
)
7318 symtable1
[count1
++].u
.isym
= isym
;
7321 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7322 if (isym
->st_shndx
== shndx2
)
7323 symtable2
[count2
++].u
.isym
= isym
;
7325 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7328 for (i
= 0; i
< count1
; i
++)
7330 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7331 symtable1
[i
].u
.isym
->st_name
);
7333 for (i
= 0; i
< count2
; i
++)
7335 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7336 symtable2
[i
].u
.isym
->st_name
);
7338 /* Sort symbol by name. */
7339 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7340 elf_sym_name_compare
);
7341 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7342 elf_sym_name_compare
);
7344 for (i
= 0; i
< count1
; i
++)
7345 /* Two symbols must have the same binding, type and name. */
7346 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7347 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7348 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7366 /* Return TRUE if 2 section types are compatible. */
7369 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7370 bfd
*bbfd
, const asection
*bsec
)
7374 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7375 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7378 return elf_section_type (asec
) == elf_section_type (bsec
);
7381 /* Final phase of ELF linker. */
7383 /* A structure we use to avoid passing large numbers of arguments. */
7385 struct elf_final_link_info
7387 /* General link information. */
7388 struct bfd_link_info
*info
;
7391 /* Symbol string table. */
7392 struct bfd_strtab_hash
*symstrtab
;
7393 /* .dynsym section. */
7394 asection
*dynsym_sec
;
7395 /* .hash section. */
7397 /* symbol version section (.gnu.version). */
7398 asection
*symver_sec
;
7399 /* Buffer large enough to hold contents of any section. */
7401 /* Buffer large enough to hold external relocs of any section. */
7402 void *external_relocs
;
7403 /* Buffer large enough to hold internal relocs of any section. */
7404 Elf_Internal_Rela
*internal_relocs
;
7405 /* Buffer large enough to hold external local symbols of any input
7407 bfd_byte
*external_syms
;
7408 /* And a buffer for symbol section indices. */
7409 Elf_External_Sym_Shndx
*locsym_shndx
;
7410 /* Buffer large enough to hold internal local symbols of any input
7412 Elf_Internal_Sym
*internal_syms
;
7413 /* Array large enough to hold a symbol index for each local symbol
7414 of any input BFD. */
7416 /* Array large enough to hold a section pointer for each local
7417 symbol of any input BFD. */
7418 asection
**sections
;
7419 /* Buffer to hold swapped out symbols. */
7421 /* And one for symbol section indices. */
7422 Elf_External_Sym_Shndx
*symshndxbuf
;
7423 /* Number of swapped out symbols in buffer. */
7424 size_t symbuf_count
;
7425 /* Number of symbols which fit in symbuf. */
7427 /* And same for symshndxbuf. */
7428 size_t shndxbuf_size
;
7431 /* This struct is used to pass information to elf_link_output_extsym. */
7433 struct elf_outext_info
7436 bfd_boolean localsyms
;
7437 struct elf_final_link_info
*finfo
;
7441 /* Support for evaluating a complex relocation.
7443 Complex relocations are generalized, self-describing relocations. The
7444 implementation of them consists of two parts: complex symbols, and the
7445 relocations themselves.
7447 The relocations are use a reserved elf-wide relocation type code (R_RELC
7448 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7449 information (start bit, end bit, word width, etc) into the addend. This
7450 information is extracted from CGEN-generated operand tables within gas.
7452 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7453 internal) representing prefix-notation expressions, including but not
7454 limited to those sorts of expressions normally encoded as addends in the
7455 addend field. The symbol mangling format is:
7458 | <unary-operator> ':' <node>
7459 | <binary-operator> ':' <node> ':' <node>
7462 <literal> := 's' <digits=N> ':' <N character symbol name>
7463 | 'S' <digits=N> ':' <N character section name>
7467 <binary-operator> := as in C
7468 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7471 set_symbol_value (bfd
*bfd_with_globals
,
7472 Elf_Internal_Sym
*isymbuf
,
7477 struct elf_link_hash_entry
**sym_hashes
;
7478 struct elf_link_hash_entry
*h
;
7479 size_t extsymoff
= locsymcount
;
7481 if (symidx
< locsymcount
)
7483 Elf_Internal_Sym
*sym
;
7485 sym
= isymbuf
+ symidx
;
7486 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7488 /* It is a local symbol: move it to the
7489 "absolute" section and give it a value. */
7490 sym
->st_shndx
= SHN_ABS
;
7491 sym
->st_value
= val
;
7494 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7498 /* It is a global symbol: set its link type
7499 to "defined" and give it a value. */
7501 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7502 h
= sym_hashes
[symidx
- extsymoff
];
7503 while (h
->root
.type
== bfd_link_hash_indirect
7504 || h
->root
.type
== bfd_link_hash_warning
)
7505 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7506 h
->root
.type
= bfd_link_hash_defined
;
7507 h
->root
.u
.def
.value
= val
;
7508 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7512 resolve_symbol (const char *name
,
7514 struct elf_final_link_info
*finfo
,
7516 Elf_Internal_Sym
*isymbuf
,
7519 Elf_Internal_Sym
*sym
;
7520 struct bfd_link_hash_entry
*global_entry
;
7521 const char *candidate
= NULL
;
7522 Elf_Internal_Shdr
*symtab_hdr
;
7525 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7527 for (i
= 0; i
< locsymcount
; ++ i
)
7531 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7534 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7535 symtab_hdr
->sh_link
,
7538 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7539 name
, candidate
, (unsigned long) sym
->st_value
);
7541 if (candidate
&& strcmp (candidate
, name
) == 0)
7543 asection
*sec
= finfo
->sections
[i
];
7545 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7546 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7548 printf ("Found symbol with value %8.8lx\n",
7549 (unsigned long) *result
);
7555 /* Hmm, haven't found it yet. perhaps it is a global. */
7556 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7557 FALSE
, FALSE
, TRUE
);
7561 if (global_entry
->type
== bfd_link_hash_defined
7562 || global_entry
->type
== bfd_link_hash_defweak
)
7564 *result
= (global_entry
->u
.def
.value
7565 + global_entry
->u
.def
.section
->output_section
->vma
7566 + global_entry
->u
.def
.section
->output_offset
);
7568 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7569 global_entry
->root
.string
, (unsigned long) *result
);
7578 resolve_section (const char *name
,
7585 for (curr
= sections
; curr
; curr
= curr
->next
)
7586 if (strcmp (curr
->name
, name
) == 0)
7588 *result
= curr
->vma
;
7592 /* Hmm. still haven't found it. try pseudo-section names. */
7593 for (curr
= sections
; curr
; curr
= curr
->next
)
7595 len
= strlen (curr
->name
);
7596 if (len
> strlen (name
))
7599 if (strncmp (curr
->name
, name
, len
) == 0)
7601 if (strncmp (".end", name
+ len
, 4) == 0)
7603 *result
= curr
->vma
+ curr
->size
;
7607 /* Insert more pseudo-section names here, if you like. */
7615 undefined_reference (const char *reftype
, const char *name
)
7617 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7622 eval_symbol (bfd_vma
*result
,
7625 struct elf_final_link_info
*finfo
,
7627 Elf_Internal_Sym
*isymbuf
,
7636 const char *sym
= *symp
;
7638 bfd_boolean symbol_is_section
= FALSE
;
7643 if (len
< 1 || len
> sizeof (symbuf
))
7645 bfd_set_error (bfd_error_invalid_operation
);
7658 *result
= strtoul (sym
, (char **) symp
, 16);
7662 symbol_is_section
= TRUE
;
7665 symlen
= strtol (sym
, (char **) symp
, 10);
7666 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7668 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7670 bfd_set_error (bfd_error_invalid_operation
);
7674 memcpy (symbuf
, sym
, symlen
);
7675 symbuf
[symlen
] = '\0';
7676 *symp
= sym
+ symlen
;
7678 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7679 the symbol as a section, or vice-versa. so we're pretty liberal in our
7680 interpretation here; section means "try section first", not "must be a
7681 section", and likewise with symbol. */
7683 if (symbol_is_section
)
7685 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7686 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7687 isymbuf
, locsymcount
))
7689 undefined_reference ("section", symbuf
);
7695 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7696 isymbuf
, locsymcount
)
7697 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7700 undefined_reference ("symbol", symbuf
);
7707 /* All that remains are operators. */
7709 #define UNARY_OP(op) \
7710 if (strncmp (sym, #op, strlen (#op)) == 0) \
7712 sym += strlen (#op); \
7716 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7717 isymbuf, locsymcount, signed_p)) \
7720 *result = op ((bfd_signed_vma) a); \
7726 #define BINARY_OP(op) \
7727 if (strncmp (sym, #op, strlen (#op)) == 0) \
7729 sym += strlen (#op); \
7733 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7734 isymbuf, locsymcount, signed_p)) \
7737 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7738 isymbuf, locsymcount, signed_p)) \
7741 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7771 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7772 bfd_set_error (bfd_error_invalid_operation
);
7778 put_value (bfd_vma size
,
7779 unsigned long chunksz
,
7784 location
+= (size
- chunksz
);
7786 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7794 bfd_put_8 (input_bfd
, x
, location
);
7797 bfd_put_16 (input_bfd
, x
, location
);
7800 bfd_put_32 (input_bfd
, x
, location
);
7804 bfd_put_64 (input_bfd
, x
, location
);
7814 get_value (bfd_vma size
,
7815 unsigned long chunksz
,
7821 for (; size
; size
-= chunksz
, location
+= chunksz
)
7829 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7832 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7835 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7839 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7850 decode_complex_addend (unsigned long *start
, /* in bits */
7851 unsigned long *oplen
, /* in bits */
7852 unsigned long *len
, /* in bits */
7853 unsigned long *wordsz
, /* in bytes */
7854 unsigned long *chunksz
, /* in bytes */
7855 unsigned long *lsb0_p
,
7856 unsigned long *signed_p
,
7857 unsigned long *trunc_p
,
7858 unsigned long encoded
)
7860 * start
= encoded
& 0x3F;
7861 * len
= (encoded
>> 6) & 0x3F;
7862 * oplen
= (encoded
>> 12) & 0x3F;
7863 * wordsz
= (encoded
>> 18) & 0xF;
7864 * chunksz
= (encoded
>> 22) & 0xF;
7865 * lsb0_p
= (encoded
>> 27) & 1;
7866 * signed_p
= (encoded
>> 28) & 1;
7867 * trunc_p
= (encoded
>> 29) & 1;
7870 bfd_reloc_status_type
7871 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7872 asection
*input_section ATTRIBUTE_UNUSED
,
7874 Elf_Internal_Rela
*rel
,
7877 bfd_vma shift
, x
, mask
;
7878 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7879 bfd_reloc_status_type r
;
7881 /* Perform this reloc, since it is complex.
7882 (this is not to say that it necessarily refers to a complex
7883 symbol; merely that it is a self-describing CGEN based reloc.
7884 i.e. the addend has the complete reloc information (bit start, end,
7885 word size, etc) encoded within it.). */
7887 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7888 &chunksz
, &lsb0_p
, &signed_p
,
7889 &trunc_p
, rel
->r_addend
);
7891 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7894 shift
= (start
+ 1) - len
;
7896 shift
= (8 * wordsz
) - (start
+ len
);
7898 /* FIXME: octets_per_byte. */
7899 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7902 printf ("Doing complex reloc: "
7903 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7904 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7905 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7906 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7907 oplen
, (unsigned long) x
, (unsigned long) mask
,
7908 (unsigned long) relocation
);
7913 /* Now do an overflow check. */
7914 r
= bfd_check_overflow ((signed_p
7915 ? complain_overflow_signed
7916 : complain_overflow_unsigned
),
7917 len
, 0, (8 * wordsz
),
7921 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7924 printf (" relocation: %8.8lx\n"
7925 " shifted mask: %8.8lx\n"
7926 " shifted/masked reloc: %8.8lx\n"
7927 " result: %8.8lx\n",
7928 (unsigned long) relocation
, (unsigned long) (mask
<< shift
),
7929 (unsigned long) ((relocation
& mask
) << shift
), (unsigned long) x
);
7931 /* FIXME: octets_per_byte. */
7932 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7936 /* When performing a relocatable link, the input relocations are
7937 preserved. But, if they reference global symbols, the indices
7938 referenced must be updated. Update all the relocations found in
7942 elf_link_adjust_relocs (bfd
*abfd
,
7943 struct bfd_elf_section_reloc_data
*reldata
)
7946 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7948 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7949 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7950 bfd_vma r_type_mask
;
7952 unsigned int count
= reldata
->count
;
7953 struct elf_link_hash_entry
**rel_hash
= reldata
->hashes
;
7955 if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7957 swap_in
= bed
->s
->swap_reloc_in
;
7958 swap_out
= bed
->s
->swap_reloc_out
;
7960 else if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7962 swap_in
= bed
->s
->swap_reloca_in
;
7963 swap_out
= bed
->s
->swap_reloca_out
;
7968 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7971 if (bed
->s
->arch_size
== 32)
7978 r_type_mask
= 0xffffffff;
7982 erela
= reldata
->hdr
->contents
;
7983 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= reldata
->hdr
->sh_entsize
)
7985 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7988 if (*rel_hash
== NULL
)
7991 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7993 (*swap_in
) (abfd
, erela
, irela
);
7994 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7995 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7996 | (irela
[j
].r_info
& r_type_mask
));
7997 (*swap_out
) (abfd
, irela
, erela
);
8001 struct elf_link_sort_rela
8007 enum elf_reloc_type_class type
;
8008 /* We use this as an array of size int_rels_per_ext_rel. */
8009 Elf_Internal_Rela rela
[1];
8013 elf_link_sort_cmp1 (const void *A
, const void *B
)
8015 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8016 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8017 int relativea
, relativeb
;
8019 relativea
= a
->type
== reloc_class_relative
;
8020 relativeb
= b
->type
== reloc_class_relative
;
8022 if (relativea
< relativeb
)
8024 if (relativea
> relativeb
)
8026 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
8028 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
8030 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8032 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8038 elf_link_sort_cmp2 (const void *A
, const void *B
)
8040 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8041 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8044 if (a
->u
.offset
< b
->u
.offset
)
8046 if (a
->u
.offset
> b
->u
.offset
)
8048 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
8049 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
8054 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8056 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8062 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
8064 asection
*dynamic_relocs
;
8067 bfd_size_type count
, size
;
8068 size_t i
, ret
, sort_elt
, ext_size
;
8069 bfd_byte
*sort
, *s_non_relative
, *p
;
8070 struct elf_link_sort_rela
*sq
;
8071 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8072 int i2e
= bed
->s
->int_rels_per_ext_rel
;
8073 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8074 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8075 struct bfd_link_order
*lo
;
8077 bfd_boolean use_rela
;
8079 /* Find a dynamic reloc section. */
8080 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8081 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8082 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8083 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8085 bfd_boolean use_rela_initialised
= FALSE
;
8087 /* This is just here to stop gcc from complaining.
8088 It's initialization checking code is not perfect. */
8091 /* Both sections are present. Examine the sizes
8092 of the indirect sections to help us choose. */
8093 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8094 if (lo
->type
== bfd_indirect_link_order
)
8096 asection
*o
= lo
->u
.indirect
.section
;
8098 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8100 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8101 /* Section size is divisible by both rel and rela sizes.
