1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
54 static bfd_boolean
prep_headers (bfd
*);
55 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
56 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
57 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
64 /* Swap in a Verdef structure. */
67 _bfd_elf_swap_verdef_in (bfd
*abfd
,
68 const Elf_External_Verdef
*src
,
69 Elf_Internal_Verdef
*dst
)
71 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
72 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
73 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
74 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
75 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
76 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
77 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
80 /* Swap out a Verdef structure. */
83 _bfd_elf_swap_verdef_out (bfd
*abfd
,
84 const Elf_Internal_Verdef
*src
,
85 Elf_External_Verdef
*dst
)
87 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
88 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
89 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
90 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
91 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
92 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
93 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
96 /* Swap in a Verdaux structure. */
99 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
100 const Elf_External_Verdaux
*src
,
101 Elf_Internal_Verdaux
*dst
)
103 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
104 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
107 /* Swap out a Verdaux structure. */
110 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
111 const Elf_Internal_Verdaux
*src
,
112 Elf_External_Verdaux
*dst
)
114 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
115 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
118 /* Swap in a Verneed structure. */
121 _bfd_elf_swap_verneed_in (bfd
*abfd
,
122 const Elf_External_Verneed
*src
,
123 Elf_Internal_Verneed
*dst
)
125 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
126 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
127 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
128 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
129 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
132 /* Swap out a Verneed structure. */
135 _bfd_elf_swap_verneed_out (bfd
*abfd
,
136 const Elf_Internal_Verneed
*src
,
137 Elf_External_Verneed
*dst
)
139 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
140 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
141 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
142 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
143 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
146 /* Swap in a Vernaux structure. */
149 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
150 const Elf_External_Vernaux
*src
,
151 Elf_Internal_Vernaux
*dst
)
153 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
154 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
155 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
156 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
157 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
160 /* Swap out a Vernaux structure. */
163 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
164 const Elf_Internal_Vernaux
*src
,
165 Elf_External_Vernaux
*dst
)
167 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
168 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
169 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
170 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
171 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
174 /* Swap in a Versym structure. */
177 _bfd_elf_swap_versym_in (bfd
*abfd
,
178 const Elf_External_Versym
*src
,
179 Elf_Internal_Versym
*dst
)
181 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
184 /* Swap out a Versym structure. */
187 _bfd_elf_swap_versym_out (bfd
*abfd
,
188 const Elf_Internal_Versym
*src
,
189 Elf_External_Versym
*dst
)
191 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
198 bfd_elf_hash (const char *namearg
)
200 const unsigned char *name
= (const unsigned char *) namearg
;
205 while ((ch
= *name
++) != '\0')
208 if ((g
= (h
& 0xf0000000)) != 0)
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
216 return h
& 0xffffffff;
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
223 bfd_elf_gnu_hash (const char *namearg
)
225 const unsigned char *name
= (const unsigned char *) namearg
;
226 unsigned long h
= 5381;
229 while ((ch
= *name
++) != '\0')
230 h
= (h
<< 5) + h
+ ch
;
231 return h
& 0xffffffff;
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_elf_allocate_object (bfd
*abfd
,
239 enum elf_target_id object_id
)
241 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
242 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
243 if (abfd
->tdata
.any
== NULL
)
246 elf_object_id (abfd
) = object_id
;
247 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
253 bfd_elf_make_generic_object (bfd
*abfd
)
255 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
260 bfd_elf_mkcorefile (bfd
*abfd
)
262 /* I think this can be done just like an object file. */
263 return bfd_elf_make_generic_object (abfd
);
267 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
269 Elf_Internal_Shdr
**i_shdrp
;
270 bfd_byte
*shstrtab
= NULL
;
272 bfd_size_type shstrtabsize
;
274 i_shdrp
= elf_elfsections (abfd
);
276 || shindex
>= elf_numsections (abfd
)
277 || i_shdrp
[shindex
] == 0)
280 shstrtab
= i_shdrp
[shindex
]->contents
;
281 if (shstrtab
== NULL
)
283 /* No cached one, attempt to read, and cache what we read. */
284 offset
= i_shdrp
[shindex
]->sh_offset
;
285 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
287 /* Allocate and clear an extra byte at the end, to prevent crashes
288 in case the string table is not terminated. */
289 if (shstrtabsize
+ 1 <= 1
290 || (shstrtab
= (bfd_byte
*) bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
291 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
293 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
295 if (bfd_get_error () != bfd_error_system_call
)
296 bfd_set_error (bfd_error_file_truncated
);
298 /* Once we've failed to read it, make sure we don't keep
299 trying. Otherwise, we'll keep allocating space for
300 the string table over and over. */
301 i_shdrp
[shindex
]->sh_size
= 0;
304 shstrtab
[shstrtabsize
] = '\0';
305 i_shdrp
[shindex
]->contents
= shstrtab
;
307 return (char *) shstrtab
;
311 bfd_elf_string_from_elf_section (bfd
*abfd
,
312 unsigned int shindex
,
313 unsigned int strindex
)
315 Elf_Internal_Shdr
*hdr
;
320 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
323 hdr
= elf_elfsections (abfd
)[shindex
];
325 if (hdr
->contents
== NULL
326 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
329 if (strindex
>= hdr
->sh_size
)
331 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
332 (*_bfd_error_handler
)
333 (_("%B: invalid string offset %u >= %lu for section `%s'"),
334 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
335 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
337 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
341 return ((char *) hdr
->contents
) + strindex
;
344 /* Read and convert symbols to internal format.
345 SYMCOUNT specifies the number of symbols to read, starting from
346 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
347 are non-NULL, they are used to store the internal symbols, external
348 symbols, and symbol section index extensions, respectively.
349 Returns a pointer to the internal symbol buffer (malloced if necessary)
350 or NULL if there were no symbols or some kind of problem. */
353 bfd_elf_get_elf_syms (bfd
*ibfd
,
354 Elf_Internal_Shdr
*symtab_hdr
,
357 Elf_Internal_Sym
*intsym_buf
,
359 Elf_External_Sym_Shndx
*extshndx_buf
)
361 Elf_Internal_Shdr
*shndx_hdr
;
363 const bfd_byte
*esym
;
364 Elf_External_Sym_Shndx
*alloc_extshndx
;
365 Elf_External_Sym_Shndx
*shndx
;
366 Elf_Internal_Sym
*alloc_intsym
;
367 Elf_Internal_Sym
*isym
;
368 Elf_Internal_Sym
*isymend
;
369 const struct elf_backend_data
*bed
;
374 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
380 /* Normal syms might have section extension entries. */
382 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
383 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
385 /* Read the symbols. */
387 alloc_extshndx
= NULL
;
389 bed
= get_elf_backend_data (ibfd
);
390 extsym_size
= bed
->s
->sizeof_sym
;
391 amt
= symcount
* extsym_size
;
392 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
393 if (extsym_buf
== NULL
)
395 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
396 extsym_buf
= alloc_ext
;
398 if (extsym_buf
== NULL
399 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
400 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
406 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
410 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
411 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
412 if (extshndx_buf
== NULL
)
414 alloc_extshndx
= (Elf_External_Sym_Shndx
*)
415 bfd_malloc2 (symcount
, sizeof (Elf_External_Sym_Shndx
));
416 extshndx_buf
= alloc_extshndx
;
418 if (extshndx_buf
== NULL
419 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
420 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
427 if (intsym_buf
== NULL
)
429 alloc_intsym
= (Elf_Internal_Sym
*)
430 bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
431 intsym_buf
= alloc_intsym
;
432 if (intsym_buf
== NULL
)
436 /* Convert the symbols to internal form. */
437 isymend
= intsym_buf
+ symcount
;
438 for (esym
= (const bfd_byte
*) extsym_buf
, isym
= intsym_buf
,
439 shndx
= extshndx_buf
;
441 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
442 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
444 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
445 (*_bfd_error_handler
) (_("%B symbol number %lu references "
446 "nonexistent SHT_SYMTAB_SHNDX section"),
447 ibfd
, (unsigned long) symoffset
);
448 if (alloc_intsym
!= NULL
)
455 if (alloc_ext
!= NULL
)
457 if (alloc_extshndx
!= NULL
)
458 free (alloc_extshndx
);
463 /* Look up a symbol name. */
465 bfd_elf_sym_name (bfd
*abfd
,
466 Elf_Internal_Shdr
*symtab_hdr
,
467 Elf_Internal_Sym
*isym
,
471 unsigned int iname
= isym
->st_name
;
472 unsigned int shindex
= symtab_hdr
->sh_link
;
474 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
475 /* Check for a bogus st_shndx to avoid crashing. */
476 && isym
->st_shndx
< elf_numsections (abfd
))
478 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
479 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
482 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
485 else if (sym_sec
&& *name
== '\0')
486 name
= bfd_section_name (abfd
, sym_sec
);
491 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
492 sections. The first element is the flags, the rest are section
495 typedef union elf_internal_group
{
496 Elf_Internal_Shdr
*shdr
;
498 } Elf_Internal_Group
;
500 /* Return the name of the group signature symbol. Why isn't the
501 signature just a string? */
504 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
506 Elf_Internal_Shdr
*hdr
;
507 unsigned char esym
[sizeof (Elf64_External_Sym
)];
508 Elf_External_Sym_Shndx eshndx
;
509 Elf_Internal_Sym isym
;
511 /* First we need to ensure the symbol table is available. Make sure
512 that it is a symbol table section. */
513 if (ghdr
->sh_link
>= elf_numsections (abfd
))
515 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
516 if (hdr
->sh_type
!= SHT_SYMTAB
517 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
520 /* Go read the symbol. */
521 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
522 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
523 &isym
, esym
, &eshndx
) == NULL
)
526 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
529 /* Set next_in_group list pointer, and group name for NEWSECT. */
532 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
534 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
536 /* If num_group is zero, read in all SHT_GROUP sections. The count
537 is set to -1 if there are no SHT_GROUP sections. */
540 unsigned int i
, shnum
;
542 /* First count the number of groups. If we have a SHT_GROUP
543 section with just a flag word (ie. sh_size is 4), ignore it. */
544 shnum
= elf_numsections (abfd
);
547 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
548 ( (shdr)->sh_type == SHT_GROUP \
549 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
550 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
551 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553 for (i
= 0; i
< shnum
; i
++)
555 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
557 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
563 num_group
= (unsigned) -1;
564 elf_tdata (abfd
)->num_group
= num_group
;
568 /* We keep a list of elf section headers for group sections,
569 so we can find them quickly. */
572 elf_tdata (abfd
)->num_group
= num_group
;
573 elf_tdata (abfd
)->group_sect_ptr
= (Elf_Internal_Shdr
**)
574 bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
575 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
579 for (i
= 0; i
< shnum
; i
++)
581 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
583 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
586 Elf_Internal_Group
*dest
;
588 /* Add to list of sections. */
589 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
592 /* Read the raw contents. */
593 BFD_ASSERT (sizeof (*dest
) >= 4);
594 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
595 shdr
->contents
= (unsigned char *)
596 bfd_alloc2 (abfd
, shdr
->sh_size
, sizeof (*dest
) / 4);
597 /* PR binutils/4110: Handle corrupt group headers. */
598 if (shdr
->contents
== NULL
)
601 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
602 bfd_set_error (bfd_error_bad_value
);
606 memset (shdr
->contents
, 0, amt
);
608 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
609 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
613 /* Translate raw contents, a flag word followed by an
614 array of elf section indices all in target byte order,
615 to the flag word followed by an array of elf section
617 src
= shdr
->contents
+ shdr
->sh_size
;
618 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
625 idx
= H_GET_32 (abfd
, src
);
626 if (src
== shdr
->contents
)
629 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
630 shdr
->bfd_section
->flags
631 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
636 ((*_bfd_error_handler
)
637 (_("%B: invalid SHT_GROUP entry"), abfd
));
640 dest
->shdr
= elf_elfsections (abfd
)[idx
];
647 if (num_group
!= (unsigned) -1)
651 for (i
= 0; i
< num_group
; i
++)
653 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
654 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
655 unsigned int n_elt
= shdr
->sh_size
/ 4;
657 /* Look through this group's sections to see if current
658 section is a member. */
660 if ((++idx
)->shdr
== hdr
)
664 /* We are a member of this group. Go looking through
665 other members to see if any others are linked via
667 idx
= (Elf_Internal_Group
*) shdr
->contents
;
668 n_elt
= shdr
->sh_size
/ 4;
670 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
671 && elf_next_in_group (s
) != NULL
)
675 /* Snarf the group name from other member, and
676 insert current section in circular list. */
677 elf_group_name (newsect
) = elf_group_name (s
);
678 elf_next_in_group (newsect
) = elf_next_in_group (s
);
679 elf_next_in_group (s
) = newsect
;
685 gname
= group_signature (abfd
, shdr
);
688 elf_group_name (newsect
) = gname
;
690 /* Start a circular list with one element. */
691 elf_next_in_group (newsect
) = newsect
;
694 /* If the group section has been created, point to the
696 if (shdr
->bfd_section
!= NULL
)
697 elf_next_in_group (shdr
->bfd_section
) = newsect
;
705 if (elf_group_name (newsect
) == NULL
)
707 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
714 _bfd_elf_setup_sections (bfd
*abfd
)
717 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
718 bfd_boolean result
= TRUE
;
721 /* Process SHF_LINK_ORDER. */
722 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
724 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
725 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
727 unsigned int elfsec
= this_hdr
->sh_link
;
728 /* FIXME: The old Intel compiler and old strip/objcopy may
729 not set the sh_link or sh_info fields. Hence we could
730 get the situation where elfsec is 0. */
733 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
734 if (bed
->link_order_error_handler
)
735 bed
->link_order_error_handler
736 (_("%B: warning: sh_link not set for section `%A'"),
741 asection
*linksec
= NULL
;
743 if (elfsec
< elf_numsections (abfd
))
745 this_hdr
= elf_elfsections (abfd
)[elfsec
];
746 linksec
= this_hdr
->bfd_section
;
750 Some strip/objcopy may leave an incorrect value in
751 sh_link. We don't want to proceed. */
754 (*_bfd_error_handler
)
755 (_("%B: sh_link [%d] in section `%A' is incorrect"),
756 s
->owner
, s
, elfsec
);
760 elf_linked_to_section (s
) = linksec
;
765 /* Process section groups. */
766 if (num_group
== (unsigned) -1)
769 for (i
= 0; i
< num_group
; i
++)
771 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
772 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
773 unsigned int n_elt
= shdr
->sh_size
/ 4;
776 if ((++idx
)->shdr
->bfd_section
)
777 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
778 else if (idx
->shdr
->sh_type
== SHT_RELA
779 || idx
->shdr
->sh_type
== SHT_REL
)
780 /* We won't include relocation sections in section groups in
781 output object files. We adjust the group section size here
782 so that relocatable link will work correctly when
783 relocation sections are in section group in input object
785 shdr
->bfd_section
->size
-= 4;
788 /* There are some unknown sections in the group. */
789 (*_bfd_error_handler
)
790 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 (unsigned int) idx
->shdr
->sh_type
,
793 bfd_elf_string_from_elf_section (abfd
,
794 (elf_elfheader (abfd
)
797 shdr
->bfd_section
->name
);
805 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
807 return elf_next_in_group (sec
) != NULL
;
810 /* Make a BFD section from an ELF section. We store a pointer to the
811 BFD section in the bfd_section field of the header. */
814 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
815 Elf_Internal_Shdr
*hdr
,
821 const struct elf_backend_data
*bed
;
823 if (hdr
->bfd_section
!= NULL
)
825 BFD_ASSERT (strcmp (name
,
826 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
830 newsect
= bfd_make_section_anyway (abfd
, name
);
834 hdr
->bfd_section
= newsect
;
835 elf_section_data (newsect
)->this_hdr
= *hdr
;
836 elf_section_data (newsect
)->this_idx
= shindex
;
838 /* Always use the real type/flags. */
839 elf_section_type (newsect
) = hdr
->sh_type
;
840 elf_section_flags (newsect
) = hdr
->sh_flags
;
842 newsect
->filepos
= hdr
->sh_offset
;
844 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
845 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
846 || ! bfd_set_section_alignment (abfd
, newsect
,
847 bfd_log2 (hdr
->sh_addralign
)))
850 flags
= SEC_NO_FLAGS
;
851 if (hdr
->sh_type
!= SHT_NOBITS
)
852 flags
|= SEC_HAS_CONTENTS
;
853 if (hdr
->sh_type
== SHT_GROUP
)
854 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
855 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
858 if (hdr
->sh_type
!= SHT_NOBITS
)
861 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
862 flags
|= SEC_READONLY
;
863 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
865 else if ((flags
& SEC_LOAD
) != 0)
867 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
870 newsect
->entsize
= hdr
->sh_entsize
;
871 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
872 flags
|= SEC_STRINGS
;
874 if (hdr
->sh_flags
& SHF_GROUP
)
875 if (!setup_group (abfd
, hdr
, newsect
))
877 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
878 flags
|= SEC_THREAD_LOCAL
;
879 if ((hdr
->sh_flags
& SHF_EXCLUDE
) != 0)
880 flags
|= SEC_EXCLUDE
;
882 if ((flags
& SEC_ALLOC
) == 0)
884 /* The debugging sections appear to be recognized only by name,
885 not any sort of flag. Their SEC_ALLOC bits are cleared. */
890 } debug_sections
[] =
892 { STRING_COMMA_LEN ("debug") }, /* 'd' */
893 { NULL
, 0 }, /* 'e' */
894 { NULL
, 0 }, /* 'f' */
895 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
896 { NULL
, 0 }, /* 'h' */
897 { NULL
, 0 }, /* 'i' */
898 { NULL
, 0 }, /* 'j' */
899 { NULL
, 0 }, /* 'k' */
900 { STRING_COMMA_LEN ("line") }, /* 'l' */
901 { NULL
, 0 }, /* 'm' */
902 { NULL
, 0 }, /* 'n' */
903 { NULL
, 0 }, /* 'o' */
904 { NULL
, 0 }, /* 'p' */
905 { NULL
, 0 }, /* 'q' */
906 { NULL
, 0 }, /* 'r' */
907 { STRING_COMMA_LEN ("stab") }, /* 's' */
908 { NULL
, 0 }, /* 't' */
909 { NULL
, 0 }, /* 'u' */
910 { NULL
, 0 }, /* 'v' */
911 { NULL
, 0 }, /* 'w' */
912 { NULL
, 0 }, /* 'x' */
913 { NULL
, 0 }, /* 'y' */
914 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
919 int i
= name
[1] - 'd';
921 && i
< (int) ARRAY_SIZE (debug_sections
)
922 && debug_sections
[i
].name
!= NULL
923 && strncmp (&name
[1], debug_sections
[i
].name
,
924 debug_sections
[i
].len
) == 0)
925 flags
|= SEC_DEBUGGING
;
929 /* As a GNU extension, if the name begins with .gnu.linkonce, we
930 only link a single copy of the section. This is used to support
931 g++. g++ will emit each template expansion in its own section.
932 The symbols will be defined as weak, so that multiple definitions
933 are permitted. The GNU linker extension is to actually discard
934 all but one of the sections. */
935 if (CONST_STRNEQ (name
, ".gnu.linkonce")
936 && elf_next_in_group (newsect
) == NULL
)
937 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
939 bed
= get_elf_backend_data (abfd
);
940 if (bed
->elf_backend_section_flags
)
941 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
944 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
947 /* We do not parse the PT_NOTE segments as we are interested even in the
948 separate debug info files which may have the segments offsets corrupted.
949 PT_NOTEs from the core files are currently not parsed using BFD. */
950 if (hdr
->sh_type
== SHT_NOTE
)
954 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
957 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
961 if ((flags
& SEC_ALLOC
) != 0)
963 Elf_Internal_Phdr
*phdr
;
964 unsigned int i
, nload
;
966 /* Some ELF linkers produce binaries with all the program header
967 p_paddr fields zero. If we have such a binary with more than
968 one PT_LOAD header, then leave the section lma equal to vma
969 so that we don't create sections with overlapping lma. */
970 phdr
= elf_tdata (abfd
)->phdr
;
971 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
972 if (phdr
->p_paddr
!= 0)
974 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
976 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
979 phdr
= elf_tdata (abfd
)->phdr
;
980 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
982 if (phdr
->p_type
== PT_LOAD
983 && ELF_SECTION_IN_SEGMENT (hdr
, phdr
))
985 if ((flags
& SEC_LOAD
) == 0)
986 newsect
->lma
= (phdr
->p_paddr
987 + hdr
->sh_addr
- phdr
->p_vaddr
);
989 /* We used to use the same adjustment for SEC_LOAD
990 sections, but that doesn't work if the segment
991 is packed with code from multiple VMAs.
