2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
29 struct bfd_link_info
*info
;
30 struct bfd_elf_version_tree
*verdefs
;
33 static boolean elf_link_add_object_symbols
34 PARAMS ((bfd
*, struct bfd_link_info
*));
35 static boolean elf_link_add_archive_symbols
36 PARAMS ((bfd
*, struct bfd_link_info
*));
37 static boolean elf_merge_symbol
38 PARAMS ((bfd
*, struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
39 asection
**, bfd_vma
*, struct elf_link_hash_entry
**,
40 boolean
*, boolean
*, boolean
*, boolean
));
41 static boolean elf_export_symbol
42 PARAMS ((struct elf_link_hash_entry
*, PTR
));
43 static boolean elf_fix_symbol_flags
44 PARAMS ((struct elf_link_hash_entry
*, struct elf_info_failed
*));
45 static boolean elf_adjust_dynamic_symbol
46 PARAMS ((struct elf_link_hash_entry
*, PTR
));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry
*, PTR
));
49 static boolean elf_link_find_version_dependencies
50 PARAMS ((struct elf_link_hash_entry
*, PTR
));
51 static boolean elf_link_assign_sym_version
52 PARAMS ((struct elf_link_hash_entry
*, PTR
));
53 static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry
*, PTR
));
55 static boolean elf_link_read_relocs_from_section
56 PARAMS ((bfd
*, Elf_Internal_Shdr
*, PTR
, Elf_Internal_Rela
*));
57 static void elf_link_output_relocs
58 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*));
59 static boolean elf_link_size_reloc_section
60 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
61 static void elf_link_adjust_relocs
62 PARAMS ((bfd
*, Elf_Internal_Shdr
*, unsigned int,
63 struct elf_link_hash_entry
**));
65 /* Given an ELF BFD, add symbols to the global hash table as
69 elf_bfd_link_add_symbols (abfd
, info
)
71 struct bfd_link_info
*info
;
73 switch (bfd_get_format (abfd
))
76 return elf_link_add_object_symbols (abfd
, info
);
78 return elf_link_add_archive_symbols (abfd
, info
);
80 bfd_set_error (bfd_error_wrong_format
);
85 /* Return true iff this is a non-common, definition of a non-function symbol. */
87 is_global_data_symbol_definition (abfd
, sym
)
88 bfd
* abfd ATTRIBUTE_UNUSED
;
89 Elf_Internal_Sym
* sym
;
91 /* Local symbols do not count, but target specific ones might. */
92 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
93 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
96 /* Function symbols do not count. */
97 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
100 /* If the section is undefined, then so is the symbol. */
101 if (sym
->st_shndx
== SHN_UNDEF
)
104 /* If the symbol is defined in the common section, then
105 it is a common definition and so does not count. */
106 if (sym
->st_shndx
== SHN_COMMON
)
109 /* If the symbol is in a target specific section then we
110 must rely upon the backend to tell us what it is. */
111 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
112 /* FIXME - this function is not coded yet:
114 return _bfd_is_global_symbol_definition (abfd, sym);
116 Instead for now assume that the definition is not global,
117 Even if this is wrong, at least the linker will behave
118 in the same way that it used to do. */
124 /* Search the symbol table of the archive element of the archive ABFD
125 whose archive map contains a mention of SYMDEF, and determine if
126 the symbol is defined in this element. */
128 elf_link_is_defined_archive_symbol (abfd
, symdef
)
132 Elf_Internal_Shdr
* hdr
;
133 Elf_External_Sym
* esym
;
134 Elf_External_Sym
* esymend
;
135 Elf_External_Sym
* buf
= NULL
;
139 boolean result
= false;
141 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
142 if (abfd
== (bfd
*) NULL
)
145 if (! bfd_check_format (abfd
, bfd_object
))
148 /* If we have already included the element containing this symbol in the
149 link then we do not need to include it again. Just claim that any symbol
150 it contains is not a definition, so that our caller will not decide to
151 (re)include this element. */
152 if (abfd
->archive_pass
)
155 /* Select the appropriate symbol table. */
156 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
157 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
159 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
161 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
163 /* The sh_info field of the symtab header tells us where the
164 external symbols start. We don't care about the local symbols. */
165 if (elf_bad_symtab (abfd
))
167 extsymcount
= symcount
;
172 extsymcount
= symcount
- hdr
->sh_info
;
173 extsymoff
= hdr
->sh_info
;
176 buf
= ((Elf_External_Sym
*)
177 bfd_malloc (extsymcount
* sizeof (Elf_External_Sym
)));
178 if (buf
== NULL
&& extsymcount
!= 0)
181 /* Read in the symbol table.
