Add --redefine-sym to objcopy.
[binutils.git] / gprof / gprof.texi
blobb4606b42f4b08dedf83dfc56a47bdb9b1e785a44
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @settitle GNU gprof
4 @setchapternewpage odd
6 @ifinfo
7 @c This is a dir.info fragment to support semi-automated addition of
8 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
9 @format
10 START-INFO-DIR-ENTRY
11 * gprof: (gprof).                Profiling your program's execution
12 END-INFO-DIR-ENTRY
13 @end format
14 @end ifinfo
16 @ifinfo
17 This file documents the gprof profiler of the GNU system.
19 Copyright (C) 1988, 1992, 1997, 1998, 1999 Free Software Foundation, Inc.
21 Permission is granted to make and distribute verbatim copies of
22 this manual provided the copyright notice and this permission notice
23 are preserved on all copies.
25 @ignore
26 Permission is granted to process this file through Tex and print the
27 results, provided the printed document carries copying permission
28 notice identical to this one except for the removal of this paragraph
29 (this paragraph not being relevant to the printed manual).
31 @end ignore
32 Permission is granted to copy and distribute modified versions of this
33 manual under the conditions for verbatim copying, provided that the entire
34 resulting derived work is distributed under the terms of a permission
35 notice identical to this one.
37 Permission is granted to copy and distribute translations of this manual
38 into another language, under the above conditions for modified versions.
39 @end ifinfo
41 @finalout
42 @smallbook
44 @titlepage
45 @title GNU gprof
46 @subtitle The @sc{gnu} Profiler 
47 @author Jay Fenlason and Richard Stallman
49 @page
51 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
52 can use it to determine which parts of a program are taking most of the
53 execution time.  We assume that you know how to write, compile, and
54 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
56 This manual was edited January 1993 by Jeffrey Osier
57 and updated September 1997 by Brent Baccala.
59 @vskip 0pt plus 1filll
60 Copyright @copyright{} 1988, 1992, 1997, 1998 Free Software Foundation, Inc.
62 Permission is granted to make and distribute verbatim copies of
63 this manual provided the copyright notice and this permission notice
64 are preserved on all copies.
66 @ignore
67 Permission is granted to process this file through TeX and print the
68 results, provided the printed document carries copying permission
69 notice identical to this one except for the removal of this paragraph
70 (this paragraph not being relevant to the printed manual).
72 @end ignore
73 Permission is granted to copy and distribute modified versions of this
74 manual under the conditions for verbatim copying, provided that the entire
75 resulting derived work is distributed under the terms of a permission
76 notice identical to this one.
78 Permission is granted to copy and distribute translations of this manual
79 into another language, under the same conditions as for modified versions.
81 @end titlepage
83 @ifinfo
84 @node Top
85 @top Profiling a Program: Where Does It Spend Its Time?
87 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
88 can use it to determine which parts of a program are taking most of the
89 execution time.  We assume that you know how to write, compile, and
90 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
92 This manual was updated August 1997 by Brent Baccala.
94 @menu
95 * Introduction::        What profiling means, and why it is useful.
97 * Compiling::           How to compile your program for profiling.
98 * Executing::           Executing your program to generate profile data
99 * Invoking::            How to run @code{gprof}, and its options
101 * Output::              Interpreting @code{gprof}'s output
103 * Inaccuracy::          Potential problems you should be aware of
104 * How do I?::           Answers to common questions
105 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
106 * Details::             Details of how profiling is done
107 @end menu
108 @end ifinfo
110 @node Introduction
111 @chapter Introduction to Profiling
113 Profiling allows you to learn where your program spent its time and which
114 functions called which other functions while it was executing.  This
115 information can show you which pieces of your program are slower than you
116 expected, and might be candidates for rewriting to make your program
117 execute faster.  It can also tell you which functions are being called more
118 or less often than you expected.  This may help you spot bugs that had
119 otherwise been unnoticed.
121 Since the profiler uses information collected during the actual execution
122 of your program, it can be used on programs that are too large or too
123 complex to analyze by reading the source.  However, how your program is run
124 will affect the information that shows up in the profile data.  If you
125 don't use some feature of your program while it is being profiled, no
126 profile information will be generated for that feature.
128 Profiling has several steps:
130 @itemize @bullet
131 @item
132 You must compile and link your program with profiling enabled.
133 @xref{Compiling}.
135 @item
136 You must execute your program to generate a profile data file.
137 @xref{Executing}.
139 @item
140 You must run @code{gprof} to analyze the profile data.
141 @xref{Invoking}.
142 @end itemize
144 The next three chapters explain these steps in greater detail.
146 Several forms of output are available from the analysis.
148 The @dfn{flat profile} shows how much time your program spent in each function,
149 and how many times that function was called.  If you simply want to know
150 which functions burn most of the cycles, it is stated concisely here.
151 @xref{Flat Profile}.
153 The @dfn{call graph} shows, for each function, which functions called it, which
154 other functions it called, and how many times.  There is also an estimate
155 of how much time was spent in the subroutines of each function.  This can
156 suggest places where you might try to eliminate function calls that use a
157 lot of time.  @xref{Call Graph}.
159 The @dfn{annotated source} listing is a copy of the program's
160 source code, labeled with the number of times each line of the
161 program was executed.  @xref{Annotated Source}.
163 To better understand how profiling works, you may wish to read
164 a description of its implementation.
165 @xref{Implementation}.
167 @node Compiling
168 @chapter Compiling a Program for Profiling
170 The first step in generating profile information for your program is
171 to compile and link it with profiling enabled.
173 To compile a source file for profiling, specify the @samp{-pg} option when
174 you run the compiler.  (This is in addition to the options you normally
175 use.)
177 To link the program for profiling, if you use a compiler such as @code{cc}
178 to do the linking, simply specify @samp{-pg} in addition to your usual
179 options.  The same option, @samp{-pg}, alters either compilation or linking
180 to do what is necessary for profiling.  Here are examples:
182 @example
183 cc -g -c myprog.c utils.c -pg
184 cc -o myprog myprog.o utils.o -pg
185 @end example
187 The @samp{-pg} option also works with a command that both compiles and links:
189 @example
190 cc -o myprog myprog.c utils.c -g -pg
191 @end example
193 If you run the linker @code{ld} directly instead of through a compiler
194 such as @code{cc}, you may have to specify a profiling startup file
195 @file{gcrt0.o} as the first input file instead of the usual startup
196 file @file{crt0.o}.  In addition, you would probably want to
197 specify the profiling C library, @file{libc_p.a}, by writing
198 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
199 necessary, but doing this gives you number-of-calls information for
200 standard library functions such as @code{read} and @code{open}.  For
201 example:
203 @example
204 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
205 @end example
207 If you compile only some of the modules of the program with @samp{-pg}, you
208 can still profile the program, but you won't get complete information about
209 the modules that were compiled without @samp{-pg}.  The only information
210 you get for the functions in those modules is the total time spent in them;
211 there is no record of how many times they were called, or from where.  This
212 will not affect the flat profile (except that the @code{calls} field for
213 the functions will be blank), but will greatly reduce the usefulness of the
214 call graph.
216 If you wish to perform line-by-line profiling,
217 you will also need to specify the @samp{-g} option,
218 instructing the compiler to insert debugging symbols into the program
219 that match program addresses to source code lines.
220 @xref{Line-by-line}.
222 In addition to the @samp{-pg} and @samp{-g} options,
223 you may also wish to specify the @samp{-a} option when compiling.
224 This will instrument
225 the program to perform basic-block counting.  As the program runs,
226 it will count how many times it executed each branch of each @samp{if}
227 statement, each iteration of each @samp{do} loop, etc.  This will
228 enable @code{gprof} to construct an annotated source code
229 listing showing how many times each line of code was executed.
231 @node Executing
232 @chapter Executing the Program
234 Once the program is compiled for profiling, you must run it in order to
235 generate the information that @code{gprof} needs.  Simply run the program
236 as usual, using the normal arguments, file names, etc.  The program should
237 run normally, producing the same output as usual.  It will, however, run
238 somewhat slower than normal because of the time spent collecting and the
239 writing the profile data.
241 The way you run the program---the arguments and input that you give
242 it---may have a dramatic effect on what the profile information shows.  The
243 profile data will describe the parts of the program that were activated for
244 the particular input you use.  For example, if the first command you give
245 to your program is to quit, the profile data will show the time used in
246 initialization and in cleanup, but not much else.
248 Your program will write the profile data into a file called @file{gmon.out}
249 just before exiting.  If there is already a file called @file{gmon.out},
250 its contents are overwritten.  There is currently no way to tell the
251 program to write the profile data under a different name, but you can rename
252 the file afterward if you are concerned that it may be overwritten.
254 In order to write the @file{gmon.out} file properly, your program must exit
255 normally: by returning from @code{main} or by calling @code{exit}.  Calling
256 the low-level function @code{_exit} does not write the profile data, and
257 neither does abnormal termination due to an unhandled signal.
259 The @file{gmon.out} file is written in the program's @emph{current working
260 directory} at the time it exits.  This means that if your program calls
261 @code{chdir}, the @file{gmon.out} file will be left in the last directory
262 your program @code{chdir}'d to.  If you don't have permission to write in
263 this directory, the file is not written, and you will get an error message.
265 Older versions of the @sc{gnu} profiling library may also write a file
266 called @file{bb.out}.  This file, if present, contains an human-readable
267 listing of the basic-block execution counts.  Unfortunately, the
268 appearance of a human-readable @file{bb.out} means the basic-block
269 counts didn't get written into @file{gmon.out}.
