Disable -Werror on coff-tic4x.lo and coff-tic54x.lo.
[binutils.git] / gold / arm.cc
blob5d2553330149f3b81374ebd83190b92fbd8f21cd
1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
7 // bfd/elf32-arm.c.
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
26 #include "gold.h"
28 #include <cstring>
29 #include <limits>
30 #include <cstdio>
31 #include <string>
32 #include <algorithm>
33 #include <map>
34 #include <utility>
35 #include <set>
37 #include "elfcpp.h"
38 #include "parameters.h"
39 #include "reloc.h"
40 #include "arm.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "layout.h"
44 #include "output.h"
45 #include "copy-relocs.h"
46 #include "target.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
49 #include "tls.h"
50 #include "defstd.h"
51 #include "gc.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
55 namespace
58 using namespace gold;
60 template<bool big_endian>
61 class Output_data_plt_arm;
63 template<bool big_endian>
64 class Stub_table;
66 template<bool big_endian>
67 class Arm_input_section;
69 class Arm_exidx_cantunwind;
71 class Arm_exidx_merged_section;
73 class Arm_exidx_fixup;
75 template<bool big_endian>
76 class Arm_output_section;
78 class Arm_exidx_input_section;
80 template<bool big_endian>
81 class Arm_relobj;
83 template<bool big_endian>
84 class Arm_relocate_functions;
86 template<bool big_endian>
87 class Arm_output_data_got;
89 template<bool big_endian>
90 class Target_arm;
92 // For convenience.
93 typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE = 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
111 // TODOs:
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
114 // Thumb-2 and BE8.
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table *arm_reloc_property_table = NULL;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
134 class Insn_template
136 public:
137 // Types of instruction templates.
138 enum Type
140 THUMB16_TYPE = 1,
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
189 uint32_t
190 data() const
191 { return this->data_; }
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
207 // Return size of instruction template in bytes.
208 size_t
209 size() const;
211 // Return byte-alignment of instruction template.
212 unsigned
213 alignment() const;
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
234 // Macro for generating code to stub types. One entry per long/short
235 // branch stub
237 #define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
256 // Stub types.
258 #define DEF_STUB(x) arm_stub_##x,
259 typedef enum
261 arm_stub_none,
262 DEF_STUBS
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
274 // Last stub type.
275 arm_stub_type_last = arm_stub_v4_veneer_bx
276 } Stub_type;
277 #undef DEF_STUB
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
283 class Stub_template
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
288 ~Stub_template()
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
376 class Stub
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
382 public:
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
387 virtual
388 ~Stub()
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
404 // Set offset of code stub from beginning of its containing stub table.
405 void
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
432 virtual void
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
447 private:
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub : public Stub
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
469 // Return destination address.
470 Arm_address
471 destination_address() const
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
512 if (symbol != NULL)
514 this->r_sym_ = Reloc_stub::invalid_index;
515 this->u_.symbol = symbol;
517 else
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
525 ~Key()
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
563 // Return a hash value.
564 size_t
565 hash_value() const
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
576 // Functors for STL associative containers.
577 struct hash
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
584 struct equal_to
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
607 union
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
622 ~Reloc_stub()
625 friend class Stub_factory;
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
648 // branch.
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub : public Stub
663 public:
664 ~Cortex_a8_stub()
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
709 friend class Stub_factory;
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
722 else
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
742 Arm_address destination_address_;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub : public Stub
751 public:
752 ~Arm_v4bx_stub()
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
766 friend class Stub_factory;
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
806 // Stub factory class.
808 class Stub_factory
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
815 static Stub_factory singleton;
816 return singleton;
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
854 Stub_factory();
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian>
867 class Stub_table : public Output_data
869 public:
870 Stub_table(Arm_input_section<big_endian>* owner)
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
876 ~Stub_table()
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
884 // Whether this stub table is empty.
885 bool
886 empty() const
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
900 void
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
988 { return this->prev_addralign_; }
990 // Reset address and file offset.
991 void
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1000 private:
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1007 // Unordered map of relocation stubs.
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind : public Output_section_data
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1057 protected:
1058 void
1059 do_write(Output_file* of)
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1067 private:
1068 // Implement do_write for a given endianness.
1069 template<bool big_endian>
1070 void inline
1071 do_fixed_endian_write(Output_file*);
1073 // The object containing the section pointed by this.
1074 Relobj* relobj_;
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1079 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section.
1083 typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1086 // Arm_exidx_merged_section class. This represents an EXIDX input section
1087 // with some of its entries merged.
1089 class Arm_exidx_merged_section : public Output_relaxed_input_section
1091 public:
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1112 protected:
1113 // Write merged section into file OF.
1114 void
1115 do_write(Output_file* of);
1117 bool
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1121 private:
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1128 // A class to wrap an ordinary input section containing executable code.
1130 template<bool big_endian>
1131 class Arm_input_section : public Output_relaxed_input_section
1133 public:
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1139 ~Arm_input_section()
1142 // Initialize.
1143 void
1144 init();
1146 // Whether this is a stub table owner.
1147 bool
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1153 stub_table() const
1154 { return this->stub_table_; }
1156 // Set the stub_table.
1157 void
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1167 // Return the original size of the section.
1168 uint32_t
1169 original_size() const
1170 { return this->original_size_; }
1172 protected:
1173 // Write data to output file.
1174 void
1175 do_write(Output_file*);
1177 // Return required alignment of this.
1178 uint64_t
1179 do_addralign() const
1181 if (this->is_stub_table_owner())
1182 return std::max(this->stub_table_->addralign(),
1183 static_cast<uint64_t>(this->original_addralign_));
1184 else
1185 return this->original_addralign_;
1188 // Finalize data size.
1189 void
1190 set_final_data_size();
1192 // Reset address and file offset.
1193 void
1194 do_reset_address_and_file_offset();
1196 // Output offset.
1197 bool
1198 do_output_offset(const Relobj* object, unsigned int shndx,
1199 section_offset_type offset,
1200 section_offset_type* poutput) const
1202 if ((object == this->relobj())
1203 && (shndx == this->shndx())
1204 && (offset >= 0)
1205 && (offset <=
1206 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1208 *poutput = offset;
1209 return true;
1211 else
1212 return false;
1215 private:
1216 // Copying is not allowed.
1217 Arm_input_section(const Arm_input_section&);
1218 Arm_input_section& operator=(const Arm_input_section&);
1220 // Address alignment of the original input section.
1221 uint32_t original_addralign_;
1222 // Section size of the original input section.
1223 uint32_t original_size_;
1224 // Stub table.
1225 Stub_table<big_endian>* stub_table_;
1228 // Arm_exidx_fixup class. This is used to define a number of methods
1229 // and keep states for fixing up EXIDX coverage.
1231 class Arm_exidx_fixup
1233 public:
1234 Arm_exidx_fixup(Output_section* exidx_output_section,
1235 bool merge_exidx_entries = true)
1236 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1237 last_inlined_entry_(0), last_input_section_(NULL),
1238 section_offset_map_(NULL), first_output_text_section_(NULL),
1239 merge_exidx_entries_(merge_exidx_entries)
1242 ~Arm_exidx_fixup()
1243 { delete this->section_offset_map_; }
1245 // Process an EXIDX section for entry merging. Return number of bytes to
1246 // be deleted in output. If parts of the input EXIDX section are merged
1247 // a heap allocated Arm_exidx_section_offset_map is store in the located
1248 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1249 // releasing it.
1250 template<bool big_endian>
1251 uint32_t
1252 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1253 Arm_exidx_section_offset_map** psection_offset_map);
1255 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1256 // input section, if there is not one already.
1257 void
1258 add_exidx_cantunwind_as_needed();
1260 // Return the output section for the text section which is linked to the
1261 // first exidx input in output.
1262 Output_section*
1263 first_output_text_section() const
1264 { return this->first_output_text_section_; }
1266 private:
1267 // Copying is not allowed.
1268 Arm_exidx_fixup(const Arm_exidx_fixup&);
1269 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1271 // Type of EXIDX unwind entry.
1272 enum Unwind_type
1274 // No type.
1275 UT_NONE,
1276 // EXIDX_CANTUNWIND.
1277 UT_EXIDX_CANTUNWIND,
1278 // Inlined entry.
1279 UT_INLINED_ENTRY,
1280 // Normal entry.
1281 UT_NORMAL_ENTRY,
1284 // Process an EXIDX entry. We only care about the second word of the
1285 // entry. Return true if the entry can be deleted.
1286 bool
1287 process_exidx_entry(uint32_t second_word);
1289 // Update the current section offset map during EXIDX section fix-up.
1290 // If there is no map, create one. INPUT_OFFSET is the offset of a
1291 // reference point, DELETED_BYTES is the number of deleted by in the
1292 // section so far. If DELETE_ENTRY is true, the reference point and
1293 // all offsets after the previous reference point are discarded.
1294 void
1295 update_offset_map(section_offset_type input_offset,
1296 section_size_type deleted_bytes, bool delete_entry);
1298 // EXIDX output section.
1299 Output_section* exidx_output_section_;
1300 // Unwind type of the last EXIDX entry processed.
1301 Unwind_type last_unwind_type_;
1302 // Last seen inlined EXIDX entry.
1303 uint32_t last_inlined_entry_;
1304 // Last processed EXIDX input section.
1305 const Arm_exidx_input_section* last_input_section_;
1306 // Section offset map created in process_exidx_section.
1307 Arm_exidx_section_offset_map* section_offset_map_;
1308 // Output section for the text section which is linked to the first exidx
1309 // input in output.
1310 Output_section* first_output_text_section_;
1312 bool merge_exidx_entries_;
1315 // Arm output section class. This is defined mainly to add a number of
1316 // stub generation methods.
1318 template<bool big_endian>
1319 class Arm_output_section : public Output_section
1321 public:
1322 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1324 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1325 elfcpp::Elf_Xword flags)
1326 : Output_section(name, type, flags)
1328 if (type == elfcpp::SHT_ARM_EXIDX)
1329 this->set_always_keeps_input_sections();
1332 ~Arm_output_section()
1335 // Group input sections for stub generation.
1336 void
1337 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1339 // Downcast a base pointer to an Arm_output_section pointer. This is
1340 // not type-safe but we only use Arm_output_section not the base class.
1341 static Arm_output_section<big_endian>*
1342 as_arm_output_section(Output_section* os)
1343 { return static_cast<Arm_output_section<big_endian>*>(os); }
1345 // Append all input text sections in this into LIST.
1346 void
1347 append_text_sections_to_list(Text_section_list* list);
1349 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1350 // is a list of text input sections sorted in ascending order of their
1351 // output addresses.
1352 void
1353 fix_exidx_coverage(Layout* layout,
1354 const Text_section_list& sorted_text_section,
1355 Symbol_table* symtab,
1356 bool merge_exidx_entries);
1358 // Link an EXIDX section into its corresponding text section.
1359 void
1360 set_exidx_section_link();
1362 private:
1363 // For convenience.
1364 typedef Output_section::Input_section Input_section;
1365 typedef Output_section::Input_section_list Input_section_list;
1367 // Create a stub group.
1368 void create_stub_group(Input_section_list::const_iterator,
1369 Input_section_list::const_iterator,
1370 Input_section_list::const_iterator,
1371 Target_arm<big_endian>*,
1372 std::vector<Output_relaxed_input_section*>*);
1375 // Arm_exidx_input_section class. This represents an EXIDX input section.
1377 class Arm_exidx_input_section
1379 public:
1380 static const section_offset_type invalid_offset =
1381 static_cast<section_offset_type>(-1);
1383 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1384 unsigned int link, uint32_t size, uint32_t addralign)
1385 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1386 addralign_(addralign), has_errors_(false)
1389 ~Arm_exidx_input_section()
1392 // Accessors: This is a read-only class.
1394 // Return the object containing this EXIDX input section.
1395 Relobj*
1396 relobj() const
1397 { return this->relobj_; }
1399 // Return the section index of this EXIDX input section.
1400 unsigned int
1401 shndx() const
1402 { return this->shndx_; }
1404 // Return the section index of linked text section in the same object.
1405 unsigned int
1406 link() const
1407 { return this->link_; }
1409 // Return size of the EXIDX input section.
1410 uint32_t
1411 size() const
1412 { return this->size_; }
1414 // Reutnr address alignment of EXIDX input section.
1415 uint32_t
1416 addralign() const
1417 { return this->addralign_; }
1419 // Whether there are any errors in the EXIDX input section.
1420 bool
1421 has_errors() const
1422 { return this->has_errors_; }
1424 // Set has-errors flag.
1425 void
1426 set_has_errors()
1427 { this->has_errors_ = true; }
1429 private:
1430 // Object containing this.
1431 Relobj* relobj_;
1432 // Section index of this.
1433 unsigned int shndx_;
1434 // text section linked to this in the same object.
1435 unsigned int link_;
1436 // Size of this. For ARM 32-bit is sufficient.
1437 uint32_t size_;
1438 // Address alignment of this. For ARM 32-bit is sufficient.
1439 uint32_t addralign_;
1440 // Whether this has any errors.
1441 bool has_errors_;
1444 // Arm_relobj class.
1446 template<bool big_endian>
1447 class Arm_relobj : public Sized_relobj<32, big_endian>
1449 public:
1450 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1452 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1453 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1454 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
1455 stub_tables_(), local_symbol_is_thumb_function_(),
1456 attributes_section_data_(NULL), mapping_symbols_info_(),
1457 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1458 output_local_symbol_count_needs_update_(false),
1459 merge_flags_and_attributes_(true)
1462 ~Arm_relobj()
1463 { delete this->attributes_section_data_; }
1465 // Return the stub table of the SHNDX-th section if there is one.
1466 Stub_table<big_endian>*
1467 stub_table(unsigned int shndx) const
1469 gold_assert(shndx < this->stub_tables_.size());
1470 return this->stub_tables_[shndx];
1473 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1474 void
1475 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1477 gold_assert(shndx < this->stub_tables_.size());
1478 this->stub_tables_[shndx] = stub_table;
1481 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1482 // index. This is only valid after do_count_local_symbol is called.
1483 bool
1484 local_symbol_is_thumb_function(unsigned int r_sym) const
1486 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1487 return this->local_symbol_is_thumb_function_[r_sym];
1490 // Scan all relocation sections for stub generation.
1491 void
1492 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1493 const Layout*);
1495 // Convert regular input section with index SHNDX to a relaxed section.
1496 void
1497 convert_input_section_to_relaxed_section(unsigned shndx)
1499 // The stubs have relocations and we need to process them after writing
1500 // out the stubs. So relocation now must follow section write.
1501 this->set_section_offset(shndx, -1ULL);
1502 this->set_relocs_must_follow_section_writes();
1505 // Downcast a base pointer to an Arm_relobj pointer. This is
1506 // not type-safe but we only use Arm_relobj not the base class.
1507 static Arm_relobj<big_endian>*
1508 as_arm_relobj(Relobj* relobj)
1509 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1511 // Processor-specific flags in ELF file header. This is valid only after
1512 // reading symbols.
1513 elfcpp::Elf_Word
1514 processor_specific_flags() const
1515 { return this->processor_specific_flags_; }
1517 // Attribute section data This is the contents of the .ARM.attribute section
1518 // if there is one.
1519 const Attributes_section_data*
1520 attributes_section_data() const
1521 { return this->attributes_section_data_; }
1523 // Mapping symbol location.
1524 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1526 // Functor for STL container.
1527 struct Mapping_symbol_position_less
1529 bool
1530 operator()(const Mapping_symbol_position& p1,
1531 const Mapping_symbol_position& p2) const
1533 return (p1.first < p2.first
1534 || (p1.first == p2.first && p1.second < p2.second));
1538 // We only care about the first character of a mapping symbol, so
1539 // we only store that instead of the whole symbol name.
1540 typedef std::map<Mapping_symbol_position, char,
1541 Mapping_symbol_position_less> Mapping_symbols_info;
1543 // Whether a section contains any Cortex-A8 workaround.
1544 bool
1545 section_has_cortex_a8_workaround(unsigned int shndx) const
1547 return (this->section_has_cortex_a8_workaround_ != NULL
1548 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1551 // Mark a section that has Cortex-A8 workaround.
1552 void
1553 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1555 if (this->section_has_cortex_a8_workaround_ == NULL)
1556 this->section_has_cortex_a8_workaround_ =
1557 new std::vector<bool>(this->shnum(), false);
1558 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1561 // Return the EXIDX section of an text section with index SHNDX or NULL
1562 // if the text section has no associated EXIDX section.
1563 const Arm_exidx_input_section*
1564 exidx_input_section_by_link(unsigned int shndx) const
1566 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1567 return ((p != this->exidx_section_map_.end()
1568 && p->second->link() == shndx)
1569 ? p->second
1570 : NULL);
1573 // Return the EXIDX section with index SHNDX or NULL if there is none.
1574 const Arm_exidx_input_section*
1575 exidx_input_section_by_shndx(unsigned shndx) const
1577 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1578 return ((p != this->exidx_section_map_.end()
1579 && p->second->shndx() == shndx)
1580 ? p->second
1581 : NULL);
1584 // Whether output local symbol count needs updating.
1585 bool
1586 output_local_symbol_count_needs_update() const
1587 { return this->output_local_symbol_count_needs_update_; }
1589 // Set output_local_symbol_count_needs_update flag to be true.
1590 void
1591 set_output_local_symbol_count_needs_update()
1592 { this->output_local_symbol_count_needs_update_ = true; }
1594 // Update output local symbol count at the end of relaxation.
1595 void
1596 update_output_local_symbol_count();
1598 // Whether we want to merge processor-specific flags and attributes.
1599 bool
1600 merge_flags_and_attributes() const
1601 { return this->merge_flags_and_attributes_; }
1603 // Export list of EXIDX section indices.
1604 void
1605 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1607 list->clear();
1608 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1609 p != this->exidx_section_map_.end();
1610 ++p)
1612 if (p->second->shndx() == p->first)
1613 list->push_back(p->first);
1615 // Sort list to make result independent of implementation of map.
1616 std::sort(list->begin(), list->end());
1619 protected:
1620 // Post constructor setup.
1621 void
1622 do_setup()
1624 // Call parent's setup method.
1625 Sized_relobj<32, big_endian>::do_setup();
1627 // Initialize look-up tables.
1628 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1629 this->stub_tables_.swap(empty_stub_table_list);
1632 // Count the local symbols.
1633 void
1634 do_count_local_symbols(Stringpool_template<char>*,
1635 Stringpool_template<char>*);
1637 void
1638 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1639 const unsigned char* pshdrs,
1640 typename Sized_relobj<32, big_endian>::Views* pivews);
1642 // Read the symbol information.
1643 void
1644 do_read_symbols(Read_symbols_data* sd);
1646 // Process relocs for garbage collection.
1647 void
1648 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1650 private:
1652 // Whether a section needs to be scanned for relocation stubs.
1653 bool
1654 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1655 const Relobj::Output_sections&,
1656 const Symbol_table *, const unsigned char*);
1658 // Whether a section is a scannable text section.
1659 bool
1660 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1661 const Output_section*, const Symbol_table *);
1663 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1664 bool
1665 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1666 unsigned int, Output_section*,
1667 const Symbol_table *);
1669 // Scan a section for the Cortex-A8 erratum.
1670 void
1671 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1672 unsigned int, Output_section*,
1673 Target_arm<big_endian>*);
1675 // Find the linked text section of an EXIDX section by looking at the
1676 // first reloction of the EXIDX section. PSHDR points to the section
1677 // headers of a relocation section and PSYMS points to the local symbols.
1678 // PSHNDX points to a location storing the text section index if found.
1679 // Return whether we can find the linked section.
1680 bool
1681 find_linked_text_section(const unsigned char* pshdr,
1682 const unsigned char* psyms, unsigned int* pshndx);
1685 // Make a new Arm_exidx_input_section object for EXIDX section with
1686 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1687 // index of the linked text section.
1688 void
1689 make_exidx_input_section(unsigned int shndx,
1690 const elfcpp::Shdr<32, big_endian>& shdr,
1691 unsigned int text_shndx,
1692 const elfcpp::Shdr<32, big_endian>& text_shdr);
1694 // Return the output address of either a plain input section or a
1695 // relaxed input section. SHNDX is the section index.
1696 Arm_address
1697 simple_input_section_output_address(unsigned int, Output_section*);
1699 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1700 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1701 Exidx_section_map;
1703 // List of stub tables.
1704 Stub_table_list stub_tables_;
1705 // Bit vector to tell if a local symbol is a thumb function or not.
1706 // This is only valid after do_count_local_symbol is called.
1707 std::vector<bool> local_symbol_is_thumb_function_;
1708 // processor-specific flags in ELF file header.
1709 elfcpp::Elf_Word processor_specific_flags_;
1710 // Object attributes if there is an .ARM.attributes section or NULL.
1711 Attributes_section_data* attributes_section_data_;
1712 // Mapping symbols information.
1713 Mapping_symbols_info mapping_symbols_info_;
1714 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1715 std::vector<bool>* section_has_cortex_a8_workaround_;
1716 // Map a text section to its associated .ARM.exidx section, if there is one.
1717 Exidx_section_map exidx_section_map_;
1718 // Whether output local symbol count needs updating.
1719 bool output_local_symbol_count_needs_update_;
1720 // Whether we merge processor flags and attributes of this object to
1721 // output.
1722 bool merge_flags_and_attributes_;
1725 // Arm_dynobj class.
1727 template<bool big_endian>
1728 class Arm_dynobj : public Sized_dynobj<32, big_endian>
1730 public:
1731 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1732 const elfcpp::Ehdr<32, big_endian>& ehdr)
1733 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1734 processor_specific_flags_(0), attributes_section_data_(NULL)
1737 ~Arm_dynobj()
1738 { delete this->attributes_section_data_; }
1740 // Downcast a base pointer to an Arm_relobj pointer. This is
1741 // not type-safe but we only use Arm_relobj not the base class.
1742 static Arm_dynobj<big_endian>*
1743 as_arm_dynobj(Dynobj* dynobj)
1744 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1746 // Processor-specific flags in ELF file header. This is valid only after
1747 // reading symbols.
1748 elfcpp::Elf_Word
1749 processor_specific_flags() const
1750 { return this->processor_specific_flags_; }
1752 // Attributes section data.
1753 const Attributes_section_data*
1754 attributes_section_data() const
1755 { return this->attributes_section_data_; }
1757 protected:
1758 // Read the symbol information.
1759 void
1760 do_read_symbols(Read_symbols_data* sd);
1762 private:
1763 // processor-specific flags in ELF file header.
1764 elfcpp::Elf_Word processor_specific_flags_;
1765 // Object attributes if there is an .ARM.attributes section or NULL.
1766 Attributes_section_data* attributes_section_data_;
1769 // Functor to read reloc addends during stub generation.
1771 template<int sh_type, bool big_endian>
1772 struct Stub_addend_reader
1774 // Return the addend for a relocation of a particular type. Depending
1775 // on whether this is a REL or RELA relocation, read the addend from a
1776 // view or from a Reloc object.
1777 elfcpp::Elf_types<32>::Elf_Swxword
1778 operator()(
1779 unsigned int /* r_type */,
1780 const unsigned char* /* view */,
1781 const typename Reloc_types<sh_type,
1782 32, big_endian>::Reloc& /* reloc */) const;
1785 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1787 template<bool big_endian>
1788 struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1790 elfcpp::Elf_types<32>::Elf_Swxword
1791 operator()(
1792 unsigned int,
1793 const unsigned char*,
1794 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1797 // Specialized Stub_addend_reader for RELA type relocation sections.
1798 // We currently do not handle RELA type relocation sections but it is trivial
1799 // to implement the addend reader. This is provided for completeness and to
1800 // make it easier to add support for RELA relocation sections in the future.
1802 template<bool big_endian>
1803 struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1805 elfcpp::Elf_types<32>::Elf_Swxword
1806 operator()(
1807 unsigned int,
1808 const unsigned char*,
1809 const typename Reloc_types<elfcpp::SHT_RELA, 32,
1810 big_endian>::Reloc& reloc) const
1811 { return reloc.get_r_addend(); }
1814 // Cortex_a8_reloc class. We keep record of relocation that may need
1815 // the Cortex-A8 erratum workaround.
1817 class Cortex_a8_reloc
1819 public:
1820 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1821 Arm_address destination)
1822 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1825 ~Cortex_a8_reloc()
1828 // Accessors: This is a read-only class.
1830 // Return the relocation stub associated with this relocation if there is
1831 // one.
1832 const Reloc_stub*
1833 reloc_stub() const
1834 { return this->reloc_stub_; }
1836 // Return the relocation type.
1837 unsigned int
1838 r_type() const
1839 { return this->r_type_; }
1841 // Return the destination address of the relocation. LSB stores the THUMB
1842 // bit.
1843 Arm_address
1844 destination() const
1845 { return this->destination_; }
1847 private:
1848 // Associated relocation stub if there is one, or NULL.
1849 const Reloc_stub* reloc_stub_;
1850 // Relocation type.
1851 unsigned int r_type_;
1852 // Destination address of this relocation. LSB is used to distinguish
1853 // ARM/THUMB mode.
1854 Arm_address destination_;
1857 // Arm_output_data_got class. We derive this from Output_data_got to add
1858 // extra methods to handle TLS relocations in a static link.
1860 template<bool big_endian>
1861 class Arm_output_data_got : public Output_data_got<32, big_endian>
1863 public:
1864 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1865 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1868 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1869 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1870 // applied in a static link.
1871 void
1872 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1873 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1875 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1876 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1877 // relocation that needs to be applied in a static link.
1878 void
1879 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1880 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1882 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1883 index));
1886 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1887 // The first one is initialized to be 1, which is the module index for
1888 // the main executable and the second one 0. A reloc of the type
1889 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1890 // be applied by gold. GSYM is a global symbol.
1891 void
1892 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1894 // Same as the above but for a local symbol in OBJECT with INDEX.
1895 void
1896 add_tls_gd32_with_static_reloc(unsigned int got_type,
1897 Sized_relobj<32, big_endian>* object,
1898 unsigned int index);
1900 protected:
1901 // Write out the GOT table.
1902 void
1903 do_write(Output_file*);
1905 private:
1906 // This class represent dynamic relocations that need to be applied by
1907 // gold because we are using TLS relocations in a static link.
1908 class Static_reloc
1910 public:
1911 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1912 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1913 { this->u_.global.symbol = gsym; }
1915 Static_reloc(unsigned int got_offset, unsigned int r_type,
1916 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1917 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1919 this->u_.local.relobj = relobj;
1920 this->u_.local.index = index;
1923 // Return the GOT offset.
1924 unsigned int
1925 got_offset() const
1926 { return this->got_offset_; }
1928 // Relocation type.
1929 unsigned int
1930 r_type() const
1931 { return this->r_type_; }
1933 // Whether the symbol is global or not.
1934 bool
1935 symbol_is_global() const
1936 { return this->symbol_is_global_; }
1938 // For a relocation against a global symbol, the global symbol.
1939 Symbol*
1940 symbol() const
1942 gold_assert(this->symbol_is_global_);
1943 return this->u_.global.symbol;
1946 // For a relocation against a local symbol, the defining object.
1947 Sized_relobj<32, big_endian>*
1948 relobj() const
1950 gold_assert(!this->symbol_is_global_);
1951 return this->u_.local.relobj;
1954 // For a relocation against a local symbol, the local symbol index.
1955 unsigned int
1956 index() const
1958 gold_assert(!this->symbol_is_global_);
1959 return this->u_.local.index;
1962 private:
1963 // GOT offset of the entry to which this relocation is applied.
1964 unsigned int got_offset_;
1965 // Type of relocation.
1966 unsigned int r_type_;
1967 // Whether this relocation is against a global symbol.
1968 bool symbol_is_global_;
1969 // A global or local symbol.
1970 union
1972 struct
1974 // For a global symbol, the symbol itself.
1975 Symbol* symbol;
1976 } global;
1977 struct
1979 // For a local symbol, the object defining object.
1980 Sized_relobj<32, big_endian>* relobj;
1981 // For a local symbol, the symbol index.
1982 unsigned int index;
1983 } local;
1984 } u_;
1987 // Symbol table of the output object.
1988 Symbol_table* symbol_table_;
1989 // Layout of the output object.
1990 Layout* layout_;
1991 // Static relocs to be applied to the GOT.
1992 std::vector<Static_reloc> static_relocs_;
1995 // The ARM target has many relocation types with odd-sizes or incontigious
1996 // bits. The default handling of relocatable relocation cannot process these
1997 // relocations. So we have to extend the default code.
1999 template<bool big_endian, int sh_type, typename Classify_reloc>
2000 class Arm_scan_relocatable_relocs :
2001 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2003 public:
2004 // Return the strategy to use for a local symbol which is a section
2005 // symbol, given the relocation type.
2006 inline Relocatable_relocs::Reloc_strategy
2007 local_section_strategy(unsigned int r_type, Relobj*)
2009 if (sh_type == elfcpp::SHT_RELA)
2010 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2011 else
2013 if (r_type == elfcpp::R_ARM_TARGET1
2014 || r_type == elfcpp::R_ARM_TARGET2)
2016 const Target_arm<big_endian>* arm_target =
2017 Target_arm<big_endian>::default_target();
2018 r_type = arm_target->get_real_reloc_type(r_type);
2021 switch(r_type)
2023 // Relocations that write nothing. These exclude R_ARM_TARGET1
2024 // and R_ARM_TARGET2.
2025 case elfcpp::R_ARM_NONE:
2026 case elfcpp::R_ARM_V4BX:
2027 case elfcpp::R_ARM_TLS_GOTDESC:
2028 case elfcpp::R_ARM_TLS_CALL:
2029 case elfcpp::R_ARM_TLS_DESCSEQ:
2030 case elfcpp::R_ARM_THM_TLS_CALL:
2031 case elfcpp::R_ARM_GOTRELAX:
2032 case elfcpp::R_ARM_GNU_VTENTRY:
2033 case elfcpp::R_ARM_GNU_VTINHERIT:
2034 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2035 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2036 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2037 // These should have been converted to something else above.
2038 case elfcpp::R_ARM_TARGET1:
2039 case elfcpp::R_ARM_TARGET2:
2040 gold_unreachable();
2041 // Relocations that write full 32 bits.
2042 case elfcpp::R_ARM_ABS32:
2043 case elfcpp::R_ARM_REL32:
2044 case elfcpp::R_ARM_SBREL32:
2045 case elfcpp::R_ARM_GOTOFF32:
2046 case elfcpp::R_ARM_BASE_PREL:
2047 case elfcpp::R_ARM_GOT_BREL:
2048 case elfcpp::R_ARM_BASE_ABS:
2049 case elfcpp::R_ARM_ABS32_NOI:
2050 case elfcpp::R_ARM_REL32_NOI:
2051 case elfcpp::R_ARM_PLT32_ABS:
2052 case elfcpp::R_ARM_GOT_ABS:
2053 case elfcpp::R_ARM_GOT_PREL:
2054 case elfcpp::R_ARM_TLS_GD32:
2055 case elfcpp::R_ARM_TLS_LDM32:
2056 case elfcpp::R_ARM_TLS_LDO32:
2057 case elfcpp::R_ARM_TLS_IE32:
2058 case elfcpp::R_ARM_TLS_LE32:
2059 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2060 default:
2061 // For all other static relocations, return RELOC_SPECIAL.
2062 return Relocatable_relocs::RELOC_SPECIAL;
2068 // Utilities for manipulating integers of up to 32-bits
2070 namespace utils
2072 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2073 // an int32_t. NO_BITS must be between 1 to 32.
2074 template<int no_bits>
2075 static inline int32_t
2076 sign_extend(uint32_t bits)
2078 gold_assert(no_bits >= 0 && no_bits <= 32);
2079 if (no_bits == 32)
2080 return static_cast<int32_t>(bits);
2081 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2082 bits &= mask;
2083 uint32_t top_bit = 1U << (no_bits - 1);
2084 int32_t as_signed = static_cast<int32_t>(bits);
2085 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2088 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2089 template<int no_bits>
2090 static inline bool
2091 has_overflow(uint32_t bits)
2093 gold_assert(no_bits >= 0 && no_bits <= 32);
2094 if (no_bits == 32)
2095 return false;
2096 int32_t max = (1 << (no_bits - 1)) - 1;
2097 int32_t min = -(1 << (no_bits - 1));
2098 int32_t as_signed = static_cast<int32_t>(bits);
2099 return as_signed > max || as_signed < min;
2102 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2103 // fits in the given number of bits as either a signed or unsigned value.
2104 // For example, has_signed_unsigned_overflow<8> would check
2105 // -128 <= bits <= 255
2106 template<int no_bits>
2107 static inline bool
2108 has_signed_unsigned_overflow(uint32_t bits)
2110 gold_assert(no_bits >= 2 && no_bits <= 32);
2111 if (no_bits == 32)
2112 return false;
2113 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2114 int32_t min = -(1 << (no_bits - 1));
2115 int32_t as_signed = static_cast<int32_t>(bits);
2116 return as_signed > max || as_signed < min;
2119 // Select bits from A and B using bits in MASK. For each n in [0..31],
2120 // the n-th bit in the result is chosen from the n-th bits of A and B.
2121 // A zero selects A and a one selects B.
2122 static inline uint32_t
2123 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2124 { return (a & ~mask) | (b & mask); }
2127 template<bool big_endian>
2128 class Target_arm : public Sized_target<32, big_endian>
2130 public:
2131 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2132 Reloc_section;
2134 // When were are relocating a stub, we pass this as the relocation number.
2135 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2137 Target_arm()
2138 : Sized_target<32, big_endian>(&arm_info),
2139 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2140 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2141 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2142 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2143 may_use_blx_(false), should_force_pic_veneer_(false),
2144 arm_input_section_map_(), attributes_section_data_(NULL),
2145 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2148 // Virtual function which is set to return true by a target if
2149 // it can use relocation types to determine if a function's
2150 // pointer is taken.
2151 virtual bool
2152 can_check_for_function_pointers() const
2153 { return true; }
2155 // Whether a section called SECTION_NAME may have function pointers to
2156 // sections not eligible for safe ICF folding.
2157 virtual bool
2158 section_may_have_icf_unsafe_pointers(const char* section_name) const
2160 return (!is_prefix_of(".ARM.exidx", section_name)
2161 && !is_prefix_of(".ARM.extab", section_name)
2162 && Target::section_may_have_icf_unsafe_pointers(section_name));
2165 // Whether we can use BLX.
2166 bool
2167 may_use_blx() const
2168 { return this->may_use_blx_; }
2170 // Set use-BLX flag.
2171 void
2172 set_may_use_blx(bool value)
2173 { this->may_use_blx_ = value; }
2175 // Whether we force PCI branch veneers.
2176 bool
2177 should_force_pic_veneer() const
2178 { return this->should_force_pic_veneer_; }
2180 // Set PIC veneer flag.
2181 void
2182 set_should_force_pic_veneer(bool value)
2183 { this->should_force_pic_veneer_ = value; }
2185 // Whether we use THUMB-2 instructions.
2186 bool
2187 using_thumb2() const
2189 Object_attribute* attr =
2190 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2191 int arch = attr->int_value();
2192 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2195 // Whether we use THUMB/THUMB-2 instructions only.
2196 bool
2197 using_thumb_only() const
2199 Object_attribute* attr =
2200 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2202 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2203 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2204 return true;
2205 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2206 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2207 return false;
2208 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2209 return attr->int_value() == 'M';
2212 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2213 bool
2214 may_use_arm_nop() const
2216 Object_attribute* attr =
2217 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2218 int arch = attr->int_value();
2219 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2220 || arch == elfcpp::TAG_CPU_ARCH_V6K
2221 || arch == elfcpp::TAG_CPU_ARCH_V7
2222 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2225 // Whether we have THUMB-2 NOP.W instruction.
2226 bool
2227 may_use_thumb2_nop() const
2229 Object_attribute* attr =
2230 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2231 int arch = attr->int_value();
2232 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2233 || arch == elfcpp::TAG_CPU_ARCH_V7
2234 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2237 // Process the relocations to determine unreferenced sections for
2238 // garbage collection.
2239 void
2240 gc_process_relocs(Symbol_table* symtab,
2241 Layout* layout,
2242 Sized_relobj<32, big_endian>* object,
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2252 // Scan the relocations to look for symbol adjustments.
2253 void
2254 scan_relocs(Symbol_table* symtab,
2255 Layout* layout,
2256 Sized_relobj<32, big_endian>* object,
2257 unsigned int data_shndx,
2258 unsigned int sh_type,
2259 const unsigned char* prelocs,
2260 size_t reloc_count,
2261 Output_section* output_section,
2262 bool needs_special_offset_handling,
2263 size_t local_symbol_count,
2264 const unsigned char* plocal_symbols);
2266 // Finalize the sections.
2267 void
2268 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2270 // Return the value to use for a dynamic symbol which requires special
2271 // treatment.
2272 uint64_t
2273 do_dynsym_value(const Symbol*) const;
2275 // Relocate a section.
2276 void
2277 relocate_section(const Relocate_info<32, big_endian>*,
2278 unsigned int sh_type,
2279 const unsigned char* prelocs,
2280 size_t reloc_count,
2281 Output_section* output_section,
2282 bool needs_special_offset_handling,
2283 unsigned char* view,
2284 Arm_address view_address,
2285 section_size_type view_size,
2286 const Reloc_symbol_changes*);
2288 // Scan the relocs during a relocatable link.
2289 void
2290 scan_relocatable_relocs(Symbol_table* symtab,
2291 Layout* layout,
2292 Sized_relobj<32, big_endian>* object,
2293 unsigned int data_shndx,
2294 unsigned int sh_type,
2295 const unsigned char* prelocs,
2296 size_t reloc_count,
2297 Output_section* output_section,
2298 bool needs_special_offset_handling,
2299 size_t local_symbol_count,
2300 const unsigned char* plocal_symbols,
2301 Relocatable_relocs*);
2303 // Relocate a section during a relocatable link.
2304 void
2305 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2306 unsigned int sh_type,
2307 const unsigned char* prelocs,
2308 size_t reloc_count,
2309 Output_section* output_section,
2310 off_t offset_in_output_section,
2311 const Relocatable_relocs*,
2312 unsigned char* view,
2313 Arm_address view_address,
2314 section_size_type view_size,
2315 unsigned char* reloc_view,
2316 section_size_type reloc_view_size);
2318 // Perform target-specific processing in a relocatable link. This is
2319 // only used if we use the relocation strategy RELOC_SPECIAL.
2320 void
2321 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2322 unsigned int sh_type,
2323 const unsigned char* preloc_in,
2324 size_t relnum,
2325 Output_section* output_section,
2326 off_t offset_in_output_section,
2327 unsigned char* view,
2328 typename elfcpp::Elf_types<32>::Elf_Addr
2329 view_address,
2330 section_size_type view_size,
2331 unsigned char* preloc_out);
2333 // Return whether SYM is defined by the ABI.
2334 bool
2335 do_is_defined_by_abi(Symbol* sym) const
2336 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2338 // Return whether there is a GOT section.
2339 bool
2340 has_got_section() const
2341 { return this->got_ != NULL; }
2343 // Return the size of the GOT section.