182 FIXME: This ought to be cached somewhere. */
184 hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
),
186 || (bfd_read ((PTR
) buf
, sizeof (Elf_External_Sym
), extsymcount
, abfd
)
187 != extsymcount
* sizeof (Elf_External_Sym
)))
193 /* Scan the symbol table looking for SYMDEF. */
194 esymend
= buf
+ extsymcount
;
199 Elf_Internal_Sym sym
;
202 elf_swap_symbol_in (abfd
, esym
, & sym
);
204 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
205 if (name
== (const char *) NULL
)
208 if (strcmp (name
, symdef
->name
) == 0)
210 result
= is_global_data_symbol_definition (abfd
, & sym
);
220 /* Add symbols from an ELF archive file to the linker hash table. We
221 don't use _bfd_generic_link_add_archive_symbols because of a
222 problem which arises on UnixWare. The UnixWare libc.so is an
223 archive which includes an entry libc.so.1 which defines a bunch of
224 symbols. The libc.so archive also includes a number of other
225 object files, which also define symbols, some of which are the same
226 as those defined in libc.so.1. Correct linking requires that we
227 consider each object file in turn, and include it if it defines any
228 symbols we need. _bfd_generic_link_add_archive_symbols does not do
229 this; it looks through the list of undefined symbols, and includes
230 any object file which defines them. When this algorithm is used on
231 UnixWare, it winds up pulling in libc.so.1 early and defining a
232 bunch of symbols. This means that some of the other objects in the
233 archive are not included in the link, which is incorrect since they
234 precede libc.so.1 in the archive.
236 Fortunately, ELF archive handling is simpler than that done by
237 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
238 oddities. In ELF, if we find a symbol in the archive map, and the
239 symbol is currently undefined, we know that we must pull in that
242 Unfortunately, we do have to make multiple passes over the symbol
243 table until nothing further is resolved. */
246 elf_link_add_archive_symbols (abfd
, info
)
248 struct bfd_link_info
*info
;
251 boolean
*defined
= NULL
;
252 boolean
*included
= NULL
;
256 if (! bfd_has_map (abfd
))
258 /* An empty archive is a special case. */
259 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
261 bfd_set_error (bfd_error_no_armap
);
265 /* Keep track of all symbols we know to be already defined, and all
266 files we know to be already included. This is to speed up the
267 second and subsequent passes. */
268 c
= bfd_ardata (abfd
)->symdef_count
;
271 defined
= (boolean
*) bfd_malloc (c
* sizeof (boolean
));
272 included
= (boolean
*) bfd_malloc (c
* sizeof (boolean
));
273 if (defined
== (boolean
*) NULL
|| included
== (boolean
*) NULL
)
275 memset (defined
, 0, c
* sizeof (boolean
));
276 memset (included
, 0, c
* sizeof (boolean
));
278 symdefs
= bfd_ardata (abfd
)->symdefs
;
291 symdefend
= symdef
+ c
;
292 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
294 struct elf_link_hash_entry
*h
;
296 struct bfd_link_hash_entry
*undefs_tail
;
299 if (defined
[i
] || included
[i
])
301 if (symdef
->file_offset
== last
)
307 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
308 false, false, false);
314 /* If this is a default version (the name contains @@),
315 look up the symbol again without the version. The
316 effect is that references to the symbol without the
317 version will be matched by the default symbol in the
320 p
= strchr (symdef
->name
, ELF_VER_CHR
);
321 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
324 copy
= bfd_alloc (abfd
, p
- symdef
->name
+ 1);
327 memcpy (copy
, symdef
->name
, p
- symdef
->name
);
328 copy
[p
- symdef
->name
] = '\0';
330 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
331 false, false, false);
333 bfd_release (abfd
, copy
);
339 if (h
->root
.type
== bfd_link_hash_common
)
341 /* We currently have a common symbol. The archive map contains
342 a reference to this symbol, so we may want to include it. We
343 only want to include it however, if this archive element
344 contains a definition of the symbol, not just another common
347 Unfortunately some archivers (including GNU ar) will put
348 declarations of common symbols into their archive maps, as
349 well as real definitions, so we cannot just go by the archive
350 map alone. Instead we must read in the element's symbol
351 table and check that to see what kind of symbol definition
353 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
356 else if (h
->root
.type
!= bfd_link_hash_undefined
)
358 if (h
->root
.type
!= bfd_link_hash_undefweak
)
363 /* We need to include this archive member. */
364 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
365 if (element
== (bfd
*) NULL
)
368 if (! bfd_check_format (element
, bfd_object
))
371 /* Doublecheck that we have not included this object
372 already--it should be impossible, but there may be
373 something wrong with the archive. */
374 if (element
->archive_pass
!= 0)
376 bfd_set_error (bfd_error_bad_value
);
379 element
->archive_pass
= 1;
381 undefs_tail
= info
->hash
->undefs_tail
;
383 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
386 if (! elf_link_add_object_symbols (element
, info
))
389 /* If there are any new undefined symbols, we need to make
390 another pass through the archive in order to see whether