270 The Perl script @code{bbconv.pl}, included with the @code{gprof}
271 source distribution, will convert a @file{bb.out} file into
272 a format readable by @code{gprof}.
274 @node Invoking
275 @chapter @code{gprof} Command Summary
277 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
278 to interpret the information in it.  The @code{gprof} program prints a
279 flat profile and a call graph on standard output.  Typically you would
280 redirect the output of @code{gprof} into a file with @samp{>}.
282 You run @code{gprof} like this:
284 @smallexample
285 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
286 @end smallexample
288 @noindent
289 Here square-brackets indicate optional arguments.
291 If you omit the executable file name, the file @file{a.out} is used.  If
292 you give no profile data file name, the file @file{gmon.out} is used.  If
293 any file is not in the proper format, or if the profile data file does not
294 appear to belong to the executable file, an error message is printed.
296 You can give more than one profile data file by entering all their names
297 after the executable file name; then the statistics in all the data files
298 are summed together.
300 The order of these options does not matter.
302 @menu
303 * Output Options::      Controlling @code{gprof}'s output style
304 * Analysis Options::    Controlling how @code{gprof} analyses its data
305 * Miscellaneous Options::
306 * Depricated Options::  Options you no longer need to use, but which
307                             have been retained for compatibility
308 * Symspecs::            Specifying functions to include or exclude
309 @end menu
311 @node Output Options,Analysis Options,,Invoking
312 @section Output Options
314 These options specify which of several output formats
315 @code{gprof} should produce.
317 Many of these options take an optional @dfn{symspec} to specify
318 functions to be included or excluded.  These options can be
319 specified multiple times, with different symspecs, to include
320 or exclude sets of symbols.  @xref{Symspecs}.
322 Specifying any of these options overrides the default (@samp{-p -q}),
323 which prints a flat profile and call graph analysis
324 for all functions.
326 @table @code
328 @item -A[@var{symspec}]
329 @itemx --annotated-source[=@var{symspec}]
330 The @samp{-A} option causes @code{gprof} to print annotated source code.
331 If @var{symspec} is specified, print output only for matching symbols.
332 @xref{Annotated Source}.
334 @item -b
335 @itemx --brief
336 If the @samp{-b} option is given, @code{gprof} doesn't print the
337 verbose blurbs that try to explain the meaning of all of the fields in
338 the tables.  This is useful if you intend to print out the output, or
339 are tired of seeing the blurbs.
341 @item -C[@var{symspec}]
342 @itemx --exec-counts[=@var{symspec}]
343 The @samp{-C} option causes @code{gprof} to
344 print a tally of functions and the number of times each was called.
345 If @var{symspec} is specified, print tally only for matching symbols.
347 If the profile data file contains basic-block count records, specifing
348 the @samp{-l} option, along with @samp{-C}, will cause basic-block
349 execution counts to be tallied and displayed.
351 @item -i
352 @itemx --file-info
353 The @samp{-i} option causes @code{gprof} to display summary information
354 about the profile data file(s) and then exit.  The number of histogram,
355 call graph, and basic-block count records is displayed.
357 @item -I @var{dirs}
358 @itemx --directory-path=@var{dirs}
359 The @samp{-I} option specifies a list of search directories in
360 which to find source files.  Environment variable @var{GPROF_PATH}
361 can also be used to convery this information.
362 Used mostly for annotated source output.
364 @item -J[@var{symspec}]
365 @itemx --no-annotated-source[=@var{symspec}]
366 The @samp{-J} option causes @code{gprof} not to
367 print annotated source code.
368 If @var{symspec} is specified, @code{gprof} prints annotated source,
369 but excludes matching symbols.
371 @item -L
372 @itemx --print-path
373 Normally, source filenames are printed with the path
374 component suppressed.  The @samp{-L} option causes @code{gprof}
375 to print the full pathname of
376 source filenames, which is determined
377 from symbolic debugging information in the image file
378 and is relative to the directory in which the compiler
379 was invoked.
381 @item -p[@var{symspec}]
382 @itemx --flat-profile[=@var{symspec}]
383 The @samp{-p} option causes @code{gprof} to print a flat profile.
384 If @var{symspec} is specified, print flat profile only for matching symbols.
385 @xref{Flat Profile}.
387 @item -P[@var{symspec}]
388 @itemx --no-flat-profile[=@var{symspec}]
389 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
390 If @var{symspec} is specified, @code{gprof} prints a flat profile,
391 but excludes matching symbols.
393 @item -q[@var{symspec}]
394 @itemx --graph[=@var{symspec}]
395 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
396 If @var{symspec} is specified, print call graph only for matching symbols
397 and their children.
398 @xref{Call Graph}.
400 @item -Q[@var{symspec}]
401 @itemx --no-graph[=@var{symspec}]
402 The @samp{-Q} option causes @code{gprof} to suppress printing the
403 call graph.
404 If @var{symspec} is specified, @code{gprof} prints a call graph,
405 but excludes matching symbols.
407 @item -y
408 @itemx --separate-files
409 This option affects annotated source output only.
410 Normally, gprof prints annotated source files
411 to standard-output.  If this option is specified,
412 annotated source for a file named @file{path/filename}
413 is generated in the file @file{filename-ann}.
415 @item -Z[@var{symspec}]
416 @itemx --no-exec-counts[=@var{symspec}]
417 The @samp{-Z} option causes @code{gprof} not to
418 print a tally of functions and the number of times each was called.
419 If @var{symspec} is specified, print tally, but exclude matching symbols.
421 @item --function-ordering
422 The @samp{--function-ordering} option causes @code{gprof} to print a
423 suggested function ordering for the program based on profiling data.
424 This option suggests an ordering which may improve paging, tlb and
425 cache behavior for the program on systems which support arbitrary
426 ordering of functions in an executable.
428 The exact details of how to force the linker to place functions
429 in a particular order is system dependent and out of the scope of this
430 manual.
432 @item --file-ordering @var{map_file}
433 The @samp{--file-ordering} option causes @code{gprof} to print a
434 suggested .o link line ordering for the program based on profiling data.
435 This option suggests an ordering which may improve paging, tlb and
436 cache behavior for the program on systems which do not support arbitrary
437 ordering of functions in an executable.
439 Use of the @samp{-a} argument is highly recommended with this option.
441 The @var{map_file} argument is a pathname to a file which provides
442 function name to object file mappings.  The format of the file is similar to
443 the output of the program @code{nm}.
445 @smallexample
446 @group
447 c-parse.o:00000000 T yyparse
448 c-parse.o:00000004 C yyerrflag
449 c-lang.o:00000000 T maybe_objc_method_name
450 c-lang.o:00000000 T print_lang_statistics
451 c-lang.o:00000000 T recognize_objc_keyword
452 c-decl.o:00000000 T print_lang_identifier
453 c-decl.o:00000000 T print_lang_type
454 @dots{}
456 @end group
457 @end smallexample
459 GNU @code{nm} @samp{--extern-only} @samp{--defined-only} @samp{-v} @samp{--print-file-name} can be used to create @var{map_file}.
461 @item -T
462 @itemx --traditional
463 The @samp{-T} option causes @code{gprof} to print its output in
464 ``traditional'' BSD style.
466 @item -w @var{width}
467 @itemx --width=@var{width}
468 Sets width of output lines to @var{width}.
469 Currently only used when printing the function index at the bottom
470 of the call graph.
472 @item -x
473 @itemx --all-lines
474 This option affects annotated source output only.
475 By default, only the lines at the beginning of a basic-block
476 are annotated.  If this option is specified, every line in
477 a basic-block is annotated by repeating the annotation for the
478 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
480 @item --demangle
481 @itemx --no-demangle
482 These options control whether C++ symbol names should be demangled when
483 printing output.  The default is to demangle symbols.  The
484 @code{--no-demangle} option may be used to turn off demangling.
486 @end table
488 @node Analysis Options,Miscellaneous Options,Output Options,Invoking
489 @section Analysis Options
491 @table @code
493 @item -a
494 @itemx --no-static
495 The @samp{-a} option causes @code{gprof} to suppress the printing of
496 statically declared (private) functions.  (These are functions whose
497 names are not listed as global, and which are not visible outside the
498 file/function/block where they were defined.)  Time spent in these
499 functions, calls to/from them, etc, will all be attributed to the
500 function that was loaded directly before it in the executable file.
501 @c This is compatible with Unix @code{gprof}, but a bad idea.  
502 This option affects both the flat profile and the call graph.
504 @item -c
505 @itemx --static-call-graph
506 The @samp{-c} option causes the call graph of the program to be
507 augmented by a heuristic which examines the text space of the object
508 file and identifies function calls in the binary machine code.
509 Since normal call graph records are only generated when functions are
510 entered, this option identifies children that could have been called,
511 but never were.  Calls to functions that were not compiled with
512 profiling enabled are also identified, but only if symbol table
513 entries are present for them.
514 Calls to dynamic library routines are typically @emph{not} found
515 by this option.
516 Parents or children identified via this heuristic
517 are indicated in the call graph with call counts of @samp{0}.
519 @item -D
520 @itemx --ignore-non-functions
521 The @samp{-D} option causes @code{gprof} to ignore symbols which
522 are not known to be functions.  This option will give more accurate
523 profile data on systems where it is supported (Solaris and HPUX for
524 example).