2344 section_size_type
2345 got_size()
2347 gold_assert(this->got_ != NULL);
2348 return this->got_->data_size();
2351 // Map platform-specific reloc types
2352 static unsigned int
2353 get_real_reloc_type (unsigned int r_type);
2356 // Methods to support stub-generations.
2359 // Return the stub factory
2360 const Stub_factory&
2361 stub_factory() const
2362 { return this->stub_factory_; }
2364 // Make a new Arm_input_section object.
2365 Arm_input_section<big_endian>*
2366 new_arm_input_section(Relobj*, unsigned int);
2368 // Find the Arm_input_section object corresponding to the SHNDX-th input
2369 // section of RELOBJ.
2370 Arm_input_section<big_endian>*
2371 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2373 // Make a new Stub_table
2374 Stub_table<big_endian>*
2375 new_stub_table(Arm_input_section<big_endian>*);
2377 // Scan a section for stub generation.
2378 void
2379 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2380 const unsigned char*, size_t, Output_section*,
2381 bool, const unsigned char*, Arm_address,
2382 section_size_type);
2384 // Relocate a stub.
2385 void
2386 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2387 Output_section*, unsigned char*, Arm_address,
2388 section_size_type);
2390 // Get the default ARM target.
2391 static Target_arm<big_endian>*
2392 default_target()
2394 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2395 && parameters->target().is_big_endian() == big_endian);
2396 return static_cast<Target_arm<big_endian>*>(
2397 parameters->sized_target<32, big_endian>());
2400 // Whether NAME belongs to a mapping symbol.
2401 static bool
2402 is_mapping_symbol_name(const char* name)
2404 return (name
2405 && name[0] == '$'
2406 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2407 && (name[2] == '\0' || name[2] == '.'));
2410 // Whether we work around the Cortex-A8 erratum.
2411 bool
2412 fix_cortex_a8() const
2413 { return this->fix_cortex_a8_; }
2415 // Whether we merge exidx entries in debuginfo.
2416 bool
2417 merge_exidx_entries() const
2418 { return parameters->options().merge_exidx_entries(); }
2420 // Whether we fix R_ARM_V4BX relocation.
2421 // 0 - do not fix
2422 // 1 - replace with MOV instruction (armv4 target)
2423 // 2 - make interworking veneer (>= armv4t targets only)
2424 General_options::Fix_v4bx
2425 fix_v4bx() const
2426 { return parameters->options().fix_v4bx(); }
2428 // Scan a span of THUMB code section for Cortex-A8 erratum.
2429 void
2430 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2431 section_size_type, section_size_type,
2432 const unsigned char*, Arm_address);
2434 // Apply Cortex-A8 workaround to a branch.
2435 void
2436 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2437 unsigned char*, Arm_address);
2439 protected:
2440 // Make an ELF object.
2441 Object*
2442 do_make_elf_object(const std::string&, Input_file*, off_t,
2443 const elfcpp::Ehdr<32, big_endian>& ehdr);
2445 Object*
2446 do_make_elf_object(const std::string&, Input_file*, off_t,
2447 const elfcpp::Ehdr<32, !big_endian>&)
2448 { gold_unreachable(); }
2450 Object*
2451 do_make_elf_object(const std::string&, Input_file*, off_t,
2452 const elfcpp::Ehdr<64, false>&)
2453 { gold_unreachable(); }
2455 Object*
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<64, true>&)
2458 { gold_unreachable(); }
2460 // Make an output section.
2461 Output_section*
2462 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2463 elfcpp::Elf_Xword flags)
2464 { return new Arm_output_section<big_endian>(name, type, flags); }
2466 void
2467 do_adjust_elf_header(unsigned char* view, int len) const;
2469 // We only need to generate stubs, and hence perform relaxation if we are
2470 // not doing relocatable linking.
2471 bool
2472 do_may_relax() const
2473 { return !parameters->options().relocatable(); }
2475 bool
2476 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2478 // Determine whether an object attribute tag takes an integer, a
2479 // string or both.
2481 do_attribute_arg_type(int tag) const;
2483 // Reorder tags during output.
2485 do_attributes_order(int num) const;
2487 // This is called when the target is selected as the default.
2488 void
2489 do_select_as_default_target()
2491 // No locking is required since there should only be one default target.
2492 // We cannot have both the big-endian and little-endian ARM targets
2493 // as the default.
2494 gold_assert(arm_reloc_property_table == NULL);
2495 arm_reloc_property_table = new Arm_reloc_property_table();
2498 private:
2499 // The class which scans relocations.
2500 class Scan
2502 public:
2503 Scan()
2504 : issued_non_pic_error_(false)
2507 inline void
2508 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2509 Sized_relobj<32, big_endian>* object,
2510 unsigned int data_shndx,
2511 Output_section* output_section,
2512 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2513 const elfcpp::Sym<32, big_endian>& lsym);
2515 inline void
2516 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2517 Sized_relobj<32, big_endian>* object,
2518 unsigned int data_shndx,
2519 Output_section* output_section,
2520 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2521 Symbol* gsym);
2523 inline bool
2524 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2525 Sized_relobj<32, big_endian>* ,
2526 unsigned int ,
2527 Output_section* ,
2528 const elfcpp::Rel<32, big_endian>& ,
2529 unsigned int ,
2530 const elfcpp::Sym<32, big_endian>&);
2532 inline bool
2533 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2534 Sized_relobj<32, big_endian>* ,
2535 unsigned int ,
2536 Output_section* ,
2537 const elfcpp::Rel<32, big_endian>& ,
2538 unsigned int , Symbol*);
2540 private:
2541 static void
2542 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2543 unsigned int r_type);
2545 static void
2546 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2547 unsigned int r_type, Symbol*);
2549 void
2550 check_non_pic(Relobj*, unsigned int r_type);
2552 // Almost identical to Symbol::needs_plt_entry except that it also
2553 // handles STT_ARM_TFUNC.
2554 static bool
2555 symbol_needs_plt_entry(const Symbol* sym)
2557 // An undefined symbol from an executable does not need a PLT entry.
2558 if (sym->is_undefined() && !parameters->options().shared())
2559 return false;
2561 return (!parameters->doing_static_link()
2562 && (sym->type() == elfcpp::STT_FUNC
2563 || sym->type() == elfcpp::STT_ARM_TFUNC)
2564 && (sym->is_from_dynobj()
2565 || sym->is_undefined()
2566 || sym->is_preemptible()));
2569 inline bool
2570 possible_function_pointer_reloc(unsigned int r_type);
2572 // Whether we have issued an error about a non-PIC compilation.
2573 bool issued_non_pic_error_;
2576 // The class which implements relocation.
2577 class Relocate
2579 public:
2580 Relocate()
2583 ~Relocate()
2586 // Return whether the static relocation needs to be applied.
2587 inline bool
2588 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2589 int ref_flags,
2590 bool is_32bit,
2591 Output_section* output_section);
2593 // Do a relocation. Return false if the caller should not issue
2594 // any warnings about this relocation.
2595 inline bool
2596 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2597 Output_section*, size_t relnum,
2598 const elfcpp::Rel<32, big_endian>&,
2599 unsigned int r_type, const Sized_symbol<32>*,
2600 const Symbol_value<32>*,
2601 unsigned char*, Arm_address,
2602 section_size_type);
2604 // Return whether we want to pass flag NON_PIC_REF for this
2605 // reloc. This means the relocation type accesses a symbol not via
2606 // GOT or PLT.
2607 static inline bool
2608 reloc_is_non_pic (unsigned int r_type)
2610 switch (r_type)
2612 // These relocation types reference GOT or PLT entries explicitly.
2613 case elfcpp::R_ARM_GOT_BREL:
2614 case elfcpp::R_ARM_GOT_ABS:
2615 case elfcpp::R_ARM_GOT_PREL:
2616 case elfcpp::R_ARM_GOT_BREL12:
2617 case elfcpp::R_ARM_PLT32_ABS:
2618 case elfcpp::R_ARM_TLS_GD32:
2619 case elfcpp::R_ARM_TLS_LDM32:
2620 case elfcpp::R_ARM_TLS_IE32:
2621 case elfcpp::R_ARM_TLS_IE12GP:
2623 // These relocate types may use PLT entries.
2624 case elfcpp::R_ARM_CALL:
2625 case elfcpp::R_ARM_THM_CALL:
2626 case elfcpp::R_ARM_JUMP24:
2627 case elfcpp::R_ARM_THM_JUMP24:
2628 case elfcpp::R_ARM_THM_JUMP19:
2629 case elfcpp::R_ARM_PLT32:
2630 case elfcpp::R_ARM_THM_XPC22:
2631 case elfcpp::R_ARM_PREL31:
2632 case elfcpp::R_ARM_SBREL31:
2633 return false;
2635 default:
2636 return true;
2640 private:
2641 // Do a TLS relocation.
2642 inline typename Arm_relocate_functions<big_endian>::Status
2643 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2644 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2645 const Sized_symbol<32>*, const Symbol_value<32>*,
2646 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2647 section_size_type);
2651 // A class which returns the size required for a relocation type,
2652 // used while scanning relocs during a relocatable link.
2653 class Relocatable_size_for_reloc
2655 public:
2656 unsigned int
2657 get_size_for_reloc(unsigned int, Relobj*);
2660 // Adjust TLS relocation type based on the options and whether this
2661 // is a local symbol.
2662 static tls::Tls_optimization
2663 optimize_tls_reloc(bool is_final, int r_type);
2665 // Get the GOT section, creating it if necessary.
2666 Arm_output_data_got<big_endian>*
2667 got_section(Symbol_table*, Layout*);
2669 // Get the GOT PLT section.
2670 Output_data_space*
2671 got_plt_section() const
2673 gold_assert(this->got_plt_ != NULL);
2674 return this->got_plt_;
2677 // Create a PLT entry for a global symbol.
2678 void
2679 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2681 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2682 void
2683 define_tls_base_symbol(Symbol_table*, Layout*);
2685 // Create a GOT entry for the TLS module index.
2686 unsigned int
2687 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2688 Sized_relobj<32, big_endian>* object);
2690 // Get the PLT section.
2691 const Output_data_plt_arm<big_endian>*
2692 plt_section() const
2694 gold_assert(this->plt_ != NULL);
2695 return this->plt_;
2698 // Get the dynamic reloc section, creating it if necessary.
2699 Reloc_section*
2700 rel_dyn_section(Layout*);
2702 // Get the section to use for TLS_DESC relocations.
2703 Reloc_section*
2704 rel_tls_desc_section(Layout*) const;
2706 // Return true if the symbol may need a COPY relocation.
2707 // References from an executable object to non-function symbols
2708 // defined in a dynamic object may need a COPY relocation.
2709 bool
2710 may_need_copy_reloc(Symbol* gsym)
2712 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2713 && gsym->may_need_copy_reloc());
2716 // Add a potential copy relocation.
2717 void
2718 copy_reloc(Symbol_table* symtab, Layout* layout,
2719 Sized_relobj<32, big_endian>* object,
2720 unsigned int shndx, Output_section* output_section,
2721 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2723 this->copy_relocs_.copy_reloc(symtab, layout,
2724 symtab->get_sized_symbol<32>(sym),
2725 object, shndx, output_section, reloc,
2726 this->rel_dyn_section(layout));
2729 // Whether two EABI versions are compatible.
2730 static bool
2731 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2733 // Merge processor-specific flags from input object and those in the ELF
2734 // header of the output.
2735 void
2736 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2738 // Get the secondary compatible architecture.
2739 static int
2740 get_secondary_compatible_arch(const Attributes_section_data*);
2742 // Set the secondary compatible architecture.
2743 static void
2744 set_secondary_compatible_arch(Attributes_section_data*, int);
2746 static int
2747 tag_cpu_arch_combine(const char*, int, int*, int, int);
2749 // Helper to print AEABI enum tag value.
2750 static std::string
2751 aeabi_enum_name(unsigned int);
2753 // Return string value for TAG_CPU_name.
2754 static std::string
2755 tag_cpu_name_value(unsigned int);
2757 // Merge object attributes from input object and those in the output.
2758 void
2759 merge_object_attributes(const char*, const Attributes_section_data*);
2761 // Helper to get an AEABI object attribute
2762 Object_attribute*
2763 get_aeabi_object_attribute(int tag) const
2765 Attributes_section_data* pasd = this->attributes_section_data_;
2766 gold_assert(pasd != NULL);
2767 Object_attribute* attr =
2768 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2769 gold_assert(attr != NULL);
2770 return attr;
2774 // Methods to support stub-generations.
2777 // Group input sections for stub generation.
2778 void
2779 group_sections(Layout*, section_size_type, bool);
2781 // Scan a relocation for stub generation.
2782 void
2783 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2784 const Sized_symbol<32>*, unsigned int,
2785 const Symbol_value<32>*,
2786 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2788 // Scan a relocation section for stub.
2789 template<int sh_type>
2790 void
2791 scan_reloc_section_for_stubs(
2792 const Relocate_info<32, big_endian>* relinfo,
2793 const unsigned char* prelocs,
2794 size_t reloc_count,
2795 Output_section* output_section,
2796 bool needs_special_offset_handling,
2797 const unsigned char* view,
2798 elfcpp::Elf_types<32>::Elf_Addr view_address,
2799 section_size_type);
2801 // Fix .ARM.exidx section coverage.
2802 void
2803 fix_exidx_coverage(Layout*, const Input_objects*,
2804 Arm_output_section<big_endian>*, Symbol_table*);
2806 // Functors for STL set.
2807 struct output_section_address_less_than
2809 bool
2810 operator()(const Output_section* s1, const Output_section* s2) const
2811 { return s1->address() < s2->address(); }
2814 // Information about this specific target which we pass to the
2815 // general Target structure.
2816 static const Target::Target_info arm_info;
2818 // The types of GOT entries needed for this platform.
2819 enum Got_type
2821 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2822 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2823 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2824 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2825 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
2828 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2830 // Map input section to Arm_input_section.
2831 typedef Unordered_map<Section_id,
2832 Arm_input_section<big_endian>*,
2833 Section_id_hash>
2834 Arm_input_section_map;
2836 // Map output addresses to relocs for Cortex-A8 erratum.
2837 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2838 Cortex_a8_relocs_info;
2840 // The GOT section.
2841 Arm_output_data_got<big_endian>* got_;
2842 // The PLT section.
2843 Output_data_plt_arm<big_endian>* plt_;
2844 // The GOT PLT section.
2845 Output_data_space* got_plt_;
2846 // The dynamic reloc section.
2847 Reloc_section* rel_dyn_;
2848 // Relocs saved to avoid a COPY reloc.
2849 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2850 // Space for variables copied with a COPY reloc.
2851 Output_data_space* dynbss_;
2852 // Offset of the GOT entry for the TLS module index.
2853 unsigned int got_mod_index_offset_;
2854 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2855 bool tls_base_symbol_defined_;
2856 // Vector of Stub_tables created.
2857 Stub_table_list stub_tables_;
2858 // Stub factory.
2859 const Stub_factory &stub_factory_;
2860 // Whether we can use BLX.
2861 bool may_use_blx_;
2862 // Whether we force PIC branch veneers.
2863 bool should_force_pic_veneer_;
2864 // Map for locating Arm_input_sections.
2865 Arm_input_section_map arm_input_section_map_;
2866 // Attributes section data in output.
2867 Attributes_section_data* attributes_section_data_;
2868 // Whether we want to fix code for Cortex-A8 erratum.
2869 bool fix_cortex_a8_;
2870 // Map addresses to relocs for Cortex-A8 erratum.
2871 Cortex_a8_relocs_info cortex_a8_relocs_info_;
2874 template<bool big_endian>
2875 const Target::Target_info Target_arm<big_endian>::arm_info =
2877 32, // size
2878 big_endian, // is_big_endian
2879 elfcpp::EM_ARM, // machine_code
2880 false, // has_make_symbol
2881 false, // has_resolve
2882 false, // has_code_fill
2883 true, // is_default_stack_executable
2884 '\0', // wrap_char
2885 "/usr/lib/libc.so.1", // dynamic_linker
2886 0x8000, // default_text_segment_address
2887 0x1000, // abi_pagesize (overridable by -z max-page-size)
2888 0x1000, // common_pagesize (overridable by -z common-page-size)
2889 elfcpp::SHN_UNDEF, // small_common_shndx
2890 elfcpp::SHN_UNDEF, // large_common_shndx
2891 0, // small_common_section_flags
2892 0, // large_common_section_flags
2893 ".ARM.attributes", // attributes_section
2894 "aeabi" // attributes_vendor
2897 // Arm relocate functions class
2900 template<bool big_endian>
2901 class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2903 public:
2904 typedef enum
2906 STATUS_OKAY, // No error during relocation.
2907 STATUS_OVERFLOW, // Relocation oveflow.
2908 STATUS_BAD_RELOC // Relocation cannot be applied.
2909 } Status;
2911 private:
2912 typedef Relocate_functions<32, big_endian> Base;
2913 typedef Arm_relocate_functions<big_endian> This;
2915 // Encoding of imm16 argument for movt and movw ARM instructions
2916 // from ARM ARM:
2918 // imm16 := imm4 | imm12
2920 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2921 // +-------+---------------+-------+-------+-----------------------+
2922 // | | |imm4 | |imm12 |
2923 // +-------+---------------+-------+-------+-----------------------+
2925 // Extract the relocation addend from VAL based on the ARM
2926 // instruction encoding described above.
2927 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2928 extract_arm_movw_movt_addend(
2929 typename elfcpp::Swap<32, big_endian>::Valtype val)
2931 // According to the Elf ABI for ARM Architecture the immediate
2932 // field is sign-extended to form the addend.
2933 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2936 // Insert X into VAL based on the ARM instruction encoding described
2937 // above.
2938 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2939 insert_val_arm_movw_movt(
2940 typename elfcpp::Swap<32, big_endian>::Valtype val,
2941 typename elfcpp::Swap<32, big_endian>::Valtype x)
2943 val &= 0xfff0f000;
2944 val |= x & 0x0fff;
2945 val |= (x & 0xf000) << 4;
2946 return val;
2949 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2950 // from ARM ARM:
2952 // imm16 := imm4 | i | imm3 | imm8
2954 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2955 // +---------+-+-----------+-------++-+-----+-------+---------------+
2956 // | |i| |imm4 || |imm3 | |imm8 |
2957 // +---------+-+-----------+-------++-+-----+-------+---------------+
2959 // Extract the relocation addend from VAL based on the Thumb2
2960 // instruction encoding described above.
2961 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2962 extract_thumb_movw_movt_addend(
2963 typename elfcpp::Swap<32, big_endian>::Valtype val)
2965 // According to the Elf ABI for ARM Architecture the immediate
2966 // field is sign-extended to form the addend.
2967 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2968 | ((val >> 15) & 0x0800)
2969 | ((val >> 4) & 0x0700)
2970 | (val & 0x00ff));
2973 // Insert X into VAL based on the Thumb2 instruction encoding
2974 // described above.
2975 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2976 insert_val_thumb_movw_movt(
2977 typename elfcpp::Swap<32, big_endian>::Valtype val,
2978 typename elfcpp::Swap<32, big_endian>::Valtype x)
2980 val &= 0xfbf08f00;
2981 val |= (x & 0xf000) << 4;
2982 val |= (x & 0x0800) << 15;
2983 val |= (x & 0x0700) << 4;
2984 val |= (x & 0x00ff);
2985 return val;
2988 // Calculate the smallest constant Kn for the specified residual.
2989 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2990 static uint32_t
2991 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2993 int32_t msb;
2995 if (residual == 0)
2996 return 0;
2997 // Determine the most significant bit in the residual and
2998 // align the resulting value to a 2-bit boundary.
2999 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3001 // The desired shift is now (msb - 6), or zero, whichever
3002 // is the greater.
3003 return (((msb - 6) < 0) ? 0 : (msb - 6));
3006 // Calculate the final residual for the specified group index.
3007 // If the passed group index is less than zero, the method will return
3008 // the value of the specified residual without any change.
3009 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3010 static typename elfcpp::Swap<32, big_endian>::Valtype
3011 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3012 const int group)
3014 for (int n = 0; n <= group; n++)
3016 // Calculate which part of the value to mask.
3017 uint32_t shift = calc_grp_kn(residual);
3018 // Calculate the residual for the next time around.
3019 residual &= ~(residual & (0xff << shift));
3022 return residual;
3025 // Calculate the value of Gn for the specified group index.
3026 // We return it in the form of an encoded constant-and-rotation.
3027 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3028 static typename elfcpp::Swap<32, big_endian>::Valtype
3029 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3030 const int group)
3032 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3033 uint32_t shift = 0;
3035 for (int n = 0; n <= group; n++)
3037 // Calculate which part of the value to mask.
3038 shift = calc_grp_kn(residual);
3039 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3040 gn = residual & (0xff << shift);
3041 // Calculate the residual for the next time around.
3042 residual &= ~gn;
3044 // Return Gn in the form of an encoded constant-and-rotation.
3045 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3048 public:
3049 // Handle ARM long branches.
3050 static typename This::Status
3051 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3052 unsigned char *, const Sized_symbol<32>*,
3053 const Arm_relobj<big_endian>*, unsigned int,
3054 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3056 // Handle THUMB long branches.
3057 static typename This::Status
3058 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3059 unsigned char *, const Sized_symbol<32>*,
3060 const Arm_relobj<big_endian>*, unsigned int,
3061 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3064 // Return the branch offset of a 32-bit THUMB branch.
3065 static inline int32_t
3066 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3068 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3069 // involving the J1 and J2 bits.
3070 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3071 uint32_t upper = upper_insn & 0x3ffU;
3072 uint32_t lower = lower_insn & 0x7ffU;
3073 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3074 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3075 uint32_t i1 = j1 ^ s ? 0 : 1;
3076 uint32_t i2 = j2 ^ s ? 0 : 1;
3078 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3079 | (upper << 12) | (lower << 1));
3082 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3083 // UPPER_INSN is the original upper instruction of the branch. Caller is
3084 // responsible for overflow checking and BLX offset adjustment.
3085 static inline uint16_t
3086 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3088 uint32_t s = offset < 0 ? 1 : 0;
3089 uint32_t bits = static_cast<uint32_t>(offset);
3090 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3093 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3094 // LOWER_INSN is the original lower instruction of the branch. Caller is
3095 // responsible for overflow checking and BLX offset adjustment.
3096 static inline uint16_t
3097 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3099 uint32_t s = offset < 0 ? 1 : 0;
3100 uint32_t bits = static_cast<uint32_t>(offset);
3101 return ((lower_insn & ~0x2fffU)
3102 | ((((bits >> 23) & 1) ^ !s) << 13)
3103 | ((((bits >> 22) & 1) ^ !s) << 11)
3104 | ((bits >> 1) & 0x7ffU));
3107 // Return the branch offset of a 32-bit THUMB conditional branch.
3108 static inline int32_t
3109 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3111 uint32_t s = (upper_insn & 0x0400U) >> 10;
3112 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3113 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3114 uint32_t lower = (lower_insn & 0x07ffU);
3115 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3117 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3120 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3121 // instruction. UPPER_INSN is the original upper instruction of the branch.
3122 // Caller is responsible for overflow checking.
3123 static inline uint16_t
3124 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3126 uint32_t s = offset < 0 ? 1 : 0;
3127 uint32_t bits = static_cast<uint32_t>(offset);
3128 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3131 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3132 // instruction. LOWER_INSN is the original lower instruction of the branch.
3133 // Caller is reponsible for overflow checking.
3134 static inline uint16_t
3135 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3137 uint32_t bits = static_cast<uint32_t>(offset);
3138 uint32_t j2 = (bits & 0x00080000U) >> 19;
3139 uint32_t j1 = (bits & 0x00040000U) >> 18;
3140 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3142 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3145 // R_ARM_ABS8: S + A
3146 static inline typename This::Status
3147 abs8(unsigned char *view,
3148 const Sized_relobj<32, big_endian>* object,
3149 const Symbol_value<32>* psymval)
3151 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3152 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3153 Valtype* wv = reinterpret_cast<Valtype*>(view);
3154 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3155 Reltype addend = utils::sign_extend<8>(val);
3156 Reltype x = psymval->value(object, addend);
3157 val = utils::bit_select(val, x, 0xffU);
3158 elfcpp::Swap<8, big_endian>::writeval(wv, val);
3160 // R_ARM_ABS8 permits signed or unsigned results.
3161 int signed_x = static_cast<int32_t>(x);
3162 return ((signed_x < -128 || signed_x > 255)
3163 ? This::STATUS_OVERFLOW
3164 : This::STATUS_OKAY);
3167 // R_ARM_THM_ABS5: S + A
3168 static inline typename This::Status
3169 thm_abs5(unsigned char *view,
3170 const Sized_relobj<32, big_endian>* object,
3171 const Symbol_value<32>* psymval)
3173 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3174 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3175 Valtype* wv = reinterpret_cast<Valtype*>(view);
3176 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3177 Reltype addend = (val & 0x7e0U) >> 6;
3178 Reltype x = psymval->value(object, addend);
3179 val = utils::bit_select(val, x << 6, 0x7e0U);
3180 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3182 // R_ARM_ABS16 permits signed or unsigned results.
3183 int signed_x = static_cast<int32_t>(x);
3184 return ((signed_x < -32768 || signed_x > 65535)
3185 ? This::STATUS_OVERFLOW
3186 : This::STATUS_OKAY);
3189 // R_ARM_ABS12: S + A
3190 static inline typename This::Status
3191 abs12(unsigned char *view,
3192 const Sized_relobj<32, big_endian>* object,
3193 const Symbol_value<32>* psymval)
3195 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3196 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3197 Valtype* wv = reinterpret_cast<Valtype*>(view);
3198 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3199 Reltype addend = val & 0x0fffU;
3200 Reltype x = psymval->value(object, addend);
3201 val = utils::bit_select(val, x, 0x0fffU);
3202 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3203 return (utils::has_overflow<12>(x)
3204 ? This::STATUS_OVERFLOW
3205 : This::STATUS_OKAY);
3208 // R_ARM_ABS16: S + A
3209 static inline typename This::Status
3210 abs16(unsigned char *view,
3211 const Sized_relobj<32, big_endian>* object,
3212 const Symbol_value<32>* psymval)
3214 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3215 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3216 Valtype* wv = reinterpret_cast<Valtype*>(view);
3217 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3218 Reltype addend = utils::sign_extend<16>(val);
3219 Reltype x = psymval->value(object, addend);
3220 val = utils::bit_select(val, x, 0xffffU);
3221 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3222 return (utils::has_signed_unsigned_overflow<16>(x)
3223 ? This::STATUS_OVERFLOW
3224 : This::STATUS_OKAY);
3227 // R_ARM_ABS32: (S + A) | T
3228 static inline typename This::Status
3229 abs32(unsigned char *view,
3230 const Sized_relobj<32, big_endian>* object,
3231 const Symbol_value<32>* psymval,
3232 Arm_address thumb_bit)
3234 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3235 Valtype* wv = reinterpret_cast<Valtype*>(view);
3236 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3237 Valtype x = psymval->value(object, addend) | thumb_bit;
3238 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3239 return This::STATUS_OKAY;
3242 // R_ARM_REL32: (S + A) | T - P
3243 static inline typename This::Status
3244 rel32(unsigned char *view,
3245 const Sized_relobj<32, big_endian>* object,
3246 const Symbol_value<32>* psymval,
3247 Arm_address address,
3248 Arm_address thumb_bit)
3250 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3251 Valtype* wv = reinterpret_cast<Valtype*>(view);
3252 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3253 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3254 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3255 return This::STATUS_OKAY;
3258 // R_ARM_THM_JUMP24: (S + A) | T - P
3259 static typename This::Status
3260 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3261 const Symbol_value<32>* psymval, Arm_address address,
3262 Arm_address thumb_bit);
3264 // R_ARM_THM_JUMP6: S + A – P
3265 static inline typename This::Status
3266 thm_jump6(unsigned char *view,
3267 const Sized_relobj<32, big_endian>* object,
3268 const Symbol_value<32>* psymval,
3269 Arm_address address)
3271 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3272 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3273 Valtype* wv = reinterpret_cast<Valtype*>(view);
3274 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3275 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3276 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3277 Reltype x = (psymval->value(object, addend) - address);
3278 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3279 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3280 // CZB does only forward jumps.
3281 return ((x > 0x007e)
3282 ? This::STATUS_OVERFLOW
3283 : This::STATUS_OKAY);
3286 // R_ARM_THM_JUMP8: S + A – P
3287 static inline typename This::Status
3288 thm_jump8(unsigned char *view,
3289 const Sized_relobj<32, big_endian>* object,
3290 const Symbol_value<32>* psymval,
3291 Arm_address address)
3293 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3294 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3295 Valtype* wv = reinterpret_cast<Valtype*>(view);
3296 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3297 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3298 Reltype x = (psymval->value(object, addend) - address);
3299 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3300 return (utils::has_overflow<8>(x)
3301 ? This::STATUS_OVERFLOW
3302 : This::STATUS_OKAY);
3305 // R_ARM_THM_JUMP11: S + A – P
3306 static inline typename This::Status
3307 thm_jump11(unsigned char *view,
3308 const Sized_relobj<32, big_endian>* object,
3309 const Symbol_value<32>* psymval,
3310 Arm_address address)
3312 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3313 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3314 Valtype* wv = reinterpret_cast<Valtype*>(view);
3315 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3316 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3317 Reltype x = (psymval->value(object, addend) - address);
3318 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3319 return (utils::has_overflow<11>(x)
3320 ? This::STATUS_OVERFLOW
3321 : This::STATUS_OKAY);
3324 // R_ARM_BASE_PREL: B(S) + A - P
3325 static inline typename This::Status
3326 base_prel(unsigned char* view,
3327 Arm_address origin,
3328 Arm_address address)
3330 Base::rel32(view, origin - address);
3331 return STATUS_OKAY;
3334 // R_ARM_BASE_ABS: B(S) + A
3335 static inline typename This::Status
3336 base_abs(unsigned char* view,
3337 Arm_address origin)
3339 Base::rel32(view, origin);
3340 return STATUS_OKAY;
3343 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3344 static inline typename This::Status
3345 got_brel(unsigned char* view,
3346 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3348 Base::rel32(view, got_offset);
3349 return This::STATUS_OKAY;
3352 // R_ARM_GOT_PREL: GOT(S) + A - P
3353 static inline typename This::Status
3354 got_prel(unsigned char *view,
3355 Arm_address got_entry,
3356 Arm_address address)
3358 Base::rel32(view, got_entry - address);
3359 return This::STATUS_OKAY;
3362 // R_ARM_PREL: (S + A) | T - P
3363 static inline typename This::Status
3364 prel31(unsigned char *view,
3365 const Sized_relobj<32, big_endian>* object,
3366 const Symbol_value<32>* psymval,
3367 Arm_address address,
3368 Arm_address thumb_bit)
3370 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3371 Valtype* wv = reinterpret_cast<Valtype*>(view);
3372 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3373 Valtype addend = utils::sign_extend<31>(val);
3374 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3375 val = utils::bit_select(val, x, 0x7fffffffU);
3376 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3377 return (utils::has_overflow<31>(x) ?
3378 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3381 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3382 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3383 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3384 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3385 static inline typename This::Status
3386 movw(unsigned char* view,
3387 const Sized_relobj<32, big_endian>* object,
3388 const Symbol_value<32>* psymval,
3389 Arm_address relative_address_base,
3390 Arm_address thumb_bit,
3391 bool check_overflow)
3393 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3394 Valtype* wv = reinterpret_cast<Valtype*>(view);
3395 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3396 Valtype addend = This::extract_arm_movw_movt_addend(val);
3397 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3398 - relative_address_base);
3399 val = This::insert_val_arm_movw_movt(val, x);
3400 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3401 return ((check_overflow && utils::has_overflow<16>(x))
3402 ? This::STATUS_OVERFLOW
3403 : This::STATUS_OKAY);
3406 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3407 // R_ARM_MOVT_PREL: S + A - P
3408 // R_ARM_MOVT_BREL: S + A - B(S)
3409 static inline typename This::Status
3410 movt(unsigned char* view,
3411 const Sized_relobj<32, big_endian>* object,
3412 const Symbol_value<32>* psymval,
3413 Arm_address relative_address_base)
3415 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3416 Valtype* wv = reinterpret_cast<Valtype*>(view);
3417 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3418 Valtype addend = This::extract_arm_movw_movt_addend(val);
3419 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3420 val = This::insert_val_arm_movw_movt(val, x);
3421 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3422 // FIXME: IHI0044D says that we should check for overflow.
3423 return This::STATUS_OKAY;
3426 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3427 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3428 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3429 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3430 static inline typename This::Status
3431 thm_movw(unsigned char *view,
3432 const Sized_relobj<32, big_endian>* object,
3433 const Symbol_value<32>* psymval,
3434 Arm_address relative_address_base,
3435 Arm_address thumb_bit,
3436 bool check_overflow)
3438 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3439 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3440 Valtype* wv = reinterpret_cast<Valtype*>(view);
3441 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3442 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3443 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3444 Reltype x =
3445 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3446 val = This::insert_val_thumb_movw_movt(val, x);
3447 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3448 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3449 return ((check_overflow && utils::has_overflow<16>(x))
3450 ? This::STATUS_OVERFLOW
3451 : This::STATUS_OKAY);
3454 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3455 // R_ARM_THM_MOVT_PREL: S + A - P
3456 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3457 static inline typename This::Status
3458 thm_movt(unsigned char* view,
3459 const Sized_relobj<32, big_endian>* object,
3460 const Symbol_value<32>* psymval,
3461 Arm_address relative_address_base)
3463 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3464 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3465 Valtype* wv = reinterpret_cast<Valtype*>(view);
3466 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3467 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3468 Reltype addend = This::extract_thumb_movw_movt_addend(val);
3469 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3470 val = This::insert_val_thumb_movw_movt(val, x);
3471 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3472 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3473 return This::STATUS_OKAY;
3476 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3477 static inline typename This::Status
3478 thm_alu11(unsigned char* view,
3479 const Sized_relobj<32, big_endian>* object,
3480 const Symbol_value<32>* psymval,
3481 Arm_address address,
3482 Arm_address thumb_bit)
3484 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3485 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3486 Valtype* wv = reinterpret_cast<Valtype*>(view);
3487 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3488 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3490 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3491 // -----------------------------------------------------------------------
3492 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3493 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3494 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3495 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3496 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3497 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3499 // Determine a sign for the addend.
3500 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3501 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3502 // Thumb2 addend encoding:
3503 // imm12 := i | imm3 | imm8
3504 int32_t addend = (insn & 0xff)
3505 | ((insn & 0x00007000) >> 4)
3506 | ((insn & 0x04000000) >> 15);
3507 // Apply a sign to the added.
3508 addend *= sign;
3510 int32_t x = (psymval->value(object, addend) | thumb_bit)
3511 - (address & 0xfffffffc);
3512 Reltype val = abs(x);
3513 // Mask out the value and a distinct part of the ADD/SUB opcode
3514 // (bits 7:5 of opword).
3515 insn = (insn & 0xfb0f8f00)
3516 | (val & 0xff)
3517 | ((val & 0x700) << 4)
3518 | ((val & 0x800) << 15);
3519 // Set the opcode according to whether the value to go in the
3520 // place is negative.
3521 if (x < 0)
3522 insn |= 0x00a00000;
3524 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3525 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3526 return ((val > 0xfff) ?
3527 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3530 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3531 static inline typename This::Status
3532 thm_pc8(unsigned char* view,
3533 const Sized_relobj<32, big_endian>* object,
3534 const Symbol_value<32>* psymval,
3535 Arm_address address)
3537 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3538 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3539 Valtype* wv = reinterpret_cast<Valtype*>(view);
3540 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3541 Reltype addend = ((insn & 0x00ff) << 2);
3542 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3543 Reltype val = abs(x);
3544 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3546 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3547 return ((val > 0x03fc)
3548 ? This::STATUS_OVERFLOW
3549 : This::STATUS_OKAY);
3552 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3553 static inline typename This::Status
3554 thm_pc12(unsigned char* view,
3555 const Sized_relobj<32, big_endian>* object,
3556 const Symbol_value<32>* psymval,
3557 Arm_address address)
3559 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3560 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3561 Valtype* wv = reinterpret_cast<Valtype*>(view);
3562 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3563 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3564 // Determine a sign for the addend (positive if the U bit is 1).
3565 const int sign = (insn & 0x00800000) ? 1 : -1;
3566 int32_t addend = (insn & 0xfff);
3567 // Apply a sign to the added.
3568 addend *= sign;
3570 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3571 Reltype val = abs(x);
3572 // Mask out and apply the value and the U bit.
3573 insn = (insn & 0xff7ff000) | (val & 0xfff);
3574 // Set the U bit according to whether the value to go in the
3575 // place is positive.
3576 if (x >= 0)
3577 insn |= 0x00800000;
3579 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3580 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3581 return ((val > 0xfff) ?
3582 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3585 // R_ARM_V4BX
3586 static inline typename This::Status
3587 v4bx(const Relocate_info<32, big_endian>* relinfo,
3588 unsigned char *view,
3589 const Arm_relobj<big_endian>* object,
3590 const Arm_address address,
3591 const bool is_interworking)
3594 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3595 Valtype* wv = reinterpret_cast<Valtype*>(view);
3596 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3598 // Ensure that we have a BX instruction.
3599 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3600 const uint32_t reg = (val & 0xf);
3601 if (is_interworking && reg != 0xf)
3603 Stub_table<big_endian>* stub_table =
3604 object->stub_table(relinfo->data_shndx);
3605 gold_assert(stub_table != NULL);
3607 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3608 gold_assert(stub != NULL);
3610 int32_t veneer_address =
3611 stub_table->address() + stub->offset() - 8 - address;
3612 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3613 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3614 // Replace with a branch to veneer (B <addr>)
3615 val = (val & 0xf0000000) | 0x0a000000
3616 | ((veneer_address >> 2) & 0x00ffffff);
3618 else
3620 // Preserve Rm (lowest four bits) and the condition code
3621 // (highest four bits). Other bits encode MOV PC,Rm.
3622 val = (val & 0xf000000f) | 0x01a0f000;
3624 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3625 return This::STATUS_OKAY;
3628 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3629 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3630 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3631 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3632 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3633 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3634 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3635 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3636 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3637 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3638 static inline typename This::Status
3639 arm_grp_alu(unsigned char* view,
3640 const Sized_relobj<32, big_endian>* object,
3641 const Symbol_value<32>* psymval,
3642 const int group,
3643 Arm_address address,
3644 Arm_address thumb_bit,
3645 bool check_overflow)
3647 gold_assert(group >= 0 && group < 3);
3648 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3649 Valtype* wv = reinterpret_cast<Valtype*>(view);
3650 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3652 // ALU group relocations are allowed only for the ADD/SUB instructions.
3653 // (0x00800000 - ADD, 0x00400000 - SUB)
3654 const Valtype opcode = insn & 0x01e00000;
3655 if (opcode != 0x00800000 && opcode != 0x00400000)
3656 return This::STATUS_BAD_RELOC;
3658 // Determine a sign for the addend.
3659 const int sign = (opcode == 0x00800000) ? 1 : -1;
3660 // shifter = rotate_imm * 2
3661 const uint32_t shifter = (insn & 0xf00) >> 7;
3662 // Initial addend value.