391 they can be defined. FIXME: This isn't perfect, because
392 common symbols wind up on undefs_tail and because an
393 undefined symbol which is defined later on in this pass
394 does not require another pass. This isn't a bug, but it
395 does make the code less efficient than it could be. */
396 if (undefs_tail
!= info
->hash
->undefs_tail
)
399 /* Look backward to mark all symbols from this object file
400 which we have already seen in this pass. */
404 included
[mark
] = true;
409 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
411 /* We mark subsequent symbols from this object file as we go
412 on through the loop. */
413 last
= symdef
->file_offset
;
424 if (defined
!= (boolean
*) NULL
)
426 if (included
!= (boolean
*) NULL
)
431 /* This function is called when we want to define a new symbol. It
432 handles the various cases which arise when we find a definition in
433 a dynamic object, or when there is already a definition in a
434 dynamic object. The new symbol is described by NAME, SYM, PSEC,
435 and PVALUE. We set SYM_HASH to the hash table entry. We set
436 OVERRIDE if the old symbol is overriding a new definition. We set
437 TYPE_CHANGE_OK if it is OK for the type to change. We set
438 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
439 change, we mean that we shouldn't warn if the type or size does
440 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
444 elf_merge_symbol (abfd
, info
, name
, sym
, psec
, pvalue
, sym_hash
,
445 override
, type_change_ok
, size_change_ok
, dt_needed
)
447 struct bfd_link_info
*info
;
449 Elf_Internal_Sym
*sym
;
452 struct elf_link_hash_entry
**sym_hash
;
454 boolean
*type_change_ok
;
455 boolean
*size_change_ok
;
459 struct elf_link_hash_entry
*h
;
462 boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
467 bind
= ELF_ST_BIND (sym
->st_info
);
469 if (! bfd_is_und_section (sec
))
470 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, false, false);
472 h
= ((struct elf_link_hash_entry
*)
473 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, false, false));
478 /* This code is for coping with dynamic objects, and is only useful
479 if we are doing an ELF link. */
480 if (info
->hash
->creator
!= abfd
->xvec
)
483 /* For merging, we only care about real symbols. */
485 while (h
->root
.type
== bfd_link_hash_indirect
486 || h
->root
.type
== bfd_link_hash_warning
)
487 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
489 /* If we just created the symbol, mark it as being an ELF symbol.
490 Other than that, there is nothing to do--there is no merge issue
491 with a newly defined symbol--so we just return. */
493 if (h
->root
.type
== bfd_link_hash_new
)
495 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
499 /* OLDBFD is a BFD associated with the existing symbol. */
501 switch (h
->root
.type
)
507 case bfd_link_hash_undefined
:
508 case bfd_link_hash_undefweak
:
509 oldbfd
= h
->root
.u
.undef
.abfd
;
512 case bfd_link_hash_defined
:
513 case bfd_link_hash_defweak
:
514 oldbfd
= h
->root
.u
.def
.section
->owner
;
517 case bfd_link_hash_common
:
518 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
522 /* In cases involving weak versioned symbols, we may wind up trying
523 to merge a symbol with itself. Catch that here, to avoid the
524 confusion that results if we try to override a symbol with
525 itself. The additional tests catch cases like
526 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
527 dynamic object, which we do want to handle here. */
529 && ((abfd
->flags
& DYNAMIC
) == 0
530 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0))
533 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
534 respectively, is from a dynamic object. */
536 if ((abfd
->flags
& DYNAMIC
) != 0)
542 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
547 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
548 indices used by MIPS ELF. */
549 switch (h
->root
.type
)
555 case bfd_link_hash_defined
:
556 case bfd_link_hash_defweak
:
557 hsec
= h
->root
.u
.def
.section
;
560 case bfd_link_hash_common
:
561 hsec
= h
->root
.u
.c
.p
->section
;
568 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
571 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
572 respectively, appear to be a definition rather than reference. */
574 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
579 if (h
->root
.type
== bfd_link_hash_undefined
580 || h
->root
.type
== bfd_link_hash_undefweak
581 || h
->root
.type
== bfd_link_hash_common
)
586 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
587 symbol, respectively, appears to be a common symbol in a dynamic
588 object. If a symbol appears in an uninitialized section, and is
589 not weak, and is not a function, then it may be a common symbol
590 which was resolved when the dynamic object was created. We want
591 to treat such symbols specially, because they raise special
592 considerations when setting the symbol size: if the symbol
593 appears as a common symbol in a regular object, and the size in
594 the regular object is larger, we must make sure that we use the
595 larger size. This problematic case can always be avoided in C,
596 but it must be handled correctly when using Fortran shared
599 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
600 likewise for OLDDYNCOMMON and OLDDEF.