992 Instead we calculate the section LMA based on
993 the segment LMA. It is assumed that the
994 segment will contain sections with contiguous
995 LMAs, even if the VMAs are not. */
996 newsect
->lma
= (phdr
->p_paddr
997 + hdr
->sh_offset
- phdr
->p_offset
);
999 /* With contiguous segments, we can't tell from file
1000 offsets whether a section with zero size should
1001 be placed at the end of one segment or the
1002 beginning of the next. Decide based on vaddr. */
1003 if (hdr
->sh_addr
>= phdr
->p_vaddr
1004 && (hdr
->sh_addr
+ hdr
->sh_size
1005 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1014 const char *const bfd_elf_section_type_names
[] = {
1015 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1016 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1017 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1020 /* ELF relocs are against symbols. If we are producing relocatable
1021 output, and the reloc is against an external symbol, and nothing
1022 has given us any additional addend, the resulting reloc will also
1023 be against the same symbol. In such a case, we don't want to
1024 change anything about the way the reloc is handled, since it will
1025 all be done at final link time. Rather than put special case code
1026 into bfd_perform_relocation, all the reloc types use this howto
1027 function. It just short circuits the reloc if producing
1028 relocatable output against an external symbol. */
1030 bfd_reloc_status_type
1031 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1032 arelent
*reloc_entry
,
1034 void *data ATTRIBUTE_UNUSED
,
1035 asection
*input_section
,
1037 char **error_message ATTRIBUTE_UNUSED
)
1039 if (output_bfd
!= NULL
1040 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1041 && (! reloc_entry
->howto
->partial_inplace
1042 || reloc_entry
->addend
== 0))
1044 reloc_entry
->address
+= input_section
->output_offset
;
1045 return bfd_reloc_ok
;
1048 return bfd_reloc_continue
;
1051 /* Copy the program header and other data from one object module to
1055 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1061 BFD_ASSERT (!elf_flags_init (obfd
)
1062 || (elf_elfheader (obfd
)->e_flags
1063 == elf_elfheader (ibfd
)->e_flags
));
1065 elf_gp (obfd
) = elf_gp (ibfd
);
1066 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1067 elf_flags_init (obfd
) = TRUE
;
1069 /* Copy object attributes. */
1070 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1075 get_segment_type (unsigned int p_type
)
1080 case PT_NULL
: pt
= "NULL"; break;
1081 case PT_LOAD
: pt
= "LOAD"; break;
1082 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1083 case PT_INTERP
: pt
= "INTERP"; break;
1084 case PT_NOTE
: pt
= "NOTE"; break;
1085 case PT_SHLIB
: pt
= "SHLIB"; break;
1086 case PT_PHDR
: pt
= "PHDR"; break;
1087 case PT_TLS
: pt
= "TLS"; break;
1088 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1089 case PT_GNU_STACK
: pt
= "STACK"; break;
1090 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1091 default: pt
= NULL
; break;
1096 /* Print out the program headers. */
1099 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1101 FILE *f
= (FILE *) farg
;
1102 Elf_Internal_Phdr
*p
;
1104 bfd_byte
*dynbuf
= NULL
;
1106 p
= elf_tdata (abfd
)->phdr
;
1111 fprintf (f
, _("\nProgram Header:\n"));
1112 c
= elf_elfheader (abfd
)->e_phnum
;
1113 for (i
= 0; i
< c
; i
++, p
++)
1115 const char *pt
= get_segment_type (p
->p_type
);
1120 sprintf (buf
, "0x%lx", p
->p_type
);
1123 fprintf (f
, "%8s off 0x", pt
);
1124 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1125 fprintf (f
, " vaddr 0x");
1126 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1127 fprintf (f
, " paddr 0x");
1128 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1129 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1130 fprintf (f
, " filesz 0x");
1131 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1132 fprintf (f
, " memsz 0x");
1133 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1134 fprintf (f
, " flags %c%c%c",
1135 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1136 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1137 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1138 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1139 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1144 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1147 unsigned int elfsec
;
1148 unsigned long shlink
;
1149 bfd_byte
*extdyn
, *extdynend
;
1151 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1153 fprintf (f
, _("\nDynamic Section:\n"));
1155 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1158 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1159 if (elfsec
== SHN_BAD
)
1161 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1163 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1164 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1167 extdynend
= extdyn
+ s
->size
;
1168 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1170 Elf_Internal_Dyn dyn
;
1171 const char *name
= "";
1173 bfd_boolean stringp
;
1174 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1176 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1178 if (dyn
.d_tag
== DT_NULL
)
1185 if (bed
->elf_backend_get_target_dtag
)
1186 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1188 if (!strcmp (name
, ""))
1190 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1195 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1196 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1197 case DT_PLTGOT
: name
= "PLTGOT"; break;
1198 case DT_HASH
: name
= "HASH"; break;
1199 case DT_STRTAB
: name
= "STRTAB"; break;
1200 case DT_SYMTAB
: name
= "SYMTAB"; break;
1201 case DT_RELA
: name
= "RELA"; break;
1202 case DT_RELASZ
: name
= "RELASZ"; break;
1203 case DT_RELAENT
: name
= "RELAENT"; break;
1204 case DT_STRSZ
: name
= "STRSZ"; break;
1205 case DT_SYMENT
: name
= "SYMENT"; break;
1206 case DT_INIT
: name
= "INIT"; break;
1207 case DT_FINI
: name
= "FINI"; break;
1208 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1209 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1210 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1211 case DT_REL
: name
= "REL"; break;
1212 case DT_RELSZ
: name
= "RELSZ"; break;
1213 case DT_RELENT
: name
= "RELENT"; break;
1214 case DT_PLTREL
: name
= "PLTREL"; break;
1215 case DT_DEBUG
: name
= "DEBUG"; break;
1216 case DT_TEXTREL
: name
= "TEXTREL"; break;
1217 case DT_JMPREL
: name
= "JMPREL"; break;
1218 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1219 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1220 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1221 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1222 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1223 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1224 case DT_FLAGS
: name
= "FLAGS"; break;
1225 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1226 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1227 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1228 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1229 case DT_MOVEENT
: name
= "MOVEENT"; break;
1230 case DT_MOVESZ
: name
= "MOVESZ"; break;
1231 case DT_FEATURE
: name
= "FEATURE"; break;
1232 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1233 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1234 case DT_SYMINENT
: name
= "SYMINENT"; break;
1235 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1236 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1237 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1238 case DT_PLTPAD
: name
= "PLTPAD"; break;
1239 case DT_MOVETAB
: name
= "MOVETAB"; break;
1240 case DT_SYMINFO
: name
= "SYMINFO"; break;
1241 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1242 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1243 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1244 case DT_VERSYM
: name
= "VERSYM"; break;
1245 case DT_VERDEF
: name
= "VERDEF"; break;
1246 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1247 case DT_VERNEED
: name
= "VERNEED"; break;
1248 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1249 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1250 case DT_USED
: name
= "USED"; break;
1251 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1252 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1255 fprintf (f
, " %-20s ", name
);
1259 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1264 unsigned int tagv
= dyn
.d_un
.d_val
;
1266 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1269 fprintf (f
, "%s", string
);
1278 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1279 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1281 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1285 if (elf_dynverdef (abfd
) != 0)
1287 Elf_Internal_Verdef
*t
;
1289 fprintf (f
, _("\nVersion definitions:\n"));
1290 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1292 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1293 t
->vd_flags
, t
->vd_hash
,
1294 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1295 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1297 Elf_Internal_Verdaux
*a
;
1300 for (a
= t
->vd_auxptr
->vda_nextptr
;
1304 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1310 if (elf_dynverref (abfd
) != 0)
1312 Elf_Internal_Verneed
*t
;
1314 fprintf (f
, _("\nVersion References:\n"));
1315 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1317 Elf_Internal_Vernaux
*a
;
1319 fprintf (f
, _(" required from %s:\n"),
1320 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1321 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1322 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1323 a
->vna_flags
, a
->vna_other
,
1324 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1336 /* Display ELF-specific fields of a symbol. */
1339 bfd_elf_print_symbol (bfd
*abfd
,
1342 bfd_print_symbol_type how
)
1344 FILE *file
= (FILE *) filep
;
1347 case bfd_print_symbol_name
:
1348 fprintf (file
, "%s", symbol
->name
);
1350 case bfd_print_symbol_more
:
1351 fprintf (file
, "elf ");
1352 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1353 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1355 case bfd_print_symbol_all
:
1357 const char *section_name
;
1358 const char *name
= NULL
;
1359 const struct elf_backend_data
*bed
;
1360 unsigned char st_other
;
1363 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1365 bed
= get_elf_backend_data (abfd
);
1366 if (bed
->elf_backend_print_symbol_all
)
1367 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1371 name
= symbol
->name
;
1372 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1375 fprintf (file
, " %s\t", section_name
);
1376 /* Print the "other" value for a symbol. For common symbols,
1377 we've already printed the size; now print the alignment.
1378 For other symbols, we have no specified alignment, and
1379 we've printed the address; now print the size. */
1380 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1381 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1383 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1384 bfd_fprintf_vma (abfd
, file
, val
);
1386 /* If we have version information, print it. */
1387 if (elf_tdata (abfd
)->dynversym_section
!= 0
1388 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1389 || elf_tdata (abfd
)->dynverref_section
!= 0))
1391 unsigned int vernum
;
1392 const char *version_string
;
1394 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1397 version_string
= "";
1398 else if (vernum
== 1)
1399 version_string
= "Base";
1400 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1402 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1405 Elf_Internal_Verneed
*t
;
1407 version_string
= "";
1408 for (t
= elf_tdata (abfd
)->verref
;
1412 Elf_Internal_Vernaux
*a
;
1414 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1416 if (a
->vna_other
== vernum
)
1418 version_string
= a
->vna_nodename
;
1425 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1426 fprintf (file
, " %-11s", version_string
);
1431 fprintf (file
, " (%s)", version_string
);
1432 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1437 /* If the st_other field is not zero, print it. */
1438 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1443 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1444 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1445 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1447 /* Some other non-defined flags are also present, so print
1449 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1452 fprintf (file
, " %s", name
);
1458 /* Allocate an ELF string table--force the first byte to be zero. */
1460 struct bfd_strtab_hash
*
1461 _bfd_elf_stringtab_init (void)
1463 struct bfd_strtab_hash
*ret
;
1465 ret
= _bfd_stringtab_init ();
1470 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1471 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1472 if (loc
== (bfd_size_type
) -1)
1474 _bfd_stringtab_free (ret
);
1481 /* ELF .o/exec file reading */
1483 /* Create a new bfd section from an ELF section header. */
1486 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1488 Elf_Internal_Shdr
*hdr
;
1489 Elf_Internal_Ehdr
*ehdr
;
1490 const struct elf_backend_data
*bed
;
1493 if (shindex
>= elf_numsections (abfd
))
1496 hdr
= elf_elfsections (abfd
)[shindex
];
1497 ehdr
= elf_elfheader (abfd
);
1498 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1503 bed
= get_elf_backend_data (abfd
);
1504 switch (hdr
->sh_type
)
1507 /* Inactive section. Throw it away. */
1510 case SHT_PROGBITS
: /* Normal section with contents. */
1511 case SHT_NOBITS
: /* .bss section. */
1512 case SHT_HASH
: /* .hash section. */
1513 case SHT_NOTE
: /* .note section. */
1514 case SHT_INIT_ARRAY
: /* .init_array section. */
1515 case SHT_FINI_ARRAY
: /* .fini_array section. */
1516 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1517 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1518 case SHT_GNU_HASH
: /* .gnu.hash section. */
1519 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1521 case SHT_DYNAMIC
: /* Dynamic linking information. */
1522 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1524 if (hdr
->sh_link
> elf_numsections (abfd
))
1526 /* PR 10478: Accept Solaris binaries with a sh_link
1527 field set to SHN_BEFORE or SHN_AFTER. */
1528 switch (bfd_get_arch (abfd
))
1531 case bfd_arch_sparc
:
1532 if (hdr
->sh_link
== (SHN_LORESERVE
& 0xffff) /* SHN_BEFORE */
1533 || hdr
->sh_link
== ((SHN_LORESERVE
+ 1) & 0xffff) /* SHN_AFTER */)
1535 /* Otherwise fall through. */
1540 else if (elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1542 else if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1544 Elf_Internal_Shdr
*dynsymhdr
;
1546 /* The shared libraries distributed with hpux11 have a bogus
1547 sh_link field for the ".dynamic" section. Find the
1548 string table for the ".dynsym" section instead. */
1549 if (elf_dynsymtab (abfd
) != 0)
1551 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1552 hdr
->sh_link
= dynsymhdr
->sh_link
;
1556 unsigned int i
, num_sec
;
1558 num_sec
= elf_numsections (abfd
);
1559 for (i
= 1; i
< num_sec
; i
++)
1561 dynsymhdr
= elf_elfsections (abfd
)[i
];
1562 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1564 hdr
->sh_link
= dynsymhdr
->sh_link
;
1572 case SHT_SYMTAB
: /* A symbol table */
1573 if (elf_onesymtab (abfd
) == shindex
)
1576 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1578 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1580 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1581 elf_onesymtab (abfd
) = shindex
;
1582 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1583 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1584 abfd
->flags
|= HAS_SYMS
;
1586 /* Sometimes a shared object will map in the symbol table. If
1587 SHF_ALLOC is set, and this is a shared object, then we also
1588 treat this section as a BFD section. We can not base the
1589 decision purely on SHF_ALLOC, because that flag is sometimes
1590 set in a relocatable object file, which would confuse the
1592 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1593 && (abfd
->flags
& DYNAMIC
) != 0
1594 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1598 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1599 can't read symbols without that section loaded as well. It
1600 is most likely specified by the next section header. */
1601 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1603 unsigned int i
, num_sec
;
1605 num_sec
= elf_numsections (abfd
);
1606 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1608 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1609 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1610 && hdr2
->sh_link
== shindex
)
1614 for (i
= 1; i
< shindex
; i
++)
1616 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1617 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1618 && hdr2
->sh_link
== shindex
)
1622 return bfd_section_from_shdr (abfd
, i
);
1626 case SHT_DYNSYM
: /* A dynamic symbol table */
1627 if (elf_dynsymtab (abfd
) == shindex
)
1630 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1632 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1633 elf_dynsymtab (abfd
) = shindex
;
1634 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1635 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1636 abfd
->flags
|= HAS_SYMS
;
1638 /* Besides being a symbol table, we also treat this as a regular
1639 section, so that objcopy can handle it. */
1640 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1642 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1643 if (elf_symtab_shndx (abfd
) == shindex
)
1646 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1647 elf_symtab_shndx (abfd
) = shindex
;
1648 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1649 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1652 case SHT_STRTAB
: /* A string table */
1653 if (hdr
->bfd_section
!= NULL
)
1655 if (ehdr
->e_shstrndx
== shindex
)
1657 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1658 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1661 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1664 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1665 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1668 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1671 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1672 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1673 elf_elfsections (abfd
)[shindex
] = hdr
;
1674 /* We also treat this as a regular section, so that objcopy
1676 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1680 /* If the string table isn't one of the above, then treat it as a
1681 regular section. We need to scan all the headers to be sure,
1682 just in case this strtab section appeared before the above. */
1683 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1685 unsigned int i
, num_sec
;
1687 num_sec
= elf_numsections (abfd
);
1688 for (i
= 1; i
< num_sec
; i
++)
1690 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1691 if (hdr2
->sh_link
== shindex
)
1693 /* Prevent endless recursion on broken objects. */
1696 if (! bfd_section_from_shdr (abfd
, i
))
1698 if (elf_onesymtab (abfd
) == i
)
1700 if (elf_dynsymtab (abfd
) == i
)
1701 goto dynsymtab_strtab
;
1705 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1709 /* *These* do a lot of work -- but build no sections! */
1711 asection
*target_sect
;
1712 Elf_Internal_Shdr
*hdr2
;
1713 unsigned int num_sec
= elf_numsections (abfd
);
1716 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1717 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1720 /* Check for a bogus link to avoid crashing. */
1721 if (hdr
->sh_link
>= num_sec
)
1723 ((*_bfd_error_handler
)
1724 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1725 abfd
, hdr
->sh_link
, name
, shindex
));
1726 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1730 /* For some incomprehensible reason Oracle distributes
1731 libraries for Solaris in which some of the objects have
1732 bogus sh_link fields. It would be nice if we could just
1733 reject them, but, unfortunately, some people need to use
1734 them. We scan through the section headers; if we find only
1735 one suitable symbol table, we clobber the sh_link to point
1736 to it. I hope this doesn't break anything.
1738 Don't do it on executable nor shared library. */
1739 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1740 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1741 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1747 for (scan
= 1; scan
< num_sec
; scan
++)
1749 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1750 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1761 hdr
->sh_link
= found
;
1764 /* Get the symbol table. */
1765 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1766 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1767 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1770 /* If this reloc section does not use the main symbol table we
1771 don't treat it as a reloc section. BFD can't adequately
1772 represent such a section, so at least for now, we don't
1773 try. We just present it as a normal section. We also
1774 can't use it as a reloc section if it points to the null
1775 section, an invalid section, another reloc section, or its
1776 sh_link points to the null section. */
1777 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1778 || hdr
->sh_link
== SHN_UNDEF
1779 || hdr
->sh_info
== SHN_UNDEF
1780 || hdr
->sh_info
>= num_sec
1781 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1782 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1783 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1786 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1788 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1789 if (target_sect
== NULL
)
1792 if ((target_sect
->flags
& SEC_RELOC
) == 0
1793 || target_sect
->reloc_count
== 0)
1794 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1798 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1799 amt
= sizeof (*hdr2
);
1800 hdr2
= (Elf_Internal_Shdr
*) bfd_alloc (abfd
, amt
);
1803 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1806 elf_elfsections (abfd
)[shindex
] = hdr2
;
1807 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1808 target_sect
->flags
|= SEC_RELOC
;
1809 target_sect
->relocation
= NULL
;
1810 target_sect
->rel_filepos
= hdr
->sh_offset
;
1811 /* In the section to which the relocations apply, mark whether
1812 its relocations are of the REL or RELA variety. */
1813 if (hdr
->sh_size
!= 0)
1814 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1815 abfd
->flags
|= HAS_RELOC
;
1819 case SHT_GNU_verdef
:
1820 elf_dynverdef (abfd
) = shindex
;
1821 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1822 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1824 case SHT_GNU_versym
:
1825 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1827 elf_dynversym (abfd
) = shindex
;
1828 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1829 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1831 case SHT_GNU_verneed
:
1832 elf_dynverref (abfd
) = shindex
;
1833 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1834 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1840 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1842 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1844 if (hdr
->contents
!= NULL
)
1846 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1847 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1850 if (idx
->flags
& GRP_COMDAT
)
1851 hdr
->bfd_section
->flags
1852 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1854 /* We try to keep the same section order as it comes in. */
1856 while (--n_elt
!= 0)
1860 if (idx
->shdr
!= NULL
1861 && (s
= idx
->shdr
->bfd_section
) != NULL
1862 && elf_next_in_group (s
) != NULL
)
1864 elf_next_in_group (hdr
->bfd_section
) = s
;
1872 /* Possibly an attributes section. */
1873 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1874 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1876 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1878 _bfd_elf_parse_attributes (abfd
, hdr
);
1882 /* Check for any processor-specific section types. */
1883 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1886 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1888 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1889 /* FIXME: How to properly handle allocated section reserved
1890 for applications? */
1891 (*_bfd_error_handler
)
1892 (_("%B: don't know how to handle allocated, application "
1893 "specific section `%s' [0x%8x]"),
1894 abfd
, name
, hdr
->sh_type
);
1896 /* Allow sections reserved for applications. */
1897 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1900 else if (hdr
->sh_type
>= SHT_LOPROC
1901 && hdr
->sh_type
<= SHT_HIPROC
)
1902 /* FIXME: We should handle this section. */
1903 (*_bfd_error_handler
)
1904 (_("%B: don't know how to handle processor specific section "
1906 abfd
, name
, hdr
->sh_type
);
1907 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1909 /* Unrecognised OS-specific sections. */
1910 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1911 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1912 required to correctly process the section and the file should
1913 be rejected with an error message. */
1914 (*_bfd_error_handler
)
1915 (_("%B: don't know how to handle OS specific section "
1917 abfd
, name
, hdr
->sh_type
);
1919 /* Otherwise it should be processed. */
1920 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1923 /* FIXME: We should handle this section. */
1924 (*_bfd_error_handler
)
1925 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1926 abfd
, name
, hdr
->sh_type
);
1934 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1937 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
1939 unsigned long r_symndx
)
1941 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1943 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1945 Elf_Internal_Shdr
*symtab_hdr
;
1946 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1947 Elf_External_Sym_Shndx eshndx
;
1949 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1950 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1951 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
1954 if (cache
->abfd
!= abfd
)
1956 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1959 cache
->indx
[ent
] = r_symndx
;
1962 return &cache
->sym
[ent
];
1965 /* Given an ELF section number, retrieve the corresponding BFD
1969 bfd_section_from_elf_index (bfd
*abfd
, unsigned int sec_index
)
1971 if (sec_index
>= elf_numsections (abfd
))
1973 return elf_elfsections (abfd
)[sec_index
]->bfd_section
;
1976 static const struct bfd_elf_special_section special_sections_b
[] =
1978 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1979 { NULL
, 0, 0, 0, 0 }
1982 static const struct bfd_elf_special_section special_sections_c
[] =
1984 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
1985 { NULL
, 0, 0, 0, 0 }
1988 static const struct bfd_elf_special_section special_sections_d
[] =
1990 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1991 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1992 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
1993 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
1994 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
1995 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
1996 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
1997 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
1998 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
1999 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2000 { NULL
, 0, 0, 0, 0 }
2003 static const struct bfd_elf_special_section special_sections_f
[] =
2005 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2006 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2007 { NULL
, 0, 0, 0, 0 }
2010 static const struct bfd_elf_special_section special_sections_g
[] =
2012 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2013 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2014 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2015 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2016 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2017 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2018 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2019 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2020 { NULL
, 0, 0, 0, 0 }
2023 static const struct bfd_elf_special_section special_sections_h
[] =
2025 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2026 { NULL
, 0, 0, 0, 0 }
2029 static const struct bfd_elf_special_section special_sections_i
[] =
2031 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2032 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2033 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2034 { NULL
, 0, 0, 0, 0 }
2037 static const struct bfd_elf_special_section special_sections_l
[] =
2039 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2040 { NULL
, 0, 0, 0, 0 }
2043 static const struct bfd_elf_special_section special_sections_n
[] =
2045 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2046 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2047 { NULL
, 0, 0, 0, 0 }
2050 static const struct bfd_elf_special_section special_sections_p
[] =
2052 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2053 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2054 { NULL
, 0, 0, 0, 0 }
2057 static const struct bfd_elf_special_section special_sections_r
[] =
2059 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2060 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2061 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2062 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2063 { NULL
, 0, 0, 0, 0 }
2066 static const struct bfd_elf_special_section special_sections_s
[] =
2068 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2069 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2070 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2071 /* See struct bfd_elf_special_section declaration for the semantics of
2072 this special case where .prefix_length != strlen (.prefix). */
2073 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2074 { NULL
, 0, 0, 0, 0 }
2077 static const struct bfd_elf_special_section special_sections_t
[] =
2079 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2080 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2081 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2082 { NULL
, 0, 0, 0, 0 }
2085 static const struct bfd_elf_special_section special_sections_z
[] =
2087 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2088 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2089 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2090 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2091 { NULL
, 0, 0, 0, 0 }
2094 static const struct bfd_elf_special_section
*special_sections
[] =
2096 special_sections_b
, /* 'b' */
2097 special_sections_c
, /* 'c' */
2098 special_sections_d
, /* 'd' */
2100 special_sections_f
, /* 'f' */
2101 special_sections_g
, /* 'g' */
2102 special_sections_h
, /* 'h' */
2103 special_sections_i
, /* 'i' */
2106 special_sections_l
, /* 'l' */
2108 special_sections_n
, /* 'n' */
2110 special_sections_p
, /* 'p' */
2112 special_sections_r
, /* 'r' */
2113 special_sections_s
, /* 's' */
2114 special_sections_t
, /* 't' */
2120 special_sections_z
/* 'z' */
2123 const struct bfd_elf_special_section
*
2124 _bfd_elf_get_special_section (const char *name
,
2125 const struct bfd_elf_special_section
*spec
,
2131 len
= strlen (name
);
2133 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2136 int prefix_len
= spec
[i
].prefix_length
;
2138 if (len
< prefix_len
)
2140 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2143 suffix_len
= spec
[i
].suffix_length
;
2144 if (suffix_len
<= 0)
2146 if (name
[prefix_len
] != 0)
2148 if (suffix_len
== 0)
2150 if (name
[prefix_len
] != '.'
2151 && (suffix_len
== -2
2152 || (rela
&& spec
[i
].type
== SHT_REL
)))
2158 if (len
< prefix_len
+ suffix_len
)
2160 if (memcmp (name
+ len
- suffix_len
,
2161 spec
[i
].prefix
+ prefix_len
,
2171 const struct bfd_elf_special_section
*
2172 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2175 const struct bfd_elf_special_section
*spec
;
2176 const struct elf_backend_data
*bed
;
2178 /* See if this is one of the special sections. */
2179 if (sec
->name
== NULL
)
2182 bed
= get_elf_backend_data (abfd
);
2183 spec
= bed
->special_sections
;
2186 spec
= _bfd_elf_get_special_section (sec
->name
,
2187 bed
->special_sections
,
2193 if (sec
->name
[0] != '.')
2196 i
= sec
->name
[1] - 'b';
2197 if (i
< 0 || i
> 'z' - 'b')
2200 spec
= special_sections
[i
];
2205 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2209 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2211 struct bfd_elf_section_data
*sdata
;
2212 const struct elf_backend_data
*bed
;
2213 const struct bfd_elf_special_section
*ssect
;
2215 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2218 sdata
= (struct bfd_elf_section_data
*) bfd_zalloc (abfd
,
2222 sec
->used_by_bfd
= sdata
;
2225 /* Indicate whether or not this section should use RELA relocations. */
2226 bed
= get_elf_backend_data (abfd
);
2227 sec
->use_rela_p
= bed
->default_use_rela_p
;
2229 /* When we read a file, we don't need to set ELF section type and
2230 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2231 anyway. We will set ELF section type and flags for all linker
2232 created sections. If user specifies BFD section flags, we will
2233 set ELF section type and flags based on BFD section flags in
2234 elf_fake_sections. */
2235 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2236 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2238 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2241 elf_section_type (sec
) = ssect
->type
;
2242 elf_section_flags (sec
) = ssect
->attr
;
2246 return _bfd_generic_new_section_hook (abfd
, sec
);
2249 /* Create a new bfd section from an ELF program header.
2251 Since program segments have no names, we generate a synthetic name
2252 of the form segment<NUM>, where NUM is generally the index in the
2253 program header table. For segments that are split (see below) we
2254 generate the names segment<NUM>a and segment<NUM>b.
2256 Note that some program segments may have a file size that is different than
2257 (less than) the memory size. All this means is that at execution the
2258 system must allocate the amount of memory specified by the memory size,
2259 but only initialize it with the first "file size" bytes read from the
2260 file. This would occur for example, with program segments consisting
2261 of combined data+bss.
2263 To handle the above situation, this routine generates TWO bfd sections
2264 for the single program segment. The first has the length specified by
2265 the file size of the segment, and the second has the length specified
2266 by the difference between the two sizes. In effect, the segment is split
2267 into its initialized and uninitialized parts.