526 @item -k @var{from}/@var{to}
527 The @samp{-k} option allows you to delete from the call graph any arcs from
528 symbols matching symspec @var{from} to those matching symspec @var{to}.
530 @item -l
531 @itemx --line
532 The @samp{-l} option enables line-by-line profiling, which causes
533 histogram hits to be charged to individual source code lines,
534 instead of functions.
535 If the program was compiled with basic-block counting enabled,
536 this option will also identify how many times each line of
537 code was executed.
538 While line-by-line profiling can help isolate where in a large function
539 a program is spending its time, it also significantly increases
540 the running time of @code{gprof}, and magnifies statistical
541 inaccuracies.
542 @xref{Sampling Error}.
544 @item -m @var{num}
545 @itemx --min-count=@var{num}
546 This option affects execution count output only.
547 Symbols that are executed less than @var{num} times are suppressed.
549 @item -n[@var{symspec}]
550 @itemx --time[=@var{symspec}]
551 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
552 to only propagate times for symbols matching @var{symspec}.
554 @item -N[@var{symspec}]
555 @itemx --no-time[=@var{symspec}]
556 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
557 not to propagate times for symbols matching @var{symspec}.
559 @item -z
560 @itemx --display-unused-functions
561 If you give the @samp{-z} option, @code{gprof} will mention all
562 functions in the flat profile, even those that were never called, and
563 that had no time spent in them.  This is useful in conjunction with the
564 @samp{-c} option for discovering which routines were never called.
566 @end table
568 @node Miscellaneous Options,Depricated Options,Analysis Options,Invoking
569 @section Miscellaneous Options
571 @table @code
573 @item -d[@var{num}]
574 @itemx --debug[=@var{num}]
575 The @samp{-d @var{num}} option specifies debugging options.
576 If @var{num} is not specified, enable all debugging.
577 @xref{Debugging}.
579 @item -O@var{name}
580 @itemx --file-format=@var{name}
581 Selects the format of the profile data files.  Recognized formats are
582 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
583 @samp{prof} (not yet supported).
585 @item -s
586 @itemx --sum
587 The @samp{-s} option causes @code{gprof} to summarize the information
588 in the profile data files it read in, and write out a profile data
589 file called @file{gmon.sum}, which contains all the information from
590 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
591 may be one of the specified input files; the effect of this is to
592 merge the data in the other input files into @file{gmon.sum}.
594 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
595 cumulative data in the file @file{gmon.sum}.
597 @item -v
598 @itemx --version
599 The @samp{-v} flag causes @code{gprof} to print the current version
600 number, and then exit.
602 @end table
604 @node Depricated Options,Symspecs,Miscellaneous Options,Invoking
605 @section Depricated Options
607 @table @code
609 These options have been replaced with newer versions that use symspecs.
611 @item -e @var{function_name}
612 The @samp{-e @var{function}} option tells @code{gprof} to not print
613 information about the function @var{function_name} (and its
614 children@dots{}) in the call graph.  The function will still be listed
615 as a child of any functions that call it, but its index number will be
616 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
617 given; only one @var{function_name} may be indicated with each @samp{-e}
618 option. 
620 @item -E @var{function_name}
621 The @code{-E @var{function}} option works like the @code{-e} option, but
622 time spent in the function (and children who were not called from
623 anywhere else), will not be used to compute the percentages-of-time for
624 the call graph.  More than one @samp{-E} option may be given; only one
625 @var{function_name} may be indicated with each @samp{-E} option.
627 @item -f @var{function_name}
628 The @samp{-f @var{function}} option causes @code{gprof} to limit the
629 call graph to the function @var{function_name} and its children (and
630 their children@dots{}).  More than one @samp{-f} option may be given;
631 only one @var{function_name} may be indicated with each @samp{-f}
632 option.  
634 @item -F @var{function_name}
635 The @samp{-F @var{function}} option works like the @code{-f} option, but
636 only time spent in the function and its children (and their
637 children@dots{}) will be used to determine total-time and
638 percentages-of-time for the call graph.  More than one @samp{-F} option
639 may be given; only one @var{function_name} may be indicated with each
640 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
642 @end table
644 Note that only one function can be specified with each @code{-e},
645 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
646 function, use multiple options.  For example, this command:
648 @example
649 gprof -e boring -f foo -f bar myprogram > gprof.output
650 @end example
652 @noindent
653 lists in the call graph all functions that were reached from either
654 @code{foo} or @code{bar} and were not reachable from @code{boring}.
656 @node Symspecs,,Depricated Options,Invoking
657 @section Symspecs
659 Many of the output options allow functions to be included or excluded
660 using @dfn{symspecs} (symbol specifications), which observe the
661 following syntax:
663 @example
664   filename_containing_a_dot
665 | funcname_not_containing_a_dot
666 | linenumber
667 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
668 @end example
670 Here are some sample symspecs:
672 @table @samp
673 @item main.c
674 Selects everything in file @file{main.c}---the
675 dot in the string tells gprof to interpret
676 the string as a filename, rather than as
677 a function name.  To select a file whose
678 name does not contain a dot, a trailing colon
679 should be specified.  For example, @samp{odd:} is
680 interpreted as the file named @file{odd}.
682 @item main
683 Selects all functions named @samp{main}.
685 Note that there may be multiple instances of the same function name
686 because some of the definitions may be local (i.e., static).  Unless a
687 function name is unique in a program, you must use the colon notation
688 explained below to specify a function from a specific source file.
690 Sometimes, function names contain dots.  In such cases, it is necessary
691 to add a leading colon to the name.  For example, @samp{:.mul} selects
692 function @samp{.mul}.
694 In some object file formats, symbols have a leading underscore.  gprof
695 will normally not print these underscores.  However, you must use the
696 underscore when you name a symbol in a symspec.  You can use the
697 @code{nm} program to see whether symbols have underscores for the object
698 file format you are using.
700 @item main.c:main
701 Selects function @samp{main} in file @file{main.c}.
703 @item main.c:134
704 Selects line 134 in file @file{main.c}.
705 @end table
707 @node Output
708 @chapter Interpreting @code{gprof}'s Output
710 @code{gprof} can produce several different output styles, the
711 most important of which are described below.  The simplest output
712 styles (file information, execution count, and function and file ordering)
713 are not described here, but are documented with the respective options
714 that trigger them.
715 @xref{Output Options}.
717 @menu
718 * Flat Profile::        The flat profile shows how much time was spent
719                             executing directly in each function.
720 * Call Graph::          The call graph shows which functions called which
721                             others, and how much time each function used
722                             when its subroutine calls are included.
723 * Line-by-line::        @code{gprof} can analyze individual source code lines
724 * Annotated Source::    The annotated source listing displays source code
725                             labeled with execution counts
726 @end menu
729 @node Flat Profile,Call Graph,,Output
730 @section The Flat Profile
731 @cindex flat profile
733 The @dfn{flat profile} shows the total amount of time your program
734 spent executing each function.  Unless the @samp{-z} option is given,
735 functions with no apparent time spent in them, and no apparent calls
736 to them, are not mentioned.  Note that if a function was not compiled
737 for profiling, and didn't run long enough to show up on the program
738 counter histogram, it will be indistinguishable from a function that
739 was never called.
741 This is part of a flat profile for a small program:
743 @smallexample
744 @group
745 Flat profile:
747 Each sample counts as 0.01 seconds.
748   %   cumulative   self              self     total           
749  time   seconds   seconds    calls  ms/call  ms/call  name    
750  33.34      0.02     0.02     7208     0.00     0.00  open
751  16.67      0.03     0.01      244     0.04     0.12  offtime
752  16.67      0.04     0.01        8     1.25     1.25  memccpy
753  16.67      0.05     0.01        7     1.43     1.43  write
754  16.67      0.06     0.01                             mcount
755   0.00      0.06     0.00      236     0.00     0.00  tzset
756   0.00      0.06     0.00      192     0.00     0.00  tolower
757   0.00      0.06     0.00       47     0.00     0.00  strlen
758   0.00      0.06     0.00       45     0.00     0.00  strchr
759   0.00      0.06     0.00        1     0.00    50.00  main
760   0.00      0.06     0.00        1     0.00     0.00  memcpy
761   0.00      0.06     0.00        1     0.00    10.11  print
762   0.00      0.06     0.00        1     0.00     0.00  profil
763   0.00      0.06     0.00        1     0.00    50.00  report
764 @dots{}
765 @end group
766 @end smallexample
768 @noindent
769 The functions are sorted by first by decreasing run-time spent in them,
770 then by decreasing number of calls, then alphabetically by name.  The
771 functions @samp{mcount} and @samp{profil} are part of the profiling
772 aparatus and appear in every flat profile; their time gives a measure of
773 the amount of overhead due to profiling.
775 Just before the column headers, a statement appears indicating
776 how much time each sample counted as.
777 This @dfn{sampling period} estimates the margin of error in each of the time
778 figures.  A time figure that is not much larger than this is not
779 reliable.  In this example, each sample counted as 0.01 seconds,
780 suggesting a 100 Hz sampling rate.
781 The program's total execution time was 0.06
782 seconds, as indicated by the @samp{cumulative seconds} field.  Since
783 each sample counted for 0.01 seconds, this means only six samples
784 were taken during the run.  Two of the samples occured while the
785 program was in the @samp{open} function, as indicated by the
786 @samp{self seconds} field.  Each of the other four samples
787 occured one each in @samp{offtime}, @samp{memccpy}, @samp{write},
788 and @samp{mcount}.
789 Since only six samples were taken, none of these values can
790 be regarded as particularly reliable.