602 Note that this test is just a heuristic, and that it is quite
603 possible to have an uninitialized symbol in a shared object which
604 is really a definition, rather than a common symbol. This could
605 lead to some minor confusion when the symbol really is a common
606 symbol in some regular object. However, I think it will be
611 && (sec
->flags
& SEC_ALLOC
) != 0
612 && (sec
->flags
& SEC_LOAD
) == 0
615 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
618 newdyncommon
= false;
622 && h
->root
.type
== bfd_link_hash_defined
623 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
624 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
625 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
627 && h
->type
!= STT_FUNC
)
630 olddyncommon
= false;
632 /* It's OK to change the type if either the existing symbol or the
633 new symbol is weak unless it comes from a DT_NEEDED entry of
634 a shared object, in which case, the DT_NEEDED entry may not be
635 required at the run time. */
637 if ((! dt_needed
&& h
->root
.type
== bfd_link_hash_defweak
)
638 || h
->root
.type
== bfd_link_hash_undefweak
640 *type_change_ok
= true;
642 /* It's OK to change the size if either the existing symbol or the
643 new symbol is weak, or if the old symbol is undefined. */
646 || h
->root
.type
== bfd_link_hash_undefined
)
647 *size_change_ok
= true;
649 /* If both the old and the new symbols look like common symbols in a
650 dynamic object, set the size of the symbol to the larger of the
655 && sym
->st_size
!= h
->size
)
657 /* Since we think we have two common symbols, issue a multiple
658 common warning if desired. Note that we only warn if the
659 size is different. If the size is the same, we simply let
660 the old symbol override the new one as normally happens with
661 symbols defined in dynamic objects. */
663 if (! ((*info
->callbacks
->multiple_common
)
664 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
665 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
668 if (sym
->st_size
> h
->size
)
669 h
->size
= sym
->st_size
;
671 *size_change_ok
= true;
674 /* If we are looking at a dynamic object, and we have found a
675 definition, we need to see if the symbol was already defined by
676 some other object. If so, we want to use the existing
677 definition, and we do not want to report a multiple symbol
678 definition error; we do this by clobbering *PSEC to be
681 We treat a common symbol as a definition if the symbol in the
682 shared library is a function, since common symbols always
683 represent variables; this can cause confusion in principle, but
684 any such confusion would seem to indicate an erroneous program or
685 shared library. We also permit a common symbol in a regular
686 object to override a weak symbol in a shared object.
688 We prefer a non-weak definition in a shared library to a weak
689 definition in the executable unless it comes from a DT_NEEDED
690 entry of a shared object, in which case, the DT_NEEDED entry
691 may not be required at the run time. */
696 || (h
->root
.type
== bfd_link_hash_common
698 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)))
699 && (h
->root
.type
!= bfd_link_hash_defweak
701 || bind
== STB_WEAK
))
705 newdyncommon
= false;
707 *psec
= sec
= bfd_und_section_ptr
;
708 *size_change_ok
= true;
710 /* If we get here when the old symbol is a common symbol, then
711 we are explicitly letting it override a weak symbol or
712 function in a dynamic object, and we don't want to warn about
713 a type change. If the old symbol is a defined symbol, a type
714 change warning may still be appropriate. */
716 if (h
->root
.type
== bfd_link_hash_common
)
717 *type_change_ok
= true;
720 /* Handle the special case of an old common symbol merging with a
721 new symbol which looks like a common symbol in a shared object.