3663 int32_t addend = insn & 0xff;
3664 // Rotate addend right by shifter.
3665 addend = (addend >> shifter) | (addend << (32 - shifter));
3666 // Apply a sign to the added.
3667 addend *= sign;
3669 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3670 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3671 // Check for overflow if required
3672 if (check_overflow
3673 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3674 return This::STATUS_OVERFLOW;
3676 // Mask out the value and the ADD/SUB part of the opcode; take care
3677 // not to destroy the S bit.
3678 insn &= 0xff1ff000;
3679 // Set the opcode according to whether the value to go in the
3680 // place is negative.
3681 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3682 // Encode the offset (encoded Gn).
3683 insn |= gn;
3685 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3686 return This::STATUS_OKAY;
3689 // R_ARM_LDR_PC_G0: S + A - P
3690 // R_ARM_LDR_PC_G1: S + A - P
3691 // R_ARM_LDR_PC_G2: S + A - P
3692 // R_ARM_LDR_SB_G0: S + A - B(S)
3693 // R_ARM_LDR_SB_G1: S + A - B(S)
3694 // R_ARM_LDR_SB_G2: S + A - B(S)
3695 static inline typename This::Status
3696 arm_grp_ldr(unsigned char* view,
3697 const Sized_relobj<32, big_endian>* object,
3698 const Symbol_value<32>* psymval,
3699 const int group,
3700 Arm_address address)
3702 gold_assert(group >= 0 && group < 3);
3703 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3704 Valtype* wv = reinterpret_cast<Valtype*>(view);
3705 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3707 const int sign = (insn & 0x00800000) ? 1 : -1;
3708 int32_t addend = (insn & 0xfff) * sign;
3709 int32_t x = (psymval->value(object, addend) - address);
3710 // Calculate the relevant G(n-1) value to obtain this stage residual.
3711 Valtype residual =
3712 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3713 if (residual >= 0x1000)
3714 return This::STATUS_OVERFLOW;
3716 // Mask out the value and U bit.
3717 insn &= 0xff7ff000;
3718 // Set the U bit for non-negative values.
3719 if (x >= 0)
3720 insn |= 0x00800000;
3721 insn |= residual;
3723 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3724 return This::STATUS_OKAY;
3727 // R_ARM_LDRS_PC_G0: S + A - P
3728 // R_ARM_LDRS_PC_G1: S + A - P
3729 // R_ARM_LDRS_PC_G2: S + A - P
3730 // R_ARM_LDRS_SB_G0: S + A - B(S)
3731 // R_ARM_LDRS_SB_G1: S + A - B(S)
3732 // R_ARM_LDRS_SB_G2: S + A - B(S)
3733 static inline typename This::Status
3734 arm_grp_ldrs(unsigned char* view,
3735 const Sized_relobj<32, big_endian>* object,
3736 const Symbol_value<32>* psymval,
3737 const int group,
3738 Arm_address address)
3740 gold_assert(group >= 0 && group < 3);
3741 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3742 Valtype* wv = reinterpret_cast<Valtype*>(view);
3743 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3745 const int sign = (insn & 0x00800000) ? 1 : -1;
3746 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3747 int32_t x = (psymval->value(object, addend) - address);
3748 // Calculate the relevant G(n-1) value to obtain this stage residual.
3749 Valtype residual =
3750 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3751 if (residual >= 0x100)
3752 return This::STATUS_OVERFLOW;
3754 // Mask out the value and U bit.
3755 insn &= 0xff7ff0f0;
3756 // Set the U bit for non-negative values.
3757 if (x >= 0)
3758 insn |= 0x00800000;
3759 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3761 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3762 return This::STATUS_OKAY;
3765 // R_ARM_LDC_PC_G0: S + A - P
3766 // R_ARM_LDC_PC_G1: S + A - P
3767 // R_ARM_LDC_PC_G2: S + A - P
3768 // R_ARM_LDC_SB_G0: S + A - B(S)
3769 // R_ARM_LDC_SB_G1: S + A - B(S)
3770 // R_ARM_LDC_SB_G2: S + A - B(S)
3771 static inline typename This::Status
3772 arm_grp_ldc(unsigned char* view,
3773 const Sized_relobj<32, big_endian>* object,
3774 const Symbol_value<32>* psymval,
3775 const int group,
3776 Arm_address address)
3778 gold_assert(group >= 0 && group < 3);
3779 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3780 Valtype* wv = reinterpret_cast<Valtype*>(view);
3781 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3783 const int sign = (insn & 0x00800000) ? 1 : -1;
3784 int32_t addend = ((insn & 0xff) << 2) * sign;
3785 int32_t x = (psymval->value(object, addend) - address);
3786 // Calculate the relevant G(n-1) value to obtain this stage residual.
3787 Valtype residual =
3788 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3789 if ((residual & 0x3) != 0 || residual >= 0x400)
3790 return This::STATUS_OVERFLOW;
3792 // Mask out the value and U bit.
3793 insn &= 0xff7fff00;
3794 // Set the U bit for non-negative values.
3795 if (x >= 0)
3796 insn |= 0x00800000;
3797 insn |= (residual >> 2);
3799 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3800 return This::STATUS_OKAY;
3804 // Relocate ARM long branches. This handles relocation types
3805 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3806 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3807 // undefined and we do not use PLT in this relocation. In such a case,
3808 // the branch is converted into an NOP.
3810 template<bool big_endian>
3811 typename Arm_relocate_functions<big_endian>::Status
3812 Arm_relocate_functions<big_endian>::arm_branch_common(
3813 unsigned int r_type,
3814 const Relocate_info<32, big_endian>* relinfo,
3815 unsigned char *view,
3816 const Sized_symbol<32>* gsym,
3817 const Arm_relobj<big_endian>* object,
3818 unsigned int r_sym,
3819 const Symbol_value<32>* psymval,
3820 Arm_address address,
3821 Arm_address thumb_bit,
3822 bool is_weakly_undefined_without_plt)
3824 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3825 Valtype* wv = reinterpret_cast<Valtype*>(view);
3826 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3828 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3829 && ((val & 0x0f000000UL) == 0x0a000000UL);
3830 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3831 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3832 && ((val & 0x0f000000UL) == 0x0b000000UL);
3833 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3834 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3836 // Check that the instruction is valid.
3837 if (r_type == elfcpp::R_ARM_CALL)
3839 if (!insn_is_uncond_bl && !insn_is_blx)
3840 return This::STATUS_BAD_RELOC;
3842 else if (r_type == elfcpp::R_ARM_JUMP24)
3844 if (!insn_is_b && !insn_is_cond_bl)
3845 return This::STATUS_BAD_RELOC;
3847 else if (r_type == elfcpp::R_ARM_PLT32)
3849 if (!insn_is_any_branch)
3850 return This::STATUS_BAD_RELOC;
3852 else if (r_type == elfcpp::R_ARM_XPC25)
3854 // FIXME: AAELF document IH0044C does not say much about it other
3855 // than it being obsolete.
3856 if (!insn_is_any_branch)
3857 return This::STATUS_BAD_RELOC;
3859 else
3860 gold_unreachable();
3862 // A branch to an undefined weak symbol is turned into a jump to
3863 // the next instruction unless a PLT entry will be created.
3864 // Do the same for local undefined symbols.
3865 // The jump to the next instruction is optimized as a NOP depending
3866 // on the architecture.
3867 const Target_arm<big_endian>* arm_target =
3868 Target_arm<big_endian>::default_target();
3869 if (is_weakly_undefined_without_plt)
3871 gold_assert(!parameters->options().relocatable());
3872 Valtype cond = val & 0xf0000000U;
3873 if (arm_target->may_use_arm_nop())
3874 val = cond | 0x0320f000;
3875 else
3876 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3877 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3878 return This::STATUS_OKAY;
3881 Valtype addend = utils::sign_extend<26>(val << 2);
3882 Valtype branch_target = psymval->value(object, addend);
3883 int32_t branch_offset = branch_target - address;
3885 // We need a stub if the branch offset is too large or if we need
3886 // to switch mode.
3887 bool may_use_blx = arm_target->may_use_blx();
3888 Reloc_stub* stub = NULL;
3890 if (!parameters->options().relocatable()
3891 && (utils::has_overflow<26>(branch_offset)
3892 || ((thumb_bit != 0)
3893 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3895 Valtype unadjusted_branch_target = psymval->value(object, 0);
3897 Stub_type stub_type =
3898 Reloc_stub::stub_type_for_reloc(r_type, address,
3899 unadjusted_branch_target,
3900 (thumb_bit != 0));
3901 if (stub_type != arm_stub_none)
3903 Stub_table<big_endian>* stub_table =
3904 object->stub_table(relinfo->data_shndx);
3905 gold_assert(stub_table != NULL);
3907 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3908 stub = stub_table->find_reloc_stub(stub_key);
3909 gold_assert(stub != NULL);
3910 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3911 branch_target = stub_table->address() + stub->offset() + addend;
3912 branch_offset = branch_target - address;
3913 gold_assert(!utils::has_overflow<26>(branch_offset));
3917 // At this point, if we still need to switch mode, the instruction
3918 // must either be a BLX or a BL that can be converted to a BLX.
3919 if (thumb_bit != 0)
3921 // Turn BL to BLX.
3922 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3923 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3926 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3927 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3928 return (utils::has_overflow<26>(branch_offset)
3929 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3932 // Relocate THUMB long branches. This handles relocation types
3933 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3934 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3935 // undefined and we do not use PLT in this relocation. In such a case,
3936 // the branch is converted into an NOP.
3938 template<bool big_endian>
3939 typename Arm_relocate_functions<big_endian>::Status
3940 Arm_relocate_functions<big_endian>::thumb_branch_common(
3941 unsigned int r_type,
3942 const Relocate_info<32, big_endian>* relinfo,
3943 unsigned char *view,
3944 const Sized_symbol<32>* gsym,
3945 const Arm_relobj<big_endian>* object,
3946 unsigned int r_sym,
3947 const Symbol_value<32>* psymval,
3948 Arm_address address,
3949 Arm_address thumb_bit,
3950 bool is_weakly_undefined_without_plt)
3952 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3953 Valtype* wv = reinterpret_cast<Valtype*>(view);
3954 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3955 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3957 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3958 // into account.
3959 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3960 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3962 // Check that the instruction is valid.
3963 if (r_type == elfcpp::R_ARM_THM_CALL)
3965 if (!is_bl_insn && !is_blx_insn)
3966 return This::STATUS_BAD_RELOC;
3968 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3970 // This cannot be a BLX.
3971 if (!is_bl_insn)
3972 return This::STATUS_BAD_RELOC;
3974 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3976 // Check for Thumb to Thumb call.
3977 if (!is_blx_insn)
3978 return This::STATUS_BAD_RELOC;
3979 if (thumb_bit != 0)
3981 gold_warning(_("%s: Thumb BLX instruction targets "
3982 "thumb function '%s'."),
3983 object->name().c_str(),
3984 (gsym ? gsym->name() : "(local)"));
3985 // Convert BLX to BL.
3986 lower_insn |= 0x1000U;
3989 else
3990 gold_unreachable();
3992 // A branch to an undefined weak symbol is turned into a jump to
3993 // the next instruction unless a PLT entry will be created.
3994 // The jump to the next instruction is optimized as a NOP.W for
3995 // Thumb-2 enabled architectures.
3996 const Target_arm<big_endian>* arm_target =
3997 Target_arm<big_endian>::default_target();
3998 if (is_weakly_undefined_without_plt)
4000 gold_assert(!parameters->options().relocatable());
4001 if (arm_target->may_use_thumb2_nop())
4003 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4004 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4006 else
4008 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4009 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4011 return This::STATUS_OKAY;
4014 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4015 Arm_address branch_target = psymval->value(object, addend);
4017 // For BLX, bit 1 of target address comes from bit 1 of base address.
4018 bool may_use_blx = arm_target->may_use_blx();
4019 if (thumb_bit == 0 && may_use_blx)
4020 branch_target = utils::bit_select(branch_target, address, 0x2);
4022 int32_t branch_offset = branch_target - address;
4024 // We need a stub if the branch offset is too large or if we need
4025 // to switch mode.
4026 bool thumb2 = arm_target->using_thumb2();
4027 if (!parameters->options().relocatable()
4028 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4029 || (thumb2 && utils::has_overflow<25>(branch_offset))
4030 || ((thumb_bit == 0)
4031 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4032 || r_type == elfcpp::R_ARM_THM_JUMP24))))
4034 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4036 Stub_type stub_type =
4037 Reloc_stub::stub_type_for_reloc(r_type, address,
4038 unadjusted_branch_target,
4039 (thumb_bit != 0));
4041 if (stub_type != arm_stub_none)
4043 Stub_table<big_endian>* stub_table =
4044 object->stub_table(relinfo->data_shndx);
4045 gold_assert(stub_table != NULL);
4047 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4048 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4049 gold_assert(stub != NULL);
4050 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4051 branch_target = stub_table->address() + stub->offset() + addend;
4052 if (thumb_bit == 0 && may_use_blx)
4053 branch_target = utils::bit_select(branch_target, address, 0x2);
4054 branch_offset = branch_target - address;
4058 // At this point, if we still need to switch mode, the instruction
4059 // must either be a BLX or a BL that can be converted to a BLX.
4060 if (thumb_bit == 0)
4062 gold_assert(may_use_blx
4063 && (r_type == elfcpp::R_ARM_THM_CALL
4064 || r_type == elfcpp::R_ARM_THM_XPC22));
4065 // Make sure this is a BLX.
4066 lower_insn &= ~0x1000U;
4068 else
4070 // Make sure this is a BL.
4071 lower_insn |= 0x1000U;
4074 // For a BLX instruction, make sure that the relocation is rounded up
4075 // to a word boundary. This follows the semantics of the instruction
4076 // which specifies that bit 1 of the target address will come from bit
4077 // 1 of the base address.
4078 if ((lower_insn & 0x5000U) == 0x4000U)
4079 gold_assert((branch_offset & 3) == 0);
4081 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4082 // We use the Thumb-2 encoding, which is safe even if dealing with
4083 // a Thumb-1 instruction by virtue of our overflow check above. */
4084 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4085 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4087 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4088 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4090 gold_assert(!utils::has_overflow<25>(branch_offset));
4092 return ((thumb2
4093 ? utils::has_overflow<25>(branch_offset)
4094 : utils::has_overflow<23>(branch_offset))
4095 ? This::STATUS_OVERFLOW
4096 : This::STATUS_OKAY);
4099 // Relocate THUMB-2 long conditional branches.
4100 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4101 // undefined and we do not use PLT in this relocation. In such a case,
4102 // the branch is converted into an NOP.
4104 template<bool big_endian>
4105 typename Arm_relocate_functions<big_endian>::Status
4106 Arm_relocate_functions<big_endian>::thm_jump19(
4107 unsigned char *view,
4108 const Arm_relobj<big_endian>* object,
4109 const Symbol_value<32>* psymval,
4110 Arm_address address,
4111 Arm_address thumb_bit)
4113 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4114 Valtype* wv = reinterpret_cast<Valtype*>(view);
4115 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4116 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4117 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4119 Arm_address branch_target = psymval->value(object, addend);
4120 int32_t branch_offset = branch_target - address;
4122 // ??? Should handle interworking? GCC might someday try to
4123 // use this for tail calls.
4124 // FIXME: We do support thumb entry to PLT yet.
4125 if (thumb_bit == 0)
4127 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4128 return This::STATUS_BAD_RELOC;
4131 // Put RELOCATION back into the insn.
4132 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4133 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4135 // Put the relocated value back in the object file:
4136 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4137 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4139 return (utils::has_overflow<21>(branch_offset)
4140 ? This::STATUS_OVERFLOW
4141 : This::STATUS_OKAY);
4144 // Get the GOT section, creating it if necessary.
4146 template<bool big_endian>
4147 Arm_output_data_got<big_endian>*
4148 Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4150 if (this->got_ == NULL)
4152 gold_assert(symtab != NULL && layout != NULL);
4154 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4156 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4157 (elfcpp::SHF_ALLOC
4158 | elfcpp::SHF_WRITE),
4159 this->got_, ORDER_RELRO, true);
4161 // The old GNU linker creates a .got.plt section. We just
4162 // create another set of data in the .got section. Note that we
4163 // always create a PLT if we create a GOT, although the PLT
4164 // might be empty.
4165 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4166 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4167 (elfcpp::SHF_ALLOC
4168 | elfcpp::SHF_WRITE),
4169 this->got_plt_, ORDER_DATA, false);
4171 // The first three entries are reserved.
4172 this->got_plt_->set_current_data_size(3 * 4);
4174 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4175 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4176 Symbol_table::PREDEFINED,
4177 this->got_plt_,
4178 0, 0, elfcpp::STT_OBJECT,
4179 elfcpp::STB_LOCAL,
4180 elfcpp::STV_HIDDEN, 0,
4181 false, false);
4183 return this->got_;
4186 // Get the dynamic reloc section, creating it if necessary.
4188 template<bool big_endian>
4189 typename Target_arm<big_endian>::Reloc_section*
4190 Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4192 if (this->rel_dyn_ == NULL)
4194 gold_assert(layout != NULL);
4195 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4196 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4197 elfcpp::SHF_ALLOC, this->rel_dyn_,
4198 ORDER_DYNAMIC_RELOCS, false);
4200 return this->rel_dyn_;
4203 // Insn_template methods.
4205 // Return byte size of an instruction template.
4207 size_t
4208 Insn_template::size() const
4210 switch (this->type())
4212 case THUMB16_TYPE:
4213 case THUMB16_SPECIAL_TYPE:
4214 return 2;
4215 case ARM_TYPE:
4216 case THUMB32_TYPE:
4217 case DATA_TYPE:
4218 return 4;
4219 default:
4220 gold_unreachable();
4224 // Return alignment of an instruction template.
4226 unsigned
4227 Insn_template::alignment() const
4229 switch (this->type())
4231 case THUMB16_TYPE:
4232 case THUMB16_SPECIAL_TYPE:
4233 case THUMB32_TYPE:
4234 return 2;
4235 case ARM_TYPE:
4236 case DATA_TYPE:
4237 return 4;
4238 default:
4239 gold_unreachable();
4243 // Stub_template methods.
4245 Stub_template::Stub_template(
4246 Stub_type type, const Insn_template* insns,
4247 size_t insn_count)
4248 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4249 entry_in_thumb_mode_(false), relocs_()
4251 off_t offset = 0;
4253 // Compute byte size and alignment of stub template.
4254 for (size_t i = 0; i < insn_count; i++)
4256 unsigned insn_alignment = insns[i].alignment();
4257 size_t insn_size = insns[i].size();
4258 gold_assert((offset & (insn_alignment - 1)) == 0);
4259 this->alignment_ = std::max(this->alignment_, insn_alignment);
4260 switch (insns[i].type())
4262 case Insn_template::THUMB16_TYPE:
4263 case Insn_template::THUMB16_SPECIAL_TYPE:
4264 if (i == 0)
4265 this->entry_in_thumb_mode_ = true;
4266 break;
4268 case Insn_template::THUMB32_TYPE:
4269 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4270 this->relocs_.push_back(Reloc(i, offset));
4271 if (i == 0)
4272 this->entry_in_thumb_mode_ = true;
4273 break;
4275 case Insn_template::ARM_TYPE:
4276 // Handle cases where the target is encoded within the
4277 // instruction.
4278 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4279 this->relocs_.push_back(Reloc(i, offset));
4280 break;
4282 case Insn_template::DATA_TYPE:
4283 // Entry point cannot be data.
4284 gold_assert(i != 0);
4285 this->relocs_.push_back(Reloc(i, offset));
4286 break;
4288 default:
4289 gold_unreachable();
4291 offset += insn_size;
4293 this->size_ = offset;
4296 // Stub methods.
4298 // Template to implement do_write for a specific target endianness.
4300 template<bool big_endian>
4301 void inline
4302 Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4304 const Stub_template* stub_template = this->stub_template();
4305 const Insn_template* insns = stub_template->insns();
4307 // FIXME: We do not handle BE8 encoding yet.
4308 unsigned char* pov = view;
4309 for (size_t i = 0; i < stub_template->insn_count(); i++)
4311 switch (insns[i].type())
4313 case Insn_template::THUMB16_TYPE:
4314 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4315 break;
4316 case Insn_template::THUMB16_SPECIAL_TYPE:
4317 elfcpp::Swap<16, big_endian>::writeval(
4318 pov,
4319 this->thumb16_special(i));
4320 break;
4321 case Insn_template::THUMB32_TYPE:
4323 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4324 uint32_t lo = insns[i].data() & 0xffff;
4325 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4326 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4328 break;
4329 case Insn_template::ARM_TYPE:
4330 case Insn_template::DATA_TYPE:
4331 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4332 break;
4333 default:
4334 gold_unreachable();
4336 pov += insns[i].size();
4338 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4341 // Reloc_stub::Key methods.
4343 // Dump a Key as a string for debugging.
4345 std::string
4346 Reloc_stub::Key::name() const
4348 if (this->r_sym_ == invalid_index)
4350 // Global symbol key name
4351 // <stub-type>:<symbol name>:<addend>.
4352 const std::string sym_name = this->u_.symbol->name();
4353 // We need to print two hex number and two colons. So just add 100 bytes
4354 // to the symbol name size.
4355 size_t len = sym_name.size() + 100;
4356 char* buffer = new char[len];
4357 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4358 sym_name.c_str(), this->addend_);
4359 gold_assert(c > 0 && c < static_cast<int>(len));
4360 delete[] buffer;
4361 return std::string(buffer);
4363 else
4365 // local symbol key name
4366 // <stub-type>:<object>:<r_sym>:<addend>.
4367 const size_t len = 200;
4368 char buffer[len];
4369 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4370 this->u_.relobj, this->r_sym_, this->addend_);
4371 gold_assert(c > 0 && c < static_cast<int>(len));
4372 return std::string(buffer);
4376 // Reloc_stub methods.
4378 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4379 // LOCATION to DESTINATION.
4380 // This code is based on the arm_type_of_stub function in
4381 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4382 // class simple.
4384 Stub_type
4385 Reloc_stub::stub_type_for_reloc(
4386 unsigned int r_type,
4387 Arm_address location,
4388 Arm_address destination,
4389 bool target_is_thumb)
4391 Stub_type stub_type = arm_stub_none;
4393 // This is a bit ugly but we want to avoid using a templated class for
4394 // big and little endianities.
4395 bool may_use_blx;
4396 bool should_force_pic_veneer;
4397 bool thumb2;
4398 bool thumb_only;
4399 if (parameters->target().is_big_endian())
4401 const Target_arm<true>* big_endian_target =
4402 Target_arm<true>::default_target();
4403 may_use_blx = big_endian_target->may_use_blx();
4404 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4405 thumb2 = big_endian_target->using_thumb2();
4406 thumb_only = big_endian_target->using_thumb_only();
4408 else
4410 const Target_arm<false>* little_endian_target =
4411 Target_arm<false>::default_target();
4412 may_use_blx = little_endian_target->may_use_blx();
4413 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4414 thumb2 = little_endian_target->using_thumb2();
4415 thumb_only = little_endian_target->using_thumb_only();
4418 int64_t branch_offset;
4419 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4421 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4422 // base address (instruction address + 4).
4423 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4424 destination = utils::bit_select(destination, location, 0x2);
4425 branch_offset = static_cast<int64_t>(destination) - location;
4427 // Handle cases where:
4428 // - this call goes too far (different Thumb/Thumb2 max
4429 // distance)
4430 // - it's a Thumb->Arm call and blx is not available, or it's a
4431 // Thumb->Arm branch (not bl). A stub is needed in this case.
4432 if ((!thumb2
4433 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4434 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4435 || (thumb2
4436 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4437 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4438 || ((!target_is_thumb)
4439 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4440 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4442 if (target_is_thumb)
4444 // Thumb to thumb.
4445 if (!thumb_only)
4447 stub_type = (parameters->options().shared()
4448 || should_force_pic_veneer)
4449 // PIC stubs.
4450 ? ((may_use_blx
4451 && (r_type == elfcpp::R_ARM_THM_CALL))
4452 // V5T and above. Stub starts with ARM code, so
4453 // we must be able to switch mode before
4454 // reaching it, which is only possible for 'bl'
4455 // (ie R_ARM_THM_CALL relocation).
4456 ? arm_stub_long_branch_any_thumb_pic
4457 // On V4T, use Thumb code only.
4458 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4460 // non-PIC stubs.
4461 : ((may_use_blx
4462 && (r_type == elfcpp::R_ARM_THM_CALL))
4463 ? arm_stub_long_branch_any_any // V5T and above.
4464 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4466 else
4468 stub_type = (parameters->options().shared()
4469 || should_force_pic_veneer)
4470 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4471 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4474 else
4476 // Thumb to arm.
4478 // FIXME: We should check that the input section is from an
4479 // object that has interwork enabled.
4481 stub_type = (parameters->options().shared()
4482 || should_force_pic_veneer)
4483 // PIC stubs.
4484 ? ((may_use_blx
4485 && (r_type == elfcpp::R_ARM_THM_CALL))
4486 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4487 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4489 // non-PIC stubs.
4490 : ((may_use_blx
4491 && (r_type == elfcpp::R_ARM_THM_CALL))
4492 ? arm_stub_long_branch_any_any // V5T and above.
4493 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4495 // Handle v4t short branches.
4496 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4497 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4498 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4499 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4503 else if (r_type == elfcpp::R_ARM_CALL
4504 || r_type == elfcpp::R_ARM_JUMP24
4505 || r_type == elfcpp::R_ARM_PLT32)
4507 branch_offset = static_cast<int64_t>(destination) - location;
4508 if (target_is_thumb)
4510 // Arm to thumb.
4512 // FIXME: We should check that the input section is from an
4513 // object that has interwork enabled.
4515 // We have an extra 2-bytes reach because of
4516 // the mode change (bit 24 (H) of BLX encoding).
4517 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4518 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4519 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4520 || (r_type == elfcpp::R_ARM_JUMP24)
4521 || (r_type == elfcpp::R_ARM_PLT32))
4523 stub_type = (parameters->options().shared()
4524 || should_force_pic_veneer)
4525 // PIC stubs.
4526 ? (may_use_blx
4527 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4528 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4530 // non-PIC stubs.
4531 : (may_use_blx
4532 ? arm_stub_long_branch_any_any // V5T and above.
4533 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4536 else
4538 // Arm to arm.
4539 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4540 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4542 stub_type = (parameters->options().shared()
4543 || should_force_pic_veneer)
4544 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4545 : arm_stub_long_branch_any_any; /// non-PIC.
4550 return stub_type;
4553 // Cortex_a8_stub methods.
4555 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4556 // I is the position of the instruction template in the stub template.
4558 uint16_t
4559 Cortex_a8_stub::do_thumb16_special(size_t i)
4561 // The only use of this is to copy condition code from a conditional
4562 // branch being worked around to the corresponding conditional branch in
4563 // to the stub.
4564 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4565 && i == 0);
4566 uint16_t data = this->stub_template()->insns()[i].data();
4567 gold_assert((data & 0xff00U) == 0xd000U);
4568 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4569 return data;
4572 // Stub_factory methods.
4574 Stub_factory::Stub_factory()
4576 // The instruction template sequences are declared as static
4577 // objects and initialized first time the constructor runs.
4579 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4580 // to reach the stub if necessary.
4581 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4583 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4584 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4585 // dcd R_ARM_ABS32(X)
4588 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4589 // available.
4590 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4592 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4593 Insn_template::arm_insn(0xe12fff1c), // bx ip
4594 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4595 // dcd R_ARM_ABS32(X)
4598 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4599 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4601 Insn_template::thumb16_insn(0xb401), // push {r0}
4602 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4603 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4604 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4605 Insn_template::thumb16_insn(0x4760), // bx ip
4606 Insn_template::thumb16_insn(0xbf00), // nop
4607 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4608 // dcd R_ARM_ABS32(X)
4611 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4612 // allowed.
4613 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4615 Insn_template::thumb16_insn(0x4778), // bx pc
4616 Insn_template::thumb16_insn(0x46c0), // nop
4617 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4618 Insn_template::arm_insn(0xe12fff1c), // bx ip
4619 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4620 // dcd R_ARM_ABS32(X)
4623 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4624 // available.
4625 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4627 Insn_template::thumb16_insn(0x4778), // bx pc
4628 Insn_template::thumb16_insn(0x46c0), // nop
4629 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4630 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4631 // dcd R_ARM_ABS32(X)
4634 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4635 // one, when the destination is close enough.
4636 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4638 Insn_template::thumb16_insn(0x4778), // bx pc
4639 Insn_template::thumb16_insn(0x46c0), // nop
4640 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4643 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4644 // blx to reach the stub if necessary.
4645 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4647 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4648 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4649 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4650 // dcd R_ARM_REL32(X-4)
4653 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4654 // blx to reach the stub if necessary. We can not add into pc;
4655 // it is not guaranteed to mode switch (different in ARMv6 and
4656 // ARMv7).
4657 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4659 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4660 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4661 Insn_template::arm_insn(0xe12fff1c), // bx ip
4662 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4663 // dcd R_ARM_REL32(X)
4666 // V4T ARM -> ARM long branch stub, PIC.
4667 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4669 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4670 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4671 Insn_template::arm_insn(0xe12fff1c), // bx ip
4672 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4673 // dcd R_ARM_REL32(X)
4676 // V4T Thumb -> ARM long branch stub, PIC.
4677 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4679 Insn_template::thumb16_insn(0x4778), // bx pc
4680 Insn_template::thumb16_insn(0x46c0), // nop
4681 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4682 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4683 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4684 // dcd R_ARM_REL32(X)
4687 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4688 // architectures.
4689 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4691 Insn_template::thumb16_insn(0xb401), // push {r0}
4692 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4693 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4694 Insn_template::thumb16_insn(0x4484), // add ip, r0
4695 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4696 Insn_template::thumb16_insn(0x4760), // bx ip
4697 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4698 // dcd R_ARM_REL32(X)
4701 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4702 // allowed.
4703 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4705 Insn_template::thumb16_insn(0x4778), // bx pc
4706 Insn_template::thumb16_insn(0x46c0), // nop
4707 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4708 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4709 Insn_template::arm_insn(0xe12fff1c), // bx ip
4710 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4711 // dcd R_ARM_REL32(X)
4714 // Cortex-A8 erratum-workaround stubs.
4716 // Stub used for conditional branches (which may be beyond +/-1MB away,
4717 // so we can't use a conditional branch to reach this stub).
4719 // original code:
4721 // b<cond> X
4722 // after:
4724 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4726 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4727 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4728 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4729 // b.w X
4732 // Stub used for b.w and bl.w instructions.
4734 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4736 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4739 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4741 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4744 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4745 // instruction (which switches to ARM mode) to point to this stub. Jump to
4746 // the real destination using an ARM-mode branch.
4747 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4749 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4752 // Stub used to provide an interworking for R_ARM_V4BX relocation
4753 // (bx r[n] instruction).
4754 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4756 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4757 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4758 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4761 // Fill in the stub template look-up table. Stub templates are constructed
4762 // per instance of Stub_factory for fast look-up without locking
4763 // in a thread-enabled environment.
4765 this->stub_templates_[arm_stub_none] =
4766 new Stub_template(arm_stub_none, NULL, 0);
4768 #define DEF_STUB(x) \
4769 do \
4771 size_t array_size \
4772 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4773 Stub_type type = arm_stub_##x; \
4774 this->stub_templates_[type] = \
4775 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4777 while (0);
4779 DEF_STUBS
4780 #undef DEF_STUB
4783 // Stub_table methods.
4785 // Removel all Cortex-A8 stub.
4787 template<bool big_endian>
4788 void
4789 Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4791 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4792 p != this->cortex_a8_stubs_.end();
4793 ++p)
4794 delete p->second;
4795 this->cortex_a8_stubs_.clear();
4798 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4800 template<bool big_endian>
4801 void
4802 Stub_table<big_endian>::relocate_stub(
4803 Stub* stub,
4804 const Relocate_info<32, big_endian>* relinfo,
4805 Target_arm<big_endian>* arm_target,
4806 Output_section* output_section,
4807 unsigned char* view,
4808 Arm_address address,
4809 section_size_type view_size)
4811 const Stub_template* stub_template = stub->stub_template();
4812 if (stub_template->reloc_count() != 0)
4814 // Adjust view to cover the stub only.
4815 section_size_type offset = stub->offset();
4816 section_size_type stub_size = stub_template->size();
4817 gold_assert(offset + stub_size <= view_size);
4819 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4820 address + offset, stub_size);
4824 // Relocate all stubs in this stub table.
4826 template<bool big_endian>
4827 void
4828 Stub_table<big_endian>::relocate_stubs(
4829 const Relocate_info<32, big_endian>* relinfo,
4830 Target_arm<big_endian>* arm_target,
4831 Output_section* output_section,
4832 unsigned char* view,
4833 Arm_address address,
4834 section_size_type view_size)
4836 // If we are passed a view bigger than the stub table's. we need to
4837 // adjust the view.
4838 gold_assert(address == this->address()
4839 && (view_size
4840 == static_cast<section_size_type>(this->data_size())));
4842 // Relocate all relocation stubs.
4843 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4844 p != this->reloc_stubs_.end();
4845 ++p)
4846 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4847 address, view_size);
4849 // Relocate all Cortex-A8 stubs.
4850 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4851 p != this->cortex_a8_stubs_.end();
4852 ++p)
4853 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4854 address, view_size);
4856 // Relocate all ARM V4BX stubs.
4857 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4858 p != this->arm_v4bx_stubs_.end();
4859 ++p)
4861 if (*p != NULL)
4862 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4863 address, view_size);
4867 // Write out the stubs to file.
4869 template<bool big_endian>
4870 void
4871 Stub_table<big_endian>::do_write(Output_file* of)
4873 off_t offset = this->offset();
4874 const section_size_type oview_size =
4875 convert_to_section_size_type(this->data_size());
4876 unsigned char* const oview = of->get_output_view(offset, oview_size);
4878 // Write relocation stubs.
4879 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4880 p != this->reloc_stubs_.end();
4881 ++p)
4883 Reloc_stub* stub = p->second;
4884 Arm_address address = this->address() + stub->offset();
4885 gold_assert(address
4886 == align_address(address,
4887 stub->stub_template()->alignment()));
4888 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4889 big_endian);
4892 // Write Cortex-A8 stubs.
4893 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4894 p != this->cortex_a8_stubs_.end();
4895 ++p)
4897 Cortex_a8_stub* stub = p->second;
4898 Arm_address address = this->address() + stub->offset();
4899 gold_assert(address
4900 == align_address(address,
4901 stub->stub_template()->alignment()));
4902 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4903 big_endian);
4906 // Write ARM V4BX relocation stubs.
4907 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4908 p != this->arm_v4bx_stubs_.end();
4909 ++p)
4911 if (*p == NULL)
4912 continue;
4914 Arm_address address = this->address() + (*p)->offset();
4915 gold_assert(address
4916 == align_address(address,
4917 (*p)->stub_template()->alignment()));
4918 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4919 big_endian);
4922 of->write_output_view(this->offset(), oview_size, oview);
4925 // Update the data size and address alignment of the stub table at the end
4926 // of a relaxation pass. Return true if either the data size or the
4927 // alignment changed in this relaxation pass.
4929 template<bool big_endian>
4930 bool
4931 Stub_table<big_endian>::update_data_size_and_addralign()
4933 // Go over all stubs in table to compute data size and address alignment.
4934 off_t size = this->reloc_stubs_size_;
4935 unsigned addralign = this->reloc_stubs_addralign_;
4937 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4938 p != this->cortex_a8_stubs_.end();
4939 ++p)
4941 const Stub_template* stub_template = p->second->stub_template();
4942 addralign = std::max(addralign, stub_template->alignment());
4943 size = (align_address(size, stub_template->alignment())
4944 + stub_template->size());
4947 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4948 p != this->arm_v4bx_stubs_.end();
4949 ++p)
4951 if (*p == NULL)
4952 continue;
4954 const Stub_template* stub_template = (*p)->stub_template();
4955 addralign = std::max(addralign, stub_template->alignment());
4956 size = (align_address(size, stub_template->alignment())
4957 + stub_template->size());
4960 // Check if either data size or alignment changed in this pass.
4961 // Update prev_data_size_ and prev_addralign_. These will be used
4962 // as the current data size and address alignment for the next pass.
4963 bool changed = size != this->prev_data_size_;
4964 this->prev_data_size_ = size;
4966 if (addralign != this->prev_addralign_)
4967 changed = true;
4968 this->prev_addralign_ = addralign;
4970 return changed;
4973 // Finalize the stubs. This sets the offsets of the stubs within the stub
4974 // table. It also marks all input sections needing Cortex-A8 workaround.
4976 template<bool big_endian>
4977 void
4978 Stub_table<big_endian>::finalize_stubs()
4980 off_t off = this->reloc_stubs_size_;
4981 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4982 p != this->cortex_a8_stubs_.end();
4983 ++p)
4985 Cortex_a8_stub* stub = p->second;
4986 const Stub_template* stub_template = stub->stub_template();
4987 uint64_t stub_addralign = stub_template->alignment();
4988 off = align_address(off, stub_addralign);
4989 stub->set_offset(off);
4990 off += stub_template->size();
4992 // Mark input section so that we can determine later if a code section
4993 // needs the Cortex-A8 workaround quickly.
4994 Arm_relobj<big_endian>* arm_relobj =
4995 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4996 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4999 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5000 p != this->arm_v4bx_stubs_.end();
5001 ++p)
5003 if (*p == NULL)
5004 continue;
5006 const Stub_template* stub_template = (*p)->stub_template();
5007 uint64_t stub_addralign = stub_template->alignment();
5008 off = align_address(off, stub_addralign);
5009 (*p)->set_offset(off);
5010 off += stub_template->size();
5013 gold_assert(off <= this->prev_data_size_);
5016 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5017 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5018 // of the address range seen by the linker.
5020 template<bool big_endian>
5021 void
5022 Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5023 Target_arm<big_endian>* arm_target,
5024 unsigned char* view,
5025 Arm_address view_address,
5026 section_size_type view_size)
5028 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5029 for (Cortex_a8_stub_list::const_iterator p =
5030 this->cortex_a8_stubs_.lower_bound(view_address);
5031 ((p != this->cortex_a8_stubs_.end())
5032 && (p->first < (view_address + view_size)));
5033 ++p)
5035 // We do not store the THUMB bit in the LSB of either the branch address
5036 // or the stub offset. There is no need to strip the LSB.
5037 Arm_address branch_address = p->first;
5038 const Cortex_a8_stub* stub = p->second;
5039 Arm_address stub_address = this->address() + stub->offset();
5041 // Offset of the branch instruction relative to this view.
5042 section_size_type offset =
5043 convert_to_section_size_type(branch_address - view_address);
5044 gold_assert((offset + 4) <= view_size);
5046 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5047 view + offset, branch_address);
5051 // Arm_input_section methods.
5053 // Initialize an Arm_input_section.
5055 template<bool big_endian>
5056 void
5057 Arm_input_section<big_endian>::init()
5059 Relobj* relobj = this->relobj();
5060 unsigned int shndx = this->shndx();
5062 // Cache these to speed up size and alignment queries. It is too slow
5063 // to call section_addraglin and section_size every time.