8102 It is of no help to us. */
8106 /* Section size is only divisible by rela. */
8107 if (use_rela_initialised
&& (use_rela
== FALSE
))
8110 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8111 bfd_set_error (bfd_error_invalid_operation
);
8117 use_rela_initialised
= TRUE
;
8121 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8123 /* Section size is only divisible by rel. */
8124 if (use_rela_initialised
&& (use_rela
== TRUE
))
8127 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8128 bfd_set_error (bfd_error_invalid_operation
);
8134 use_rela_initialised
= TRUE
;
8139 /* The section size is not divisible by either - something is wrong. */
8141 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8142 bfd_set_error (bfd_error_invalid_operation
);
8147 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8148 if (lo
->type
== bfd_indirect_link_order
)
8150 asection
*o
= lo
->u
.indirect
.section
;
8152 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8154 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8155 /* Section size is divisible by both rel and rela sizes.
8156 It is of no help to us. */
8160 /* Section size is only divisible by rela. */
8161 if (use_rela_initialised
&& (use_rela
== FALSE
))
8164 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8165 bfd_set_error (bfd_error_invalid_operation
);
8171 use_rela_initialised
= TRUE
;
8175 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8177 /* Section size is only divisible by rel. */
8178 if (use_rela_initialised
&& (use_rela
== TRUE
))
8181 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8182 bfd_set_error (bfd_error_invalid_operation
);
8188 use_rela_initialised
= TRUE
;
8193 /* The section size is not divisible by either - something is wrong. */
8195 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8196 bfd_set_error (bfd_error_invalid_operation
);
8201 if (! use_rela_initialised
)
8205 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8207 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8214 dynamic_relocs
= rela_dyn
;
8215 ext_size
= bed
->s
->sizeof_rela
;
8216 swap_in
= bed
->s
->swap_reloca_in
;
8217 swap_out
= bed
->s
->swap_reloca_out
;
8221 dynamic_relocs
= rel_dyn
;
8222 ext_size
= bed
->s
->sizeof_rel
;
8223 swap_in
= bed
->s
->swap_reloc_in
;
8224 swap_out
= bed
->s
->swap_reloc_out
;
8228 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8229 if (lo
->type
== bfd_indirect_link_order
)
8230 size
+= lo
->u
.indirect
.section
->size
;
8232 if (size
!= dynamic_relocs
->size
)
8235 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8236 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8238 count
= dynamic_relocs
->size
/ ext_size
;
8241 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8245 (*info
->callbacks
->warning
)
8246 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8250 if (bed
->s
->arch_size
== 32)
8251 r_sym_mask
= ~(bfd_vma
) 0xff;
8253 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8255 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8256 if (lo
->type
== bfd_indirect_link_order
)
8258 bfd_byte
*erel
, *erelend
;
8259 asection
*o
= lo
->u
.indirect
.section
;
8261 if (o
->contents
== NULL
&& o
->size
!= 0)
8263 /* This is a reloc section that is being handled as a normal
8264 section. See bfd_section_from_shdr. We can't combine
8265 relocs in this case. */
8270 erelend
= o
->contents
+ o
->size
;
8271 /* FIXME: octets_per_byte. */
8272 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8274 while (erel
< erelend
)
8276 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8278 (*swap_in
) (abfd
, erel
, s
->rela
);
8279 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8280 s
->u
.sym_mask
= r_sym_mask
;
8286 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8288 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8290 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8291 if (s
->type
!= reloc_class_relative
)
8297 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8298 for (; i
< count
; i
++, p
+= sort_elt
)
8300 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8301 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8303 sp
->u
.offset
= sq
->rela
->r_offset
;
8306 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8308 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8309 if (lo
->type
== bfd_indirect_link_order
)
8311 bfd_byte
*erel
, *erelend
;
8312 asection
*o
= lo
->u
.indirect
.section
;
8315 erelend
= o
->contents
+ o
->size
;
8316 /* FIXME: octets_per_byte. */
8317 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8318 while (erel
< erelend
)
8320 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8321 (*swap_out
) (abfd
, s
->rela
, erel
);
8328 *psec
= dynamic_relocs
;
8332 /* Flush the output symbols to the file. */
8335 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8336 const struct elf_backend_data
*bed
)
8338 if (finfo
->symbuf_count
> 0)
8340 Elf_Internal_Shdr
*hdr
;
8344 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8345 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8346 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8347 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8348 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8351 hdr
->sh_size
+= amt
;
8352 finfo
->symbuf_count
= 0;
8358 /* Add a symbol to the output symbol table. */
8361 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8363 Elf_Internal_Sym
*elfsym
,
8364 asection
*input_sec
,
8365 struct elf_link_hash_entry
*h
)
8368 Elf_External_Sym_Shndx
*destshndx
;
8369 int (*output_symbol_hook
)
8370 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8371 struct elf_link_hash_entry
*);
8372 const struct elf_backend_data
*bed
;
8374 bed
= get_elf_backend_data (finfo
->output_bfd
);
8375 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8376 if (output_symbol_hook
!= NULL
)
8378 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8383 if (name
== NULL
|| *name
== '\0')
8384 elfsym
->st_name
= 0;
8385 else if (input_sec
->flags
& SEC_EXCLUDE
)
8386 elfsym
->st_name
= 0;
8389 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8391 if (elfsym
->st_name
== (unsigned long) -1)
8395 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8397 if (! elf_link_flush_output_syms (finfo
, bed
))
8401 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8402 destshndx
= finfo
->symshndxbuf
;
8403 if (destshndx
!= NULL
)
8405 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8409 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8410 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8412 if (destshndx
== NULL
)
8414 finfo
->symshndxbuf
= destshndx
;
8415 memset ((char *) destshndx
+ amt
, 0, amt
);
8416 finfo
->shndxbuf_size
*= 2;
8418 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8421 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8422 finfo
->symbuf_count
+= 1;
8423 bfd_get_symcount (finfo
->output_bfd
) += 1;
8428 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8431 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8433 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8434 && sym
->st_shndx
< SHN_LORESERVE
)
8436 /* The gABI doesn't support dynamic symbols in output sections
8438 (*_bfd_error_handler
)
8439 (_("%B: Too many sections: %d (>= %d)"),
8440 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8441 bfd_set_error (bfd_error_nonrepresentable_section
);
8447 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8448 allowing an unsatisfied unversioned symbol in the DSO to match a
8449 versioned symbol that would normally require an explicit version.
8450 We also handle the case that a DSO references a hidden symbol
8451 which may be satisfied by a versioned symbol in another DSO. */
8454 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8455 const struct elf_backend_data
*bed
,
8456 struct elf_link_hash_entry
*h
)
8459 struct elf_link_loaded_list
*loaded
;
8461 if (!is_elf_hash_table (info
->hash
))
8464 switch (h
->root
.type
)
8470 case bfd_link_hash_undefined
:
8471 case bfd_link_hash_undefweak
:
8472 abfd
= h
->root
.u
.undef
.abfd
;
8473 if ((abfd
->flags
& DYNAMIC
) == 0
8474 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8478 case bfd_link_hash_defined
:
8479 case bfd_link_hash_defweak
:
8480 abfd
= h
->root
.u
.def
.section
->owner
;
8483 case bfd_link_hash_common
:
8484 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8487 BFD_ASSERT (abfd
!= NULL
);
8489 for (loaded
= elf_hash_table (info
)->loaded
;
8491 loaded
= loaded
->next
)
8494 Elf_Internal_Shdr
*hdr
;
8495 bfd_size_type symcount
;
8496 bfd_size_type extsymcount
;
8497 bfd_size_type extsymoff
;
8498 Elf_Internal_Shdr
*versymhdr
;
8499 Elf_Internal_Sym
*isym
;
8500 Elf_Internal_Sym
*isymend
;
8501 Elf_Internal_Sym
*isymbuf
;
8502 Elf_External_Versym
*ever
;
8503 Elf_External_Versym
*extversym
;
8505 input
= loaded
->abfd
;
8507 /* We check each DSO for a possible hidden versioned definition. */
8509 || (input
->flags
& DYNAMIC
) == 0
8510 || elf_dynversym (input
) == 0)
8513 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8515 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8516 if (elf_bad_symtab (input
))
8518 extsymcount
= symcount
;
8523 extsymcount
= symcount
- hdr
->sh_info
;
8524 extsymoff
= hdr
->sh_info
;
8527 if (extsymcount
== 0)
8530 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8532 if (isymbuf
== NULL
)
8535 /* Read in any version definitions. */
8536 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8537 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8538 if (extversym
== NULL
)
8541 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8542 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8543 != versymhdr
->sh_size
))
8551 ever
= extversym
+ extsymoff
;
8552 isymend
= isymbuf
+ extsymcount
;
8553 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8556 Elf_Internal_Versym iver
;
8557 unsigned short version_index
;
8559 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8560 || isym
->st_shndx
== SHN_UNDEF
)
8563 name
= bfd_elf_string_from_elf_section (input
,
8566 if (strcmp (name
, h
->root
.root
.string
) != 0)
8569 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8571 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
8573 && h
->forced_local
))
8575 /* If we have a non-hidden versioned sym, then it should
8576 have provided a definition for the undefined sym unless
8577 it is defined in a non-shared object and forced local.
8582 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8583 if (version_index
== 1 || version_index
== 2)
8585 /* This is the base or first version. We can use it. */
8599 /* Add an external symbol to the symbol table. This is called from
8600 the hash table traversal routine. When generating a shared object,
8601 we go through the symbol table twice. The first time we output
8602 anything that might have been forced to local scope in a version
8603 script. The second time we output the symbols that are still
8607 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8609 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8610 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8612 Elf_Internal_Sym sym
;
8613 asection
*input_sec
;
8614 const struct elf_backend_data
*bed
;
8618 if (h
->root
.type
== bfd_link_hash_warning
)
8620 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8621 if (h
->root
.type
== bfd_link_hash_new
)
8625 /* Decide whether to output this symbol in this pass. */
8626 if (eoinfo
->localsyms
)
8628 if (!h
->forced_local
)
8633 if (h
->forced_local
)
8637 bed
= get_elf_backend_data (finfo
->output_bfd
);
8639 if (h
->root
.type
== bfd_link_hash_undefined
)
8641 /* If we have an undefined symbol reference here then it must have
8642 come from a shared library that is being linked in. (Undefined
8643 references in regular files have already been handled unless
8644 they are in unreferenced sections which are removed by garbage
8646 bfd_boolean ignore_undef
= FALSE
;
8648 /* Some symbols may be special in that the fact that they're
8649 undefined can be safely ignored - let backend determine that. */
8650 if (bed
->elf_backend_ignore_undef_symbol
)
8651 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8653 /* If we are reporting errors for this situation then do so now. */
8656 && (!h
->ref_regular
|| finfo
->info
->gc_sections
)
8657 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8658 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8660 if (! (finfo
->info
->callbacks
->undefined_symbol
8661 (finfo
->info
, h
->root
.root
.string
,
8662 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
,
8663 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8665 bfd_set_error (bfd_error_bad_value
);
8666 eoinfo
->failed
= TRUE
;
8672 /* We should also warn if a forced local symbol is referenced from
8673 shared libraries. */
8674 if (! finfo
->info
->relocatable
8675 && (! finfo
->info
->shared
)
8680 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8685 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
8686 msg
= _("%B: internal symbol `%s' in %B is referenced by DSO");
8687 else if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
8688 msg
= _("%B: hidden symbol `%s' in %B is referenced by DSO");
8690 msg
= _("%B: local symbol `%s' in %B is referenced by DSO");
8691 def_bfd
= finfo
->output_bfd
;
8692 if (h
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
8693 def_bfd
= h
->root
.u
.def
.section
->owner
;
8694 (*_bfd_error_handler
) (msg
, finfo
->output_bfd
, def_bfd
,
8695 h
->root
.root
.string
);
8696 bfd_set_error (bfd_error_bad_value
);
8697 eoinfo
->failed
= TRUE
;
8701 /* We don't want to output symbols that have never been mentioned by
8702 a regular file, or that we have been told to strip. However, if
8703 h->indx is set to -2, the symbol is used by a reloc and we must
8707 else if ((h
->def_dynamic
8709 || h
->root
.type
== bfd_link_hash_new
)
8713 else if (finfo
->info
->strip
== strip_all
)
8715 else if (finfo
->info
->strip
== strip_some
8716 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8717 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8719 else if (finfo
->info
->strip_discarded
8720 && (h
->root
.type
== bfd_link_hash_defined
8721 || h
->root
.type
== bfd_link_hash_defweak
)
8722 && elf_discarded_section (h
->root
.u
.def
.section
))
8724 else if ((h
->root
.type
== bfd_link_hash_undefined
8725 || h
->root
.type
== bfd_link_hash_undefweak
)
8726 && h
->root
.u
.undef
.abfd
!= NULL
8727 && (h
->root
.u
.undef
.abfd
->flags
& BFD_PLUGIN
) != 0)
8732 /* If we're stripping it, and it's not a dynamic symbol, there's
8733 nothing else to do unless it is a forced local symbol or a
8734 STT_GNU_IFUNC symbol. */
8737 && h
->type
!= STT_GNU_IFUNC
8738 && !h
->forced_local
)
8742 sym
.st_size
= h
->size
;
8743 sym
.st_other
= h
->other
;
8744 if (h
->forced_local
)
8746 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8747 /* Turn off visibility on local symbol. */
8748 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
8750 else if (h
->unique_global
)
8751 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8752 else if (h
->root
.type
== bfd_link_hash_undefweak
8753 || h
->root
.type
== bfd_link_hash_defweak
)
8754 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8756 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8757 sym
.st_target_internal
= h
->target_internal
;
8759 switch (h
->root
.type
)
8762 case bfd_link_hash_new
:
8763 case bfd_link_hash_warning
:
8767 case bfd_link_hash_undefined
:
8768 case bfd_link_hash_undefweak
:
8769 input_sec
= bfd_und_section_ptr
;
8770 sym
.st_shndx
= SHN_UNDEF
;
8773 case bfd_link_hash_defined
:
8774 case bfd_link_hash_defweak
:
8776 input_sec
= h
->root
.u
.def
.section
;
8777 if (input_sec
->output_section
!= NULL
)
8780 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8781 input_sec
->output_section
);
8782 if (sym
.st_shndx
== SHN_BAD
)
8784 (*_bfd_error_handler
)
8785 (_("%B: could not find output section %A for input section %A"),
8786 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8787 bfd_set_error (bfd_error_nonrepresentable_section
);
8788 eoinfo
->failed
= TRUE
;
8792 /* ELF symbols in relocatable files are section relative,
8793 but in nonrelocatable files they are virtual
8795 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8796 if (! finfo
->info
->relocatable
)
8798 sym
.st_value
+= input_sec
->output_section
->vma
;
8799 if (h
->type
== STT_TLS
)
8801 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8802 if (tls_sec
!= NULL
)
8803 sym
.st_value
-= tls_sec
->vma
;
8806 /* The TLS section may have been garbage collected. */
8807 BFD_ASSERT (finfo
->info
->gc_sections
8808 && !input_sec
->gc_mark
);
8815 BFD_ASSERT (input_sec
->owner
== NULL
8816 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8817 sym
.st_shndx
= SHN_UNDEF
;
8818 input_sec
= bfd_und_section_ptr
;
8823 case bfd_link_hash_common
:
8824 input_sec
= h
->root
.u
.c
.p
->section
;
8825 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8826 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8829 case bfd_link_hash_indirect
:
8830 /* These symbols are created by symbol versioning. They point
8831 to the decorated version of the name. For example, if the
8832 symbol foo@@GNU_1.2 is the default, which should be used when
8833 foo is used with no version, then we add an indirect symbol
8834 foo which points to foo@@GNU_1.2. We ignore these symbols,
8835 since the indirected symbol is already in the hash table. */
8839 /* Give the processor backend a chance to tweak the symbol value,
8840 and also to finish up anything that needs to be done for this
8841 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8842 forced local syms when non-shared is due to a historical quirk.