722 We change *PSEC and *PVALUE to make the new symbol look like a
723 common symbol, and let _bfd_generic_link_add_one_symbol will do
727 && h
->root
.type
== bfd_link_hash_common
)
731 newdyncommon
= false;
732 *pvalue
= sym
->st_size
;
733 *psec
= sec
= bfd_com_section_ptr
;
734 *size_change_ok
= true;
737 /* If the old symbol is from a dynamic object, and the new symbol is
738 a definition which is not from a dynamic object, then the new
739 symbol overrides the old symbol. Symbols from regular files
740 always take precedence over symbols from dynamic objects, even if
741 they are defined after the dynamic object in the link.
743 As above, we again permit a common symbol in a regular object to
744 override a definition in a shared object if the shared object
745 symbol is a function or is weak.
747 As above, we permit a non-weak definition in a shared object to
748 override a weak definition in a regular object. */
752 || (bfd_is_com_section (sec
)
753 && (h
->root
.type
== bfd_link_hash_defweak
754 || h
->type
== STT_FUNC
)))
757 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
759 || h
->root
.type
== bfd_link_hash_defweak
))
761 /* Change the hash table entry to undefined, and let
762 _bfd_generic_link_add_one_symbol do the right thing with the
765 h
->root
.type
= bfd_link_hash_undefined
;
766 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
767 *size_change_ok
= true;
770 olddyncommon
= false;
772 /* We again permit a type change when a common symbol may be
773 overriding a function. */
775 if (bfd_is_com_section (sec
))
776 *type_change_ok
= true;
778 /* This union may have been set to be non-NULL when this symbol
779 was seen in a dynamic object. We must force the union to be
780 NULL, so that it is correct for a regular symbol. */
782 h
->verinfo
.vertree
= NULL
;
784 /* In this special case, if H is the target of an indirection,
785 we want the caller to frob with H rather than with the
786 indirect symbol. That will permit the caller to redefine the
787 target of the indirection, rather than the indirect symbol
788 itself. FIXME: This will break the -y option if we store a
789 symbol with a different name. */
793 /* Handle the special case of a new common symbol merging with an
794 old symbol that looks like it might be a common symbol defined in
795 a shared object. Note that we have already handled the case in
796 which a new common symbol should simply override the definition
797 in the shared library. */
800 && bfd_is_com_section (sec
)
803 /* It would be best if we could set the hash table entry to a
804 common symbol, but we don't know what to use for the section
806 if (! ((*info
->callbacks
->multiple_common
)
807 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
808 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
811 /* If the predumed common symbol in the dynamic object is
812 larger, pretend that the new symbol has its size. */
814 if (h
->size
> *pvalue
)
817 /* FIXME: We no longer know the alignment required by the symbol
818 in the dynamic object, so we just wind up using the one from
819 the regular object. */
822 olddyncommon
= false;
824 h
->root
.type
= bfd_link_hash_undefined
;
825 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
827 *size_change_ok
= true;
828 *type_change_ok
= true;
830 h
->verinfo
.vertree
= NULL
;
833 /* Handle the special case of a weak definition in a regular object
834 followed by a non-weak definition in a shared object. In this
835 case, we prefer the definition in the shared object unless it
836 comes from a DT_NEEDED entry of a shared object, in which case,
837 the DT_NEEDED entry may not be required at the run time. */
840 && h
->root
.type
== bfd_link_hash_defweak
845 /* To make this work we have to frob the flags so that the rest
846 of the code does not think we are using the regular
848 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
849 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
850 else if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
851 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
852 h
->elf_link_hash_flags
&= ~ (ELF_LINK_HASH_DEF_REGULAR
853 | ELF_LINK_HASH_DEF_DYNAMIC
);
855 /* If H is the target of an indirection, we want the caller to
856 use H rather than the indirect symbol. Otherwise if we are
857 defining a new indirect symbol we will wind up attaching it
858 to the entry we are overriding. */
862 /* Handle the special case of a non-weak definition in a shared
863 object followed by a weak definition in a regular object. In
864 this case we prefer to definition in the shared object. To make
865 this work we have to tell the caller to not treat the new symbol
869 && h
->root
.type
!= bfd_link_hash_defweak
878 /* Add symbols from an ELF object file to the linker hash table. */
881 elf_link_add_object_symbols (abfd
, info
)
883 struct bfd_link_info
*info
;
885 boolean (*add_symbol_hook
) PARAMS ((bfd
*, struct bfd_link_info
*,
886 const Elf_Internal_Sym
*,
887 const char **, flagword
*,
888 asection
**, bfd_vma
*));
889 boolean (*check_relocs
) PARAMS ((bfd