791 In another run,
792 the @samp{self seconds} field for
793 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
794 @xref{Sampling Error}, for a complete discussion.
796 The remaining functions in the listing (those whose
797 @samp{self seconds} field is @samp{0.00}) didn't appear
798 in the histogram samples at all.  However, the call graph
799 indicated that they were called, so therefore they are listed,
800 sorted in decreasing order by the @samp{calls} field.
801 Clearly some time was spent executing these functions,
802 but the paucity of histogram samples prevents any
803 determination of how much time each took.
805 Here is what the fields in each line mean:
807 @table @code
808 @item % time
809 This is the percentage of the total execution time your program spent
810 in this function.  These should all add up to 100%.
812 @item cumulative seconds
813 This is the cumulative total number of seconds the computer spent
814 executing this functions, plus the time spent in all the functions
815 above this one in this table.
817 @item self seconds
818 This is the number of seconds accounted for by this function alone.
819 The flat profile listing is sorted first by this number.
821 @item calls
822 This is the total number of times the function was called.  If the
823 function was never called, or the number of times it was called cannot
824 be determined (probably because the function was not compiled with
825 profiling enabled), the @dfn{calls} field is blank.
827 @item self ms/call
828 This represents the average number of milliseconds spent in this
829 function per call, if this function is profiled.  Otherwise, this field
830 is blank for this function.
832 @item total ms/call
833 This represents the average number of milliseconds spent in this
834 function and its descendants per call, if this function is profiled.
835 Otherwise, this field is blank for this function.
836 This is the only field in the flat profile that uses call graph analysis.
838 @item name
839 This is the name of the function.   The flat profile is sorted by this
840 field alphabetically after the @dfn{self seconds} and @dfn{calls}
841 fields are sorted.
842 @end table
844 @node Call Graph,Line-by-line,Flat Profile,Output
845 @section The Call Graph
846 @cindex call graph
848 The @dfn{call graph} shows how much time was spent in each function
849 and its children.  From this information, you can find functions that,
850 while they themselves may not have used much time, called other
851 functions that did use unusual amounts of time.
853 Here is a sample call from a small program.  This call came from the
854 same @code{gprof} run as the flat profile example in the previous
855 chapter.
857 @smallexample
858 @group
859 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
861 index % time    self  children    called     name
862                                                  <spontaneous>
863 [1]    100.0    0.00    0.05                 start [1]
864                 0.00    0.05       1/1           main [2]
865                 0.00    0.00       1/2           on_exit [28]
866                 0.00    0.00       1/1           exit [59]
867 -----------------------------------------------
868                 0.00    0.05       1/1           start [1]
869 [2]    100.0    0.00    0.05       1         main [2]
870                 0.00    0.05       1/1           report [3]
871 -----------------------------------------------
872                 0.00    0.05       1/1           main [2]
873 [3]    100.0    0.00    0.05       1         report [3]
874                 0.00    0.03       8/8           timelocal [6]
875                 0.00    0.01       1/1           print [9]
876                 0.00    0.01       9/9           fgets [12]
877                 0.00    0.00      12/34          strncmp <cycle 1> [40]
878                 0.00    0.00       8/8           lookup [20]
879                 0.00    0.00       1/1           fopen [21]
880                 0.00    0.00       8/8           chewtime [24]
881                 0.00    0.00       8/16          skipspace [44]
882 -----------------------------------------------
883 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole>   [4]
884                 0.01        0.02     244+260         offtime <cycle 2> [7]
885                 0.00        0.00     236+1           tzset <cycle 2> [26]
886 -----------------------------------------------
887 @end group
888 @end smallexample
890 The lines full of dashes divide this table into @dfn{entries}, one for each
891 function.  Each entry has one or more lines.
893 In each entry, the primary line is the one that starts with an index number
894 in square brackets.  The end of this line says which function the entry is
895 for.  The preceding lines in the entry describe the callers of this
896 function and the following lines describe its subroutines (also called
897 @dfn{children} when we speak of the call graph).
899 The entries are sorted by time spent in the function and its subroutines.
901 The internal profiling function @code{mcount} (@pxref{Flat Profile})
902 is never mentioned in the call graph.
904 @menu
905 * Primary::       Details of the primary line's contents.
906 * Callers::       Details of caller-lines' contents.
907 * Subroutines::   Details of subroutine-lines' contents.
908 * Cycles::        When there are cycles of recursion,
909                    such as @code{a} calls @code{b} calls @code{a}@dots{}
910 @end menu
912 @node Primary
913 @subsection The Primary Line
915 The @dfn{primary line} in a call graph entry is the line that
916 describes the function which the entry is about and gives the overall
917 statistics for this function.
919 For reference, we repeat the primary line from the entry for function
920 @code{report} in our main example, together with the heading line that
921 shows the names of the fields:
923 @smallexample
924 @group
925 index  % time    self  children called     name
926 @dots{}
927 [3]    100.0    0.00    0.05       1         report [3]
928 @end group
929 @end smallexample
931 Here is what the fields in the primary line mean:
933 @table @code
934 @item index
935 Entries are numbered with consecutive integers.  Each function
936 therefore has an index number, which appears at the beginning of its
937 primary line.
939 Each cross-reference to a function, as a caller or subroutine of
940 another, gives its index number as well as its name.  The index number
941 guides you if you wish to look for the entry for that function.
943 @item % time
944 This is the percentage of the total time that was spent in this
945 function, including time spent in subroutines called from this
946 function.
948 The time spent in this function is counted again for the callers of
949 this function.  Therefore, adding up these percentages is meaningless.
951 @item self
952 This is the total amount of time spent in this function.  This
953 should be identical to the number printed in the @code{seconds} field
954 for this function in the flat profile.
956 @item children
957 This is the total amount of time spent in the subroutine calls made by
958 this function.  This should be equal to the sum of all the @code{self}
959 and @code{children} entries of the children listed directly below this
960 function.
962 @item called
963 This is the number of times the function was called.
965 If the function called itself recursively, there are two numbers,
966 separated by a @samp{+}.  The first number counts non-recursive calls,
967 and the second counts recursive calls.
969 In the example above, the function @code{report} was called once from
970 @code{main}.
972 @item name
973 This is the name of the current function.  The index number is
974 repeated after it.
976 If the function is part of a cycle of recursion, the cycle number is
977 printed between the function's name and the index number
978 (@pxref{Cycles}).  For example, if function @code{gnurr} is part of
979 cycle number one, and has index number twelve, its primary line would
980 be end like this:
982 @example
983 gnurr <cycle 1> [12]
984 @end example
985 @end table
987 @node Callers, Subroutines, Primary, Call Graph
988 @subsection Lines for a Function's Callers
990 A function's entry has a line for each function it was called by.
991 These lines' fields correspond to the fields of the primary line, but
992 their meanings are different because of the difference in context.
994 For reference, we repeat two lines from the entry for the function
995 @code{report}, the primary line and one caller-line preceding it, together
996 with the heading line that shows the names of the fields:
998 @smallexample
999 index  % time    self  children called     name
1000 @dots{}
1001                 0.00    0.05       1/1           main [2]
1002 [3]    100.0    0.00    0.05       1         report [3]
1003 @end smallexample
1005 Here are the meanings of the fields in the caller-line for @code{report}
1006 called from @code{main}:
1008 @table @code
1009 @item self
1010 An estimate of the amount of time spent in @code{report} itself when it was
1011 called from @code{main}.
1013 @item children
1014 An estimate of the amount of time spent in subroutines of @code{report}
1015 when @code{report} was called from @code{main}.
1017 The sum of the @code{self} and @code{children} fields is an estimate
1018 of the amount of time spent within calls to @code{report} from @code{main}.
1020 @item called
1021 Two numbers: the number of times @code{report} was called from @code{main},
1022 followed by the total number of nonrecursive calls to @code{report} from
1023 all its callers.
1025 @item name and index number
1026 The name of the caller of @code{report} to which this line applies,
1027 followed by the caller's index number.
1029 Not all functions have entries in the call graph; some
1030 options to @code{gprof} request the omission of certain functions.
1031 When a caller has no entry of its own, it still has caller-lines
1032 in the entries of the functions it calls.
1034 If the caller is part of a recursion cycle, the cycle number is
1035 printed between the name and the index number.
1036 @end table
1038 If the identity of the callers of a function cannot be determined, a
1039 dummy caller-line is printed which has @samp{<spontaneous>} as the
1040 ``caller's name'' and all other fields blank.  This can happen for
1041 signal handlers.
1042 @c What if some calls have determinable callers' names but not all?
1043 @c FIXME - still relevant?
1045 @node Subroutines, Cycles, Callers, Call Graph
1046 @subsection Lines for a Function's Subroutines
1048 A function's entry has a line for each of its subroutines---in other
1049 words, a line for each other function that it called.  These lines'
1050 fields correspond to the fields of the primary line, but their meanings
1051 are different because of the difference in context.
1053 For reference, we repeat two lines from the entry for the function
1054 @code{main}, the primary line and a line for a subroutine, together
1055 with the heading line that shows the names of the fields:
1057 @smallexample
1058 index  % time    self  children called     name
1059 @dots{}
1060 [2]    100.0    0.00    0.05       1         main [2]
1061                 0.00    0.05       1/1           report [3]
1062 @end smallexample
1064 Here are the meanings of the fields in the subroutine-line for @code{main}
1065 calling @code{report}:
1067 @table @code
1068 @item self
1069 An estimate of the amount of time spent directly within @code{report}
1070 when @code{report} was called from @code{main}.