8843 STT_GNU_IFUNC symbol must go through PLT. */
8844 if ((h
->type
== STT_GNU_IFUNC
8846 && !finfo
->info
->relocatable
)
8847 || ((h
->dynindx
!= -1
8849 && ((finfo
->info
->shared
8850 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8851 || h
->root
.type
!= bfd_link_hash_undefweak
))
8852 || !h
->forced_local
)
8853 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8855 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8856 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8858 eoinfo
->failed
= TRUE
;
8863 /* If we are marking the symbol as undefined, and there are no
8864 non-weak references to this symbol from a regular object, then
8865 mark the symbol as weak undefined; if there are non-weak
8866 references, mark the symbol as strong. We can't do this earlier,
8867 because it might not be marked as undefined until the
8868 finish_dynamic_symbol routine gets through with it. */
8869 if (sym
.st_shndx
== SHN_UNDEF
8871 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8872 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8875 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8877 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8878 if (type
== STT_GNU_IFUNC
)
8881 if (h
->ref_regular_nonweak
)
8882 bindtype
= STB_GLOBAL
;
8884 bindtype
= STB_WEAK
;
8885 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8888 /* If this is a symbol defined in a dynamic library, don't use the
8889 symbol size from the dynamic library. Relinking an executable
8890 against a new library may introduce gratuitous changes in the
8891 executable's symbols if we keep the size. */
8892 if (sym
.st_shndx
== SHN_UNDEF
8897 /* If a non-weak symbol with non-default visibility is not defined
8898 locally, it is a fatal error. */
8899 if (! finfo
->info
->relocatable
8900 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8901 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8902 && h
->root
.type
== bfd_link_hash_undefined
8907 if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
)
8908 msg
= _("%B: protected symbol `%s' isn't defined");
8909 else if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
)
8910 msg
= _("%B: internal symbol `%s' isn't defined");
8912 msg
= _("%B: hidden symbol `%s' isn't defined");
8913 (*_bfd_error_handler
) (msg
, finfo
->output_bfd
, h
->root
.root
.string
);
8914 bfd_set_error (bfd_error_bad_value
);
8915 eoinfo
->failed
= TRUE
;
8919 /* If this symbol should be put in the .dynsym section, then put it
8920 there now. We already know the symbol index. We also fill in
8921 the entry in the .hash section. */
8922 if (h
->dynindx
!= -1
8923 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8927 sym
.st_name
= h
->dynstr_index
;
8928 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8929 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8931 eoinfo
->failed
= TRUE
;
8934 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8936 if (finfo
->hash_sec
!= NULL
)
8938 size_t hash_entry_size
;
8939 bfd_byte
*bucketpos
;
8944 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8945 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8948 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8949 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8950 + (bucket
+ 2) * hash_entry_size
);
8951 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8952 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8953 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8954 ((bfd_byte
*) finfo
->hash_sec
->contents
8955 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8958 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8960 Elf_Internal_Versym iversym
;
8961 Elf_External_Versym
*eversym
;
8963 if (!h
->def_regular
)
8965 if (h
->verinfo
.verdef
== NULL
)
8966 iversym
.vs_vers
= 0;
8968 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8972 if (h
->verinfo
.vertree
== NULL
)
8973 iversym
.vs_vers
= 1;
8975 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8976 if (finfo
->info
->create_default_symver
)
8981 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8983 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8984 eversym
+= h
->dynindx
;
8985 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8989 /* If we're stripping it, then it was just a dynamic symbol, and
8990 there's nothing else to do. */
8991 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8994 indx
= bfd_get_symcount (finfo
->output_bfd
);
8995 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8998 eoinfo
->failed
= TRUE
;
9003 else if (h
->indx
== -2)
9009 /* Return TRUE if special handling is done for relocs in SEC against
9010 symbols defined in discarded sections. */
9013 elf_section_ignore_discarded_relocs (asection
*sec
)
9015 const struct elf_backend_data
*bed
;
9017 switch (sec
->sec_info_type
)
9019 case ELF_INFO_TYPE_STABS
:
9020 case ELF_INFO_TYPE_EH_FRAME
:
9026 bed
= get_elf_backend_data (sec
->owner
);
9027 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
9028 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
9034 /* Return a mask saying how ld should treat relocations in SEC against
9035 symbols defined in discarded sections. If this function returns
9036 COMPLAIN set, ld will issue a warning message. If this function
9037 returns PRETEND set, and the discarded section was link-once and the
9038 same size as the kept link-once section, ld will pretend that the
9039 symbol was actually defined in the kept section. Otherwise ld will
9040 zero the reloc (at least that is the intent, but some cooperation by
9041 the target dependent code is needed, particularly for REL targets). */
9044 _bfd_elf_default_action_discarded (asection
*sec
)
9046 if (sec
->flags
& SEC_DEBUGGING
)
9049 if (strcmp (".eh_frame", sec
->name
) == 0)
9052 if (strcmp (".gcc_except_table", sec
->name
) == 0)
9055 return COMPLAIN
| PRETEND
;
9058 /* Find a match between a section and a member of a section group. */
9061 match_group_member (asection
*sec
, asection
*group
,
9062 struct bfd_link_info
*info
)
9064 asection
*first
= elf_next_in_group (group
);
9065 asection
*s
= first
;
9069 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
9072 s
= elf_next_in_group (s
);
9080 /* Check if the kept section of a discarded section SEC can be used
9081 to replace it. Return the replacement if it is OK. Otherwise return
9085 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
9089 kept
= sec
->kept_section
;
9092 if ((kept
->flags
& SEC_GROUP
) != 0)
9093 kept
= match_group_member (sec
, kept
, info
);
9095 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
9096 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9098 sec
->kept_section
= kept
;
9103 /* Link an input file into the linker output file. This function
9104 handles all the sections and relocations of the input file at once.
9105 This is so that we only have to read the local symbols once, and
9106 don't have to keep them in memory. */
9109 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
9111 int (*relocate_section
)
9112 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9113 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9115 Elf_Internal_Shdr
*symtab_hdr
;
9118 Elf_Internal_Sym
*isymbuf
;
9119 Elf_Internal_Sym
*isym
;
9120 Elf_Internal_Sym
*isymend
;
9122 asection
**ppsection
;
9124 const struct elf_backend_data
*bed
;
9125 struct elf_link_hash_entry
**sym_hashes
;
9126 bfd_size_type address_size
;
9127 bfd_vma r_type_mask
;
9130 output_bfd
= finfo
->output_bfd
;
9131 bed
= get_elf_backend_data (output_bfd
);
9132 relocate_section
= bed
->elf_backend_relocate_section
;
9134 /* If this is a dynamic object, we don't want to do anything here:
9135 we don't want the local symbols, and we don't want the section
9137 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9140 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9141 if (elf_bad_symtab (input_bfd
))
9143 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9148 locsymcount
= symtab_hdr
->sh_info
;
9149 extsymoff
= symtab_hdr
->sh_info
;
9152 /* Read the local symbols. */
9153 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9154 if (isymbuf
== NULL
&& locsymcount
!= 0)
9156 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9157 finfo
->internal_syms
,
9158 finfo
->external_syms
,
9159 finfo
->locsym_shndx
);
9160 if (isymbuf
== NULL
)
9164 /* Find local symbol sections and adjust values of symbols in
9165 SEC_MERGE sections. Write out those local symbols we know are
9166 going into the output file. */
9167 isymend
= isymbuf
+ locsymcount
;
9168 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9170 isym
++, pindex
++, ppsection
++)
9174 Elf_Internal_Sym osym
;
9180 if (elf_bad_symtab (input_bfd
))
9182 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9189 if (isym
->st_shndx
== SHN_UNDEF
)
9190 isec
= bfd_und_section_ptr
;
9191 else if (isym
->st_shndx
== SHN_ABS
)
9192 isec
= bfd_abs_section_ptr
;
9193 else if (isym
->st_shndx
== SHN_COMMON
)
9194 isec
= bfd_com_section_ptr
;
9197 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9200 /* Don't attempt to output symbols with st_shnx in the
9201 reserved range other than SHN_ABS and SHN_COMMON. */
9205 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9206 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9208 _bfd_merged_section_offset (output_bfd
, &isec
,
9209 elf_section_data (isec
)->sec_info
,
9215 /* Don't output the first, undefined, symbol. */
9216 if (ppsection
== finfo
->sections
)
9219 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9221 /* We never output section symbols. Instead, we use the
9222 section symbol of the corresponding section in the output
9227 /* If we are stripping all symbols, we don't want to output this
9229 if (finfo
->info
->strip
== strip_all
)
9232 /* If we are discarding all local symbols, we don't want to
9233 output this one. If we are generating a relocatable output
9234 file, then some of the local symbols may be required by
9235 relocs; we output them below as we discover that they are
9237 if (finfo
->info
->discard
== discard_all
)
9240 /* If this symbol is defined in a section which we are
9241 discarding, we don't need to keep it. */
9242 if (isym
->st_shndx
!= SHN_UNDEF
9243 && isym
->st_shndx
< SHN_LORESERVE
9244 && bfd_section_removed_from_list (output_bfd
,
9245 isec
->output_section
))
9248 /* Get the name of the symbol. */
9249 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9254 /* See if we are discarding symbols with this name. */
9255 if ((finfo
->info
->strip
== strip_some
9256 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9258 || (((finfo
->info
->discard
== discard_sec_merge
9259 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9260 || finfo
->info
->discard
== discard_l
)
9261 && bfd_is_local_label_name (input_bfd
, name
)))
9266 /* Adjust the section index for the output file. */
9267 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9268 isec
->output_section
);
9269 if (osym
.st_shndx
== SHN_BAD
)
9272 /* ELF symbols in relocatable files are section relative, but
9273 in executable files they are virtual addresses. Note that
9274 this code assumes that all ELF sections have an associated
9275 BFD section with a reasonable value for output_offset; below
9276 we assume that they also have a reasonable value for
9277 output_section. Any special sections must be set up to meet
9278 these requirements. */
9279 osym
.st_value
+= isec
->output_offset
;
9280 if (! finfo
->info
->relocatable
)
9282 osym
.st_value
+= isec
->output_section
->vma
;
9283 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9285 /* STT_TLS symbols are relative to PT_TLS segment base. */
9286 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9287 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9291 indx
= bfd_get_symcount (output_bfd
);
9292 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9299 if (bed
->s
->arch_size
== 32)
9307 r_type_mask
= 0xffffffff;
9312 /* Relocate the contents of each section. */
9313 sym_hashes
= elf_sym_hashes (input_bfd
);
9314 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9318 if (! o
->linker_mark
)
9320 /* This section was omitted from the link. */
9324 if (finfo
->info
->relocatable
9325 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9327 /* Deal with the group signature symbol. */
9328 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9329 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9330 asection
*osec
= o
->output_section
;
9332 if (symndx
>= locsymcount
9333 || (elf_bad_symtab (input_bfd
)
9334 && finfo
->sections
[symndx
] == NULL
))
9336 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9337 while (h
->root
.type
== bfd_link_hash_indirect
9338 || h
->root
.type
== bfd_link_hash_warning
)
9339 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9340 /* Arrange for symbol to be output. */
9342 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9344 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9346 /* We'll use the output section target_index. */
9347 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9348 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9352 if (finfo
->indices
[symndx
] == -1)
9354 /* Otherwise output the local symbol now. */
9355 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9356 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9361 name
= bfd_elf_string_from_elf_section (input_bfd
,
9362 symtab_hdr
->sh_link
,
9367 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9369 if (sym
.st_shndx
== SHN_BAD
)
9372 sym
.st_value
+= o
->output_offset
;
9374 indx
= bfd_get_symcount (output_bfd
);
9375 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9379 finfo
->indices
[symndx
] = indx
;
9383 elf_section_data (osec
)->this_hdr
.sh_info
9384 = finfo
->indices
[symndx
];
9388 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9389 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9392 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9394 /* Section was created by _bfd_elf_link_create_dynamic_sections
9399 /* Get the contents of the section. They have been cached by a
9400 relaxation routine. Note that o is a section in an input
9401 file, so the contents field will not have been set by any of
9402 the routines which work on output files. */
9403 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9404 contents
= elf_section_data (o
)->this_hdr
.contents
;
9407 contents
= finfo
->contents
;
9408 if (! bfd_get_full_section_contents (input_bfd
, o
, &contents
))
9412 if ((o
->flags
& SEC_RELOC
) != 0)
9414 Elf_Internal_Rela
*internal_relocs
;
9415 Elf_Internal_Rela
*rel
, *relend
;
9416 int action_discarded
;
9419 /* Get the swapped relocs. */
9421 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9422 finfo
->internal_relocs
, FALSE
);
9423 if (internal_relocs
== NULL
9424 && o
->reloc_count
> 0)
9427 /* We need to reverse-copy input .ctors/.dtors sections if
9428 they are placed in .init_array/.finit_array for output. */
9429 if (o
->size
> address_size
9430 && ((strncmp (o
->name
, ".ctors", 6) == 0
9431 && strcmp (o
->output_section
->name
,
9432 ".init_array") == 0)
9433 || (strncmp (o
->name
, ".dtors", 6) == 0
9434 && strcmp (o
->output_section
->name
,
9435 ".fini_array") == 0))
9436 && (o
->name
[6] == 0 || o
->name
[6] == '.'))
9438 if (o
->size
!= o
->reloc_count
* address_size
)
9440 (*_bfd_error_handler
)
9441 (_("error: %B: size of section %A is not "
9442 "multiple of address size"),
9444 bfd_set_error (bfd_error_on_input
);
9447 o
->flags
|= SEC_ELF_REVERSE_COPY
;
9450 action_discarded
= -1;
9451 if (!elf_section_ignore_discarded_relocs (o
))
9452 action_discarded
= (*bed
->action_discarded
) (o
);
9454 /* Run through the relocs evaluating complex reloc symbols and
9455 looking for relocs against symbols from discarded sections
9456 or section symbols from removed link-once sections.
