1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
55 @* symbol handling functions::
59 Reading Symbols, Writing Symbols, Symbols, Symbols
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 | if (storage_needed < 0)
77 | if (storage_needed == 0) {
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
83 | bfd_canonicalize_symtab (abfd, symbol_table);
85 | if (number_of_symbols < 0)
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
126 | ptrs[1] = (asymbol *)0;
128 | bfd_set_symtab(abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
176 An <<asymbol>> has the form:
184 .typedef struct symbol_cache_entry
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
207 . {* Attributes of a symbol: *}
209 .#define BSF_NO_FLAGS 0x00
211 . {* The symbol has local scope; <<static>> in <<C>>. The value
212 . is the offset into the section of the data. *}
213 .#define BSF_LOCAL 0x01
215 . {* The symbol has global scope; initialized data in <<C>>. The
216 . value is the offset into the section of the data. *}
217 .#define BSF_GLOBAL 0x02
219 . {* The symbol has global scope and is exported. The value is
220 . the offset into the section of the data. *}
221 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
223 . {* A normal C symbol would be one of:
224 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . {* The symbol is a debugging record. The value has an arbitary
228 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
229 .#define BSF_DEBUGGING 0x08
231 . {* The symbol denotes a function entry point. Used in ELF,
232 . perhaps others someday. *}
233 .#define BSF_FUNCTION 0x10
235 . {* Used by the linker. *}
236 .#define BSF_KEEP 0x20
237 .#define BSF_KEEP_G 0x40
239 . {* A weak global symbol, overridable without warnings by
240 . a regular global symbol of the same name. *}
241 .#define BSF_WEAK 0x80
243 . {* This symbol was created to point to a section, e.g. ELF's
244 . STT_SECTION symbols. *}
245 .#define BSF_SECTION_SYM 0x100
247 . {* The symbol used to be a common symbol, but now it is
249 .#define BSF_OLD_COMMON 0x200
251 . {* The default value for common data. *}
252 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
254 . {* In some files the type of a symbol sometimes alters its
255 . location in an output file - ie in coff a <<ISFCN>> symbol
256 . which is also <<C_EXT>> symbol appears where it was
257 . declared and not at the end of a section. This bit is set
258 . by the target BFD part to convey this information. *}
260 .#define BSF_NOT_AT_END 0x400
262 . {* Signal that the symbol is the label of constructor section. *}
263 .#define BSF_CONSTRUCTOR 0x800
265 . {* Signal that the symbol is a warning symbol. The name is a
266 . warning. The name of the next symbol is the one to warn about;
267 . if a reference is made to a symbol with the same name as the next
268 . symbol, a warning is issued by the linker. *}
269 .#define BSF_WARNING 0x1000
271 . {* Signal that the symbol is indirect. This symbol is an indirect
272 . pointer to the symbol with the same name as the next symbol. *}
273 .#define BSF_INDIRECT 0x2000
275 . {* BSF_FILE marks symbols that contain a file name. This is used
276 . for ELF STT_FILE symbols. *}
277 .#define BSF_FILE 0x4000
279 . {* Symbol is from dynamic linking information. *}
280 .#define BSF_DYNAMIC 0x8000
282 . {* The symbol denotes a data object. Used in ELF, and perhaps
284 .#define BSF_OBJECT 0x10000
286 . {* This symbol is a debugging symbol. The value is the offset
287 . into the section of the data. BSF_DEBUGGING should be set
289 .#define BSF_DEBUGGING_RELOC 0x20000
293 . {* A pointer to the section to which this symbol is
294 . relative. This will always be non NULL, there are special
295 . sections for undefined and absolute symbols. *}
296 . struct sec *section;
298 . {* Back end special data. *}
312 #include "aout/stab_gnu.h"
314 static char coff_section_type
PARAMS ((const char *));
319 symbol handling functions, , typedef asymbol, Symbols
321 Symbol handling functions
326 bfd_get_symtab_upper_bound
329 Return the number of bytes required to store a vector of pointers
330 to <<asymbols>> for all the symbols in the BFD @var{abfd},
331 including a terminal NULL pointer. If there are no symbols in
332 the BFD, then return 0. If an error occurs, return -1.
334 .#define bfd_get_symtab_upper_bound(abfd) \
335 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
344 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
347 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
348 a compiler generated local label, else return false.
