1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
42 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
43 : Object(name
, input_file
, true, offset
),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_
= this->input_file()->found_name();
53 if (this->offset() != 0)
55 std::string::size_type open_paren
= this->name().find('(');
56 std::string::size_type close_paren
= this->name().find(')');
57 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_
= this->name().substr(open_paren
+ 1,
61 close_paren
- (open_paren
+ 1));
66 // Class Sized_dynobj.
68 template<int size
, bool big_endian
>
69 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
70 const std::string
& name
,
71 Input_file
* input_file
,
73 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
74 : Dynobj(name
, input_file
, offset
),
75 elf_file_(this, ehdr
),
84 template<int size
, bool big_endian
>
86 Sized_dynobj
<size
, big_endian
>::setup()
88 const unsigned int shnum
= this->elf_file_
.shnum();
89 this->set_shnum(shnum
);
92 // Find the SHT_DYNSYM section and the various version sections, and
93 // the dynamic section, given the section headers.
95 template<int size
, bool big_endian
>
97 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
98 const unsigned char* pshdrs
,
99 unsigned int* pversym_shndx
,
100 unsigned int* pverdef_shndx
,
101 unsigned int* pverneed_shndx
,
102 unsigned int* pdynamic_shndx
)
104 *pversym_shndx
= -1U;
105 *pverdef_shndx
= -1U;
106 *pverneed_shndx
= -1U;
107 *pdynamic_shndx
= -1U;
109 unsigned int symtab_shndx
= 0;
110 unsigned int xindex_shndx
= 0;
111 unsigned int xindex_link
= 0;
112 const unsigned int shnum
= this->shnum();
113 const unsigned char* p
= pshdrs
;
114 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
116 typename
This::Shdr
shdr(p
);
119 switch (shdr
.get_sh_type())
121 case elfcpp::SHT_DYNSYM
:
122 this->dynsym_shndx_
= i
;
123 if (xindex_shndx
> 0 && xindex_link
== i
)
125 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
126 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
128 this->set_xindex(xindex
);
132 case elfcpp::SHT_SYMTAB
:
136 case elfcpp::SHT_GNU_versym
:
139 case elfcpp::SHT_GNU_verdef
:
142 case elfcpp::SHT_GNU_verneed
:
145 case elfcpp::SHT_DYNAMIC
:
148 case elfcpp::SHT_SYMTAB_SHNDX
:
150 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
151 if (xindex_link
== this->dynsym_shndx_
)
153 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
154 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
156 this->set_xindex(xindex
);
169 this->error(_("unexpected duplicate type %u section: %u, %u"),
170 shdr
.get_sh_type(), *pi
, i
);
175 // If there is no dynamic symbol table, use the normal symbol table.
176 // On some SVR4 systems, a shared library is stored in an archive.
177 // The version stored in the archive only has a normal symbol table.
178 // It has an SONAME entry which points to another copy in the file
179 // system which has a dynamic symbol table as usual. This is way of
180 // addressing the issues which glibc addresses using GROUP with
182 if (this->dynsym_shndx_
== -1U && symtab_shndx
!= 0)
184 this->dynsym_shndx_
= symtab_shndx
;
185 if (xindex_shndx
> 0 && xindex_link
== symtab_shndx
)
187 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
188 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
190 this->set_xindex(xindex
);
195 // Read the contents of section SHNDX. PSHDRS points to the section
196 // headers. TYPE is the expected section type. LINK is the expected
197 // section link. Store the data in *VIEW and *VIEW_SIZE. The
198 // section's sh_info field is stored in *VIEW_INFO.
200 template<int size
, bool big_endian
>
202 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
203 const unsigned char* pshdrs
,
208 section_size_type
* view_size
,
209 unsigned int* view_info
)
219 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
221 gold_assert(shdr
.get_sh_type() == type
);
223 if (this->adjust_shndx(shdr
.get_sh_link()) != link
)
224 this->error(_("unexpected link in section %u header: %u != %u"),
225 shndx
, this->adjust_shndx(shdr
.get_sh_link()), link
);
227 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
229 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
230 *view_info
= shdr
.get_sh_info();
233 // Read the dynamic tags. Set the soname field if this shared object
234 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
235 // the section headers. DYNAMIC_SHNDX is the section index of the
236 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
237 // section index and contents of a string table which may be the one
238 // associated with the SHT_DYNAMIC section.