2272 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2273 Elf_Internal_Phdr
*hdr
,
2275 const char *type_name
)
2283 split
= ((hdr
->p_memsz
> 0)
2284 && (hdr
->p_filesz
> 0)
2285 && (hdr
->p_memsz
> hdr
->p_filesz
));
2287 if (hdr
->p_filesz
> 0)
2289 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "a" : "");
2290 len
= strlen (namebuf
) + 1;
2291 name
= (char *) bfd_alloc (abfd
, len
);
2294 memcpy (name
, namebuf
, len
);
2295 newsect
= bfd_make_section (abfd
, name
);
2296 if (newsect
== NULL
)
2298 newsect
->vma
= hdr
->p_vaddr
;
2299 newsect
->lma
= hdr
->p_paddr
;
2300 newsect
->size
= hdr
->p_filesz
;
2301 newsect
->filepos
= hdr
->p_offset
;
2302 newsect
->flags
|= SEC_HAS_CONTENTS
;
2303 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2304 if (hdr
->p_type
== PT_LOAD
)
2306 newsect
->flags
|= SEC_ALLOC
;
2307 newsect
->flags
|= SEC_LOAD
;
2308 if (hdr
->p_flags
& PF_X
)
2310 /* FIXME: all we known is that it has execute PERMISSION,
2312 newsect
->flags
|= SEC_CODE
;
2315 if (!(hdr
->p_flags
& PF_W
))
2317 newsect
->flags
|= SEC_READONLY
;
2321 if (hdr
->p_memsz
> hdr
->p_filesz
)
2325 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "b" : "");
2326 len
= strlen (namebuf
) + 1;
2327 name
= (char *) bfd_alloc (abfd
, len
);
2330 memcpy (name
, namebuf
, len
);
2331 newsect
= bfd_make_section (abfd
, name
);
2332 if (newsect
== NULL
)
2334 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2335 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2336 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2337 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2338 align
= newsect
->vma
& -newsect
->vma
;
2339 if (align
== 0 || align
> hdr
->p_align
)
2340 align
= hdr
->p_align
;
2341 newsect
->alignment_power
= bfd_log2 (align
);
2342 if (hdr
->p_type
== PT_LOAD
)
2344 /* Hack for gdb. Segments that have not been modified do
2345 not have their contents written to a core file, on the
2346 assumption that a debugger can find the contents in the
2347 executable. We flag this case by setting the fake
2348 section size to zero. Note that "real" bss sections will
2349 always have their contents dumped to the core file. */
2350 if (bfd_get_format (abfd
) == bfd_core
)
2352 newsect
->flags
|= SEC_ALLOC
;
2353 if (hdr
->p_flags
& PF_X
)
2354 newsect
->flags
|= SEC_CODE
;
2356 if (!(hdr
->p_flags
& PF_W
))
2357 newsect
->flags
|= SEC_READONLY
;
2364 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int hdr_index
)
2366 const struct elf_backend_data
*bed
;
2368 switch (hdr
->p_type
)
2371 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "null");
2374 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "load");
2377 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "dynamic");
2380 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "interp");
2383 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "note"))
2385 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2390 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "shlib");
2393 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "phdr");
2395 case PT_GNU_EH_FRAME
:
2396 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
,
2400 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "stack");
2403 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "relro");
2406 /* Check for any processor-specific program segment types. */
2407 bed
= get_elf_backend_data (abfd
);
2408 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, hdr_index
, "proc");
2412 /* Initialize REL_HDR, the section-header for new section, containing
2413 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2414 relocations; otherwise, we use REL relocations. */
2417 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2418 Elf_Internal_Shdr
*rel_hdr
,
2420 bfd_boolean use_rela_p
)
2423 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2424 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2426 name
= (char *) bfd_alloc (abfd
, amt
);
2429 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2431 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2433 if (rel_hdr
->sh_name
== (unsigned int) -1)
2435 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2436 rel_hdr
->sh_entsize
= (use_rela_p
2437 ? bed
->s
->sizeof_rela
2438 : bed
->s
->sizeof_rel
);
2439 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2440 rel_hdr
->sh_flags
= 0;
2441 rel_hdr
->sh_addr
= 0;
2442 rel_hdr
->sh_size
= 0;
2443 rel_hdr
->sh_offset
= 0;
2448 /* Return the default section type based on the passed in section flags. */
2451 bfd_elf_get_default_section_type (flagword flags
)
2453 if ((flags
& SEC_ALLOC
) != 0
2454 && ((flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0
2455 || (flags
& SEC_NEVER_LOAD
) != 0))
2457 return SHT_PROGBITS
;
2460 /* Set up an ELF internal section header for a section. */
2463 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2465 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2466 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2467 Elf_Internal_Shdr
*this_hdr
;
2468 unsigned int sh_type
;
2472 /* We already failed; just get out of the bfd_map_over_sections
2477 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2479 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2480 asect
->name
, FALSE
);
2481 if (this_hdr
->sh_name
== (unsigned int) -1)
2487 /* Don't clear sh_flags. Assembler may set additional bits. */
2489 if ((asect
->flags
& SEC_ALLOC
) != 0
2490 || asect
->user_set_vma
)
2491 this_hdr
->sh_addr
= asect
->vma
;
2493 this_hdr
->sh_addr
= 0;
2495 this_hdr
->sh_offset
= 0;
2496 this_hdr
->sh_size
= asect
->size
;
2497 this_hdr
->sh_link
= 0;
2498 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2499 /* The sh_entsize and sh_info fields may have been set already by
2500 copy_private_section_data. */
2502 this_hdr
->bfd_section
= asect
;
2503 this_hdr
->contents
= NULL
;
2505 /* If the section type is unspecified, we set it based on
2507 if ((asect
->flags
& SEC_GROUP
) != 0)
2508 sh_type
= SHT_GROUP
;
2510 sh_type
= bfd_elf_get_default_section_type (asect
->flags
);
2512 if (this_hdr
->sh_type
== SHT_NULL
)
2513 this_hdr
->sh_type
= sh_type
;
2514 else if (this_hdr
->sh_type
== SHT_NOBITS
2515 && sh_type
== SHT_PROGBITS
2516 && (asect
->flags
& SEC_ALLOC
) != 0)
2518 /* Warn if we are changing a NOBITS section to PROGBITS, but
2519 allow the link to proceed. This can happen when users link
2520 non-bss input sections to bss output sections, or emit data
2521 to a bss output section via a linker script. */
2522 (*_bfd_error_handler
)
2523 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2524 this_hdr
->sh_type
= sh_type
;
2527 switch (this_hdr
->sh_type
)
2533 case SHT_INIT_ARRAY
:
2534 case SHT_FINI_ARRAY
:
2535 case SHT_PREINIT_ARRAY
:
2542 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2546 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2550 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2554 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2555 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2559 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2560 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2563 case SHT_GNU_versym
:
2564 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2567 case SHT_GNU_verdef
:
2568 this_hdr
->sh_entsize
= 0;
2569 /* objcopy or strip will copy over sh_info, but may not set
2570 cverdefs. The linker will set cverdefs, but sh_info will be
2572 if (this_hdr
->sh_info
== 0)
2573 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2575 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2576 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2579 case SHT_GNU_verneed
:
2580 this_hdr
->sh_entsize
= 0;
2581 /* objcopy or strip will copy over sh_info, but may not set
2582 cverrefs. The linker will set cverrefs, but sh_info will be
2584 if (this_hdr
->sh_info
== 0)
2585 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2587 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2588 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2592 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2596 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2600 if ((asect
->flags
& SEC_ALLOC
) != 0)
2601 this_hdr
->sh_flags
|= SHF_ALLOC
;
2602 if ((asect
->flags
& SEC_READONLY
) == 0)
2603 this_hdr
->sh_flags
|= SHF_WRITE
;
2604 if ((asect
->flags
& SEC_CODE
) != 0)
2605 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2606 if ((asect
->flags
& SEC_MERGE
) != 0)
2608 this_hdr
->sh_flags
|= SHF_MERGE
;
2609 this_hdr
->sh_entsize
= asect
->entsize
;
2610 if ((asect
->flags
& SEC_STRINGS
) != 0)
2611 this_hdr
->sh_flags
|= SHF_STRINGS
;
2613 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2614 this_hdr
->sh_flags
|= SHF_GROUP
;
2615 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2617 this_hdr
->sh_flags
|= SHF_TLS
;
2618 if (asect
->size
== 0
2619 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2621 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2623 this_hdr
->sh_size
= 0;
2626 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2627 if (this_hdr
->sh_size
!= 0)
2628 this_hdr
->sh_type
= SHT_NOBITS
;
2632 if ((asect
->flags
& (SEC_GROUP
| SEC_EXCLUDE
)) == SEC_EXCLUDE
)
2633 this_hdr
->sh_flags
|= SHF_EXCLUDE
;
2635 /* Check for processor-specific section types. */
2636 sh_type
= this_hdr
->sh_type
;
2637 if (bed
->elf_backend_fake_sections
2638 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2641 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2643 /* Don't change the header type from NOBITS if we are being
2644 called for objcopy --only-keep-debug. */
2645 this_hdr
->sh_type
= sh_type
;
2648 /* If the section has relocs, set up a section header for the
2649 SHT_REL[A] section. If two relocation sections are required for
2650 this section, it is up to the processor-specific back-end to
2651 create the other. */
2652 if ((asect
->flags
& SEC_RELOC
) != 0
2653 && !_bfd_elf_init_reloc_shdr (abfd
,
2654 &elf_section_data (asect
)->rel_hdr
,
2660 /* Fill in the contents of a SHT_GROUP section. Called from
2661 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2662 when ELF targets use the generic linker, ld. Called for ld -r
2663 from bfd_elf_final_link. */
2666 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2668 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2669 asection
*elt
, *first
;
2673 /* Ignore linker created group section. See elfNN_ia64_object_p in
2675 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2679 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2681 unsigned long symindx
= 0;
2683 /* elf_group_id will have been set up by objcopy and the
2685 if (elf_group_id (sec
) != NULL
)
2686 symindx
= elf_group_id (sec
)->udata
.i
;
2690 /* If called from the assembler, swap_out_syms will have set up
2691 elf_section_syms. */
2692 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2693 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2695 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2697 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2699 /* The ELF backend linker sets sh_info to -2 when the group
2700 signature symbol is global, and thus the index can't be
2701 set until all local symbols are output. */
2702 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2703 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2704 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2705 unsigned long extsymoff
= 0;
2706 struct elf_link_hash_entry
*h
;
2708 if (!elf_bad_symtab (igroup
->owner
))
2710 Elf_Internal_Shdr
*symtab_hdr
;
2712 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2713 extsymoff
= symtab_hdr
->sh_info
;
2715 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2716 while (h
->root
.type
== bfd_link_hash_indirect
2717 || h
->root
.type
== bfd_link_hash_warning
)
2718 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2720 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2723 /* The contents won't be allocated for "ld -r" or objcopy. */
2725 if (sec
->contents
== NULL
)
2728 sec
->contents
= (unsigned char *) bfd_alloc (abfd
, sec
->size
);
2730 /* Arrange for the section to be written out. */
2731 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2732 if (sec
->contents
== NULL
)
2739 loc
= sec
->contents
+ sec
->size
;
2741 /* Get the pointer to the first section in the group that gas
2742 squirreled away here. objcopy arranges for this to be set to the
2743 start of the input section group. */
2744 first
= elt
= elf_next_in_group (sec
);
2746 /* First element is a flag word. Rest of section is elf section
2747 indices for all the sections of the group. Write them backwards
2748 just to keep the group in the same order as given in .section
2749 directives, not that it matters. */
2756 s
= s
->output_section
;
2758 && !bfd_is_abs_section (s
))
2760 unsigned int idx
= elf_section_data (s
)->this_idx
;
2763 H_PUT_32 (abfd
, idx
, loc
);
2765 elt
= elf_next_in_group (elt
);
2770 if ((loc
-= 4) != sec
->contents
)
2773 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2776 /* Assign all ELF section numbers. The dummy first section is handled here
2777 too. The link/info pointers for the standard section types are filled
2778 in here too, while we're at it. */
2781 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2783 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2785 unsigned int section_number
, secn
;
2786 Elf_Internal_Shdr
**i_shdrp
;
2787 struct bfd_elf_section_data
*d
;
2788 bfd_boolean need_symtab
;
2792 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2794 /* SHT_GROUP sections are in relocatable files only. */
2795 if (link_info
== NULL
|| link_info
->relocatable
)
2797 /* Put SHT_GROUP sections first. */
2798 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2800 d
= elf_section_data (sec
);
2802 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2804 if (sec
->flags
& SEC_LINKER_CREATED
)
2806 /* Remove the linker created SHT_GROUP sections. */
2807 bfd_section_list_remove (abfd
, sec
);
2808 abfd
->section_count
--;
2811 d
->this_idx
= section_number
++;
2816 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2818 d
= elf_section_data (sec
);
2820 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2821 d
->this_idx
= section_number
++;
2822 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2823 if ((sec
->flags
& SEC_RELOC
) == 0)
2827 d
->rel_idx
= section_number
++;
2828 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2833 d
->rel_idx2
= section_number
++;
2834 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2840 t
->shstrtab_section
= section_number
++;
2841 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2842 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2844 need_symtab
= (bfd_get_symcount (abfd
) > 0
2845 || (link_info
== NULL
2846 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2850 t
->symtab_section
= section_number
++;
2851 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2852 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2854 t
->symtab_shndx_section
= section_number
++;
2855 t
->symtab_shndx_hdr
.sh_name
2856 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2857 ".symtab_shndx", FALSE
);
2858 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2861 t
->strtab_section
= section_number
++;
2862 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2865 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2866 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2868 elf_numsections (abfd
) = section_number
;
2869 elf_elfheader (abfd
)->e_shnum
= section_number
;
2871 /* Set up the list of section header pointers, in agreement with the
2873 i_shdrp
= (Elf_Internal_Shdr
**) bfd_zalloc2 (abfd
, section_number
,
2874 sizeof (Elf_Internal_Shdr
*));
2875 if (i_shdrp
== NULL
)
2878 i_shdrp
[0] = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
,
2879 sizeof (Elf_Internal_Shdr
));
2880 if (i_shdrp
[0] == NULL
)
2882 bfd_release (abfd
, i_shdrp
);
2886 elf_elfsections (abfd
) = i_shdrp
;
2888 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2891 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2892 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2894 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2895 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2897 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2898 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2901 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2906 d
= elf_section_data (sec
);
2908 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2909 if (d
->rel_idx
!= 0)
2910 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2911 if (d
->rel_idx2
!= 0)
2912 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2914 /* Fill in the sh_link and sh_info fields while we're at it. */
2916 /* sh_link of a reloc section is the section index of the symbol
2917 table. sh_info is the section index of the section to which
2918 the relocation entries apply. */
2919 if (d
->rel_idx
!= 0)
2921 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2922 d
->rel_hdr
.sh_info
= d
->this_idx
;
2924 if (d
->rel_idx2
!= 0)
2926 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2927 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2930 /* We need to set up sh_link for SHF_LINK_ORDER. */
2931 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2933 s
= elf_linked_to_section (sec
);
2936 /* elf_linked_to_section points to the input section. */
2937 if (link_info
!= NULL
)
2939 /* Check discarded linkonce section. */
2940 if (elf_discarded_section (s
))
2943 (*_bfd_error_handler
)
2944 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2945 abfd
, d
->this_hdr
.bfd_section
,
2947 /* Point to the kept section if it has the same
2948 size as the discarded one. */
2949 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2952 bfd_set_error (bfd_error_bad_value
);
2958 s
= s
->output_section
;
2959 BFD_ASSERT (s
!= NULL
);
2963 /* Handle objcopy. */
2964 if (s
->output_section
== NULL
)
2966 (*_bfd_error_handler
)
2967 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2968 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2969 bfd_set_error (bfd_error_bad_value
);
2972 s
= s
->output_section
;
2974 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2979 The Intel C compiler generates SHT_IA_64_UNWIND with
2980 SHF_LINK_ORDER. But it doesn't set the sh_link or
2981 sh_info fields. Hence we could get the situation
2983 const struct elf_backend_data
*bed
2984 = get_elf_backend_data (abfd
);
2985 if (bed
->link_order_error_handler
)
2986 bed
->link_order_error_handler
2987 (_("%B: warning: sh_link not set for section `%A'"),
2992 switch (d
->this_hdr
.sh_type
)
2996 /* A reloc section which we are treating as a normal BFD
2997 section. sh_link is the section index of the symbol
2998 table. sh_info is the section index of the section to
2999 which the relocation entries apply. We assume that an
3000 allocated reloc section uses the dynamic symbol table.
3001 FIXME: How can we be sure? */
3002 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3004 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3006 /* We look up the section the relocs apply to by name. */
3008 if (d
->this_hdr
.sh_type
== SHT_REL
)
3012 s
= bfd_get_section_by_name (abfd
, name
);
3014 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3018 /* We assume that a section named .stab*str is a stabs
3019 string section. We look for a section with the same name
3020 but without the trailing ``str'', and set its sh_link
3021 field to point to this section. */
3022 if (CONST_STRNEQ (sec
->name
, ".stab")
3023 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3028 len
= strlen (sec
->name
);
3029 alc
= (char *) bfd_malloc (len
- 2);
3032 memcpy (alc
, sec
->name
, len
- 3);
3033 alc
[len
- 3] = '\0';
3034 s
= bfd_get_section_by_name (abfd
, alc
);
3038 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3040 /* This is a .stab section. */
3041 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3042 elf_section_data (s
)->this_hdr
.sh_entsize
3043 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3050 case SHT_GNU_verneed
:
3051 case SHT_GNU_verdef
:
3052 /* sh_link is the section header index of the string table
3053 used for the dynamic entries, or the symbol table, or the
3055 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3057 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3060 case SHT_GNU_LIBLIST
:
3061 /* sh_link is the section header index of the prelink library
3062 list used for the dynamic entries, or the symbol table, or
3063 the version strings. */
3064 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3065 ? ".dynstr" : ".gnu.libstr");
3067 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3072 case SHT_GNU_versym
:
3073 /* sh_link is the section header index of the symbol table
3074 this hash table or version table is for. */
3075 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3077 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3081 d
->this_hdr
.sh_link
= t
->symtab_section
;
3085 for (secn
= 1; secn
< section_number
; ++secn
)
3086 if (i_shdrp
[secn
] == NULL
)
3087 i_shdrp
[secn
] = i_shdrp
[0];
3089 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3090 i_shdrp
[secn
]->sh_name
);
3094 /* Map symbol from it's internal number to the external number, moving
3095 all local symbols to be at the head of the list. */
3098 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3100 /* If the backend has a special mapping, use it. */
3101 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3102 if (bed
->elf_backend_sym_is_global
)
3103 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3105 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3106 || bfd_is_und_section (bfd_get_section (sym
))
3107 || bfd_is_com_section (bfd_get_section (sym
)));
3110 /* Don't output section symbols for sections that are not going to be
3114 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3116 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3117 && !(sym
->section
->owner
== abfd
3118 || (sym
->section
->output_section
->owner
== abfd
3119 && sym
->section
->output_offset
== 0)));
3123 elf_map_symbols (bfd
*abfd
)
3125 unsigned int symcount
= bfd_get_symcount (abfd
);
3126 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3127 asymbol
**sect_syms
;
3128 unsigned int num_locals
= 0;
3129 unsigned int num_globals
= 0;
3130 unsigned int num_locals2
= 0;
3131 unsigned int num_globals2
= 0;
3138 fprintf (stderr
, "elf_map_symbols\n");
3142 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3144 if (max_index
< asect
->index
)
3145 max_index
= asect
->index
;
3149 sect_syms
= (asymbol
**) bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3150 if (sect_syms
== NULL
)
3152 elf_section_syms (abfd
) = sect_syms
;
3153 elf_num_section_syms (abfd
) = max_index
;
3155 /* Init sect_syms entries for any section symbols we have already
3156 decided to output. */
3157 for (idx
= 0; idx
< symcount
; idx
++)
3159 asymbol
*sym
= syms
[idx
];
3161 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3163 && !ignore_section_sym (abfd
, sym
))
3165 asection
*sec
= sym
->section
;
3167 if (sec
->owner
!= abfd
)
3168 sec
= sec
->output_section
;
3170 sect_syms
[sec
->index
] = syms
[idx
];
3174 /* Classify all of the symbols. */
3175 for (idx
= 0; idx
< symcount
; idx
++)
3177 if (ignore_section_sym (abfd
, syms
[idx
]))
3179 if (!sym_is_global (abfd
, syms
[idx
]))
3185 /* We will be adding a section symbol for each normal BFD section. Most
3186 sections will already have a section symbol in outsymbols, but
3187 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3188 at least in that case. */
3189 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3191 if (sect_syms
[asect
->index
] == NULL
)
3193 if (!sym_is_global (abfd
, asect
->symbol
))
3200 /* Now sort the symbols so the local symbols are first. */
3201 new_syms
= (asymbol
**) bfd_alloc2 (abfd
, num_locals
+ num_globals
,
3202 sizeof (asymbol
*));
3204 if (new_syms
== NULL
)
3207 for (idx
= 0; idx
< symcount
; idx
++)
3209 asymbol
*sym
= syms
[idx
];
3212 if (ignore_section_sym (abfd
, sym
))
3214 if (!sym_is_global (abfd
, sym
))
3217 i
= num_locals
+ num_globals2
++;
3219 sym
->udata
.i
= i
+ 1;
3221 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3223 if (sect_syms
[asect
->index
] == NULL
)
3225 asymbol
*sym
= asect
->symbol
;
3228 sect_syms
[asect
->index
] = sym
;
3229 if (!sym_is_global (abfd
, sym
))
3232 i
= num_locals
+ num_globals2
++;
3234 sym
->udata
.i
= i
+ 1;
3238 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3240 elf_num_locals (abfd
) = num_locals
;
3241 elf_num_globals (abfd
) = num_globals
;
3245 /* Align to the maximum file alignment that could be required for any
3246 ELF data structure. */
3248 static inline file_ptr
3249 align_file_position (file_ptr off
, int align
)
3251 return (off
+ align
- 1) & ~(align
- 1);
3254 /* Assign a file position to a section, optionally aligning to the
3255 required section alignment. */
3258 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3262 if (align
&& i_shdrp
->sh_addralign
> 1)
3263 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3264 i_shdrp
->sh_offset
= offset
;
3265 if (i_shdrp
->bfd_section
!= NULL
)
3266 i_shdrp
->bfd_section
->filepos
= offset
;
3267 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3268 offset
+= i_shdrp
->sh_size
;
3272 /* Compute the file positions we are going to put the sections at, and
3273 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3274 is not NULL, this is being called by the ELF backend linker. */
3277 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3278 struct bfd_link_info
*link_info
)
3280 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3282 struct bfd_strtab_hash
*strtab
= NULL
;
3283 Elf_Internal_Shdr
*shstrtab_hdr
;
3284 bfd_boolean need_symtab
;
3286 if (abfd
->output_has_begun
)
3289 /* Do any elf backend specific processing first. */
3290 if (bed
->elf_backend_begin_write_processing
)
3291 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3293 if (! prep_headers (abfd
))
3296 /* Post process the headers if necessary. */
3297 if (bed
->elf_backend_post_process_headers
)
3298 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3301 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3305 if (!assign_section_numbers (abfd
, link_info
))
3308 /* The backend linker builds symbol table information itself. */
3309 need_symtab
= (link_info
== NULL
3310 && (bfd_get_symcount (abfd
) > 0
3311 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3315 /* Non-zero if doing a relocatable link. */
3316 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3318 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3322 if (link_info
== NULL
)
3324 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3329 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3330 /* sh_name was set in prep_headers. */
3331 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3332 shstrtab_hdr
->sh_flags
= 0;
3333 shstrtab_hdr
->sh_addr
= 0;
3334 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3335 shstrtab_hdr
->sh_entsize
= 0;
3336 shstrtab_hdr
->sh_link
= 0;
3337 shstrtab_hdr
->sh_info
= 0;
3338 /* sh_offset is set in assign_file_positions_except_relocs. */
3339 shstrtab_hdr
->sh_addralign
= 1;
3341 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3347 Elf_Internal_Shdr
*hdr
;
3349 off
= elf_tdata (abfd
)->next_file_pos
;
3351 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3352 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3354 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3355 if (hdr
->sh_size
!= 0)
3356 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3358 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3359 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3361 elf_tdata (abfd
)->next_file_pos
= off
;
3363 /* Now that we know where the .strtab section goes, write it
3365 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3366 || ! _bfd_stringtab_emit (abfd
, strtab
))
3368 _bfd_stringtab_free (strtab
);
3371 abfd
->output_has_begun
= TRUE
;
3376 /* Make an initial estimate of the size of the program header. If we
3377 get the number wrong here, we'll redo section placement. */
3379 static bfd_size_type
3380 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3384 const struct elf_backend_data
*bed
;
3386 /* Assume we will need exactly two PT_LOAD segments: one for text
3387 and one for data. */
3390 s
= bfd_get_section_by_name (abfd
, ".interp");
3391 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3393 /* If we have a loadable interpreter section, we need a
3394 PT_INTERP segment. In this case, assume we also need a
3395 PT_PHDR segment, although that may not be true for all
3400 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3402 /* We need a PT_DYNAMIC segment. */
3406 if (info
!= NULL
&& info
->relro
)
3408 /* We need a PT_GNU_RELRO segment. */
3412 if (elf_tdata (abfd
)->eh_frame_hdr
)
3414 /* We need a PT_GNU_EH_FRAME segment. */
3418 if (elf_tdata (abfd
)->stack_flags
)
3420 /* We need a PT_GNU_STACK segment. */
3424 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3426 if ((s
->flags
& SEC_LOAD
) != 0
3427 && CONST_STRNEQ (s
->name
, ".note"))
3429 /* We need a PT_NOTE segment. */
3431 /* Try to create just one PT_NOTE segment
3432 for all adjacent loadable .note* sections.