5064 this->original_addralign_ =
5065 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5066 this->original_size_ =
5067 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5069 // We want to make this look like the original input section after
5070 // output sections are finalized.
5071 Output_section* os = relobj->output_section(shndx);
5072 off_t offset = relobj->output_section_offset(shndx);
5073 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5074 this->set_address(os->address() + offset);
5075 this->set_file_offset(os->offset() + offset);
5077 this->set_current_data_size(this->original_size_);
5078 this->finalize_data_size();
5081 template<bool big_endian>
5082 void
5083 Arm_input_section<big_endian>::do_write(Output_file* of)
5085 // We have to write out the original section content.
5086 section_size_type section_size;
5087 const unsigned char* section_contents =
5088 this->relobj()->section_contents(this->shndx(), &section_size, false);
5089 of->write(this->offset(), section_contents, section_size);
5091 // If this owns a stub table and it is not empty, write it.
5092 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5093 this->stub_table_->write(of);
5096 // Finalize data size.
5098 template<bool big_endian>
5099 void
5100 Arm_input_section<big_endian>::set_final_data_size()
5102 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5104 if (this->is_stub_table_owner())
5106 this->stub_table_->finalize_data_size();
5107 off = align_address(off, this->stub_table_->addralign());
5108 off += this->stub_table_->data_size();
5110 this->set_data_size(off);
5113 // Reset address and file offset.
5115 template<bool big_endian>
5116 void
5117 Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5119 // Size of the original input section contents.
5120 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5122 // If this is a stub table owner, account for the stub table size.
5123 if (this->is_stub_table_owner())
5125 Stub_table<big_endian>* stub_table = this->stub_table_;
5127 // Reset the stub table's address and file offset. The
5128 // current data size for child will be updated after that.
5129 stub_table_->reset_address_and_file_offset();
5130 off = align_address(off, stub_table_->addralign());
5131 off += stub_table->current_data_size();
5134 this->set_current_data_size(off);
5137 // Arm_exidx_cantunwind methods.
5139 // Write this to Output file OF for a fixed endianness.
5141 template<bool big_endian>
5142 void
5143 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5145 off_t offset = this->offset();
5146 const section_size_type oview_size = 8;
5147 unsigned char* const oview = of->get_output_view(offset, oview_size);
5149 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5150 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5152 Output_section* os = this->relobj_->output_section(this->shndx_);
5153 gold_assert(os != NULL);
5155 Arm_relobj<big_endian>* arm_relobj =
5156 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5157 Arm_address output_offset =
5158 arm_relobj->get_output_section_offset(this->shndx_);
5159 Arm_address section_start;
5160 if (output_offset != Arm_relobj<big_endian>::invalid_address)
5161 section_start = os->address() + output_offset;
5162 else
5164 // Currently this only happens for a relaxed section.
5165 const Output_relaxed_input_section* poris =
5166 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5167 gold_assert(poris != NULL);
5168 section_start = poris->address();
5171 // We always append this to the end of an EXIDX section.
5172 Arm_address output_address =
5173 section_start + this->relobj_->section_size(this->shndx_);
5175 // Write out the entry. The first word either points to the beginning
5176 // or after the end of a text section. The second word is the special
5177 // EXIDX_CANTUNWIND value.
5178 uint32_t prel31_offset = output_address - this->address();
5179 if (utils::has_overflow<31>(offset))
5180 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5181 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5182 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5184 of->write_output_view(this->offset(), oview_size, oview);
5187 // Arm_exidx_merged_section methods.
5189 // Constructor for Arm_exidx_merged_section.
5190 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5191 // SECTION_OFFSET_MAP points to a section offset map describing how
5192 // parts of the input section are mapped to output. DELETED_BYTES is
5193 // the number of bytes deleted from the EXIDX input section.
5195 Arm_exidx_merged_section::Arm_exidx_merged_section(
5196 const Arm_exidx_input_section& exidx_input_section,
5197 const Arm_exidx_section_offset_map& section_offset_map,
5198 uint32_t deleted_bytes)
5199 : Output_relaxed_input_section(exidx_input_section.relobj(),
5200 exidx_input_section.shndx(),
5201 exidx_input_section.addralign()),
5202 exidx_input_section_(exidx_input_section),
5203 section_offset_map_(section_offset_map)
5205 // Fix size here so that we do not need to implement set_final_data_size.
5206 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5207 this->fix_data_size();
5210 // Given an input OBJECT, an input section index SHNDX within that
5211 // object, and an OFFSET relative to the start of that input
5212 // section, return whether or not the corresponding offset within
5213 // the output section is known. If this function returns true, it
5214 // sets *POUTPUT to the output offset. The value -1 indicates that
5215 // this input offset is being discarded.
5217 bool
5218 Arm_exidx_merged_section::do_output_offset(
5219 const Relobj* relobj,
5220 unsigned int shndx,
5221 section_offset_type offset,
5222 section_offset_type* poutput) const
5224 // We only handle offsets for the original EXIDX input section.
5225 if (relobj != this->exidx_input_section_.relobj()
5226 || shndx != this->exidx_input_section_.shndx())
5227 return false;
5229 section_offset_type section_size =
5230 convert_types<section_offset_type>(this->exidx_input_section_.size());
5231 if (offset < 0 || offset >= section_size)
5232 // Input offset is out of valid range.
5233 *poutput = -1;
5234 else
5236 // We need to look up the section offset map to determine the output
5237 // offset. Find the reference point in map that is first offset
5238 // bigger than or equal to this offset.
5239 Arm_exidx_section_offset_map::const_iterator p =
5240 this->section_offset_map_.lower_bound(offset);
5242 // The section offset maps are build such that this should not happen if
5243 // input offset is in the valid range.
5244 gold_assert(p != this->section_offset_map_.end());
5246 // We need to check if this is dropped.
5247 section_offset_type ref = p->first;
5248 section_offset_type mapped_ref = p->second;
5250 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5251 // Offset is present in output.
5252 *poutput = mapped_ref + (offset - ref);
5253 else
5254 // Offset is discarded owing to EXIDX entry merging.
5255 *poutput = -1;
5258 return true;
5261 // Write this to output file OF.
5263 void
5264 Arm_exidx_merged_section::do_write(Output_file* of)
5266 // If we retain or discard the whole EXIDX input section, we would
5267 // not be here.
5268 gold_assert(this->data_size() != this->exidx_input_section_.size()
5269 && this->data_size() != 0);
5271 off_t offset = this->offset();
5272 const section_size_type oview_size = this->data_size();
5273 unsigned char* const oview = of->get_output_view(offset, oview_size);
5275 Output_section* os = this->relobj()->output_section(this->shndx());
5276 gold_assert(os != NULL);
5278 // Get contents of EXIDX input section.
5279 section_size_type section_size;
5280 const unsigned char* section_contents =
5281 this->relobj()->section_contents(this->shndx(), &section_size, false);
5282 gold_assert(section_size == this->exidx_input_section_.size());
5284 // Go over spans of input offsets and write only those that are not
5285 // discarded.
5286 section_offset_type in_start = 0;
5287 section_offset_type out_start = 0;
5288 for(Arm_exidx_section_offset_map::const_iterator p =
5289 this->section_offset_map_.begin();
5290 p != this->section_offset_map_.end();
5291 ++p)
5293 section_offset_type in_end = p->first;
5294 gold_assert(in_end >= in_start);
5295 section_offset_type out_end = p->second;
5296 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5297 if (out_end != -1)
5299 size_t out_chunk_size =
5300 convert_types<size_t>(out_end - out_start + 1);
5301 gold_assert(out_chunk_size == in_chunk_size);
5302 memcpy(oview + out_start, section_contents + in_start,
5303 out_chunk_size);
5304 out_start += out_chunk_size;
5306 in_start += in_chunk_size;
5309 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5310 of->write_output_view(this->offset(), oview_size, oview);
5313 // Arm_exidx_fixup methods.
5315 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5316 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5317 // points to the end of the last seen EXIDX section.
5319 void
5320 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5322 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5323 && this->last_input_section_ != NULL)
5325 Relobj* relobj = this->last_input_section_->relobj();
5326 unsigned int text_shndx = this->last_input_section_->link();
5327 Arm_exidx_cantunwind* cantunwind =
5328 new Arm_exidx_cantunwind(relobj, text_shndx);
5329 this->exidx_output_section_->add_output_section_data(cantunwind);
5330 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5334 // Process an EXIDX section entry in input. Return whether this entry
5335 // can be deleted in the output. SECOND_WORD in the second word of the
5336 // EXIDX entry.
5338 bool
5339 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5341 bool delete_entry;
5342 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5344 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5345 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5346 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5348 else if ((second_word & 0x80000000) != 0)
5350 // Inlined unwinding data. Merge if equal to previous.
5351 delete_entry = (merge_exidx_entries_
5352 && this->last_unwind_type_ == UT_INLINED_ENTRY
5353 && this->last_inlined_entry_ == second_word);
5354 this->last_unwind_type_ = UT_INLINED_ENTRY;
5355 this->last_inlined_entry_ = second_word;
5357 else
5359 // Normal table entry. In theory we could merge these too,
5360 // but duplicate entries are likely to be much less common.
5361 delete_entry = false;
5362 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5364 return delete_entry;
5367 // Update the current section offset map during EXIDX section fix-up.
5368 // If there is no map, create one. INPUT_OFFSET is the offset of a
5369 // reference point, DELETED_BYTES is the number of deleted by in the
5370 // section so far. If DELETE_ENTRY is true, the reference point and
5371 // all offsets after the previous reference point are discarded.
5373 void
5374 Arm_exidx_fixup::update_offset_map(
5375 section_offset_type input_offset,
5376 section_size_type deleted_bytes,
5377 bool delete_entry)
5379 if (this->section_offset_map_ == NULL)
5380 this->section_offset_map_ = new Arm_exidx_section_offset_map();
5381 section_offset_type output_offset;
5382 if (delete_entry)
5383 output_offset = Arm_exidx_input_section::invalid_offset;
5384 else
5385 output_offset = input_offset - deleted_bytes;
5386 (*this->section_offset_map_)[input_offset] = output_offset;
5389 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5390 // bytes deleted. If some entries are merged, also store a pointer to a newly
5391 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5392 // caller owns the map and is responsible for releasing it after use.
5394 template<bool big_endian>
5395 uint32_t
5396 Arm_exidx_fixup::process_exidx_section(
5397 const Arm_exidx_input_section* exidx_input_section,
5398 Arm_exidx_section_offset_map** psection_offset_map)
5400 Relobj* relobj = exidx_input_section->relobj();
5401 unsigned shndx = exidx_input_section->shndx();
5402 section_size_type section_size;
5403 const unsigned char* section_contents =
5404 relobj->section_contents(shndx, &section_size, false);
5406 if ((section_size % 8) != 0)
5408 // Something is wrong with this section. Better not touch it.
5409 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5410 relobj->name().c_str(), shndx);
5411 this->last_input_section_ = exidx_input_section;
5412 this->last_unwind_type_ = UT_NONE;
5413 return 0;
5416 uint32_t deleted_bytes = 0;
5417 bool prev_delete_entry = false;
5418 gold_assert(this->section_offset_map_ == NULL);
5420 for (section_size_type i = 0; i < section_size; i += 8)
5422 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5423 const Valtype* wv =
5424 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5425 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5427 bool delete_entry = this->process_exidx_entry(second_word);
5429 // Entry deletion causes changes in output offsets. We use a std::map
5430 // to record these. And entry (x, y) means input offset x
5431 // is mapped to output offset y. If y is invalid_offset, then x is
5432 // dropped in the output. Because of the way std::map::lower_bound
5433 // works, we record the last offset in a region w.r.t to keeping or
5434 // dropping. If there is no entry (x0, y0) for an input offset x0,
5435 // the output offset y0 of it is determined by the output offset y1 of
5436 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5437 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5438 // y0 is also -1.
5439 if (delete_entry != prev_delete_entry && i != 0)
5440 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5442 // Update total deleted bytes for this entry.
5443 if (delete_entry)
5444 deleted_bytes += 8;
5446 prev_delete_entry = delete_entry;
5449 // If section offset map is not NULL, make an entry for the end of
5450 // section.
5451 if (this->section_offset_map_ != NULL)
5452 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5454 *psection_offset_map = this->section_offset_map_;
5455 this->section_offset_map_ = NULL;
5456 this->last_input_section_ = exidx_input_section;
5458 // Set the first output text section so that we can link the EXIDX output
5459 // section to it. Ignore any EXIDX input section that is completely merged.
5460 if (this->first_output_text_section_ == NULL
5461 && deleted_bytes != section_size)
5463 unsigned int link = exidx_input_section->link();
5464 Output_section* os = relobj->output_section(link);
5465 gold_assert(os != NULL);
5466 this->first_output_text_section_ = os;
5469 return deleted_bytes;
5472 // Arm_output_section methods.
5474 // Create a stub group for input sections from BEGIN to END. OWNER
5475 // points to the input section to be the owner a new stub table.
5477 template<bool big_endian>
5478 void
5479 Arm_output_section<big_endian>::create_stub_group(
5480 Input_section_list::const_iterator begin,
5481 Input_section_list::const_iterator end,
5482 Input_section_list::const_iterator owner,
5483 Target_arm<big_endian>* target,
5484 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5486 // We use a different kind of relaxed section in an EXIDX section.
5487 // The static casting from Output_relaxed_input_section to
5488 // Arm_input_section is invalid in an EXIDX section. We are okay
5489 // because we should not be calling this for an EXIDX section.
5490 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5492 // Currently we convert ordinary input sections into relaxed sections only
5493 // at this point but we may want to support creating relaxed input section
5494 // very early. So we check here to see if owner is already a relaxed
5495 // section.
5497 Arm_input_section<big_endian>* arm_input_section;
5498 if (owner->is_relaxed_input_section())
5500 arm_input_section =
5501 Arm_input_section<big_endian>::as_arm_input_section(
5502 owner->relaxed_input_section());
5504 else
5506 gold_assert(owner->is_input_section());
5507 // Create a new relaxed input section.
5508 arm_input_section =
5509 target->new_arm_input_section(owner->relobj(), owner->shndx());
5510 new_relaxed_sections->push_back(arm_input_section);
5513 // Create a stub table.
5514 Stub_table<big_endian>* stub_table =
5515 target->new_stub_table(arm_input_section);
5517 arm_input_section->set_stub_table(stub_table);
5519 Input_section_list::const_iterator p = begin;
5520 Input_section_list::const_iterator prev_p;
5522 // Look for input sections or relaxed input sections in [begin ... end].
5525 if (p->is_input_section() || p->is_relaxed_input_section())
5527 // The stub table information for input sections live
5528 // in their objects.
5529 Arm_relobj<big_endian>* arm_relobj =
5530 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5531 arm_relobj->set_stub_table(p->shndx(), stub_table);
5533 prev_p = p++;
5535 while (prev_p != end);
5538 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5539 // of stub groups. We grow a stub group by adding input section until the
5540 // size is just below GROUP_SIZE. The last input section will be converted
5541 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5542 // input section after the stub table, effectively double the group size.
5544 // This is similar to the group_sections() function in elf32-arm.c but is
5545 // implemented differently.
5547 template<bool big_endian>
5548 void
5549 Arm_output_section<big_endian>::group_sections(
5550 section_size_type group_size,
5551 bool stubs_always_after_branch,
5552 Target_arm<big_endian>* target)
5554 // We only care about sections containing code.
5555 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5556 return;
5558 // States for grouping.
5559 typedef enum
5561 // No group is being built.
5562 NO_GROUP,
5563 // A group is being built but the stub table is not found yet.
5564 // We keep group a stub group until the size is just under GROUP_SIZE.
5565 // The last input section in the group will be used as the stub table.
5566 FINDING_STUB_SECTION,
5567 // A group is being built and we have already found a stub table.
5568 // We enter this state to grow a stub group by adding input section
5569 // after the stub table. This effectively doubles the group size.
5570 HAS_STUB_SECTION
5571 } State;
5573 // Any newly created relaxed sections are stored here.
5574 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5576 State state = NO_GROUP;
5577 section_size_type off = 0;
5578 section_size_type group_begin_offset = 0;
5579 section_size_type group_end_offset = 0;
5580 section_size_type stub_table_end_offset = 0;
5581 Input_section_list::const_iterator group_begin =
5582 this->input_sections().end();
5583 Input_section_list::const_iterator stub_table =
5584 this->input_sections().end();
5585 Input_section_list::const_iterator group_end = this->input_sections().end();
5586 for (Input_section_list::const_iterator p = this->input_sections().begin();
5587 p != this->input_sections().end();
5588 ++p)
5590 section_size_type section_begin_offset =
5591 align_address(off, p->addralign());
5592 section_size_type section_end_offset =
5593 section_begin_offset + p->data_size();
5595 // Check to see if we should group the previously seens sections.
5596 switch (state)
5598 case NO_GROUP:
5599 break;
5601 case FINDING_STUB_SECTION:
5602 // Adding this section makes the group larger than GROUP_SIZE.
5603 if (section_end_offset - group_begin_offset >= group_size)
5605 if (stubs_always_after_branch)
5607 gold_assert(group_end != this->input_sections().end());
5608 this->create_stub_group(group_begin, group_end, group_end,
5609 target, &new_relaxed_sections);
5610 state = NO_GROUP;
5612 else
5614 // But wait, there's more! Input sections up to
5615 // stub_group_size bytes after the stub table can be
5616 // handled by it too.
5617 state = HAS_STUB_SECTION;
5618 stub_table = group_end;
5619 stub_table_end_offset = group_end_offset;
5622 break;
5624 case HAS_STUB_SECTION:
5625 // Adding this section makes the post stub-section group larger
5626 // than GROUP_SIZE.
5627 if (section_end_offset - stub_table_end_offset >= group_size)
5629 gold_assert(group_end != this->input_sections().end());
5630 this->create_stub_group(group_begin, group_end, stub_table,
5631 target, &new_relaxed_sections);
5632 state = NO_GROUP;
5634 break;
5636 default:
5637 gold_unreachable();
5640 // If we see an input section and currently there is no group, start
5641 // a new one. Skip any empty sections.
5642 if ((p->is_input_section() || p->is_relaxed_input_section())
5643 && (p->relobj()->section_size(p->shndx()) != 0))
5645 if (state == NO_GROUP)
5647 state = FINDING_STUB_SECTION;
5648 group_begin = p;
5649 group_begin_offset = section_begin_offset;
5652 // Keep track of the last input section seen.
5653 group_end = p;
5654 group_end_offset = section_end_offset;
5657 off = section_end_offset;
5660 // Create a stub group for any ungrouped sections.
5661 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5663 gold_assert(group_end != this->input_sections().end());
5664 this->create_stub_group(group_begin, group_end,
5665 (state == FINDING_STUB_SECTION
5666 ? group_end
5667 : stub_table),
5668 target, &new_relaxed_sections);
5671 // Convert input section into relaxed input section in a batch.
5672 if (!new_relaxed_sections.empty())
5673 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5675 // Update the section offsets
5676 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5678 Arm_relobj<big_endian>* arm_relobj =
5679 Arm_relobj<big_endian>::as_arm_relobj(
5680 new_relaxed_sections[i]->relobj());
5681 unsigned int shndx = new_relaxed_sections[i]->shndx();
5682 // Tell Arm_relobj that this input section is converted.
5683 arm_relobj->convert_input_section_to_relaxed_section(shndx);
5687 // Append non empty text sections in this to LIST in ascending
5688 // order of their position in this.
5690 template<bool big_endian>
5691 void
5692 Arm_output_section<big_endian>::append_text_sections_to_list(
5693 Text_section_list* list)
5695 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5697 for (Input_section_list::const_iterator p = this->input_sections().begin();
5698 p != this->input_sections().end();
5699 ++p)
5701 // We only care about plain or relaxed input sections. We also
5702 // ignore any merged sections.
5703 if ((p->is_input_section() || p->is_relaxed_input_section())
5704 && p->data_size() != 0)
5705 list->push_back(Text_section_list::value_type(p->relobj(),
5706 p->shndx()));
5710 template<bool big_endian>
5711 void
5712 Arm_output_section<big_endian>::fix_exidx_coverage(
5713 Layout* layout,
5714 const Text_section_list& sorted_text_sections,
5715 Symbol_table* symtab,
5716 bool merge_exidx_entries)
5718 // We should only do this for the EXIDX output section.
5719 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5721 // We don't want the relaxation loop to undo these changes, so we discard
5722 // the current saved states and take another one after the fix-up.
5723 this->discard_states();
5725 // Remove all input sections.
5726 uint64_t address = this->address();
5727 typedef std::list<Output_section::Input_section> Input_section_list;
5728 Input_section_list input_sections;
5729 this->reset_address_and_file_offset();
5730 this->get_input_sections(address, std::string(""), &input_sections);
5732 if (!this->input_sections().empty())
5733 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5735 // Go through all the known input sections and record them.
5736 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5737 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5738 Section_id_hash> Text_to_exidx_map;
5739 Text_to_exidx_map text_to_exidx_map;
5740 for (Input_section_list::const_iterator p = input_sections.begin();
5741 p != input_sections.end();
5742 ++p)
5744 // This should never happen. At this point, we should only see
5745 // plain EXIDX input sections.
5746 gold_assert(!p->is_relaxed_input_section());
5747 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5750 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5752 // Go over the sorted text sections.
5753 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5754 Section_id_set processed_input_sections;
5755 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5756 p != sorted_text_sections.end();
5757 ++p)
5759 Relobj* relobj = p->first;
5760 unsigned int shndx = p->second;
5762 Arm_relobj<big_endian>* arm_relobj =
5763 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5764 const Arm_exidx_input_section* exidx_input_section =
5765 arm_relobj->exidx_input_section_by_link(shndx);
5767 // If this text section has no EXIDX section or if the EXIDX section
5768 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5769 // of the last seen EXIDX section.
5770 if (exidx_input_section == NULL || exidx_input_section->has_errors())
5772 exidx_fixup.add_exidx_cantunwind_as_needed();
5773 continue;
5776 Relobj* exidx_relobj = exidx_input_section->relobj();
5777 unsigned int exidx_shndx = exidx_input_section->shndx();
5778 Section_id sid(exidx_relobj, exidx_shndx);
5779 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5780 if (iter == text_to_exidx_map.end())
5782 // This is odd. We have not seen this EXIDX input section before.
5783 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5784 // issue a warning instead. We assume the user knows what he
5785 // or she is doing. Otherwise, this is an error.
5786 if (layout->script_options()->saw_sections_clause())
5787 gold_warning(_("unwinding may not work because EXIDX input section"
5788 " %u of %s is not in EXIDX output section"),
5789 exidx_shndx, exidx_relobj->name().c_str());
5790 else
5791 gold_error(_("unwinding may not work because EXIDX input section"
5792 " %u of %s is not in EXIDX output section"),
5793 exidx_shndx, exidx_relobj->name().c_str());
5795 exidx_fixup.add_exidx_cantunwind_as_needed();
5796 continue;
5799 // Fix up coverage and append input section to output data list.
5800 Arm_exidx_section_offset_map* section_offset_map = NULL;
5801 uint32_t deleted_bytes =
5802 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5803 &section_offset_map);
5805 if (deleted_bytes == exidx_input_section->size())
5807 // The whole EXIDX section got merged. Remove it from output.
5808 gold_assert(section_offset_map == NULL);
5809 exidx_relobj->set_output_section(exidx_shndx, NULL);
5811 // All local symbols defined in this input section will be dropped.
5812 // We need to adjust output local symbol count.
5813 arm_relobj->set_output_local_symbol_count_needs_update();
5815 else if (deleted_bytes > 0)
5817 // Some entries are merged. We need to convert this EXIDX input
5818 // section into a relaxed section.
5819 gold_assert(section_offset_map != NULL);
5820 Arm_exidx_merged_section* merged_section =
5821 new Arm_exidx_merged_section(*exidx_input_section,
5822 *section_offset_map, deleted_bytes);
5823 this->add_relaxed_input_section(merged_section);
5824 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5826 // All local symbols defined in discarded portions of this input
5827 // section will be dropped. We need to adjust output local symbol
5828 // count.
5829 arm_relobj->set_output_local_symbol_count_needs_update();
5831 else
5833 // Just add back the EXIDX input section.
5834 gold_assert(section_offset_map == NULL);
5835 const Output_section::Input_section* pis = iter->second;
5836 gold_assert(pis->is_input_section());
5837 this->add_script_input_section(*pis);
5840 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5843 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5844 exidx_fixup.add_exidx_cantunwind_as_needed();
5846 // Remove any known EXIDX input sections that are not processed.
5847 for (Input_section_list::const_iterator p = input_sections.begin();
5848 p != input_sections.end();
5849 ++p)
5851 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5852 == processed_input_sections.end())
5854 // We discard a known EXIDX section because its linked
5855 // text section has been folded by ICF. We also discard an
5856 // EXIDX section with error, the output does not matter in this
5857 // case. We do this to avoid triggering asserts.
5858 Arm_relobj<big_endian>* arm_relobj =
5859 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5860 const Arm_exidx_input_section* exidx_input_section =
5861 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5862 gold_assert(exidx_input_section != NULL);
5863 if (!exidx_input_section->has_errors())
5865 unsigned int text_shndx = exidx_input_section->link();
5866 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5869 // Remove this from link. We also need to recount the
5870 // local symbols.
5871 p->relobj()->set_output_section(p->shndx(), NULL);
5872 arm_relobj->set_output_local_symbol_count_needs_update();
5876 // Link exidx output section to the first seen output section and
5877 // set correct entry size.
5878 this->set_link_section(exidx_fixup.first_output_text_section());
5879 this->set_entsize(8);
5881 // Make changes permanent.
5882 this->save_states();
5883 this->set_section_offsets_need_adjustment();
5886 // Link EXIDX output sections to text output sections.
5888 template<bool big_endian>
5889 void
5890 Arm_output_section<big_endian>::set_exidx_section_link()
5892 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5893 if (!this->input_sections().empty())
5895 Input_section_list::const_iterator p = this->input_sections().begin();
5896 Arm_relobj<big_endian>* arm_relobj =
5897 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5898 unsigned exidx_shndx = p->shndx();
5899 const Arm_exidx_input_section* exidx_input_section =
5900 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5901 gold_assert(exidx_input_section != NULL);
5902 unsigned int text_shndx = exidx_input_section->link();
5903 Output_section* os = arm_relobj->output_section(text_shndx);
5904 this->set_link_section(os);
5908 // Arm_relobj methods.
5910 // Determine if an input section is scannable for stub processing. SHDR is
5911 // the header of the section and SHNDX is the section index. OS is the output
5912 // section for the input section and SYMTAB is the global symbol table used to
5913 // look up ICF information.
5915 template<bool big_endian>
5916 bool
5917 Arm_relobj<big_endian>::section_is_scannable(
5918 const elfcpp::Shdr<32, big_endian>& shdr,
5919 unsigned int shndx,
5920 const Output_section* os,
5921 const Symbol_table *symtab)
5923 // Skip any empty sections, unallocated sections or sections whose
5924 // type are not SHT_PROGBITS.
5925 if (shdr.get_sh_size() == 0
5926 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5927 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5928 return false;
5930 // Skip any discarded or ICF'ed sections.
5931 if (os == NULL || symtab->is_section_folded(this, shndx))
5932 return false;
5934 // If this requires special offset handling, check to see if it is
5935 // a relaxed section. If this is not, then it is a merged section that
5936 // we cannot handle.
5937 if (this->is_output_section_offset_invalid(shndx))
5939 const Output_relaxed_input_section* poris =
5940 os->find_relaxed_input_section(this, shndx);
5941 if (poris == NULL)
5942 return false;
5945 return true;
5948 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5949 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5951 template<bool big_endian>
5952 bool
5953 Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5954 const elfcpp::Shdr<32, big_endian>& shdr,
5955 const Relobj::Output_sections& out_sections,
5956 const Symbol_table *symtab,
5957 const unsigned char* pshdrs)
5959 unsigned int sh_type = shdr.get_sh_type();
5960 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5961 return false;
5963 // Ignore empty section.
5964 off_t sh_size = shdr.get_sh_size();
5965 if (sh_size == 0)
5966 return false;
5968 // Ignore reloc section with unexpected symbol table. The
5969 // error will be reported in the final link.
5970 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5971 return false;
5973 unsigned int reloc_size;
5974 if (sh_type == elfcpp::SHT_REL)
5975 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5976 else
5977 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
5979 // Ignore reloc section with unexpected entsize or uneven size.
5980 // The error will be reported in the final link.
5981 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5982 return false;
5984 // Ignore reloc section with bad info. This error will be
5985 // reported in the final link.
5986 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5987 if (index >= this->shnum())
5988 return false;
5990 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5991 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5992 return this->section_is_scannable(text_shdr, index,
5993 out_sections[index], symtab);
5996 // Return the output address of either a plain input section or a relaxed
5997 // input section. SHNDX is the section index. We define and use this
5998 // instead of calling Output_section::output_address because that is slow
5999 // for large output.
6001 template<bool big_endian>
6002 Arm_address
6003 Arm_relobj<big_endian>::simple_input_section_output_address(
6004 unsigned int shndx,
6005 Output_section* os)
6007 if (this->is_output_section_offset_invalid(shndx))
6009 const Output_relaxed_input_section* poris =
6010 os->find_relaxed_input_section(this, shndx);
6011 // We do not handle merged sections here.
6012 gold_assert(poris != NULL);
6013 return poris->address();
6015 else
6016 return os->address() + this->get_output_section_offset(shndx);
6019 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6020 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6022 template<bool big_endian>
6023 bool
6024 Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6025 const elfcpp::Shdr<32, big_endian>& shdr,
6026 unsigned int shndx,
6027 Output_section* os,
6028 const Symbol_table* symtab)
6030 if (!this->section_is_scannable(shdr, shndx, os, symtab))
6031 return false;
6033 // If the section does not cross any 4K-boundaries, it does not need to
6034 // be scanned.
6035 Arm_address address = this->simple_input_section_output_address(shndx, os);
6036 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6037 return false;
6039 return true;
6042 // Scan a section for Cortex-A8 workaround.
6044 template<bool big_endian>
6045 void
6046 Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6047 const elfcpp::Shdr<32, big_endian>& shdr,
6048 unsigned int shndx,
6049 Output_section* os,
6050 Target_arm<big_endian>* arm_target)
6052 // Look for the first mapping symbol in this section. It should be
6053 // at (shndx, 0).
6054 Mapping_symbol_position section_start(shndx, 0);
6055 typename Mapping_symbols_info::const_iterator p =
6056 this->mapping_symbols_info_.lower_bound(section_start);
6058 // There are no mapping symbols for this section. Treat it as a data-only
6059 // section. Issue a warning if section is marked as containing
6060 // instructions.
6061 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6063 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6064 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6065 "erratum because it has no mapping symbols."),
6066 shndx, this->name().c_str());
6067 return;
6070 Arm_address output_address =
6071 this->simple_input_section_output_address(shndx, os);
6073 // Get the section contents.
6074 section_size_type input_view_size = 0;
6075 const unsigned char* input_view =
6076 this->section_contents(shndx, &input_view_size, false);
6078 // We need to go through the mapping symbols to determine what to
6079 // scan. There are two reasons. First, we should look at THUMB code and
6080 // THUMB code only. Second, we only want to look at the 4K-page boundary
6081 // to speed up the scanning.
6083 while (p != this->mapping_symbols_info_.end()
6084 && p->first.first == shndx)
6086 typename Mapping_symbols_info::const_iterator next =
6087 this->mapping_symbols_info_.upper_bound(p->first);
6089 // Only scan part of a section with THUMB code.
6090 if (p->second == 't')
6092 // Determine the end of this range.
6093 section_size_type span_start =
6094 convert_to_section_size_type(p->first.second);
6095 section_size_type span_end;
6096 if (next != this->mapping_symbols_info_.end()
6097 && next->first.first == shndx)
6098 span_end = convert_to_section_size_type(next->first.second);
6099 else
6100 span_end = convert_to_section_size_type(shdr.get_sh_size());
6102 if (((span_start + output_address) & ~0xfffUL)
6103 != ((span_end + output_address - 1) & ~0xfffUL))
6105 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6106 span_start, span_end,
6107 input_view,
6108 output_address);
6112 p = next;
6116 // Scan relocations for stub generation.
6118 template<bool big_endian>
6119 void
6120 Arm_relobj<big_endian>::scan_sections_for_stubs(
6121 Target_arm<big_endian>* arm_target,
6122 const Symbol_table* symtab,
6123 const Layout* layout)
6125 unsigned int shnum = this->shnum();
6126 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6128 // Read the section headers.
6129 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6130 shnum * shdr_size,
6131 true, true);
6133 // To speed up processing, we set up hash tables for fast lookup of
6134 // input offsets to output addresses.
6135 this->initialize_input_to_output_maps();
6137 const Relobj::Output_sections& out_sections(this->output_sections());
6139 Relocate_info<32, big_endian> relinfo;
6140 relinfo.symtab = symtab;
6141 relinfo.layout = layout;
6142 relinfo.object = this;
6144 // Do relocation stubs scanning.
6145 const unsigned char* p = pshdrs + shdr_size;
6146 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6148 const elfcpp::Shdr<32, big_endian> shdr(p);
6149 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6150 pshdrs))
6152 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6153 Arm_address output_offset = this->get_output_section_offset(index);
6154 Arm_address output_address;
6155 if (output_offset != invalid_address)
6156 output_address = out_sections[index]->address() + output_offset;
6157 else
6159 // Currently this only happens for a relaxed section.
6160 const Output_relaxed_input_section* poris =
6161 out_sections[index]->find_relaxed_input_section(this, index);
6162 gold_assert(poris != NULL);
6163 output_address = poris->address();
6166 // Get the relocations.
6167 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6168 shdr.get_sh_size(),
6169 true, false);
6171 // Get the section contents. This does work for the case in which
6172 // we modify the contents of an input section. We need to pass the
6173 // output view under such circumstances.
6174 section_size_type input_view_size = 0;
6175 const unsigned char* input_view =
6176 this->section_contents(index, &input_view_size, false);
6178 relinfo.reloc_shndx = i;
6179 relinfo.data_shndx = index;
6180 unsigned int sh_type = shdr.get_sh_type();
6181 unsigned int reloc_size;
6182 if (sh_type == elfcpp::SHT_REL)
6183 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6184 else
6185 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6187 Output_section* os = out_sections[index];
6188 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6189 shdr.get_sh_size() / reloc_size,
6191 output_offset == invalid_address,
6192 input_view, output_address,
6193 input_view_size);
6197 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6198 // after its relocation section, if there is one, is processed for
6199 // relocation stubs. Merging this loop with the one above would have been
6200 // complicated since we would have had to make sure that relocation stub
6201 // scanning is done first.
6202 if (arm_target->fix_cortex_a8())
6204 const unsigned char* p = pshdrs + shdr_size;
6205 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6207 const elfcpp::Shdr<32, big_endian> shdr(p);
6208 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6209 out_sections[i],
6210 symtab))
6211 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6212 arm_target);
6216 // After we've done the relocations, we release the hash tables,
6217 // since we no longer need them.
6218 this->free_input_to_output_maps();
6221 // Count the local symbols. The ARM backend needs to know if a symbol
6222 // is a THUMB function or not. For global symbols, it is easy because
6223 // the Symbol object keeps the ELF symbol type. For local symbol it is
6224 // harder because we cannot access this information. So we override the
6225 // do_count_local_symbol in parent and scan local symbols to mark
6226 // THUMB functions. This is not the most efficient way but I do not want to
6227 // slow down other ports by calling a per symbol targer hook inside
6228 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6230 template<bool big_endian>
6231 void
6232 Arm_relobj<big_endian>::do_count_local_symbols(
6233 Stringpool_template<char>* pool,
6234 Stringpool_template<char>* dynpool)
6236 // We need to fix-up the values of any local symbols whose type are
6237 // STT_ARM_TFUNC.
6239 // Ask parent to count the local symbols.
6240 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6241 const unsigned int loccount = this->local_symbol_count();
6242 if (loccount == 0)
6243 return;
6245 // Intialize the thumb function bit-vector.
6246 std::vector<bool> empty_vector(loccount, false);
6247 this->local_symbol_is_thumb_function_.swap(empty_vector);
6249 // Read the symbol table section header.
6250 const unsigned int symtab_shndx = this->symtab_shndx();
6251 elfcpp::Shdr<32, big_endian>
6252 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6253 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6255 // Read the local symbols.
6256 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6257 gold_assert(loccount == symtabshdr.get_sh_info());
6258 off_t locsize = loccount * sym_size;
6259 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6260 locsize, true, true);
6262 // For mapping symbol processing, we need to read the symbol names.
6263 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6264 if (strtab_shndx >= this->shnum())
6266 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6267 return;
6270 elfcpp::Shdr<32, big_endian>
6271 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6272 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6274 this->error(_("symbol table name section has wrong type: %u"),
6275 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6276 return;
6278 const char* pnames =
6279 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6280 strtabshdr.get_sh_size(),
6281 false, false));
6283 // Loop over the local symbols and mark any local symbols pointing
6284 // to THUMB functions.
6286 // Skip the first dummy symbol.
6287 psyms += sym_size;
6288 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6289 this->local_values();
6290 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6292 elfcpp::Sym<32, big_endian> sym(psyms);
6293 elfcpp::STT st_type = sym.get_st_type();
6294 Symbol_value<32>& lv((*plocal_values)[i]);
6295 Arm_address input_value = lv.input_value();
6297 // Check to see if this is a mapping symbol.
6298 const char* sym_name = pnames + sym.get_st_name();
6299 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6301 bool is_ordinary;
6302 unsigned int input_shndx =
6303 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6304 gold_assert(is_ordinary);
6306 // Strip of LSB in case this is a THUMB symbol.
6307 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6308 this->mapping_symbols_info_[msp] = sym_name[1];
6311 if (st_type == elfcpp::STT_ARM_TFUNC
6312 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6314 // This is a THUMB function. Mark this and canonicalize the
6315 // symbol value by setting LSB.
6316 this->local_symbol_is_thumb_function_[i] = true;
6317 if ((input_value & 1) == 0)
6318 lv.set_input_value(input_value | 1);
6323 // Relocate sections.
6324 template<bool big_endian>
6325 void
6326 Arm_relobj<big_endian>::do_relocate_sections(
6327 const Symbol_table* symtab,
6328 const Layout* layout,
6329 const unsigned char* pshdrs,
6330 typename Sized_relobj<32, big_endian>::Views* pviews)
6332 // Call parent to relocate sections.
6333 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
6334 pviews);
6336 // We do not generate stubs if doing a relocatable link.
6337 if (parameters->options().relocatable())
6338 return;
6340 // Relocate stub tables.
6341 unsigned int shnum = this->shnum();
6343 Target_arm<big_endian>* arm_target =
6344 Target_arm<big_endian>::default_target();
6346 Relocate_info<32, big_endian> relinfo;
6347 relinfo.symtab = symtab;
6348 relinfo.layout = layout;
6349 relinfo.object = this;
6351 for (unsigned int i = 1; i < shnum; ++i)
6353 Arm_input_section<big_endian>* arm_input_section =
6354 arm_target->find_arm_input_section(this, i);
6356 if (arm_input_section != NULL
6357 && arm_input_section->is_stub_table_owner()
6358 && !arm_input_section->stub_table()->empty())
6360 // We cannot discard a section if it owns a stub table.