240 template<int size
, bool big_endian
>
242 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
243 unsigned int dynamic_shndx
,
244 unsigned int strtab_shndx
,
245 const unsigned char* strtabu
,
248 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
249 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
251 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
252 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
253 dynamic_size
, true, false);
255 const unsigned int link
= this->adjust_shndx(dynamicshdr
.get_sh_link());
256 if (link
!= strtab_shndx
)
258 if (link
>= this->shnum())
260 this->error(_("DYNAMIC section %u link out of range: %u"),
261 dynamic_shndx
, link
);
265 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
266 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
268 this->error(_("DYNAMIC section %u link %u is not a strtab"),
269 dynamic_shndx
, link
);
273 strtab_size
= strtabshdr
.get_sh_size();
274 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false,
278 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
280 for (const unsigned char* p
= pdynamic
;
281 p
< pdynamic
+ dynamic_size
;
284 typename
This::Dyn
dyn(p
);
286 switch (dyn
.get_d_tag())
288 case elfcpp::DT_NULL
:
289 // We should always see DT_NULL at the end of the dynamic
293 case elfcpp::DT_SONAME
:
295 off_t val
= dyn
.get_d_val();
296 if (val
>= strtab_size
)
297 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
298 static_cast<long long>(val
),
299 static_cast<long long>(strtab_size
));
301 this->set_soname_string(strtab
+ val
);
305 case elfcpp::DT_NEEDED
:
307 off_t val
= dyn
.get_d_val();
308 if (val
>= strtab_size
)
309 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
310 static_cast<long long>(val
),
311 static_cast<long long>(strtab_size
));
313 this->add_needed(strtab
+ val
);
322 this->error(_("missing DT_NULL in dynamic segment"));
325 // Read the symbols and sections from a dynamic object. We read the
326 // dynamic symbols, not the normal symbols.
328 template<int size
, bool big_endian
>
330 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
332 this->read_section_data(&this->elf_file_
, sd
);
334 const unsigned char* const pshdrs
= sd
->section_headers
->data();
336 unsigned int versym_shndx
;
337 unsigned int verdef_shndx
;
338 unsigned int verneed_shndx
;
339 unsigned int dynamic_shndx
;
340 this->find_dynsym_sections(pshdrs
, &versym_shndx
, &verdef_shndx
,
341 &verneed_shndx
, &dynamic_shndx
);
343 unsigned int strtab_shndx
= -1U;
346 sd
->symbols_size
= 0;
347 sd
->external_symbols_offset
= 0;
348 sd
->symbol_names
= NULL
;
349 sd
->symbol_names_size
= 0;
356 sd
->verneed_size
= 0;
357 sd
->verneed_info
= 0;
359 if (this->dynsym_shndx_
!= -1U)
361 // Get the dynamic symbols.
362 typename
This::Shdr
dynsymshdr(pshdrs
363 + this->dynsym_shndx_
* This::shdr_size
);
365 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
366 dynsymshdr
.get_sh_size(), true,
369 convert_to_section_size_type(dynsymshdr
.get_sh_size());
371 // Get the symbol names.
372 strtab_shndx
= this->adjust_shndx(dynsymshdr
.get_sh_link());
373 if (strtab_shndx
>= this->shnum())
375 this->error(_("invalid dynamic symbol table name index: %u"),
379 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
380 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
382 this->error(_("dynamic symbol table name section "
383 "has wrong type: %u"),
384 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
388 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
389 strtabshdr
.get_sh_size(),
391 sd
->symbol_names_size
=
392 convert_to_section_size_type(strtabshdr
.get_sh_size());
394 // Get the version information.
397 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
399 &sd
->versym
, &sd
->versym_size
, &dummy
);
401 // We require that the version definition and need section link
402 // to the same string table as the dynamic symbol table. This
403 // is not a technical requirement, but it always happens in
404 // practice. We could change this if necessary.
406 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
407 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
410 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
411 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
415 // Read the SHT_DYNAMIC section to find whether this shared object
416 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
417 // doesn't really have anything to do with reading the symbols, but
418 // this is a convenient place to do it.
419 if (dynamic_shndx
!= -1U)
420 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
421 (sd
->symbol_names
== NULL
423 : sd
->symbol_names
->data()),
424 sd
->symbol_names_size
);
427 // Return the Xindex structure to use for object with lots of
430 template<int size
, bool big_endian
>
432 Sized_dynobj
<size
, big_endian
>::do_initialize_xindex()
434 gold_assert(this->dynsym_shndx_
!= -1U);
435 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
436 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->dynsym_shndx_
);
440 // Lay out the input sections for a dynamic object. We don't want to
441 // include sections from a dynamic object, so all that we actually do
442 // here is check for .gnu.warning and .note.GNU-split-stack sections.
444 template<int size
, bool big_endian
>
446 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
448 Read_symbols_data
* sd
)
450 const unsigned int shnum
= this->shnum();
454 // Get the section headers.
455 const unsigned char* pshdrs
= sd
->section_headers
->data();
457 // Get the section names.
458 const unsigned char* pnamesu
= sd
->section_names
->data();
459 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
461 // Skip the first, dummy, section.
462 pshdrs
+= This::shdr_size
;
463 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
465 typename
This::Shdr
shdr(pshdrs
);
467 if (shdr
.get_sh_name() >= sd
->section_names_size
)
469 this->error(_("bad section name offset for section %u: %lu"),
470 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
474 const char* name
= pnames
+ shdr
.get_sh_name();
476 this->handle_gnu_warning_section(name
, i
, symtab
);
477 this->handle_split_stack_section(name
);
480 delete sd
->section_headers
;
481 sd
->section_headers
= NULL
;
482 delete sd
->section_names
;
483 sd
->section_names
= NULL
;
486 // Add an entry to the vector mapping version numbers to version
489 template<int size
, bool big_endian
>
491 Sized_dynobj
<size
, big_endian
>::set_version_map(
492 Version_map
* version_map
,
494 const char* name
) const
496 if (ndx
>= version_map
->size())
497 version_map
->resize(ndx
+ 1);
498 if ((*version_map
)[ndx
] != NULL
)
499 this->error(_("duplicate definition for version %u"), ndx
);
500 (*version_map
)[ndx
] = name
;
503 // Add mappings for the version definitions to VERSION_MAP.