3433 gABI requires that within a PT_NOTE segment
3434 (and also inside of each SHT_NOTE section)
3435 each note is padded to a multiple of 4 size,
3436 so we check whether the sections are correctly
3438 if (s
->alignment_power
== 2)
3439 while (s
->next
!= NULL
3440 && s
->next
->alignment_power
== 2
3441 && (s
->next
->flags
& SEC_LOAD
) != 0
3442 && CONST_STRNEQ (s
->next
->name
, ".note"))
3447 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3449 if (s
->flags
& SEC_THREAD_LOCAL
)
3451 /* We need a PT_TLS segment. */
3457 /* Let the backend count up any program headers it might need. */
3458 bed
= get_elf_backend_data (abfd
);
3459 if (bed
->elf_backend_additional_program_headers
)
3463 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3469 return segs
* bed
->s
->sizeof_phdr
;
3472 /* Find the segment that contains the output_section of section. */
3475 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3477 struct elf_segment_map
*m
;
3478 Elf_Internal_Phdr
*p
;
3480 for (m
= elf_tdata (abfd
)->segment_map
,
3481 p
= elf_tdata (abfd
)->phdr
;
3487 for (i
= m
->count
- 1; i
>= 0; i
--)
3488 if (m
->sections
[i
] == section
)
3495 /* Create a mapping from a set of sections to a program segment. */
3497 static struct elf_segment_map
*
3498 make_mapping (bfd
*abfd
,
3499 asection
**sections
,
3504 struct elf_segment_map
*m
;
3509 amt
= sizeof (struct elf_segment_map
);
3510 amt
+= (to
- from
- 1) * sizeof (asection
*);
3511 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3515 m
->p_type
= PT_LOAD
;
3516 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3517 m
->sections
[i
- from
] = *hdrpp
;
3518 m
->count
= to
- from
;
3520 if (from
== 0 && phdr
)
3522 /* Include the headers in the first PT_LOAD segment. */
3523 m
->includes_filehdr
= 1;
3524 m
->includes_phdrs
= 1;
3530 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3533 struct elf_segment_map
*
3534 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3536 struct elf_segment_map
*m
;
3538 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
,
3539 sizeof (struct elf_segment_map
));
3543 m
->p_type
= PT_DYNAMIC
;
3545 m
->sections
[0] = dynsec
;
3550 /* Possibly add or remove segments from the segment map. */
3553 elf_modify_segment_map (bfd
*abfd
,
3554 struct bfd_link_info
*info
,
3555 bfd_boolean remove_empty_load
)
3557 struct elf_segment_map
**m
;
3558 const struct elf_backend_data
*bed
;
3560 /* The placement algorithm assumes that non allocated sections are
3561 not in PT_LOAD segments. We ensure this here by removing such
3562 sections from the segment map. We also remove excluded
3563 sections. Finally, any PT_LOAD segment without sections is
3565 m
= &elf_tdata (abfd
)->segment_map
;
3568 unsigned int i
, new_count
;
3570 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3572 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3573 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3574 || (*m
)->p_type
!= PT_LOAD
))
3576 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3580 (*m
)->count
= new_count
;
3582 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3588 bed
= get_elf_backend_data (abfd
);
3589 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3591 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3598 /* Set up a mapping from BFD sections to program segments. */
3601 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3604 struct elf_segment_map
*m
;
3605 asection
**sections
= NULL
;
3606 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3607 bfd_boolean no_user_phdrs
;
3609 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3610 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3614 struct elf_segment_map
*mfirst
;
3615 struct elf_segment_map
**pm
;
3618 unsigned int phdr_index
;
3619 bfd_vma maxpagesize
;
3621 bfd_boolean phdr_in_segment
= TRUE
;
3622 bfd_boolean writable
;
3624 asection
*first_tls
= NULL
;
3625 asection
*dynsec
, *eh_frame_hdr
;
3628 /* Select the allocated sections, and sort them. */
3630 sections
= (asection
**) bfd_malloc2 (bfd_count_sections (abfd
),
3631 sizeof (asection
*));
3632 if (sections
== NULL
)
3636 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3638 if ((s
->flags
& SEC_ALLOC
) != 0)
3644 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3647 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3649 /* Build the mapping. */
3654 /* If we have a .interp section, then create a PT_PHDR segment for
3655 the program headers and a PT_INTERP segment for the .interp
3657 s
= bfd_get_section_by_name (abfd
, ".interp");
3658 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3660 amt
= sizeof (struct elf_segment_map
);
3661 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3665 m
->p_type
= PT_PHDR
;
3666 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3667 m
->p_flags
= PF_R
| PF_X
;
3668 m
->p_flags_valid
= 1;
3669 m
->includes_phdrs
= 1;
3674 amt
= sizeof (struct elf_segment_map
);
3675 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3679 m
->p_type
= PT_INTERP
;
3687 /* Look through the sections. We put sections in the same program
3688 segment when the start of the second section can be placed within
3689 a few bytes of the end of the first section. */
3693 maxpagesize
= bed
->maxpagesize
;
3695 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3697 && (dynsec
->flags
& SEC_LOAD
) == 0)
3700 /* Deal with -Ttext or something similar such that the first section
3701 is not adjacent to the program headers. This is an
3702 approximation, since at this point we don't know exactly how many
3703 program headers we will need. */
3706 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3708 if (phdr_size
== (bfd_size_type
) -1)
3709 phdr_size
= get_program_header_size (abfd
, info
);
3710 if ((abfd
->flags
& D_PAGED
) == 0
3711 || sections
[0]->lma
< phdr_size
3712 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3713 phdr_in_segment
= FALSE
;
3716 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3719 bfd_boolean new_segment
;
3723 /* See if this section and the last one will fit in the same
3726 if (last_hdr
== NULL
)
3728 /* If we don't have a segment yet, then we don't need a new
3729 one (we build the last one after this loop). */
3730 new_segment
= FALSE
;
3732 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3734 /* If this section has a different relation between the
3735 virtual address and the load address, then we need a new
3739 /* In the next test we have to be careful when last_hdr->lma is close
3740 to the end of the address space. If the aligned address wraps
3741 around to the start of the address space, then there are no more
3742 pages left in memory and it is OK to assume that the current
3743 section can be included in the current segment. */
3744 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3746 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3749 /* If putting this section in this segment would force us to
3750 skip a page in the segment, then we need a new segment. */
3753 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3754 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3756 /* We don't want to put a loadable section after a
3757 nonloadable section in the same segment.
3758 Consider .tbss sections as loadable for this purpose. */
3761 else if ((abfd
->flags
& D_PAGED
) == 0)
3763 /* If the file is not demand paged, which means that we
3764 don't require the sections to be correctly aligned in the
3765 file, then there is no other reason for a new segment. */
3766 new_segment
= FALSE
;
3769 && (hdr
->flags
& SEC_READONLY
) == 0
3770 && (((last_hdr
->lma
+ last_size
- 1)
3771 & ~(maxpagesize
- 1))
3772 != (hdr
->lma
& ~(maxpagesize
- 1))))
3774 /* We don't want to put a writable section in a read only
3775 segment, unless they are on the same page in memory
3776 anyhow. We already know that the last section does not
3777 bring us past the current section on the page, so the
3778 only case in which the new section is not on the same
3779 page as the previous section is when the previous section
3780 ends precisely on a page boundary. */
3785 /* Otherwise, we can use the same segment. */
3786 new_segment
= FALSE
;
3789 /* Allow interested parties a chance to override our decision. */
3790 if (last_hdr
!= NULL
3792 && info
->callbacks
->override_segment_assignment
!= NULL
)
3794 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3800 if ((hdr
->flags
& SEC_READONLY
) == 0)
3803 /* .tbss sections effectively have zero size. */
3804 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3805 != SEC_THREAD_LOCAL
)
3806 last_size
= hdr
->size
;
3812 /* We need a new program segment. We must create a new program
3813 header holding all the sections from phdr_index until hdr. */
3815 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3822 if ((hdr
->flags
& SEC_READONLY
) == 0)
3828 /* .tbss sections effectively have zero size. */
3829 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3830 last_size
= hdr
->size
;
3834 phdr_in_segment
= FALSE
;
3837 /* Create a final PT_LOAD program segment. */
3838 if (last_hdr
!= NULL
)
3840 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3848 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3851 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3858 /* For each batch of consecutive loadable .note sections,
3859 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3860 because if we link together nonloadable .note sections and
3861 loadable .note sections, we will generate two .note sections
3862 in the output file. FIXME: Using names for section types is
3864 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3866 if ((s
->flags
& SEC_LOAD
) != 0
3867 && CONST_STRNEQ (s
->name
, ".note"))
3872 amt
= sizeof (struct elf_segment_map
);
3873 if (s
->alignment_power
== 2)
3874 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3876 if (s2
->next
->alignment_power
== 2
3877 && (s2
->next
->flags
& SEC_LOAD
) != 0
3878 && CONST_STRNEQ (s2
->next
->name
, ".note")
3879 && align_power (s2
->vma
+ s2
->size
, 2)
3885 amt
+= (count
- 1) * sizeof (asection
*);
3886 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3890 m
->p_type
= PT_NOTE
;
3894 m
->sections
[m
->count
- count
--] = s
;
3895 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3898 m
->sections
[m
->count
- 1] = s
;
3899 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3903 if (s
->flags
& SEC_THREAD_LOCAL
)
3911 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3914 amt
= sizeof (struct elf_segment_map
);
3915 amt
+= (tls_count
- 1) * sizeof (asection
*);
3916 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3921 m
->count
= tls_count
;
3922 /* Mandated PF_R. */
3924 m
->p_flags_valid
= 1;
3925 for (i
= 0; i
< (unsigned int) tls_count
; ++i
)
3927 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3928 m
->sections
[i
] = first_tls
;
3929 first_tls
= first_tls
->next
;
3936 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3938 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3939 if (eh_frame_hdr
!= NULL
3940 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3942 amt
= sizeof (struct elf_segment_map
);
3943 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3947 m
->p_type
= PT_GNU_EH_FRAME
;
3949 m
->sections
[0] = eh_frame_hdr
->output_section
;
3955 if (elf_tdata (abfd
)->stack_flags
)
3957 amt
= sizeof (struct elf_segment_map
);
3958 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3962 m
->p_type
= PT_GNU_STACK
;
3963 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3964 m
->p_flags_valid
= 1;
3970 if (info
!= NULL
&& info
->relro
)
3972 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3974 if (m
->p_type
== PT_LOAD
)
3976 asection
*last
= m
->sections
[m
->count
- 1];
3977 bfd_vma vaddr
= m
->sections
[0]->vma
;
3978 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3980 if (vaddr
< info
->relro_end
3981 && vaddr
>= info
->relro_start
3982 && (vaddr
+ filesz
) >= info
->relro_end
)
3987 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3990 amt
= sizeof (struct elf_segment_map
);
3991 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3995 m
->p_type
= PT_GNU_RELRO
;
3997 m
->p_flags_valid
= 1;
4005 elf_tdata (abfd
)->segment_map
= mfirst
;
4008 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4011 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4013 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4018 if (sections
!= NULL
)
4023 /* Sort sections by address. */
4026 elf_sort_sections (const void *arg1
, const void *arg2
)
4028 const asection
*sec1
= *(const asection
**) arg1
;
4029 const asection
*sec2
= *(const asection
**) arg2
;
4030 bfd_size_type size1
, size2
;
4032 /* Sort by LMA first, since this is the address used to
4033 place the section into a segment. */
4034 if (sec1
->lma
< sec2
->lma
)
4036 else if (sec1
->lma
> sec2
->lma
)
4039 /* Then sort by VMA. Normally the LMA and the VMA will be
4040 the same, and this will do nothing. */
4041 if (sec1
->vma
< sec2
->vma
)
4043 else if (sec1
->vma
> sec2
->vma
)
4046 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4048 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4054 /* If the indicies are the same, do not return 0
4055 here, but continue to try the next comparison. */
4056 if (sec1
->target_index
- sec2
->target_index
!= 0)
4057 return sec1
->target_index
- sec2
->target_index
;
4062 else if (TOEND (sec2
))
4067 /* Sort by size, to put zero sized sections
4068 before others at the same address. */
4070 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4071 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4078 return sec1
->target_index
- sec2
->target_index
;
4081 /* Ian Lance Taylor writes:
4083 We shouldn't be using % with a negative signed number. That's just
4084 not good. We have to make sure either that the number is not
4085 negative, or that the number has an unsigned type. When the types
4086 are all the same size they wind up as unsigned. When file_ptr is a
4087 larger signed type, the arithmetic winds up as signed long long,
4090 What we're trying to say here is something like ``increase OFF by
4091 the least amount that will cause it to be equal to the VMA modulo
4093 /* In other words, something like:
4095 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4096 off_offset = off % bed->maxpagesize;
4097 if (vma_offset < off_offset)
4098 adjustment = vma_offset + bed->maxpagesize - off_offset;
4100 adjustment = vma_offset - off_offset;
4102 which can can be collapsed into the expression below. */
4105 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4107 return ((vma
- off
) % maxpagesize
);
4111 print_segment_map (const struct elf_segment_map
*m
)
4114 const char *pt
= get_segment_type (m
->p_type
);
4119 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4120 sprintf (buf
, "LOPROC+%7.7x",
4121 (unsigned int) (m
->p_type
- PT_LOPROC
));
4122 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4123 sprintf (buf
, "LOOS+%7.7x",
4124 (unsigned int) (m
->p_type
- PT_LOOS
));
4126 snprintf (buf
, sizeof (buf
), "%8.8x",
4127 (unsigned int) m
->p_type
);
4130 fprintf (stderr
, "%s:", pt
);
4131 for (j
= 0; j
< m
->count
; j
++)
4132 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4137 write_zeros (bfd
*abfd
, file_ptr pos
, bfd_size_type len
)
4142 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0)
4144 buf
= bfd_zmalloc (len
);
4147 ret
= bfd_bwrite (buf
, len
, abfd
) == len
;
4152 /* Assign file positions to the sections based on the mapping from
4153 sections to segments. This function also sets up some fields in
4157 assign_file_positions_for_load_sections (bfd
*abfd
,
4158 struct bfd_link_info
*link_info
)
4160 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4161 struct elf_segment_map
*m
;
4162 Elf_Internal_Phdr
*phdrs
;
4163 Elf_Internal_Phdr
*p
;
4165 bfd_size_type maxpagesize
;
4168 bfd_vma header_pad
= 0;
4170 if (link_info
== NULL
4171 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4175 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4179 header_pad
= m
->header_size
;
4182 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4183 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4184 elf_elfheader (abfd
)->e_phnum
= alloc
;
4186 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4187 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4189 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4190 >= alloc
* bed
->s
->sizeof_phdr
);
4194 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4198 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4199 see assign_file_positions_except_relocs, so make sure we have
4200 that amount allocated, with trailing space cleared.
4201 The variable alloc contains the computed need, while elf_tdata
4202 (abfd)->program_header_size contains the size used for the
4204 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4205 where the layout is forced to according to a larger size in the
4206 last iterations for the testcase ld-elf/header. */
4207 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4209 phdrs
= (Elf_Internal_Phdr
*)
4211 (elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
),
4212 sizeof (Elf_Internal_Phdr
));
4213 elf_tdata (abfd
)->phdr
= phdrs
;
4218 if ((abfd
->flags
& D_PAGED
) != 0)
4219 maxpagesize
= bed
->maxpagesize
;
4221 off
= bed
->s
->sizeof_ehdr
;
4222 off
+= alloc
* bed
->s
->sizeof_phdr
;
4223 if (header_pad
< (bfd_vma
) off
)
4229 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4231 m
= m
->next
, p
++, j
++)
4235 bfd_boolean no_contents
;
4237 /* If elf_segment_map is not from map_sections_to_segments, the
4238 sections may not be correctly ordered. NOTE: sorting should
4239 not be done to the PT_NOTE section of a corefile, which may
4240 contain several pseudo-sections artificially created by bfd.
4241 Sorting these pseudo-sections breaks things badly. */
4243 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4244 && m
->p_type
== PT_NOTE
))
4245 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4248 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4249 number of sections with contents contributing to both p_filesz
4250 and p_memsz, followed by a number of sections with no contents
4251 that just contribute to p_memsz. In this loop, OFF tracks next
4252 available file offset for PT_LOAD and PT_NOTE segments. */
4253 p
->p_type
= m
->p_type
;
4254 p
->p_flags
= m
->p_flags
;
4259 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4261 if (m
->p_paddr_valid
)
4262 p
->p_paddr
= m
->p_paddr
;
4263 else if (m
->count
== 0)
4266 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4268 if (p
->p_type
== PT_LOAD
4269 && (abfd
->flags
& D_PAGED
) != 0)
4271 /* p_align in demand paged PT_LOAD segments effectively stores
4272 the maximum page size. When copying an executable with
4273 objcopy, we set m->p_align from the input file. Use this
4274 value for maxpagesize rather than bed->maxpagesize, which
4275 may be different. Note that we use maxpagesize for PT_TLS
4276 segment alignment later in this function, so we are relying
4277 on at least one PT_LOAD segment appearing before a PT_TLS
4279 if (m
->p_align_valid
)
4280 maxpagesize
= m
->p_align
;
4282 p
->p_align
= maxpagesize
;
4284 else if (m
->p_align_valid
)
4285 p
->p_align
= m
->p_align
;
4286 else if (m
->count
== 0)
4287 p
->p_align
= 1 << bed
->s
->log_file_align
;
4291 no_contents
= FALSE
;
4293 if (p
->p_type
== PT_LOAD
4296 bfd_size_type align
;
4297 unsigned int align_power
= 0;
4299 if (m
->p_align_valid
)
4303 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4305 unsigned int secalign
;
4307 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4308 if (secalign
> align_power
)
4309 align_power
= secalign
;
4311 align
= (bfd_size_type
) 1 << align_power
;
4312 if (align
< maxpagesize
)
4313 align
= maxpagesize
;
4316 for (i
= 0; i
< m
->count
; i
++)
4317 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4318 /* If we aren't making room for this section, then
4319 it must be SHT_NOBITS regardless of what we've
4320 set via struct bfd_elf_special_section. */
4321 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4323 /* Find out whether this segment contains any loadable
4326 for (i
= 0; i
< m
->count
; i
++)
4327 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4329 no_contents
= FALSE
;
4333 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4337 /* We shouldn't need to align the segment on disk since
4338 the segment doesn't need file space, but the gABI
4339 arguably requires the alignment and glibc ld.so
4340 checks it. So to comply with the alignment
4341 requirement but not waste file space, we adjust
4342 p_offset for just this segment. (OFF_ADJUST is
4343 subtracted from OFF later.) This may put p_offset
4344 past the end of file, but that shouldn't matter. */
4349 /* Make sure the .dynamic section is the first section in the
4350 PT_DYNAMIC segment. */
4351 else if (p
->p_type
== PT_DYNAMIC
4353 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4356 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4358 bfd_set_error (bfd_error_bad_value
);
4361 /* Set the note section type to SHT_NOTE. */
4362 else if (p
->p_type
== PT_NOTE
)
4363 for (i
= 0; i
< m
->count
; i
++)
4364 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4370 if (m
->includes_filehdr
)
4372 if (!m
->p_flags_valid
)
4374 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4375 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4378 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4380 if (p
->p_vaddr
< (bfd_vma
) off
)
4382 (*_bfd_error_handler
)
4383 (_("%B: Not enough room for program headers, try linking with -N"),
4385 bfd_set_error (bfd_error_bad_value
);
4390 if (!m
->p_paddr_valid
)
4395 if (m
->includes_phdrs
)
4397 if (!m
->p_flags_valid
)
4400 if (!m
->includes_filehdr
)
4402 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4406 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4407 p
->p_vaddr
-= off
- p
->p_offset
;
4408 if (!m
->p_paddr_valid
)
4409 p
->p_paddr
-= off
- p
->p_offset
;
4413 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4414 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4417 p
->p_filesz
+= header_pad
;
4418 p
->p_memsz
+= header_pad
;
4422 if (p
->p_type
== PT_LOAD
4423 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4425 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4431 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4433 p
->p_filesz
+= adjust
;
4434 p
->p_memsz
+= adjust
;
4438 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4439 maps. Set filepos for sections in PT_LOAD segments, and in
4440 core files, for sections in PT_NOTE segments.
4441 assign_file_positions_for_non_load_sections will set filepos
4442 for other sections and update p_filesz for other segments. */
4443 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4446 bfd_size_type align
;
4447 Elf_Internal_Shdr
*this_hdr
;
4450 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4451 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4453 if ((p
->p_type
== PT_LOAD
4454 || p
->p_type
== PT_TLS
)
4455 && (this_hdr
->sh_type
!= SHT_NOBITS
4456 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4457 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4458 || p
->p_type
== PT_TLS
))))
4460 bfd_vma adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_memsz
);
4462 if (sec
->lma
< p
->p_paddr
+ p
->p_memsz
)
4464 (*_bfd_error_handler
)
4465 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4466 abfd
, sec
, (unsigned long) sec
->lma
);
4468 sec
->lma
= p
->p_paddr
+ p
->p_memsz
;
4470 p
->p_memsz
+= adjust
;
4472 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4474 if (p
->p_filesz
+ adjust
< p
->p_memsz
)
4476 /* We have a PROGBITS section following NOBITS ones.
4477 Allocate file space for the NOBITS section(s) and
4479 adjust
= p
->p_memsz
- p
->p_filesz
;
4480 if (!write_zeros (abfd
, off
, adjust
))
4484 p
->p_filesz
+= adjust
;
4488 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4490 /* The section at i == 0 is the one that actually contains
4494 this_hdr
->sh_offset
= sec
->filepos
= off
;
4495 off
+= this_hdr
->sh_size
;
4496 p
->p_filesz
= this_hdr
->sh_size
;
4502 /* The rest are fake sections that shouldn't be written. */
4511 if (p
->p_type
== PT_LOAD
)
4513 this_hdr
->sh_offset
= sec
->filepos
= off
;
4514 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4515 off
+= this_hdr
->sh_size
;
4518 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4520 p
->p_filesz
+= this_hdr
->sh_size
;
4521 /* A load section without SHF_ALLOC is something like
4522 a note section in a PT_NOTE segment. These take
4523 file space but are not loaded into memory. */
4524 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4525 p
->p_memsz
+= this_hdr
->sh_size
;
4527 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4529 if (p
->p_type
== PT_TLS
)
4530 p
->p_memsz
+= this_hdr
->sh_size
;
4532 /* .tbss is special. It doesn't contribute to p_memsz of
4534 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4535 p
->p_memsz
+= this_hdr
->sh_size
;
4538 if (align
> p
->p_align
4539 && !m
->p_align_valid
4540 && (p
->p_type
!= PT_LOAD
4541 || (abfd
->flags
& D_PAGED
) == 0))
4545 if (!m
->p_flags_valid
)
4548 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4550 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4556 /* Check that all sections are in a PT_LOAD segment.