6361 Output_section* os = this->output_section(i);
6362 gold_assert(os != NULL);
6364 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6365 relinfo.reloc_shdr = NULL;
6366 relinfo.data_shndx = i;
6367 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6369 gold_assert((*pviews)[i].view != NULL);
6371 // We are passed the output section view. Adjust it to cover the
6372 // stub table only.
6373 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6374 gold_assert((stub_table->address() >= (*pviews)[i].address)
6375 && ((stub_table->address() + stub_table->data_size())
6376 <= (*pviews)[i].address + (*pviews)[i].view_size));
6378 off_t offset = stub_table->address() - (*pviews)[i].address;
6379 unsigned char* view = (*pviews)[i].view + offset;
6380 Arm_address address = stub_table->address();
6381 section_size_type view_size = stub_table->data_size();
6383 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6384 view_size);
6387 // Apply Cortex A8 workaround if applicable.
6388 if (this->section_has_cortex_a8_workaround(i))
6390 unsigned char* view = (*pviews)[i].view;
6391 Arm_address view_address = (*pviews)[i].address;
6392 section_size_type view_size = (*pviews)[i].view_size;
6393 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6395 // Adjust view to cover section.
6396 Output_section* os = this->output_section(i);
6397 gold_assert(os != NULL);
6398 Arm_address section_address =
6399 this->simple_input_section_output_address(i, os);
6400 uint64_t section_size = this->section_size(i);
6402 gold_assert(section_address >= view_address
6403 && ((section_address + section_size)
6404 <= (view_address + view_size)));
6406 unsigned char* section_view = view + (section_address - view_address);
6408 // Apply the Cortex-A8 workaround to the output address range
6409 // corresponding to this input section.
6410 stub_table->apply_cortex_a8_workaround_to_address_range(
6411 arm_target,
6412 section_view,
6413 section_address,
6414 section_size);
6419 // Find the linked text section of an EXIDX section by looking the the first
6420 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6421 // must be linked to to its associated code section via the sh_link field of
6422 // its section header. However, some tools are broken and the link is not
6423 // always set. LD just drops such an EXIDX section silently, causing the
6424 // associated code not unwindabled. Here we try a little bit harder to
6425 // discover the linked code section.
6427 // PSHDR points to the section header of a relocation section of an EXIDX
6428 // section. If we can find a linked text section, return true and
6429 // store the text section index in the location PSHNDX. Otherwise
6430 // return false.
6432 template<bool big_endian>
6433 bool
6434 Arm_relobj<big_endian>::find_linked_text_section(
6435 const unsigned char* pshdr,
6436 const unsigned char* psyms,
6437 unsigned int* pshndx)
6439 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6441 // If there is no relocation, we cannot find the linked text section.
6442 size_t reloc_size;
6443 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6444 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6445 else
6446 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6447 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6449 // Get the relocations.
6450 const unsigned char* prelocs =
6451 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6453 // Find the REL31 relocation for the first word of the first EXIDX entry.
6454 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6456 Arm_address r_offset;
6457 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6458 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6460 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6461 r_info = reloc.get_r_info();
6462 r_offset = reloc.get_r_offset();
6464 else
6466 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6467 r_info = reloc.get_r_info();
6468 r_offset = reloc.get_r_offset();
6471 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6472 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6473 continue;
6475 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6476 if (r_sym == 0
6477 || r_sym >= this->local_symbol_count()
6478 || r_offset != 0)
6479 continue;
6481 // This is the relocation for the first word of the first EXIDX entry.
6482 // We expect to see a local section symbol.
6483 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6484 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6485 if (sym.get_st_type() == elfcpp::STT_SECTION)
6487 bool is_ordinary;
6488 *pshndx =
6489 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6490 gold_assert(is_ordinary);
6491 return true;
6493 else
6494 return false;
6497 return false;
6500 // Make an EXIDX input section object for an EXIDX section whose index is
6501 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6502 // is the section index of the linked text section.
6504 template<bool big_endian>
6505 void
6506 Arm_relobj<big_endian>::make_exidx_input_section(
6507 unsigned int shndx,
6508 const elfcpp::Shdr<32, big_endian>& shdr,
6509 unsigned int text_shndx,
6510 const elfcpp::Shdr<32, big_endian>& text_shdr)
6512 // Create an Arm_exidx_input_section object for this EXIDX section.
6513 Arm_exidx_input_section* exidx_input_section =
6514 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6515 shdr.get_sh_addralign());
6517 gold_assert(this->exidx_section_map_[shndx] == NULL);
6518 this->exidx_section_map_[shndx] = exidx_input_section;
6520 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6522 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6523 this->section_name(shndx).c_str(), shndx, text_shndx,
6524 this->name().c_str());
6525 exidx_input_section->set_has_errors();
6527 else if (this->exidx_section_map_[text_shndx] != NULL)
6529 unsigned other_exidx_shndx =
6530 this->exidx_section_map_[text_shndx]->shndx();
6531 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6532 "%s(%u) in %s"),
6533 this->section_name(shndx).c_str(), shndx,
6534 this->section_name(other_exidx_shndx).c_str(),
6535 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6536 text_shndx, this->name().c_str());
6537 exidx_input_section->set_has_errors();
6539 else
6540 this->exidx_section_map_[text_shndx] = exidx_input_section;
6542 // Check section flags of text section.
6543 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6545 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6546 " in %s"),
6547 this->section_name(shndx).c_str(), shndx,
6548 this->section_name(text_shndx).c_str(), text_shndx,
6549 this->name().c_str());
6550 exidx_input_section->set_has_errors();
6552 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6553 // I would like to make this an error but currenlty ld just ignores
6554 // this.
6555 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6556 "%s(%u) in %s"),
6557 this->section_name(shndx).c_str(), shndx,
6558 this->section_name(text_shndx).c_str(), text_shndx,
6559 this->name().c_str());
6562 // Read the symbol information.
6564 template<bool big_endian>
6565 void
6566 Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6568 // Call parent class to read symbol information.
6569 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6571 // If this input file is a binary file, it has no processor
6572 // specific flags and attributes section.
6573 Input_file::Format format = this->input_file()->format();
6574 if (format != Input_file::FORMAT_ELF)
6576 gold_assert(format == Input_file::FORMAT_BINARY);
6577 this->merge_flags_and_attributes_ = false;
6578 return;
6581 // Read processor-specific flags in ELF file header.
6582 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6583 elfcpp::Elf_sizes<32>::ehdr_size,
6584 true, false);
6585 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6586 this->processor_specific_flags_ = ehdr.get_e_flags();
6588 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6589 // sections.
6590 std::vector<unsigned int> deferred_exidx_sections;
6591 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6592 const unsigned char* pshdrs = sd->section_headers->data();
6593 const unsigned char *ps = pshdrs + shdr_size;
6594 bool must_merge_flags_and_attributes = false;
6595 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6597 elfcpp::Shdr<32, big_endian> shdr(ps);
6599 // Sometimes an object has no contents except the section name string
6600 // table and an empty symbol table with the undefined symbol. We
6601 // don't want to merge processor-specific flags from such an object.
6602 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6604 // Symbol table is not empty.
6605 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6606 elfcpp::Elf_sizes<32>::sym_size;
6607 if (shdr.get_sh_size() > sym_size)
6608 must_merge_flags_and_attributes = true;
6610 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6611 // If this is neither an empty symbol table nor a string table,
6612 // be conservative.
6613 must_merge_flags_and_attributes = true;
6615 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6617 gold_assert(this->attributes_section_data_ == NULL);
6618 section_offset_type section_offset = shdr.get_sh_offset();
6619 section_size_type section_size =
6620 convert_to_section_size_type(shdr.get_sh_size());
6621 File_view* view = this->get_lasting_view(section_offset,
6622 section_size, true, false);
6623 this->attributes_section_data_ =
6624 new Attributes_section_data(view->data(), section_size);
6626 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6628 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6629 if (text_shndx == elfcpp::SHN_UNDEF)
6630 deferred_exidx_sections.push_back(i);
6631 else
6633 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6634 + text_shndx * shdr_size);
6635 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6640 // This is rare.
6641 if (!must_merge_flags_and_attributes)
6643 gold_assert(deferred_exidx_sections.empty());
6644 this->merge_flags_and_attributes_ = false;
6645 return;
6648 // Some tools are broken and they do not set the link of EXIDX sections.
6649 // We look at the first relocation to figure out the linked sections.
6650 if (!deferred_exidx_sections.empty())
6652 // We need to go over the section headers again to find the mapping
6653 // from sections being relocated to their relocation sections. This is
6654 // a bit inefficient as we could do that in the loop above. However,
6655 // we do not expect any deferred EXIDX sections normally. So we do not
6656 // want to slow down the most common path.
6657 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6658 Reloc_map reloc_map;
6659 ps = pshdrs + shdr_size;
6660 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6662 elfcpp::Shdr<32, big_endian> shdr(ps);
6663 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6664 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6666 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6667 if (info_shndx >= this->shnum())
6668 gold_error(_("relocation section %u has invalid info %u"),
6669 i, info_shndx);
6670 Reloc_map::value_type value(info_shndx, i);
6671 std::pair<Reloc_map::iterator, bool> result =
6672 reloc_map.insert(value);
6673 if (!result.second)
6674 gold_error(_("section %u has multiple relocation sections "
6675 "%u and %u"),
6676 info_shndx, i, reloc_map[info_shndx]);
6680 // Read the symbol table section header.
6681 const unsigned int symtab_shndx = this->symtab_shndx();
6682 elfcpp::Shdr<32, big_endian>
6683 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6684 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6686 // Read the local symbols.
6687 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6688 const unsigned int loccount = this->local_symbol_count();
6689 gold_assert(loccount == symtabshdr.get_sh_info());
6690 off_t locsize = loccount * sym_size;
6691 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6692 locsize, true, true);
6694 // Process the deferred EXIDX sections.
6695 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6697 unsigned int shndx = deferred_exidx_sections[i];
6698 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6699 unsigned int text_shndx = elfcpp::SHN_UNDEF;
6700 Reloc_map::const_iterator it = reloc_map.find(shndx);
6701 if (it != reloc_map.end())
6702 find_linked_text_section(pshdrs + it->second * shdr_size,
6703 psyms, &text_shndx);
6704 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6705 + text_shndx * shdr_size);
6706 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6711 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6712 // sections for unwinding. These sections are referenced implicitly by
6713 // text sections linked in the section headers. If we ignore these implict
6714 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6715 // will be garbage-collected incorrectly. Hence we override the same function
6716 // in the base class to handle these implicit references.
6718 template<bool big_endian>
6719 void
6720 Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6721 Layout* layout,
6722 Read_relocs_data* rd)
6724 // First, call base class method to process relocations in this object.
6725 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6727 // If --gc-sections is not specified, there is nothing more to do.
6728 // This happens when --icf is used but --gc-sections is not.
6729 if (!parameters->options().gc_sections())
6730 return;
6732 unsigned int shnum = this->shnum();
6733 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6734 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6735 shnum * shdr_size,
6736 true, true);
6738 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6739 // to these from the linked text sections.
6740 const unsigned char* ps = pshdrs + shdr_size;
6741 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6743 elfcpp::Shdr<32, big_endian> shdr(ps);
6744 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6746 // Found an .ARM.exidx section, add it to the set of reachable
6747 // sections from its linked text section.
6748 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6749 symtab->gc()->add_reference(this, text_shndx, this, i);
6754 // Update output local symbol count. Owing to EXIDX entry merging, some local
6755 // symbols will be removed in output. Adjust output local symbol count
6756 // accordingly. We can only changed the static output local symbol count. It
6757 // is too late to change the dynamic symbols.
6759 template<bool big_endian>
6760 void
6761 Arm_relobj<big_endian>::update_output_local_symbol_count()
6763 // Caller should check that this needs updating. We want caller checking
6764 // because output_local_symbol_count_needs_update() is most likely inlined.
6765 gold_assert(this->output_local_symbol_count_needs_update_);
6767 gold_assert(this->symtab_shndx() != -1U);
6768 if (this->symtab_shndx() == 0)
6770 // This object has no symbols. Weird but legal.
6771 return;
6774 // Read the symbol table section header.
6775 const unsigned int symtab_shndx = this->symtab_shndx();
6776 elfcpp::Shdr<32, big_endian>
6777 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6778 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6780 // Read the local symbols.
6781 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6782 const unsigned int loccount = this->local_symbol_count();
6783 gold_assert(loccount == symtabshdr.get_sh_info());
6784 off_t locsize = loccount * sym_size;
6785 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6786 locsize, true, true);
6788 // Loop over the local symbols.
6790 typedef typename Sized_relobj<32, big_endian>::Output_sections
6791 Output_sections;
6792 const Output_sections& out_sections(this->output_sections());
6793 unsigned int shnum = this->shnum();
6794 unsigned int count = 0;
6795 // Skip the first, dummy, symbol.
6796 psyms += sym_size;
6797 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6799 elfcpp::Sym<32, big_endian> sym(psyms);
6801 Symbol_value<32>& lv((*this->local_values())[i]);
6803 // This local symbol was already discarded by do_count_local_symbols.
6804 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6805 continue;
6807 bool is_ordinary;
6808 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6809 &is_ordinary);
6811 if (shndx < shnum)
6813 Output_section* os = out_sections[shndx];
6815 // This local symbol no longer has an output section. Discard it.
6816 if (os == NULL)
6818 lv.set_no_output_symtab_entry();
6819 continue;
6822 // Currently we only discard parts of EXIDX input sections.
6823 // We explicitly check for a merged EXIDX input section to avoid
6824 // calling Output_section_data::output_offset unless necessary.
6825 if ((this->get_output_section_offset(shndx) == invalid_address)
6826 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6828 section_offset_type output_offset =
6829 os->output_offset(this, shndx, lv.input_value());
6830 if (output_offset == -1)
6832 // This symbol is defined in a part of an EXIDX input section
6833 // that is discarded due to entry merging.
6834 lv.set_no_output_symtab_entry();
6835 continue;
6840 ++count;
6843 this->set_output_local_symbol_count(count);
6844 this->output_local_symbol_count_needs_update_ = false;
6847 // Arm_dynobj methods.
6849 // Read the symbol information.
6851 template<bool big_endian>
6852 void
6853 Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6855 // Call parent class to read symbol information.
6856 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6858 // Read processor-specific flags in ELF file header.
6859 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6860 elfcpp::Elf_sizes<32>::ehdr_size,
6861 true, false);
6862 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6863 this->processor_specific_flags_ = ehdr.get_e_flags();
6865 // Read the attributes section if there is one.
6866 // We read from the end because gas seems to put it near the end of
6867 // the section headers.
6868 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6869 const unsigned char *ps =
6870 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6871 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6873 elfcpp::Shdr<32, big_endian> shdr(ps);
6874 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6876 section_offset_type section_offset = shdr.get_sh_offset();
6877 section_size_type section_size =
6878 convert_to_section_size_type(shdr.get_sh_size());
6879 File_view* view = this->get_lasting_view(section_offset,
6880 section_size, true, false);
6881 this->attributes_section_data_ =
6882 new Attributes_section_data(view->data(), section_size);
6883 break;
6888 // Stub_addend_reader methods.
6890 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6892 template<bool big_endian>
6893 elfcpp::Elf_types<32>::Elf_Swxword
6894 Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6895 unsigned int r_type,
6896 const unsigned char* view,
6897 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6899 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6901 switch (r_type)
6903 case elfcpp::R_ARM_CALL:
6904 case elfcpp::R_ARM_JUMP24:
6905 case elfcpp::R_ARM_PLT32:
6907 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6908 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6909 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6910 return utils::sign_extend<26>(val << 2);
6913 case elfcpp::R_ARM_THM_CALL:
6914 case elfcpp::R_ARM_THM_JUMP24:
6915 case elfcpp::R_ARM_THM_XPC22:
6917 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6918 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6919 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6920 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6921 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
6924 case elfcpp::R_ARM_THM_JUMP19:
6926 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6927 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6928 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6929 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
6930 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
6933 default:
6934 gold_unreachable();
6938 // Arm_output_data_got methods.
6940 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6941 // The first one is initialized to be 1, which is the module index for
6942 // the main executable and the second one 0. A reloc of the type
6943 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6944 // be applied by gold. GSYM is a global symbol.
6946 template<bool big_endian>
6947 void
6948 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6949 unsigned int got_type,
6950 Symbol* gsym)
6952 if (gsym->has_got_offset(got_type))
6953 return;
6955 // We are doing a static link. Just mark it as belong to module 1,
6956 // the executable.
6957 unsigned int got_offset = this->add_constant(1);
6958 gsym->set_got_offset(got_type, got_offset);
6959 got_offset = this->add_constant(0);
6960 this->static_relocs_.push_back(Static_reloc(got_offset,
6961 elfcpp::R_ARM_TLS_DTPOFF32,
6962 gsym));
6965 // Same as the above but for a local symbol.
6967 template<bool big_endian>
6968 void
6969 Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6970 unsigned int got_type,
6971 Sized_relobj<32, big_endian>* object,
6972 unsigned int index)
6974 if (object->local_has_got_offset(index, got_type))
6975 return;
6977 // We are doing a static link. Just mark it as belong to module 1,
6978 // the executable.
6979 unsigned int got_offset = this->add_constant(1);
6980 object->set_local_got_offset(index, got_type, got_offset);
6981 got_offset = this->add_constant(0);
6982 this->static_relocs_.push_back(Static_reloc(got_offset,
6983 elfcpp::R_ARM_TLS_DTPOFF32,
6984 object, index));
6987 template<bool big_endian>
6988 void
6989 Arm_output_data_got<big_endian>::do_write(Output_file* of)
6991 // Call parent to write out GOT.
6992 Output_data_got<32, big_endian>::do_write(of);
6994 // We are done if there is no fix up.
6995 if (this->static_relocs_.empty())
6996 return;
6998 gold_assert(parameters->doing_static_link());
7000 const off_t offset = this->offset();
7001 const section_size_type oview_size =
7002 convert_to_section_size_type(this->data_size());
7003 unsigned char* const oview = of->get_output_view(offset, oview_size);
7005 Output_segment* tls_segment = this->layout_->tls_segment();
7006 gold_assert(tls_segment != NULL);
7008 // The thread pointer $tp points to the TCB, which is followed by the
7009 // TLS. So we need to adjust $tp relative addressing by this amount.
7010 Arm_address aligned_tcb_size =
7011 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7013 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7015 Static_reloc& reloc(this->static_relocs_[i]);
7017 Arm_address value;
7018 if (!reloc.symbol_is_global())
7020 Sized_relobj<32, big_endian>* object = reloc.relobj();
7021 const Symbol_value<32>* psymval =
7022 reloc.relobj()->local_symbol(reloc.index());
7024 // We are doing static linking. Issue an error and skip this
7025 // relocation if the symbol is undefined or in a discarded_section.
7026 bool is_ordinary;
7027 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7028 if ((shndx == elfcpp::SHN_UNDEF)
7029 || (is_ordinary
7030 && shndx != elfcpp::SHN_UNDEF
7031 && !object->is_section_included(shndx)
7032 && !this->symbol_table_->is_section_folded(object, shndx)))
7034 gold_error(_("undefined or discarded local symbol %u from "
7035 " object %s in GOT"),
7036 reloc.index(), reloc.relobj()->name().c_str());
7037 continue;
7040 value = psymval->value(object, 0);
7042 else
7044 const Symbol* gsym = reloc.symbol();
7045 gold_assert(gsym != NULL);
7046 if (gsym->is_forwarder())
7047 gsym = this->symbol_table_->resolve_forwards(gsym);
7049 // We are doing static linking. Issue an error and skip this
7050 // relocation if the symbol is undefined or in a discarded_section
7051 // unless it is a weakly_undefined symbol.
7052 if ((gsym->is_defined_in_discarded_section()
7053 || gsym->is_undefined())
7054 && !gsym->is_weak_undefined())
7056 gold_error(_("undefined or discarded symbol %s in GOT"),
7057 gsym->name());
7058 continue;
7061 if (!gsym->is_weak_undefined())
7063 const Sized_symbol<32>* sym =
7064 static_cast<const Sized_symbol<32>*>(gsym);
7065 value = sym->value();
7067 else
7068 value = 0;
7071 unsigned got_offset = reloc.got_offset();
7072 gold_assert(got_offset < oview_size);
7074 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7075 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7076 Valtype x;
7077 switch (reloc.r_type())
7079 case elfcpp::R_ARM_TLS_DTPOFF32:
7080 x = value;
7081 break;
7082 case elfcpp::R_ARM_TLS_TPOFF32:
7083 x = value + aligned_tcb_size;
7084 break;
7085 default:
7086 gold_unreachable();
7088 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7091 of->write_output_view(offset, oview_size, oview);
7094 // A class to handle the PLT data.
7096 template<bool big_endian>
7097 class Output_data_plt_arm : public Output_section_data
7099 public:
7100 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7101 Reloc_section;
7103 Output_data_plt_arm(Layout*, Output_data_space*);
7105 // Add an entry to the PLT.
7106 void
7107 add_entry(Symbol* gsym);
7109 // Return the .rel.plt section data.
7110 const Reloc_section*
7111 rel_plt() const
7112 { return this->rel_; }
7114 protected:
7115 void
7116 do_adjust_output_section(Output_section* os);
7118 // Write to a map file.
7119 void
7120 do_print_to_mapfile(Mapfile* mapfile) const
7121 { mapfile->print_output_data(this, _("** PLT")); }
7123 private:
7124 // Template for the first PLT entry.
7125 static const uint32_t first_plt_entry[5];
7127 // Template for subsequent PLT entries.
7128 static const uint32_t plt_entry[3];
7130 // Set the final size.
7131 void
7132 set_final_data_size()
7134 this->set_data_size(sizeof(first_plt_entry)
7135 + this->count_ * sizeof(plt_entry));
7138 // Write out the PLT data.
7139 void
7140 do_write(Output_file*);
7142 // The reloc section.
7143 Reloc_section* rel_;
7144 // The .got.plt section.
7145 Output_data_space* got_plt_;
7146 // The number of PLT entries.
7147 unsigned int count_;
7150 // Create the PLT section. The ordinary .got section is an argument,
7151 // since we need to refer to the start. We also create our own .got
7152 // section just for PLT entries.
7154 template<bool big_endian>
7155 Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7156 Output_data_space* got_plt)
7157 : Output_section_data(4), got_plt_(got_plt), count_(0)
7159 this->rel_ = new Reloc_section(false);
7160 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7161 elfcpp::SHF_ALLOC, this->rel_,
7162 ORDER_DYNAMIC_PLT_RELOCS, false);
7165 template<bool big_endian>
7166 void
7167 Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7169 os->set_entsize(0);
7172 // Add an entry to the PLT.
7174 template<bool big_endian>
7175 void
7176 Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7178 gold_assert(!gsym->has_plt_offset());
7180 // Note that when setting the PLT offset we skip the initial
7181 // reserved PLT entry.
7182 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7183 + sizeof(first_plt_entry));
7185 ++this->count_;
7187 section_offset_type got_offset = this->got_plt_->current_data_size();
7189 // Every PLT entry needs a GOT entry which points back to the PLT
7190 // entry (this will be changed by the dynamic linker, normally
7191 // lazily when the function is called).
7192 this->got_plt_->set_current_data_size(got_offset + 4);
7194 // Every PLT entry needs a reloc.
7195 gsym->set_needs_dynsym_entry();
7196 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7197 got_offset);
7199 // Note that we don't need to save the symbol. The contents of the
7200 // PLT are independent of which symbols are used. The symbols only
7201 // appear in the relocations.
7204 // ARM PLTs.
7205 // FIXME: This is not very flexible. Right now this has only been tested
7206 // on armv5te. If we are to support additional architecture features like
7207 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7209 // The first entry in the PLT.
7210 template<bool big_endian>
7211 const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7213 0xe52de004, // str lr, [sp, #-4]!
7214 0xe59fe004, // ldr lr, [pc, #4]
7215 0xe08fe00e, // add lr, pc, lr
7216 0xe5bef008, // ldr pc, [lr, #8]!
7217 0x00000000, // &GOT[0] - .
7220 // Subsequent entries in the PLT.
7222 template<bool big_endian>
7223 const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7225 0xe28fc600, // add ip, pc, #0xNN00000
7226 0xe28cca00, // add ip, ip, #0xNN000
7227 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7230 // Write out the PLT. This uses the hand-coded instructions above,
7231 // and adjusts them as needed. This is all specified by the arm ELF
7232 // Processor Supplement.
7234 template<bool big_endian>
7235 void
7236 Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7238 const off_t offset = this->offset();
7239 const section_size_type oview_size =
7240 convert_to_section_size_type(this->data_size());
7241 unsigned char* const oview = of->get_output_view(offset, oview_size);
7243 const off_t got_file_offset = this->got_plt_->offset();
7244 const section_size_type got_size =
7245 convert_to_section_size_type(this->got_plt_->data_size());
7246 unsigned char* const got_view = of->get_output_view(got_file_offset,
7247 got_size);
7248 unsigned char* pov = oview;
7250 Arm_address plt_address = this->address();
7251 Arm_address got_address = this->got_plt_->address();
7253 // Write first PLT entry. All but the last word are constants.
7254 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7255 / sizeof(plt_entry[0]));
7256 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7257 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7258 // Last word in first PLT entry is &GOT[0] - .
7259 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7260 got_address - (plt_address + 16));
7261 pov += sizeof(first_plt_entry);
7263 unsigned char* got_pov = got_view;
7265 memset(got_pov, 0, 12);
7266 got_pov += 12;
7268 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7269 unsigned int plt_offset = sizeof(first_plt_entry);
7270 unsigned int plt_rel_offset = 0;
7271 unsigned int got_offset = 12;
7272 const unsigned int count = this->count_;
7273 for (unsigned int i = 0;
7274 i < count;
7275 ++i,
7276 pov += sizeof(plt_entry),
7277 got_pov += 4,
7278 plt_offset += sizeof(plt_entry),
7279 plt_rel_offset += rel_size,
7280 got_offset += 4)
7282 // Set and adjust the PLT entry itself.
7283 int32_t offset = ((got_address + got_offset)
7284 - (plt_address + plt_offset + 8));
7286 gold_assert(offset >= 0 && offset < 0x0fffffff);
7287 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7288 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7289 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7290 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7291 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7292 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7294 // Set the entry in the GOT.
7295 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7298 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7299 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7301 of->write_output_view(offset, oview_size, oview);
7302 of->write_output_view(got_file_offset, got_size, got_view);
7305 // Create a PLT entry for a global symbol.
7307 template<bool big_endian>
7308 void
7309 Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7310 Symbol* gsym)
7312 if (gsym->has_plt_offset())
7313 return;
7315 if (this->plt_ == NULL)
7317 // Create the GOT sections first.
7318 this->got_section(symtab, layout);
7320 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7321 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7322 (elfcpp::SHF_ALLOC
7323 | elfcpp::SHF_EXECINSTR),
7324 this->plt_, ORDER_PLT, false);
7326 this->plt_->add_entry(gsym);
7329 // Get the section to use for TLS_DESC relocations.
7331 template<bool big_endian>
7332 typename Target_arm<big_endian>::Reloc_section*
7333 Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7335 return this->plt_section()->rel_tls_desc(layout);
7338 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7340 template<bool big_endian>
7341 void
7342 Target_arm<big_endian>::define_tls_base_symbol(
7343 Symbol_table* symtab,
7344 Layout* layout)
7346 if (this->tls_base_symbol_defined_)
7347 return;
7349 Output_segment* tls_segment = layout->tls_segment();
7350 if (tls_segment != NULL)
7352 bool is_exec = parameters->options().output_is_executable();
7353 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7354 Symbol_table::PREDEFINED,
7355 tls_segment, 0, 0,
7356 elfcpp::STT_TLS,
7357 elfcpp::STB_LOCAL,
7358 elfcpp::STV_HIDDEN, 0,
7359 (is_exec
7360 ? Symbol::SEGMENT_END
7361 : Symbol::SEGMENT_START),
7362 true);
7364 this->tls_base_symbol_defined_ = true;
7367 // Create a GOT entry for the TLS module index.
7369 template<bool big_endian>
7370 unsigned int
7371 Target_arm<big_endian>::got_mod_index_entry(
7372 Symbol_table* symtab,
7373 Layout* layout,
7374 Sized_relobj<32, big_endian>* object)
7376 if (this->got_mod_index_offset_ == -1U)
7378 gold_assert(symtab != NULL && layout != NULL && object != NULL);
7379 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7380 unsigned int got_offset;
7381 if (!parameters->doing_static_link())
7383 got_offset = got->add_constant(0);
7384 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7385 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7386 got_offset);
7388 else
7390 // We are doing a static link. Just mark it as belong to module 1,
7391 // the executable.
7392 got_offset = got->add_constant(1);
7395 got->add_constant(0);
7396 this->got_mod_index_offset_ = got_offset;
7398 return this->got_mod_index_offset_;
7401 // Optimize the TLS relocation type based on what we know about the
7402 // symbol. IS_FINAL is true if the final address of this symbol is
7403 // known at link time.
7405 template<bool big_endian>
7406 tls::Tls_optimization
7407 Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7409 // FIXME: Currently we do not do any TLS optimization.
7410 return tls::TLSOPT_NONE;
7413 // Report an unsupported relocation against a local symbol.
7415 template<bool big_endian>
7416 void
7417 Target_arm<big_endian>::Scan::unsupported_reloc_local(
7418 Sized_relobj<32, big_endian>* object,
7419 unsigned int r_type)
7421 gold_error(_("%s: unsupported reloc %u against local symbol"),
7422 object->name().c_str(), r_type);
7425 // We are about to emit a dynamic relocation of type R_TYPE. If the
7426 // dynamic linker does not support it, issue an error. The GNU linker
7427 // only issues a non-PIC error for an allocated read-only section.
7428 // Here we know the section is allocated, but we don't know that it is
7429 // read-only. But we check for all the relocation types which the
7430 // glibc dynamic linker supports, so it seems appropriate to issue an
7431 // error even if the section is not read-only.
7433 template<bool big_endian>
7434 void
7435 Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7436 unsigned int r_type)
7438 switch (r_type)
7440 // These are the relocation types supported by glibc for ARM.
7441 case elfcpp::R_ARM_RELATIVE:
7442 case elfcpp::R_ARM_COPY:
7443 case elfcpp::R_ARM_GLOB_DAT:
7444 case elfcpp::R_ARM_JUMP_SLOT:
7445 case elfcpp::R_ARM_ABS32:
7446 case elfcpp::R_ARM_ABS32_NOI:
7447 case elfcpp::R_ARM_PC24:
7448 // FIXME: The following 3 types are not supported by Android's dynamic
7449 // linker.
7450 case elfcpp::R_ARM_TLS_DTPMOD32:
7451 case elfcpp::R_ARM_TLS_DTPOFF32:
7452 case elfcpp::R_ARM_TLS_TPOFF32:
7453 return;
7455 default:
7457 // This prevents us from issuing more than one error per reloc
7458 // section. But we can still wind up issuing more than one
7459 // error per object file.
7460 if (this->issued_non_pic_error_)
7461 return;
7462 const Arm_reloc_property* reloc_property =
7463 arm_reloc_property_table->get_reloc_property(r_type);
7464 gold_assert(reloc_property != NULL);
7465 object->error(_("requires unsupported dynamic reloc %s; "
7466 "recompile with -fPIC"),
7467 reloc_property->name().c_str());
7468 this->issued_non_pic_error_ = true;
7469 return;
7472 case elfcpp::R_ARM_NONE:
7473 gold_unreachable();
7477 // Scan a relocation for a local symbol.
7478 // FIXME: This only handles a subset of relocation types used by Android
7479 // on ARM v5te devices.
7481 template<bool big_endian>
7482 inline void
7483 Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7484 Layout* layout,
7485 Target_arm* target,
7486 Sized_relobj<32, big_endian>* object,
7487 unsigned int data_shndx,
7488 Output_section* output_section,
7489 const elfcpp::Rel<32, big_endian>& reloc,
7490 unsigned int r_type,
7491 const elfcpp::Sym<32, big_endian>& lsym)
7493 r_type = get_real_reloc_type(r_type);
7494 switch (r_type)
7496 case elfcpp::R_ARM_NONE:
7497 case elfcpp::R_ARM_V4BX:
7498 case elfcpp::R_ARM_GNU_VTENTRY:
7499 case elfcpp::R_ARM_GNU_VTINHERIT:
7500 break;
7502 case elfcpp::R_ARM_ABS32:
7503 case elfcpp::R_ARM_ABS32_NOI:
7504 // If building a shared library (or a position-independent
7505 // executable), we need to create a dynamic relocation for
7506 // this location. The relocation applied at link time will
7507 // apply the link-time value, so we flag the location with
7508 // an R_ARM_RELATIVE relocation so the dynamic loader can
7509 // relocate it easily.
7510 if (parameters->options().output_is_position_independent())
7512 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7513 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7514 // If we are to add more other reloc types than R_ARM_ABS32,
7515 // we need to add check_non_pic(object, r_type) here.
7516 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7517 output_section, data_shndx,
7518 reloc.get_r_offset());
7520 break;
7522 case elfcpp::R_ARM_ABS16:
7523 case elfcpp::R_ARM_ABS12:
7524 case elfcpp::R_ARM_THM_ABS5:
7525 case elfcpp::R_ARM_ABS8:
7526 case elfcpp::R_ARM_BASE_ABS:
7527 case elfcpp::R_ARM_MOVW_ABS_NC:
7528 case elfcpp::R_ARM_MOVT_ABS:
7529 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7530 case elfcpp::R_ARM_THM_MOVT_ABS:
7531 // If building a shared library (or a position-independent
7532 // executable), we need to create a dynamic relocation for
7533 // this location. Because the addend needs to remain in the
7534 // data section, we need to be careful not to apply this
7535 // relocation statically.
7536 if (parameters->options().output_is_position_independent())
7538 check_non_pic(object, r_type);
7539 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7540 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7541 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7542 rel_dyn->add_local(object, r_sym, r_type, output_section,
7543 data_shndx, reloc.get_r_offset());
7544 else
7546 gold_assert(lsym.get_st_value() == 0);
7547 unsigned int shndx = lsym.get_st_shndx();
7548 bool is_ordinary;
7549 shndx = object->adjust_sym_shndx(r_sym, shndx,
7550 &is_ordinary);
7551 if (!is_ordinary)
7552 object->error(_("section symbol %u has bad shndx %u"),
7553 r_sym, shndx);
7554 else
7555 rel_dyn->add_local_section(object, shndx,
7556 r_type, output_section,
7557 data_shndx, reloc.get_r_offset());
7560 break;
7562 case elfcpp::R_ARM_PC24:
7563 case elfcpp::R_ARM_REL32:
7564 case elfcpp::R_ARM_LDR_PC_G0:
7565 case elfcpp::R_ARM_SBREL32:
7566 case elfcpp::R_ARM_THM_CALL:
7567 case elfcpp::R_ARM_THM_PC8:
7568 case elfcpp::R_ARM_BASE_PREL:
7569 case elfcpp::R_ARM_PLT32:
7570 case elfcpp::R_ARM_CALL:
7571 case elfcpp::R_ARM_JUMP24:
7572 case elfcpp::R_ARM_THM_JUMP24:
7573 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7574 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7575 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7576 case elfcpp::R_ARM_SBREL31:
7577 case elfcpp::R_ARM_PREL31:
7578 case elfcpp::R_ARM_MOVW_PREL_NC:
7579 case elfcpp::R_ARM_MOVT_PREL:
7580 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7581 case elfcpp::R_ARM_THM_MOVT_PREL:
7582 case elfcpp::R_ARM_THM_JUMP19:
7583 case elfcpp::R_ARM_THM_JUMP6:
7584 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7585 case elfcpp::R_ARM_THM_PC12:
7586 case elfcpp::R_ARM_REL32_NOI:
7587 case elfcpp::R_ARM_ALU_PC_G0_NC:
7588 case elfcpp::R_ARM_ALU_PC_G0:
7589 case elfcpp::R_ARM_ALU_PC_G1_NC:
7590 case elfcpp::R_ARM_ALU_PC_G1:
7591 case elfcpp::R_ARM_ALU_PC_G2:
7592 case elfcpp::R_ARM_LDR_PC_G1:
7593 case elfcpp::R_ARM_LDR_PC_G2:
7594 case elfcpp::R_ARM_LDRS_PC_G0:
7595 case elfcpp::R_ARM_LDRS_PC_G1:
7596 case elfcpp::R_ARM_LDRS_PC_G2:
7597 case elfcpp::R_ARM_LDC_PC_G0:
7598 case elfcpp::R_ARM_LDC_PC_G1:
7599 case elfcpp::R_ARM_LDC_PC_G2:
7600 case elfcpp::R_ARM_ALU_SB_G0_NC:
7601 case elfcpp::R_ARM_ALU_SB_G0:
7602 case elfcpp::R_ARM_ALU_SB_G1_NC:
7603 case elfcpp::R_ARM_ALU_SB_G1:
7604 case elfcpp::R_ARM_ALU_SB_G2:
7605 case elfcpp::R_ARM_LDR_SB_G0:
7606 case elfcpp::R_ARM_LDR_SB_G1:
7607 case elfcpp::R_ARM_LDR_SB_G2:
7608 case elfcpp::R_ARM_LDRS_SB_G0:
7609 case elfcpp::R_ARM_LDRS_SB_G1:
7610 case elfcpp::R_ARM_LDRS_SB_G2:
7611 case elfcpp::R_ARM_LDC_SB_G0:
7612 case elfcpp::R_ARM_LDC_SB_G1:
7613 case elfcpp::R_ARM_LDC_SB_G2:
7614 case elfcpp::R_ARM_MOVW_BREL_NC:
7615 case elfcpp::R_ARM_MOVT_BREL:
7616 case elfcpp::R_ARM_MOVW_BREL:
7617 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7618 case elfcpp::R_ARM_THM_MOVT_BREL:
7619 case elfcpp::R_ARM_THM_MOVW_BREL:
7620 case elfcpp::R_ARM_THM_JUMP11:
7621 case elfcpp::R_ARM_THM_JUMP8:
7622 // We don't need to do anything for a relative addressing relocation
7623 // against a local symbol if it does not reference the GOT.
7624 break;
7626 case elfcpp::R_ARM_GOTOFF32:
7627 case elfcpp::R_ARM_GOTOFF12:
7628 // We need a GOT section:
7629 target->got_section(symtab, layout);
7630 break;
7632 case elfcpp::R_ARM_GOT_BREL:
7633 case elfcpp::R_ARM_GOT_PREL:
7635 // The symbol requires a GOT entry.
7636 Arm_output_data_got<big_endian>* got =
7637 target->got_section(symtab, layout);
7638 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7639 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7641 // If we are generating a shared object, we need to add a
7642 // dynamic RELATIVE relocation for this symbol's GOT entry.
7643 if (parameters->options().output_is_position_independent())
7645 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7646 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7647 rel_dyn->add_local_relative(
7648 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7649 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7653 break;
7655 case elfcpp::R_ARM_TARGET1:
7656 case elfcpp::R_ARM_TARGET2:
7657 // This should have been mapped to another type already.