9457 Complain about relocs against discarded sections. Zero
9458 relocs against removed link-once sections. */
9460 rel
= internal_relocs
;
9461 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9462 for ( ; rel
< relend
; rel
++)
9464 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9465 unsigned int s_type
;
9466 asection
**ps
, *sec
;
9467 struct elf_link_hash_entry
*h
= NULL
;
9468 const char *sym_name
;
9470 if (r_symndx
== STN_UNDEF
)
9473 if (r_symndx
>= locsymcount
9474 || (elf_bad_symtab (input_bfd
)
9475 && finfo
->sections
[r_symndx
] == NULL
))
9477 h
= sym_hashes
[r_symndx
- extsymoff
];
9479 /* Badly formatted input files can contain relocs that
9480 reference non-existant symbols. Check here so that
9481 we do not seg fault. */
9486 sprintf_vma (buffer
, rel
->r_info
);
9487 (*_bfd_error_handler
)
9488 (_("error: %B contains a reloc (0x%s) for section %A "
9489 "that references a non-existent global symbol"),
9490 input_bfd
, o
, buffer
);
9491 bfd_set_error (bfd_error_bad_value
);
9495 while (h
->root
.type
== bfd_link_hash_indirect
9496 || h
->root
.type
== bfd_link_hash_warning
)
9497 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9502 if (h
->root
.type
== bfd_link_hash_defined
9503 || h
->root
.type
== bfd_link_hash_defweak
)
9504 ps
= &h
->root
.u
.def
.section
;
9506 sym_name
= h
->root
.root
.string
;
9510 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9512 s_type
= ELF_ST_TYPE (sym
->st_info
);
9513 ps
= &finfo
->sections
[r_symndx
];
9514 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9518 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9519 && !finfo
->info
->relocatable
)
9522 bfd_vma dot
= (rel
->r_offset
9523 + o
->output_offset
+ o
->output_section
->vma
);
9525 printf ("Encountered a complex symbol!");
9526 printf (" (input_bfd %s, section %s, reloc %ld\n",
9527 input_bfd
->filename
, o
->name
,
9528 (long) (rel
- internal_relocs
));
9529 printf (" symbol: idx %8.8lx, name %s\n",
9530 r_symndx
, sym_name
);
9531 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9532 (unsigned long) rel
->r_info
,
9533 (unsigned long) rel
->r_offset
);
9535 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9536 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9539 /* Symbol evaluated OK. Update to absolute value. */
9540 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9545 if (action_discarded
!= -1 && ps
!= NULL
)
9547 /* Complain if the definition comes from a
9548 discarded section. */
9549 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9551 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
9552 if (action_discarded
& COMPLAIN
)
9553 (*finfo
->info
->callbacks
->einfo
)
9554 (_("%X`%s' referenced in section `%A' of %B: "
9555 "defined in discarded section `%A' of %B\n"),
9556 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9558 /* Try to do the best we can to support buggy old
9559 versions of gcc. Pretend that the symbol is
9560 really defined in the kept linkonce section.
9561 FIXME: This is quite broken. Modifying the
9562 symbol here means we will be changing all later
9563 uses of the symbol, not just in this section. */
9564 if (action_discarded
& PRETEND
)
9568 kept
= _bfd_elf_check_kept_section (sec
,
9580 /* Relocate the section by invoking a back end routine.
9582 The back end routine is responsible for adjusting the
9583 section contents as necessary, and (if using Rela relocs
9584 and generating a relocatable output file) adjusting the
9585 reloc addend as necessary.
9587 The back end routine does not have to worry about setting
9588 the reloc address or the reloc symbol index.
9590 The back end routine is given a pointer to the swapped in
9591 internal symbols, and can access the hash table entries
9592 for the external symbols via elf_sym_hashes (input_bfd).
9594 When generating relocatable output, the back end routine
9595 must handle STB_LOCAL/STT_SECTION symbols specially. The
9596 output symbol is going to be a section symbol
9597 corresponding to the output section, which will require
9598 the addend to be adjusted. */
9600 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9601 input_bfd
, o
, contents
,
9609 || finfo
->info
->relocatable
9610 || finfo
->info
->emitrelocations
)
9612 Elf_Internal_Rela
*irela
;
9613 Elf_Internal_Rela
*irelaend
, *irelamid
;
9614 bfd_vma last_offset
;
9615 struct elf_link_hash_entry
**rel_hash
;
9616 struct elf_link_hash_entry
**rel_hash_list
, **rela_hash_list
;
9617 Elf_Internal_Shdr
*input_rel_hdr
, *input_rela_hdr
;
9618 unsigned int next_erel
;
9619 bfd_boolean rela_normal
;
9620 struct bfd_elf_section_data
*esdi
, *esdo
;
9622 esdi
= elf_section_data (o
);
9623 esdo
= elf_section_data (o
->output_section
);
9624 rela_normal
= FALSE
;
9626 /* Adjust the reloc addresses and symbol indices. */
9628 irela
= internal_relocs
;
9629 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9630 rel_hash
= esdo
->rel
.hashes
+ esdo
->rel
.count
;
9631 /* We start processing the REL relocs, if any. When we reach
9632 IRELAMID in the loop, we switch to the RELA relocs. */
9634 if (esdi
->rel
.hdr
!= NULL
)
9635 irelamid
+= (NUM_SHDR_ENTRIES (esdi
->rel
.hdr
)
9636 * bed
->s
->int_rels_per_ext_rel
);
9637 rel_hash_list
= rel_hash
;
9638 rela_hash_list
= NULL
;
9639 last_offset
= o
->output_offset
;
9640 if (!finfo
->info
->relocatable
)
9641 last_offset
+= o
->output_section
->vma
;
9642 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9644 unsigned long r_symndx
;
9646 Elf_Internal_Sym sym
;
9648 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9654 if (irela
== irelamid
)
9656 rel_hash
= esdo
->rela
.hashes
+ esdo
->rela
.count
;
9657 rela_hash_list
= rel_hash
;
9658 rela_normal
= bed
->rela_normal
;
9661 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9664 if (irela
->r_offset
>= (bfd_vma
) -2)
9666 /* This is a reloc for a deleted entry or somesuch.
9667 Turn it into an R_*_NONE reloc, at the same
9668 offset as the last reloc. elf_eh_frame.c and
9669 bfd_elf_discard_info rely on reloc offsets
9671 irela
->r_offset
= last_offset
;
9673 irela
->r_addend
= 0;
9677 irela
->r_offset
+= o
->output_offset
;
9679 /* Relocs in an executable have to be virtual addresses. */
9680 if (!finfo
->info
->relocatable
)
9681 irela
->r_offset
+= o
->output_section
->vma
;
9683 last_offset
= irela
->r_offset
;
9685 r_symndx
= irela
->r_info
>> r_sym_shift
;
9686 if (r_symndx
== STN_UNDEF
)
9689 if (r_symndx
>= locsymcount
9690 || (elf_bad_symtab (input_bfd
)
9691 && finfo
->sections
[r_symndx
] == NULL
))
9693 struct elf_link_hash_entry
*rh
;
9696 /* This is a reloc against a global symbol. We
9697 have not yet output all the local symbols, so
9698 we do not know the symbol index of any global
9699 symbol. We set the rel_hash entry for this
9700 reloc to point to the global hash table entry
9701 for this symbol. The symbol index is then
9702 set at the end of bfd_elf_final_link. */
9703 indx
= r_symndx
- extsymoff
;
9704 rh
= elf_sym_hashes (input_bfd
)[indx
];
9705 while (rh
->root
.type
== bfd_link_hash_indirect
9706 || rh
->root
.type
== bfd_link_hash_warning
)
9707 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9709 /* Setting the index to -2 tells
9710 elf_link_output_extsym that this symbol is
9712 BFD_ASSERT (rh
->indx
< 0);
9720 /* This is a reloc against a local symbol. */
9723 sym
= isymbuf
[r_symndx
];
9724 sec
= finfo
->sections
[r_symndx
];
9725 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9727 /* I suppose the backend ought to fill in the
9728 section of any STT_SECTION symbol against a
9729 processor specific section. */
9730 r_symndx
= STN_UNDEF
;
9731 if (bfd_is_abs_section (sec
))
9733 else if (sec
== NULL
|| sec
->owner
== NULL
)
9735 bfd_set_error (bfd_error_bad_value
);
9740 asection
*osec
= sec
->output_section
;
9742 /* If we have discarded a section, the output
9743 section will be the absolute section. In
9744 case of discarded SEC_MERGE sections, use
9745 the kept section. relocate_section should
9746 have already handled discarded linkonce
9748 if (bfd_is_abs_section (osec
)
9749 && sec
->kept_section
!= NULL
9750 && sec
->kept_section
->output_section
!= NULL
)
9752 osec
= sec
->kept_section
->output_section
;
9753 irela
->r_addend
-= osec
->vma
;
9756 if (!bfd_is_abs_section (osec
))
9758 r_symndx
= osec
->target_index
;
9759 if (r_symndx
== STN_UNDEF
)
9761 struct elf_link_hash_table
*htab
;
9764 htab
= elf_hash_table (finfo
->info
);
9765 oi
= htab
->text_index_section
;
9766 if ((osec
->flags
& SEC_READONLY
) == 0
9767 && htab
->data_index_section
!= NULL
)
9768 oi
= htab
->data_index_section
;
9772 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9773 r_symndx
= oi
->target_index
;
9777 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
9781 /* Adjust the addend according to where the
9782 section winds up in the output section. */
9784 irela
->r_addend
+= sec
->output_offset
;
9788 if (finfo
->indices
[r_symndx
] == -1)
9790 unsigned long shlink
;
9795 if (finfo
->info
->strip
== strip_all
)
9797 /* You can't do ld -r -s. */
9798 bfd_set_error (bfd_error_invalid_operation
);
9802 /* This symbol was skipped earlier, but
9803 since it is needed by a reloc, we
9804 must output it now. */
9805 shlink
= symtab_hdr
->sh_link
;
9806 name
= (bfd_elf_string_from_elf_section
9807 (input_bfd
, shlink
, sym
.st_name
));
9811 osec
= sec
->output_section
;
9813 _bfd_elf_section_from_bfd_section (output_bfd
,
9815 if (sym
.st_shndx
== SHN_BAD
)
9818 sym
.st_value
+= sec
->output_offset
;
9819 if (! finfo
->info
->relocatable
)
9821 sym
.st_value
+= osec
->vma
;
9822 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9824 /* STT_TLS symbols are relative to PT_TLS
9826 BFD_ASSERT (elf_hash_table (finfo
->info
)
9828 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9833 indx
= bfd_get_symcount (output_bfd
);
9834 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9839 finfo
->indices
[r_symndx
] = indx
;
9844 r_symndx
= finfo
->indices
[r_symndx
];
9847 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9848 | (irela
->r_info
& r_type_mask
));
9851 /* Swap out the relocs. */
9852 input_rel_hdr
= esdi
->rel
.hdr
;
9853 if (input_rel_hdr
&& input_rel_hdr
->sh_size
!= 0)
9855 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9860 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9861 * bed
->s
->int_rels_per_ext_rel
);
9862 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9865 input_rela_hdr
= esdi
->rela
.hdr
;
9866 if (input_rela_hdr
&& input_rela_hdr
->sh_size
!= 0)
9868 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9877 /* Write out the modified section contents. */
9878 if (bed
->elf_backend_write_section
9879 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9882 /* Section written out. */
9884 else switch (o
->sec_info_type
)
9886 case ELF_INFO_TYPE_STABS
:
9887 if (! (_bfd_write_section_stabs
9889 &elf_hash_table (finfo
->info
)->stab_info
,
9890 o
, &elf_section_data (o
)->sec_info
, contents
)))
9893 case ELF_INFO_TYPE_MERGE
:
9894 if (! _bfd_write_merged_section (output_bfd
, o
,
9895 elf_section_data (o
)->sec_info
))
9898 case ELF_INFO_TYPE_EH_FRAME
:
9900 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9907 /* FIXME: octets_per_byte. */
9908 if (! (o
->flags
& SEC_EXCLUDE
))
9910 file_ptr offset
= (file_ptr
) o
->output_offset
;
9911 bfd_size_type todo
= o
->size
;
9912 if ((o
->flags
& SEC_ELF_REVERSE_COPY
))
9914 /* Reverse-copy input section to output. */
9917 todo
-= address_size
;
9918 if (! bfd_set_section_contents (output_bfd
,
9926 offset
+= address_size
;
9930 else if (! bfd_set_section_contents (output_bfd
,
9944 /* Generate a reloc when linking an ELF file. This is a reloc
9945 requested by the linker, and does not come from any input file. This
9946 is used to build constructor and destructor tables when linking
9950 elf_reloc_link_order (bfd
*output_bfd
,
9951 struct bfd_link_info
*info
,
9952 asection
*output_section
,
9953 struct bfd_link_order
*link_order
)
9955 reloc_howto_type
*howto
;
9959 struct bfd_elf_section_reloc_data
*reldata
;
9960 struct elf_link_hash_entry
**rel_hash_ptr
;
9961 Elf_Internal_Shdr
*rel_hdr
;
9962 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9963 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9966 struct bfd_elf_section_data
*esdo
= elf_section_data (output_section
);
9968 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9971 bfd_set_error (bfd_error_bad_value
);
9975 addend
= link_order
->u
.reloc
.p
->addend
;
9978 reldata
= &esdo
->rel
;
9979 else if (esdo
->rela
.hdr
)
9980 reldata
= &esdo
->rela
;
9987 /* Figure out the symbol index. */
9988 rel_hash_ptr
= reldata
->hashes
+ reldata
->count
;
9989 if (link_order
->type
== bfd_section_reloc_link_order
)
9991 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9992 BFD_ASSERT (indx
!= 0);
9993 *rel_hash_ptr
= NULL
;
9997 struct elf_link_hash_entry
*h
;
9999 /* Treat a reloc against a defined symbol as though it were
10000 actually against the section. */
10001 h
= ((struct elf_link_hash_entry
*)
10002 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
10003 link_order
->u
.reloc
.p
->u
.name
,
10004 FALSE
, FALSE
, TRUE
));
10006 && (h
->root
.type
== bfd_link_hash_defined
10007 || h
->root
.type
== bfd_link_hash_defweak
))
10011 section
= h
->root
.u
.def
.section
;
10012 indx
= section
->output_section
->target_index
;
10013 *rel_hash_ptr
= NULL
;
10014 /* It seems that we ought to add the symbol value to the
10015 addend here, but in practice it has already been added
10016 because it was passed to constructor_callback. */
10017 addend
+= section
->output_section
->vma
+ section
->output_offset
;
10019 else if (h
!= NULL
)
10021 /* Setting the index to -2 tells elf_link_output_extsym that
10022 this symbol is used by a reloc. */
10029 if (! ((*info
->callbacks
->unattached_reloc
)
10030 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
10036 /* If this is an inplace reloc, we must write the addend into the
10038 if (howto
->partial_inplace
&& addend
!= 0)
10040 bfd_size_type size
;
10041 bfd_reloc_status_type rstat
;
10044 const char *sym_name
;
10046 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
10047 buf
= (bfd_byte
*) bfd_zmalloc (size
);
10050 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
10057 case bfd_reloc_outofrange
:
10060 case bfd_reloc_overflow
:
10061 if (link_order
->type
== bfd_section_reloc_link_order
)
10062 sym_name
= bfd_section_name (output_bfd
,
10063 link_order
->u
.reloc
.p
->u
.section
);
10065 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
10066 if (! ((*info
->callbacks
->reloc_overflow
)
10067 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
10068 NULL
, (bfd_vma
) 0)))
10075 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
10076 link_order
->offset
, size
);
10082 /* The address of a reloc is relative to the section in a
10083 relocatable file, and is a virtual address in an executable
10085 offset
= link_order
->offset
;
10086 if (! info
->relocatable
)
10087 offset
+= output_section
->vma
;
10089 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
10091 irel
[i
].r_offset
= offset
;
10092 irel
[i
].r_info
= 0;
10093 irel
[i
].r_addend
= 0;
10095 if (bed
->s
->arch_size
== 32)
10096 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
10098 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
10100 rel_hdr
= reldata
->hdr
;
10101 erel
= rel_hdr
->contents
;
10102 if (rel_hdr
->sh_type
== SHT_REL
)
10104 erel
+= reldata
->count
* bed
->s
->sizeof_rel
;
10105 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
10109 irel
[0].r_addend
= addend
;
10110 erel
+= reldata
->count
* bed
->s
->sizeof_rela
;
10111 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
10120 /* Get the output vma of the section pointed to by the sh_link field. */
10123 elf_get_linked_section_vma (struct bfd_link_order
*p
)
10125 Elf_Internal_Shdr
**elf_shdrp
;
10129 s
= p
->u
.indirect
.section
;
10130 elf_shdrp
= elf_elfsections (s
->owner
);
10131 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
10132 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