4557 Don't check funky gdb generated core files. */
4558 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4560 bfd_boolean check_vma
= TRUE
;
4562 for (i
= 1; i
< m
->count
; i
++)
4563 if (m
->sections
[i
]->vma
== m
->sections
[i
- 1]->vma
4564 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
])
4565 ->this_hdr
), p
) != 0
4566 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
- 1])
4567 ->this_hdr
), p
) != 0)
4569 /* Looks like we have overlays packed into the segment. */
4574 for (i
= 0; i
< m
->count
; i
++)
4576 Elf_Internal_Shdr
*this_hdr
;
4579 sec
= m
->sections
[i
];
4580 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4581 if (this_hdr
->sh_size
!= 0
4582 && !ELF_SECTION_IN_SEGMENT_1 (this_hdr
, p
, check_vma
))
4584 (*_bfd_error_handler
)
4585 (_("%B: section `%A' can't be allocated in segment %d"),
4587 print_segment_map (m
);
4593 elf_tdata (abfd
)->next_file_pos
= off
;
4597 /* Assign file positions for the other sections. */
4600 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4601 struct bfd_link_info
*link_info
)
4603 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4604 Elf_Internal_Shdr
**i_shdrpp
;
4605 Elf_Internal_Shdr
**hdrpp
;
4606 Elf_Internal_Phdr
*phdrs
;
4607 Elf_Internal_Phdr
*p
;
4608 struct elf_segment_map
*m
;
4609 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4610 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4612 unsigned int num_sec
;
4616 i_shdrpp
= elf_elfsections (abfd
);
4617 num_sec
= elf_numsections (abfd
);
4618 off
= elf_tdata (abfd
)->next_file_pos
;
4619 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4621 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4622 Elf_Internal_Shdr
*hdr
;
4625 if (hdr
->bfd_section
!= NULL
4626 && (hdr
->bfd_section
->filepos
!= 0
4627 || (hdr
->sh_type
== SHT_NOBITS
4628 && hdr
->contents
== NULL
)))
4629 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4630 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4632 if (hdr
->sh_size
!= 0)
4633 ((*_bfd_error_handler
)
4634 (_("%B: warning: allocated section `%s' not in segment"),
4636 (hdr
->bfd_section
== NULL
4638 : hdr
->bfd_section
->name
)));
4639 /* We don't need to page align empty sections. */
4640 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4641 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4644 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4646 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4649 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4650 && hdr
->bfd_section
== NULL
)
4651 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4652 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4653 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4654 hdr
->sh_offset
= -1;
4656 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4659 /* Now that we have set the section file positions, we can set up
4660 the file positions for the non PT_LOAD segments. */
4664 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4666 phdrs
= elf_tdata (abfd
)->phdr
;
4667 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4672 if (p
->p_type
!= PT_LOAD
)
4675 if (m
->includes_filehdr
)
4677 filehdr_vaddr
= p
->p_vaddr
;
4678 filehdr_paddr
= p
->p_paddr
;
4680 if (m
->includes_phdrs
)
4682 phdrs_vaddr
= p
->p_vaddr
;
4683 phdrs_paddr
= p
->p_paddr
;
4684 if (m
->includes_filehdr
)
4686 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4687 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4692 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4696 if (p
->p_type
== PT_GNU_RELRO
)
4698 const Elf_Internal_Phdr
*lp
;
4700 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4702 if (link_info
!= NULL
)
4704 /* During linking the range of the RELRO segment is passed
4706 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4708 if (lp
->p_type
== PT_LOAD
4709 && lp
->p_vaddr
>= link_info
->relro_start
4710 && lp
->p_vaddr
< link_info
->relro_end
4711 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4717 /* Otherwise we are copying an executable or shared
4718 library, but we need to use the same linker logic. */
4719 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4721 if (lp
->p_type
== PT_LOAD
4722 && lp
->p_paddr
== p
->p_paddr
)
4727 if (lp
< phdrs
+ count
)
4729 p
->p_vaddr
= lp
->p_vaddr
;
4730 p
->p_paddr
= lp
->p_paddr
;
4731 p
->p_offset
= lp
->p_offset
;
4732 if (link_info
!= NULL
)
4733 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4734 else if (m
->p_size_valid
)
4735 p
->p_filesz
= m
->p_size
;
4738 p
->p_memsz
= p
->p_filesz
;
4740 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4744 memset (p
, 0, sizeof *p
);
4745 p
->p_type
= PT_NULL
;
4748 else if (m
->count
!= 0)
4750 if (p
->p_type
!= PT_LOAD
4751 && (p
->p_type
!= PT_NOTE
4752 || bfd_get_format (abfd
) != bfd_core
))
4754 Elf_Internal_Shdr
*hdr
;
4757 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4759 sect
= m
->sections
[m
->count
- 1];
4760 hdr
= &elf_section_data (sect
)->this_hdr
;
4761 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4762 if (hdr
->sh_type
!= SHT_NOBITS
)
4763 p
->p_filesz
+= hdr
->sh_size
;
4764 p
->p_offset
= m
->sections
[0]->filepos
;
4767 else if (m
->includes_filehdr
)
4769 p
->p_vaddr
= filehdr_vaddr
;
4770 if (! m
->p_paddr_valid
)
4771 p
->p_paddr
= filehdr_paddr
;
4773 else if (m
->includes_phdrs
)
4775 p
->p_vaddr
= phdrs_vaddr
;
4776 if (! m
->p_paddr_valid
)
4777 p
->p_paddr
= phdrs_paddr
;
4781 elf_tdata (abfd
)->next_file_pos
= off
;
4786 /* Work out the file positions of all the sections. This is called by
4787 _bfd_elf_compute_section_file_positions. All the section sizes and
4788 VMAs must be known before this is called.
4790 Reloc sections come in two flavours: Those processed specially as
4791 "side-channel" data attached to a section to which they apply, and
4792 those that bfd doesn't process as relocations. The latter sort are
4793 stored in a normal bfd section by bfd_section_from_shdr. We don't
4794 consider the former sort here, unless they form part of the loadable
4795 image. Reloc sections not assigned here will be handled later by
4796 assign_file_positions_for_relocs.
4798 We also don't set the positions of the .symtab and .strtab here. */
4801 assign_file_positions_except_relocs (bfd
*abfd
,
4802 struct bfd_link_info
*link_info
)
4804 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4805 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4807 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4809 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4810 && bfd_get_format (abfd
) != bfd_core
)
4812 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4813 unsigned int num_sec
= elf_numsections (abfd
);
4814 Elf_Internal_Shdr
**hdrpp
;
4817 /* Start after the ELF header. */
4818 off
= i_ehdrp
->e_ehsize
;
4820 /* We are not creating an executable, which means that we are
4821 not creating a program header, and that the actual order of
4822 the sections in the file is unimportant. */
4823 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4825 Elf_Internal_Shdr
*hdr
;
4828 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4829 && hdr
->bfd_section
== NULL
)
4830 || i
== tdata
->symtab_section
4831 || i
== tdata
->symtab_shndx_section
4832 || i
== tdata
->strtab_section
)
4834 hdr
->sh_offset
= -1;
4837 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4844 /* Assign file positions for the loaded sections based on the
4845 assignment of sections to segments. */
4846 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4849 /* And for non-load sections. */
4850 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4853 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4855 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4859 /* Write out the program headers. */
4860 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4861 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4862 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4865 off
= tdata
->next_file_pos
;
4868 /* Place the section headers. */
4869 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4870 i_ehdrp
->e_shoff
= off
;
4871 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4873 tdata
->next_file_pos
= off
;
4879 prep_headers (bfd
*abfd
)
4881 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form. */
4882 struct elf_strtab_hash
*shstrtab
;
4883 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4885 i_ehdrp
= elf_elfheader (abfd
);
4887 shstrtab
= _bfd_elf_strtab_init ();
4888 if (shstrtab
== NULL
)
4891 elf_shstrtab (abfd
) = shstrtab
;
4893 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4894 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4895 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4896 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4898 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4899 i_ehdrp
->e_ident
[EI_DATA
] =
4900 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4901 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4903 if ((abfd
->flags
& DYNAMIC
) != 0)
4904 i_ehdrp
->e_type
= ET_DYN
;
4905 else if ((abfd
->flags
& EXEC_P
) != 0)
4906 i_ehdrp
->e_type
= ET_EXEC
;
4907 else if (bfd_get_format (abfd
) == bfd_core
)
4908 i_ehdrp
->e_type
= ET_CORE
;
4910 i_ehdrp
->e_type
= ET_REL
;
4912 switch (bfd_get_arch (abfd
))
4914 case bfd_arch_unknown
:
4915 i_ehdrp
->e_machine
= EM_NONE
;
4918 /* There used to be a long list of cases here, each one setting
4919 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4920 in the corresponding bfd definition. To avoid duplication,
4921 the switch was removed. Machines that need special handling
4922 can generally do it in elf_backend_final_write_processing(),
4923 unless they need the information earlier than the final write.
4924 Such need can generally be supplied by replacing the tests for
4925 e_machine with the conditions used to determine it. */
4927 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4930 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4931 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4933 /* No program header, for now. */
4934 i_ehdrp
->e_phoff
= 0;
4935 i_ehdrp
->e_phentsize
= 0;
4936 i_ehdrp
->e_phnum
= 0;
4938 /* Each bfd section is section header entry. */
4939 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4940 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4942 /* If we're building an executable, we'll need a program header table. */
4943 if (abfd
->flags
& EXEC_P
)
4944 /* It all happens later. */
4948 i_ehdrp
->e_phentsize
= 0;
4949 i_ehdrp
->e_phoff
= 0;
4952 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4953 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4954 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4955 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4956 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4957 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4958 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4959 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4960 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4966 /* Assign file positions for all the reloc sections which are not part
4967 of the loadable file image. */
4970 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4973 unsigned int i
, num_sec
;
4974 Elf_Internal_Shdr
**shdrpp
;
4976 off
= elf_tdata (abfd
)->next_file_pos
;
4978 num_sec
= elf_numsections (abfd
);
4979 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4981 Elf_Internal_Shdr
*shdrp
;
4984 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4985 && shdrp
->sh_offset
== -1)
4986 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4989 elf_tdata (abfd
)->next_file_pos
= off
;
4993 _bfd_elf_write_object_contents (bfd
*abfd
)
4995 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4996 Elf_Internal_Shdr
**i_shdrp
;
4998 unsigned int count
, num_sec
;
5000 if (! abfd
->output_has_begun
5001 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5004 i_shdrp
= elf_elfsections (abfd
);
5007 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5011 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5013 /* After writing the headers, we need to write the sections too... */
5014 num_sec
= elf_numsections (abfd
);
5015 for (count
= 1; count
< num_sec
; count
++)
5017 if (bed
->elf_backend_section_processing
)
5018 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5019 if (i_shdrp
[count
]->contents
)
5021 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5023 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5024 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5029 /* Write out the section header names. */
5030 if (elf_shstrtab (abfd
) != NULL
5031 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5032 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5035 if (bed
->elf_backend_final_write_processing
)
5036 (*bed
->elf_backend_final_write_processing
) (abfd
,
5037 elf_tdata (abfd
)->linker
);
5039 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
5042 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5043 if (elf_tdata (abfd
)->after_write_object_contents
)
5044 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5050 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5052 /* Hopefully this can be done just like an object file. */
5053 return _bfd_elf_write_object_contents (abfd
);
5056 /* Given a section, search the header to find them. */
5059 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5061 const struct elf_backend_data
*bed
;
5062 unsigned int sec_index
;
5064 if (elf_section_data (asect
) != NULL
5065 && elf_section_data (asect
)->this_idx
!= 0)
5066 return elf_section_data (asect
)->this_idx
;
5068 if (bfd_is_abs_section (asect
))
5069 sec_index
= SHN_ABS
;
5070 else if (bfd_is_com_section (asect
))
5071 sec_index
= SHN_COMMON
;
5072 else if (bfd_is_und_section (asect
))
5073 sec_index
= SHN_UNDEF
;
5075 sec_index
= SHN_BAD
;
5077 bed
= get_elf_backend_data (abfd
);
5078 if (bed
->elf_backend_section_from_bfd_section
)
5080 int retval
= sec_index
;
5082 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5086 if (sec_index
== SHN_BAD
)
5087 bfd_set_error (bfd_error_nonrepresentable_section
);
5092 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5096 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5098 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5100 flagword flags
= asym_ptr
->flags
;
5102 /* When gas creates relocations against local labels, it creates its
5103 own symbol for the section, but does put the symbol into the
5104 symbol chain, so udata is 0. When the linker is generating
5105 relocatable output, this section symbol may be for one of the
5106 input sections rather than the output section. */
5107 if (asym_ptr
->udata
.i
== 0
5108 && (flags
& BSF_SECTION_SYM
)
5109 && asym_ptr
->section
)
5114 sec
= asym_ptr
->section
;
5115 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5116 sec
= sec
->output_section
;
5117 if (sec
->owner
== abfd
5118 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5119 && elf_section_syms (abfd
)[indx
] != NULL
)
5120 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5123 idx
= asym_ptr
->udata
.i
;
5127 /* This case can occur when using --strip-symbol on a symbol
5128 which is used in a relocation entry. */
5129 (*_bfd_error_handler
)
5130 (_("%B: symbol `%s' required but not present"),
5131 abfd
, bfd_asymbol_name (asym_ptr
));
5132 bfd_set_error (bfd_error_no_symbols
);
5139 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5140 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5141 elf_symbol_flags (flags
));
5149 /* Rewrite program header information. */
5152 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5154 Elf_Internal_Ehdr
*iehdr
;
5155 struct elf_segment_map
*map
;
5156 struct elf_segment_map
*map_first
;
5157 struct elf_segment_map
**pointer_to_map
;
5158 Elf_Internal_Phdr
*segment
;
5161 unsigned int num_segments
;
5162 bfd_boolean phdr_included
= FALSE
;
5163 bfd_boolean p_paddr_valid
;
5164 bfd_vma maxpagesize
;
5165 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5166 unsigned int phdr_adjust_num
= 0;
5167 const struct elf_backend_data
*bed
;
5169 bed
= get_elf_backend_data (ibfd
);
5170 iehdr
= elf_elfheader (ibfd
);
5173 pointer_to_map
= &map_first
;
5175 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5176 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5178 /* Returns the end address of the segment + 1. */
5179 #define SEGMENT_END(segment, start) \
5180 (start + (segment->p_memsz > segment->p_filesz \
5181 ? segment->p_memsz : segment->p_filesz))
5183 #define SECTION_SIZE(section, segment) \
5184 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5185 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5186 ? section->size : 0)
5188 /* Returns TRUE if the given section is contained within
5189 the given segment. VMA addresses are compared. */
5190 #define IS_CONTAINED_BY_VMA(section, segment) \
5191 (section->vma >= segment->p_vaddr \
5192 && (section->vma + SECTION_SIZE (section, segment) \
5193 <= (SEGMENT_END (segment, segment->p_vaddr))))
5195 /* Returns TRUE if the given section is contained within
5196 the given segment. LMA addresses are compared. */
5197 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5198 (section->lma >= base \
5199 && (section->lma + SECTION_SIZE (section, segment) \
5200 <= SEGMENT_END (segment, base)))
5202 /* Handle PT_NOTE segment. */
5203 #define IS_NOTE(p, s) \
5204 (p->p_type == PT_NOTE \
5205 && elf_section_type (s) == SHT_NOTE \
5206 && (bfd_vma) s->filepos >= p->p_offset \
5207 && ((bfd_vma) s->filepos + s->size \
5208 <= p->p_offset + p->p_filesz))
5210 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5212 #define IS_COREFILE_NOTE(p, s) \
5214 && bfd_get_format (ibfd) == bfd_core \
5218 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5219 linker, which generates a PT_INTERP section with p_vaddr and
5220 p_memsz set to 0. */
5221 #define IS_SOLARIS_PT_INTERP(p, s) \
5223 && p->p_paddr == 0 \
5224 && p->p_memsz == 0 \
5225 && p->p_filesz > 0 \
5226 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5228 && (bfd_vma) s->filepos >= p->p_offset \
5229 && ((bfd_vma) s->filepos + s->size \
5230 <= p->p_offset + p->p_filesz))
5232 /* Decide if the given section should be included in the given segment.
5233 A section will be included if:
5234 1. It is within the address space of the segment -- we use the LMA
5235 if that is set for the segment and the VMA otherwise,
5236 2. It is an allocated section or a NOTE section in a PT_NOTE
5238 3. There is an output section associated with it,
5239 4. The section has not already been allocated to a previous segment.
5240 5. PT_GNU_STACK segments do not include any sections.
5241 6. PT_TLS segment includes only SHF_TLS sections.
5242 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5243 8. PT_DYNAMIC should not contain empty sections at the beginning
5244 (with the possible exception of .dynamic). */
5245 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5246 ((((segment->p_paddr \
5247 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5248 : IS_CONTAINED_BY_VMA (section, segment)) \
5249 && (section->flags & SEC_ALLOC) != 0) \
5250 || IS_NOTE (segment, section)) \
5251 && segment->p_type != PT_GNU_STACK \
5252 && (segment->p_type != PT_TLS \
5253 || (section->flags & SEC_THREAD_LOCAL)) \
5254 && (segment->p_type == PT_LOAD \
5255 || segment->p_type == PT_TLS \
5256 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5257 && (segment->p_type != PT_DYNAMIC \
5258 || SECTION_SIZE (section, segment) > 0 \
5259 || (segment->p_paddr \
5260 ? segment->p_paddr != section->lma \
5261 : segment->p_vaddr != section->vma) \
5262 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5264 && !section->segment_mark)
5266 /* If the output section of a section in the input segment is NULL,
5267 it is removed from the corresponding output segment. */
5268 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5269 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5270 && section->output_section != NULL)
5272 /* Returns TRUE iff seg1 starts after the end of seg2. */
5273 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5274 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5276 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5277 their VMA address ranges and their LMA address ranges overlap.
5278 It is possible to have overlapping VMA ranges without overlapping LMA
5279 ranges. RedBoot images for example can have both .data and .bss mapped
5280 to the same VMA range, but with the .data section mapped to a different
5282 #define SEGMENT_OVERLAPS(seg1, seg2) \
5283 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5284 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5285 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5286 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5288 /* Initialise the segment mark field. */
5289 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5290 section
->segment_mark
= FALSE
;
5292 /* The Solaris linker creates program headers in which all the
5293 p_paddr fields are zero. When we try to objcopy or strip such a
5294 file, we get confused. Check for this case, and if we find it
5295 don't set the p_paddr_valid fields. */
5296 p_paddr_valid
= FALSE
;
5297 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5300 if (segment
->p_paddr
!= 0)
5302 p_paddr_valid
= TRUE
;
5306 /* Scan through the segments specified in the program header
5307 of the input BFD. For this first scan we look for overlaps
5308 in the loadable segments. These can be created by weird
5309 parameters to objcopy. Also, fix some solaris weirdness. */
5310 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5315 Elf_Internal_Phdr
*segment2
;
5317 if (segment
->p_type
== PT_INTERP
)
5318 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5319 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5321 /* Mininal change so that the normal section to segment
5322 assignment code will work. */
5323 segment
->p_vaddr
= section
->vma
;
5327 if (segment
->p_type
!= PT_LOAD
)
5329 /* Remove PT_GNU_RELRO segment. */
5330 if (segment
->p_type
== PT_GNU_RELRO
)
5331 segment
->p_type
= PT_NULL
;
5335 /* Determine if this segment overlaps any previous segments. */
5336 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5338 bfd_signed_vma extra_length
;
5340 if (segment2
->p_type
!= PT_LOAD
5341 || !SEGMENT_OVERLAPS (segment
, segment2
))
5344 /* Merge the two segments together. */
5345 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5347 /* Extend SEGMENT2 to include SEGMENT and then delete
5349 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5350 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5352 if (extra_length
> 0)
5354 segment2
->p_memsz
+= extra_length
;
5355 segment2
->p_filesz
+= extra_length
;
5358 segment
->p_type
= PT_NULL
;
5360 /* Since we have deleted P we must restart the outer loop. */
5362 segment
= elf_tdata (ibfd
)->phdr
;
5367 /* Extend SEGMENT to include SEGMENT2 and then delete
5369 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5370 - SEGMENT_END (segment
, segment
->p_vaddr
));
5372 if (extra_length
> 0)
5374 segment
->p_memsz
+= extra_length
;
5375 segment
->p_filesz
+= extra_length
;
5378 segment2
->p_type
= PT_NULL
;
5383 /* The second scan attempts to assign sections to segments. */
5384 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5388 unsigned int section_count
;
5389 asection
**sections
;
5390 asection
*output_section
;
5392 bfd_vma matching_lma
;
5393 bfd_vma suggested_lma
;
5396 asection
*first_section
;
5397 bfd_boolean first_matching_lma
;
5398 bfd_boolean first_suggested_lma
;
5400 if (segment
->p_type
== PT_NULL
)
5403 first_section
= NULL
;
5404 /* Compute how many sections might be placed into this segment. */
5405 for (section
= ibfd
->sections
, section_count
= 0;
5407 section
= section
->next
)
5409 /* Find the first section in the input segment, which may be
5410 removed from the corresponding output segment. */
5411 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5413 if (first_section
== NULL
)
5414 first_section
= section
;
5415 if (section
->output_section
!= NULL
)
5420 /* Allocate a segment map big enough to contain
5421 all of the sections we have selected. */
5422 amt
= sizeof (struct elf_segment_map
);
5423 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5424 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5428 /* Initialise the fields of the segment map. Default to
5429 using the physical address of the segment in the input BFD. */
5431 map
->p_type
= segment
->p_type
;
5432 map
->p_flags
= segment
->p_flags
;
5433 map
->p_flags_valid
= 1;
5435 /* If the first section in the input segment is removed, there is
5436 no need to preserve segment physical address in the corresponding
5438 if (!first_section
|| first_section
->output_section
!= NULL
)
5440 map
->p_paddr
= segment
->p_paddr
;
5441 map
->p_paddr_valid
= p_paddr_valid
;
5444 /* Determine if this segment contains the ELF file header
5445 and if it contains the program headers themselves. */
5446 map
->includes_filehdr
= (segment
->p_offset
== 0
5447 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5448 map
->includes_phdrs
= 0;
5450 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5452 map
->includes_phdrs
=
5453 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5454 && (segment
->p_offset
+ segment
->p_filesz
5455 >= ((bfd_vma
) iehdr
->e_phoff
5456 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5458 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5459 phdr_included
= TRUE
;
5462 if (section_count
== 0)
5464 /* Special segments, such as the PT_PHDR segment, may contain
5465 no sections, but ordinary, loadable segments should contain
5466 something. They are allowed by the ELF spec however, so only
5467 a warning is produced. */
5468 if (segment
->p_type
== PT_LOAD
)
5469 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5470 " detected, is this intentional ?\n"),
5474 *pointer_to_map
= map
;
5475 pointer_to_map
= &map
->next
;
5480 /* Now scan the sections in the input BFD again and attempt
5481 to add their corresponding output sections to the segment map.
5482 The problem here is how to handle an output section which has
5483 been moved (ie had its LMA changed). There are four possibilities:
5485 1. None of the sections have been moved.
5486 In this case we can continue to use the segment LMA from the
5489 2. All of the sections have been moved by the same amount.
5490 In this case we can change the segment's LMA to match the LMA
5491 of the first section.
5493 3. Some of the sections have been moved, others have not.
5494 In this case those sections which have not been moved can be
5495 placed in the current segment which will have to have its size,
5496 and possibly its LMA changed, and a new segment or segments will
5497 have to be created to contain the other sections.
5499 4. The sections have been moved, but not by the same amount.
5500 In this case we can change the segment's LMA to match the LMA
5501 of the first section and we will have to create a new segment
5502 or segments to contain the other sections.
5504 In order to save time, we allocate an array to hold the section
5505 pointers that we are interested in. As these sections get assigned
5506 to a segment, they are removed from this array. */
5508 sections
= (asection
**) bfd_malloc2 (section_count
, sizeof (asection
*));
5509 if (sections
== NULL
)
5512 /* Step One: Scan for segment vs section LMA conflicts.
5513 Also add the sections to the section array allocated above.
5514 Also add the sections to the current segment. In the common
5515 case, where the sections have not been moved, this means that
5516 we have completely filled the segment, and there is nothing
5521 first_matching_lma
= TRUE
;
5522 first_suggested_lma
= TRUE
;
5524 for (section
= ibfd
->sections
;
5526 section
= section
->next
)
5527 if (section
== first_section
)
5530 for (j
= 0; section
!= NULL
; section
= section
->next
)
5532 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5534 output_section
= section
->output_section
;
5536 sections
[j
++] = section
;
5538 /* The Solaris native linker always sets p_paddr to 0.
5539 We try to catch that case here, and set it to the
5540 correct value. Note - some backends require that
5541 p_paddr be left as zero. */
5543 && segment
->p_vaddr
!= 0
5544 && !bed
->want_p_paddr_set_to_zero
5546 && output_section
->lma
!= 0
5547 && output_section
->vma
== (segment
->p_vaddr
5548 + (map
->includes_filehdr
5551 + (map
->includes_phdrs
5553 * iehdr
->e_phentsize
)
5555 map
->p_paddr
= segment
->p_vaddr
;
5557 /* Match up the physical address of the segment with the
5558 LMA address of the output section. */
5559 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5560 || IS_COREFILE_NOTE (segment
, section
)
5561 || (bed
->want_p_paddr_set_to_zero
5562 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5564 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5566 matching_lma
= output_section
->lma
;
5567 first_matching_lma
= FALSE
;
5570 /* We assume that if the section fits within the segment
5571 then it does not overlap any other section within that
5573 map
->sections
[isec
++] = output_section
;
5575 else if (first_suggested_lma
)
5577 suggested_lma
= output_section
->lma
;
5578 first_suggested_lma
= FALSE
;
5581 if (j
== section_count
)
5586 BFD_ASSERT (j
== section_count
);
5588 /* Step Two: Adjust the physical address of the current segment,
5590 if (isec
== section_count
)
5592 /* All of the sections fitted within the segment as currently
5593 specified. This is the default case. Add the segment to
5594 the list of built segments and carry on to process the next
5595 program header in the input BFD. */
5596 map
->count
= section_count
;
5597 *pointer_to_map
= map
;
5598 pointer_to_map
= &map
->next
;
5601 && !bed
->want_p_paddr_set_to_zero
5602 && matching_lma
!= map
->p_paddr
5603 && !map
->includes_filehdr
5604 && !map
->includes_phdrs
)
5605 /* There is some padding before the first section in the
5606 segment. So, we must account for that in the output
5608 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5615 if (!first_matching_lma
)
5617 /* At least one section fits inside the current segment.
5618 Keep it, but modify its physical address to match the
5619 LMA of the first section that fitted. */
5620 map
->p_paddr
= matching_lma
;
5624 /* None of the sections fitted inside the current segment.