7658 // Fall through.
7659 case elfcpp::R_ARM_COPY:
7660 case elfcpp::R_ARM_GLOB_DAT:
7661 case elfcpp::R_ARM_JUMP_SLOT:
7662 case elfcpp::R_ARM_RELATIVE:
7663 // These are relocations which should only be seen by the
7664 // dynamic linker, and should never be seen here.
7665 gold_error(_("%s: unexpected reloc %u in object file"),
7666 object->name().c_str(), r_type);
7667 break;
7670 // These are initial TLS relocs, which are expected when
7671 // linking.
7672 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7673 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7674 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7675 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7676 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7678 bool output_is_shared = parameters->options().shared();
7679 const tls::Tls_optimization optimized_type
7680 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7681 r_type);
7682 switch (r_type)
7684 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7685 if (optimized_type == tls::TLSOPT_NONE)
7687 // Create a pair of GOT entries for the module index and
7688 // dtv-relative offset.
7689 Arm_output_data_got<big_endian>* got
7690 = target->got_section(symtab, layout);
7691 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7692 unsigned int shndx = lsym.get_st_shndx();
7693 bool is_ordinary;
7694 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7695 if (!is_ordinary)
7697 object->error(_("local symbol %u has bad shndx %u"),
7698 r_sym, shndx);
7699 break;
7702 if (!parameters->doing_static_link())
7703 got->add_local_pair_with_rel(object, r_sym, shndx,
7704 GOT_TYPE_TLS_PAIR,
7705 target->rel_dyn_section(layout),
7706 elfcpp::R_ARM_TLS_DTPMOD32, 0);
7707 else
7708 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7709 object, r_sym);
7711 else
7712 // FIXME: TLS optimization not supported yet.
7713 gold_unreachable();
7714 break;
7716 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7717 if (optimized_type == tls::TLSOPT_NONE)
7719 // Create a GOT entry for the module index.
7720 target->got_mod_index_entry(symtab, layout, object);
7722 else
7723 // FIXME: TLS optimization not supported yet.
7724 gold_unreachable();
7725 break;
7727 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7728 break;
7730 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7731 layout->set_has_static_tls();
7732 if (optimized_type == tls::TLSOPT_NONE)
7734 // Create a GOT entry for the tp-relative offset.
7735 Arm_output_data_got<big_endian>* got
7736 = target->got_section(symtab, layout);
7737 unsigned int r_sym =
7738 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7739 if (!parameters->doing_static_link())
7740 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7741 target->rel_dyn_section(layout),
7742 elfcpp::R_ARM_TLS_TPOFF32);
7743 else if (!object->local_has_got_offset(r_sym,
7744 GOT_TYPE_TLS_OFFSET))
7746 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7747 unsigned int got_offset =
7748 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7749 got->add_static_reloc(got_offset,
7750 elfcpp::R_ARM_TLS_TPOFF32, object,
7751 r_sym);
7754 else
7755 // FIXME: TLS optimization not supported yet.
7756 gold_unreachable();
7757 break;
7759 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7760 layout->set_has_static_tls();
7761 if (output_is_shared)
7763 // We need to create a dynamic relocation.
7764 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7765 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7766 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7767 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7768 output_section, data_shndx,
7769 reloc.get_r_offset());
7771 break;
7773 default:
7774 gold_unreachable();
7777 break;
7779 default:
7780 unsupported_reloc_local(object, r_type);
7781 break;
7785 // Report an unsupported relocation against a global symbol.
7787 template<bool big_endian>
7788 void
7789 Target_arm<big_endian>::Scan::unsupported_reloc_global(
7790 Sized_relobj<32, big_endian>* object,
7791 unsigned int r_type,
7792 Symbol* gsym)
7794 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7795 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7798 template<bool big_endian>
7799 inline bool
7800 Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
7801 unsigned int r_type)
7803 switch (r_type)
7805 case elfcpp::R_ARM_PC24:
7806 case elfcpp::R_ARM_THM_CALL:
7807 case elfcpp::R_ARM_PLT32:
7808 case elfcpp::R_ARM_CALL:
7809 case elfcpp::R_ARM_JUMP24:
7810 case elfcpp::R_ARM_THM_JUMP24:
7811 case elfcpp::R_ARM_SBREL31:
7812 case elfcpp::R_ARM_PREL31:
7813 case elfcpp::R_ARM_THM_JUMP19:
7814 case elfcpp::R_ARM_THM_JUMP6:
7815 case elfcpp::R_ARM_THM_JUMP11:
7816 case elfcpp::R_ARM_THM_JUMP8:
7817 // All the relocations above are branches except SBREL31 and PREL31.
7818 return false;
7820 default:
7821 // Be conservative and assume this is a function pointer.
7822 return true;
7826 template<bool big_endian>
7827 inline bool
7828 Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
7829 Symbol_table*,
7830 Layout*,
7831 Target_arm<big_endian>* target,
7832 Sized_relobj<32, big_endian>*,
7833 unsigned int,
7834 Output_section*,
7835 const elfcpp::Rel<32, big_endian>&,
7836 unsigned int r_type,
7837 const elfcpp::Sym<32, big_endian>&)
7839 r_type = target->get_real_reloc_type(r_type);
7840 return possible_function_pointer_reloc(r_type);
7843 template<bool big_endian>
7844 inline bool
7845 Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
7846 Symbol_table*,
7847 Layout*,
7848 Target_arm<big_endian>* target,
7849 Sized_relobj<32, big_endian>*,
7850 unsigned int,
7851 Output_section*,
7852 const elfcpp::Rel<32, big_endian>&,
7853 unsigned int r_type,
7854 Symbol* gsym)
7856 // GOT is not a function.
7857 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7858 return false;
7860 r_type = target->get_real_reloc_type(r_type);
7861 return possible_function_pointer_reloc(r_type);
7864 // Scan a relocation for a global symbol.
7866 template<bool big_endian>
7867 inline void
7868 Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
7869 Layout* layout,
7870 Target_arm* target,
7871 Sized_relobj<32, big_endian>* object,
7872 unsigned int data_shndx,
7873 Output_section* output_section,
7874 const elfcpp::Rel<32, big_endian>& reloc,
7875 unsigned int r_type,
7876 Symbol* gsym)
7878 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7879 // section. We check here to avoid creating a dynamic reloc against
7880 // _GLOBAL_OFFSET_TABLE_.
7881 if (!target->has_got_section()
7882 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7883 target->got_section(symtab, layout);
7885 r_type = get_real_reloc_type(r_type);
7886 switch (r_type)
7888 case elfcpp::R_ARM_NONE:
7889 case elfcpp::R_ARM_V4BX:
7890 case elfcpp::R_ARM_GNU_VTENTRY:
7891 case elfcpp::R_ARM_GNU_VTINHERIT:
7892 break;
7894 case elfcpp::R_ARM_ABS32:
7895 case elfcpp::R_ARM_ABS16:
7896 case elfcpp::R_ARM_ABS12:
7897 case elfcpp::R_ARM_THM_ABS5:
7898 case elfcpp::R_ARM_ABS8:
7899 case elfcpp::R_ARM_BASE_ABS:
7900 case elfcpp::R_ARM_MOVW_ABS_NC:
7901 case elfcpp::R_ARM_MOVT_ABS:
7902 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7903 case elfcpp::R_ARM_THM_MOVT_ABS:
7904 case elfcpp::R_ARM_ABS32_NOI:
7905 // Absolute addressing relocations.
7907 // Make a PLT entry if necessary.
7908 if (this->symbol_needs_plt_entry(gsym))
7910 target->make_plt_entry(symtab, layout, gsym);
7911 // Since this is not a PC-relative relocation, we may be
7912 // taking the address of a function. In that case we need to
7913 // set the entry in the dynamic symbol table to the address of
7914 // the PLT entry.
7915 if (gsym->is_from_dynobj() && !parameters->options().shared())
7916 gsym->set_needs_dynsym_value();
7918 // Make a dynamic relocation if necessary.
7919 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7921 if (gsym->may_need_copy_reloc())
7923 target->copy_reloc(symtab, layout, object,
7924 data_shndx, output_section, gsym, reloc);
7926 else if ((r_type == elfcpp::R_ARM_ABS32
7927 || r_type == elfcpp::R_ARM_ABS32_NOI)
7928 && gsym->can_use_relative_reloc(false))
7930 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7931 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7932 output_section, object,
7933 data_shndx, reloc.get_r_offset());
7935 else
7937 check_non_pic(object, r_type);
7938 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7939 rel_dyn->add_global(gsym, r_type, output_section, object,
7940 data_shndx, reloc.get_r_offset());
7944 break;
7946 case elfcpp::R_ARM_GOTOFF32:
7947 case elfcpp::R_ARM_GOTOFF12:
7948 // We need a GOT section.
7949 target->got_section(symtab, layout);
7950 break;
7952 case elfcpp::R_ARM_REL32:
7953 case elfcpp::R_ARM_LDR_PC_G0:
7954 case elfcpp::R_ARM_SBREL32:
7955 case elfcpp::R_ARM_THM_PC8:
7956 case elfcpp::R_ARM_BASE_PREL:
7957 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7958 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7959 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7960 case elfcpp::R_ARM_MOVW_PREL_NC:
7961 case elfcpp::R_ARM_MOVT_PREL:
7962 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7963 case elfcpp::R_ARM_THM_MOVT_PREL:
7964 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7965 case elfcpp::R_ARM_THM_PC12:
7966 case elfcpp::R_ARM_REL32_NOI:
7967 case elfcpp::R_ARM_ALU_PC_G0_NC:
7968 case elfcpp::R_ARM_ALU_PC_G0:
7969 case elfcpp::R_ARM_ALU_PC_G1_NC:
7970 case elfcpp::R_ARM_ALU_PC_G1:
7971 case elfcpp::R_ARM_ALU_PC_G2:
7972 case elfcpp::R_ARM_LDR_PC_G1:
7973 case elfcpp::R_ARM_LDR_PC_G2:
7974 case elfcpp::R_ARM_LDRS_PC_G0:
7975 case elfcpp::R_ARM_LDRS_PC_G1:
7976 case elfcpp::R_ARM_LDRS_PC_G2:
7977 case elfcpp::R_ARM_LDC_PC_G0:
7978 case elfcpp::R_ARM_LDC_PC_G1:
7979 case elfcpp::R_ARM_LDC_PC_G2:
7980 case elfcpp::R_ARM_ALU_SB_G0_NC:
7981 case elfcpp::R_ARM_ALU_SB_G0:
7982 case elfcpp::R_ARM_ALU_SB_G1_NC:
7983 case elfcpp::R_ARM_ALU_SB_G1:
7984 case elfcpp::R_ARM_ALU_SB_G2:
7985 case elfcpp::R_ARM_LDR_SB_G0:
7986 case elfcpp::R_ARM_LDR_SB_G1:
7987 case elfcpp::R_ARM_LDR_SB_G2:
7988 case elfcpp::R_ARM_LDRS_SB_G0:
7989 case elfcpp::R_ARM_LDRS_SB_G1:
7990 case elfcpp::R_ARM_LDRS_SB_G2:
7991 case elfcpp::R_ARM_LDC_SB_G0:
7992 case elfcpp::R_ARM_LDC_SB_G1:
7993 case elfcpp::R_ARM_LDC_SB_G2:
7994 case elfcpp::R_ARM_MOVW_BREL_NC:
7995 case elfcpp::R_ARM_MOVT_BREL:
7996 case elfcpp::R_ARM_MOVW_BREL:
7997 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7998 case elfcpp::R_ARM_THM_MOVT_BREL:
7999 case elfcpp::R_ARM_THM_MOVW_BREL:
8000 // Relative addressing relocations.
8002 // Make a dynamic relocation if necessary.
8003 int flags = Symbol::NON_PIC_REF;
8004 if (gsym->needs_dynamic_reloc(flags))
8006 if (target->may_need_copy_reloc(gsym))
8008 target->copy_reloc(symtab, layout, object,
8009 data_shndx, output_section, gsym, reloc);
8011 else
8013 check_non_pic(object, r_type);
8014 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8015 rel_dyn->add_global(gsym, r_type, output_section, object,
8016 data_shndx, reloc.get_r_offset());
8020 break;
8022 case elfcpp::R_ARM_PC24:
8023 case elfcpp::R_ARM_THM_CALL:
8024 case elfcpp::R_ARM_PLT32:
8025 case elfcpp::R_ARM_CALL:
8026 case elfcpp::R_ARM_JUMP24:
8027 case elfcpp::R_ARM_THM_JUMP24:
8028 case elfcpp::R_ARM_SBREL31:
8029 case elfcpp::R_ARM_PREL31:
8030 case elfcpp::R_ARM_THM_JUMP19:
8031 case elfcpp::R_ARM_THM_JUMP6:
8032 case elfcpp::R_ARM_THM_JUMP11:
8033 case elfcpp::R_ARM_THM_JUMP8:
8034 // All the relocation above are branches except for the PREL31 ones.
8035 // A PREL31 relocation can point to a personality function in a shared
8036 // library. In that case we want to use a PLT because we want to
8037 // call the personality routine and the dyanmic linkers we care about
8038 // do not support dynamic PREL31 relocations. An REL31 relocation may
8039 // point to a function whose unwinding behaviour is being described but
8040 // we will not mistakenly generate a PLT for that because we should use
8041 // a local section symbol.
8043 // If the symbol is fully resolved, this is just a relative
8044 // local reloc. Otherwise we need a PLT entry.
8045 if (gsym->final_value_is_known())
8046 break;
8047 // If building a shared library, we can also skip the PLT entry
8048 // if the symbol is defined in the output file and is protected
8049 // or hidden.
8050 if (gsym->is_defined()
8051 && !gsym->is_from_dynobj()
8052 && !gsym->is_preemptible())
8053 break;
8054 target->make_plt_entry(symtab, layout, gsym);
8055 break;
8057 case elfcpp::R_ARM_GOT_BREL:
8058 case elfcpp::R_ARM_GOT_ABS:
8059 case elfcpp::R_ARM_GOT_PREL:
8061 // The symbol requires a GOT entry.
8062 Arm_output_data_got<big_endian>* got =
8063 target->got_section(symtab, layout);
8064 if (gsym->final_value_is_known())
8065 got->add_global(gsym, GOT_TYPE_STANDARD);
8066 else
8068 // If this symbol is not fully resolved, we need to add a
8069 // GOT entry with a dynamic relocation.
8070 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8071 if (gsym->is_from_dynobj()
8072 || gsym->is_undefined()
8073 || gsym->is_preemptible())
8074 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8075 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8076 else
8078 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8079 rel_dyn->add_global_relative(
8080 gsym, elfcpp::R_ARM_RELATIVE, got,
8081 gsym->got_offset(GOT_TYPE_STANDARD));
8085 break;
8087 case elfcpp::R_ARM_TARGET1:
8088 case elfcpp::R_ARM_TARGET2:
8089 // These should have been mapped to other types already.
8090 // Fall through.
8091 case elfcpp::R_ARM_COPY:
8092 case elfcpp::R_ARM_GLOB_DAT:
8093 case elfcpp::R_ARM_JUMP_SLOT:
8094 case elfcpp::R_ARM_RELATIVE:
8095 // These are relocations which should only be seen by the
8096 // dynamic linker, and should never be seen here.
8097 gold_error(_("%s: unexpected reloc %u in object file"),
8098 object->name().c_str(), r_type);
8099 break;
8101 // These are initial tls relocs, which are expected when
8102 // linking.
8103 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8104 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8105 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8106 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8107 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8109 const bool is_final = gsym->final_value_is_known();
8110 const tls::Tls_optimization optimized_type
8111 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8112 switch (r_type)
8114 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8115 if (optimized_type == tls::TLSOPT_NONE)
8117 // Create a pair of GOT entries for the module index and
8118 // dtv-relative offset.
8119 Arm_output_data_got<big_endian>* got
8120 = target->got_section(symtab, layout);
8121 if (!parameters->doing_static_link())
8122 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8123 target->rel_dyn_section(layout),
8124 elfcpp::R_ARM_TLS_DTPMOD32,
8125 elfcpp::R_ARM_TLS_DTPOFF32);
8126 else
8127 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8129 else
8130 // FIXME: TLS optimization not supported yet.
8131 gold_unreachable();
8132 break;
8134 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8135 if (optimized_type == tls::TLSOPT_NONE)
8137 // Create a GOT entry for the module index.
8138 target->got_mod_index_entry(symtab, layout, object);
8140 else
8141 // FIXME: TLS optimization not supported yet.
8142 gold_unreachable();
8143 break;
8145 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8146 break;
8148 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8149 layout->set_has_static_tls();
8150 if (optimized_type == tls::TLSOPT_NONE)
8152 // Create a GOT entry for the tp-relative offset.
8153 Arm_output_data_got<big_endian>* got
8154 = target->got_section(symtab, layout);
8155 if (!parameters->doing_static_link())
8156 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8157 target->rel_dyn_section(layout),
8158 elfcpp::R_ARM_TLS_TPOFF32);
8159 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8161 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8162 unsigned int got_offset =
8163 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8164 got->add_static_reloc(got_offset,
8165 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8168 else
8169 // FIXME: TLS optimization not supported yet.
8170 gold_unreachable();
8171 break;
8173 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8174 layout->set_has_static_tls();
8175 if (parameters->options().shared())
8177 // We need to create a dynamic relocation.
8178 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8179 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8180 output_section, object,
8181 data_shndx, reloc.get_r_offset());
8183 break;
8185 default:
8186 gold_unreachable();
8189 break;
8191 default:
8192 unsupported_reloc_global(object, r_type, gsym);
8193 break;
8197 // Process relocations for gc.
8199 template<bool big_endian>
8200 void
8201 Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
8202 Layout* layout,
8203 Sized_relobj<32, big_endian>* object,
8204 unsigned int data_shndx,
8205 unsigned int,
8206 const unsigned char* prelocs,
8207 size_t reloc_count,
8208 Output_section* output_section,
8209 bool needs_special_offset_handling,
8210 size_t local_symbol_count,
8211 const unsigned char* plocal_symbols)
8213 typedef Target_arm<big_endian> Arm;
8214 typedef typename Target_arm<big_endian>::Scan Scan;
8216 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8217 typename Target_arm::Relocatable_size_for_reloc>(
8218 symtab,
8219 layout,
8220 this,
8221 object,
8222 data_shndx,
8223 prelocs,
8224 reloc_count,
8225 output_section,
8226 needs_special_offset_handling,
8227 local_symbol_count,
8228 plocal_symbols);
8231 // Scan relocations for a section.
8233 template<bool big_endian>
8234 void
8235 Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8236 Layout* layout,
8237 Sized_relobj<32, big_endian>* object,
8238 unsigned int data_shndx,
8239 unsigned int sh_type,
8240 const unsigned char* prelocs,
8241 size_t reloc_count,
8242 Output_section* output_section,
8243 bool needs_special_offset_handling,
8244 size_t local_symbol_count,
8245 const unsigned char* plocal_symbols)
8247 typedef typename Target_arm<big_endian>::Scan Scan;
8248 if (sh_type == elfcpp::SHT_RELA)
8250 gold_error(_("%s: unsupported RELA reloc section"),
8251 object->name().c_str());
8252 return;
8255 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8256 symtab,
8257 layout,
8258 this,
8259 object,
8260 data_shndx,
8261 prelocs,
8262 reloc_count,
8263 output_section,
8264 needs_special_offset_handling,
8265 local_symbol_count,
8266 plocal_symbols);
8269 // Finalize the sections.
8271 template<bool big_endian>
8272 void
8273 Target_arm<big_endian>::do_finalize_sections(
8274 Layout* layout,
8275 const Input_objects* input_objects,
8276 Symbol_table* symtab)
8278 bool merged_any_attributes = false;
8279 // Merge processor-specific flags.
8280 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8281 p != input_objects->relobj_end();
8282 ++p)
8284 Arm_relobj<big_endian>* arm_relobj =
8285 Arm_relobj<big_endian>::as_arm_relobj(*p);
8286 if (arm_relobj->merge_flags_and_attributes())
8288 this->merge_processor_specific_flags(
8289 arm_relobj->name(),
8290 arm_relobj->processor_specific_flags());
8291 this->merge_object_attributes(arm_relobj->name().c_str(),
8292 arm_relobj->attributes_section_data());
8293 merged_any_attributes = true;
8297 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8298 p != input_objects->dynobj_end();
8299 ++p)
8301 Arm_dynobj<big_endian>* arm_dynobj =
8302 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8303 this->merge_processor_specific_flags(
8304 arm_dynobj->name(),
8305 arm_dynobj->processor_specific_flags());
8306 this->merge_object_attributes(arm_dynobj->name().c_str(),
8307 arm_dynobj->attributes_section_data());
8308 merged_any_attributes = true;
8311 // Create an empty uninitialized attribute section if we still don't have it
8312 // at this moment. This happens if there is no attributes sections in all
8313 // inputs.
8314 if (this->attributes_section_data_ == NULL)
8315 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8317 // Check BLX use.
8318 const Object_attribute* cpu_arch_attr =
8319 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8320 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8321 this->set_may_use_blx(true);
8323 // Check if we need to use Cortex-A8 workaround.
8324 if (parameters->options().user_set_fix_cortex_a8())
8325 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8326 else
8328 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8329 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8330 // profile.
8331 const Object_attribute* cpu_arch_profile_attr =
8332 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8333 this->fix_cortex_a8_ =
8334 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8335 && (cpu_arch_profile_attr->int_value() == 'A'
8336 || cpu_arch_profile_attr->int_value() == 0));
8339 // Check if we can use V4BX interworking.
8340 // The V4BX interworking stub contains BX instruction,
8341 // which is not specified for some profiles.
8342 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8343 && !this->may_use_blx())
8344 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8345 "the target profile does not support BX instruction"));
8347 // Fill in some more dynamic tags.
8348 const Reloc_section* rel_plt = (this->plt_ == NULL
8349 ? NULL
8350 : this->plt_->rel_plt());
8351 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8352 this->rel_dyn_, true, false);
8354 // Emit any relocs we saved in an attempt to avoid generating COPY
8355 // relocs.
8356 if (this->copy_relocs_.any_saved_relocs())
8357 this->copy_relocs_.emit(this->rel_dyn_section(layout));
8359 // Handle the .ARM.exidx section.
8360 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8361 if (exidx_section != NULL
8362 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
8363 && !parameters->options().relocatable())
8365 // Create __exidx_start and __exdix_end symbols.
8366 symtab->define_in_output_data("__exidx_start", NULL,
8367 Symbol_table::PREDEFINED,
8368 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8369 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8370 false, true);
8371 symtab->define_in_output_data("__exidx_end", NULL,
8372 Symbol_table::PREDEFINED,
8373 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8374 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8375 true, true);
8377 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8378 // the .ARM.exidx section.
8379 if (!layout->script_options()->saw_phdrs_clause())
8381 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
8382 == NULL);
8383 Output_segment* exidx_segment =
8384 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8385 exidx_segment->add_output_section_to_nonload(exidx_section,
8386 elfcpp::PF_R);
8390 // Create an .ARM.attributes section if we have merged any attributes
8391 // from inputs.
8392 if (merged_any_attributes)
8394 Output_attributes_section_data* attributes_section =
8395 new Output_attributes_section_data(*this->attributes_section_data_);
8396 layout->add_output_section_data(".ARM.attributes",
8397 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8398 attributes_section, ORDER_INVALID,
8399 false);
8402 // Fix up links in section EXIDX headers.
8403 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8404 p != layout->section_list().end();
8405 ++p)
8406 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8408 Arm_output_section<big_endian>* os =
8409 Arm_output_section<big_endian>::as_arm_output_section(*p);
8410 os->set_exidx_section_link();
8414 // Return whether a direct absolute static relocation needs to be applied.
8415 // In cases where Scan::local() or Scan::global() has created
8416 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8417 // of the relocation is carried in the data, and we must not
8418 // apply the static relocation.
8420 template<bool big_endian>
8421 inline bool
8422 Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8423 const Sized_symbol<32>* gsym,
8424 int ref_flags,
8425 bool is_32bit,
8426 Output_section* output_section)
8428 // If the output section is not allocated, then we didn't call
8429 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8430 // the reloc here.
8431 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8432 return true;
8434 // For local symbols, we will have created a non-RELATIVE dynamic
8435 // relocation only if (a) the output is position independent,
8436 // (b) the relocation is absolute (not pc- or segment-relative), and
8437 // (c) the relocation is not 32 bits wide.
8438 if (gsym == NULL)
8439 return !(parameters->options().output_is_position_independent()
8440 && (ref_flags & Symbol::ABSOLUTE_REF)
8441 && !is_32bit);
8443 // For global symbols, we use the same helper routines used in the
8444 // scan pass. If we did not create a dynamic relocation, or if we
8445 // created a RELATIVE dynamic relocation, we should apply the static
8446 // relocation.
8447 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8448 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8449 && gsym->can_use_relative_reloc(ref_flags
8450 & Symbol::FUNCTION_CALL);
8451 return !has_dyn || is_rel;
8454 // Perform a relocation.
8456 template<bool big_endian>
8457 inline bool
8458 Target_arm<big_endian>::Relocate::relocate(
8459 const Relocate_info<32, big_endian>* relinfo,
8460 Target_arm* target,
8461 Output_section *output_section,
8462 size_t relnum,
8463 const elfcpp::Rel<32, big_endian>& rel,
8464 unsigned int r_type,
8465 const Sized_symbol<32>* gsym,
8466 const Symbol_value<32>* psymval,
8467 unsigned char* view,
8468 Arm_address address,
8469 section_size_type view_size)
8471 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8473 r_type = get_real_reloc_type(r_type);
8474 const Arm_reloc_property* reloc_property =
8475 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8476 if (reloc_property == NULL)
8478 std::string reloc_name =
8479 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8480 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8481 _("cannot relocate %s in object file"),
8482 reloc_name.c_str());
8483 return true;
8486 const Arm_relobj<big_endian>* object =
8487 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8489 // If the final branch target of a relocation is THUMB instruction, this
8490 // is 1. Otherwise it is 0.
8491 Arm_address thumb_bit = 0;
8492 Symbol_value<32> symval;
8493 bool is_weakly_undefined_without_plt = false;
8494 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8496 if (gsym != NULL)
8498 // This is a global symbol. Determine if we use PLT and if the
8499 // final target is THUMB.
8500 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8502 // This uses a PLT, change the symbol value.
8503 symval.set_output_value(target->plt_section()->address()
8504 + gsym->plt_offset());
8505 psymval = &symval;
8507 else if (gsym->is_weak_undefined())
8509 // This is a weakly undefined symbol and we do not use PLT
8510 // for this relocation. A branch targeting this symbol will
8511 // be converted into an NOP.
8512 is_weakly_undefined_without_plt = true;
8514 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8516 // This relocation uses the symbol value but the symbol is
8517 // undefined. Exit early and have the caller reporting an
8518 // error.
8519 return true;
8521 else
8523 // Set thumb bit if symbol:
8524 // -Has type STT_ARM_TFUNC or
8525 // -Has type STT_FUNC, is defined and with LSB in value set.
8526 thumb_bit =
8527 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8528 || (gsym->type() == elfcpp::STT_FUNC
8529 && !gsym->is_undefined()
8530 && ((psymval->value(object, 0) & 1) != 0)))
8532 : 0);
8535 else
8537 // This is a local symbol. Determine if the final target is THUMB.
8538 // We saved this information when all the local symbols were read.
8539 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8540 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8541 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8544 else
8546 // This is a fake relocation synthesized for a stub. It does not have
8547 // a real symbol. We just look at the LSB of the symbol value to
8548 // determine if the target is THUMB or not.
8549 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8552 // Strip LSB if this points to a THUMB target.
8553 if (thumb_bit != 0
8554 && reloc_property->uses_thumb_bit()
8555 && ((psymval->value(object, 0) & 1) != 0))
8557 Arm_address stripped_value =
8558 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8559 symval.set_output_value(stripped_value);
8560 psymval = &symval;
8563 // Get the GOT offset if needed.
8564 // The GOT pointer points to the end of the GOT section.
8565 // We need to subtract the size of the GOT section to get
8566 // the actual offset to use in the relocation.
8567 bool have_got_offset = false;
8568 unsigned int got_offset = 0;
8569 switch (r_type)
8571 case elfcpp::R_ARM_GOT_BREL:
8572 case elfcpp::R_ARM_GOT_PREL:
8573 if (gsym != NULL)
8575 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8576 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8577 - target->got_size());
8579 else
8581 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8582 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8583 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8584 - target->got_size());
8586 have_got_offset = true;
8587 break;
8589 default:
8590 break;
8593 // To look up relocation stubs, we need to pass the symbol table index of
8594 // a local symbol.
8595 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8597 // Get the addressing origin of the output segment defining the
8598 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8599 Arm_address sym_origin = 0;
8600 if (reloc_property->uses_symbol_base())
8602 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8603 // R_ARM_BASE_ABS with the NULL symbol will give the
8604 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8605 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8606 sym_origin = target->got_plt_section()->address();
8607 else if (gsym == NULL)
8608 sym_origin = 0;
8609 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8610 sym_origin = gsym->output_segment()->vaddr();
8611 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8612 sym_origin = gsym->output_data()->address();
8614 // TODO: Assumes the segment base to be zero for the global symbols
8615 // till the proper support for the segment-base-relative addressing
8616 // will be implemented. This is consistent with GNU ld.
8619 // For relative addressing relocation, find out the relative address base.
8620 Arm_address relative_address_base = 0;
8621 switch(reloc_property->relative_address_base())
8623 case Arm_reloc_property::RAB_NONE:
8624 // Relocations with relative address bases RAB_TLS and RAB_tp are
8625 // handled by relocate_tls. So we do not need to do anything here.
8626 case Arm_reloc_property::RAB_TLS:
8627 case Arm_reloc_property::RAB_tp:
8628 break;
8629 case Arm_reloc_property::RAB_B_S:
8630 relative_address_base = sym_origin;
8631 break;
8632 case Arm_reloc_property::RAB_GOT_ORG:
8633 relative_address_base = target->got_plt_section()->address();
8634 break;
8635 case Arm_reloc_property::RAB_P:
8636 relative_address_base = address;
8637 break;
8638 case Arm_reloc_property::RAB_Pa:
8639 relative_address_base = address & 0xfffffffcU;
8640 break;
8641 default:
8642 gold_unreachable();
8645 typename Arm_relocate_functions::Status reloc_status =
8646 Arm_relocate_functions::STATUS_OKAY;
8647 bool check_overflow = reloc_property->checks_overflow();
8648 switch (r_type)
8650 case elfcpp::R_ARM_NONE:
8651 break;
8653 case elfcpp::R_ARM_ABS8:
8654 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8655 output_section))
8656 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8657 break;
8659 case elfcpp::R_ARM_ABS12:
8660 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8661 output_section))
8662 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8663 break;
8665 case elfcpp::R_ARM_ABS16:
8666 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8667 output_section))
8668 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8669 break;
8671 case elfcpp::R_ARM_ABS32:
8672 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8673 output_section))
8674 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8675 thumb_bit);
8676 break;
8678 case elfcpp::R_ARM_ABS32_NOI:
8679 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8680 output_section))
8681 // No thumb bit for this relocation: (S + A)
8682 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8684 break;
8686 case elfcpp::R_ARM_MOVW_ABS_NC:
8687 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8688 output_section))
8689 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8690 0, thumb_bit,
8691 check_overflow);
8692 break;
8694 case elfcpp::R_ARM_MOVT_ABS:
8695 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8696 output_section))
8697 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
8698 break;
8700 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8701 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8702 output_section))
8703 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8704 0, thumb_bit, false);
8705 break;
8707 case elfcpp::R_ARM_THM_MOVT_ABS:
8708 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8709 output_section))
8710 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8711 psymval, 0);
8712 break;
8714 case elfcpp::R_ARM_MOVW_PREL_NC:
8715 case elfcpp::R_ARM_MOVW_BREL_NC:
8716 case elfcpp::R_ARM_MOVW_BREL:
8717 reloc_status =
8718 Arm_relocate_functions::movw(view, object, psymval,
8719 relative_address_base, thumb_bit,
8720 check_overflow);
8721 break;
8723 case elfcpp::R_ARM_MOVT_PREL:
8724 case elfcpp::R_ARM_MOVT_BREL:
8725 reloc_status =
8726 Arm_relocate_functions::movt(view, object, psymval,
8727 relative_address_base);
8728 break;
8730 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8731 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8732 case elfcpp::R_ARM_THM_MOVW_BREL:
8733 reloc_status =
8734 Arm_relocate_functions::thm_movw(view, object, psymval,
8735 relative_address_base,
8736 thumb_bit, check_overflow);
8737 break;
8739 case elfcpp::R_ARM_THM_MOVT_PREL:
8740 case elfcpp::R_ARM_THM_MOVT_BREL:
8741 reloc_status =
8742 Arm_relocate_functions::thm_movt(view, object, psymval,
8743 relative_address_base);
8744 break;
8746 case elfcpp::R_ARM_REL32:
8747 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8748 address, thumb_bit);
8749 break;
8751 case elfcpp::R_ARM_THM_ABS5:
8752 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8753 output_section))
8754 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8755 break;
8757 // Thumb long branches.
8758 case elfcpp::R_ARM_THM_CALL:
8759 case elfcpp::R_ARM_THM_XPC22:
8760 case elfcpp::R_ARM_THM_JUMP24:
8761 reloc_status =
8762 Arm_relocate_functions::thumb_branch_common(
8763 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8764 thumb_bit, is_weakly_undefined_without_plt);
8765 break;
8767 case elfcpp::R_ARM_GOTOFF32:
8769 Arm_address got_origin;
8770 got_origin = target->got_plt_section()->address();
8771 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
8772 got_origin, thumb_bit);
8774 break;
8776 case elfcpp::R_ARM_BASE_PREL:
8777 gold_assert(gsym != NULL);
8778 reloc_status =
8779 Arm_relocate_functions::base_prel(view, sym_origin, address);
8780 break;
8782 case elfcpp::R_ARM_BASE_ABS:
8784 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8785 output_section))
8786 break;
8788 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
8790 break;
8792 case elfcpp::R_ARM_GOT_BREL:
8793 gold_assert(have_got_offset);
8794 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8795 break;
8797 case elfcpp::R_ARM_GOT_PREL:
8798 gold_assert(have_got_offset);
8799 // Get the address origin for GOT PLT, which is allocated right
8800 // after the GOT section, to calculate an absolute address of
8801 // the symbol GOT entry (got_origin + got_offset).
8802 Arm_address got_origin;
8803 got_origin = target->got_plt_section()->address();
8804 reloc_status = Arm_relocate_functions::got_prel(view,
8805 got_origin + got_offset,
8806 address);
8807 break;
8809 case elfcpp::R_ARM_PLT32:
8810 case elfcpp::R_ARM_CALL:
8811 case elfcpp::R_ARM_JUMP24:
8812 case elfcpp::R_ARM_XPC25:
8813 gold_assert(gsym == NULL
8814 || gsym->has_plt_offset()
8815 || gsym->final_value_is_known()
8816 || (gsym->is_defined()
8817 && !gsym->is_from_dynobj()
8818 && !gsym->is_preemptible()));
8819 reloc_status =
8820 Arm_relocate_functions::arm_branch_common(
8821 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8822 thumb_bit, is_weakly_undefined_without_plt);
8823 break;
8825 case elfcpp::R_ARM_THM_JUMP19:
8826 reloc_status =
8827 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8828 thumb_bit);
8829 break;
8831 case elfcpp::R_ARM_THM_JUMP6:
8832 reloc_status =
8833 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8834 break;
8836 case elfcpp::R_ARM_THM_JUMP8:
8837 reloc_status =
8838 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8839 break;
8841 case elfcpp::R_ARM_THM_JUMP11:
8842 reloc_status =
8843 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8844 break;
8846 case elfcpp::R_ARM_PREL31:
8847 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
8848 address, thumb_bit);
8849 break;
8851 case elfcpp::R_ARM_V4BX:
8852 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8854 const bool is_v4bx_interworking =
8855 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8856 reloc_status =
8857 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8858 is_v4bx_interworking);
8860 break;
8862 case elfcpp::R_ARM_THM_PC8:
8863 reloc_status =
8864 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8865 break;
8867 case elfcpp::R_ARM_THM_PC12:
8868 reloc_status =
8869 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8870 break;
8872 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8873 reloc_status =
8874 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8875 thumb_bit);
8876 break;
8878 case elfcpp::R_ARM_ALU_PC_G0_NC:
8879 case elfcpp::R_ARM_ALU_PC_G0:
8880 case elfcpp::R_ARM_ALU_PC_G1_NC:
8881 case elfcpp::R_ARM_ALU_PC_G1:
8882 case elfcpp::R_ARM_ALU_PC_G2:
8883 case elfcpp::R_ARM_ALU_SB_G0_NC:
8884 case elfcpp::R_ARM_ALU_SB_G0:
8885 case elfcpp::R_ARM_ALU_SB_G1_NC:
8886 case elfcpp::R_ARM_ALU_SB_G1:
8887 case elfcpp::R_ARM_ALU_SB_G2:
8888 reloc_status =
8889 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8890 reloc_property->group_index(),
8891 relative_address_base,
8892 thumb_bit, check_overflow);
8893 break;
8895 case elfcpp::R_ARM_LDR_PC_G0:
8896 case elfcpp::R_ARM_LDR_PC_G1:
8897 case elfcpp::R_ARM_LDR_PC_G2:
8898 case elfcpp::R_ARM_LDR_SB_G0:
8899 case elfcpp::R_ARM_LDR_SB_G1:
8900 case elfcpp::R_ARM_LDR_SB_G2:
8901 reloc_status =
8902 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8903 reloc_property->group_index(),
8904 relative_address_base);
8905 break;
8907 case elfcpp::R_ARM_LDRS_PC_G0:
8908 case elfcpp::R_ARM_LDRS_PC_G1:
8909 case elfcpp::R_ARM_LDRS_PC_G2:
8910 case elfcpp::R_ARM_LDRS_SB_G0:
8911 case elfcpp::R_ARM_LDRS_SB_G1:
8912 case elfcpp::R_ARM_LDRS_SB_G2:
8913 reloc_status =
8914 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8915 reloc_property->group_index(),
8916 relative_address_base);
8917 break;
8919 case elfcpp::R_ARM_LDC_PC_G0:
8920 case elfcpp::R_ARM_LDC_PC_G1:
8921 case elfcpp::R_ARM_LDC_PC_G2:
8922 case elfcpp::R_ARM_LDC_SB_G0:
8923 case elfcpp::R_ARM_LDC_SB_G1:
8924 case elfcpp::R_ARM_LDC_SB_G2:
8925 reloc_status =
8926 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8927 reloc_property->group_index(),
8928 relative_address_base);
8929 break;
8931 // These are initial tls relocs, which are expected when
8932 // linking.
8933 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8934 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8935 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8936 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8937 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8938 reloc_status =
8939 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8940 view, address, view_size);
8941 break;
8943 default:
8944 gold_unreachable();
8947 // Report any errors.