10134 The Intel C compiler generates SHT_IA_64_UNWIND with
10135 SHF_LINK_ORDER. But it doesn't set the sh_link or
10136 sh_info fields. Hence we could get the situation
10137 where elfsec is 0. */
10140 const struct elf_backend_data
*bed
10141 = get_elf_backend_data (s
->owner
);
10142 if (bed
->link_order_error_handler
)
10143 bed
->link_order_error_handler
10144 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
10149 s
= elf_shdrp
[elfsec
]->bfd_section
;
10150 return s
->output_section
->vma
+ s
->output_offset
;
10155 /* Compare two sections based on the locations of the sections they are
10156 linked to. Used by elf_fixup_link_order. */
10159 compare_link_order (const void * a
, const void * b
)
10164 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
10165 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10168 return apos
> bpos
;
10172 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10173 order as their linked sections. Returns false if this could not be done
10174 because an output section includes both ordered and unordered
10175 sections. Ideally we'd do this in the linker proper. */
10178 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10180 int seen_linkorder
;
10183 struct bfd_link_order
*p
;
10185 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10187 struct bfd_link_order
**sections
;
10188 asection
*s
, *other_sec
, *linkorder_sec
;
10192 linkorder_sec
= NULL
;
10194 seen_linkorder
= 0;
10195 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10197 if (p
->type
== bfd_indirect_link_order
)
10199 s
= p
->u
.indirect
.section
;
10201 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10202 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10203 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10204 && elfsec
< elf_numsections (sub
)
10205 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10206 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10220 if (seen_other
&& seen_linkorder
)
10222 if (other_sec
&& linkorder_sec
)
10223 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10225 linkorder_sec
->owner
, other_sec
,
10228 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10230 bfd_set_error (bfd_error_bad_value
);
10235 if (!seen_linkorder
)
10238 sections
= (struct bfd_link_order
**)
10239 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10240 if (sections
== NULL
)
10242 seen_linkorder
= 0;
10244 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10246 sections
[seen_linkorder
++] = p
;
10248 /* Sort the input sections in the order of their linked section. */
10249 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10250 compare_link_order
);
10252 /* Change the offsets of the sections. */
10254 for (n
= 0; n
< seen_linkorder
; n
++)
10256 s
= sections
[n
]->u
.indirect
.section
;
10257 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10258 s
->output_offset
= offset
;
10259 sections
[n
]->offset
= offset
;
10260 /* FIXME: octets_per_byte. */
10261 offset
+= sections
[n
]->size
;
10269 /* Do the final step of an ELF link. */
10272 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10274 bfd_boolean dynamic
;
10275 bfd_boolean emit_relocs
;
10277 struct elf_final_link_info finfo
;
10279 struct bfd_link_order
*p
;
10281 bfd_size_type max_contents_size
;
10282 bfd_size_type max_external_reloc_size
;
10283 bfd_size_type max_internal_reloc_count
;
10284 bfd_size_type max_sym_count
;
10285 bfd_size_type max_sym_shndx_count
;
10287 Elf_Internal_Sym elfsym
;
10289 Elf_Internal_Shdr
*symtab_hdr
;
10290 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10291 Elf_Internal_Shdr
*symstrtab_hdr
;
10292 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10293 struct elf_outext_info eoinfo
;
10294 bfd_boolean merged
;
10295 size_t relativecount
= 0;
10296 asection
*reldyn
= 0;
10298 asection
*attr_section
= NULL
;
10299 bfd_vma attr_size
= 0;
10300 const char *std_attrs_section
;
10302 if (! is_elf_hash_table (info
->hash
))
10306 abfd
->flags
|= DYNAMIC
;
10308 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10309 dynobj
= elf_hash_table (info
)->dynobj
;
10311 emit_relocs
= (info
->relocatable
10312 || info
->emitrelocations
);
10315 finfo
.output_bfd
= abfd
;
10316 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10317 if (finfo
.symstrtab
== NULL
)
10322 finfo
.dynsym_sec
= NULL
;
10323 finfo
.hash_sec
= NULL
;
10324 finfo
.symver_sec
= NULL
;
10328 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10329 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10330 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10331 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10332 /* Note that it is OK if symver_sec is NULL. */
10335 finfo
.contents
= NULL
;
10336 finfo
.external_relocs
= NULL
;
10337 finfo
.internal_relocs
= NULL
;
10338 finfo
.external_syms
= NULL
;
10339 finfo
.locsym_shndx
= NULL
;
10340 finfo
.internal_syms
= NULL
;
10341 finfo
.indices
= NULL
;
10342 finfo
.sections
= NULL
;
10343 finfo
.symbuf
= NULL
;
10344 finfo
.symshndxbuf
= NULL
;
10345 finfo
.symbuf_count
= 0;
10346 finfo
.shndxbuf_size
= 0;
10348 /* The object attributes have been merged. Remove the input
10349 sections from the link, and set the contents of the output
10351 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10352 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10354 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10355 || strcmp (o
->name
, ".gnu.attributes") == 0)
10357 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10359 asection
*input_section
;
10361 if (p
->type
!= bfd_indirect_link_order
)
10363 input_section
= p
->u
.indirect
.section
;
10364 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10365 elf_link_input_bfd ignores this section. */
10366 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10369 attr_size
= bfd_elf_obj_attr_size (abfd
);
10372 bfd_set_section_size (abfd
, o
, attr_size
);
10374 /* Skip this section later on. */
10375 o
->map_head
.link_order
= NULL
;
10378 o
->flags
|= SEC_EXCLUDE
;
10382 /* Count up the number of relocations we will output for each output
10383 section, so that we know the sizes of the reloc sections. We
10384 also figure out some maximum sizes. */
10385 max_contents_size
= 0;
10386 max_external_reloc_size
= 0;
10387 max_internal_reloc_count
= 0;
10389 max_sym_shndx_count
= 0;
10391 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10393 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10394 o
->reloc_count
= 0;
10396 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10398 unsigned int reloc_count
= 0;
10399 struct bfd_elf_section_data
*esdi
= NULL
;
10401 if (p
->type
== bfd_section_reloc_link_order
10402 || p
->type
== bfd_symbol_reloc_link_order
)
10404 else if (p
->type
== bfd_indirect_link_order
)
10408 sec
= p
->u
.indirect
.section
;
10409 esdi
= elf_section_data (sec
);
10411 /* Mark all sections which are to be included in the
10412 link. This will normally be every section. We need
10413 to do this so that we can identify any sections which
10414 the linker has decided to not include. */
10415 sec
->linker_mark
= TRUE
;
10417 if (sec
->flags
& SEC_MERGE
)
10420 if (info
->relocatable
|| info
->emitrelocations
)
10421 reloc_count
= sec
->reloc_count
;
10422 else if (bed
->elf_backend_count_relocs
)
10423 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10425 if (sec
->rawsize
> max_contents_size
)
10426 max_contents_size
= sec
->rawsize
;
10427 if (sec
->size
> max_contents_size
)
10428 max_contents_size
= sec
->size
;
10430 /* We are interested in just local symbols, not all
10432 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10433 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10437 if (elf_bad_symtab (sec
->owner
))
10438 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10439 / bed
->s
->sizeof_sym
);
10441 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10443 if (sym_count
> max_sym_count
)
10444 max_sym_count
= sym_count
;
10446 if (sym_count
> max_sym_shndx_count
10447 && elf_symtab_shndx (sec
->owner
) != 0)
10448 max_sym_shndx_count
= sym_count
;
10450 if ((sec
->flags
& SEC_RELOC
) != 0)
10452 size_t ext_size
= 0;
10454 if (esdi
->rel
.hdr
!= NULL
)
10455 ext_size
= esdi
->rel
.hdr
->sh_size
;
10456 if (esdi
->rela
.hdr
!= NULL
)
10457 ext_size
+= esdi
->rela
.hdr
->sh_size
;
10459 if (ext_size
> max_external_reloc_size
)
10460 max_external_reloc_size
= ext_size
;
10461 if (sec
->reloc_count
> max_internal_reloc_count
)
10462 max_internal_reloc_count
= sec
->reloc_count
;
10467 if (reloc_count
== 0)
10470 o
->reloc_count
+= reloc_count
;
10472 if (p
->type
== bfd_indirect_link_order
10473 && (info
->relocatable
|| info
->emitrelocations
))
10476 esdo
->rel
.count
+= NUM_SHDR_ENTRIES (esdi
->rel
.hdr
);
10477 if (esdi
->rela
.hdr
)
10478 esdo
->rela
.count
+= NUM_SHDR_ENTRIES (esdi
->rela
.hdr
);
10483 esdo
->rela
.count
+= reloc_count
;
10485 esdo
->rel
.count
+= reloc_count
;
10489 if (o
->reloc_count
> 0)
10490 o
->flags
|= SEC_RELOC
;
10493 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10494 set it (this is probably a bug) and if it is set
10495 assign_section_numbers will create a reloc section. */
10496 o
->flags
&=~ SEC_RELOC
;
10499 /* If the SEC_ALLOC flag is not set, force the section VMA to
10500 zero. This is done in elf_fake_sections as well, but forcing
10501 the VMA to 0 here will ensure that relocs against these
10502 sections are handled correctly. */
10503 if ((o
->flags
& SEC_ALLOC
) == 0
10504 && ! o
->user_set_vma
)
10508 if (! info
->relocatable
&& merged
)
10509 elf_link_hash_traverse (elf_hash_table (info
),
10510 _bfd_elf_link_sec_merge_syms
, abfd
);
10512 /* Figure out the file positions for everything but the symbol table
10513 and the relocs. We set symcount to force assign_section_numbers
10514 to create a symbol table. */
10515 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10516 BFD_ASSERT (! abfd
->output_has_begun
);
10517 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10520 /* Set sizes, and assign file positions for reloc sections. */
10521 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10523 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10524 if ((o
->flags
& SEC_RELOC
) != 0)
10527 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rel
)))
10531 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rela
)))
10535 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10536 to count upwards while actually outputting the relocations. */
10537 esdo
->rel
.count
= 0;
10538 esdo
->rela
.count
= 0;
10541 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10543 /* We have now assigned file positions for all the sections except
10544 .symtab and .strtab. We start the .symtab section at the current
10545 file position, and write directly to it. We build the .strtab
10546 section in memory. */
10547 bfd_get_symcount (abfd
) = 0;
10548 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10549 /* sh_name is set in prep_headers. */
10550 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10551 /* sh_flags, sh_addr and sh_size all start off zero. */
10552 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10553 /* sh_link is set in assign_section_numbers. */
10554 /* sh_info is set below. */
10555 /* sh_offset is set just below. */
10556 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10558 off
= elf_tdata (abfd
)->next_file_pos
;
10559 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10561 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10562 incorrect. We do not yet know the size of the .symtab section.
10563 We correct next_file_pos below, after we do know the size. */
10565 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10566 continuously seeking to the right position in the file. */
10567 if (! info
->keep_memory
|| max_sym_count
< 20)
10568 finfo
.symbuf_size
= 20;
10570 finfo
.symbuf_size
= max_sym_count
;
10571 amt
= finfo
.symbuf_size
;
10572 amt
*= bed
->s
->sizeof_sym
;
10573 finfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10574 if (finfo
.symbuf
== NULL
)
10576 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10578 /* Wild guess at number of output symbols. realloc'd as needed. */
10579 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10580 finfo
.shndxbuf_size
= amt
;
10581 amt
*= sizeof (Elf_External_Sym_Shndx
);
10582 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10583 if (finfo
.symshndxbuf
== NULL
)
10587 /* Start writing out the symbol table. The first symbol is always a
10589 if (info
->strip
!= strip_all
10592 elfsym
.st_value
= 0;
10593 elfsym
.st_size
= 0;
10594 elfsym
.st_info
= 0;
10595 elfsym
.st_other
= 0;
10596 elfsym
.st_shndx
= SHN_UNDEF
;
10597 elfsym
.st_target_internal
= 0;
10598 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10603 /* Output a symbol for each section. We output these even if we are
10604 discarding local symbols, since they are used for relocs. These
10605 symbols have no names. We store the index of each one in the
10606 index field of the section, so that we can find it again when
10607 outputting relocs. */
10608 if (info
->strip
!= strip_all
10611 elfsym
.st_size
= 0;
10612 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10613 elfsym
.st_other
= 0;
10614 elfsym
.st_value
= 0;
10615 elfsym
.st_target_internal
= 0;
10616 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10618 o
= bfd_section_from_elf_index (abfd
, i
);
10621 o
->target_index
= bfd_get_symcount (abfd
);
10622 elfsym
.st_shndx
= i
;
10623 if (!info
->relocatable
)
10624 elfsym
.st_value
= o
->vma
;
10625 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10631 /* Allocate some memory to hold information read in from the input
10633 if (max_contents_size
!= 0)
10635 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10636 if (finfo
.contents
== NULL
)
10640 if (max_external_reloc_size
!= 0)
10642 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10643 if (finfo
.external_relocs
== NULL
)
10647 if (max_internal_reloc_count
!= 0)
10649 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10650 amt
*= sizeof (Elf_Internal_Rela
);
10651 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10652 if (finfo
.internal_relocs
== NULL
)
10656 if (max_sym_count
!= 0)
10658 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10659 finfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10660 if (finfo
.external_syms
== NULL
)
10663 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10664 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10665 if (finfo
.internal_syms
== NULL
)
10668 amt
= max_sym_count
* sizeof (long);
10669 finfo
.indices
= (long int *) bfd_malloc (amt
);
10670 if (finfo
.indices
== NULL
)
10673 amt
= max_sym_count
* sizeof (asection
*);
10674 finfo
.sections
= (asection
**) bfd_malloc (amt
);
10675 if (finfo
.sections
== NULL
)
10679 if (max_sym_shndx_count
!= 0)
10681 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10682 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10683 if (finfo
.locsym_shndx
== NULL
)
10687 if (elf_hash_table (info
)->tls_sec
)
10689 bfd_vma base
, end
= 0;
10692 for (sec
= elf_hash_table (info
)->tls_sec
;
10693 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10696 bfd_size_type size
= sec
->size
;
10699 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10701 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
10704 size
= ord
->offset
+ ord
->size
;
10706 end
= sec
->vma
+ size
;
10708 base
= elf_hash_table (info
)->tls_sec
->vma
;
10709 /* Only align end of TLS section if static TLS doesn't have special
10710 alignment requirements. */
10711 if (bed
->static_tls_alignment
== 1)
10712 end
= align_power (end
,
10713 elf_hash_table (info
)->tls_sec
->alignment_power
);
10714 elf_hash_table (info
)->tls_size
= end
- base
;
10717 /* Reorder SHF_LINK_ORDER sections. */
10718 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10720 if (!elf_fixup_link_order (abfd
, o
))
10724 /* Since ELF permits relocations to be against local symbols, we
10725 must have the local symbols available when we do the relocations.