352 bfd_is_local_label (abfd
, sym
)
356 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
357 starts with '.' is local. This would accidentally catch section names
358 if we didn't reject them here. */
359 if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_SECTION_SYM
)) != 0)
361 if (sym
->name
== NULL
)
363 return bfd_is_local_label_name (abfd
, sym
->name
);
368 bfd_is_local_label_name
371 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
374 Return true if a symbol with the name @var{name} in the BFD
375 @var{abfd} is a compiler generated local label, else return
376 false. This just checks whether the name has the form of a
379 .#define bfd_is_local_label_name(abfd, name) \
380 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
385 bfd_canonicalize_symtab
388 Read the symbols from the BFD @var{abfd}, and fills in
389 the vector @var{location} with pointers to the symbols and
391 Return the actual number of symbol pointers, not
394 .#define bfd_canonicalize_symtab(abfd, location) \
395 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
405 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
408 Arrange that when the output BFD @var{abfd} is closed,
409 the table @var{location} of @var{count} pointers to symbols
414 bfd_set_symtab (abfd
, location
, symcount
)
417 unsigned int symcount
;
419 if ((abfd
->format
!= bfd_object
) || (bfd_read_p (abfd
)))
421 bfd_set_error (bfd_error_invalid_operation
);
425 bfd_get_outsymbols (abfd
) = location
;
426 bfd_get_symcount (abfd
) = symcount
;
432 bfd_print_symbol_vandf
435 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
438 Print the value and flags of the @var{symbol} supplied to the
442 bfd_print_symbol_vandf (arg
, symbol
)
446 FILE *file
= (FILE *) arg
;
447 flagword type
= symbol
->flags
;
448 if (symbol
->section
!= (asection
*) NULL
)
450 fprintf_vma (file
, symbol
->value
+ symbol
->section
->vma
);
454 fprintf_vma (file
, symbol
->value
);
457 /* This presumes that a symbol can not be both BSF_DEBUGGING and
458 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
460 fprintf (file
, " %c%c%c%c%c%c%c",
462 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
463 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
464 (type
& BSF_WEAK
) ? 'w' : ' ',
465 (type
& BSF_CONSTRUCTOR
) ? 'C' : ' ',
466 (type
& BSF_WARNING
) ? 'W' : ' ',
467 (type
& BSF_INDIRECT
) ? 'I' : ' ',
468 (type
& BSF_DEBUGGING
) ? 'd' : (type
& BSF_DYNAMIC
) ? 'D' : ' ',
469 ((type
& BSF_FUNCTION
)
473 : ((type
& BSF_OBJECT
) ? 'O' : ' '))));
478 bfd_make_empty_symbol
481 Create a new <<asymbol>> structure for the BFD @var{abfd}
482 and return a pointer to it.
484 This routine is necessary because each back end has private
485 information surrounding the <<asymbol>>. Building your own
486 <<asymbol>> and pointing to it will not create the private
487 information, and will cause problems later on.
489 .#define bfd_make_empty_symbol(abfd) \
490 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
495 bfd_make_debug_symbol
498 Create a new <<asymbol>> structure for the BFD @var{abfd},
499 to be used as a debugging symbol. Further details of its use have
500 yet to be worked out.
502 .#define bfd_make_debug_symbol(abfd,ptr,size) \
503 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
506 struct section_to_type
512 /* Map section names to POSIX/BSD single-character symbol types.
513 This table is probably incomplete. It is sorted for convenience of
514 adding entries. Since it is so short, a linear search is used. */
515 static CONST
struct section_to_type stt
[] =
519 {"zerovars", 'b'}, /* MRI .bss */
521 {"vars", 'd'}, /* MRI .data */
522 {".rdata", 'r'}, /* Read only data. */
523 {".rodata", 'r'}, /* Read only data. */
524 {".sbss", 's'}, /* Small BSS (uninitialized data). */
525 {".scommon", 'c'}, /* Small common. */
526 {".sdata", 'g'}, /* Small initialized data. */
528 {"code", 't'}, /* MRI .text */
529 {".drectve", 'i'}, /* MSVC's .drective section */
530 {".idata", 'i'}, /* MSVC's .idata (import) section */
531 {".edata", 'e'}, /* MSVC's .edata (export) section */
532 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
533 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
537 /* Return the single-character symbol type corresponding to
538 section S, or '?' for an unknown COFF section.