*, struct bfd_link_info
*,
890 asection
*, const Elf_Internal_Rela
*));
892 Elf_Internal_Shdr
*hdr
;
896 Elf_External_Sym
*buf
= NULL
;
897 struct elf_link_hash_entry
**sym_hash
;
899 Elf_External_Versym
*extversym
= NULL
;
900 Elf_External_Versym
*ever
;
901 Elf_External_Dyn
*dynbuf
= NULL
;
902 struct elf_link_hash_entry
*weaks
;
903 Elf_External_Sym
*esym
;
904 Elf_External_Sym
*esymend
;
905 struct elf_backend_data
*bed
;
908 bed
= get_elf_backend_data (abfd
);
909 add_symbol_hook
= bed
->elf_add_symbol_hook
;
910 collect
= bed
->collect
;
912 if ((abfd
->flags
& DYNAMIC
) == 0)
918 /* You can't use -r against a dynamic object. Also, there's no
919 hope of using a dynamic object which does not exactly match
920 the format of the output file. */
921 if (info
->relocateable
|| info
->hash
->creator
!= abfd
->xvec
)
923 bfd_set_error (bfd_error_invalid_operation
);
928 /* As a GNU extension, any input sections which are named
929 .gnu.warning.SYMBOL are treated as warning symbols for the given
930 symbol. This differs from .gnu.warning sections, which generate
931 warnings when they are included in an output file. */
936 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
940 name
= bfd_get_section_name (abfd
, s
);
941 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
946 name
+= sizeof ".gnu.warning." - 1;
948 /* If this is a shared object, then look up the symbol
949 in the hash table. If it is there, and it is already
950 been defined, then we will not be using the entry
951 from this shared object, so we don't need to warn.
952 FIXME: If we see the definition in a regular object
953 later on, we will warn, but we shouldn't. The only
954 fix is to keep track of what warnings we are supposed
955 to emit, and then handle them all at the end of the
957 if (dynamic
&& abfd
->xvec
== info
->hash
->creator
)
959 struct elf_link_hash_entry
*h
;
961 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
964 /* FIXME: What about bfd_link_hash_common? */
966 && (h
->root
.type
== bfd_link_hash_defined
967 || h
->root
.type
== bfd_link_hash_defweak
))
969 /* We don't want to issue this warning. Clobber
970 the section size so that the warning does not
971 get copied into the output file. */
977 sz
= bfd_section_size (abfd
, s
);
978 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
982 if (! bfd_get_section_contents (abfd
, s
, msg
, (file_ptr
) 0, sz
))
987 if (! (_bfd_generic_link_add_one_symbol
988 (info
, abfd
, name
, BSF_WARNING
, s
, (bfd_vma
) 0, msg
,
989 false, collect
, (struct bfd_link_hash_entry
**) NULL
)))
992 if (! info
->relocateable
)
994 /* Clobber the section size so that the warning does
995 not get copied into the output file. */
1002 /* If this is a dynamic object, we always link against the .dynsym
1003 symbol table, not the .symtab symbol table. The dynamic linker
1004 will only see the .dynsym symbol table, so there is no reason to
1005 look at .symtab for a dynamic object. */
1007 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
1008 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1010 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1014 /* Read in any version definitions. */
1016 if (! _bfd_elf_slurp_version_tables (abfd
))
1019 /* Read in the symbol versions, but don't bother to convert them
1020 to internal format. */
1021 if (elf_dynversym (abfd
) != 0)
1023 Elf_Internal_Shdr
*versymhdr
;
1025 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
1026 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
1027 if (extversym
== NULL
)
1029 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
1030 || (bfd_read ((PTR
) extversym
, 1, versymhdr
->sh_size
, abfd
)
1031 != versymhdr
->sh_size
))
1036 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
1038 /* The sh_info field of the symtab header tells us where the
1039 external symbols start. We don't care about the local symbols at
1041 if (elf_bad_symtab (abfd
))
1043 extsymcount
= symcount
;
1048 extsymcount
= symcount
- hdr
->sh_info
;
1049 extsymoff
= hdr
->sh_info
;
1052 buf
= ((Elf_External_Sym
*)
1053 bfd_malloc (extsymcount
* sizeof (Elf_External_Sym
)));
1054 if (buf
== NULL
&& extsymcount
!= 0)
1057 /* We store a pointer to the hash table entry for each external
1059 sym_hash
= ((struct elf_link_hash_entry
**)
1061 extsymcount
* sizeof (struct elf_link_hash_entry
*)));
1062 if (sym_hash
== NULL
)
1064 elf_sym_hashes (abfd
) = sym_hash
;
1070 /* If we are creating a shared library, create all the dynamic
1071 sections immediately. We need to attach them to something,
1072 so we attach them to this BFD, provided it is the right
1073 format. FIXME: If there are no input BFD's of the same
1074 format as the output, we can't make a shared library. */
1076 && ! elf_hash_table (info
)->dynamic_sections_created
1077 && abfd
->xvec
== info
->hash
->creator
)
1079 if (! elf_link_create_dynamic_sections (abfd
, info
))
1088 bfd_size_type oldsize
;
1089 bfd_size_type strindex
;
1091 /* Find the name to use in a DT_NEEDED entry that refers to this
1092 object. If the object has a DT_SONAME entry, we use it.