5625 Change the current segment's physical address to match
5626 the LMA of the first section. */
5627 map
->p_paddr
= suggested_lma
;
5630 /* Offset the segment physical address from the lma
5631 to allow for space taken up by elf headers. */
5632 if (map
->includes_filehdr
)
5634 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5635 map
->p_paddr
-= iehdr
->e_ehsize
;
5638 map
->includes_filehdr
= FALSE
;
5639 map
->includes_phdrs
= FALSE
;
5643 if (map
->includes_phdrs
)
5645 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5647 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5649 /* iehdr->e_phnum is just an estimate of the number
5650 of program headers that we will need. Make a note
5651 here of the number we used and the segment we chose
5652 to hold these headers, so that we can adjust the
5653 offset when we know the correct value. */
5654 phdr_adjust_num
= iehdr
->e_phnum
;
5655 phdr_adjust_seg
= map
;
5658 map
->includes_phdrs
= FALSE
;
5662 /* Step Three: Loop over the sections again, this time assigning
5663 those that fit to the current segment and removing them from the
5664 sections array; but making sure not to leave large gaps. Once all
5665 possible sections have been assigned to the current segment it is
5666 added to the list of built segments and if sections still remain
5667 to be assigned, a new segment is constructed before repeating
5674 first_suggested_lma
= TRUE
;
5676 /* Fill the current segment with sections that fit. */
5677 for (j
= 0; j
< section_count
; j
++)
5679 section
= sections
[j
];
5681 if (section
== NULL
)
5684 output_section
= section
->output_section
;
5686 BFD_ASSERT (output_section
!= NULL
);
5688 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5689 || IS_COREFILE_NOTE (segment
, section
))
5691 if (map
->count
== 0)
5693 /* If the first section in a segment does not start at
5694 the beginning of the segment, then something is
5696 if (output_section
->lma
5698 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5699 + (map
->includes_phdrs
5700 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5708 prev_sec
= map
->sections
[map
->count
- 1];
5710 /* If the gap between the end of the previous section
5711 and the start of this section is more than
5712 maxpagesize then we need to start a new segment. */
5713 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5715 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5716 || (prev_sec
->lma
+ prev_sec
->size
5717 > output_section
->lma
))
5719 if (first_suggested_lma
)
5721 suggested_lma
= output_section
->lma
;
5722 first_suggested_lma
= FALSE
;
5729 map
->sections
[map
->count
++] = output_section
;
5732 section
->segment_mark
= TRUE
;
5734 else if (first_suggested_lma
)
5736 suggested_lma
= output_section
->lma
;
5737 first_suggested_lma
= FALSE
;
5741 BFD_ASSERT (map
->count
> 0);
5743 /* Add the current segment to the list of built segments. */
5744 *pointer_to_map
= map
;
5745 pointer_to_map
= &map
->next
;
5747 if (isec
< section_count
)
5749 /* We still have not allocated all of the sections to
5750 segments. Create a new segment here, initialise it
5751 and carry on looping. */
5752 amt
= sizeof (struct elf_segment_map
);
5753 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5754 map
= (struct elf_segment_map
*) bfd_alloc (obfd
, amt
);
5761 /* Initialise the fields of the segment map. Set the physical
5762 physical address to the LMA of the first section that has
5763 not yet been assigned. */
5765 map
->p_type
= segment
->p_type
;
5766 map
->p_flags
= segment
->p_flags
;
5767 map
->p_flags_valid
= 1;
5768 map
->p_paddr
= suggested_lma
;
5769 map
->p_paddr_valid
= p_paddr_valid
;
5770 map
->includes_filehdr
= 0;
5771 map
->includes_phdrs
= 0;
5774 while (isec
< section_count
);
5779 elf_tdata (obfd
)->segment_map
= map_first
;
5781 /* If we had to estimate the number of program headers that were
5782 going to be needed, then check our estimate now and adjust
5783 the offset if necessary. */
5784 if (phdr_adjust_seg
!= NULL
)
5788 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5791 if (count
> phdr_adjust_num
)
5792 phdr_adjust_seg
->p_paddr
5793 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5798 #undef IS_CONTAINED_BY_VMA
5799 #undef IS_CONTAINED_BY_LMA
5801 #undef IS_COREFILE_NOTE
5802 #undef IS_SOLARIS_PT_INTERP
5803 #undef IS_SECTION_IN_INPUT_SEGMENT
5804 #undef INCLUDE_SECTION_IN_SEGMENT
5805 #undef SEGMENT_AFTER_SEGMENT
5806 #undef SEGMENT_OVERLAPS
5810 /* Copy ELF program header information. */
5813 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5815 Elf_Internal_Ehdr
*iehdr
;
5816 struct elf_segment_map
*map
;
5817 struct elf_segment_map
*map_first
;
5818 struct elf_segment_map
**pointer_to_map
;
5819 Elf_Internal_Phdr
*segment
;
5821 unsigned int num_segments
;
5822 bfd_boolean phdr_included
= FALSE
;
5823 bfd_boolean p_paddr_valid
;
5825 iehdr
= elf_elfheader (ibfd
);
5828 pointer_to_map
= &map_first
;
5830 /* If all the segment p_paddr fields are zero, don't set
5831 map->p_paddr_valid. */
5832 p_paddr_valid
= FALSE
;
5833 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5834 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5837 if (segment
->p_paddr
!= 0)
5839 p_paddr_valid
= TRUE
;
5843 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5848 unsigned int section_count
;
5850 Elf_Internal_Shdr
*this_hdr
;
5851 asection
*first_section
= NULL
;
5852 asection
*lowest_section
= NULL
;
5854 /* Compute how many sections are in this segment. */
5855 for (section
= ibfd
->sections
, section_count
= 0;
5857 section
= section
->next
)
5859 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5860 if (this_hdr
->sh_size
!= 0
5861 && ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
5864 first_section
= lowest_section
= section
;
5865 if (section
->lma
< lowest_section
->lma
)
5866 lowest_section
= section
;
5871 /* Allocate a segment map big enough to contain
5872 all of the sections we have selected. */
5873 amt
= sizeof (struct elf_segment_map
);
5874 if (section_count
!= 0)
5875 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5876 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5880 /* Initialize the fields of the output segment map with the
5883 map
->p_type
= segment
->p_type
;
5884 map
->p_flags
= segment
->p_flags
;
5885 map
->p_flags_valid
= 1;
5886 map
->p_paddr
= segment
->p_paddr
;
5887 map
->p_paddr_valid
= p_paddr_valid
;
5888 map
->p_align
= segment
->p_align
;
5889 map
->p_align_valid
= 1;
5890 map
->p_vaddr_offset
= 0;
5892 if (map
->p_type
== PT_GNU_RELRO
)
5894 /* The PT_GNU_RELRO segment may contain the first a few
5895 bytes in the .got.plt section even if the whole .got.plt
5896 section isn't in the PT_GNU_RELRO segment. We won't
5897 change the size of the PT_GNU_RELRO segment. */
5898 map
->p_size
= segment
->p_memsz
;
5899 map
->p_size_valid
= 1;
5902 /* Determine if this segment contains the ELF file header
5903 and if it contains the program headers themselves. */
5904 map
->includes_filehdr
= (segment
->p_offset
== 0
5905 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5907 map
->includes_phdrs
= 0;
5908 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5910 map
->includes_phdrs
=
5911 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5912 && (segment
->p_offset
+ segment
->p_filesz
5913 >= ((bfd_vma
) iehdr
->e_phoff
5914 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5916 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5917 phdr_included
= TRUE
;
5920 if (map
->includes_filehdr
&& first_section
)
5921 /* We need to keep the space used by the headers fixed. */
5922 map
->header_size
= first_section
->vma
- segment
->p_vaddr
;
5924 if (!map
->includes_phdrs
5925 && !map
->includes_filehdr
5926 && map
->p_paddr_valid
)
5927 /* There is some other padding before the first section. */
5928 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5929 - segment
->p_paddr
);
5931 if (section_count
!= 0)
5933 unsigned int isec
= 0;
5935 for (section
= first_section
;
5937 section
= section
->next
)
5939 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5940 if (this_hdr
->sh_size
!= 0
5941 && ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
5943 map
->sections
[isec
++] = section
->output_section
;
5944 if (isec
== section_count
)
5950 map
->count
= section_count
;
5951 *pointer_to_map
= map
;
5952 pointer_to_map
= &map
->next
;
5955 elf_tdata (obfd
)->segment_map
= map_first
;
5959 /* Copy private BFD data. This copies or rewrites ELF program header
5963 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5965 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5966 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5969 if (elf_tdata (ibfd
)->phdr
== NULL
)
5972 if (ibfd
->xvec
== obfd
->xvec
)
5974 /* Check to see if any sections in the input BFD
5975 covered by ELF program header have changed. */
5976 Elf_Internal_Phdr
*segment
;
5977 asection
*section
, *osec
;
5978 unsigned int i
, num_segments
;
5979 Elf_Internal_Shdr
*this_hdr
;
5980 const struct elf_backend_data
*bed
;
5982 bed
= get_elf_backend_data (ibfd
);
5984 /* Regenerate the segment map if p_paddr is set to 0. */
5985 if (bed
->want_p_paddr_set_to_zero
)
5988 /* Initialize the segment mark field. */
5989 for (section
= obfd
->sections
; section
!= NULL
;
5990 section
= section
->next
)
5991 section
->segment_mark
= FALSE
;
5993 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5994 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5998 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5999 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6000 which severly confuses things, so always regenerate the segment
6001 map in this case. */
6002 if (segment
->p_paddr
== 0
6003 && segment
->p_memsz
== 0
6004 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
6007 for (section
= ibfd
->sections
;
6008 section
!= NULL
; section
= section
->next
)
6010 /* We mark the output section so that we know it comes
6011 from the input BFD. */
6012 osec
= section
->output_section
;
6014 osec
->segment_mark
= TRUE
;
6016 /* Check if this section is covered by the segment. */
6017 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6018 if (this_hdr
->sh_size
!= 0
6019 && ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6021 /* FIXME: Check if its output section is changed or
6022 removed. What else do we need to check? */
6024 || section
->flags
!= osec
->flags
6025 || section
->lma
!= osec
->lma
6026 || section
->vma
!= osec
->vma
6027 || section
->size
!= osec
->size
6028 || section
->rawsize
!= osec
->rawsize
6029 || section
->alignment_power
!= osec
->alignment_power
)
6035 /* Check to see if any output section do not come from the
6037 for (section
= obfd
->sections
; section
!= NULL
;
6038 section
= section
->next
)
6040 if (section
->segment_mark
== FALSE
)
6043 section
->segment_mark
= FALSE
;
6046 return copy_elf_program_header (ibfd
, obfd
);
6050 return rewrite_elf_program_header (ibfd
, obfd
);
6053 /* Initialize private output section information from input section. */
6056 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6060 struct bfd_link_info
*link_info
)
6063 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6064 bfd_boolean final_link
= link_info
!= NULL
&& !link_info
->relocatable
;
6066 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6067 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6070 /* For objcopy and relocatable link, don't copy the output ELF
6071 section type from input if the output BFD section flags have been
6072 set to something different. For a final link allow some flags
6073 that the linker clears to differ. */
6074 if (elf_section_type (osec
) == SHT_NULL
6075 && (osec
->flags
== isec
->flags
6077 && ((osec
->flags
^ isec
->flags
)
6078 & ~ (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
)) == 0)))
6079 elf_section_type (osec
) = elf_section_type (isec
);
6081 /* FIXME: Is this correct for all OS/PROC specific flags? */
6082 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6083 & (SHF_MASKOS
| SHF_MASKPROC
));
6085 /* Set things up for objcopy and relocatable link. The output
6086 SHT_GROUP section will have its elf_next_in_group pointing back
6087 to the input group members. Ignore linker created group section.
6088 See elfNN_ia64_object_p in elfxx-ia64.c. */
6091 if (elf_sec_group (isec
) == NULL
6092 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6094 if (elf_section_flags (isec
) & SHF_GROUP
)
6095 elf_section_flags (osec
) |= SHF_GROUP
;
6096 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6097 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6101 ihdr
= &elf_section_data (isec
)->this_hdr
;
6103 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6104 don't use the output section of the linked-to section since it
6105 may be NULL at this point. */
6106 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6108 ohdr
= &elf_section_data (osec
)->this_hdr
;
6109 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6110 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6113 osec
->use_rela_p
= isec
->use_rela_p
;
6118 /* Copy private section information. This copies over the entsize
6119 field, and sometimes the info field. */
6122 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6127 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6129 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6130 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6133 ihdr
= &elf_section_data (isec
)->this_hdr
;
6134 ohdr
= &elf_section_data (osec
)->this_hdr
;
6136 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6138 if (ihdr
->sh_type
== SHT_SYMTAB
6139 || ihdr
->sh_type
== SHT_DYNSYM
6140 || ihdr
->sh_type
== SHT_GNU_verneed
6141 || ihdr
->sh_type
== SHT_GNU_verdef
)
6142 ohdr
->sh_info
= ihdr
->sh_info
;
6144 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6148 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6149 necessary if we are removing either the SHT_GROUP section or any of
6150 the group member sections. DISCARDED is the value that a section's
6151 output_section has if the section will be discarded, NULL when this
6152 function is called from objcopy, bfd_abs_section_ptr when called
6156 _bfd_elf_fixup_group_sections (bfd
*ibfd
, asection
*discarded
)
6160 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6161 if (elf_section_type (isec
) == SHT_GROUP
)
6163 asection
*first
= elf_next_in_group (isec
);
6164 asection
*s
= first
;
6165 bfd_size_type removed
= 0;
6169 /* If this member section is being output but the
6170 SHT_GROUP section is not, then clear the group info
6171 set up by _bfd_elf_copy_private_section_data. */
6172 if (s
->output_section
!= discarded
6173 && isec
->output_section
== discarded
)
6175 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6176 elf_group_name (s
->output_section
) = NULL
;
6178 /* Conversely, if the member section is not being output
6179 but the SHT_GROUP section is, then adjust its size. */
6180 else if (s
->output_section
== discarded
6181 && isec
->output_section
!= discarded
)
6183 s
= elf_next_in_group (s
);
6189 if (discarded
!= NULL
)
6191 /* If we've been called for ld -r, then we need to
6192 adjust the input section size. This function may
6193 be called multiple times, so save the original
6195 if (isec
->rawsize
== 0)
6196 isec
->rawsize
= isec
->size
;
6197 isec
->size
= isec
->rawsize
- removed
;
6201 /* Adjust the output section size when called from
6203 isec
->output_section
->size
-= removed
;
6211 /* Copy private header information. */
6214 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6216 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6217 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6220 /* Copy over private BFD data if it has not already been copied.
6221 This must be done here, rather than in the copy_private_bfd_data
6222 entry point, because the latter is called after the section
6223 contents have been set, which means that the program headers have
6224 already been worked out. */
6225 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6227 if (! copy_private_bfd_data (ibfd
, obfd
))
6231 return _bfd_elf_fixup_group_sections (ibfd
, NULL
);
6234 /* Copy private symbol information. If this symbol is in a section
6235 which we did not map into a BFD section, try to map the section
6236 index correctly. We use special macro definitions for the mapped
6237 section indices; these definitions are interpreted by the
6238 swap_out_syms function. */
6240 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6241 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6242 #define MAP_STRTAB (SHN_HIOS + 3)
6243 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6244 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6247 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6252 elf_symbol_type
*isym
, *osym
;
6254 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6255 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6258 isym
= elf_symbol_from (ibfd
, isymarg
);
6259 osym
= elf_symbol_from (obfd
, osymarg
);
6262 && isym
->internal_elf_sym
.st_shndx
!= 0
6264 && bfd_is_abs_section (isym
->symbol
.section
))
6268 shndx
= isym
->internal_elf_sym
.st_shndx
;
6269 if (shndx
== elf_onesymtab (ibfd
))
6270 shndx
= MAP_ONESYMTAB
;
6271 else if (shndx
== elf_dynsymtab (ibfd
))
6272 shndx
= MAP_DYNSYMTAB
;
6273 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6275 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6276 shndx
= MAP_SHSTRTAB
;
6277 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6278 shndx
= MAP_SYM_SHNDX
;
6279 osym
->internal_elf_sym
.st_shndx
= shndx
;
6285 /* Swap out the symbols. */
6288 swap_out_syms (bfd
*abfd
,
6289 struct bfd_strtab_hash
**sttp
,
6292 const struct elf_backend_data
*bed
;
6295 struct bfd_strtab_hash
*stt
;
6296 Elf_Internal_Shdr
*symtab_hdr
;
6297 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6298 Elf_Internal_Shdr
*symstrtab_hdr
;
6299 bfd_byte
*outbound_syms
;
6300 bfd_byte
*outbound_shndx
;
6303 bfd_boolean name_local_sections
;
6305 if (!elf_map_symbols (abfd
))
6308 /* Dump out the symtabs. */
6309 stt
= _bfd_elf_stringtab_init ();
6313 bed
= get_elf_backend_data (abfd
);
6314 symcount
= bfd_get_symcount (abfd
);
6315 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6316 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6317 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6318 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6319 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6320 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6322 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6323 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6325 outbound_syms
= (bfd_byte
*) bfd_alloc2 (abfd
, 1 + symcount
,
6326 bed
->s
->sizeof_sym
);
6327 if (outbound_syms
== NULL
)
6329 _bfd_stringtab_free (stt
);
6332 symtab_hdr
->contents
= outbound_syms
;
6334 outbound_shndx
= NULL
;
6335 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6336 if (symtab_shndx_hdr
->sh_name
!= 0)
6338 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6339 outbound_shndx
= (bfd_byte
*)
6340 bfd_zalloc2 (abfd
, 1 + symcount
, sizeof (Elf_External_Sym_Shndx
));
6341 if (outbound_shndx
== NULL
)
6343 _bfd_stringtab_free (stt
);
6347 symtab_shndx_hdr
->contents
= outbound_shndx
;
6348 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6349 symtab_shndx_hdr
->sh_size
= amt
;
6350 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6351 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6354 /* Now generate the data (for "contents"). */
6356 /* Fill in zeroth symbol and swap it out. */
6357 Elf_Internal_Sym sym
;
6363 sym
.st_shndx
= SHN_UNDEF
;
6364 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6365 outbound_syms
+= bed
->s
->sizeof_sym
;
6366 if (outbound_shndx
!= NULL
)
6367 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6371 = (bed
->elf_backend_name_local_section_symbols
6372 && bed
->elf_backend_name_local_section_symbols (abfd
));
6374 syms
= bfd_get_outsymbols (abfd
);
6375 for (idx
= 0; idx
< symcount
; idx
++)
6377 Elf_Internal_Sym sym
;
6378 bfd_vma value
= syms
[idx
]->value
;
6379 elf_symbol_type
*type_ptr
;
6380 flagword flags
= syms
[idx
]->flags
;
6383 if (!name_local_sections
6384 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6386 /* Local section symbols have no name. */
6391 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6394 if (sym
.st_name
== (unsigned long) -1)
6396 _bfd_stringtab_free (stt
);
6401 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6403 if ((flags
& BSF_SECTION_SYM
) == 0
6404 && bfd_is_com_section (syms
[idx
]->section
))
6406 /* ELF common symbols put the alignment into the `value' field,
6407 and the size into the `size' field. This is backwards from
6408 how BFD handles it, so reverse it here. */
6409 sym
.st_size
= value
;
6410 if (type_ptr
== NULL
6411 || type_ptr
->internal_elf_sym
.st_value
== 0)
6412 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6414 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6415 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6416 (abfd
, syms
[idx
]->section
);
6420 asection
*sec
= syms
[idx
]->section
;
6423 if (sec
->output_section
)
6425 value
+= sec
->output_offset
;
6426 sec
= sec
->output_section
;
6429 /* Don't add in the section vma for relocatable output. */
6430 if (! relocatable_p
)
6432 sym
.st_value
= value
;
6433 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6435 if (bfd_is_abs_section (sec
)
6437 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6439 /* This symbol is in a real ELF section which we did
6440 not create as a BFD section. Undo the mapping done
6441 by copy_private_symbol_data. */
6442 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6446 shndx
= elf_onesymtab (abfd
);
6449 shndx
= elf_dynsymtab (abfd
);
6452 shndx
= elf_tdata (abfd
)->strtab_section
;
6455 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6458 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6466 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6468 if (shndx
== SHN_BAD
)
6472 /* Writing this would be a hell of a lot easier if
6473 we had some decent documentation on bfd, and
6474 knew what to expect of the library, and what to
6475 demand of applications. For example, it
6476 appears that `objcopy' might not set the
6477 section of a symbol to be a section that is
6478 actually in the output file. */
6479 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6482 _bfd_error_handler (_("\
6483 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6484 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6486 bfd_set_error (bfd_error_invalid_operation
);
6487 _bfd_stringtab_free (stt
);
6491 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6492 BFD_ASSERT (shndx
!= SHN_BAD
);
6496 sym
.st_shndx
= shndx
;
6499 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6501 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6502 type
= STT_GNU_IFUNC
;
6503 else if ((flags
& BSF_FUNCTION
) != 0)
6505 else if ((flags
& BSF_OBJECT
) != 0)
6507 else if ((flags
& BSF_RELC
) != 0)
6509 else if ((flags
& BSF_SRELC
) != 0)
6514 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6517 /* Processor-specific types. */
6518 if (type_ptr
!= NULL
6519 && bed
->elf_backend_get_symbol_type
)
6520 type
= ((*bed
->elf_backend_get_symbol_type
)
6521 (&type_ptr
->internal_elf_sym
, type
));
6523 if (flags
& BSF_SECTION_SYM
)
6525 if (flags
& BSF_GLOBAL
)
6526 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6528 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6530 else if (bfd_is_com_section (syms
[idx
]->section
))
6532 #ifdef USE_STT_COMMON
6533 if (type
== STT_OBJECT
)
6534 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6537 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6539 else if (bfd_is_und_section (syms
[idx
]->section
))
6540 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6544 else if (flags
& BSF_FILE
)
6545 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6548 int bind
= STB_LOCAL
;
6550 if (flags
& BSF_LOCAL
)
6552 else if (flags
& BSF_GNU_UNIQUE
)
6553 bind
= STB_GNU_UNIQUE
;
6554 else if (flags
& BSF_WEAK
)
6556 else if (flags
& BSF_GLOBAL
)
6559 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6562 if (type_ptr
!= NULL
)
6563 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6567 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6568 outbound_syms
+= bed
->s
->sizeof_sym
;
6569 if (outbound_shndx
!= NULL
)
6570 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6574 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6575 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6577 symstrtab_hdr
->sh_flags
= 0;
6578 symstrtab_hdr
->sh_addr
= 0;
6579 symstrtab_hdr
->sh_entsize
= 0;
6580 symstrtab_hdr
->sh_link
= 0;
6581 symstrtab_hdr
->sh_info
= 0;
6582 symstrtab_hdr
->sh_addralign
= 1;
6587 /* Return the number of bytes required to hold the symtab vector.