505 template<int size
, bool big_endian
>
507 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
508 Read_symbols_data
* sd
,
509 Version_map
* version_map
) const
511 if (sd
->verdef
== NULL
)
514 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
515 section_size_type names_size
= sd
->symbol_names_size
;
517 const unsigned char* pverdef
= sd
->verdef
->data();
518 section_size_type verdef_size
= sd
->verdef_size
;
519 const unsigned int count
= sd
->verdef_info
;
521 const unsigned char* p
= pverdef
;
522 for (unsigned int i
= 0; i
< count
; ++i
)
524 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
526 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
528 this->error(_("unexpected verdef version %u"),
529 verdef
.get_vd_version());
533 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
535 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
538 // The first Verdaux holds the name of this version. Subsequent
539 // ones are versions that this one depends upon, which we don't
541 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
544 this->error(_("verdef vd_cnt field too small: %u"),
545 static_cast<unsigned int>(vd_cnt
));
549 const section_size_type vd_aux
= verdef
.get_vd_aux();
550 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
552 this->error(_("verdef vd_aux field out of range: %u"),
553 static_cast<unsigned int>(vd_aux
));
557 const unsigned char* pvda
= p
+ vd_aux
;
558 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
560 const section_size_type vda_name
= verdaux
.get_vda_name();
561 if (vda_name
>= names_size
)
563 this->error(_("verdaux vda_name field out of range: %u"),
564 static_cast<unsigned int>(vda_name
));
568 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
570 const section_size_type vd_next
= verdef
.get_vd_next();
571 if ((p
- pverdef
) + vd_next
>= verdef_size
)
573 this->error(_("verdef vd_next field out of range: %u"),
574 static_cast<unsigned int>(vd_next
));
582 // Add mappings for the required versions to VERSION_MAP.
584 template<int size
, bool big_endian
>
586 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
587 Read_symbols_data
* sd
,
588 Version_map
* version_map
) const
590 if (sd
->verneed
== NULL
)
593 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
594 section_size_type names_size
= sd
->symbol_names_size
;
596 const unsigned char* pverneed
= sd
->verneed
->data();
597 const section_size_type verneed_size
= sd
->verneed_size
;
598 const unsigned int count
= sd
->verneed_info
;
600 const unsigned char* p
= pverneed
;
601 for (unsigned int i
= 0; i
< count
; ++i
)
603 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
605 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
607 this->error(_("unexpected verneed version %u"),
608 verneed
.get_vn_version());
612 const section_size_type vn_aux
= verneed
.get_vn_aux();
614 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
616 this->error(_("verneed vn_aux field out of range: %u"),
617 static_cast<unsigned int>(vn_aux
));
621 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
622 const unsigned char* pvna
= p
+ vn_aux
;
623 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
625 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
627 const unsigned int vna_name
= vernaux
.get_vna_name();
628 if (vna_name
>= names_size
)
630 this->error(_("vernaux vna_name field out of range: %u"),
631 static_cast<unsigned int>(vna_name
));
635 this->set_version_map(version_map
, vernaux
.get_vna_other(),
638 const section_size_type vna_next
= vernaux
.get_vna_next();
639 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
641 this->error(_("verneed vna_next field out of range: %u"),
642 static_cast<unsigned int>(vna_next
));
649 const section_size_type vn_next
= verneed
.get_vn_next();
650 if ((p
- pverneed
) + vn_next
>= verneed_size
)
652 this->error(_("verneed vn_next field out of range: %u"),
653 static_cast<unsigned int>(vn_next
));
661 // Create a vector mapping version numbers to version strings.
663 template<int size
, bool big_endian
>
665 Sized_dynobj
<size
, big_endian
>::make_version_map(
666 Read_symbols_data
* sd
,
667 Version_map
* version_map
) const
669 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
672 // A guess at the maximum version number we will see. If this is
673 // wrong we will be less efficient but still correct.
674 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
676 this->make_verdef_map(sd
, version_map
);
677 this->make_verneed_map(sd
, version_map
);
680 // Add the dynamic symbols to the symbol table.