540 Check for any leading string which matches, so .text5 returns
541 't' as well as .text */
544 coff_section_type (s
)
547 CONST
struct section_to_type
*t
;
549 for (t
= &stt
[0]; t
->section
; t
++)
550 if (!strncmp (s
, t
->section
, strlen (t
->section
)))
557 #define islower(c) ((c) >= 'a' && (c) <= 'z')
560 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
568 Return a character corresponding to the symbol
569 class of @var{symbol}, or '?' for an unknown class.
572 int bfd_decode_symclass(asymbol *symbol);
575 bfd_decode_symclass (symbol
)
580 if (bfd_is_com_section (symbol
->section
))
582 if (bfd_is_und_section (symbol
->section
))
584 if (symbol
->flags
& BSF_WEAK
)
586 /* If weak, determine if it's specifically an object
587 or non-object weak. */
588 if (symbol
->flags
& BSF_OBJECT
)
596 if (bfd_is_ind_section (symbol
->section
))
598 if (symbol
->flags
& BSF_WEAK
)
600 /* If weak, determine if it's specifically an object
601 or non-object weak. */
602 if (symbol
->flags
& BSF_OBJECT
)
607 if (!(symbol
->flags
& (BSF_GLOBAL
| BSF_LOCAL
)))
610 if (bfd_is_abs_section (symbol
->section
))
612 else if (symbol
->section
)
613 c
= coff_section_type (symbol
->section
->name
);
616 if (symbol
->flags
& BSF_GLOBAL
)
620 /* We don't have to handle these cases just yet, but we will soon:
632 bfd_is_undefined_symclass
635 Returns non-zero if the class symbol returned by
636 bfd_decode_symclass represents an undefined symbol.
637 Returns zero otherwise.
640 boolean bfd_is_undefined_symclass (int symclass);
644 bfd_is_undefined_symclass (symclass
)
647 return symclass
== 'U' || symclass
== 'w' || symclass
== 'v';
655 Fill in the basic info about symbol that nm needs.
656 Additional info may be added by the back-ends after
657 calling this function.
660 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
664 bfd_symbol_info (symbol
, ret
)
668 ret
->type
= bfd_decode_symclass (symbol
);
670 if (bfd_is_undefined_symclass (ret
->type
))
673 ret
->value
= symbol
->value
+ symbol
->section
->vma
;
675 ret
->name
= symbol
->name
;
680 bfd_copy_private_symbol_data
683 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
686 Copy private symbol information from @var{isym} in the BFD
687 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
688 Return <<true>> on success, <<false>> on error. Possible error
691 o <<bfd_error_no_memory>> -
692 Not enough memory exists to create private data for @var{osec}.
694 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
695 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
696 . (ibfd, isymbol, obfd, osymbol))
700 /* The generic version of the function which returns mini symbols.
701 This is used when the backend does not provide a more efficient
702 version. It just uses BFD asymbol structures as mini symbols. */
705 _bfd_generic_read_minisymbols (abfd
, dynamic
, minisymsp
, sizep
)
712 asymbol
**syms
= NULL
;
716 storage
= bfd_get_dynamic_symtab_upper_bound (abfd
);
718 storage
= bfd_get_symtab_upper_bound (abfd
);
722 syms
= (asymbol
**) bfd_malloc ((size_t) storage
);
727 symcount
= bfd_canonicalize_dynamic_symtab (abfd
, syms
);
729 symcount
= bfd_canonicalize_symtab (abfd
, syms
);
733 *minisymsp
= (PTR
) syms
;
734 *sizep
= sizeof (asymbol
*);
743 /* The generic version of the function which converts a minisymbol to
744 an asymbol. We don't worry about the sym argument we are passed;
745 we just return the asymbol the minisymbol points to. */