6589 Note that we base it on the count plus 1, since we will null terminate
6590 the vector allocated based on this size. However, the ELF symbol table
6591 always has a dummy entry as symbol #0, so it ends up even. */
6594 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6598 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6600 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6601 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6603 symtab_size
-= sizeof (asymbol
*);
6609 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6613 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6615 if (elf_dynsymtab (abfd
) == 0)
6617 bfd_set_error (bfd_error_invalid_operation
);
6621 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6622 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6624 symtab_size
-= sizeof (asymbol
*);
6630 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6633 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6636 /* Canonicalize the relocs. */
6639 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6646 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6648 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6651 tblptr
= section
->relocation
;
6652 for (i
= 0; i
< section
->reloc_count
; i
++)
6653 *relptr
++ = tblptr
++;
6657 return section
->reloc_count
;
6661 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6663 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6664 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6667 bfd_get_symcount (abfd
) = symcount
;
6672 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6673 asymbol
**allocation
)
6675 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6676 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6679 bfd_get_dynamic_symcount (abfd
) = symcount
;
6683 /* Return the size required for the dynamic reloc entries. Any loadable
6684 section that was actually installed in the BFD, and has type SHT_REL
6685 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6686 dynamic reloc section. */
6689 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6694 if (elf_dynsymtab (abfd
) == 0)
6696 bfd_set_error (bfd_error_invalid_operation
);
6700 ret
= sizeof (arelent
*);
6701 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6702 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6703 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6704 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6705 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6706 * sizeof (arelent
*));
6711 /* Canonicalize the dynamic relocation entries. Note that we return the
6712 dynamic relocations as a single block, although they are actually
6713 associated with particular sections; the interface, which was
6714 designed for SunOS style shared libraries, expects that there is only
6715 one set of dynamic relocs. Any loadable section that was actually
6716 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6717 dynamic symbol table, is considered to be a dynamic reloc section. */
6720 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6724 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6728 if (elf_dynsymtab (abfd
) == 0)
6730 bfd_set_error (bfd_error_invalid_operation
);
6734 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6736 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6738 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6739 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6740 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6745 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6747 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6749 for (i
= 0; i
< count
; i
++)
6760 /* Read in the version information. */
6763 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6765 bfd_byte
*contents
= NULL
;
6766 unsigned int freeidx
= 0;
6768 if (elf_dynverref (abfd
) != 0)
6770 Elf_Internal_Shdr
*hdr
;
6771 Elf_External_Verneed
*everneed
;
6772 Elf_Internal_Verneed
*iverneed
;
6774 bfd_byte
*contents_end
;
6776 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6778 elf_tdata (abfd
)->verref
= (Elf_Internal_Verneed
*)
6779 bfd_zalloc2 (abfd
, hdr
->sh_info
, sizeof (Elf_Internal_Verneed
));
6780 if (elf_tdata (abfd
)->verref
== NULL
)
6783 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6785 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6786 if (contents
== NULL
)
6788 error_return_verref
:
6789 elf_tdata (abfd
)->verref
= NULL
;
6790 elf_tdata (abfd
)->cverrefs
= 0;
6793 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6794 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6795 goto error_return_verref
;
6797 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6798 goto error_return_verref
;
6800 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6801 == sizeof (Elf_External_Vernaux
));
6802 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6803 everneed
= (Elf_External_Verneed
*) contents
;
6804 iverneed
= elf_tdata (abfd
)->verref
;
6805 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6807 Elf_External_Vernaux
*evernaux
;
6808 Elf_Internal_Vernaux
*ivernaux
;
6811 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6813 iverneed
->vn_bfd
= abfd
;
6815 iverneed
->vn_filename
=
6816 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6818 if (iverneed
->vn_filename
== NULL
)
6819 goto error_return_verref
;
6821 if (iverneed
->vn_cnt
== 0)
6822 iverneed
->vn_auxptr
= NULL
;
6825 iverneed
->vn_auxptr
= (struct elf_internal_vernaux
*)
6826 bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6827 sizeof (Elf_Internal_Vernaux
));
6828 if (iverneed
->vn_auxptr
== NULL
)
6829 goto error_return_verref
;
6832 if (iverneed
->vn_aux
6833 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6834 goto error_return_verref
;
6836 evernaux
= ((Elf_External_Vernaux
*)
6837 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6838 ivernaux
= iverneed
->vn_auxptr
;
6839 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6841 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6843 ivernaux
->vna_nodename
=
6844 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6845 ivernaux
->vna_name
);
6846 if (ivernaux
->vna_nodename
== NULL
)
6847 goto error_return_verref
;
6849 if (j
+ 1 < iverneed
->vn_cnt
)
6850 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6852 ivernaux
->vna_nextptr
= NULL
;
6854 if (ivernaux
->vna_next
6855 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6856 goto error_return_verref
;
6858 evernaux
= ((Elf_External_Vernaux
*)
6859 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6861 if (ivernaux
->vna_other
> freeidx
)
6862 freeidx
= ivernaux
->vna_other
;
6865 if (i
+ 1 < hdr
->sh_info
)
6866 iverneed
->vn_nextref
= iverneed
+ 1;
6868 iverneed
->vn_nextref
= NULL
;
6870 if (iverneed
->vn_next
6871 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6872 goto error_return_verref
;
6874 everneed
= ((Elf_External_Verneed
*)
6875 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6882 if (elf_dynverdef (abfd
) != 0)
6884 Elf_Internal_Shdr
*hdr
;
6885 Elf_External_Verdef
*everdef
;
6886 Elf_Internal_Verdef
*iverdef
;
6887 Elf_Internal_Verdef
*iverdefarr
;
6888 Elf_Internal_Verdef iverdefmem
;
6890 unsigned int maxidx
;
6891 bfd_byte
*contents_end_def
, *contents_end_aux
;
6893 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6895 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6896 if (contents
== NULL
)
6898 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6899 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6902 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6905 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6906 >= sizeof (Elf_External_Verdaux
));
6907 contents_end_def
= contents
+ hdr
->sh_size
6908 - sizeof (Elf_External_Verdef
);
6909 contents_end_aux
= contents
+ hdr
->sh_size
6910 - sizeof (Elf_External_Verdaux
);
6912 /* We know the number of entries in the section but not the maximum
6913 index. Therefore we have to run through all entries and find
6915 everdef
= (Elf_External_Verdef
*) contents
;
6917 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6919 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6921 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6922 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6924 if (iverdefmem
.vd_next
6925 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6928 everdef
= ((Elf_External_Verdef
*)
6929 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6932 if (default_imported_symver
)
6934 if (freeidx
> maxidx
)
6939 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
6940 bfd_zalloc2 (abfd
, maxidx
, sizeof (Elf_Internal_Verdef
));
6941 if (elf_tdata (abfd
)->verdef
== NULL
)
6944 elf_tdata (abfd
)->cverdefs
= maxidx
;
6946 everdef
= (Elf_External_Verdef
*) contents
;
6947 iverdefarr
= elf_tdata (abfd
)->verdef
;
6948 for (i
= 0; i
< hdr
->sh_info
; i
++)
6950 Elf_External_Verdaux
*everdaux
;
6951 Elf_Internal_Verdaux
*iverdaux
;
6954 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6956 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6958 error_return_verdef
:
6959 elf_tdata (abfd
)->verdef
= NULL
;
6960 elf_tdata (abfd
)->cverdefs
= 0;
6964 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6965 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6967 iverdef
->vd_bfd
= abfd
;
6969 if (iverdef
->vd_cnt
== 0)
6970 iverdef
->vd_auxptr
= NULL
;
6973 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
6974 bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6975 sizeof (Elf_Internal_Verdaux
));
6976 if (iverdef
->vd_auxptr
== NULL
)
6977 goto error_return_verdef
;
6981 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6982 goto error_return_verdef
;
6984 everdaux
= ((Elf_External_Verdaux
*)
6985 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6986 iverdaux
= iverdef
->vd_auxptr
;
6987 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6989 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6991 iverdaux
->vda_nodename
=
6992 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6993 iverdaux
->vda_name
);
6994 if (iverdaux
->vda_nodename
== NULL
)
6995 goto error_return_verdef
;
6997 if (j
+ 1 < iverdef
->vd_cnt
)
6998 iverdaux
->vda_nextptr
= iverdaux
+ 1;
7000 iverdaux
->vda_nextptr
= NULL
;
7002 if (iverdaux
->vda_next
7003 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
7004 goto error_return_verdef
;
7006 everdaux
= ((Elf_External_Verdaux
*)
7007 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
7010 if (iverdef
->vd_cnt
)
7011 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
7013 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
7014 iverdef
->vd_nextdef
= iverdef
+ 1;
7016 iverdef
->vd_nextdef
= NULL
;
7018 everdef
= ((Elf_External_Verdef
*)
7019 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
7025 else if (default_imported_symver
)
7032 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7033 bfd_zalloc2 (abfd
, freeidx
, sizeof (Elf_Internal_Verdef
));
7034 if (elf_tdata (abfd
)->verdef
== NULL
)
7037 elf_tdata (abfd
)->cverdefs
= freeidx
;
7040 /* Create a default version based on the soname. */
7041 if (default_imported_symver
)
7043 Elf_Internal_Verdef
*iverdef
;
7044 Elf_Internal_Verdaux
*iverdaux
;
7046 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
7048 iverdef
->vd_version
= VER_DEF_CURRENT
;
7049 iverdef
->vd_flags
= 0;
7050 iverdef
->vd_ndx
= freeidx
;
7051 iverdef
->vd_cnt
= 1;
7053 iverdef
->vd_bfd
= abfd
;
7055 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
7056 if (iverdef
->vd_nodename
== NULL
)
7057 goto error_return_verdef
;
7058 iverdef
->vd_nextdef
= NULL
;
7059 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7060 bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
7061 if (iverdef
->vd_auxptr
== NULL
)
7062 goto error_return_verdef
;
7064 iverdaux
= iverdef
->vd_auxptr
;
7065 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
7066 iverdaux
->vda_nextptr
= NULL
;
7072 if (contents
!= NULL
)
7078 _bfd_elf_make_empty_symbol (bfd
*abfd
)
7080 elf_symbol_type
*newsym
;
7081 bfd_size_type amt
= sizeof (elf_symbol_type
);
7083 newsym
= (elf_symbol_type
*) bfd_zalloc (abfd
, amt
);
7088 newsym
->symbol
.the_bfd
= abfd
;
7089 return &newsym
->symbol
;
7094 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7098 bfd_symbol_info (symbol
, ret
);
7101 /* Return whether a symbol name implies a local symbol. Most targets
7102 use this function for the is_local_label_name entry point, but some
7106 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7109 /* Normal local symbols start with ``.L''. */
7110 if (name
[0] == '.' && name
[1] == 'L')
7113 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7114 DWARF debugging symbols starting with ``..''. */
7115 if (name
[0] == '.' && name
[1] == '.')
7118 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7119 emitting DWARF debugging output. I suspect this is actually a
7120 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7121 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7122 underscore to be emitted on some ELF targets). For ease of use,
7123 we treat such symbols as local. */
7124 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7131 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7132 asymbol
*symbol ATTRIBUTE_UNUSED
)
7139 _bfd_elf_set_arch_mach (bfd
*abfd
,
7140 enum bfd_architecture arch
,
7141 unsigned long machine
)
7143 /* If this isn't the right architecture for this backend, and this
7144 isn't the generic backend, fail. */
7145 if (arch
!= get_elf_backend_data (abfd
)->arch
7146 && arch
!= bfd_arch_unknown
7147 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7150 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7153 /* Find the function to a particular section and offset,
7154 for error reporting. */
7157 elf_find_function (bfd
*abfd
,
7161 const char **filename_ptr
,
7162 const char **functionname_ptr
)
7164 const char *filename
;
7165 asymbol
*func
, *file
;
7168 /* ??? Given multiple file symbols, it is impossible to reliably
7169 choose the right file name for global symbols. File symbols are
7170 local symbols, and thus all file symbols must sort before any
7171 global symbols. The ELF spec may be interpreted to say that a
7172 file symbol must sort before other local symbols, but currently
7173 ld -r doesn't do this. So, for ld -r output, it is possible to
7174 make a better choice of file name for local symbols by ignoring
7175 file symbols appearing after a given local symbol. */
7176 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7177 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7183 state
= nothing_seen
;
7185 for (p
= symbols
; *p
!= NULL
; p
++)
7190 q
= (elf_symbol_type
*) *p
;
7192 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7197 if (state
== symbol_seen
)
7198 state
= file_after_symbol_seen
;
7201 if (!bed
->is_function_type (type
))
7204 if (bfd_get_section (&q
->symbol
) == section
7205 && q
->symbol
.value
>= low_func
7206 && q
->symbol
.value
<= offset
)
7208 func
= (asymbol
*) q
;
7209 low_func
= q
->symbol
.value
;
7212 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7213 || state
!= file_after_symbol_seen
))
7214 filename
= bfd_asymbol_name (file
);
7218 if (state
== nothing_seen
)
7219 state
= symbol_seen
;
7226 *filename_ptr
= filename
;
7227 if (functionname_ptr
)
7228 *functionname_ptr
= bfd_asymbol_name (func
);
7233 /* Find the nearest line to a particular section and offset,
7234 for error reporting. */
7237 _bfd_elf_find_nearest_line (bfd
*abfd
,
7241 const char **filename_ptr
,
7242 const char **functionname_ptr
,
7243 unsigned int *line_ptr
)
7247 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7248 filename_ptr
, functionname_ptr
,
7251 if (!*functionname_ptr
)
7252 elf_find_function (abfd
, section
, symbols
, offset
,
7253 *filename_ptr
? NULL
: filename_ptr
,
7259 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7260 filename_ptr
, functionname_ptr
,
7262 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7264 if (!*functionname_ptr
)
7265 elf_find_function (abfd
, section
, symbols
, offset
,
7266 *filename_ptr
? NULL
: filename_ptr
,
7272 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7273 &found
, filename_ptr
,
7274 functionname_ptr
, line_ptr
,
7275 &elf_tdata (abfd
)->line_info
))
7277 if (found
&& (*functionname_ptr
|| *line_ptr
))
7280 if (symbols
== NULL
)
7283 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7284 filename_ptr
, functionname_ptr
))
7291 /* Find the line for a symbol. */
7294 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7295 const char **filename_ptr
, unsigned int *line_ptr
)
7297 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7298 filename_ptr
, line_ptr
, 0,
7299 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7302 /* After a call to bfd_find_nearest_line, successive calls to
7303 bfd_find_inliner_info can be used to get source information about
7304 each level of function inlining that terminated at the address
7305 passed to bfd_find_nearest_line. Currently this is only supported
7306 for DWARF2 with appropriate DWARF3 extensions. */
7309 _bfd_elf_find_inliner_info (bfd
*abfd
,
7310 const char **filename_ptr
,
7311 const char **functionname_ptr
,
7312 unsigned int *line_ptr
)
7315 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7316 functionname_ptr
, line_ptr
,
7317 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7322 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7324 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7325 int ret
= bed
->s
->sizeof_ehdr
;
7327 if (!info
->relocatable
)
7329 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7331 if (phdr_size
== (bfd_size_type
) -1)
7333 struct elf_segment_map
*m
;
7336 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7337 phdr_size
+= bed
->s
->sizeof_phdr
;
7340 phdr_size
= get_program_header_size (abfd
, info
);
7343 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7351 _bfd_elf_set_section_contents (bfd
*abfd
,
7353 const void *location
,
7355 bfd_size_type count
)
7357 Elf_Internal_Shdr
*hdr
;
7360 if (! abfd
->output_has_begun
7361 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7364 hdr
= &elf_section_data (section
)->this_hdr
;
7365 pos
= hdr
->sh_offset
+ offset
;
7366 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7367 || bfd_bwrite (location
, count
, abfd
) != count
)
7374 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7375 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7376 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7381 /* Try to convert a non-ELF reloc into an ELF one. */
7384 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7386 /* Check whether we really have an ELF howto. */
7388 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7390 bfd_reloc_code_real_type code
;
7391 reloc_howto_type
*howto
;
7393 /* Alien reloc: Try to determine its type to replace it with an
7394 equivalent ELF reloc. */
7396 if (areloc
->howto
->pc_relative
)
7398 switch (areloc
->howto
->bitsize
)
7401 code
= BFD_RELOC_8_PCREL
;
7404 code
= BFD_RELOC_12_PCREL
;
7407 code
= BFD_RELOC_16_PCREL
;
7410 code
= BFD_RELOC_24_PCREL
;
7413 code
= BFD_RELOC_32_PCREL
;
7416 code
= BFD_RELOC_64_PCREL
;
7422 howto
= bfd_reloc_type_lookup (abfd
, code
);
7424 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7426 if (howto
->pcrel_offset
)
7427 areloc
->addend
+= areloc
->address
;
7429 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7434 switch (areloc
->howto
->bitsize
)
7440 code
= BFD_RELOC_14
;
7443 code
= BFD_RELOC_16
;
7446 code
= BFD_RELOC_26
;
7449 code
= BFD_RELOC_32
;
7452 code
= BFD_RELOC_64
;
7458 howto
= bfd_reloc_type_lookup (abfd
, code
);
7462 areloc
->howto
= howto
;
7470 (*_bfd_error_handler
)
7471 (_("%B: unsupported relocation type %s"),
7472 abfd
, areloc
->howto
->name
);
7473 bfd_set_error (bfd_error_bad_value
);
7478 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7480 if (bfd_get_format (abfd
) == bfd_object
)
7482 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7483 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7484 _bfd_dwarf2_cleanup_debug_info (abfd
);
7487 return _bfd_generic_close_and_cleanup (abfd
);
7490 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7491 in the relocation's offset. Thus we cannot allow any sort of sanity
7492 range-checking to interfere. There is nothing else to do in processing
7495 bfd_reloc_status_type
7496 _bfd_elf_rel_vtable_reloc_fn
7497 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7498 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7499 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7500 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7502 return bfd_reloc_ok
;
7505 /* Elf core file support. Much of this only works on native
7506 toolchains, since we rely on knowing the
7507 machine-dependent procfs structure in order to pick
7508 out details about the corefile. */
7510 #ifdef HAVE_SYS_PROCFS_H
7511 /* Needed for new procfs interface on sparc-solaris. */
7512 # define _STRUCTURED_PROC 1
7513 # include <sys/procfs.h>
7516 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7519 elfcore_make_pid (bfd
*abfd
)
7521 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7522 + (elf_tdata (abfd
)->core_pid
));
7525 /* If there isn't a section called NAME, make one, using
7526 data from SECT. Note, this function will generate a
7527 reference to NAME, so you shouldn't deallocate or
7531 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7535 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7538 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7542 sect2
->size
= sect
->size
;
7543 sect2
->filepos
= sect
->filepos
;
7544 sect2
->alignment_power
= sect
->alignment_power
;
7548 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7549 actually creates up to two pseudosections:
7550 - For the single-threaded case, a section named NAME, unless
7551 such a section already exists.
7552 - For the multi-threaded case, a section named "NAME/PID", where
7553 PID is elfcore_make_pid (abfd).
7554 Both pseudosections have identical contents. */
7556 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7562 char *threaded_name
;
7566 /* Build the section name. */
7568 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7569 len
= strlen (buf
) + 1;
7570 threaded_name
= (char *) bfd_alloc (abfd
, len
);
7571 if (threaded_name
== NULL
)
7573 memcpy (threaded_name
, buf
, len
);
7575 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7580 sect
->filepos
= filepos
;
7581 sect
->alignment_power
= 2;
7583 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7586 /* prstatus_t exists on:
7588 linux 2.[01] + glibc
7592 #if defined (HAVE_PRSTATUS_T)
7595 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7600 if (note
->descsz
== sizeof (prstatus_t
))
7604 size
= sizeof (prstat
.pr_reg
);
7605 offset
= offsetof (prstatus_t
, pr_reg
);
7606 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7608 /* Do not overwrite the core signal if it
7609 has already been set by another thread. */
7610 if (elf_tdata (abfd
)->core_signal
== 0)
7611 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7612 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7614 /* pr_who exists on:
7617 pr_who doesn't exist on:
7620 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7621 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7624 #if defined (HAVE_PRSTATUS32_T)
7625 else if (note
->descsz
== sizeof (prstatus32_t
))
7627 /* 64-bit host, 32-bit corefile */
7628 prstatus32_t prstat
;
7630 size
= sizeof (prstat
.pr_reg
);
7631 offset
= offsetof (prstatus32_t
, pr_reg
);
7632 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7634 /* Do not overwrite the core signal if it
7635 has already been set by another thread. */
7636 if (elf_tdata (abfd
)->core_signal
== 0)
7637 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7638 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7640 /* pr_who exists on:
7643 pr_who doesn't exist on:
7646 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7647 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7650 #endif /* HAVE_PRSTATUS32_T */
7653 /* Fail - we don't know how to handle any other
7654 note size (ie. data object type). */
7658 /* Make a ".reg/999" section and a ".reg" section. */
7659 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7660 size
, note
->descpos
+ offset
);
7662 #endif /* defined (HAVE_PRSTATUS_T) */
7664 /* Create a pseudosection containing the exact contents of NOTE. */
7666 elfcore_make_note_pseudosection (bfd
*abfd
,
7668 Elf_Internal_Note
*note
)
7670 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7671 note
->descsz
, note
->descpos
);
7674 /* There isn't a consistent prfpregset_t across platforms,
7675 but it doesn't matter, because we don't have to pick this
7676 data structure apart. */
7679 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7681 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7684 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7685 type of NT_PRXFPREG. Just include the whole note's contents
7689 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7691 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7694 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7695 with a note type of NT_X86_XSTATE. Just include the whole note's
7696 contents literally. */
7699 elfcore_grok_xstatereg (bfd
*abfd
, Elf_Internal_Note
*note
)
7701 return elfcore_make_note_pseudosection (abfd
, ".reg-xstate", note
);
7705 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7707 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7711 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7713 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7717 elfcore_grok_s390_high_gprs (bfd
*abfd
, Elf_Internal_Note
*note
)
7719 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-high-gprs", note
);
7723 elfcore_grok_s390_timer (bfd
*abfd
, Elf_Internal_Note
*note
)
7725 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-timer", note
);
7729 elfcore_grok_s390_todcmp (bfd
*abfd
, Elf_Internal_Note
*note
)
7731 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todcmp", note
);
7735 elfcore_grok_s390_todpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7737 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todpreg", note
);
7741 elfcore_grok_s390_ctrs (bfd
*abfd
, Elf_Internal_Note
*note
)
7743 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-ctrs", note
);
7747 elfcore_grok_s390_prefix (bfd
*abfd
, Elf_Internal_Note
*note
)
7749 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-prefix", note
);
7752 #if defined (HAVE_PRPSINFO_T)
7753 typedef prpsinfo_t elfcore_psinfo_t
;
7754 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7755 typedef prpsinfo32_t elfcore_psinfo32_t
;
7759 #if defined (HAVE_PSINFO_T)
7760 typedef psinfo_t elfcore_psinfo_t
;
7761 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7762 typedef psinfo32_t elfcore_psinfo32_t
;
7766 /* return a malloc'ed copy of a string at START which is at
7767 most MAX bytes long, possibly without a terminating '\0'.