1072 @item children
1073 An estimate of the amount of time spent in subroutines of @code{report}
1074 when @code{report} was called from @code{main}.
1076 The sum of the @code{self} and @code{children} fields is an estimate
1077 of the total time spent in calls to @code{report} from @code{main}.
1079 @item called
1080 Two numbers, the number of calls to @code{report} from @code{main}
1081 followed by the total number of nonrecursive calls to @code{report}.
1082 This ratio is used to determine how much of @code{report}'s @code{self}
1083 and @code{children} time gets credited to @code{main}.
1084 @xref{Assumptions}.
1086 @item name
1087 The name of the subroutine of @code{main} to which this line applies,
1088 followed by the subroutine's index number.
1090 If the caller is part of a recursion cycle, the cycle number is
1091 printed between the name and the index number.
1092 @end table
1094 @node Cycles,, Subroutines, Call Graph
1095 @subsection How Mutually Recursive Functions Are Described
1096 @cindex cycle
1097 @cindex recursion cycle
1099 The graph may be complicated by the presence of @dfn{cycles of
1100 recursion} in the call graph.  A cycle exists if a function calls
1101 another function that (directly or indirectly) calls (or appears to
1102 call) the original function.  For example: if @code{a} calls @code{b},
1103 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1105 Whenever there are call paths both ways between a pair of functions, they
1106 belong to the same cycle.  If @code{a} and @code{b} call each other and
1107 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1108 even if @code{b} only calls @code{a} if it was not called from @code{a},
1109 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1110 considered a cycle.
1112 The cycles are numbered with consecutive integers.  When a function
1113 belongs to a cycle, each time the function name appears in the call graph
1114 it is followed by @samp{<cycle @var{number}>}.
1116 The reason cycles matter is that they make the time values in the call
1117 graph paradoxical.  The ``time spent in children'' of @code{a} should
1118 include the time spent in its subroutine @code{b} and in @code{b}'s
1119 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1120 @code{a}'s time should be included in the children of @code{a}, when
1121 @code{a} is indirectly recursive?
1123 The way @code{gprof} resolves this paradox is by creating a single entry
1124 for the cycle as a whole.  The primary line of this entry describes the
1125 total time spent directly in the functions of the cycle.  The
1126 ``subroutines'' of the cycle are the individual functions of the cycle, and
1127 all other functions that were called directly by them.  The ``callers'' of
1128 the cycle are the functions, outside the cycle, that called functions in
1129 the cycle.
1131 Here is an example portion of a call graph which shows a cycle containing
1132 functions @code{a} and @code{b}.  The cycle was entered by a call to
1133 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1135 @smallexample
1136 index  % time    self  children called     name
1137 ----------------------------------------
1138                  1.77        0    1/1        main [2]
1139 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1140                  1.02        0    3          b <cycle 1> [4]
1141                  0.75        0    2          a <cycle 1> [5]
1142 ----------------------------------------
1143                                   3          a <cycle 1> [5]
1144 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1145                                   2          a <cycle 1> [5]
1146                     0        0    3/6        c [6]
1147 ----------------------------------------
1148                  1.77        0    1/1        main [2]
1149                                   2          b <cycle 1> [4]
1150 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1151                                   3          b <cycle 1> [4]
1152                     0        0    3/6        c [6]
1153 ----------------------------------------
1154 @end smallexample
1156 @noindent
1157 (The entire call graph for this program contains in addition an entry for
1158 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1159 @code{a} and @code{b}.)
1161 @smallexample
1162 index  % time    self  children called     name
1163                                              <spontaneous>
1164 [1]    100.00       0     1.93    0      start [1]
1165                  0.16     1.77    1/1        main [2]
1166 ----------------------------------------
1167                  0.16     1.77    1/1        start [1]
1168 [2]    100.00    0.16     1.77    1      main [2]
1169                  1.77        0    1/1        a <cycle 1> [5]
1170 ----------------------------------------
1171                  1.77        0    1/1        main [2]
1172 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1173                  1.02        0    3          b <cycle 1> [4]
1174                  0.75        0    2          a <cycle 1> [5]
1175                     0        0    6/6        c [6]
1176 ----------------------------------------
1177                                   3          a <cycle 1> [5]
1178 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1179                                   2          a <cycle 1> [5]
1180                     0        0    3/6        c [6]
1181 ----------------------------------------
1182                  1.77        0    1/1        main [2]
1183                                   2          b <cycle 1> [4]
1184 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1185                                   3          b <cycle 1> [4]
1186                     0        0    3/6        c [6]
1187 ----------------------------------------
1188                     0        0    3/6        b <cycle 1> [4]
1189                     0        0    3/6        a <cycle 1> [5]
1190 [6]      0.00       0        0    6      c [6]
1191 ----------------------------------------
1192 @end smallexample
1194 The @code{self} field of the cycle's primary line is the total time
1195 spent in all the functions of the cycle.  It equals the sum of the
1196 @code{self} fields for the individual functions in the cycle, found
1197 in the entry in the subroutine lines for these functions.
1199 The @code{children} fields of the cycle's primary line and subroutine lines
1200 count only subroutines outside the cycle.  Even though @code{a} calls
1201 @code{b}, the time spent in those calls to @code{b} is not counted in
1202 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1203 what to do when the time in those calls to @code{b} includes indirect
1204 recursive calls back to @code{a}.
1206 The @code{children} field of a caller-line in the cycle's entry estimates
1207 the amount of time spent @emph{in the whole cycle}, and its other
1208 subroutines, on the times when that caller called a function in the cycle.
1210 The @code{calls} field in the primary line for the cycle has two numbers:
1211 first, the number of times functions in the cycle were called by functions
1212 outside the cycle; second, the number of times they were called by
1213 functions in the cycle (including times when a function in the cycle calls
1214 itself).  This is a generalization of the usual split into nonrecursive and
1215 recursive calls.
1217 The @code{calls} field of a subroutine-line for a cycle member in the
1218 cycle's entry says how many time that function was called from functions in
1219 the cycle.  The total of all these is the second number in the primary line's
1220 @code{calls} field.
1222 In the individual entry for a function in a cycle, the other functions in
1223 the same cycle can appear as subroutines and as callers.  These lines show
1224 how many times each function in the cycle called or was called from each other
1225 function in the cycle.  The @code{self} and @code{children} fields in these
1226 lines are blank because of the difficulty of defining meanings for them
1227 when recursion is going on.
1229 @node Line-by-line,Annotated Source,Call Graph,Output
1230 @section Line-by-line Profiling
1232 @code{gprof}'s @samp{-l} option causes the program to perform
1233 @dfn{line-by-line} profiling.  In this mode, histogram
1234 samples are assigned not to functions, but to individual
1235 lines of source code.  The program usually must be compiled
1236 with a @samp{-g} option, in addition to @samp{-pg}, in order
1237 to generate debugging symbols for tracking source code lines.
1239 The flat profile is the most useful output table
1240 in line-by-line mode.
1241 The call graph isn't as useful as normal, since
1242 the current version of @code{gprof} does not propagate
1243 call graph arcs from source code lines to the enclosing function.
1244 The call graph does, however, show each line of code
1245 that called each function, along with a count.
1247 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1248 Note that @code{ct_init} accounted for four histogram hits, and
1249 13327 calls to @code{init_block}.
1251 @smallexample
1252 Flat profile:
1254 Each sample counts as 0.01 seconds.
1255   %   cumulative   self              self     total           
1256  time   seconds   seconds    calls  us/call  us/call  name    
1257  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1260                      Call graph (explanation follows)
1263 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1265 index % time    self  children    called     name
1267                 0.00    0.00       1/13496       name_too_long
1268                 0.00    0.00      40/13496       deflate
1269                 0.00    0.00     128/13496       deflate_fast
1270                 0.00    0.00   13327/13496       ct_init
1271 [7]      0.0    0.00    0.00   13496         init_block
1273 @end smallexample
1275 Now let's look at some of @code{gprof}'s output from the same program run,
1276 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1277 four histogram hits are broken down into four lines of source code - one hit
1278 occured on each of lines 349, 351, 382 and 385.  In the call graph,
1279 note how
1280 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1281 into one call from line 396, 3071 calls from line 384, 3730 calls
1282 from line 385, and 6525 calls from 387.
1284 @smallexample
1285 Flat profile:
1287 Each sample counts as 0.01 seconds.
1288   %   cumulative   self                    
1289  time   seconds   seconds    calls  name    
1290   7.69      0.10     0.01           ct_init (trees.c:349)
1291   7.69      0.11     0.01           ct_init (trees.c:351)
1292   7.69      0.12     0.01           ct_init (trees.c:382)
1293   7.69      0.13     0.01           ct_init (trees.c:385)
1296                      Call graph (explanation follows)
1299 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1301   % time    self  children    called     name
1303             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1304             0.00    0.00       1/13496       deflate (deflate.c:763)
1305             0.00    0.00       1/13496       ct_init (trees.c:396)
1306             0.00    0.00       2/13496       deflate (deflate.c:727)
1307             0.00    0.00       4/13496       deflate (deflate.c:686)
1308             0.00    0.00       5/13496       deflate (deflate.c:675)
1309             0.00    0.00      12/13496       deflate (deflate.c:679)
1310             0.00    0.00      16/13496       deflate (deflate.c:730)
1311             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1312             0.00    0.00    3071/13496       ct_init (trees.c:384)
1313             0.00    0.00    3730/13496       ct_init (trees.c:385)
1314             0.00    0.00    6525/13496       ct_init (trees.c:387)
1315 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1317 @end smallexample
1320 @node Annotated Source,,Line-by-line,Output
1321 @section The Annotated Source Listing
1323 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1324 which lists the program's source code, each function labeled with the
1325 number of times it was called.  You may also need to specify the
1326 @samp{-I} option, if @code{gprof} can't find the source code files.