749 _bfd_generic_minisymbol_to_symbol (abfd
, dynamic
, minisym
, sym
)
750 bfd
*abfd ATTRIBUTE_UNUSED
;
751 boolean dynamic ATTRIBUTE_UNUSED
;
753 asymbol
*sym ATTRIBUTE_UNUSED
;
755 return *(asymbol
**) minisym
;
758 /* Look through stabs debugging information in .stab and .stabstr
759 sections to find the source file and line closest to a desired
760 location. This is used by COFF and ELF targets. It sets *pfound
761 to true if it finds some information. The *pinfo field is used to
762 pass cached information in and out of this routine; this first time
763 the routine is called for a BFD, *pinfo should be NULL. The value
764 placed in *pinfo should be saved with the BFD, and passed back each
765 time this function is called. */
767 /* We use a cache by default. */
769 #define ENABLE_CACHING
771 /* We keep an array of indexentry structures to record where in the
772 stabs section we should look to find line number information for a
773 particular address. */
780 char *directory_name
;
785 /* Compare two indexentry structures. This is called via qsort. */
792 const struct indexentry
*contestantA
= (const struct indexentry
*) a
;
793 const struct indexentry
*contestantB
= (const struct indexentry
*) b
;
795 if (contestantA
->val
< contestantB
->val
)
797 else if (contestantA
->val
> contestantB
->val
)
803 /* A pointer to this structure is stored in *pinfo. */
805 struct stab_find_info
807 /* The .stab section. */
809 /* The .stabstr section. */
811 /* The contents of the .stab section. */
813 /* The contents of the .stabstr section. */
816 /* A table that indexes stabs by memory address. */
817 struct indexentry
*indextable
;
818 /* The number of entries in indextable. */
821 #ifdef ENABLE_CACHING
822 /* Cached values to restart quickly. */
823 struct indexentry
*cached_indexentry
;
824 bfd_vma cached_offset
;
825 bfd_byte
*cached_stab
;
826 char *cached_file_name
;
829 /* Saved ptr to malloc'ed filename. */
834 _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
, pfound
,
835 pfilename
, pfnname
, pline
, pinfo
)
841 const char **pfilename
;
842 const char **pfnname
;
846 struct stab_find_info
*info
;
847 bfd_size_type stabsize
, strsize
;
848 bfd_byte
*stab
, *str
;
849 bfd_byte
*last_stab
= NULL
;
850 bfd_size_type stroff
;
851 struct indexentry
*indexentry
;
852 char *directory_name
, *file_name
;
856 *pfilename
= bfd_get_filename (abfd
);
860 /* Stabs entries use a 12 byte format:
861 4 byte string table index
863 1 byte stab other field
864 2 byte stab desc field
866 FIXME: This will have to change for a 64 bit object format.
868 The stabs symbols are divided into compilation units. For the
869 first entry in each unit, the type of 0, the value is the length
870 of the string table for this unit, and the desc field is the
871 number of stabs symbols for this unit. */
878 #define STABSIZE (12)
880 info
= (struct stab_find_info
*) *pinfo
;
883 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
885 /* No stabs debugging information. */
889 stabsize
= info
->stabsec
->_raw_size
;
890 strsize
= info
->strsec
->_raw_size
;
894 long reloc_size
, reloc_count
;
895 arelent
**reloc_vector
;
899 char *directory_name
;
902 info
= (struct stab_find_info
*) bfd_zalloc (abfd
, sizeof *info
);
906 /* FIXME: When using the linker --split-by-file or
907 --split-by-reloc options, it is possible for the .stab and
908 .stabstr sections to be split. We should handle that. */
910 info
->stabsec
= bfd_get_section_by_name (abfd
, ".stab");