682 template<int size
, bool big_endian
>
684 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
685 Read_symbols_data
* sd
,
688 if (sd
->symbols
== NULL
)
690 gold_assert(sd
->symbol_names
== NULL
);
691 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
692 && sd
->verneed
== NULL
);
696 const int sym_size
= This::sym_size
;
697 const size_t symcount
= sd
->symbols_size
/ sym_size
;
698 gold_assert(sd
->external_symbols_offset
== 0);
699 if (symcount
* sym_size
!= sd
->symbols_size
)
701 this->error(_("size of dynamic symbols is not multiple of symbol size"));
705 Version_map version_map
;
706 this->make_version_map(sd
, &version_map
);
708 // If printing symbol counts or a cross reference table, we want to
710 if (parameters
->options().user_set_print_symbol_counts()
711 || parameters
->options().cref())
713 this->symbols_
= new Symbols();
714 this->symbols_
->resize(symcount
);
717 const char* sym_names
=
718 reinterpret_cast<const char*>(sd
->symbol_names
->data());
719 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
720 sym_names
, sd
->symbol_names_size
,
723 : sd
->versym
->data()),
727 &this->defined_count_
);
731 delete sd
->symbol_names
;
732 sd
->symbol_names
= NULL
;
733 if (sd
->versym
!= NULL
)
738 if (sd
->verdef
!= NULL
)
743 if (sd
->verneed
!= NULL
)
749 // This is normally the last time we will read any data from this
751 this->clear_view_cache_marks();
754 template<int size
, bool big_endian
>
755 Archive::Should_include
756 Sized_dynobj
<size
, big_endian
>::do_should_include_member(Symbol_table
*,
761 return Archive::SHOULD_INCLUDE_YES
;
764 // Get symbol counts.
766 template<int size
, bool big_endian
>
768 Sized_dynobj
<size
, big_endian
>::do_get_global_symbol_counts(
773 *defined
= this->defined_count_
;
775 for (typename
Symbols::const_iterator p
= this->symbols_
->begin();
776 p
!= this->symbols_
->end();
779 && (*p
)->source() == Symbol::FROM_OBJECT
780 && (*p
)->object() == this
781 && (*p
)->is_defined()
782 && (*p
)->dynsym_index() != -1U)
787 // Given a vector of hash codes, compute the number of hash buckets to
791 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
792 bool for_gnu_hash_table
)
794 // FIXME: Implement optional hash table optimization.
796 // Array used to determine the number of hash table buckets to use
797 // based on the number of symbols there are. If there are fewer
798 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
799 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
800 // use more than 262147 buckets. This is straight from the old GNU
802 static const unsigned int buckets
[] =
804 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
805 16411, 32771, 65537, 131101, 262147
807 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
809 unsigned int symcount
= hashcodes
.size();
810 unsigned int ret
= 1;
811 const double full_fraction
812 = 1.0 - parameters
->options().hash_bucket_empty_fraction();
813 for (int i
= 0; i
< buckets_count
; ++i
)
815 if (symcount
< buckets
[i
] * full_fraction
)
820 if (for_gnu_hash_table
&& ret
< 2)
826 // The standard ELF hash function. This hash function must not
827 // change, as the dynamic linker uses it also.
830 Dynobj::elf_hash(const char* name
)
832 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
835 while ((c
= *nameu
++) != '\0')
838 uint32_t g
= h
& 0xf0000000;
842 // The ELF ABI says h &= ~g, but using xor is equivalent in
843 // this case (since g was set from h) and may save one
851 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
852 // DYNSYMS is a vector with all the global dynamic symbols.
853 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
857 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
858 unsigned int local_dynsym_count
,
859 unsigned char** pphash
,
860 unsigned int* phashlen
)
862 unsigned int dynsym_count
= dynsyms
.size();
864 // Get the hash values for all the symbols.
865 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
866 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
867 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
869 const unsigned int bucketcount
=
870 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
872 std::vector
<uint32_t> bucket(bucketcount
);
873 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
875 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
877 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
878 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
879 chain
[dynsym_index
] = bucket
[bucketpos
];
880 bucket
[bucketpos
] = dynsym_index
;
883 unsigned int hashlen
= ((2
888 unsigned char* phash
= new unsigned char[hashlen
];
890 if (parameters
->target().is_big_endian())
892 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
893 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
901 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
902 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
913 // Fill in an ELF hash table.
915 template<bool big_endian
>
917 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
918 const std::vector
<uint32_t>& chain
,
919 unsigned char* phash
,
920 unsigned int hashlen
)
922 unsigned char* p
= phash
;
924 const unsigned int bucketcount
= bucket
.size();
925 const unsigned int chaincount
= chain
.size();
927 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
929 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
932 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
934 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
938 for (unsigned int i
= 0; i
< chaincount
; ++i
)
940 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
944 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
947 // The hash function used for the GNU hash table. This hash function
948 // must not change, as the dynamic linker uses it also.
951 Dynobj::gnu_hash(const char* name
)
953 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
956 while ((c
= *nameu
++) != '\0')
957 h
= (h
<< 5) + h
+ c
;
961 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
962 // tables are an extension to ELF which are recognized by the GNU
963 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
964 // TARGET is the target. DYNSYMS is a vector with all the global
965 // symbols which will be going into the dynamic symbol table.
966 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
970 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
971 unsigned int local_dynsym_count
,
972 unsigned char** pphash
,
973 unsigned int* phashlen
)
975 const unsigned int count
= dynsyms
.size();
977 // Sort the dynamic symbols into two vectors. Symbols which we do
978 // not want to put into the hash table we store into
979 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
980 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
981 // and records the hash codes.