10726 Since we would rather only read the local symbols once, and we
10727 would rather not keep them in memory, we handle all the
10728 relocations for a single input file at the same time.
10730 Unfortunately, there is no way to know the total number of local
10731 symbols until we have seen all of them, and the local symbol
10732 indices precede the global symbol indices. This means that when
10733 we are generating relocatable output, and we see a reloc against
10734 a global symbol, we can not know the symbol index until we have
10735 finished examining all the local symbols to see which ones we are
10736 going to output. To deal with this, we keep the relocations in
10737 memory, and don't output them until the end of the link. This is
10738 an unfortunate waste of memory, but I don't see a good way around
10739 it. Fortunately, it only happens when performing a relocatable
10740 link, which is not the common case. FIXME: If keep_memory is set
10741 we could write the relocs out and then read them again; I don't
10742 know how bad the memory loss will be. */
10744 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10745 sub
->output_has_begun
= FALSE
;
10746 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10748 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10750 if (p
->type
== bfd_indirect_link_order
10751 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10752 == bfd_target_elf_flavour
)
10753 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10755 if (! sub
->output_has_begun
)
10757 if (! elf_link_input_bfd (&finfo
, sub
))
10759 sub
->output_has_begun
= TRUE
;
10762 else if (p
->type
== bfd_section_reloc_link_order
10763 || p
->type
== bfd_symbol_reloc_link_order
)
10765 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10770 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10772 if (p
->type
== bfd_indirect_link_order
10773 && (bfd_get_flavour (sub
)
10774 == bfd_target_elf_flavour
)
10775 && (elf_elfheader (sub
)->e_ident
[EI_CLASS
]
10776 != bed
->s
->elfclass
))
10778 const char *iclass
, *oclass
;
10780 if (bed
->s
->elfclass
== ELFCLASS64
)
10782 iclass
= "ELFCLASS32";
10783 oclass
= "ELFCLASS64";
10787 iclass
= "ELFCLASS64";
10788 oclass
= "ELFCLASS32";
10791 bfd_set_error (bfd_error_wrong_format
);
10792 (*_bfd_error_handler
)
10793 (_("%B: file class %s incompatible with %s"),
10794 sub
, iclass
, oclass
);
10803 /* Free symbol buffer if needed. */
10804 if (!info
->reduce_memory_overheads
)
10806 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10807 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10808 && elf_tdata (sub
)->symbuf
)
10810 free (elf_tdata (sub
)->symbuf
);
10811 elf_tdata (sub
)->symbuf
= NULL
;
10815 /* Output any global symbols that got converted to local in a
10816 version script or due to symbol visibility. We do this in a
10817 separate step since ELF requires all local symbols to appear
10818 prior to any global symbols. FIXME: We should only do this if
10819 some global symbols were, in fact, converted to become local.
10820 FIXME: Will this work correctly with the Irix 5 linker? */
10821 eoinfo
.failed
= FALSE
;
10822 eoinfo
.finfo
= &finfo
;
10823 eoinfo
.localsyms
= TRUE
;
10824 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10829 /* If backend needs to output some local symbols not present in the hash
10830 table, do it now. */
10831 if (bed
->elf_backend_output_arch_local_syms
)
10833 typedef int (*out_sym_func
)
10834 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10835 struct elf_link_hash_entry
*);
10837 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10838 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10842 /* That wrote out all the local symbols. Finish up the symbol table
10843 with the global symbols. Even if we want to strip everything we
10844 can, we still need to deal with those global symbols that got
10845 converted to local in a version script. */
10847 /* The sh_info field records the index of the first non local symbol. */
10848 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10851 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10853 Elf_Internal_Sym sym
;
10854 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10855 long last_local
= 0;
10857 /* Write out the section symbols for the output sections. */
10858 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10864 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10866 sym
.st_target_internal
= 0;
10868 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10874 dynindx
= elf_section_data (s
)->dynindx
;
10877 indx
= elf_section_data (s
)->this_idx
;
10878 BFD_ASSERT (indx
> 0);
10879 sym
.st_shndx
= indx
;
10880 if (! check_dynsym (abfd
, &sym
))
10882 sym
.st_value
= s
->vma
;
10883 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10884 if (last_local
< dynindx
)
10885 last_local
= dynindx
;
10886 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10890 /* Write out the local dynsyms. */
10891 if (elf_hash_table (info
)->dynlocal
)
10893 struct elf_link_local_dynamic_entry
*e
;
10894 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10899 /* Copy the internal symbol and turn off visibility.
10900 Note that we saved a word of storage and overwrote
10901 the original st_name with the dynstr_index. */
10903 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
10905 s
= bfd_section_from_elf_index (e
->input_bfd
,
10910 elf_section_data (s
->output_section
)->this_idx
;
10911 if (! check_dynsym (abfd
, &sym
))
10913 sym
.st_value
= (s
->output_section
->vma
10915 + e
->isym
.st_value
);
10918 if (last_local
< e
->dynindx
)
10919 last_local
= e
->dynindx
;
10921 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10922 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10926 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10930 /* We get the global symbols from the hash table. */
10931 eoinfo
.failed
= FALSE
;
10932 eoinfo
.localsyms
= FALSE
;
10933 eoinfo
.finfo
= &finfo
;
10934 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10939 /* If backend needs to output some symbols not present in the hash
10940 table, do it now. */
10941 if (bed
->elf_backend_output_arch_syms
)
10943 typedef int (*out_sym_func
)
10944 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10945 struct elf_link_hash_entry
*);
10947 if (! ((*bed
->elf_backend_output_arch_syms
)
10948 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10952 /* Flush all symbols to the file. */
10953 if (! elf_link_flush_output_syms (&finfo
, bed
))
10956 /* Now we know the size of the symtab section. */
10957 off
+= symtab_hdr
->sh_size
;
10959 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10960 if (symtab_shndx_hdr
->sh_name
!= 0)
10962 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10963 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10964 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10965 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10966 symtab_shndx_hdr
->sh_size
= amt
;
10968 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10971 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10972 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10977 /* Finish up and write out the symbol string table (.strtab)
10979 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10980 /* sh_name was set in prep_headers. */
10981 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10982 symstrtab_hdr
->sh_flags
= 0;
10983 symstrtab_hdr
->sh_addr
= 0;
10984 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10985 symstrtab_hdr
->sh_entsize
= 0;
10986 symstrtab_hdr
->sh_link
= 0;
10987 symstrtab_hdr
->sh_info
= 0;
10988 /* sh_offset is set just below. */
10989 symstrtab_hdr
->sh_addralign
= 1;
10991 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10992 elf_tdata (abfd
)->next_file_pos
= off
;
10994 if (bfd_get_symcount (abfd
) > 0)
10996 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10997 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
11001 /* Adjust the relocs to have the correct symbol indices. */
11002 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11004 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11005 if ((o
->flags
& SEC_RELOC
) == 0)
11008 if (esdo
->rel
.hdr
!= NULL
)
11009 elf_link_adjust_relocs (abfd
, &esdo
->rel
);
11010 if (esdo
->rela
.hdr
!= NULL
)
11011 elf_link_adjust_relocs (abfd
, &esdo
->rela
);
11013 /* Set the reloc_count field to 0 to prevent write_relocs from
11014 trying to swap the relocs out itself. */
11015 o
->reloc_count
= 0;
11018 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
11019 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
11021 /* If we are linking against a dynamic object, or generating a
11022 shared library, finish up the dynamic linking information. */
11025 bfd_byte
*dyncon
, *dynconend
;
11027 /* Fix up .dynamic entries. */
11028 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
11029 BFD_ASSERT (o
!= NULL
);
11031 dyncon
= o
->contents
;
11032 dynconend
= o
->contents
+ o
->size
;
11033 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11035 Elf_Internal_Dyn dyn
;
11039 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11046 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
11048 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
11050 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
11051 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
11054 dyn
.d_un
.d_val
= relativecount
;
11061 name
= info
->init_function
;
11064 name
= info
->fini_function
;
11067 struct elf_link_hash_entry
*h
;
11069 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
11070 FALSE
, FALSE
, TRUE
);
11072 && (h
->root
.type
== bfd_link_hash_defined
11073 || h
->root
.type
== bfd_link_hash_defweak
))
11075 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
11076 o
= h
->root
.u
.def
.section
;
11077 if (o
->output_section
!= NULL
)
11078 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
11079 + o
->output_offset
);
11082 /* The symbol is imported from another shared
11083 library and does not apply to this one. */
11084 dyn
.d_un
.d_ptr
= 0;
11091 case DT_PREINIT_ARRAYSZ
:
11092 name
= ".preinit_array";
11094 case DT_INIT_ARRAYSZ
:
11095 name
= ".init_array";
11097 case DT_FINI_ARRAYSZ
:
11098 name
= ".fini_array";
11100 o
= bfd_get_section_by_name (abfd
, name
);
11103 (*_bfd_error_handler
)
11104 (_("%B: could not find output section %s"), abfd
, name
);
11108 (*_bfd_error_handler
)
11109 (_("warning: %s section has zero size"), name
);
11110 dyn
.d_un
.d_val
= o
->size
;
11113 case DT_PREINIT_ARRAY
:
11114 name
= ".preinit_array";
11116 case DT_INIT_ARRAY
:
11117 name
= ".init_array";
11119 case DT_FINI_ARRAY
:
11120 name
= ".fini_array";
11127 name
= ".gnu.hash";
11136 name
= ".gnu.version_d";
11139 name
= ".gnu.version_r";
11142 name
= ".gnu.version";
11144 o
= bfd_get_section_by_name (abfd
, name
);
11147 (*_bfd_error_handler
)
11148 (_("%B: could not find output section %s"), abfd
, name
);
11151 dyn
.d_un
.d_ptr
= o
->vma
;
11158 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
11162 dyn
.d_un
.d_val
= 0;
11163 dyn
.d_un
.d_ptr
= 0;
11164 for (i
= 1; i
< elf_numsections (abfd
); i
++)
11166 Elf_Internal_Shdr
*hdr
;
11168 hdr
= elf_elfsections (abfd
)[i
];
11169 if (hdr
->sh_type
== type
11170 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
11172 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
11173 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11176 if (dyn
.d_un
.d_ptr
== 0
11177 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
11178 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
11184 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
11188 /* If we have created any dynamic sections, then output them. */
11189 if (dynobj
!= NULL
)
11191 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
11194 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11195 if (info
->warn_shared_textrel
&& info
->shared
)
11197 bfd_byte
*dyncon
, *dynconend
;
11199 /* Fix up .dynamic entries. */
11200 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
11201 BFD_ASSERT (o
!= NULL
);
11203 dyncon
= o
->contents
;
11204 dynconend
= o
->contents
+ o
->size
;
11205 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11207 Elf_Internal_Dyn dyn
;
11209 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11211 if (dyn
.d_tag
== DT_TEXTREL
)
11213 info
->callbacks
->einfo
11214 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11220 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11222 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11224 || o
->output_section
== bfd_abs_section_ptr
)
11226 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11228 /* At this point, we are only interested in sections
11229 created by _bfd_elf_link_create_dynamic_sections. */
11232 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11234 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11236 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11238 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
11240 /* FIXME: octets_per_byte. */
11241 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11243 (file_ptr
) o
->output_offset
,
11249 /* The contents of the .dynstr section are actually in a
11251 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11252 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11253 || ! _bfd_elf_strtab_emit (abfd
,
11254 elf_hash_table (info
)->dynstr
))
11260 if (info
->relocatable
)
11262 bfd_boolean failed
= FALSE
;
11264 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11269 /* If we have optimized stabs strings, output them. */
11270 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11272 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11276 if (info
->eh_frame_hdr
)
11278 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11282 if (finfo
.symstrtab
!= NULL
)
11283 _bfd_stringtab_free (finfo
.symstrtab
);
11284 if (finfo
.contents
!= NULL
)
11285 free (finfo
.contents
);
11286 if (finfo
.external_relocs
!= NULL
)
11287 free (finfo
.external_relocs
);
11288 if (finfo
.internal_relocs
!= NULL
)
11289 free (finfo
.internal_relocs
);
11290 if (finfo
.external_syms
!= NULL
)
11291 free (finfo
.external_syms
);
11292 if (finfo
.locsym_shndx
!= NULL
)
11293 free (finfo
.locsym_shndx
);
11294 if (finfo
.internal_syms
!= NULL
)
11295 free (finfo
.internal_syms
);
11296 if (finfo
.indices
!= NULL
)
11297 free (finfo
.indices
);
11298 if (finfo
.sections
!= NULL
)
11299 free (finfo
.sections
);
11300 if (finfo
.symbuf
!= NULL
)
11301 free (finfo
.symbuf
);
11302 if (finfo
.symshndxbuf
!= NULL
)
11303 free (finfo
.symshndxbuf
);
11304 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11306 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11307 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11308 free (esdo
->rel
.hashes
);
11309 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11310 free (esdo
->rela
.hashes
);
11313 elf_tdata (abfd
)->linker
= TRUE
;
11317 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11318 if (contents
== NULL
)
11319 return FALSE
; /* Bail out and fail. */
11320 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11321 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11328 if (finfo
.symstrtab
!= NULL
)
11329 _bfd_stringtab_free (finfo
.symstrtab
);
11330 if (finfo
.contents
!= NULL
)
11331 free (finfo
.contents
);
11332 if (finfo
.external_relocs
!= NULL
)
11333 free (finfo
.external_relocs
);
11334 if (finfo
.internal_relocs
!= NULL
)
11335 free (finfo
.internal_relocs
);
11336 if (finfo
.external_syms
!= NULL
)
11337 free (finfo
.external_syms
);
11338 if (finfo
.locsym_shndx
!= NULL
)
11339 free (finfo
.locsym_shndx
);
11340 if (finfo
.internal_syms
!= NULL
)
11341 free (finfo
.internal_syms
);
11342 if (finfo
.indices
!= NULL
)
11343 free (finfo
.indices
);
11344 if (finfo
.sections
!= NULL
)
11345 free (finfo
.sections
);
11346 if (finfo
.symbuf
!= NULL
)
11347 free (finfo
.symbuf
);
11348 if (finfo
.symshndxbuf
!= NULL
)
11349 free (finfo
.symshndxbuf
);
11350 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11352 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11353 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11354 free (esdo
->rel
.hashes
);
11355 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11356 free (esdo
->rela
.hashes
);
11362 /* Initialize COOKIE for input bfd ABFD. */
11365 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11366 struct bfd_link_info
*info
, bfd
*abfd
)
11368 Elf_Internal_Shdr
*symtab_hdr
;
11369 const struct elf_backend_data
*bed
;
11371 bed
= get_elf_backend_data (abfd
);
11372 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11374 cookie
->abfd
= abfd
;
11375 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11376 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11377 if (cookie
->bad_symtab
)
11379 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11380 cookie
->extsymoff
= 0;
11384 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11385 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11388 if (bed
->s
->arch_size
== 32)
11389 cookie
->r_sym_shift
= 8;
11391 cookie
->r_sym_shift
= 32;
11393 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11394 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11396 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11397 cookie
->locsymcount
, 0,
11399 if (cookie
->locsyms
== NULL
)
11401 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11404 if (info
->keep_memory
)
11405 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11410 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11413 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11415 Elf_Internal_Shdr
*symtab_hdr
;
11417 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11418 if (cookie
->locsyms
!= NULL
11419 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11420 free (cookie