8948 switch (reloc_status)
8950 case Arm_relocate_functions::STATUS_OKAY:
8951 break;
8952 case Arm_relocate_functions::STATUS_OVERFLOW:
8953 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8954 _("relocation overflow in %s"),
8955 reloc_property->name().c_str());
8956 break;
8957 case Arm_relocate_functions::STATUS_BAD_RELOC:
8958 gold_error_at_location(
8959 relinfo,
8960 relnum,
8961 rel.get_r_offset(),
8962 _("unexpected opcode while processing relocation %s"),
8963 reloc_property->name().c_str());
8964 break;
8965 default:
8966 gold_unreachable();
8969 return true;
8972 // Perform a TLS relocation.
8974 template<bool big_endian>
8975 inline typename Arm_relocate_functions<big_endian>::Status
8976 Target_arm<big_endian>::Relocate::relocate_tls(
8977 const Relocate_info<32, big_endian>* relinfo,
8978 Target_arm<big_endian>* target,
8979 size_t relnum,
8980 const elfcpp::Rel<32, big_endian>& rel,
8981 unsigned int r_type,
8982 const Sized_symbol<32>* gsym,
8983 const Symbol_value<32>* psymval,
8984 unsigned char* view,
8985 elfcpp::Elf_types<32>::Elf_Addr address,
8986 section_size_type /*view_size*/ )
8988 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
8989 typedef Relocate_functions<32, big_endian> RelocFuncs;
8990 Output_segment* tls_segment = relinfo->layout->tls_segment();
8992 const Sized_relobj<32, big_endian>* object = relinfo->object;
8994 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8996 const bool is_final = (gsym == NULL
8997 ? !parameters->options().shared()
8998 : gsym->final_value_is_known());
8999 const tls::Tls_optimization optimized_type
9000 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9001 switch (r_type)
9003 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9005 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9006 unsigned int got_offset;
9007 if (gsym != NULL)
9009 gold_assert(gsym->has_got_offset(got_type));
9010 got_offset = gsym->got_offset(got_type) - target->got_size();
9012 else
9014 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9015 gold_assert(object->local_has_got_offset(r_sym, got_type));
9016 got_offset = (object->local_got_offset(r_sym, got_type)
9017 - target->got_size());
9019 if (optimized_type == tls::TLSOPT_NONE)
9021 Arm_address got_entry =
9022 target->got_plt_section()->address() + got_offset;
9024 // Relocate the field with the PC relative offset of the pair of
9025 // GOT entries.
9026 RelocFuncs::pcrel32(view, got_entry, address);
9027 return ArmRelocFuncs::STATUS_OKAY;
9030 break;
9032 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9033 if (optimized_type == tls::TLSOPT_NONE)
9035 // Relocate the field with the offset of the GOT entry for
9036 // the module index.
9037 unsigned int got_offset;
9038 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9039 - target->got_size());
9040 Arm_address got_entry =
9041 target->got_plt_section()->address() + got_offset;
9043 // Relocate the field with the PC relative offset of the pair of
9044 // GOT entries.
9045 RelocFuncs::pcrel32(view, got_entry, address);
9046 return ArmRelocFuncs::STATUS_OKAY;
9048 break;
9050 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9051 RelocFuncs::rel32(view, value);
9052 return ArmRelocFuncs::STATUS_OKAY;
9054 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9055 if (optimized_type == tls::TLSOPT_NONE)
9057 // Relocate the field with the offset of the GOT entry for
9058 // the tp-relative offset of the symbol.
9059 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9060 unsigned int got_offset;
9061 if (gsym != NULL)
9063 gold_assert(gsym->has_got_offset(got_type));
9064 got_offset = gsym->got_offset(got_type);
9066 else
9068 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9069 gold_assert(object->local_has_got_offset(r_sym, got_type));
9070 got_offset = object->local_got_offset(r_sym, got_type);
9073 // All GOT offsets are relative to the end of the GOT.
9074 got_offset -= target->got_size();
9076 Arm_address got_entry =
9077 target->got_plt_section()->address() + got_offset;
9079 // Relocate the field with the PC relative offset of the GOT entry.
9080 RelocFuncs::pcrel32(view, got_entry, address);
9081 return ArmRelocFuncs::STATUS_OKAY;
9083 break;
9085 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9086 // If we're creating a shared library, a dynamic relocation will
9087 // have been created for this location, so do not apply it now.
9088 if (!parameters->options().shared())
9090 gold_assert(tls_segment != NULL);
9092 // $tp points to the TCB, which is followed by the TLS, so we
9093 // need to add TCB size to the offset.
9094 Arm_address aligned_tcb_size =
9095 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9096 RelocFuncs::rel32(view, value + aligned_tcb_size);
9099 return ArmRelocFuncs::STATUS_OKAY;
9101 default:
9102 gold_unreachable();
9105 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9106 _("unsupported reloc %u"),
9107 r_type);
9108 return ArmRelocFuncs::STATUS_BAD_RELOC;
9111 // Relocate section data.
9113 template<bool big_endian>
9114 void
9115 Target_arm<big_endian>::relocate_section(
9116 const Relocate_info<32, big_endian>* relinfo,
9117 unsigned int sh_type,
9118 const unsigned char* prelocs,
9119 size_t reloc_count,
9120 Output_section* output_section,
9121 bool needs_special_offset_handling,
9122 unsigned char* view,
9123 Arm_address address,
9124 section_size_type view_size,
9125 const Reloc_symbol_changes* reloc_symbol_changes)
9127 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9128 gold_assert(sh_type == elfcpp::SHT_REL);
9130 // See if we are relocating a relaxed input section. If so, the view
9131 // covers the whole output section and we need to adjust accordingly.
9132 if (needs_special_offset_handling)
9134 const Output_relaxed_input_section* poris =
9135 output_section->find_relaxed_input_section(relinfo->object,
9136 relinfo->data_shndx);
9137 if (poris != NULL)
9139 Arm_address section_address = poris->address();
9140 section_size_type section_size = poris->data_size();
9142 gold_assert((section_address >= address)
9143 && ((section_address + section_size)
9144 <= (address + view_size)));
9146 off_t offset = section_address - address;
9147 view += offset;
9148 address += offset;
9149 view_size = section_size;
9153 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9154 Arm_relocate>(
9155 relinfo,
9156 this,
9157 prelocs,
9158 reloc_count,
9159 output_section,
9160 needs_special_offset_handling,
9161 view,
9162 address,
9163 view_size,
9164 reloc_symbol_changes);
9167 // Return the size of a relocation while scanning during a relocatable
9168 // link.
9170 template<bool big_endian>
9171 unsigned int
9172 Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9173 unsigned int r_type,
9174 Relobj* object)
9176 r_type = get_real_reloc_type(r_type);
9177 const Arm_reloc_property* arp =
9178 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9179 if (arp != NULL)
9180 return arp->size();
9181 else
9183 std::string reloc_name =
9184 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9185 gold_error(_("%s: unexpected %s in object file"),
9186 object->name().c_str(), reloc_name.c_str());
9187 return 0;
9191 // Scan the relocs during a relocatable link.
9193 template<bool big_endian>
9194 void
9195 Target_arm<big_endian>::scan_relocatable_relocs(
9196 Symbol_table* symtab,
9197 Layout* layout,
9198 Sized_relobj<32, big_endian>* object,
9199 unsigned int data_shndx,
9200 unsigned int sh_type,
9201 const unsigned char* prelocs,
9202 size_t reloc_count,
9203 Output_section* output_section,
9204 bool needs_special_offset_handling,
9205 size_t local_symbol_count,
9206 const unsigned char* plocal_symbols,
9207 Relocatable_relocs* rr)
9209 gold_assert(sh_type == elfcpp::SHT_REL);
9211 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9212 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9214 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9215 Scan_relocatable_relocs>(
9216 symtab,
9217 layout,
9218 object,
9219 data_shndx,
9220 prelocs,
9221 reloc_count,
9222 output_section,
9223 needs_special_offset_handling,
9224 local_symbol_count,
9225 plocal_symbols,
9226 rr);
9229 // Relocate a section during a relocatable link.
9231 template<bool big_endian>
9232 void
9233 Target_arm<big_endian>::relocate_for_relocatable(
9234 const Relocate_info<32, big_endian>* relinfo,
9235 unsigned int sh_type,
9236 const unsigned char* prelocs,
9237 size_t reloc_count,
9238 Output_section* output_section,
9239 off_t offset_in_output_section,
9240 const Relocatable_relocs* rr,
9241 unsigned char* view,
9242 Arm_address view_address,
9243 section_size_type view_size,
9244 unsigned char* reloc_view,
9245 section_size_type reloc_view_size)
9247 gold_assert(sh_type == elfcpp::SHT_REL);
9249 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9250 relinfo,
9251 prelocs,
9252 reloc_count,
9253 output_section,
9254 offset_in_output_section,
9256 view,
9257 view_address,
9258 view_size,
9259 reloc_view,
9260 reloc_view_size);
9263 // Perform target-specific processing in a relocatable link. This is
9264 // only used if we use the relocation strategy RELOC_SPECIAL.
9266 template<bool big_endian>
9267 void
9268 Target_arm<big_endian>::relocate_special_relocatable(
9269 const Relocate_info<32, big_endian>* relinfo,
9270 unsigned int sh_type,
9271 const unsigned char* preloc_in,
9272 size_t relnum,
9273 Output_section* output_section,
9274 off_t offset_in_output_section,
9275 unsigned char* view,
9276 elfcpp::Elf_types<32>::Elf_Addr view_address,
9277 section_size_type,
9278 unsigned char* preloc_out)
9280 // We can only handle REL type relocation sections.
9281 gold_assert(sh_type == elfcpp::SHT_REL);
9283 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9284 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9285 Reltype_write;
9286 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9288 const Arm_relobj<big_endian>* object =
9289 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9290 const unsigned int local_count = object->local_symbol_count();
9292 Reltype reloc(preloc_in);
9293 Reltype_write reloc_write(preloc_out);
9295 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9296 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9297 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9299 const Arm_reloc_property* arp =
9300 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9301 gold_assert(arp != NULL);
9303 // Get the new symbol index.
9304 // We only use RELOC_SPECIAL strategy in local relocations.
9305 gold_assert(r_sym < local_count);
9307 // We are adjusting a section symbol. We need to find
9308 // the symbol table index of the section symbol for
9309 // the output section corresponding to input section
9310 // in which this symbol is defined.
9311 bool is_ordinary;
9312 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9313 gold_assert(is_ordinary);
9314 Output_section* os = object->output_section(shndx);
9315 gold_assert(os != NULL);
9316 gold_assert(os->needs_symtab_index());
9317 unsigned int new_symndx = os->symtab_index();
9319 // Get the new offset--the location in the output section where
9320 // this relocation should be applied.
9322 Arm_address offset = reloc.get_r_offset();
9323 Arm_address new_offset;
9324 if (offset_in_output_section != invalid_address)
9325 new_offset = offset + offset_in_output_section;
9326 else
9328 section_offset_type sot_offset =
9329 convert_types<section_offset_type, Arm_address>(offset);
9330 section_offset_type new_sot_offset =
9331 output_section->output_offset(object, relinfo->data_shndx,
9332 sot_offset);
9333 gold_assert(new_sot_offset != -1);
9334 new_offset = new_sot_offset;
9337 // In an object file, r_offset is an offset within the section.
9338 // In an executable or dynamic object, generated by
9339 // --emit-relocs, r_offset is an absolute address.
9340 if (!parameters->options().relocatable())
9342 new_offset += view_address;
9343 if (offset_in_output_section != invalid_address)
9344 new_offset -= offset_in_output_section;
9347 reloc_write.put_r_offset(new_offset);
9348 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9350 // Handle the reloc addend.
9351 // The relocation uses a section symbol in the input file.
9352 // We are adjusting it to use a section symbol in the output
9353 // file. The input section symbol refers to some address in
9354 // the input section. We need the relocation in the output
9355 // file to refer to that same address. This adjustment to
9356 // the addend is the same calculation we use for a simple
9357 // absolute relocation for the input section symbol.
9359 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9361 // Handle THUMB bit.
9362 Symbol_value<32> symval;
9363 Arm_address thumb_bit =
9364 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9365 if (thumb_bit != 0
9366 && arp->uses_thumb_bit()
9367 && ((psymval->value(object, 0) & 1) != 0))
9369 Arm_address stripped_value =
9370 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9371 symval.set_output_value(stripped_value);
9372 psymval = &symval;
9375 unsigned char* paddend = view + offset;
9376 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9377 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9378 switch (r_type)
9380 case elfcpp::R_ARM_ABS8:
9381 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9382 psymval);
9383 break;
9385 case elfcpp::R_ARM_ABS12:
9386 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9387 psymval);
9388 break;
9390 case elfcpp::R_ARM_ABS16:
9391 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9392 psymval);
9393 break;
9395 case elfcpp::R_ARM_THM_ABS5:
9396 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9397 object,
9398 psymval);
9399 break;
9401 case elfcpp::R_ARM_MOVW_ABS_NC:
9402 case elfcpp::R_ARM_MOVW_PREL_NC:
9403 case elfcpp::R_ARM_MOVW_BREL_NC:
9404 case elfcpp::R_ARM_MOVW_BREL:
9405 reloc_status = Arm_relocate_functions<big_endian>::movw(
9406 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9407 break;
9409 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9410 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9411 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9412 case elfcpp::R_ARM_THM_MOVW_BREL:
9413 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9414 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9415 break;
9417 case elfcpp::R_ARM_THM_CALL:
9418 case elfcpp::R_ARM_THM_XPC22:
9419 case elfcpp::R_ARM_THM_JUMP24:
9420 reloc_status =
9421 Arm_relocate_functions<big_endian>::thumb_branch_common(
9422 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9423 false);
9424 break;
9426 case elfcpp::R_ARM_PLT32:
9427 case elfcpp::R_ARM_CALL:
9428 case elfcpp::R_ARM_JUMP24:
9429 case elfcpp::R_ARM_XPC25:
9430 reloc_status =
9431 Arm_relocate_functions<big_endian>::arm_branch_common(
9432 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9433 false);
9434 break;
9436 case elfcpp::R_ARM_THM_JUMP19:
9437 reloc_status =
9438 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9439 psymval, 0, thumb_bit);
9440 break;
9442 case elfcpp::R_ARM_THM_JUMP6:
9443 reloc_status =
9444 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9446 break;
9448 case elfcpp::R_ARM_THM_JUMP8:
9449 reloc_status =
9450 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9452 break;
9454 case elfcpp::R_ARM_THM_JUMP11:
9455 reloc_status =
9456 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9458 break;
9460 case elfcpp::R_ARM_PREL31:
9461 reloc_status =
9462 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9463 thumb_bit);
9464 break;
9466 case elfcpp::R_ARM_THM_PC8:
9467 reloc_status =
9468 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9470 break;
9472 case elfcpp::R_ARM_THM_PC12:
9473 reloc_status =
9474 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9476 break;
9478 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9479 reloc_status =
9480 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9481 0, thumb_bit);
9482 break;
9484 // These relocation truncate relocation results so we cannot handle them
9485 // in a relocatable link.
9486 case elfcpp::R_ARM_MOVT_ABS:
9487 case elfcpp::R_ARM_THM_MOVT_ABS:
9488 case elfcpp::R_ARM_MOVT_PREL:
9489 case elfcpp::R_ARM_MOVT_BREL:
9490 case elfcpp::R_ARM_THM_MOVT_PREL:
9491 case elfcpp::R_ARM_THM_MOVT_BREL:
9492 case elfcpp::R_ARM_ALU_PC_G0_NC:
9493 case elfcpp::R_ARM_ALU_PC_G0:
9494 case elfcpp::R_ARM_ALU_PC_G1_NC:
9495 case elfcpp::R_ARM_ALU_PC_G1:
9496 case elfcpp::R_ARM_ALU_PC_G2:
9497 case elfcpp::R_ARM_ALU_SB_G0_NC:
9498 case elfcpp::R_ARM_ALU_SB_G0:
9499 case elfcpp::R_ARM_ALU_SB_G1_NC:
9500 case elfcpp::R_ARM_ALU_SB_G1:
9501 case elfcpp::R_ARM_ALU_SB_G2:
9502 case elfcpp::R_ARM_LDR_PC_G0:
9503 case elfcpp::R_ARM_LDR_PC_G1:
9504 case elfcpp::R_ARM_LDR_PC_G2:
9505 case elfcpp::R_ARM_LDR_SB_G0:
9506 case elfcpp::R_ARM_LDR_SB_G1:
9507 case elfcpp::R_ARM_LDR_SB_G2:
9508 case elfcpp::R_ARM_LDRS_PC_G0:
9509 case elfcpp::R_ARM_LDRS_PC_G1:
9510 case elfcpp::R_ARM_LDRS_PC_G2:
9511 case elfcpp::R_ARM_LDRS_SB_G0:
9512 case elfcpp::R_ARM_LDRS_SB_G1:
9513 case elfcpp::R_ARM_LDRS_SB_G2:
9514 case elfcpp::R_ARM_LDC_PC_G0:
9515 case elfcpp::R_ARM_LDC_PC_G1:
9516 case elfcpp::R_ARM_LDC_PC_G2:
9517 case elfcpp::R_ARM_LDC_SB_G0:
9518 case elfcpp::R_ARM_LDC_SB_G1:
9519 case elfcpp::R_ARM_LDC_SB_G2:
9520 gold_error(_("cannot handle %s in a relocatable link"),
9521 arp->name().c_str());
9522 break;
9524 default:
9525 gold_unreachable();
9528 // Report any errors.
9529 switch (reloc_status)
9531 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9532 break;
9533 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9534 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9535 _("relocation overflow in %s"),
9536 arp->name().c_str());
9537 break;
9538 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9539 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9540 _("unexpected opcode while processing relocation %s"),
9541 arp->name().c_str());
9542 break;
9543 default:
9544 gold_unreachable();
9548 // Return the value to use for a dynamic symbol which requires special
9549 // treatment. This is how we support equality comparisons of function
9550 // pointers across shared library boundaries, as described in the
9551 // processor specific ABI supplement.
9553 template<bool big_endian>
9554 uint64_t
9555 Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9557 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9558 return this->plt_section()->address() + gsym->plt_offset();
9561 // Map platform-specific relocs to real relocs
9563 template<bool big_endian>
9564 unsigned int
9565 Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
9567 switch (r_type)
9569 case elfcpp::R_ARM_TARGET1:
9570 // This is either R_ARM_ABS32 or R_ARM_REL32;
9571 return elfcpp::R_ARM_ABS32;
9573 case elfcpp::R_ARM_TARGET2:
9574 // This can be any reloc type but ususally is R_ARM_GOT_PREL
9575 return elfcpp::R_ARM_GOT_PREL;
9577 default:
9578 return r_type;
9582 // Whether if two EABI versions V1 and V2 are compatible.
9584 template<bool big_endian>
9585 bool
9586 Target_arm<big_endian>::are_eabi_versions_compatible(
9587 elfcpp::Elf_Word v1,
9588 elfcpp::Elf_Word v2)
9590 // v4 and v5 are the same spec before and after it was released,
9591 // so allow mixing them.
9592 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9593 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9594 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9595 return true;
9597 return v1 == v2;
9600 // Combine FLAGS from an input object called NAME and the processor-specific
9601 // flags in the ELF header of the output. Much of this is adapted from the
9602 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9603 // in bfd/elf32-arm.c.
9605 template<bool big_endian>
9606 void
9607 Target_arm<big_endian>::merge_processor_specific_flags(
9608 const std::string& name,
9609 elfcpp::Elf_Word flags)
9611 if (this->are_processor_specific_flags_set())
9613 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9615 // Nothing to merge if flags equal to those in output.
9616 if (flags == out_flags)
9617 return;
9619 // Complain about various flag mismatches.
9620 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9621 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9622 if (!this->are_eabi_versions_compatible(version1, version2)
9623 && parameters->options().warn_mismatch())
9624 gold_error(_("Source object %s has EABI version %d but output has "
9625 "EABI version %d."),
9626 name.c_str(),
9627 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9628 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9630 else
9632 // If the input is the default architecture and had the default
9633 // flags then do not bother setting the flags for the output
9634 // architecture, instead allow future merges to do this. If no
9635 // future merges ever set these flags then they will retain their
9636 // uninitialised values, which surprise surprise, correspond
9637 // to the default values.
9638 if (flags == 0)
9639 return;
9641 // This is the first time, just copy the flags.
9642 // We only copy the EABI version for now.
9643 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9647 // Adjust ELF file header.
9648 template<bool big_endian>
9649 void
9650 Target_arm<big_endian>::do_adjust_elf_header(
9651 unsigned char* view,
9652 int len) const
9654 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9656 elfcpp::Ehdr<32, big_endian> ehdr(view);
9657 unsigned char e_ident[elfcpp::EI_NIDENT];
9658 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9660 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9661 == elfcpp::EF_ARM_EABI_UNKNOWN)
9662 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9663 else
9664 e_ident[elfcpp::EI_OSABI] = 0;
9665 e_ident[elfcpp::EI_ABIVERSION] = 0;
9667 // FIXME: Do EF_ARM_BE8 adjustment.
9669 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9670 oehdr.put_e_ident(e_ident);
9673 // do_make_elf_object to override the same function in the base class.
9674 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9675 // to store ARM specific information. Hence we need to have our own
9676 // ELF object creation.
9678 template<bool big_endian>
9679 Object*
9680 Target_arm<big_endian>::do_make_elf_object(
9681 const std::string& name,
9682 Input_file* input_file,
9683 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9685 int et = ehdr.get_e_type();
9686 if (et == elfcpp::ET_REL)
9688 Arm_relobj<big_endian>* obj =
9689 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9690 obj->setup();
9691 return obj;
9693 else if (et == elfcpp::ET_DYN)
9695 Sized_dynobj<32, big_endian>* obj =
9696 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
9697 obj->setup();
9698 return obj;
9700 else
9702 gold_error(_("%s: unsupported ELF file type %d"),
9703 name.c_str(), et);
9704 return NULL;
9708 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9709 // Returns -1 if no architecture could be read.
9710 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9712 template<bool big_endian>
9714 Target_arm<big_endian>::get_secondary_compatible_arch(
9715 const Attributes_section_data* pasd)
9717 const Object_attribute *known_attributes =
9718 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9720 // Note: the tag and its argument below are uleb128 values, though
9721 // currently-defined values fit in one byte for each.
9722 const std::string& sv =
9723 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9724 if (sv.size() == 2
9725 && sv.data()[0] == elfcpp::Tag_CPU_arch
9726 && (sv.data()[1] & 128) != 128)
9727 return sv.data()[1];
9729 // This tag is "safely ignorable", so don't complain if it looks funny.
9730 return -1;
9733 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9734 // The tag is removed if ARCH is -1.
9735 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9737 template<bool big_endian>
9738 void
9739 Target_arm<big_endian>::set_secondary_compatible_arch(
9740 Attributes_section_data* pasd,
9741 int arch)
9743 Object_attribute *known_attributes =
9744 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9746 if (arch == -1)
9748 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9749 return;
9752 // Note: the tag and its argument below are uleb128 values, though
9753 // currently-defined values fit in one byte for each.
9754 char sv[3];
9755 sv[0] = elfcpp::Tag_CPU_arch;
9756 gold_assert(arch != 0);
9757 sv[1] = arch;
9758 sv[2] = '\0';
9760 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9763 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9764 // into account.
9765 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9767 template<bool big_endian>
9769 Target_arm<big_endian>::tag_cpu_arch_combine(
9770 const char* name,
9771 int oldtag,
9772 int* secondary_compat_out,
9773 int newtag,
9774 int secondary_compat)
9776 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9777 static const int v6t2[] =
9779 T(V6T2), // PRE_V4.
9780 T(V6T2), // V4.
9781 T(V6T2), // V4T.
9782 T(V6T2), // V5T.
9783 T(V6T2), // V5TE.
9784 T(V6T2), // V5TEJ.
9785 T(V6T2), // V6.
9786 T(V7), // V6KZ.
9787 T(V6T2) // V6T2.
9789 static const int v6k[] =
9791 T(V6K), // PRE_V4.
9792 T(V6K), // V4.
9793 T(V6K), // V4T.
9794 T(V6K), // V5T.
9795 T(V6K), // V5TE.
9796 T(V6K), // V5TEJ.
9797 T(V6K), // V6.
9798 T(V6KZ), // V6KZ.
9799 T(V7), // V6T2.
9800 T(V6K) // V6K.
9802 static const int v7[] =
9804 T(V7), // PRE_V4.
9805 T(V7), // V4.
9806 T(V7), // V4T.
9807 T(V7), // V5T.
9808 T(V7), // V5TE.
9809 T(V7), // V5TEJ.
9810 T(V7), // V6.
9811 T(V7), // V6KZ.
9812 T(V7), // V6T2.
9813 T(V7), // V6K.
9814 T(V7) // V7.
9816 static const int v6_m[] =
9818 -1, // PRE_V4.
9819 -1, // V4.
9820 T(V6K), // V4T.
9821 T(V6K), // V5T.
9822 T(V6K), // V5TE.
9823 T(V6K), // V5TEJ.
9824 T(V6K), // V6.
9825 T(V6KZ), // V6KZ.
9826 T(V7), // V6T2.
9827 T(V6K), // V6K.
9828 T(V7), // V7.
9829 T(V6_M) // V6_M.
9831 static const int v6s_m[] =
9833 -1, // PRE_V4.
9834 -1, // V4.
9835 T(V6K), // V4T.
9836 T(V6K), // V5T.
9837 T(V6K), // V5TE.
9838 T(V6K), // V5TEJ.
9839 T(V6K), // V6.
9840 T(V6KZ), // V6KZ.
9841 T(V7), // V6T2.
9842 T(V6K), // V6K.
9843 T(V7), // V7.
9844 T(V6S_M), // V6_M.
9845 T(V6S_M) // V6S_M.
9847 static const int v7e_m[] =
9849 -1, // PRE_V4.
9850 -1, // V4.
9851 T(V7E_M), // V4T.
9852 T(V7E_M), // V5T.
9853 T(V7E_M), // V5TE.
9854 T(V7E_M), // V5TEJ.
9855 T(V7E_M), // V6.
9856 T(V7E_M), // V6KZ.
9857 T(V7E_M), // V6T2.
9858 T(V7E_M), // V6K.
9859 T(V7E_M), // V7.
9860 T(V7E_M), // V6_M.
9861 T(V7E_M), // V6S_M.
9862 T(V7E_M) // V7E_M.
9864 static const int v4t_plus_v6_m[] =
9866 -1, // PRE_V4.
9867 -1, // V4.
9868 T(V4T), // V4T.
9869 T(V5T), // V5T.
9870 T(V5TE), // V5TE.
9871 T(V5TEJ), // V5TEJ.
9872 T(V6), // V6.
9873 T(V6KZ), // V6KZ.
9874 T(V6T2), // V6T2.
9875 T(V6K), // V6K.
9876 T(V7), // V7.
9877 T(V6_M), // V6_M.
9878 T(V6S_M), // V6S_M.
9879 T(V7E_M), // V7E_M.
9880 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9882 static const int *comb[] =
9884 v6t2,
9885 v6k,
9887 v6_m,
9888 v6s_m,
9889 v7e_m,
9890 // Pseudo-architecture.
9891 v4t_plus_v6_m
9894 // Check we've not got a higher architecture than we know about.
9896 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9898 gold_error(_("%s: unknown CPU architecture"), name);
9899 return -1;
9902 // Override old tag if we have a Tag_also_compatible_with on the output.
9904 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9905 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9906 oldtag = T(V4T_PLUS_V6_M);
9908 // And override the new tag if we have a Tag_also_compatible_with on the
9909 // input.
9911 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9912 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9913 newtag = T(V4T_PLUS_V6_M);
9915 // Architectures before V6KZ add features monotonically.
9916 int tagh = std::max(oldtag, newtag);
9917 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9918 return tagh;
9920 int tagl = std::min(oldtag, newtag);
9921 int result = comb[tagh - T(V6T2)][tagl];
9923 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9924 // as the canonical version.
9925 if (result == T(V4T_PLUS_V6_M))
9927 result = T(V4T);
9928 *secondary_compat_out = T(V6_M);
9930 else
9931 *secondary_compat_out = -1;
9933 if (result == -1)
9935 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9936 name, oldtag, newtag);
9937 return -1;
9940 return result;
9941 #undef T
9944 // Helper to print AEABI enum tag value.
9946 template<bool big_endian>
9947 std::string
9948 Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9950 static const char *aeabi_enum_names[] =
9951 { "", "variable-size", "32-bit", "" };
9952 const size_t aeabi_enum_names_size =
9953 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9955 if (value < aeabi_enum_names_size)
9956 return std::string(aeabi_enum_names[value]);
9957 else
9959 char buffer[100];
9960 sprintf(buffer, "<unknown value %u>", value);
9961 return std::string(buffer);
9965 // Return the string value to store in TAG_CPU_name.
9967 template<bool big_endian>
9968 std::string
9969 Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9971 static const char *name_table[] = {
9972 // These aren't real CPU names, but we can't guess
9973 // that from the architecture version alone.
9974 "Pre v4",
9975 "ARM v4",
9976 "ARM v4T",
9977 "ARM v5T",
9978 "ARM v5TE",
9979 "ARM v5TEJ",
9980 "ARM v6",
9981 "ARM v6KZ",
9982 "ARM v6T2",
9983 "ARM v6K",
9984 "ARM v7",
9985 "ARM v6-M",
9986 "ARM v6S-M",
9987 "ARM v7E-M"
9989 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9991 if (value < name_table_size)
9992 return std::string(name_table[value]);
9993 else
9995 char buffer[100];
9996 sprintf(buffer, "<unknown CPU value %u>", value);
9997 return std::string(buffer);
10001 // Merge object attributes from input file called NAME with those of the
10002 // output. The input object attributes are in the object pointed by PASD.
10004 template<bool big_endian>
10005 void
10006 Target_arm<big_endian>::merge_object_attributes(
10007 const char* name,
10008 const Attributes_section_data* pasd)
10010 // Return if there is no attributes section data.
10011 if (pasd == NULL)
10012 return;
10014 // If output has no object attributes, just copy.
10015 const int vendor = Object_attribute::OBJ_ATTR_PROC;
10016 if (this->attributes_section_data_ == NULL)
10018 this->attributes_section_data_ = new Attributes_section_data(*pasd);
10019 Object_attribute* out_attr =
10020 this->attributes_section_data_->known_attributes(vendor);
10022 // We do not output objects with Tag_MPextension_use_legacy - we move
10023 // the attribute's value to Tag_MPextension_use. */
10024 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10026 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10027 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10028 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10030 gold_error(_("%s has both the current and legacy "
10031 "Tag_MPextension_use attributes"),
10032 name);
10035 out_attr[elfcpp::Tag_MPextension_use] =
10036 out_attr[elfcpp::Tag_MPextension_use_legacy];
10037 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10038 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10041 return;
10044 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10045 Object_attribute* out_attr =
10046 this->attributes_section_data_->known_attributes(vendor);
10048 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10049 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10050 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10052 // Ignore mismatches if the object doesn't use floating point. */
10053 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10054 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10055 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10056 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10057 && parameters->options().warn_mismatch())
10058 gold_error(_("%s uses VFP register arguments, output does not"),
10059 name);
10062 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10064 // Merge this attribute with existing attributes.
10065 switch (i)
10067 case elfcpp::Tag_CPU_raw_name:
10068 case elfcpp::Tag_CPU_name:
10069 // These are merged after Tag_CPU_arch.
10070 break;
10072 case elfcpp::Tag_ABI_optimization_goals:
10073 case elfcpp::Tag_ABI_FP_optimization_goals:
10074 // Use the first value seen.
10075 break;
10077 case elfcpp::Tag_CPU_arch:
10079 unsigned int saved_out_attr = out_attr->int_value();
10080 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10081 int secondary_compat =
10082 this->get_secondary_compatible_arch(pasd);
10083 int secondary_compat_out =
10084 this->get_secondary_compatible_arch(
10085 this->attributes_section_data_);
10086 out_attr[i].set_int_value(
10087 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10088 &secondary_compat_out,
10089 in_attr[i].int_value(),
10090 secondary_compat));
10091 this->set_secondary_compatible_arch(this->attributes_section_data_,
10092 secondary_compat_out);
10094 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10095 if (out_attr[i].int_value() == saved_out_attr)
10096 ; // Leave the names alone.
10097 else if (out_attr[i].int_value() == in_attr[i].int_value())
10099 // The output architecture has been changed to match the
10100 // input architecture. Use the input names.
10101 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10102 in_attr[elfcpp::Tag_CPU_name].string_value());
10103 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10104 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10106 else
10108 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10109 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10112 // If we still don't have a value for Tag_CPU_name,
10113 // make one up now. Tag_CPU_raw_name remains blank.
10114 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10116 const std::string cpu_name =
10117 this->tag_cpu_name_value(out_attr[i].int_value());
10118 // FIXME: If we see an unknown CPU, this will be set
10119 // to "<unknown CPU n>", where n is the attribute value.
10120 // This is different from BFD, which leaves the name alone.
10121 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10124 break;
10126 case elfcpp::Tag_ARM_ISA_use:
10127 case elfcpp::Tag_THUMB_ISA_use:
10128 case elfcpp::Tag_WMMX_arch:
10129 case elfcpp::Tag_Advanced_SIMD_arch:
10130 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10131 case elfcpp::Tag_ABI_FP_rounding:
10132 case elfcpp::Tag_ABI_FP_exceptions:
10133 case elfcpp::Tag_ABI_FP_user_exceptions:
10134 case elfcpp::Tag_ABI_FP_number_model:
10135 case elfcpp::Tag_VFP_HP_extension:
10136 case elfcpp::Tag_CPU_unaligned_access:
10137 case elfcpp::Tag_T2EE_use:
10138 case elfcpp::Tag_Virtualization_use:
10139 case elfcpp::Tag_MPextension_use:
10140 // Use the largest value specified.
10141 if (in_attr[i].int_value() > out_attr[i].int_value())
10142 out_attr[i].set_int_value(in_attr[i].int_value());
10143 break;
10145 case elfcpp::Tag_ABI_align8_preserved:
10146 case elfcpp::Tag_ABI_PCS_RO_data:
10147 // Use the smallest value specified.
10148 if (in_attr[i].int_value() < out_attr[i].int_value())
10149 out_attr[i].set_int_value(in_attr[i].int_value());
10150 break;
10152 case elfcpp::Tag_ABI_align8_needed:
10153 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10154 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10155 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10156 == 0)))
10158 // This error message should be enabled once all non-conformant
10159 // binaries in the toolchain have had the attributes set
10160 // properly.
10161 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10162 // name);
10164 // Fall through.
10165 case elfcpp::Tag_ABI_FP_denormal:
10166 case elfcpp::Tag_ABI_PCS_GOT_use:
10168 // These tags have 0 = don't care, 1 = strong requirement,
10169 // 2 = weak requirement.
10170 static const int order_021[3] = {0, 2, 1};
10172 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10173 // value if greater than 2 (for future-proofing).
10174 if ((in_attr[i].int_value() > 2
10175 && in_attr[i].int_value() > out_attr[i].int_value())
10176 || (in_attr[i].int_value() <= 2
10177 && out_attr[i].int_value() <= 2
10178 && (order_021[in_attr[i].int_value()]
10179 > order_021[out_attr[i].int_value()])))
10180 out_attr[i].set_int_value(in_attr[i].int_value());
10182 break;
10184 case elfcpp::Tag_CPU_arch_profile:
10185 if (out_attr[i].int_value() != in_attr[i].int_value())
10187 // 0 will merge with anything.
10188 // 'A' and 'S' merge to 'A'.
10189 // 'R' and 'S' merge to 'R'.
10190 // 'M' and 'A|R|S' is an error.
10191 if (out_attr[i].int_value() == 0
10192 || (out_attr[i].int_value() == 'S'
10193 && (in_attr[i].int_value() == 'A'
10194 || in_attr[i].int_value() == 'R')))
10195 out_attr[i].set_int_value(in_attr[i].int_value());
10196 else if (in_attr[i].int_value() == 0
10197 || (in_attr[i].int_value() == 'S'
10198 && (out_attr[i].int_value() == 'A'
10199 || out_attr[i].int_value() == 'R')))
10200 ; // Do nothing.
10201 else if (parameters->options().warn_mismatch())
10203 gold_error
10204 (_("conflicting architecture profiles %c/%c"),
10205 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10206 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10209 break;
10210 case elfcpp::Tag_VFP_arch:
10212 static const struct
10214 int ver;
10215 int regs;
10216 } vfp_versions[7] =
10218 {0, 0},
10219 {1, 16},
10220 {2, 16},
10221 {3, 32},
10222 {3, 16},
10223 {4, 32},
10224 {4, 16}
10227 // Values greater than 6 aren't defined, so just pick the
10228 // biggest.
10229 if (in_attr[i].int_value() > 6
10230 && in_attr[i].int_value() > out_attr[i].int_value())
10232 *out_attr = *in_attr;
10233 break;
10235 // The output uses the superset of input features
10236 // (ISA version) and registers.
10237 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10238 vfp_versions[out_attr[i].int_value()].ver);
10239 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10240 vfp_versions[out_attr[i].int_value()].regs);
10241 // This assumes all possible supersets are also a valid
10242 // options.
10243 int newval;
10244 for (newval = 6; newval > 0; newval--)
10246 if (regs == vfp_versions[newval].regs
10247 && ver == vfp_versions[newval].ver)
10248 break;
10250 out_attr[i].set_int_value(newval);
10252 break;
10253 case elfcpp::Tag_PCS_config:
10254 if (out_attr[i].int_value() == 0)
10255 out_attr[i].set_int_value(in_attr[i].int_value());
10256 else if (in_attr[i].int_value() != 0
10257 && out_attr[i].int_value() != 0
10258 && parameters->options().warn_mismatch())
10260 // It's sometimes ok to mix different configs, so this is only
10261 // a warning.
10262 gold_warning(_("%s: conflicting platform configuration"), name);
10264 break;
10265 case elfcpp::Tag_ABI_PCS_R9_use:
10266 if (in_attr[i].int_value() != out_attr[i].int_value()
10267 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10268 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10269 && parameters->options().warn_mismatch())
10271 gold_error(_("%s: conflicting use of R9"), name);
10273 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10274 out_attr[i].set_int_value(in_attr[i].int_value());
10275 break;
10276 case elfcpp::Tag_ABI_PCS_RW_data:
10277 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10278 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10279 != elfcpp::AEABI_R9_SB)
10280 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10281 != elfcpp::AEABI_R9_unused)
10282 && parameters->options().warn_mismatch())
10284 gold_error(_("%s: SB relative addressing conflicts with use "
10285 "of R9"),
10286 name);
10288 // Use the smallest value specified.
10289 if (in_attr[i].int_value() < out_attr[i].int_value())
10290 out_attr[i].set_int_value(in_attr[i].int_value());
10291 break;
10292 case elfcpp::Tag_ABI_PCS_wchar_t:
10293 // FIXME: Make it possible to turn off this warning.
10294 if (out_attr[i].int_value()
10295 && in_attr[i].int_value()
10296 && out_attr[i].int_value() != in_attr[i].int_value()
10297 && parameters->options().warn_mismatch())
10299 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10300 "use %u-byte wchar_t; use of wchar_t values "
10301 "across objects may fail"),
10302 name, in_attr[i].int_value(),
10303 out_attr[i].int_value());
10305 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10306 out_attr[i].set_int_value(in_attr[i].int_value());
10307 break;
10308 case elfcpp::Tag_ABI_enum_size:
10309 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10311 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10312 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10314 // The existing object is compatible with anything.