983 std::vector
<Symbol
*> unhashed_dynsyms
;
984 unhashed_dynsyms
.reserve(count
);
986 std::vector
<Symbol
*> hashed_dynsyms
;
987 hashed_dynsyms
.reserve(count
);
989 std::vector
<uint32_t> dynsym_hashvals
;
990 dynsym_hashvals
.reserve(count
);
992 for (unsigned int i
= 0; i
< count
; ++i
)
994 Symbol
* sym
= dynsyms
[i
];
996 if (!sym
->needs_dynsym_value()
997 && (sym
->is_undefined()
998 || sym
->is_from_dynobj()
999 || sym
->is_forced_local()))
1000 unhashed_dynsyms
.push_back(sym
);
1003 hashed_dynsyms
.push_back(sym
);
1004 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
1008 // Put the unhashed symbols at the start of the global portion of
1009 // the dynamic symbol table.
1010 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
1011 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
1012 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
1014 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
1015 ++unhashed_dynsym_index
;
1018 // For the actual data generation we call out to a templatized
1020 int size
= parameters
->target().get_size();
1021 bool big_endian
= parameters
->target().is_big_endian();
1026 #ifdef HAVE_TARGET_32_BIG
1027 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
1029 unhashed_dynsym_index
,
1038 #ifdef HAVE_TARGET_32_LITTLE
1039 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
1041 unhashed_dynsym_index
,
1049 else if (size
== 64)
1053 #ifdef HAVE_TARGET_64_BIG
1054 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
1056 unhashed_dynsym_index
,
1065 #ifdef HAVE_TARGET_64_LITTLE
1066 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
1068 unhashed_dynsym_index
,
1080 // Create the actual data for a GNU hash table. This is just a copy
1081 // of the code from the old GNU linker.
1083 template<int size
, bool big_endian
>
1085 Dynobj::sized_create_gnu_hash_table(
1086 const std::vector
<Symbol
*>& hashed_dynsyms
,
1087 const std::vector
<uint32_t>& dynsym_hashvals
,
1088 unsigned int unhashed_dynsym_count
,
1089 unsigned char** pphash
,
1090 unsigned int* phashlen
)
1092 if (hashed_dynsyms
.empty())
1094 // Special case for the empty hash table.
1095 unsigned int hashlen
= 5 * 4 + size
/ 8;
1096 unsigned char* phash
= new unsigned char[hashlen
];
1097 // One empty bucket.
1098 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
1099 // Symbol index above unhashed symbols.
1100 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
1101 // One word for bitmask.
1102 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
1103 // Only bloom filter.
1104 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
1106 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
1107 // No hashes in only bucket.
1108 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1110 *phashlen
= hashlen
;
1116 const unsigned int bucketcount
=
1117 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1119 const unsigned int nsyms
= hashed_dynsyms
.size();
1121 uint32_t maskbitslog2
= 1;
1122 uint32_t x
= nsyms
>> 1;
1128 if (maskbitslog2
< 3)
1130 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1140 if (maskbitslog2
== 5)
1144 uint32_t mask
= (1U << shift1
) - 1U;
1145 uint32_t shift2
= maskbitslog2
;
1146 uint32_t maskbits
= 1U << maskbitslog2
;
1147 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1149 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1150 std::vector
<Word
> bitmask(maskwords
);
1151 std::vector
<uint32_t> counts(bucketcount
);
1152 std::vector
<uint32_t> indx(bucketcount
);
1153 uint32_t symindx
= unhashed_dynsym_count
;
1155 // Count the number of times each hash bucket is used.
1156 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1157 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1159 unsigned int cnt
= symindx
;
1160 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1166 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1167 hashlen
+= maskbits
/ 8;
1168 unsigned char* phash
= new unsigned char[hashlen
];
1170 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1171 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1172 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1173 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1175 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1176 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1179 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1181 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1185 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1187 Symbol
* sym
= hashed_dynsyms
[i
];
1188 uint32_t hashval
= dynsym_hashvals
[i
];
1190 unsigned int bucket
= hashval
% bucketcount
;
1191 unsigned int val
= ((hashval
>> shift1
)
1192 & ((maskbits
>> shift1
) - 1));
1193 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1194 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1195 val
= hashval
& ~ 1U;
1196 if (counts
[bucket
] == 1)
1198 // Last element terminates the chain.
1201 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1205 sym
->set_dynsym_index(indx
[bucket
]);
1210 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1212 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1216 *phashlen
= hashlen
;
1222 // Write this definition to a buffer for the output section.
1224 template<int size
, bool big_endian
>
1226 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
) const
1228 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1229 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1231 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1232 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1233 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1234 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0)
1235 | (this->is_info_
? elfcpp::VER_FLG_INFO
: 0));
1236 vd
.set_vd_ndx(this->index());
1237 vd
.set_vd_cnt(1 + this->deps_
.size());
1238 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1239 vd
.set_vd_aux(verdef_size
);
1240 vd
.set_vd_next(is_last
1242 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1245 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1246 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1247 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1250 Deps::const_iterator p
;
1252 for (p
= this->deps_
.begin(), i
= 0;
1253 p
!= this->deps_
.end();
1256 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1257 vda
.set_vda_name(dynpool
->get_offset(*p
));
1258 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1269 for (Need_versions::iterator p
= this->need_versions_
.begin();
1270 p
!= this->need_versions_
.end();
1275 // Add a new version to this file reference.