1328 Compiling with @samp{gcc @dots{} -g -pg -a} augments your program
1329 with basic-block counting code, in addition to function counting code.
1330 This enables @code{gprof} to determine how many times each line
1331 of code was exeucted.
1332 For example, consider the following function, taken from gzip,
1333 with line numbers added:
1335 @smallexample
1336  1 ulg updcrc(s, n)
1337  2     uch *s;
1338  3     unsigned n;
1339  4 @{
1340  5     register ulg c;
1342  7     static ulg crc = (ulg)0xffffffffL;
1344  9     if (s == NULL) @{
1345 10         c = 0xffffffffL;
1346 11     @} else @{
1347 12         c = crc;
1348 13         if (n) do @{
1349 14             c = crc_32_tab[...];
1350 15         @} while (--n);
1351 16     @}
1352 17     crc = c;
1353 18     return c ^ 0xffffffffL;
1354 19 @}
1356 @end smallexample
1358 @code{updcrc} has at least five basic-blocks.
1359 One is the function itself.  The
1360 @code{if} statement on line 9 generates two more basic-blocks, one
1361 for each branch of the @code{if}.  A fourth basic-block results from
1362 the @code{if} on line 13, and the contents of the @code{do} loop form
1363 the fifth basic-block.  The compiler may also generate additional
1364 basic-blocks to handle various special cases.
1366 A program augmented for basic-block counting can be analyzed with
1367 @code{gprof -l -A}.  I also suggest use of the @samp{-x} option,
1368 which ensures that each line of code is labeled at least once.
1369 Here is @code{updcrc}'s
1370 annotated source listing for a sample @code{gzip} run:
1372 @smallexample
1373                 ulg updcrc(s, n)
1374                     uch *s;
1375                     unsigned n;
1376             2 ->@{
1377                     register ulg c;
1378                 
1379                     static ulg crc = (ulg)0xffffffffL;
1380                 
1381             2 ->    if (s == NULL) @{
1382             1 ->        c = 0xffffffffL;
1383             1 ->    @} else @{
1384             1 ->        c = crc;
1385             1 ->        if (n) do @{
1386         26312 ->            c = crc_32_tab[...];
1387 26312,1,26311 ->        @} while (--n);
1388                     @}
1389             2 ->    crc = c;
1390             2 ->    return c ^ 0xffffffffL;
1391             2 ->@}
1392 @end smallexample
1394 In this example, the function was called twice, passing once through
1395 each branch of the @code{if} statement.  The body of the @code{do}
1396 loop was executed a total of 26312 times.  Note how the @code{while}
1397 statement is annotated.  It began execution 26312 times, once for
1398 each iteration through the loop.  One of those times (the last time)
1399 it exited, while it branched back to the beginning of the loop 26311 times.
1401 @node Inaccuracy
1402 @chapter Inaccuracy of @code{gprof} Output
1404 @menu
1405 * Sampling Error::      Statistical margins of error
1406 * Assumptions::         Estimating children times
1407 @end menu
1409 @node Sampling Error,Assumptions,,Inaccuracy
1410 @section Statistical Sampling Error
1412 The run-time figures that @code{gprof} gives you are based on a sampling
1413 process, so they are subject to statistical inaccuracy.  If a function runs
1414 only a small amount of time, so that on the average the sampling process
1415 ought to catch that function in the act only once, there is a pretty good
1416 chance it will actually find that function zero times, or twice.
1418 By contrast, the number-of-calls and basic-block figures
1419 are derived by counting, not
1420 sampling.  They are completely accurate and will not vary from run to run
1421 if your program is deterministic.
1423 The @dfn{sampling period} that is printed at the beginning of the flat
1424 profile says how often samples are taken.  The rule of thumb is that a
1425 run-time figure is accurate if it is considerably bigger than the sampling
1426 period.
1428 The actual amount of error can be predicted.
1429 For @var{n} samples, the @emph{expected} error
1430 is the square-root of @var{n}.  For example,
1431 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1432 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1433 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1434 or ten percent of the observed value.
1435 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1436 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1437 the expected error in @code{bar}'s run-time is 1 second,
1438 or one percent of the observed value.
1439 It is likely to
1440 vary this much @emph{on the average} from one profiling run to the next.
1441 (@emph{Sometimes} it will vary more.)
1443 This does not mean that a small run-time figure is devoid of information.
1444 If the program's @emph{total} run-time is large, a small run-time for one
1445 function does tell you that that function used an insignificant fraction of
1446 the whole program's time.  Usually this means it is not worth optimizing.
1448 One way to get more accuracy is to give your program more (but similar)
1449 input data so it will take longer.  Another way is to combine the data from
1450 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1452 @enumerate
1453 @item
1454 Run your program once.
1456 @item
1457 Issue the command @samp{mv gmon.out gmon.sum}.
1459 @item
1460 Run your program again, the same as before.
1462 @item
1463 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1465 @example
1466 gprof -s @var{executable-file} gmon.out gmon.sum
1467 @end example
1469 @item
1470 Repeat the last two steps as often as you wish.
1472 @item
1473 Analyze the cumulative data using this command:
1475 @example
1476 gprof @var{executable-file} gmon.sum > @var{output-file}
1477 @end example
1478 @end enumerate
1480 @node Assumptions,,Sampling Error,Inaccuracy
1481 @section Estimating @code{children} Times
1483 Some of the figures in the call graph are estimates---for example, the
1484 @code{children} time values and all the the time figures in caller and
1485 subroutine lines.
1487 There is no direct information about these measurements in the profile
1488 data itself.  Instead, @code{gprof} estimates them by making an assumption
1489 about your program that might or might not be true.
1491 The assumption made is that the average time spent in each call to any
1492 function @code{foo} is not correlated with who called @code{foo}.  If
1493 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1494 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1495 @code{children} time, by assumption.
1497 This assumption is usually true enough, but for some programs it is far
1498 from true.  Suppose that @code{foo} returns very quickly when its argument
1499 is zero; suppose that @code{a} always passes zero as an argument, while
1500 other callers of @code{foo} pass other arguments.  In this program, all the
1501 time spent in @code{foo} is in the calls from callers other than @code{a}.
1502 But @code{gprof} has no way of knowing this; it will blindly and
1503 incorrectly charge 2 seconds of time in @code{foo} to the children of
1504 @code{a}.
1506 @c FIXME - has this been fixed?
1507 We hope some day to put more complete data into @file{gmon.out}, so that
1508 this assumption is no longer needed, if we can figure out how.  For the
1509 nonce, the estimated figures are usually more useful than misleading.
1511 @node How do I?
1512 @chapter Answers to Common Questions
1514 @table @asis
1515 @item How do I find which lines in my program were executed the most times?
1517 Compile your program with basic-block counting enabled, run it, then
1518 use the following pipeline:
1520 @example
1521 gprof -l -C @var{objfile} | sort -k 3 -n -r
1522 @end example
1524 This listing will show you the lines in your code executed most often,
1525 but not necessarily those that consumed the most time.
1527 @item How do I find which lines in my program called a particular function?
1529 Use @code{gprof -l} and lookup the function in the call graph.
1530 The callers will be broken down by function and line number.
1532 @item How do I analyze a program that runs for less than a second?
1534 Try using a shell script like this one:
1536 @example
1537 for i in `seq 1 100`; do
1538   fastprog
1539   mv gmon.out gmon.out.$i
1540 done
1542 gprof -s fastprog gmon.out.*
1544 gprof fastprog gmon.sum
1545 @end example
1547 If your program is completely deterministic, all the call counts
1548 will be simple multiples of 100 (i.e. a function called once in
1549 each run will appear with a call count of 100).
1551 @end table
1553 @node Incompatibilities
1554 @chapter Incompatibilities with Unix @code{gprof}
1556 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1557 file @file{gmon.out}, and provide essentially the same information.  But
1558 there are a few differences.
1560 @itemize @bullet
1561 @item
1562 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1563 for basic-block execution counts and non-realtime histograms.  A magic
1564 cookie and version number allows @code{gprof} to easily identify
1565 new style files.  Old BSD-style files can still be read.
1566 @xref{File Format}.
1568 @item
1569 For a recursive function, Unix @code{gprof} lists the function as a
1570 parent and as a child, with a @code{calls} field that lists the number
1571 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1572 the number of recursive calls in the primary line.
1574 @item
1575 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1576 @code{gprof} still lists it as a subroutine of functions that call it.
1578 @item
1579 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1580 in the form @samp{from/to}, instead of @samp{from to}.
1582 @item
1583 In the annotated source listing,
1584 if there are multiple basic blocks on the same line,
1585 @sc{gnu} @code{gprof} prints all of their counts, seperated by commas.
1587 @ignore - it does this now
1588 @item
1589 The function names printed in @sc{gnu} @code{gprof} output do not include
1590 the leading underscores that are added internally to the front of all
1591 C identifiers on many operating systems.
1592 @end ignore
1594 @item
1595 The blurbs, field widths, and output formats are different.  @sc{gnu}
1596 @code{gprof} prints blurbs after the tables, so that you can see the
1597 tables without skipping the blurbs.