->locsyms
);
11423 /* Initialize the relocation information in COOKIE for input section SEC
11424 of input bfd ABFD. */
11427 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11428 struct bfd_link_info
*info
, bfd
*abfd
,
11431 const struct elf_backend_data
*bed
;
11433 if (sec
->reloc_count
== 0)
11435 cookie
->rels
= NULL
;
11436 cookie
->relend
= NULL
;
11440 bed
= get_elf_backend_data (abfd
);
11442 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11443 info
->keep_memory
);
11444 if (cookie
->rels
== NULL
)
11446 cookie
->rel
= cookie
->rels
;
11447 cookie
->relend
= (cookie
->rels
11448 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11450 cookie
->rel
= cookie
->rels
;
11454 /* Free the memory allocated by init_reloc_cookie_rels,
11458 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11461 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11462 free (cookie
->rels
);
11465 /* Initialize the whole of COOKIE for input section SEC. */
11468 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11469 struct bfd_link_info
*info
,
11472 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11474 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11479 fini_reloc_cookie (cookie
, sec
->owner
);
11484 /* Free the memory allocated by init_reloc_cookie_for_section,
11488 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11491 fini_reloc_cookie_rels (cookie
, sec
);
11492 fini_reloc_cookie (cookie
, sec
->owner
);
11495 /* Garbage collect unused sections. */
11497 /* Default gc_mark_hook. */
11500 _bfd_elf_gc_mark_hook (asection
*sec
,
11501 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11502 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11503 struct elf_link_hash_entry
*h
,
11504 Elf_Internal_Sym
*sym
)
11506 const char *sec_name
;
11510 switch (h
->root
.type
)
11512 case bfd_link_hash_defined
:
11513 case bfd_link_hash_defweak
:
11514 return h
->root
.u
.def
.section
;
11516 case bfd_link_hash_common
:
11517 return h
->root
.u
.c
.p
->section
;
11519 case bfd_link_hash_undefined
:
11520 case bfd_link_hash_undefweak
:
11521 /* To work around a glibc bug, keep all XXX input sections
11522 when there is an as yet undefined reference to __start_XXX
11523 or __stop_XXX symbols. The linker will later define such
11524 symbols for orphan input sections that have a name
11525 representable as a C identifier. */
11526 if (strncmp (h
->root
.root
.string
, "__start_", 8) == 0)
11527 sec_name
= h
->root
.root
.string
+ 8;
11528 else if (strncmp (h
->root
.root
.string
, "__stop_", 7) == 0)
11529 sec_name
= h
->root
.root
.string
+ 7;
11533 if (sec_name
&& *sec_name
!= '\0')
11537 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11539 sec
= bfd_get_section_by_name (i
, sec_name
);
11541 sec
->flags
|= SEC_KEEP
;
11551 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11556 /* COOKIE->rel describes a relocation against section SEC, which is
11557 a section we've decided to keep. Return the section that contains
11558 the relocation symbol, or NULL if no section contains it. */
11561 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11562 elf_gc_mark_hook_fn gc_mark_hook
,
11563 struct elf_reloc_cookie
*cookie
)
11565 unsigned long r_symndx
;
11566 struct elf_link_hash_entry
*h
;
11568 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11569 if (r_symndx
== STN_UNDEF
)
11572 if (r_symndx
>= cookie
->locsymcount
11573 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11575 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11576 while (h
->root
.type
== bfd_link_hash_indirect
11577 || h
->root
.type
== bfd_link_hash_warning
)
11578 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11579 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11582 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11583 &cookie
->locsyms
[r_symndx
]);
11586 /* COOKIE->rel describes a relocation against section SEC, which is
11587 a section we've decided to keep. Mark the section that contains
11588 the relocation symbol. */
11591 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11593 elf_gc_mark_hook_fn gc_mark_hook
,
11594 struct elf_reloc_cookie
*cookie
)
11598 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11599 if (rsec
&& !rsec
->gc_mark
)
11601 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11603 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11609 /* The mark phase of garbage collection. For a given section, mark
11610 it and any sections in this section's group, and all the sections
11611 which define symbols to which it refers. */
11614 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11616 elf_gc_mark_hook_fn gc_mark_hook
)
11619 asection
*group_sec
, *eh_frame
;
11623 /* Mark all the sections in the group. */
11624 group_sec
= elf_section_data (sec
)->next_in_group
;
11625 if (group_sec
&& !group_sec
->gc_mark
)
11626 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11629 /* Look through the section relocs. */
11631 eh_frame
= elf_eh_frame_section (sec
->owner
);
11632 if ((sec
->flags
& SEC_RELOC
) != 0
11633 && sec
->reloc_count
> 0
11634 && sec
!= eh_frame
)
11636 struct elf_reloc_cookie cookie
;
11638 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11642 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11643 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11648 fini_reloc_cookie_for_section (&cookie
, sec
);
11652 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11654 struct elf_reloc_cookie cookie
;
11656 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11660 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11661 gc_mark_hook
, &cookie
))
11663 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11670 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11672 struct elf_gc_sweep_symbol_info
11674 struct bfd_link_info
*info
;
11675 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11680 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11682 if (h
->root
.type
== bfd_link_hash_warning
)
11683 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11685 if ((h
->root
.type
== bfd_link_hash_defined
11686 || h
->root
.type
== bfd_link_hash_defweak
)
11687 && !h
->root
.u
.def
.section
->gc_mark
11688 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11690 struct elf_gc_sweep_symbol_info
*inf
=
11691 (struct elf_gc_sweep_symbol_info
*) data
;
11692 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11698 /* The sweep phase of garbage collection. Remove all garbage sections. */
11700 typedef bfd_boolean (*gc_sweep_hook_fn
)
11701 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11704 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11707 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11708 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11709 unsigned long section_sym_count
;
11710 struct elf_gc_sweep_symbol_info sweep_info
;
11712 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11716 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11719 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11721 /* When any section in a section group is kept, we keep all
11722 sections in the section group. If the first member of
11723 the section group is excluded, we will also exclude the
11725 if (o
->flags
& SEC_GROUP
)
11727 asection
*first
= elf_next_in_group (o
);
11728 o
->gc_mark
= first
->gc_mark
;
11730 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11731 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0
11732 || elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
)
11734 /* Keep debug, special and SHT_NOTE sections. */
11741 /* Skip sweeping sections already excluded. */
11742 if (o
->flags
& SEC_EXCLUDE
)
11745 /* Since this is early in the link process, it is simple
11746 to remove a section from the output. */
11747 o
->flags
|= SEC_EXCLUDE
;
11749 if (info
->print_gc_sections
&& o
->size
!= 0)
11750 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11752 /* But we also have to update some of the relocation
11753 info we collected before. */
11755 && (o
->flags
& SEC_RELOC
) != 0
11756 && o
->reloc_count
> 0
11757 && !bfd_is_abs_section (o
->output_section
))
11759 Elf_Internal_Rela
*internal_relocs
;
11763 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11764 info
->keep_memory
);
11765 if (internal_relocs
== NULL
)
11768 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11770 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11771 free (internal_relocs
);
11779 /* Remove the symbols that were in the swept sections from the dynamic
11780 symbol table. GCFIXME: Anyone know how to get them out of the
11781 static symbol table as well? */
11782 sweep_info
.info
= info
;
11783 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11784 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11787 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11791 /* Propagate collected vtable information. This is called through
11792 elf_link_hash_traverse. */
11795 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11797 if (h
->root
.type
== bfd_link_hash_warning
)
11798 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11800 /* Those that are not vtables. */
11801 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11804 /* Those vtables that do not have parents, we cannot merge. */
11805 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11808 /* If we've already been done, exit. */
11809 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11812 /* Make sure the parent's table is up to date. */
11813 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11815 if (h
->vtable
->used
== NULL
)
11817 /* None of this table's entries were referenced. Re-use the
11819 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11820 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11825 bfd_boolean
*cu
, *pu
;
11827 /* Or the parent's entries into ours. */
11828 cu
= h
->vtable
->used
;
11830 pu
= h
->vtable
->parent
->vtable
->used
;
11833 const struct elf_backend_data
*bed
;
11834 unsigned int log_file_align
;
11836 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11837 log_file_align
= bed
->s
->log_file_align
;
11838 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11853 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11856 bfd_vma hstart
, hend
;
11857 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11858 const struct elf_backend_data
*bed
;
11859 unsigned int log_file_align
;
11861 if (h
->root
.type
== bfd_link_hash_warning
)
11862 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11864 /* Take care of both those symbols that do not describe vtables as
11865 well as those that are not loaded. */
11866 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11869 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11870 || h
->root
.type
== bfd_link_hash_defweak
);
11872 sec
= h
->root
.u
.def
.section
;
11873 hstart
= h
->root
.u
.def
.value
;
11874 hend
= hstart
+ h
->size
;
11876 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11878 return *(bfd_boolean
*) okp
= FALSE
;
11879 bed
= get_elf_backend_data (sec
->owner
);
11880 log_file_align
= bed
->s
->log_file_align
;
11882 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11884 for (rel
= relstart
; rel
< relend
; ++rel
)
11885 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11887 /* If the entry is in use, do nothing. */
11888 if (h
->vtable
->used
11889 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11891 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11892 if (h
->vtable
->used
[entry
])
11895 /* Otherwise, kill it. */
11896 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11902 /* Mark sections containing dynamically referenced symbols. When
11903 building shared libraries, we must assume that any visible symbol is
11907 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11909 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11911 if (h
->root
.type
== bfd_link_hash_warning
)
11912 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11914 if ((h
->root
.type
== bfd_link_hash_defined
11915 || h
->root
.type
== bfd_link_hash_defweak
)
11917 || (!info
->executable
11919 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11920 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11921 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11926 /* Keep all sections containing symbols undefined on the command-line,
11927 and the section containing the entry symbol. */
11930 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11932 struct bfd_sym_chain
*sym
;
11934 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11936 struct elf_link_hash_entry
*h
;
11938 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11939 FALSE
, FALSE
, FALSE
);
11942 && (h
->root
.type
== bfd_link_hash_defined
11943 || h
->root
.type
== bfd_link_hash_defweak
)
11944 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11945 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11949 /* Do mark and sweep of unused sections. */
11952 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11954 bfd_boolean ok
= TRUE
;
11956 elf_gc_mark_hook_fn gc_mark_hook
;
11957 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11959 if (!bed
->can_gc_sections
11960 || !is_elf_hash_table (info
->hash
))
11962 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11966 bed
->gc_keep (info
);
11968 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11969 at the .eh_frame section if we can mark the FDEs individually. */
11970 _bfd_elf_begin_eh_frame_parsing (info
);
11971 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11974 struct elf_reloc_cookie cookie
;
11976 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11977 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11979 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11980 if (elf_section_data (sec
)->sec_info
)
11981 elf_eh_frame_section (sub
) = sec
;
11982 fini_reloc_cookie_for_section (&cookie
, sec
);
11985 _bfd_elf_end_eh_frame_parsing (info
);
11987 /* Apply transitive closure to the vtable entry usage info. */
11988 elf_link_hash_traverse (elf_hash_table (info
),
11989 elf_gc_propagate_vtable_entries_used
,
11994 /* Kill the vtable relocations that were not used. */
11995 elf_link_hash_traverse (elf_hash_table (info
),
11996 elf_gc_smash_unused_vtentry_relocs
,
12001 /* Mark dynamically referenced symbols. */
12002 if (elf_hash_table (info
)->dynamic_sections_created
)
12003 elf_link_hash_traverse (elf_hash_table (info
),
12004 bed
->gc_mark_dynamic_ref
,
12007 /* Grovel through relocs to find out who stays ... */
12008 gc_mark_hook
= bed
->gc_mark_hook
;
12009 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12013 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
12016 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12017 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
12018 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12022 /* Allow the backend to mark additional target specific sections. */
12023 if (bed
->gc_mark_extra_sections
)
12024 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
12026 /* ... and mark SEC_EXCLUDE for those that go. */
12027 return elf_gc_sweep (abfd
, info
);
12030 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12033 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
12035 struct elf_link_hash_entry
*h
,
12038 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
12039 struct elf_link_hash_entry
**search
, *child
;
12040 bfd_size_type extsymcount
;
12041 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12043 /* The sh_info field of the symtab header tells us where the
12044 external symbols start. We don't care about the local symbols at
12046 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
12047 if (!elf_bad_symtab (abfd
))
12048 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
12050 sym_hashes
= elf_sym_hashes (abfd
);
12051 sym_hashes_end
= sym_hashes
+ extsymcount
;
12053 /* Hunt down the child symbol, which is in this section at the same
12054 offset as the relocation. */
12055 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
12057 if ((child
= *search
) != NULL
12058 && (child
->root
.type
== bfd_link_hash_defined
12059 || child
->root
.type
== bfd_link_hash_defweak
)
12060 && child
->root
.u
.def
.section
== sec
12061 && child
->root
.u
.def
.value
== offset
)
12065 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
12066 abfd
, sec
, (unsigned long) offset
);
12067 bfd_set_error (bfd_error_invalid_operation
);
12071 if (!child
->vtable
)
12073 child
->vtable
= (struct elf_link_virtual_table_entry
*)
12074 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
12075 if (!child
->vtable
)
12080 /* This *should* only be the absolute section. It could potentially
12081 be that someone has defined a non-global vtable though, which
12082 would be bad. It isn't worth paging in the local symbols to be
12083 sure though; that case should simply be handled by the assembler. */
12085 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
12088 child
->vtable
->parent
= h
;
12093 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12096 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
12097 asection
*sec ATTRIBUTE_UNUSED
,
12098 struct elf_link_hash_entry
*h
,
12101 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12102 unsigned int log_file_align
= bed
->s
->log_file_align
;
12106 h
->vtable
= (struct elf_link_virtual_table_entry
*)
12107 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
12112 if (addend
>= h
->vtable
->size
)
12114 size_t size
, bytes
, file_align
;
12115 bfd_boolean
*ptr
= h
->vtable
->used
;
12117 /* While the symbol is undefined, we have to be prepared to handle
12119 file_align
= 1 << log_file_align
;
12120 if (h
->root
.type
== bfd_link_hash_undefined
)
12121 size
= addend
+ file_align
;
12125 if (addend
>= size
)