1093 Otherwise, if the generic linker stuck something in
1094 elf_dt_name, we use that. Otherwise, we just use the file
1095 name. If the generic linker put a null string into
1096 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097 there is a DT_SONAME entry. */
1099 name
= bfd_get_filename (abfd
);
1100 if (elf_dt_name (abfd
) != NULL
)
1102 name
= elf_dt_name (abfd
);
1105 if (elf_dt_soname (abfd
) != NULL
)
1111 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1114 Elf_External_Dyn
*extdyn
;
1115 Elf_External_Dyn
*extdynend
;
1121 dynbuf
= (Elf_External_Dyn
*) bfd_malloc ((size_t) s
->_raw_size
);
1125 if (! bfd_get_section_contents (abfd
, s
, (PTR
) dynbuf
,
1126 (file_ptr
) 0, s
->_raw_size
))
1129 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1132 link
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1135 /* The shared libraries distributed with hpux11 have a bogus
1136 sh_link field for the ".dynamic" section. This code detects
1137 when LINK refers to a section that is not a string table and
1138 tries to find the string table for the ".dynsym" section
1140 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[link
];
1141 if (hdr
->sh_type
!= SHT_STRTAB
)
1143 asection
*s
= bfd_get_section_by_name (abfd
, ".dynsym");
1144 int elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1147 link
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1152 extdynend
= extdyn
+ s
->_raw_size
/ sizeof (Elf_External_Dyn
);
1155 for (; extdyn
< extdynend
; extdyn
++)
1157 Elf_Internal_Dyn dyn
;
1159 elf_swap_dyn_in (abfd
, extdyn
, &dyn
);
1160 if (dyn
.d_tag
== DT_SONAME
)
1162 name
= bfd_elf_string_from_elf_section (abfd
, link
,
1167 if (dyn
.d_tag
== DT_NEEDED
)
1169 struct bfd_link_needed_list
*n
, **pn
;
1172 n
= ((struct bfd_link_needed_list
*)
1173 bfd_alloc (abfd
, sizeof (struct bfd_link_needed_list
)));
1174 fnm
= bfd_elf_string_from_elf_section (abfd
, link
,
1176 if (n
== NULL
|| fnm
== NULL
)
1178 anm
= bfd_alloc (abfd
, strlen (fnm
) + 1);
1185 for (pn
= &elf_hash_table (info
)->needed
;
1191 if (dyn
.d_tag
== DT_RUNPATH
)
1193 struct bfd_link_needed_list
*n
, **pn
;
1196 /* When we see DT_RPATH before DT_RUNPATH, we have
1197 to clear runpath. Do _NOT_ bfd_release, as that
1198 frees all more recently bfd_alloc'd blocks as
1200 if (rpath
&& elf_hash_table (info
)->runpath
)
1201 elf_hash_table (info
)->runpath
= NULL
;
1203 n
= ((struct bfd_link_needed_list
*)
1204 bfd_alloc (abfd
, sizeof (struct bfd_link_needed_list
)));
1205 fnm
= bfd_elf_string_from_elf_section (abfd
, link
,
1207 if (n
== NULL
|| fnm
== NULL
)
1209 anm
= bfd_alloc (abfd
, strlen (fnm
) + 1);
1216 for (pn
= &elf_hash_table (info
)->runpath
;
1224 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1225 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
1227 struct bfd_link_needed_list
*n
, **pn
;
1230 n
= ((struct bfd_link_needed_list
*)
1231 bfd_alloc (abfd
, sizeof (struct bfd_link_needed_list
)));
1232 fnm
= bfd_elf_string_from_elf_section (abfd
, link
,
1234 if (n
== NULL
|| fnm
== NULL
)
1236 anm
= bfd_alloc (abfd
, strlen (fnm
) + 1);
1243 for (pn
= &elf_hash_table (info
)->runpath
;
1256 /* We do not want to include any of the sections in a dynamic
1257 object in the output file. We hack by simply clobbering the
1258 list of sections in the BFD. This could be handled more