1598 @end itemize
1600 @node Details
1601 @chapter Details of Profiling
1603 @menu
1604 * Implementation::      How a program collets profiling information
1605 * File Format::         Format of @samp{gmon.out} files
1606 * Internals::           @code{gprof}'s internal operation
1607 * Debugging::           Using @code{gprof}'s @samp{-d} option
1608 @end menu
1610 @node Implementation,File Format,,Details
1611 @section Implementation of Profiling
1613 Profiling works by changing how every function in your program is compiled
1614 so that when it is called, it will stash away some information about where
1615 it was called from.  From this, the profiler can figure out what function
1616 called it, and can count how many times it was called.  This change is made
1617 by the compiler when your program is compiled with the @samp{-pg} option,
1618 which causes every function to call @code{mcount}
1619 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1620 as one of its first operations.
1622 The @code{mcount} routine, included in the profiling library,
1623 is responsible for recording in an in-memory call graph table
1624 both its parent routine (the child) and its parent's parent.  This is
1625 typically done by examining the stack frame to find both
1626 the address of the child, and the return address in the original parent.
1627 Since this is a very machine-dependant operation, @code{mcount}
1628 itself is typically a short assembly-language stub routine
1629 that extracts the required
1630 information, and then calls @code{__mcount_internal}
1631 (a normal C function) with two arguments - @code{frompc} and @code{selfpc}.
1632 @code{__mcount_internal} is responsible for maintaining
1633 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1634 and the number of times each of these call arcs was transversed.
1636 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1637 which allows a generic @code{mcount} function to extract the
1638 required information from the stack frame.  However, on some
1639 architectures, most notably the SPARC, using this builtin can be
1640 very computationally expensive, and an assembly language version
1641 of @code{mcount} is used for performance reasons.
1643 Number-of-calls information for library routines is collected by using a
1644 special version of the C library.  The programs in it are the same as in
1645 the usual C library, but they were compiled with @samp{-pg}.  If you
1646 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1647 profiling version of the library.
1649 Profiling also involves watching your program as it runs, and keeping a
1650 histogram of where the program counter happens to be every now and then.
1651 Typically the program counter is looked at around 100 times per second of
1652 run time, but the exact frequency may vary from system to system.
1654 This is done is one of two ways.  Most UNIX-like operating systems
1655 provide a @code{profil()} system call, which registers a memory
1656 array with the kernel, along with a scale
1657 factor that determines how the program's address space maps
1658 into the array.
1659 Typical scaling values cause every 2 to 8 bytes of address space
1660 to map into a single array slot.
1661 On every tick of the system clock
1662 (assuming the profiled program is running), the value of the
1663 program counter is examined and the corresponding slot in
1664 the memory array is incremented.  Since this is done in the kernel,
1665 which had to interrupt the process anyway to handle the clock
1666 interrupt, very little additional system overhead is required.
1668 However, some operating systems, most notably Linux 2.0 (and earlier),
1669 do not provide a @code{profil()} system call.  On such a system,
1670 arrangements are made for the kernel to periodically deliver
1671 a signal to the process (typically via @code{setitimer()}),
1672 which then performs the same operation of examining the
1673 program counter and incrementing a slot in the memory array.
1674 Since this method requires a signal to be delivered to
1675 user space every time a sample is taken, it uses considerably
1676 more overhead than kernel-based profiling.  Also, due to the
1677 added delay required to deliver the signal, this method is
1678 less accurate as well.
1680 A special startup routine allocates memory for the histogram and 
1681 either calls @code{profil()} or sets up
1682 a clock signal handler.
1683 This routine (@code{monstartup}) can be invoked in several ways.
1684 On Linux systems, a special profiling startup file @code{gcrt0.o},
1685 which invokes @code{monstartup} before @code{main},
1686 is used instead of the default @code{crt0.o}.
1687 Use of this special startup file is one of the effects
1688 of using @samp{gcc @dots{} -pg} to link.
1689 On SPARC systems, no special startup files are used.
1690 Rather, the @code{mcount} routine, when it is invoked for
1691 the first time (typically when @code{main} is called),
1692 calls @code{monstartup}.
1694 If the compiler's @samp{-a} option was used, basic-block counting
1695 is also enabled.  Each object file is then compiled with a static array
1696 of counts, initially zero.
1697 In the executable code, every time a new basic-block begins
1698 (i.e. when an @code{if} statement appears), an extra instruction
1699 is inserted to increment the corresponding count in the array.
1700 At compile time, a paired array was constructed that recorded
1701 the starting address of each basic-block.  Taken together,
1702 the two arrays record the starting address of every basic-block,
1703 along with the number of times it was executed.
1705 The profiling library also includes a function (@code{mcleanup}) which is
1706 typically registered using @code{atexit()} to be called as the
1707 program exits, and is responsible for writing the file @file{gmon.out}.
1708 Profiling is turned off, various headers are output, and the histogram
1709 is written, followed by the call-graph arcs and the basic-block counts.
1711 The output from @code{gprof} gives no indication of parts of your program that
1712 are limited by I/O or swapping bandwidth.  This is because samples of the
1713 program counter are taken at fixed intervals of the program's run time.
1714 Therefore, the
1715 time measurements in @code{gprof} output say nothing about time that your
1716 program was not running.  For example, a part of the program that creates
1717 so much data that it cannot all fit in physical memory at once may run very
1718 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1719 the other hand, sampling by run time has the advantage that the amount of
1720 load due to other users won't directly affect the output you get.
1722 @node File Format,Internals,Implementation,Details
1723 @section Profiling Data File Format
1725 The old BSD-derived file format used for profile data does not contain a
1726 magic cookie that allows to check whether a data file really is a
1727 gprof file.  Furthermore, it does not provide a version number, thus
1728 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1729 uses a new file format that provides these features.  For backward
1730 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1731 format, but not all features are supported with it.  For example,
1732 basic-block execution counts cannot be accommodated by the old file
1733 format.
1735 The new file format is defined in header file @file{gmon_out.h}.  It
1736 consists of a header containing the magic cookie and a version number,
1737 as well as some spare bytes available for future extensions.  All data
1738 in a profile data file is in the native format of the host on which
1739 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically to the
1740 byte-order in use.
1742 In the new file format, the header is followed by a sequence of
1743 records.  Currently, there are three different record types: histogram
1744 records, call-graph arc records, and basic-block execution count
1745 records.  Each file can contain any number of each record type.  When
1746 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1747 compatible with each other and compute the union of all records.  For
1748 example, for basic-block execution counts, the union is simply the sum
1749 of all execution counts for each basic-block.
1751 @subsection Histogram Records
1753 Histogram records consist of a header that is followed by an array of
1754 bins.  The header contains the text-segment range that the histogram
1755 spans, the size of the histogram in bytes (unlike in the old BSD
1756 format, this does not include the size of the header), the rate of the
1757 profiling clock, and the physical dimension that the bin counts
1758 represent after being scaled by the profiling clock rate.  The
1759 physical dimension is specified in two parts: a long name of up to 15
1760 characters and a single character abbreviation.  For example, a
1761 histogram representing real-time would specify the long name as
1762 "seconds" and the abbreviation as "s".  This feature is useful for
1763 architectures that support performance monitor hardware (which,
1764 fortunately, is becoming increasingly common).  For example, under DEC
1765 OSF/1, the "uprofile" command can be used to produce a histogram of,
1766 say, instruction cache misses.  In this case, the dimension in the
1767 histogram header could be set to "i-cache misses" and the abbreviation
1768 could be set to "1" (because it is simply a count, not a physical
1769 dimension).  Also, the profiling rate would have to be set to 1 in
1770 this case.
1772 Histogram bins are 16-bit numbers and each bin represent an equal
1773 amount of text-space.  For example, if the text-segment is one
1774 thousand bytes long and if there are ten bins in the histogram, each
1775 bin represents one hundred bytes.
1778 @subsection Call-Graph Records
1780 Call-graph records have a format that is identical to the one used in
1781 the BSD-derived file format.  It consists of an arc in the call graph
1782 and a count indicating the number of times the arc was traversed
1783 during program execution.  Arcs are specified by a pair of addresses:
1784 the first must be within caller's function and the second must be
1785 within the callee's function.  When performing profiling at the
1786 function level, these addresses can point anywhere within the
1787 respective function.  However, when profiling at the line-level, it is
1788 better if the addresses are as close to the call-site/entry-point as
1789 possible.  This will ensure that the line-level call-graph is able to
1790 identify exactly which line of source code performed calls to a
1791 function.
1793 @subsection Basic-Block Execution Count Records
1795 Basic-block execution count records consist of a header followed by a
1796 sequence of address/count pairs.  The header simply specifies the
1797 length of the sequence.  In an address/count pair, the address
1798 identifies a basic-block and the count specifies the number of times
1799 that basic-block was executed.  Any address within the basic-address can
1800 be used.
1802 @node Internals,Debugging,File Format,Details
1803 @section @code{gprof}'s Internal Operation
1805 Like most programs, @code{gprof} begins by processing its options.
1806 During this stage, it may building its symspec list
1807 (@code{sym_ids.c:sym_id_add}), if
1808 options are specified which use symspecs.
1809 @code{gprof} maintains a single linked list of symspecs,
1810 which will eventually get turned into 12 symbol tables,
1811 organized into six include/exclude pairs - one
1812 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
1813 the call graph arcs (INCL_ARCS/EXCL_ARCS),
1814 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
1815 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
1816 the annotated source listing (INCL_ANNO/EXCL_ANNO),
1817 and the execution count listing (INCL_EXEC/EXCL_EXEC).