911 info
->strsec
= bfd_get_section_by_name (abfd
, ".stabstr");
913 if (info
->stabsec
== NULL
|| info
->strsec
== NULL
)
915 /* No stabs debugging information. Set *pinfo so that we
916 can return quickly in the info != NULL case above. */
921 stabsize
= info
->stabsec
->_raw_size
;
922 strsize
= info
->strsec
->_raw_size
;
924 info
->stabs
= (bfd_byte
*) bfd_alloc (abfd
, stabsize
);
925 info
->strs
= (bfd_byte
*) bfd_alloc (abfd
, strsize
);
926 if (info
->stabs
== NULL
|| info
->strs
== NULL
)
929 if (! bfd_get_section_contents (abfd
, info
->stabsec
, info
->stabs
, 0,
931 || ! bfd_get_section_contents (abfd
, info
->strsec
, info
->strs
, 0,
935 /* If this is a relocateable object file, we have to relocate
936 the entries in .stab. This should always be simple 32 bit
937 relocations against symbols defined in this object file, so
938 this should be no big deal. */
939 reloc_size
= bfd_get_reloc_upper_bound (abfd
, info
->stabsec
);
942 reloc_vector
= (arelent
**) bfd_malloc (reloc_size
);
943 if (reloc_vector
== NULL
&& reloc_size
!= 0)
945 reloc_count
= bfd_canonicalize_reloc (abfd
, info
->stabsec
, reloc_vector
,
949 if (reloc_vector
!= NULL
)
957 for (pr
= reloc_vector
; *pr
!= NULL
; pr
++)
964 if (r
->howto
->rightshift
!= 0
965 || r
->howto
->size
!= 2
966 || r
->howto
->bitsize
!= 32
967 || r
->howto
->pc_relative
968 || r
->howto
->bitpos
!= 0
969 || r
->howto
->dst_mask
!= 0xffffffff)
971 (*_bfd_error_handler
)
972 (_("Unsupported .stab relocation"));
973 bfd_set_error (bfd_error_invalid_operation
);
974 if (reloc_vector
!= NULL
)
979 val
= bfd_get_32 (abfd
, info
->stabs
+ r
->address
);
980 val
&= r
->howto
->src_mask
;
981 sym
= *r
->sym_ptr_ptr
;
982 val
+= sym
->value
+ sym
->section
->vma
+ r
->addend
;
983 bfd_put_32 (abfd
, val
, info
->stabs
+ r
->address
);
987 if (reloc_vector
!= NULL
)
990 /* First time through this function, build a table matching
991 function VM addresses to stabs, then sort based on starting
992 VM address. Do this in two passes: once to count how many
993 table entries we'll need, and a second to actually build the
996 info
->indextablesize
= 0;
998 for (stab
= info
->stabs
; stab
< info
->stabs
+ stabsize
; stab
+= STABSIZE
)
1000 if (stab
[TYPEOFF
] == N_SO
)
1002 /* N_SO with null name indicates EOF */
1003 if (bfd_get_32 (abfd
, stab
+ STRDXOFF
) == 0)
1006 /* if we did not see a function def, leave space for one. */
1008 ++info
->indextablesize
;
1012 /* two N_SO's in a row is a filename and directory. Skip */
1013 if (stab
+ STABSIZE
< info
->stabs
+ stabsize
1014 && *(stab
+ STABSIZE
+ TYPEOFF
) == N_SO
)
1019 else if (stab
[TYPEOFF
] == N_FUN
)
1022 ++info
->indextablesize
;
1027 ++info
->indextablesize
;
1029 if (info
->indextablesize
== 0)
1031 ++info
->indextablesize
;
1033 info
->indextable
= ((struct indexentry
*)
1035 (sizeof (struct indexentry
)
1036 * info
->indextablesize
)));
1037 if (info
->indextable
== NULL
)
1041 directory_name
= NULL
;
1044 for (i
= 0, stroff
= 0, stab
= info
->stabs
, str
= info
->strs
;
1045 i
< info
->indextablesize
&& stab
< info
->stabs
+ stabsize
;
1048 switch (stab
[TYPEOFF
])
1051 /* This is the first entry in a compilation unit. */
1052 if ((bfd_size_type
) ((info
->strs
+ strsize
) - str
) < stroff
)
1055 stroff
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1059 /* The main file name. */
1061 /* The following code creates a new indextable entry with
1062 a NULL function name if there were no N_FUNs in a file.