10315 // Use whatever requirements the new object has.
10316 out_attr[i].set_int_value(in_attr[i].int_value());
10318 // FIXME: Make it possible to turn off this warning.
10319 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10320 && out_attr[i].int_value() != in_attr[i].int_value()
10321 && parameters->options().warn_mismatch())
10323 unsigned int in_value = in_attr[i].int_value();
10324 unsigned int out_value = out_attr[i].int_value();
10325 gold_warning(_("%s uses %s enums yet the output is to use "
10326 "%s enums; use of enum values across objects "
10327 "may fail"),
10328 name,
10329 this->aeabi_enum_name(in_value).c_str(),
10330 this->aeabi_enum_name(out_value).c_str());
10333 break;
10334 case elfcpp::Tag_ABI_VFP_args:
10335 // Aready done.
10336 break;
10337 case elfcpp::Tag_ABI_WMMX_args:
10338 if (in_attr[i].int_value() != out_attr[i].int_value()
10339 && parameters->options().warn_mismatch())
10341 gold_error(_("%s uses iWMMXt register arguments, output does "
10342 "not"),
10343 name);
10345 break;
10346 case Object_attribute::Tag_compatibility:
10347 // Merged in target-independent code.
10348 break;
10349 case elfcpp::Tag_ABI_HardFP_use:
10350 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10351 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10352 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10353 out_attr[i].set_int_value(3);
10354 else if (in_attr[i].int_value() > out_attr[i].int_value())
10355 out_attr[i].set_int_value(in_attr[i].int_value());
10356 break;
10357 case elfcpp::Tag_ABI_FP_16bit_format:
10358 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10360 if (in_attr[i].int_value() != out_attr[i].int_value()
10361 && parameters->options().warn_mismatch())
10362 gold_error(_("fp16 format mismatch between %s and output"),
10363 name);
10365 if (in_attr[i].int_value() != 0)
10366 out_attr[i].set_int_value(in_attr[i].int_value());
10367 break;
10369 case elfcpp::Tag_DIV_use:
10370 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10371 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10372 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10373 // CPU. We will merge as follows: If the input attribute's value
10374 // is one then the output attribute's value remains unchanged. If
10375 // the input attribute's value is zero or two then if the output
10376 // attribute's value is one the output value is set to the input
10377 // value, otherwise the output value must be the same as the
10378 // inputs. */
10379 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10381 if (in_attr[i].int_value() != out_attr[i].int_value())
10383 gold_error(_("DIV usage mismatch between %s and output"),
10384 name);
10388 if (in_attr[i].int_value() != 1)
10389 out_attr[i].set_int_value(in_attr[i].int_value());
10391 break;
10393 case elfcpp::Tag_MPextension_use_legacy:
10394 // We don't output objects with Tag_MPextension_use_legacy - we
10395 // move the value to Tag_MPextension_use.
10396 if (in_attr[i].int_value() != 0
10397 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10399 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10400 != in_attr[i].int_value())
10402 gold_error(_("%s has has both the current and legacy "
10403 "Tag_MPextension_use attributes"),
10404 name);
10408 if (in_attr[i].int_value()
10409 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10410 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10412 break;
10414 case elfcpp::Tag_nodefaults:
10415 // This tag is set if it exists, but the value is unused (and is
10416 // typically zero). We don't actually need to do anything here -
10417 // the merge happens automatically when the type flags are merged
10418 // below.
10419 break;
10420 case elfcpp::Tag_also_compatible_with:
10421 // Already done in Tag_CPU_arch.
10422 break;
10423 case elfcpp::Tag_conformance:
10424 // Keep the attribute if it matches. Throw it away otherwise.
10425 // No attribute means no claim to conform.
10426 if (in_attr[i].string_value() != out_attr[i].string_value())
10427 out_attr[i].set_string_value("");
10428 break;
10430 default:
10432 const char* err_object = NULL;
10434 // The "known_obj_attributes" table does contain some undefined
10435 // attributes. Ensure that there are unused.
10436 if (out_attr[i].int_value() != 0
10437 || out_attr[i].string_value() != "")
10438 err_object = "output";
10439 else if (in_attr[i].int_value() != 0
10440 || in_attr[i].string_value() != "")
10441 err_object = name;
10443 if (err_object != NULL
10444 && parameters->options().warn_mismatch())
10446 // Attribute numbers >=64 (mod 128) can be safely ignored.
10447 if ((i & 127) < 64)
10448 gold_error(_("%s: unknown mandatory EABI object attribute "
10449 "%d"),
10450 err_object, i);
10451 else
10452 gold_warning(_("%s: unknown EABI object attribute %d"),
10453 err_object, i);
10456 // Only pass on attributes that match in both inputs.
10457 if (!in_attr[i].matches(out_attr[i]))
10459 out_attr[i].set_int_value(0);
10460 out_attr[i].set_string_value("");
10465 // If out_attr was copied from in_attr then it won't have a type yet.
10466 if (in_attr[i].type() && !out_attr[i].type())
10467 out_attr[i].set_type(in_attr[i].type());
10470 // Merge Tag_compatibility attributes and any common GNU ones.
10471 this->attributes_section_data_->merge(name, pasd);
10473 // Check for any attributes not known on ARM.
10474 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10475 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10476 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10477 Other_attributes* out_other_attributes =
10478 this->attributes_section_data_->other_attributes(vendor);
10479 Other_attributes::iterator out_iter = out_other_attributes->begin();
10481 while (in_iter != in_other_attributes->end()
10482 || out_iter != out_other_attributes->end())
10484 const char* err_object = NULL;
10485 int err_tag = 0;
10487 // The tags for each list are in numerical order.
10488 // If the tags are equal, then merge.
10489 if (out_iter != out_other_attributes->end()
10490 && (in_iter == in_other_attributes->end()
10491 || in_iter->first > out_iter->first))
10493 // This attribute only exists in output. We can't merge, and we
10494 // don't know what the tag means, so delete it.
10495 err_object = "output";
10496 err_tag = out_iter->first;
10497 int saved_tag = out_iter->first;
10498 delete out_iter->second;
10499 out_other_attributes->erase(out_iter);
10500 out_iter = out_other_attributes->upper_bound(saved_tag);
10502 else if (in_iter != in_other_attributes->end()
10503 && (out_iter != out_other_attributes->end()
10504 || in_iter->first < out_iter->first))
10506 // This attribute only exists in input. We can't merge, and we
10507 // don't know what the tag means, so ignore it.
10508 err_object = name;
10509 err_tag = in_iter->first;
10510 ++in_iter;
10512 else // The tags are equal.
10514 // As present, all attributes in the list are unknown, and
10515 // therefore can't be merged meaningfully.
10516 err_object = "output";
10517 err_tag = out_iter->first;
10519 // Only pass on attributes that match in both inputs.
10520 if (!in_iter->second->matches(*(out_iter->second)))
10522 // No match. Delete the attribute.
10523 int saved_tag = out_iter->first;
10524 delete out_iter->second;
10525 out_other_attributes->erase(out_iter);
10526 out_iter = out_other_attributes->upper_bound(saved_tag);
10528 else
10530 // Matched. Keep the attribute and move to the next.
10531 ++out_iter;
10532 ++in_iter;
10536 if (err_object && parameters->options().warn_mismatch())
10538 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10539 if ((err_tag & 127) < 64)
10541 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10542 err_object, err_tag);
10544 else
10546 gold_warning(_("%s: unknown EABI object attribute %d"),
10547 err_object, err_tag);
10553 // Stub-generation methods for Target_arm.
10555 // Make a new Arm_input_section object.
10557 template<bool big_endian>
10558 Arm_input_section<big_endian>*
10559 Target_arm<big_endian>::new_arm_input_section(
10560 Relobj* relobj,
10561 unsigned int shndx)
10563 Section_id sid(relobj, shndx);
10565 Arm_input_section<big_endian>* arm_input_section =
10566 new Arm_input_section<big_endian>(relobj, shndx);
10567 arm_input_section->init();
10569 // Register new Arm_input_section in map for look-up.
10570 std::pair<typename Arm_input_section_map::iterator, bool> ins =
10571 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10573 // Make sure that it we have not created another Arm_input_section
10574 // for this input section already.
10575 gold_assert(ins.second);
10577 return arm_input_section;
10580 // Find the Arm_input_section object corresponding to the SHNDX-th input
10581 // section of RELOBJ.
10583 template<bool big_endian>
10584 Arm_input_section<big_endian>*
10585 Target_arm<big_endian>::find_arm_input_section(
10586 Relobj* relobj,
10587 unsigned int shndx) const
10589 Section_id sid(relobj, shndx);
10590 typename Arm_input_section_map::const_iterator p =
10591 this->arm_input_section_map_.find(sid);
10592 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10595 // Make a new stub table.
10597 template<bool big_endian>
10598 Stub_table<big_endian>*
10599 Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10601 Stub_table<big_endian>* stub_table =
10602 new Stub_table<big_endian>(owner);
10603 this->stub_tables_.push_back(stub_table);
10605 stub_table->set_address(owner->address() + owner->data_size());
10606 stub_table->set_file_offset(owner->offset() + owner->data_size());
10607 stub_table->finalize_data_size();
10609 return stub_table;
10612 // Scan a relocation for stub generation.
10614 template<bool big_endian>
10615 void
10616 Target_arm<big_endian>::scan_reloc_for_stub(
10617 const Relocate_info<32, big_endian>* relinfo,
10618 unsigned int r_type,
10619 const Sized_symbol<32>* gsym,
10620 unsigned int r_sym,
10621 const Symbol_value<32>* psymval,
10622 elfcpp::Elf_types<32>::Elf_Swxword addend,
10623 Arm_address address)
10625 typedef typename Target_arm<big_endian>::Relocate Relocate;
10627 const Arm_relobj<big_endian>* arm_relobj =
10628 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10630 bool target_is_thumb;
10631 Symbol_value<32> symval;
10632 if (gsym != NULL)
10634 // This is a global symbol. Determine if we use PLT and if the
10635 // final target is THUMB.
10636 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
10638 // This uses a PLT, change the symbol value.
10639 symval.set_output_value(this->plt_section()->address()
10640 + gsym->plt_offset());
10641 psymval = &symval;
10642 target_is_thumb = false;
10644 else if (gsym->is_undefined())
10645 // There is no need to generate a stub symbol is undefined.
10646 return;
10647 else
10649 target_is_thumb =
10650 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10651 || (gsym->type() == elfcpp::STT_FUNC
10652 && !gsym->is_undefined()
10653 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10656 else
10658 // This is a local symbol. Determine if the final target is THUMB.
10659 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10662 // Strip LSB if this points to a THUMB target.
10663 const Arm_reloc_property* reloc_property =
10664 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10665 gold_assert(reloc_property != NULL);
10666 if (target_is_thumb
10667 && reloc_property->uses_thumb_bit()
10668 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10670 Arm_address stripped_value =
10671 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10672 symval.set_output_value(stripped_value);
10673 psymval = &symval;
10676 // Get the symbol value.
10677 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10679 // Owing to pipelining, the PC relative branches below actually skip
10680 // two instructions when the branch offset is 0.
10681 Arm_address destination;
10682 switch (r_type)
10684 case elfcpp::R_ARM_CALL:
10685 case elfcpp::R_ARM_JUMP24:
10686 case elfcpp::R_ARM_PLT32:
10687 // ARM branches.
10688 destination = value + addend + 8;
10689 break;
10690 case elfcpp::R_ARM_THM_CALL:
10691 case elfcpp::R_ARM_THM_XPC22:
10692 case elfcpp::R_ARM_THM_JUMP24:
10693 case elfcpp::R_ARM_THM_JUMP19:
10694 // THUMB branches.
10695 destination = value + addend + 4;
10696 break;
10697 default:
10698 gold_unreachable();
10701 Reloc_stub* stub = NULL;
10702 Stub_type stub_type =
10703 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10704 target_is_thumb);
10705 if (stub_type != arm_stub_none)
10707 // Try looking up an existing stub from a stub table.
10708 Stub_table<big_endian>* stub_table =
10709 arm_relobj->stub_table(relinfo->data_shndx);
10710 gold_assert(stub_table != NULL);
10712 // Locate stub by destination.
10713 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
10715 // Create a stub if there is not one already
10716 stub = stub_table->find_reloc_stub(stub_key);
10717 if (stub == NULL)
10719 // create a new stub and add it to stub table.
10720 stub = this->stub_factory().make_reloc_stub(stub_type);
10721 stub_table->add_reloc_stub(stub, stub_key);
10724 // Record the destination address.
10725 stub->set_destination_address(destination
10726 | (target_is_thumb ? 1 : 0));
10729 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10730 if (this->fix_cortex_a8_
10731 && (r_type == elfcpp::R_ARM_THM_JUMP24
10732 || r_type == elfcpp::R_ARM_THM_JUMP19
10733 || r_type == elfcpp::R_ARM_THM_CALL
10734 || r_type == elfcpp::R_ARM_THM_XPC22)
10735 && (address & 0xfffU) == 0xffeU)
10737 // Found a candidate. Note we haven't checked the destination is
10738 // within 4K here: if we do so (and don't create a record) we can't
10739 // tell that a branch should have been relocated when scanning later.
10740 this->cortex_a8_relocs_info_[address] =
10741 new Cortex_a8_reloc(stub, r_type,
10742 destination | (target_is_thumb ? 1 : 0));
10746 // This function scans a relocation sections for stub generation.
10747 // The template parameter Relocate must be a class type which provides
10748 // a single function, relocate(), which implements the machine
10749 // specific part of a relocation.
10751 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10752 // SHT_REL or SHT_RELA.
10754 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10755 // of relocs. OUTPUT_SECTION is the output section.
10756 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10757 // mapped to output offsets.
10759 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10760 // VIEW_SIZE is the size. These refer to the input section, unless
10761 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10762 // the output section.
10764 template<bool big_endian>
10765 template<int sh_type>
10766 void inline
10767 Target_arm<big_endian>::scan_reloc_section_for_stubs(
10768 const Relocate_info<32, big_endian>* relinfo,
10769 const unsigned char* prelocs,
10770 size_t reloc_count,
10771 Output_section* output_section,
10772 bool needs_special_offset_handling,
10773 const unsigned char* view,
10774 elfcpp::Elf_types<32>::Elf_Addr view_address,
10775 section_size_type)
10777 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10778 const int reloc_size =
10779 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10781 Arm_relobj<big_endian>* arm_object =
10782 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10783 unsigned int local_count = arm_object->local_symbol_count();
10785 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10787 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10789 Reltype reloc(prelocs);
10791 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10792 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10793 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10795 r_type = this->get_real_reloc_type(r_type);
10797 // Only a few relocation types need stubs.
10798 if ((r_type != elfcpp::R_ARM_CALL)
10799 && (r_type != elfcpp::R_ARM_JUMP24)
10800 && (r_type != elfcpp::R_ARM_PLT32)
10801 && (r_type != elfcpp::R_ARM_THM_CALL)
10802 && (r_type != elfcpp::R_ARM_THM_XPC22)
10803 && (r_type != elfcpp::R_ARM_THM_JUMP24)
10804 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10805 && (r_type != elfcpp::R_ARM_V4BX))
10806 continue;
10808 section_offset_type offset =
10809 convert_to_section_size_type(reloc.get_r_offset());
10811 if (needs_special_offset_handling)
10813 offset = output_section->output_offset(relinfo->object,
10814 relinfo->data_shndx,
10815 offset);
10816 if (offset == -1)
10817 continue;
10820 // Create a v4bx stub if --fix-v4bx-interworking is used.
10821 if (r_type == elfcpp::R_ARM_V4BX)
10823 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10825 // Get the BX instruction.
10826 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10827 const Valtype* wv =
10828 reinterpret_cast<const Valtype*>(view + offset);
10829 elfcpp::Elf_types<32>::Elf_Swxword insn =
10830 elfcpp::Swap<32, big_endian>::readval(wv);
10831 const uint32_t reg = (insn & 0xf);
10833 if (reg < 0xf)
10835 // Try looking up an existing stub from a stub table.
10836 Stub_table<big_endian>* stub_table =
10837 arm_object->stub_table(relinfo->data_shndx);
10838 gold_assert(stub_table != NULL);
10840 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10842 // create a new stub and add it to stub table.
10843 Arm_v4bx_stub* stub =
10844 this->stub_factory().make_arm_v4bx_stub(reg);
10845 gold_assert(stub != NULL);
10846 stub_table->add_arm_v4bx_stub(stub);
10850 continue;
10853 // Get the addend.
10854 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10855 elfcpp::Elf_types<32>::Elf_Swxword addend =
10856 stub_addend_reader(r_type, view + offset, reloc);
10858 const Sized_symbol<32>* sym;
10860 Symbol_value<32> symval;
10861 const Symbol_value<32> *psymval;
10862 if (r_sym < local_count)
10864 sym = NULL;
10865 psymval = arm_object->local_symbol(r_sym);
10867 // If the local symbol belongs to a section we are discarding,
10868 // and that section is a debug section, try to find the
10869 // corresponding kept section and map this symbol to its
10870 // counterpart in the kept section. The symbol must not
10871 // correspond to a section we are folding.
10872 bool is_ordinary;
10873 unsigned int shndx = psymval->input_shndx(&is_ordinary);
10874 if (is_ordinary
10875 && shndx != elfcpp::SHN_UNDEF
10876 && !arm_object->is_section_included(shndx)
10877 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
10879 if (comdat_behavior == CB_UNDETERMINED)
10881 std::string name =
10882 arm_object->section_name(relinfo->data_shndx);
10883 comdat_behavior = get_comdat_behavior(name.c_str());
10885 if (comdat_behavior == CB_PRETEND)
10887 bool found;
10888 typename elfcpp::Elf_types<32>::Elf_Addr value =
10889 arm_object->map_to_kept_section(shndx, &found);
10890 if (found)
10891 symval.set_output_value(value + psymval->input_value());
10892 else
10893 symval.set_output_value(0);
10895 else
10897 symval.set_output_value(0);
10899 symval.set_no_output_symtab_entry();
10900 psymval = &symval;
10903 else
10905 const Symbol* gsym = arm_object->global_symbol(r_sym);
10906 gold_assert(gsym != NULL);
10907 if (gsym->is_forwarder())
10908 gsym = relinfo->symtab->resolve_forwards(gsym);
10910 sym = static_cast<const Sized_symbol<32>*>(gsym);
10911 if (sym->has_symtab_index())
10912 symval.set_output_symtab_index(sym->symtab_index());
10913 else
10914 symval.set_no_output_symtab_entry();
10916 // We need to compute the would-be final value of this global
10917 // symbol.
10918 const Symbol_table* symtab = relinfo->symtab;
10919 const Sized_symbol<32>* sized_symbol =
10920 symtab->get_sized_symbol<32>(gsym);
10921 Symbol_table::Compute_final_value_status status;
10922 Arm_address value =
10923 symtab->compute_final_value<32>(sized_symbol, &status);
10925 // Skip this if the symbol has not output section.
10926 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10927 continue;
10929 symval.set_output_value(value);
10930 psymval = &symval;
10933 // If symbol is a section symbol, we don't know the actual type of
10934 // destination. Give up.
10935 if (psymval->is_section_symbol())
10936 continue;
10938 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
10939 addend, view_address + offset);
10943 // Scan an input section for stub generation.
10945 template<bool big_endian>
10946 void
10947 Target_arm<big_endian>::scan_section_for_stubs(
10948 const Relocate_info<32, big_endian>* relinfo,
10949 unsigned int sh_type,
10950 const unsigned char* prelocs,
10951 size_t reloc_count,
10952 Output_section* output_section,
10953 bool needs_special_offset_handling,
10954 const unsigned char* view,
10955 Arm_address view_address,
10956 section_size_type view_size)
10958 if (sh_type == elfcpp::SHT_REL)
10959 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10960 relinfo,
10961 prelocs,
10962 reloc_count,
10963 output_section,
10964 needs_special_offset_handling,
10965 view,
10966 view_address,
10967 view_size);
10968 else if (sh_type == elfcpp::SHT_RELA)
10969 // We do not support RELA type relocations yet. This is provided for
10970 // completeness.
10971 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10972 relinfo,
10973 prelocs,
10974 reloc_count,
10975 output_section,
10976 needs_special_offset_handling,
10977 view,
10978 view_address,
10979 view_size);
10980 else
10981 gold_unreachable();
10984 // Group input sections for stub generation.
10986 // We goup input sections in an output sections so that the total size,
10987 // including any padding space due to alignment is smaller than GROUP_SIZE
10988 // unless the only input section in group is bigger than GROUP_SIZE already.
10989 // Then an ARM stub table is created to follow the last input section
10990 // in group. For each group an ARM stub table is created an is placed
10991 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10992 // extend the group after the stub table.
10994 template<bool big_endian>
10995 void
10996 Target_arm<big_endian>::group_sections(
10997 Layout* layout,
10998 section_size_type group_size,
10999 bool stubs_always_after_branch)
11001 // Group input sections and insert stub table
11002 Layout::Section_list section_list;
11003 layout->get_allocated_sections(&section_list);
11004 for (Layout::Section_list::const_iterator p = section_list.begin();
11005 p != section_list.end();
11006 ++p)
11008 Arm_output_section<big_endian>* output_section =
11009 Arm_output_section<big_endian>::as_arm_output_section(*p);
11010 output_section->group_sections(group_size, stubs_always_after_branch,
11011 this);
11015 // Relaxation hook. This is where we do stub generation.
11017 template<bool big_endian>
11018 bool
11019 Target_arm<big_endian>::do_relax(
11020 int pass,
11021 const Input_objects* input_objects,
11022 Symbol_table* symtab,
11023 Layout* layout)
11025 // No need to generate stubs if this is a relocatable link.
11026 gold_assert(!parameters->options().relocatable());
11028 // If this is the first pass, we need to group input sections into
11029 // stub groups.
11030 bool done_exidx_fixup = false;
11031 typedef typename Stub_table_list::iterator Stub_table_iterator;
11032 if (pass == 1)
11034 // Determine the stub group size. The group size is the absolute
11035 // value of the parameter --stub-group-size. If --stub-group-size
11036 // is passed a negative value, we restict stubs to be always after
11037 // the stubbed branches.
11038 int32_t stub_group_size_param =
11039 parameters->options().stub_group_size();
11040 bool stubs_always_after_branch = stub_group_size_param < 0;
11041 section_size_type stub_group_size = abs(stub_group_size_param);
11043 if (stub_group_size == 1)
11045 // Default value.
11046 // Thumb branch range is +-4MB has to be used as the default
11047 // maximum size (a given section can contain both ARM and Thumb
11048 // code, so the worst case has to be taken into account). If we are
11049 // fixing cortex-a8 errata, the branch range has to be even smaller,
11050 // since wide conditional branch has a range of +-1MB only.
11052 // This value is 48K less than that, which allows for 4096
11053 // 12-byte stubs. If we exceed that, then we will fail to link.
11054 // The user will have to relink with an explicit group size
11055 // option.
11056 stub_group_size = 4145152;
11059 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11060 // page as the first half of a 32-bit branch straddling two 4K pages.
11061 // This is a crude way of enforcing that. In addition, long conditional
11062 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11063 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11064 // cortex-A8 stubs from long conditional branches.
11065 if (this->fix_cortex_a8_)
11067 stubs_always_after_branch = true;
11068 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11069 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11072 group_sections(layout, stub_group_size, stubs_always_after_branch);
11074 // Also fix .ARM.exidx section coverage.
11075 Arm_output_section<big_endian>* exidx_output_section = NULL;
11076 for (Layout::Section_list::const_iterator p =
11077 layout->section_list().begin();
11078 p != layout->section_list().end();
11079 ++p)
11080 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11082 if (exidx_output_section == NULL)
11083 exidx_output_section =
11084 Arm_output_section<big_endian>::as_arm_output_section(*p);
11085 else
11086 // We cannot handle this now.
11087 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11088 "non-relocatable link"),
11089 exidx_output_section->name(),
11090 (*p)->name());
11093 if (exidx_output_section != NULL)
11095 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11096 symtab);
11097 done_exidx_fixup = true;
11100 else
11102 // If this is not the first pass, addresses and file offsets have
11103 // been reset at this point, set them here.
11104 for (Stub_table_iterator sp = this->stub_tables_.begin();
11105 sp != this->stub_tables_.end();
11106 ++sp)
11108 Arm_input_section<big_endian>* owner = (*sp)->owner();
11109 off_t off = align_address(owner->original_size(),
11110 (*sp)->addralign());
11111 (*sp)->set_address_and_file_offset(owner->address() + off,
11112 owner->offset() + off);
11116 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11117 // beginning of each relaxation pass, just blow away all the stubs.
11118 // Alternatively, we could selectively remove only the stubs and reloc
11119 // information for code sections that have moved since the last pass.
11120 // That would require more book-keeping.
11121 if (this->fix_cortex_a8_)
11123 // Clear all Cortex-A8 reloc information.
11124 for (typename Cortex_a8_relocs_info::const_iterator p =
11125 this->cortex_a8_relocs_info_.begin();
11126 p != this->cortex_a8_relocs_info_.end();
11127 ++p)
11128 delete p->second;
11129 this->cortex_a8_relocs_info_.clear();
11131 // Remove all Cortex-A8 stubs.
11132 for (Stub_table_iterator sp = this->stub_tables_.begin();
11133 sp != this->stub_tables_.end();
11134 ++sp)
11135 (*sp)->remove_all_cortex_a8_stubs();
11138 // Scan relocs for relocation stubs
11139 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11140 op != input_objects->relobj_end();
11141 ++op)
11143 Arm_relobj<big_endian>* arm_relobj =
11144 Arm_relobj<big_endian>::as_arm_relobj(*op);
11145 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11148 // Check all stub tables to see if any of them have their data sizes
11149 // or addresses alignments changed. These are the only things that
11150 // matter.
11151 bool any_stub_table_changed = false;
11152 Unordered_set<const Output_section*> sections_needing_adjustment;
11153 for (Stub_table_iterator sp = this->stub_tables_.begin();
11154 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11155 ++sp)
11157 if ((*sp)->update_data_size_and_addralign())
11159 // Update data size of stub table owner.
11160 Arm_input_section<big_endian>* owner = (*sp)->owner();
11161 uint64_t address = owner->address();
11162 off_t offset = owner->offset();
11163 owner->reset_address_and_file_offset();
11164 owner->set_address_and_file_offset(address, offset);
11166 sections_needing_adjustment.insert(owner->output_section());
11167 any_stub_table_changed = true;
11171 // Output_section_data::output_section() returns a const pointer but we
11172 // need to update output sections, so we record all output sections needing
11173 // update above and scan the sections here to find out what sections need
11174 // to be updated.
11175 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
11176 p != layout->section_list().end();
11177 ++p)
11179 if (sections_needing_adjustment.find(*p)
11180 != sections_needing_adjustment.end())
11181 (*p)->set_section_offsets_need_adjustment();
11184 // Stop relaxation if no EXIDX fix-up and no stub table change.
11185 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11187 // Finalize the stubs in the last relaxation pass.
11188 if (!continue_relaxation)
11190 for (Stub_table_iterator sp = this->stub_tables_.begin();
11191 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11192 ++sp)
11193 (*sp)->finalize_stubs();
11195 // Update output local symbol counts of objects if necessary.
11196 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11197 op != input_objects->relobj_end();
11198 ++op)
11200 Arm_relobj<big_endian>* arm_relobj =
11201 Arm_relobj<big_endian>::as_arm_relobj(*op);
11203 // Update output local symbol counts. We need to discard local
11204 // symbols defined in parts of input sections that are discarded by
11205 // relaxation.
11206 if (arm_relobj->output_local_symbol_count_needs_update())
11207 arm_relobj->update_output_local_symbol_count();
11211 return continue_relaxation;
11214 // Relocate a stub.
11216 template<bool big_endian>
11217 void
11218 Target_arm<big_endian>::relocate_stub(
11219 Stub* stub,
11220 const Relocate_info<32, big_endian>* relinfo,
11221 Output_section* output_section,
11222 unsigned char* view,
11223 Arm_address address,
11224 section_size_type view_size)
11226 Relocate relocate;
11227 const Stub_template* stub_template = stub->stub_template();
11228 for (size_t i = 0; i < stub_template->reloc_count(); i++)
11230 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11231 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11233 unsigned int r_type = insn->r_type();
11234 section_size_type reloc_offset = stub_template->reloc_offset(i);
11235 section_size_type reloc_size = insn->size();
11236 gold_assert(reloc_offset + reloc_size <= view_size);
11238 // This is the address of the stub destination.
11239 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11240 Symbol_value<32> symval;
11241 symval.set_output_value(target);
11243 // Synthesize a fake reloc just in case. We don't have a symbol so
11244 // we use 0.
11245 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11246 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11247 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11248 reloc_write.put_r_offset(reloc_offset);
11249 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11250 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11252 relocate.relocate(relinfo, this, output_section,
11253 this->fake_relnum_for_stubs, rel, r_type,
11254 NULL, &symval, view + reloc_offset,
11255 address + reloc_offset, reloc_size);
11259 // Determine whether an object attribute tag takes an integer, a
11260 // string or both.
11262 template<bool big_endian>
11264 Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11266 if (tag == Object_attribute::Tag_compatibility)
11267 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11268 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11269 else if (tag == elfcpp::Tag_nodefaults)
11270 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11271 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11272 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11273 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11274 else if (tag < 32)
11275 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11276 else
11277 return ((tag & 1) != 0
11278 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11279 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11282 // Reorder attributes.
11284 // The ABI defines that Tag_conformance should be emitted first, and that
11285 // Tag_nodefaults should be second (if either is defined). This sets those
11286 // two positions, and bumps up the position of all the remaining tags to
11287 // compensate.
11289 template<bool big_endian>
11291 Target_arm<big_endian>::do_attributes_order(int num) const
11293 // Reorder the known object attributes in output. We want to move
11294 // Tag_conformance to position 4 and Tag_conformance to position 5
11295 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11296 if (num == 4)
11297 return elfcpp::Tag_conformance;
11298 if (num == 5)
11299 return elfcpp::Tag_nodefaults;
11300 if ((num - 2) < elfcpp::Tag_nodefaults)
11301 return num - 2;
11302 if ((num - 1) < elfcpp::Tag_conformance)
11303 return num - 1;
11304 return num;
11307 // Scan a span of THUMB code for Cortex-A8 erratum.
11309 template<bool big_endian>
11310 void
11311 Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11312 Arm_relobj<big_endian>* arm_relobj,
11313 unsigned int shndx,
11314 section_size_type span_start,
11315 section_size_type span_end,
11316 const unsigned char* view,
11317 Arm_address address)
11319 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11321 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11322 // The branch target is in the same 4KB region as the
11323 // first half of the branch.
11324 // The instruction before the branch is a 32-bit
11325 // length non-branch instruction.
11326 section_size_type i = span_start;
11327 bool last_was_32bit = false;
11328 bool last_was_branch = false;
11329 while (i < span_end)
11331 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11332 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11333 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11334 bool is_blx = false, is_b = false;
11335 bool is_bl = false, is_bcc = false;
11337 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11338 if (insn_32bit)
11340 // Load the rest of the insn (in manual-friendly order).
11341 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11343 // Encoding T4: B<c>.W.
11344 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11345 // Encoding T1: BL<c>.W.
11346 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11347 // Encoding T2: BLX<c>.W.
11348 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11349 // Encoding T3: B<c>.W (not permitted in IT block).
11350 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11351 && (insn & 0x07f00000U) != 0x03800000U);
11354 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11356 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11357 // page boundary and it follows 32-bit non-branch instruction,
11358 // we need to work around.
11359 if (is_32bit_branch
11360 && ((address + i) & 0xfffU) == 0xffeU
11361 && last_was_32bit
11362 && !last_was_branch)
11364 // Check to see if there is a relocation stub for this branch.
11365 bool force_target_arm = false;
11366 bool force_target_thumb = false;
11367 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11368 Cortex_a8_relocs_info::const_iterator p =
11369 this->cortex_a8_relocs_info_.find(address + i);
11371 if (p != this->cortex_a8_relocs_info_.end())
11373 cortex_a8_reloc = p->second;
11374 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11376 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11377 && !target_is_thumb)
11378 force_target_arm = true;
11379 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11380 && target_is_thumb)
11381 force_target_thumb = true;
11384 off_t offset;
11385 Stub_type stub_type = arm_stub_none;
11387 // Check if we have an offending branch instruction.
11388 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11389 uint16_t lower_insn = insn & 0xffffU;
11390 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11392 if (cortex_a8_reloc != NULL
11393 && cortex_a8_reloc->reloc_stub() != NULL)
11394 // We've already made a stub for this instruction, e.g.
11395 // it's a long branch or a Thumb->ARM stub. Assume that
11396 // stub will suffice to work around the A8 erratum (see
11397 // setting of always_after_branch above).
11399 else if (is_bcc)
11401 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11402 lower_insn);
11403 stub_type = arm_stub_a8_veneer_b_cond;
11405 else if (is_b || is_bl || is_blx)
11407 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11408 lower_insn);
11409 if (is_blx)
11410 offset &= ~3;
11412 stub_type = (is_blx
11413 ? arm_stub_a8_veneer_blx
11414 : (is_bl
11415 ? arm_stub_a8_veneer_bl
11416 : arm_stub_a8_veneer_b));
11419 if (stub_type != arm_stub_none)
11421 Arm_address pc_for_insn = address + i + 4;
11423 // The original instruction is a BL, but the target is
11424 // an ARM instruction. If we were not making a stub,
11425 // the BL would have been converted to a BLX. Use the
11426 // BLX stub instead in that case.
11427 if (this->may_use_blx() && force_target_arm
11428 && stub_type == arm_stub_a8_veneer_bl)
11430 stub_type = arm_stub_a8_veneer_blx;
11431 is_blx = true;
11432 is_bl = false;
11434 // Conversely, if the original instruction was
11435 // BLX but the target is Thumb mode, use the BL stub.
11436 else if (force_target_thumb
11437 && stub_type == arm_stub_a8_veneer_blx)
11439 stub_type = arm_stub_a8_veneer_bl;
11440 is_blx = false;
11441 is_bl = true;
11444 if (is_blx)
11445 pc_for_insn &= ~3;
11447 // If we found a relocation, use the proper destination,
11448 // not the offset in the (unrelocated) instruction.
11449 // Note this is always done if we switched the stub type above.
11450 if (cortex_a8_reloc != NULL)
11451 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11453 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11455 // Add a new stub if destination address in in the same page.
11456 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11458 Cortex_a8_stub* stub =
11459 this->stub_factory_.make_cortex_a8_stub(stub_type,
11460 arm_relobj, shndx,
11461 address + i,
11462 target, insn);
11463 Stub_table<big_endian>* stub_table =
11464 arm_relobj->stub_table(shndx);
11465 gold_assert(stub_table != NULL);
11466 stub_table->add_cortex_a8_stub(address + i, stub);
11471 i += insn_32bit ? 4 : 2;
11472 last_was_32bit = insn_32bit;
11473 last_was_branch = is_32bit_branch;
11477 // Apply the Cortex-A8 workaround.
11479 template<bool big_endian>
11480 void
11481 Target_arm<big_endian>::apply_cortex_a8_workaround(
11482 const Cortex_a8_stub* stub,
11483 Arm_address stub_address,
11484 unsigned char* insn_view,
11485 Arm_address insn_address)
11487 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11488 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11489 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11490 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11491 off_t branch_offset = stub_address - (insn_address + 4);
11493 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11494 switch (stub->stub_template()->type())
11496 case arm_stub_a8_veneer_b_cond:
11497 // For a conditional branch, we re-write it to be a uncondition
11498 // branch to the stub. We use the THUMB-2 encoding here.
11499 upper_insn = 0xf000U;
11500 lower_insn = 0xb800U;
11501 // Fall through
11502 case arm_stub_a8_veneer_b:
11503 case arm_stub_a8_veneer_bl:
11504 case arm_stub_a8_veneer_blx:
11505 if ((lower_insn & 0x5000U) == 0x4000U)
11506 // For a BLX instruction, make sure that the relocation is
11507 // rounded up to a word boundary. This follows the semantics of
11508 // the instruction which specifies that bit 1 of the target
11509 // address will come from bit 1 of the base address.
11510 branch_offset = (branch_offset + 2) & ~3;
11512 // Put BRANCH_OFFSET back into the insn.
11513 gold_assert(!utils::has_overflow<25>(branch_offset));
11514 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11515 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11516 break;
11518 default:
11519 gold_unreachable();
11522 // Put the relocated value back in the object file:
11523 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11524 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11527 template<bool big_endian>
11528 class Target_selector_arm : public Target_selector
11530 public:
11531 Target_selector_arm()
11532 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11533 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11536 Target*
11537 do_instantiate_target()
11538 { return new Target_arm<big_endian>(); }
11541 // Fix .ARM.exidx section coverage.
11543 template<bool big_endian>
11544 void
11545 Target_arm<big_endian>::fix_exidx_coverage(
11546 Layout* layout,
11547 const Input_objects* input_objects,
11548 Arm_output_section<big_endian>* exidx_section,
11549 Symbol_table* symtab)
11551 // We need to look at all the input sections in output in ascending
11552 // order of of output address. We do that by building a sorted list
11553 // of output sections by addresses. Then we looks at the output sections
11554 // in order. The input sections in an output section are already sorted
11555 // by addresses within the output section.
11557 typedef std::set<Output_section*, output_section_address_less_than>
11558 Sorted_output_section_list;
11559 Sorted_output_section_list sorted_output_sections;
11561 // Find out all the output sections of input sections pointed by
11562 // EXIDX input sections.
11563 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11564 p != input_objects->relobj_end();
11565 ++p)
11567 Arm_relobj<big_endian>* arm_relobj =
11568 Arm_relobj<big_endian>::as_arm_relobj(*p);
11569 std::vector<unsigned int> shndx_list;
11570 arm_relobj->get_exidx_shndx_list(&shndx_list);
11571 for (size_t i = 0; i < shndx_list.size(); ++i)
11573 const Arm_exidx_input_section* exidx_input_section =
11574 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11575 gold_assert(exidx_input_section != NULL);
11576 if (!exidx_input_section->has_errors())
11578 unsigned int text_shndx = exidx_input_section->link();
11579 Output_section *os = arm_relobj->output_section(text_shndx);
11580 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11581 sorted_output_sections.insert(os);
11586 // Go over the output sections in ascending order of output addresses.
11587 typedef typename Arm_output_section<big_endian>::Text_section_list
11588 Text_section_list;
11589 Text_section_list sorted_text_sections;
11590 for(typename Sorted_output_section_list::iterator p =
11591 sorted_output_sections.begin();
11592 p != sorted_output_sections.end();
11593 ++p)
11595 Arm_output_section<big_endian>* arm_output_section =
11596 Arm_output_section<big_endian>::as_arm_output_section(*p);
11597 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11600 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11601 merge_exidx_entries());
11604 Target_selector_arm<false> target_selector_arm;
11605 Target_selector_arm<true> target_selector_armbe;
11607 } // End anonymous namespace.