7768 the copy will always have a terminating '\0'. */
7771 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7774 char *end
= (char *) memchr (start
, '\0', max
);
7782 dups
= (char *) bfd_alloc (abfd
, len
+ 1);
7786 memcpy (dups
, start
, len
);
7792 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7794 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7796 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7798 elfcore_psinfo_t psinfo
;
7800 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7802 elf_tdata (abfd
)->core_program
7803 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7804 sizeof (psinfo
.pr_fname
));
7806 elf_tdata (abfd
)->core_command
7807 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7808 sizeof (psinfo
.pr_psargs
));
7810 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7811 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7813 /* 64-bit host, 32-bit corefile */
7814 elfcore_psinfo32_t psinfo
;
7816 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7818 elf_tdata (abfd
)->core_program
7819 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7820 sizeof (psinfo
.pr_fname
));
7822 elf_tdata (abfd
)->core_command
7823 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7824 sizeof (psinfo
.pr_psargs
));
7830 /* Fail - we don't know how to handle any other
7831 note size (ie. data object type). */
7835 /* Note that for some reason, a spurious space is tacked
7836 onto the end of the args in some (at least one anyway)
7837 implementations, so strip it off if it exists. */
7840 char *command
= elf_tdata (abfd
)->core_command
;
7841 int n
= strlen (command
);
7843 if (0 < n
&& command
[n
- 1] == ' ')
7844 command
[n
- 1] = '\0';
7849 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7851 #if defined (HAVE_PSTATUS_T)
7853 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7855 if (note
->descsz
== sizeof (pstatus_t
)
7856 #if defined (HAVE_PXSTATUS_T)
7857 || note
->descsz
== sizeof (pxstatus_t
)
7863 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7865 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7867 #if defined (HAVE_PSTATUS32_T)
7868 else if (note
->descsz
== sizeof (pstatus32_t
))
7870 /* 64-bit host, 32-bit corefile */
7873 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7875 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7878 /* Could grab some more details from the "representative"
7879 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7880 NT_LWPSTATUS note, presumably. */
7884 #endif /* defined (HAVE_PSTATUS_T) */
7886 #if defined (HAVE_LWPSTATUS_T)
7888 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7890 lwpstatus_t lwpstat
;
7896 if (note
->descsz
!= sizeof (lwpstat
)
7897 #if defined (HAVE_LWPXSTATUS_T)
7898 && note
->descsz
!= sizeof (lwpxstatus_t
)
7903 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7905 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7906 /* Do not overwrite the core signal if it has already been set by
7908 if (elf_tdata (abfd
)->core_signal
== 0)
7909 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7911 /* Make a ".reg/999" section. */
7913 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7914 len
= strlen (buf
) + 1;
7915 name
= bfd_alloc (abfd
, len
);
7918 memcpy (name
, buf
, len
);
7920 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7924 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7925 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7926 sect
->filepos
= note
->descpos
7927 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7930 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7931 sect
->size
= sizeof (lwpstat
.pr_reg
);
7932 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7935 sect
->alignment_power
= 2;
7937 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7940 /* Make a ".reg2/999" section */
7942 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7943 len
= strlen (buf
) + 1;
7944 name
= bfd_alloc (abfd
, len
);
7947 memcpy (name
, buf
, len
);
7949 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7953 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7954 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7955 sect
->filepos
= note
->descpos
7956 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7959 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7960 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7961 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7964 sect
->alignment_power
= 2;
7966 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7968 #endif /* defined (HAVE_LWPSTATUS_T) */
7971 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7978 int is_active_thread
;
7981 if (note
->descsz
< 728)
7984 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7987 type
= bfd_get_32 (abfd
, note
->descdata
);
7991 case 1 /* NOTE_INFO_PROCESS */:
7992 /* FIXME: need to add ->core_command. */
7993 /* process_info.pid */
7994 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7995 /* process_info.signal */
7996 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7999 case 2 /* NOTE_INFO_THREAD */:
8000 /* Make a ".reg/999" section. */
8001 /* thread_info.tid */
8002 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
8004 len
= strlen (buf
) + 1;
8005 name
= (char *) bfd_alloc (abfd
, len
);
8009 memcpy (name
, buf
, len
);
8011 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8015 /* sizeof (thread_info.thread_context) */
8017 /* offsetof (thread_info.thread_context) */
8018 sect
->filepos
= note
->descpos
+ 12;
8019 sect
->alignment_power
= 2;
8021 /* thread_info.is_active_thread */
8022 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8024 if (is_active_thread
)
8025 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8029 case 3 /* NOTE_INFO_MODULE */:
8030 /* Make a ".module/xxxxxxxx" section. */
8031 /* module_info.base_address */
8032 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
8033 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
8035 len
= strlen (buf
) + 1;
8036 name
= (char *) bfd_alloc (abfd
, len
);
8040 memcpy (name
, buf
, len
);
8042 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8047 sect
->size
= note
->descsz
;
8048 sect
->filepos
= note
->descpos
;
8049 sect
->alignment_power
= 2;
8060 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8062 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8070 if (bed
->elf_backend_grok_prstatus
)
8071 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
8073 #if defined (HAVE_PRSTATUS_T)
8074 return elfcore_grok_prstatus (abfd
, note
);
8079 #if defined (HAVE_PSTATUS_T)
8081 return elfcore_grok_pstatus (abfd
, note
);
8084 #if defined (HAVE_LWPSTATUS_T)
8086 return elfcore_grok_lwpstatus (abfd
, note
);
8089 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
8090 return elfcore_grok_prfpreg (abfd
, note
);
8092 case NT_WIN32PSTATUS
:
8093 return elfcore_grok_win32pstatus (abfd
, note
);
8095 case NT_PRXFPREG
: /* Linux SSE extension */
8096 if (note
->namesz
== 6
8097 && strcmp (note
->namedata
, "LINUX") == 0)
8098 return elfcore_grok_prxfpreg (abfd
, note
);
8102 case NT_X86_XSTATE
: /* Linux XSAVE extension */
8103 if (note
->namesz
== 6
8104 && strcmp (note
->namedata
, "LINUX") == 0)
8105 return elfcore_grok_xstatereg (abfd
, note
);
8110 if (note
->namesz
== 6
8111 && strcmp (note
->namedata
, "LINUX") == 0)
8112 return elfcore_grok_ppc_vmx (abfd
, note
);
8117 if (note
->namesz
== 6
8118 && strcmp (note
->namedata
, "LINUX") == 0)
8119 return elfcore_grok_ppc_vsx (abfd
, note
);
8123 case NT_S390_HIGH_GPRS
:
8124 if (note
->namesz
== 6
8125 && strcmp (note
->namedata
, "LINUX") == 0)
8126 return elfcore_grok_s390_high_gprs (abfd
, note
);
8131 if (note
->namesz
== 6
8132 && strcmp (note
->namedata
, "LINUX") == 0)
8133 return elfcore_grok_s390_timer (abfd
, note
);
8137 case NT_S390_TODCMP
:
8138 if (note
->namesz
== 6
8139 && strcmp (note
->namedata
, "LINUX") == 0)
8140 return elfcore_grok_s390_todcmp (abfd
, note
);
8144 case NT_S390_TODPREG
:
8145 if (note
->namesz
== 6
8146 && strcmp (note
->namedata
, "LINUX") == 0)
8147 return elfcore_grok_s390_todpreg (abfd
, note
);
8152 if (note
->namesz
== 6
8153 && strcmp (note
->namedata
, "LINUX") == 0)
8154 return elfcore_grok_s390_ctrs (abfd
, note
);
8158 case NT_S390_PREFIX
:
8159 if (note
->namesz
== 6
8160 && strcmp (note
->namedata
, "LINUX") == 0)
8161 return elfcore_grok_s390_prefix (abfd
, note
);
8167 if (bed
->elf_backend_grok_psinfo
)
8168 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
8170 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8171 return elfcore_grok_psinfo (abfd
, note
);
8178 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8183 sect
->size
= note
->descsz
;
8184 sect
->filepos
= note
->descpos
;
8185 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8193 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8195 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8196 elf_tdata (abfd
)->build_id
= (bfd_byte
*) bfd_alloc (abfd
, note
->descsz
);
8197 if (elf_tdata (abfd
)->build_id
== NULL
)
8200 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8206 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8213 case NT_GNU_BUILD_ID
:
8214 return elfobj_grok_gnu_build_id (abfd
, note
);
8219 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8223 cp
= strchr (note
->namedata
, '@');
8226 *lwpidp
= atoi(cp
+ 1);
8233 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8235 /* Signal number at offset 0x08. */
8236 elf_tdata (abfd
)->core_signal
8237 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8239 /* Process ID at offset 0x50. */
8240 elf_tdata (abfd
)->core_pid
8241 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8243 /* Command name at 0x7c (max 32 bytes, including nul). */
8244 elf_tdata (abfd
)->core_command
8245 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8247 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8252 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8256 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8257 elf_tdata (abfd
)->core_lwpid
= lwp
;
8259 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8261 /* NetBSD-specific core "procinfo". Note that we expect to
8262 find this note before any of the others, which is fine,
8263 since the kernel writes this note out first when it
8264 creates a core file. */
8266 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8269 /* As of Jan 2002 there are no other machine-independent notes
8270 defined for NetBSD core files. If the note type is less
8271 than the start of the machine-dependent note types, we don't
8274 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8278 switch (bfd_get_arch (abfd
))
8280 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8281 PT_GETFPREGS == mach+2. */
8283 case bfd_arch_alpha
:
8284 case bfd_arch_sparc
:
8287 case NT_NETBSDCORE_FIRSTMACH
+0:
8288 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8290 case NT_NETBSDCORE_FIRSTMACH
+2:
8291 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8297 /* On all other arch's, PT_GETREGS == mach+1 and
8298 PT_GETFPREGS == mach+3. */
8303 case NT_NETBSDCORE_FIRSTMACH
+1:
8304 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8306 case NT_NETBSDCORE_FIRSTMACH
+3:
8307 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8317 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8319 /* Signal number at offset 0x08. */
8320 elf_tdata (abfd
)->core_signal
8321 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8323 /* Process ID at offset 0x20. */
8324 elf_tdata (abfd
)->core_pid
8325 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8327 /* Command name at 0x48 (max 32 bytes, including nul). */
8328 elf_tdata (abfd
)->core_command
8329 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8335 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8337 if (note
->type
== NT_OPENBSD_PROCINFO
)
8338 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8340 if (note
->type
== NT_OPENBSD_REGS
)
8341 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8343 if (note
->type
== NT_OPENBSD_FPREGS
)
8344 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8346 if (note
->type
== NT_OPENBSD_XFPREGS
)
8347 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8349 if (note
->type
== NT_OPENBSD_AUXV
)
8351 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8356 sect
->size
= note
->descsz
;
8357 sect
->filepos
= note
->descpos
;
8358 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8363 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8365 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8370 sect
->size
= note
->descsz
;
8371 sect
->filepos
= note
->descpos
;
8372 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8381 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8383 void *ddata
= note
->descdata
;
8390 /* nto_procfs_status 'pid' field is at offset 0. */
8391 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8393 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8394 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8396 /* nto_procfs_status 'flags' field is at offset 8. */
8397 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8399 /* nto_procfs_status 'what' field is at offset 14. */
8400 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8402 elf_tdata (abfd
)->core_signal
= sig
;
8403 elf_tdata (abfd
)->core_lwpid
= *tid
;
8406 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8407 do not come from signals so we make sure we set the current
8408 thread just in case. */
8409 if (flags
& 0x00000080)
8410 elf_tdata (abfd
)->core_lwpid
= *tid
;
8412 /* Make a ".qnx_core_status/%d" section. */
8413 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8415 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8420 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8424 sect
->size
= note
->descsz
;
8425 sect
->filepos
= note
->descpos
;
8426 sect
->alignment_power
= 2;
8428 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8432 elfcore_grok_nto_regs (bfd
*abfd
,
8433 Elf_Internal_Note
*note
,
8441 /* Make a "(base)/%d" section. */
8442 sprintf (buf
, "%s/%ld", base
, tid
);
8444 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8449 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8453 sect
->size
= note
->descsz
;
8454 sect
->filepos
= note
->descpos
;
8455 sect
->alignment_power
= 2;
8457 /* This is the current thread. */
8458 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8459 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8464 #define BFD_QNT_CORE_INFO 7
8465 #define BFD_QNT_CORE_STATUS 8
8466 #define BFD_QNT_CORE_GREG 9
8467 #define BFD_QNT_CORE_FPREG 10
8470 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8472 /* Every GREG section has a STATUS section before it. Store the
8473 tid from the previous call to pass down to the next gregs
8475 static long tid
= 1;
8479 case BFD_QNT_CORE_INFO
:
8480 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8481 case BFD_QNT_CORE_STATUS
:
8482 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8483 case BFD_QNT_CORE_GREG
:
8484 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8485 case BFD_QNT_CORE_FPREG
:
8486 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8493 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8499 /* Use note name as section name. */
8501 name
= (char *) bfd_alloc (abfd
, len
);
8504 memcpy (name
, note
->namedata
, len
);
8505 name
[len
- 1] = '\0';
8507 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8511 sect
->size
= note
->descsz
;
8512 sect
->filepos
= note
->descpos
;
8513 sect
->alignment_power
= 1;
8518 /* Function: elfcore_write_note
8521 buffer to hold note, and current size of buffer
8525 size of data for note
8527 Writes note to end of buffer. ELF64 notes are written exactly as
8528 for ELF32, despite the current (as of 2006) ELF gabi specifying
8529 that they ought to have 8-byte namesz and descsz field, and have
8530 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8533 Pointer to realloc'd buffer, *BUFSIZ updated. */
8536 elfcore_write_note (bfd
*abfd
,
8544 Elf_External_Note
*xnp
;
8551 namesz
= strlen (name
) + 1;
8553 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8555 buf
= (char *) realloc (buf
, *bufsiz
+ newspace
);
8558 dest
= buf
+ *bufsiz
;
8559 *bufsiz
+= newspace
;
8560 xnp
= (Elf_External_Note
*) dest
;
8561 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8562 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8563 H_PUT_32 (abfd
, type
, xnp
->type
);
8567 memcpy (dest
, name
, namesz
);
8575 memcpy (dest
, input
, size
);
8585 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8587 elfcore_write_prpsinfo (bfd
*abfd
,
8593 const char *note_name
= "CORE";
8594 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8596 if (bed
->elf_backend_write_core_note
!= NULL
)
8599 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8600 NT_PRPSINFO
, fname
, psargs
);
8605 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8606 if (bed
->s
->elfclass
== ELFCLASS32
)
8608 #if defined (HAVE_PSINFO32_T)
8610 int note_type
= NT_PSINFO
;
8613 int note_type
= NT_PRPSINFO
;
8616 memset (&data
, 0, sizeof (data
));
8617 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8618 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8619 return elfcore_write_note (abfd
, buf
, bufsiz
,
8620 note_name
, note_type
, &data
, sizeof (data
));
8625 #if defined (HAVE_PSINFO_T)
8627 int note_type
= NT_PSINFO
;
8630 int note_type
= NT_PRPSINFO
;
8633 memset (&data
, 0, sizeof (data
));
8634 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8635 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8636 return elfcore_write_note (abfd
, buf
, bufsiz
,
8637 note_name
, note_type
, &data
, sizeof (data
));
8640 #endif /* PSINFO_T or PRPSINFO_T */
8642 #if defined (HAVE_PRSTATUS_T)
8644 elfcore_write_prstatus (bfd
*abfd
,
8651 const char *note_name
= "CORE";
8652 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8654 if (bed
->elf_backend_write_core_note
!= NULL
)
8657 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8659 pid
, cursig
, gregs
);
8664 #if defined (HAVE_PRSTATUS32_T)
8665 if (bed
->s
->elfclass
== ELFCLASS32
)
8667 prstatus32_t prstat
;
8669 memset (&prstat
, 0, sizeof (prstat
));
8670 prstat
.pr_pid
= pid
;
8671 prstat
.pr_cursig
= cursig
;
8672 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8673 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8674 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8681 memset (&prstat
, 0, sizeof (prstat
));
8682 prstat
.pr_pid
= pid
;
8683 prstat
.pr_cursig
= cursig
;
8684 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8685 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8686 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8689 #endif /* HAVE_PRSTATUS_T */
8691 #if defined (HAVE_LWPSTATUS_T)
8693 elfcore_write_lwpstatus (bfd
*abfd
,
8700 lwpstatus_t lwpstat
;
8701 const char *note_name
= "CORE";
8703 memset (&lwpstat
, 0, sizeof (lwpstat
));
8704 lwpstat
.pr_lwpid
= pid
>> 16;
8705 lwpstat
.pr_cursig
= cursig
;
8706 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8707 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8708 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8710 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8711 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8713 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8714 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8717 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8718 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8720 #endif /* HAVE_LWPSTATUS_T */
8722 #if defined (HAVE_PSTATUS_T)
8724 elfcore_write_pstatus (bfd
*abfd
,
8728 int cursig ATTRIBUTE_UNUSED
,
8729 const void *gregs ATTRIBUTE_UNUSED
)
8731 const char *note_name
= "CORE";
8732 #if defined (HAVE_PSTATUS32_T)
8733 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8735 if (bed
->s
->elfclass
== ELFCLASS32
)
8739 memset (&pstat
, 0, sizeof (pstat
));
8740 pstat
.pr_pid
= pid
& 0xffff;
8741 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8742 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8750 memset (&pstat
, 0, sizeof (pstat
));
8751 pstat
.pr_pid
= pid
& 0xffff;
8752 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8753 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8757 #endif /* HAVE_PSTATUS_T */
8760 elfcore_write_prfpreg (bfd
*abfd
,
8766 const char *note_name
= "CORE";
8767 return elfcore_write_note (abfd
, buf
, bufsiz
,
8768 note_name
, NT_FPREGSET
, fpregs
, size
);
8772 elfcore_write_prxfpreg (bfd
*abfd
,
8775 const void *xfpregs
,
8778 char *note_name
= "LINUX";
8779 return elfcore_write_note (abfd
, buf
, bufsiz
,
8780 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8784 elfcore_write_xstatereg (bfd
*abfd
, char *buf
, int *bufsiz
,
8785 const void *xfpregs
, int size
)
8787 char *note_name
= "LINUX";
8788 return elfcore_write_note (abfd
, buf
, bufsiz
,
8789 note_name
, NT_X86_XSTATE
, xfpregs
, size
);
8793 elfcore_write_ppc_vmx (bfd
*abfd
,
8796 const void *ppc_vmx
,
8799 char *note_name
= "LINUX";
8800 return elfcore_write_note (abfd
, buf
, bufsiz
,
8801 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8805 elfcore_write_ppc_vsx (bfd
*abfd
,
8808 const void *ppc_vsx
,
8811 char *note_name
= "LINUX";
8812 return elfcore_write_note (abfd
, buf
, bufsiz
,
8813 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8817 elfcore_write_s390_high_gprs (bfd
*abfd
,
8820 const void *s390_high_gprs
,
8823 char *note_name
= "LINUX";
8824 return elfcore_write_note (abfd
, buf
, bufsiz
,
8825 note_name
, NT_S390_HIGH_GPRS
,
8826 s390_high_gprs
, size
);
8830 elfcore_write_s390_timer (bfd
*abfd
,
8833 const void *s390_timer
,
8836 char *note_name
= "LINUX";
8837 return elfcore_write_note (abfd
, buf
, bufsiz
,
8838 note_name
, NT_S390_TIMER
, s390_timer
, size
);
8842 elfcore_write_s390_todcmp (bfd
*abfd
,
8845 const void *s390_todcmp
,
8848 char *note_name
= "LINUX";
8849 return elfcore_write_note (abfd
, buf
, bufsiz
,
8850 note_name
, NT_S390_TODCMP
, s390_todcmp
, size
);
8854 elfcore_write_s390_todpreg (bfd
*abfd
,
8857 const void *s390_todpreg
,
8860 char *note_name
= "LINUX";
8861 return elfcore_write_note (abfd
, buf
, bufsiz
,
8862 note_name
, NT_S390_TODPREG
, s390_todpreg
, size
);
8866 elfcore_write_s390_ctrs (bfd
*abfd
,
8869 const void *s390_ctrs
,
8872 char *note_name
= "LINUX";
8873 return elfcore_write_note (abfd
, buf
, bufsiz
,
8874 note_name
, NT_S390_CTRS
, s390_ctrs
, size
);
8878 elfcore_write_s390_prefix (bfd
*abfd
,
8881 const void *s390_prefix
,
8884 char *note_name
= "LINUX";
8885 return elfcore_write_note (abfd
, buf
, bufsiz
,
8886 note_name
, NT_S390_PREFIX
, s390_prefix
, size
);
8890 elfcore_write_register_note (bfd
*abfd
,
8893 const char *section
,
8897 if (strcmp (section
, ".reg2") == 0)
8898 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8899 if (strcmp (section
, ".reg-xfp") == 0)
8900 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8901 if (strcmp (section
, ".reg-xstate") == 0)
8902 return elfcore_write_xstatereg (abfd
, buf
, bufsiz
, data
, size
);
8903 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8904 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8905 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8906 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8907 if (strcmp (section
, ".reg-s390-high-gprs") == 0)
8908 return elfcore_write_s390_high_gprs (abfd
, buf
, bufsiz
, data
, size
);
8909 if (strcmp (section
, ".reg-s390-timer") == 0)
8910 return elfcore_write_s390_timer (abfd
, buf
, bufsiz
, data
, size
);
8911 if (strcmp (section
, ".reg-s390-todcmp") == 0)
8912 return elfcore_write_s390_todcmp (abfd
, buf
, bufsiz
, data
, size
);
8913 if (strcmp (section
, ".reg-s390-todpreg") == 0)
8914 return elfcore_write_s390_todpreg (abfd
, buf
, bufsiz
, data
, size
);
8915 if (strcmp (section
, ".reg-s390-ctrs") == 0)
8916 return elfcore_write_s390_ctrs (abfd
, buf
, bufsiz
, data
, size
);
8917 if (strcmp (section
, ".reg-s390-prefix") == 0)
8918 return elfcore_write_s390_prefix (abfd
, buf
, bufsiz
, data
, size
);
8923 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8928 while (p
< buf
+ size
)
8930 /* FIXME: bad alignment assumption. */
8931 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8932 Elf_Internal_Note in
;
8934 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8937 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8939 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8940 in
.namedata
= xnp
->name
;
8941 if (in
.namesz
> buf
- in
.namedata
+ size
)
8944 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8945 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8946 in
.descpos
= offset
+ (in
.descdata
- buf
);
8948 && (in
.descdata
>= buf
+ size
8949 || in
.descsz
> buf
- in
.descdata
+ size
))
8952 switch (bfd_get_format (abfd
))
8958 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8960 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8963 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
8965 if (! elfcore_grok_openbsd_note (abfd
, &in
))
8968 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8970 if (! elfcore_grok_nto_note (abfd
, &in
))
8973 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8975 if (! elfcore_grok_spu_note (abfd
, &in
))
8980 if (! elfcore_grok_note (abfd
, &in
))
8986 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8988 if (! elfobj_grok_gnu_note (abfd
, &in
))
8994 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
9001 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
9008 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
9011 buf
= (char *) bfd_malloc (size
);
9015 if (bfd_bread (buf
, size
, abfd
) != size
9016 || !elf_parse_notes (abfd
, buf
, size
, offset
))
9026 /* Providing external access to the ELF program header table. */
9028 /* Return an upper bound on the number of bytes required to store a
9029 copy of ABFD's program header table entries. Return -1 if an error
9030 occurs; bfd_get_error will return an appropriate code. */
9033 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
9035 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9037 bfd_set_error (bfd_error_wrong_format
);
9041 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
9044 /* Copy ABFD's program header table entries to *PHDRS. The entries
9045 will be stored as an array of Elf_Internal_Phdr structures, as
9046 defined in include/elf/internal.h. To find out how large the
9047 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9049 Return the number of program header table entries read, or -1 if an
9050 error occurs; bfd_get_error will return an appropriate code. */
9053 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
9057 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9059 bfd_set_error (bfd_error_wrong_format
);
9063 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
9064 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
9065 num_phdrs
* sizeof (Elf_Internal_Phdr
));
9070 enum elf_reloc_type_class
9071 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
9073 return reloc_class_normal
;
9076 /* For RELA architectures, return the relocation value for a
9077 relocation against a local symbol. */
9080 _bfd_elf_rela_local_sym (bfd
*abfd
,
9081 Elf_Internal_Sym
*sym
,
9083 Elf_Internal_Rela
*rel
)
9085 asection
*sec
= *psec
;
9088 relocation
= (sec
->output_section
->vma
9089 + sec
->output_offset
9091 if ((sec
->flags
& SEC_MERGE
)
9092 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
9093 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
9096 _bfd_merged_section_offset (abfd
, psec
,
9097 elf_section_data (sec
)->sec_info
,
9098 sym
->st_value
+ rel
->r_addend
);
9101 /* If we have changed the section, and our original section is
9102 marked with SEC_EXCLUDE, it means that the original
9103 SEC_MERGE section has been completely subsumed in some
9104 other SEC_MERGE section. In this case, we need to leave
9105 some info around for --emit-relocs. */
9106 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
9107 sec
->kept_section
= *psec
;
9110 rel
->r_addend
-= relocation
;
9111 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
9117 _bfd_elf_rel_local_sym (bfd
*abfd
,
9118 Elf_Internal_Sym
*sym
,
9122 asection
*sec
= *psec
;
9124 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
9125 return sym
->st_value
+ addend
;
9127 return _bfd_merged_section_offset (abfd
, psec
,
9128 elf_section_data (sec
)->sec_info
,
9129 sym
->st_value
+ addend
);
9133 _bfd_elf_section_offset (bfd
*abfd
,
9134 struct bfd_link_info
*info
,
9138 switch (sec
->sec_info_type
)
9140 case ELF_INFO_TYPE_STABS
:
9141 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
9143 case ELF_INFO_TYPE_EH_FRAME
:
9144 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
9150 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9151 reconstruct an ELF file by reading the segments out of remote memory
9152 based on the ELF file header at EHDR_VMA and the ELF program headers it
9153 points to. If not null, *LOADBASEP is filled in with the difference
9154 between the VMAs from which the segments were read, and the VMAs the
9155 file headers (and hence BFD's idea of each section's VMA) put them at.
9157 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9158 remote memory at target address VMA into the local buffer at MYADDR; it
9159 should return zero on success or an `errno' code on failure. TEMPL must
9160 be a BFD for an ELF target with the word size and byte order found in
9161 the remote memory. */
9164 bfd_elf_bfd_from_remote_memory
9168 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
9170 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
9171 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
9175 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
9176 long symcount ATTRIBUTE_UNUSED
,
9177 asymbol
**syms ATTRIBUTE_UNUSED
,
9182 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9185 const char *relplt_name
;
9186 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
9190 Elf_Internal_Shdr
*hdr
;
9196 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
9199 if (dynsymcount
<= 0)
9202 if (!bed
->plt_sym_val
)
9205 relplt_name
= bed
->relplt_name
;
9206 if (relplt_name
== NULL
)
9207 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
9208 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
9212 hdr
= &elf_section_data (relplt
)->this_hdr
;
9213 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
9214 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
9217 plt
= bfd_get_section_by_name (abfd
, ".plt");
9221 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
9222 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
9225 count
= relplt
->size
/ hdr
->sh_entsize
;
9226 size
= count
* sizeof (asymbol
);
9227 p
= relplt
->relocation
;
9228 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9230 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
9234 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
9236 size
+= sizeof ("+0x") - 1 + 8;
9241 s
= *ret
= (asymbol
*) bfd_malloc (size
);
9245 names
= (char *) (s
+ count
);
9246 p
= relplt
->relocation
;
9248 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9253 addr
= bed
->plt_sym_val (i
, plt
, p
);
9254 if (addr
== (bfd_vma
) -1)
9257 *s
= **p
->sym_ptr_ptr
;
9258 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9259 we are defining a symbol, ensure one of them is set. */
9260 if ((s
->flags
& BSF_LOCAL
) == 0)
9261 s
->flags
|= BSF_GLOBAL
;
9262 s
->flags
|= BSF_SYNTHETIC
;
9264 s
->value
= addr
- plt
->vma
;
9267 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
9268 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
9274 memcpy (names
, "+0x", sizeof ("+0x") - 1);
9275 names
+= sizeof ("+0x") - 1;
9276 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
9277 for (a
= buf
; *a
== '0'; ++a
)
9280 memcpy (names
, a
, len
);
9283 memcpy (names
, "@plt", sizeof ("@plt"));
9284 names
+= sizeof ("@plt");
9291 /* It is only used by x86-64 so far. */
9292 asection _bfd_elf_large_com_section
9293 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9294 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9297 _bfd_elf_set_osabi (bfd
* abfd
,
9298 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9300 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9302 i_ehdrp
= elf_elfheader (abfd
);
9304 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
9306 /* To make things simpler for the loader on Linux systems we set the
9307 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9308 the STT_GNU_IFUNC type. */
9309 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
9310 && elf_tdata (abfd
)->has_ifunc_symbols
)
9311 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
9315 /* Return TRUE for ELF symbol types that represent functions.
9316 This is the default version of this function, which is sufficient for
9317 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9320 _bfd_elf_is_function_type (unsigned int type
)
9322 return (type
== STT_FUNC
9323 || type
== STT_GNU_IFUNC
);