1278 Verneed::add_name(const char* name
)
1280 Verneed_version
* vv
= new Verneed_version(name
);
1281 this->need_versions_
.push_back(vv
);
1285 // Set the version indexes starting at INDEX.
1288 Verneed::finalize(unsigned int index
)
1290 for (Need_versions::iterator p
= this->need_versions_
.begin();
1291 p
!= this->need_versions_
.end();
1294 (*p
)->set_index(index
);
1300 // Write this list of referenced versions to a buffer for the output
1303 template<int size
, bool big_endian
>
1305 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1306 unsigned char* pb
) const
1308 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1309 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1311 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1312 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1313 vn
.set_vn_cnt(this->need_versions_
.size());
1314 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1315 vn
.set_vn_aux(verneed_size
);
1316 vn
.set_vn_next(is_last
1318 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1321 Need_versions::const_iterator p
;
1323 for (p
= this->need_versions_
.begin(), i
= 0;
1324 p
!= this->need_versions_
.end();
1327 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1328 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1329 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1330 vna
.set_vna_flags(0);
1331 vna
.set_vna_other((*p
)->index());
1332 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1333 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1342 // Versions methods.
1344 Versions::Versions(const Version_script_info
& version_script
,
1345 Stringpool
* dynpool
)
1346 : defs_(), needs_(), version_table_(),
1347 is_finalized_(false), version_script_(version_script
),
1348 needs_base_version_(parameters
->options().shared())
1350 if (!this->version_script_
.empty())
1352 // Parse the version script, and insert each declared version into
1353 // defs_ and version_table_.
1354 std::vector
<std::string
> versions
= this->version_script_
.get_versions();
1356 if (this->needs_base_version_
&& !versions
.empty())
1357 this->define_base_version(dynpool
);
1359 for (size_t k
= 0; k
< versions
.size(); ++k
)
1361 Stringpool::Key version_key
;
1362 const char* version
= dynpool
->add(versions
[k
].c_str(),
1363 true, &version_key
);
1364 Verdef
* const vd
= new Verdef(
1366 this->version_script_
.get_dependencies(version
),
1367 false, false, false, false);
1368 this->defs_
.push_back(vd
);
1369 Key
key(version_key
, 0);
1370 this->version_table_
.insert(std::make_pair(key
, vd
));
1375 Versions::~Versions()
1377 for (Defs::iterator p
= this->defs_
.begin();
1378 p
!= this->defs_
.end();
1382 for (Needs::iterator p
= this->needs_
.begin();
1383 p
!= this->needs_
.end();
1388 // Define the base version of a shared library. The base version definition
1389 // must be the first entry in defs_. We insert it lazily so that defs_ is
1390 // empty if no symbol versioning is used. Then layout can just drop the
1391 // version sections.
1394 Versions::define_base_version(Stringpool
* dynpool
)
1396 // If we do any versioning at all, we always need a base version, so
1397 // define that first. Nothing explicitly declares itself as part of base,
1398 // so it doesn't need to be in version_table_.
1399 gold_assert(this->defs_
.empty());
1400 const char* name
= parameters
->options().soname();
1402 name
= parameters
->options().output_file_name();
1403 name
= dynpool
->add(name
, false, NULL
);
1404 Verdef
* vdbase
= new Verdef(name
, std::vector
<std::string
>(),
1405 true, false, false, true);
1406 this->defs_
.push_back(vdbase
);
1407 this->needs_base_version_
= false;
1410 // Return the dynamic object which a symbol refers to.
1413 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1414 const Symbol
* sym
) const
1416 if (sym
->is_copied_from_dynobj())
1417 return symtab
->get_copy_source(sym
);
1420 Object
* object
= sym
->object();
1421 gold_assert(object
->is_dynamic());
1422 return static_cast<Dynobj
*>(object
);
1426 // Record version information for a symbol going into the dynamic
1430 Versions::record_version(const Symbol_table
* symtab
,
1431 Stringpool
* dynpool
, const Symbol
* sym
)
1433 gold_assert(!this->is_finalized_
);
1434 gold_assert(sym
->version() != NULL
);
1436 Stringpool::Key version_key
;
1437 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1439 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1441 if (parameters
->options().shared())
1442 this->add_def(sym
, version
, version_key
);
1446 // This is a version reference.
1447 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1448 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1452 // We've found a symbol SYM defined in version VERSION.
1455 Versions::add_def(const Symbol
* sym
, const char* version
,
1456 Stringpool::Key version_key
)
1458 Key
k(version_key
, 0);
1459 Version_base
* const vbnull
= NULL
;
1460 std::pair
<Version_table::iterator
, bool> ins
=
1461 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1465 // We already have an entry for this version.