1063 Note that a N_SO without a file name is an EOF and
1064 there could be 2 N_SO following it with the new filename
1068 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1069 info
->indextable
[i
].stab
= last_stab
;
1070 info
->indextable
[i
].str
= str
;
1071 info
->indextable
[i
].directory_name
= directory_name
;
1072 info
->indextable
[i
].file_name
= file_name
;
1073 info
->indextable
[i
].function_name
= NULL
;
1078 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1079 if (*file_name
== '\0')
1081 directory_name
= NULL
;
1088 if (stab
+ STABSIZE
>= info
->stabs
+ stabsize
1089 || *(stab
+ STABSIZE
+ TYPEOFF
) != N_SO
)
1091 directory_name
= NULL
;
1095 /* Two consecutive N_SOs are a directory and a
1098 directory_name
= file_name
;
1099 file_name
= ((char *) str
1100 + bfd_get_32 (abfd
, stab
+ STRDXOFF
));
1106 /* The name of an include file. */
1107 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1111 /* A function name. */
1113 name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1118 function_name
= name
;
1123 info
->indextable
[i
].val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1124 info
->indextable
[i
].stab
= stab
;
1125 info
->indextable
[i
].str
= str
;
1126 info
->indextable
[i
].directory_name
= directory_name
;
1127 info
->indextable
[i
].file_name
= file_name
;
1128 info
->indextable
[i
].function_name
= function_name
;
1136 info
->indextable
[i
].val
= bfd_get_32 (abfd
, last_stab
+ VALOFF
);
1137 info
->indextable
[i
].stab
= last_stab
;
1138 info
->indextable
[i
].str
= str
;
1139 info
->indextable
[i
].directory_name
= directory_name
;
1140 info
->indextable
[i
].file_name
= file_name
;
1141 info
->indextable
[i
].function_name
= NULL
;
1145 info
->indextable
[i
].val
= (bfd_vma
) -1;
1146 info
->indextable
[i
].stab
= info
->stabs
+ stabsize
;
1147 info
->indextable
[i
].str
= str
;
1148 info
->indextable
[i
].directory_name
= NULL
;
1149 info
->indextable
[i
].file_name
= NULL
;
1150 info
->indextable
[i
].function_name
= NULL
;
1153 info
->indextablesize
= i
;
1154 qsort (info
->indextable
, i
, sizeof (struct indexentry
), cmpindexentry
);
1156 *pinfo
= (PTR
) info
;
1159 /* We are passed a section relative offset. The offsets in the
1160 stabs information are absolute. */
1161 offset
+= bfd_get_section_vma (abfd
, section
);
1163 #ifdef ENABLE_CACHING
1164 if (info
->cached_indexentry
!= NULL
1165 && offset
>= info
->cached_offset
1166 && offset
< (info
->cached_indexentry
+ 1)->val
)
1168 stab
= info
->cached_stab
;
1169 indexentry
= info
->cached_indexentry
;
1170 file_name
= info
->cached_file_name
;
1175 /* Cache non-existant or invalid. Do binary search on
1184 high
= info
->indextablesize
- 1;
1187 mid
= (high
+ low
) / 2;
1188 if (offset
>= info
->indextable
[mid
].val
1189 && offset
< info
->indextable
[mid
+ 1].val
)
1191 indexentry
= &info
->indextable
[mid
];
1195 if (info
->indextable
[mid
].val
> offset
)
1201 if (indexentry
== NULL
)
1204 stab
= indexentry
->stab
+ STABSIZE
;
1205 file_name
= indexentry
->file_name
;
1208 directory_name
= indexentry
->directory_name
;
1209 str
= indexentry
->str
;
1211 for (; stab
< (indexentry
+1)->stab
; stab
+= STABSIZE
)
1218 switch (stab
[TYPEOFF
])
1221 /* The name of an include file. */
1222 val
= bfd_get_32 (abfd
, stab
+ VALOFF
);
1225 file_name
= (char *) str
+ bfd_get_32 (abfd
, stab
+ STRDXOFF
);
1233 /* A line number. The value is relative to the start of the
1234 current function. */
1235 val
= indexentry
->val
+ bfd_get_32 (abfd
, stab
+ VALOFF
);
1238 *pline
= bfd_get_16 (abfd
, stab
+ DESCOFF
);
1240 #ifdef ENABLE_CACHING
1241 info
->cached_stab
= stab
;
1242 info
->cached_offset
= val
;
1243 info
->cached_file_name
= file_name
;
1244 info
->cached_indexentry
= indexentry
;
1263 if (IS_ABSOLUTE_PATH(file_name
) || directory_name
== NULL
)
1264 *pfilename
= file_name
;
1269 dirlen
= strlen (directory_name
);
1270 if (info
->filename
== NULL
1271 || strncmp (info
->filename
, directory_name
, dirlen
) != 0
1272 || strcmp (info
->filename
+ dirlen
, file_name
) != 0)
1274 if (info
->filename
!= NULL
)
1275 free (info
->filename
);
1276 info
->filename
= (char *) bfd_malloc (dirlen
+
1279 if (info
->filename
== NULL
)
1281 strcpy (info
->filename
, directory_name
);
1282 strcpy (info
->filename
+ dirlen
, file_name
);
1285 *pfilename
= info
->filename
;
1288 if (indexentry
->function_name
!= NULL
)
1292 /* This will typically be something like main:F(0,1), so we want
1293 to clobber the colon. It's OK to change the name, since the
1294 string is in our own local storage anyhow. */
1296 s
= strchr (indexentry
->function_name
, ':');
1300 *pfnname
= indexentry
->function_name
;