12127 /* Oops! We've got a reference past the defined end of
12128 the table. This is probably a bug -- shall we warn? */
12129 size
= addend
+ file_align
;
12132 size
= (size
+ file_align
- 1) & -file_align
;
12134 /* Allocate one extra entry for use as a "done" flag for the
12135 consolidation pass. */
12136 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
12140 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
12146 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
12147 * sizeof (bfd_boolean
));
12148 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
12152 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
12157 /* And arrange for that done flag to be at index -1. */
12158 h
->vtable
->used
= ptr
+ 1;
12159 h
->vtable
->size
= size
;
12162 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
12167 struct alloc_got_off_arg
{
12169 struct bfd_link_info
*info
;
12172 /* We need a special top-level link routine to convert got reference counts
12173 to real got offsets. */
12176 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
12178 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
12179 bfd
*obfd
= gofarg
->info
->output_bfd
;
12180 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
12182 if (h
->root
.type
== bfd_link_hash_warning
)
12183 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12185 if (h
->got
.refcount
> 0)
12187 h
->got
.offset
= gofarg
->gotoff
;
12188 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
12191 h
->got
.offset
= (bfd_vma
) -1;
12196 /* And an accompanying bit to work out final got entry offsets once
12197 we're done. Should be called from final_link. */
12200 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
12201 struct bfd_link_info
*info
)
12204 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12206 struct alloc_got_off_arg gofarg
;
12208 BFD_ASSERT (abfd
== info
->output_bfd
);
12210 if (! is_elf_hash_table (info
->hash
))
12213 /* The GOT offset is relative to the .got section, but the GOT header is
12214 put into the .got.plt section, if the backend uses it. */
12215 if (bed
->want_got_plt
)
12218 gotoff
= bed
->got_header_size
;
12220 /* Do the local .got entries first. */
12221 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
12223 bfd_signed_vma
*local_got
;
12224 bfd_size_type j
, locsymcount
;
12225 Elf_Internal_Shdr
*symtab_hdr
;
12227 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
12230 local_got
= elf_local_got_refcounts (i
);
12234 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
12235 if (elf_bad_symtab (i
))
12236 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12238 locsymcount
= symtab_hdr
->sh_info
;
12240 for (j
= 0; j
< locsymcount
; ++j
)
12242 if (local_got
[j
] > 0)
12244 local_got
[j
] = gotoff
;
12245 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
12248 local_got
[j
] = (bfd_vma
) -1;
12252 /* Then the global .got entries. .plt refcounts are handled by
12253 adjust_dynamic_symbol */
12254 gofarg
.gotoff
= gotoff
;
12255 gofarg
.info
= info
;
12256 elf_link_hash_traverse (elf_hash_table (info
),
12257 elf_gc_allocate_got_offsets
,
12262 /* Many folk need no more in the way of final link than this, once
12263 got entry reference counting is enabled. */
12266 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12268 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12271 /* Invoke the regular ELF backend linker to do all the work. */
12272 return bfd_elf_final_link (abfd
, info
);
12276 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12278 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12280 if (rcookie
->bad_symtab
)
12281 rcookie
->rel
= rcookie
->rels
;
12283 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12285 unsigned long r_symndx
;
12287 if (! rcookie
->bad_symtab
)
12288 if (rcookie
->rel
->r_offset
> offset
)
12290 if (rcookie
->rel
->r_offset
!= offset
)
12293 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12294 if (r_symndx
== STN_UNDEF
)
12297 if (r_symndx
>= rcookie
->locsymcount
12298 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12300 struct elf_link_hash_entry
*h
;
12302 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12304 while (h
->root
.type
== bfd_link_hash_indirect
12305 || h
->root
.type
== bfd_link_hash_warning
)
12306 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12308 if ((h
->root
.type
== bfd_link_hash_defined
12309 || h
->root
.type
== bfd_link_hash_defweak
)
12310 && elf_discarded_section (h
->root
.u
.def
.section
))
12317 /* It's not a relocation against a global symbol,
12318 but it could be a relocation against a local
12319 symbol for a discarded section. */
12321 Elf_Internal_Sym
*isym
;
12323 /* Need to: get the symbol; get the section. */
12324 isym
= &rcookie
->locsyms
[r_symndx
];
12325 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12326 if (isec
!= NULL
&& elf_discarded_section (isec
))
12334 /* Discard unneeded references to discarded sections.
12335 Returns TRUE if any section's size was changed. */
12336 /* This function assumes that the relocations are in sorted order,
12337 which is true for all known assemblers. */
12340 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12342 struct elf_reloc_cookie cookie
;
12343 asection
*stab
, *eh
;
12344 const struct elf_backend_data
*bed
;
12346 bfd_boolean ret
= FALSE
;
12348 if (info
->traditional_format
12349 || !is_elf_hash_table (info
->hash
))
12352 _bfd_elf_begin_eh_frame_parsing (info
);
12353 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12355 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12358 bed
= get_elf_backend_data (abfd
);
12360 if ((abfd
->flags
& DYNAMIC
) != 0)
12364 if (!info
->relocatable
)
12366 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12369 || bfd_is_abs_section (eh
->output_section
)))
12373 stab
= bfd_get_section_by_name (abfd
, ".stab");
12375 && (stab
->size
== 0
12376 || bfd_is_abs_section (stab
->output_section
)
12377 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12382 && bed
->elf_backend_discard_info
== NULL
)
12385 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12389 && stab
->reloc_count
> 0
12390 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12392 if (_bfd_discard_section_stabs (abfd
, stab
,
12393 elf_section_data (stab
)->sec_info
,
12394 bfd_elf_reloc_symbol_deleted_p
,
12397 fini_reloc_cookie_rels (&cookie
, stab
);
12401 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12403 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12404 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12405 bfd_elf_reloc_symbol_deleted_p
,
12408 fini_reloc_cookie_rels (&cookie
, eh
);
12411 if (bed
->elf_backend_discard_info
!= NULL
12412 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12415 fini_reloc_cookie (&cookie
, abfd
);
12417 _bfd_elf_end_eh_frame_parsing (info
);
12419 if (info
->eh_frame_hdr
12420 && !info
->relocatable
12421 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12427 /* For a SHT_GROUP section, return the group signature. For other
12428 sections, return the normal section name. */
12430 static const char *
12431 section_signature (asection
*sec
)
12433 if ((sec
->flags
& SEC_GROUP
) != 0
12434 && elf_next_in_group (sec
) != NULL
12435 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12436 return elf_group_name (elf_next_in_group (sec
));
12441 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12442 struct bfd_link_info
*info
)
12445 const char *name
, *p
;
12446 struct bfd_section_already_linked
*l
;
12447 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12449 if (sec
->output_section
== bfd_abs_section_ptr
)
12452 flags
= sec
->flags
;
12454 /* Return if it isn't a linkonce section. A comdat group section
12455 also has SEC_LINK_ONCE set. */
12456 if ((flags
& SEC_LINK_ONCE
) == 0)
12459 /* Don't put group member sections on our list of already linked
12460 sections. They are handled as a group via their group section. */
12461 if (elf_sec_group (sec
) != NULL
)
12464 /* FIXME: When doing a relocatable link, we may have trouble
12465 copying relocations in other sections that refer to local symbols
12466 in the section being discarded. Those relocations will have to
12467 be converted somehow; as of this writing I'm not sure that any of
12468 the backends handle that correctly.
12470 It is tempting to instead not discard link once sections when
12471 doing a relocatable link (technically, they should be discarded
12472 whenever we are building constructors). However, that fails,
12473 because the linker winds up combining all the link once sections
12474 into a single large link once section, which defeats the purpose
12475 of having link once sections in the first place.
12477 Also, not merging link once sections in a relocatable link
12478 causes trouble for MIPS ELF, which relies on link once semantics
12479 to handle the .reginfo section correctly. */
12481 name
= section_signature (sec
);
12483 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12484 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12489 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12491 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12493 /* We may have 2 different types of sections on the list: group
12494 sections and linkonce sections. Match like sections. */
12495 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12496 && strcmp (name
, section_signature (l
->sec
)) == 0
12497 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12499 /* The section has already been linked. See if we should
12500 issue a warning. */
12501 switch (flags
& SEC_LINK_DUPLICATES
)
12506 case SEC_LINK_DUPLICATES_DISCARD
:
12509 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12510 (*_bfd_error_handler
)
12511 (_("%B: ignoring duplicate section `%A'"),
12515 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12516 if (sec
->size
!= l
->sec
->size
)
12517 (*_bfd_error_handler
)
12518 (_("%B: duplicate section `%A' has different size"),
12522 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12523 if (sec
->size
!= l
->sec
->size
)
12524 (*_bfd_error_handler
)
12525 (_("%B: duplicate section `%A' has different size"),
12527 else if (sec
->size
!= 0)
12529 bfd_byte
*sec_contents
, *l_sec_contents
;
12531 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12532 (*_bfd_error_handler
)
12533 (_("%B: warning: could not read contents of section `%A'"),
12535 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12537 (*_bfd_error_handler
)
12538 (_("%B: warning: could not read contents of section `%A'"),
12539 l
->sec
->owner
, l
->sec
);
12540 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12541 (*_bfd_error_handler
)
12542 (_("%B: warning: duplicate section `%A' has different contents"),
12546 free (sec_contents
);
12547 if (l_sec_contents
)
12548 free (l_sec_contents
);
12553 /* Set the output_section field so that lang_add_section
12554 does not create a lang_input_section structure for this
12555 section. Since there might be a symbol in the section
12556 being discarded, we must retain a pointer to the section
12557 which we are really going to use. */
12558 sec
->output_section
= bfd_abs_section_ptr
;
12559 sec
->kept_section
= l
->sec
;
12561 if (flags
& SEC_GROUP
)
12563 asection
*first
= elf_next_in_group (sec
);
12564 asection
*s
= first
;
12568 s
->output_section
= bfd_abs_section_ptr
;
12569 /* Record which group discards it. */
12570 s
->kept_section
= l
->sec
;
12571 s
= elf_next_in_group (s
);
12572 /* These lists are circular. */
12582 /* A single member comdat group section may be discarded by a
12583 linkonce section and vice versa. */
12585 if ((flags
& SEC_GROUP
) != 0)
12587 asection
*first
= elf_next_in_group (sec
);
12589 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12590 /* Check this single member group against linkonce sections. */
12591 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12592 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12593 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12594 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12596 first
->output_section
= bfd_abs_section_ptr
;
12597 first
->kept_section
= l
->sec
;
12598 sec
->output_section
= bfd_abs_section_ptr
;
12603 /* Check this linkonce section against single member groups. */
12604 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12605 if (l
->sec
->flags
& SEC_GROUP
)
12607 asection
*first
= elf_next_in_group (l
->sec
);
12610 && elf_next_in_group (first
) == first
12611 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12613 sec
->output_section
= bfd_abs_section_ptr
;
12614 sec
->kept_section
= first
;
12619 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12620 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12621 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12622 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12623 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12624 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12625 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12626 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12627 The reverse order cannot happen as there is never a bfd with only the
12628 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12629 matter as here were are looking only for cross-bfd sections. */
12631 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12632 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12633 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12634 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12636 if (abfd
!= l
->sec
->owner
)
12637 sec
->output_section
= bfd_abs_section_ptr
;
12641 /* This is the first section with this name. Record it. */
12642 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12643 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12647 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12649 return sym
->st_shndx
== SHN_COMMON
;
12653 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12659 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12661 return bfd_com_section_ptr
;
12665 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12666 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12667 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12668 bfd
*ibfd ATTRIBUTE_UNUSED
,
12669 unsigned long symndx ATTRIBUTE_UNUSED
)
12671 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12672 return bed
->s
->arch_size
/ 8;
12675 /* Routines to support the creation of dynamic relocs. */
12677 /* Returns the name of the dynamic reloc section associated with SEC. */
12679 static const char *
12680 get_dynamic_reloc_section_name (bfd
* abfd
,
12682 bfd_boolean is_rela
)
12685 const char *old_name
= bfd_get_section_name (NULL
, sec
);
12686 const char *prefix
= is_rela
? ".rela" : ".rel";
12688 if (old_name
== NULL
)
12691 name
= bfd_alloc (abfd
, strlen (prefix
) + strlen (old_name
) + 1);
12692 sprintf (name
, "%s%s", prefix
, old_name
);
12697 /* Returns the dynamic reloc section associated with SEC.
12698 If necessary compute the name of the dynamic reloc section based
12699 on SEC's name (looked up in ABFD's string table) and the setting
12703 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12705 bfd_boolean is_rela
)
12707 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12709 if (reloc_sec
== NULL
)
12711 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12715 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12717 if (reloc_sec
!= NULL
)
12718 elf_section_data (sec
)->sreloc
= reloc_sec
;
12725 /* Returns the dynamic reloc section associated with SEC. If the
12726 section does not exist it is created and attached to the DYNOBJ
12727 bfd and stored in the SRELOC field of SEC's elf_section_data
12730 ALIGNMENT is the alignment for the newly created section and
12731 IS_RELA defines whether the name should be .rela.<SEC's name>
12732 or .rel.<SEC's name>. The section name is looked up in the
12733 string table associated with ABFD. */
12736 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12738 unsigned int alignment
,
12740 bfd_boolean is_rela
)
12742 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12744 if (reloc_sec
== NULL
)
12746 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12751 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12753 if (reloc_sec
== NULL
)
12757 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12758 if ((sec
->flags
& SEC_ALLOC
) != 0)
12759 flags
|= SEC_ALLOC
| SEC_LOAD
;
12761 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12762 if (reloc_sec
!= NULL
)
12764 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12769 elf_section_data (sec
)->sreloc
= reloc_sec
;
12775 /* Copy the ELF symbol type associated with a linker hash entry. */
12777 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
12778 struct bfd_link_hash_entry
* hdest
,
12779 struct bfd_link_hash_entry
* hsrc
)
12781 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*)hdest
;
12782 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*)hsrc
;
12784 ehdest
->type
= ehsrc
->type
;
12785 ehdest
->target_internal
= ehsrc
->target_internal
;
12788 /* Append a RELA relocation REL to section S in BFD. */
12791 elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
12793 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12794 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
12795 BFD_ASSERT (loc
+ bed
->s
->sizeof_rela
<= s
->contents
+ s
->size
);
12796 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
12799 /* Append a REL relocation REL to section S in BFD. */
12802 elf_append_rel (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
12804 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12805 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rel
);
12806 BFD_ASSERT (loc
+ bed
->s
->sizeof_rel
<= s
->contents
+ s
->size
);
12807 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);