1466 Version_base
* vb
= ins
.first
->second
;
1468 // We have now seen a symbol in this version, so it is not
1470 gold_assert(vb
!= NULL
);
1475 // If we are creating a shared object, it is an error to
1476 // find a definition of a symbol with a version which is not
1477 // in the version script.
1478 if (parameters
->options().shared())
1479 gold_error(_("symbol %s has undefined version %s"),
1480 sym
->demangled_name().c_str(), version
);
1482 // We only insert a base version for shared library.
1483 gold_assert(!this->needs_base_version_
);
1485 // When creating a regular executable, automatically define
1487 Verdef
* vd
= new Verdef(version
, std::vector
<std::string
>(),
1488 false, false, false, false);
1489 this->defs_
.push_back(vd
);
1490 ins
.first
->second
= vd
;
1494 // Add a reference to version NAME in file FILENAME.
1497 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1498 Stringpool::Key name_key
)
1500 Stringpool::Key filename_key
;
1501 filename
= dynpool
->add(filename
, true, &filename_key
);
1503 Key
k(name_key
, filename_key
);
1504 Version_base
* const vbnull
= NULL
;
1505 std::pair
<Version_table::iterator
, bool> ins
=
1506 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1510 // We already have an entry for this filename/version.
1514 // See whether we already have this filename. We don't expect many
1515 // version references, so we just do a linear search. This could be
1516 // replaced by a hash table.
1518 for (Needs::iterator p
= this->needs_
.begin();
1519 p
!= this->needs_
.end();
1522 if ((*p
)->filename() == filename
)
1531 // Create base version definition lazily for shared library.
1532 if (this->needs_base_version_
)
1533 this->define_base_version(dynpool
);
1535 // We have a new filename.
1536 vn
= new Verneed(filename
);
1537 this->needs_
.push_back(vn
);
1540 ins
.first
->second
= vn
->add_name(name
);
1543 // Set the version indexes. Create a new dynamic version symbol for
1544 // each new version definition.
1547 Versions::finalize(Symbol_table
* symtab
, unsigned int dynsym_index
,
1548 std::vector
<Symbol
*>* syms
)
1550 gold_assert(!this->is_finalized_
);
1552 unsigned int vi
= 1;
1554 for (Defs::iterator p
= this->defs_
.begin();
1555 p
!= this->defs_
.end();
1558 (*p
)->set_index(vi
);
1561 // Create a version symbol if necessary.
1562 if (!(*p
)->is_symbol_created())
1564 Symbol
* vsym
= symtab
->define_as_constant((*p
)->name(),
1566 Symbol_table::PREDEFINED
,
1570 elfcpp::STV_DEFAULT
, 0,
1572 vsym
->set_needs_dynsym_entry();
1573 vsym
->set_dynsym_index(dynsym_index
);
1574 vsym
->set_is_default();
1576 syms
->push_back(vsym
);
1577 // The name is already in the dynamic pool.
1581 // Index 1 is used for global symbols.
1584 gold_assert(this->defs_
.empty());
1588 for (Needs::iterator p
= this->needs_
.begin();
1589 p
!= this->needs_
.end();
1591 vi
= (*p
)->finalize(vi
);
1593 this->is_finalized_
= true;
1595 return dynsym_index
;
1598 // Return the version index to use for a symbol. This does two hash
1599 // table lookups: one in DYNPOOL and one in this->version_table_.
1600 // Another approach alternative would be store a pointer in SYM, which
1601 // would increase the size of the symbol table. Or perhaps we could
1602 // use a hash table from dynamic symbol pointer values to Version_base
1606 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1607 const Symbol
* sym
) const
1609 Stringpool::Key version_key
;
1610 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1611 gold_assert(version
!= NULL
);
1614 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1616 if (!parameters
->options().shared())
1617 return elfcpp::VER_NDX_GLOBAL
;
1618 k
= Key(version_key
, 0);
1622 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1624 Stringpool::Key filename_key
;
1625 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1626 gold_assert(filename
!= NULL
);
1628 k
= Key(version_key
, filename_key
);
1631 Version_table::const_iterator p
= this->version_table_
.find(k
);
1632 gold_assert(p
!= this->version_table_
.end());
1634 return p
->second
->index();
1637 // Return an allocated buffer holding the contents of the symbol
1640 template<int size
, bool big_endian
>
1642 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1643 const Stringpool
* dynpool
,
1644 unsigned int local_symcount
,
1645 const std::vector
<Symbol
*>& syms
,
1647 unsigned int* psize
) const
1649 gold_assert(this->is_finalized_
);
1651 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1652 unsigned char* pbuf
= new unsigned char[sz
];
1654 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1655 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1656 elfcpp::VER_NDX_LOCAL
);
1658 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1662 unsigned int version_index
;
1663 const char* version
= (*p
)->version();
1664 if (version
!= NULL
)
1665 version_index
= this->version_index(symtab
, dynpool
, *p
);
1668 if ((*p
)->is_defined() && !(*p
)->is_from_dynobj())
1669 version_index
= elfcpp::VER_NDX_GLOBAL
;
1671 version_index
= elfcpp::VER_NDX_LOCAL
;
1673 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1675 if ((*p
)->version() != NULL
&& !(*p
)->is_default())
1676 version_index
|= elfcpp::VERSYM_HIDDEN
;
1677 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1685 // Return an allocated buffer holding the contents of the version
1686 // definition section.