1819 After option processing, @code{gprof} finishes
1820 building the symspec list by adding all the symspecs in
1821 @code{default_excluded_list} to the exclude lists
1822 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
1823 EXCL_FLAT as well.
1824 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
1826 Next, the BFD library is called to open the object file,
1827 verify that it is an object file,
1828 and read its symbol table (@code{core.c:core_init}),
1829 using @code{bfd_canonicalize_symtab} after mallocing
1830 an appropiate sized array of asymbols.  At this point,
1831 function mappings are read (if the @samp{--file-ordering} option
1832 has been specified), and the core text space is read into
1833 memory (if the @samp{-c} option was given).
1835 @code{gprof}'s own symbol table, an array of Sym structures,
1836 is now built.
1837 This is done in one of two ways, by one of two routines, depending
1838 on whether line-by-line profiling (@samp{-l} option) has been
1839 enabled.
1840 For normal profiling, the BFD canonical symbol table is scanned.
1841 For line-by-line profiling, every
1842 text space address is examined, and a new symbol table entry
1843 gets created every time the line number changes.
1844 In either case, two passes are made through the symbol
1845 table - one to count the size of the symbol table required,
1846 and the other to actually read the symbols.  In between the
1847 two passes, a single array of type @code{Sym} is created of
1848 the appropiate length.
1849 Finally, @code{symtab.c:symtab_finalize}
1850 is called to sort the symbol table and remove duplicate entries
1851 (entries with the same memory address).
1853 The symbol table must be a contiguous array for two reasons.
1854 First, the @code{qsort} library function (which sorts an array)
1855 will be used to sort the symbol table.
1856 Also, the symbol lookup routine (@code{symtab.c:sym_lookup}),
1857 which finds symbols
1858 based on memory address, uses a binary search algorithm
1859 which requires the symbol table to be a sorted array.
1860 Function symbols are indicated with an @code{is_func} flag.
1861 Line number symbols have no special flags set.
1862 Additionally, a symbol can have an @code{is_static} flag
1863 to indicate that it is a local symbol.
1865 With the symbol table read, the symspecs can now be translated
1866 into Syms (@code{sym_ids.c:sym_id_parse}).  Remember that a single
1867 symspec can match multiple symbols.
1868 An array of symbol tables
1869 (@code{syms}) is created, each entry of which is a symbol table
1870 of Syms to be included or excluded from a particular listing.
1871 The master symbol table and the symspecs are examined by nested
1872 loops, and every symbol that matches a symspec is inserted
1873 into the appropriate syms table.  This is done twice, once to
1874 count the size of each required symbol table, and again to build
1875 the tables, which have been malloced between passes.
1876 From now on, to determine whether a symbol is on an include
1877 or exclude symspec list, @code{gprof} simply uses its
1878 standard symbol lookup routine on the appropriate table
1879 in the @code{syms} array.
1881 Now the profile data file(s) themselves are read
1882 (@code{gmon_io.c:gmon_out_read}),
1883 first by checking for a new-style @samp{gmon.out} header,
1884 then assuming this is an old-style BSD @samp{gmon.out}
1885 if the magic number test failed.
1887 New-style histogram records are read by @code{hist.c:hist_read_rec}.
1888 For the first histogram record, allocate a memory array to hold
1889 all the bins, and read them in.
1890 When multiple profile data files (or files with multiple histogram
1891 records) are read, the starting address, ending address, number
1892 of bins and sampling rate must match between the various histograms,
1893 or a fatal error will result.
1894 If everything matches, just sum the additional histograms into
1895 the existing in-memory array.
1897 As each call graph record is read (@code{call_graph.c:cg_read_rec}),
1898 the parent and child addresses
1899 are matched to symbol table entries, and a call graph arc is
1900 created by @code{cg_arcs.c:arc_add}, unless the arc fails a symspec
1901 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
1902 a linked list is maintained of the parent's child arcs, and of the child's
1903 parent arcs.
1904 Both the child's call count and the arc's call count are
1905 incremented by the record's call count.
1907 Basic-block records are read (@code{basic_blocks.c:bb_read_rec}),
1908 but only if line-by-line profiling has been selected.
1909 Each basic-block address is matched to a corresponding line
1910 symbol in the symbol table, and an entry made in the symbol's
1911 bb_addr and bb_calls arrays.  Again, if multiple basic-block
1912 records are present for the same address, the call counts
1913 are cumulative.
1915 A gmon.sum file is dumped, if requested (@code{gmon_io.c:gmon_out_write}).
1917 If histograms were present in the data files, assign them to symbols
1918 (@code{hist.c:hist_assign_samples}) by iterating over all the sample
1919 bins and assigning them to symbols.  Since the symbol table
1920 is sorted in order of ascending memory addresses, we can
1921 simple follow along in the symbol table as we make our pass
1922 over the sample bins.
1923 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
1924 Depending on the histogram
1925 scale factor, a sample bin may span multiple symbols,
1926 in which case a fraction of the sample count is allocated
1927 to each symbol, proportional to the degree of overlap.
1928 This effect is rare for normal profiling, but overlaps
1929 are more common during line-by-line profiling, and can
1930 cause each of two adjacent lines to be credited with half
1931 a hit, for example.
1933 If call graph data is present, @code{cg_arcs.c:cg_assemble} is called.
1934 First, if @samp{-c} was specified, a machine-dependant
1935 routine (@code{find_call}) scans through each symbol's machine code,
1936 looking for subroutine call instructions, and adding them
1937 to the call graph with a zero call count.
1938 A topological sort is performed by depth-first numbering
1939 all the symbols (@code{cg_dfn.c:cg_dfn}), so that
1940 children are always numbered less than their parents,
1941 then making a array of pointers into the symbol table and sorting it into
1942 numerical order, which is reverse topological
1943 order (children appear before parents).
1944 Cycles are also detected at this point, all members
1945 of which are assigned the same topological number.
1946 Two passes are now made through this sorted array of symbol pointers.
1947 The first pass, from end to beginning (parents to children),
1948 computes the fraction of child time to propogate to each parent
1949 and a print flag.
1950 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
1951 with a parent's include or exclude (print or no print) property
1952 being propagated to its children, unless they themselves explicitly appear
1953 in INCL_GRAPH or EXCL_GRAPH.
1954 A second pass, from beginning to end (children to parents) actually
1955 propogates the timings along the call graph, subject
1956 to a check against INCL_TIME/EXCL_TIME.
1957 With the print flag, fractions, and timings now stored in the symbol
1958 structures, the topological sort array is now discarded, and a
1959 new array of pointers is assembled, this time sorted by propagated time.
1961 Finally, print the various outputs the user requested, which is now fairly
1962 straightforward.  The call graph (@code{cg_print.c:cg_print}) and
1963 flat profile (@code{hist.c:hist_print}) are regurgitations of values
1964 already computed.  The annotated source listing
1965 (@code{basic_blocks.c:print_annotated_source}) uses basic-block
1966 information, if present, to label each line of code with call counts,
1967 otherwise only the function call counts are presented.
1969 The function ordering code is marginally well documented
1970 in the source code itself (@code{cg_print.c}).  Basically,
1971 the functions with the most use and the most parents are
1972 placed first, followed by other functions with the most use,
1973 followed by lower use functions, followed by unused functions
1974 at the end.
1976 @node Debugging,,Internals,Details
1977 @subsection Debugging @code{gprof}
1979 If @code{gprof} was compiled with debugging enabled,
1980 the @samp{-d} option triggers debugging output
1981 (to stdout) which can be helpful in understanding its operation.
1982 The debugging number specified is interpreted as a sum of the following
1983 options:
1985 @table @asis
1986 @item 2 - Topological sort
1987 Monitor depth-first numbering of symbols during call graph analysis
1988 @item 4 - Cycles
1989 Shows symbols as they are identified as cycle heads
1990 @item 16 - Tallying
1991 As the call graph arcs are read, show each arc and how
1992 the total calls to each function are tallied
1993 @item 32 - Call graph arc sorting
1994 Details sorting individual parents/children within each call graph entry
1995 @item 64 - Reading histogram and call graph records
1996 Shows address ranges of histograms as they are read, and each
1997 call graph arc
1998 @item 128 - Symbol table
1999 Reading, classifying, and sorting the symbol table from the object file.
2000 For line-by-line profiling (@samp{-l} option), also shows line numbers
2001 being assigned to memory addresses.
2002 @item 256 - Static call graph
2003 Trace operation of @samp{-c} option
2004 @item 512 - Symbol table and arc table lookups
2005 Detail operation of lookup routines
2006 @item 1024 - Call graph propagation
2007 Shows how function times are propagated along the call graph
2008 @item 2048 - Basic-blocks
2009 Shows basic-block records as they are read from profile data
2010 (only meaningful with @samp{-l} option)
2011 @item 4096 - Symspecs
2012 Shows symspec-to-symbol pattern matching operation
2013 @item 8192 - Annotate source
2014 Tracks operation of @samp{-A} option
2015 @end table
2017 @contents
2018 @bye
2020 NEEDS AN INDEX
2022 -T - "traditional BSD style": How is it different?  Should the
2023 differences be documented?
2025 example flat file adds up to 100.01%...
2027 note: time estimates now only go out to one decimal place (0.0), where
2028 they used to extend two (78.67).