1688 template<int size
, bool big_endian
>
1690 Versions::def_section_contents(const Stringpool
* dynpool
,
1691 unsigned char** pp
, unsigned int* psize
,
1692 unsigned int* pentries
) const
1694 gold_assert(this->is_finalized_
);
1695 gold_assert(!this->defs_
.empty());
1697 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1698 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1700 unsigned int sz
= 0;
1701 for (Defs::const_iterator p
= this->defs_
.begin();
1702 p
!= this->defs_
.end();
1705 sz
+= verdef_size
+ verdaux_size
;
1706 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1709 unsigned char* pbuf
= new unsigned char[sz
];
1711 unsigned char* pb
= pbuf
;
1712 Defs::const_iterator p
;
1714 for (p
= this->defs_
.begin(), i
= 0;
1715 p
!= this->defs_
.end();
1717 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1718 i
+ 1 >= this->defs_
.size(),
1721 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1725 *pentries
= this->defs_
.size();
1728 // Return an allocated buffer holding the contents of the version
1729 // reference section.
1731 template<int size
, bool big_endian
>
1733 Versions::need_section_contents(const Stringpool
* dynpool
,
1734 unsigned char** pp
, unsigned int *psize
,
1735 unsigned int *pentries
) const
1737 gold_assert(this->is_finalized_
);
1738 gold_assert(!this->needs_
.empty());
1740 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1741 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1743 unsigned int sz
= 0;
1744 for (Needs::const_iterator p
= this->needs_
.begin();
1745 p
!= this->needs_
.end();
1749 sz
+= (*p
)->count_versions() * vernaux_size
;
1752 unsigned char* pbuf
= new unsigned char[sz
];
1754 unsigned char* pb
= pbuf
;
1755 Needs::const_iterator p
;
1757 for (p
= this->needs_
.begin(), i
= 0;
1758 p
!= this->needs_
.end();
1760 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1761 i
+ 1 >= this->needs_
.size(),
1764 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1768 *pentries
= this->needs_
.size();
1771 // Instantiate the templates we need. We could use the configure
1772 // script to restrict this to only the ones for implemented targets.
1774 #ifdef HAVE_TARGET_32_LITTLE
1776 class Sized_dynobj
<32, false>;
1779 #ifdef HAVE_TARGET_32_BIG
1781 class Sized_dynobj
<32, true>;
1784 #ifdef HAVE_TARGET_64_LITTLE
1786 class Sized_dynobj
<64, false>;
1789 #ifdef HAVE_TARGET_64_BIG
1791 class Sized_dynobj
<64, true>;
1794 #ifdef HAVE_TARGET_32_LITTLE
1797 Versions::symbol_section_contents
<32, false>(
1798 const Symbol_table
*,
1801 const std::vector
<Symbol
*>&,
1803 unsigned int*) const;
1806 #ifdef HAVE_TARGET_32_BIG
1809 Versions::symbol_section_contents
<32, true>(
1810 const Symbol_table
*,
1813 const std::vector
<Symbol
*>&,
1815 unsigned int*) const;
1818 #ifdef HAVE_TARGET_64_LITTLE
1821 Versions::symbol_section_contents
<64, false>(
1822 const Symbol_table
*,
1825 const std::vector
<Symbol
*>&,
1827 unsigned int*) const;
1830 #ifdef HAVE_TARGET_64_BIG
1833 Versions::symbol_section_contents
<64, true>(
1834 const Symbol_table
*,
1837 const std::vector
<Symbol
*>&,
1839 unsigned int*) const;
1842 #ifdef HAVE_TARGET_32_LITTLE
1845 Versions::def_section_contents
<32, false>(
1849 unsigned int*) const;
1852 #ifdef HAVE_TARGET_32_BIG
1855 Versions::def_section_contents
<32, true>(
1859 unsigned int*) const;
1862 #ifdef HAVE_TARGET_64_LITTLE
1865 Versions::def_section_contents
<64, false>(
1869 unsigned int*) const;
1872 #ifdef HAVE_TARGET_64_BIG
1875 Versions::def_section_contents
<64, true>(
1879 unsigned int*) const;
1882 #ifdef HAVE_TARGET_32_LITTLE
1885 Versions::need_section_contents
<32, false>(
1889 unsigned int*) const;
1892 #ifdef HAVE_TARGET_32_BIG
1895 Versions::need_section_contents
<32, true>(
1899 unsigned int*) const;
1902 #ifdef HAVE_TARGET_64_LITTLE
1905 Versions::need_section_contents
<64, false>(
1909 unsigned int*) const;
1912 #ifdef HAVE_TARGET_64_BIG
1915 Versions::need_section_contents
<64, true>(
1919 unsigned int*) const;
1922 } // End namespace gold.