1259 cleanly by, say, a new section flag; the existing
1260 SEC_NEVER_LOAD flag is not the one we want, because that one
1261 still implies that the section takes up space in the output
1263 abfd
->sections
= NULL
;
1264 abfd
->section_count
= 0;
1266 /* If this is the first dynamic object found in the link, create
1267 the special sections required for dynamic linking. */
1268 if (! elf_hash_table (info
)->dynamic_sections_created
)
1270 if (! elf_link_create_dynamic_sections (abfd
, info
))
1276 /* Add a DT_NEEDED entry for this dynamic object. */
1277 oldsize
= _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
1278 strindex
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
, name
,
1280 if (strindex
== (bfd_size_type
) -1)
1283 if (oldsize
== _bfd_stringtab_size (elf_hash_table (info
)->dynstr
))
1286 Elf_External_Dyn
*dyncon
, *dynconend
;
1288 /* The hash table size did not change, which means that
1289 the dynamic object name was already entered. If we
1290 have already included this dynamic object in the
1291 link, just ignore it. There is no reason to include
1292 a particular dynamic object more than once. */
1293 sdyn
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
1295 BFD_ASSERT (sdyn
!= NULL
);
1297 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
1298 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
1300 for (; dyncon
< dynconend
; dyncon
++)
1302 Elf_Internal_Dyn dyn
;
1304 elf_swap_dyn_in (elf_hash_table (info
)->dynobj
, dyncon
,
1306 if (dyn
.d_tag
== DT_NEEDED
1307 && dyn
.d_un
.d_val
== strindex
)
1311 if (extversym
!= NULL
)
1318 if (! elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
1322 /* Save the SONAME, if there is one, because sometimes the
1323 linker emulation code will need to know it. */
1325 name
= basename (bfd_get_filename (abfd
));
1326 elf_dt_name (abfd
) = name
;
1330 hdr
->sh_offset
+ extsymoff
* sizeof (Elf_External_Sym
),
1332 || (bfd_read ((PTR
) buf
, sizeof (Elf_External_Sym
), extsymcount
, abfd
)
1333 != extsymcount
* sizeof (Elf_External_Sym
)))
1338 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
1339 esymend
= buf
+ extsymcount
;
1342 esym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
1344 Elf_Internal_Sym sym
;
1350 struct elf_link_hash_entry
*h
;
1352 boolean size_change_ok
, type_change_ok
;
1353 boolean new_weakdef
;
1354 unsigned int old_alignment
;
1356 elf_swap_symbol_in (abfd
, esym
, &sym
);
1358 flags
= BSF_NO_FLAGS
;
1360 value
= sym
.st_value
;
1363 bind
= ELF_ST_BIND (sym
.st_info
);
1364 if (bind
== STB_LOCAL
)
1366 /* This should be impossible, since ELF requires that all
1367 global symbols follow all local symbols, and that sh_info
1368 point to the first global symbol. Unfortunatealy, Irix 5
1372 else if (bind
== STB_GLOBAL
)
1374 if (sym
.st_shndx
!= SHN_UNDEF
1375 && sym
.st_shndx
!= SHN_COMMON
)
1378 else if (bind
== STB_WEAK
)
1382 /* Leave it up to the processor backend. */
1385 if (sym
.st_shndx
== SHN_UNDEF
)
1386 sec
= bfd_und_section_ptr
;
1387 else if (sym
.st_shndx
> 0 && sym
.st_shndx
< SHN_LORESERVE
)
1389 sec
= section_from_elf_index (abfd
, sym
.st_shndx
);
1391 sec
= bfd_abs_section_ptr
;
1392 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
1395 else if (sym
.st_shndx
== SHN_ABS
)
1396 sec
= bfd_abs_section_ptr
;
1397 else if (sym
.st_shndx
== SHN_COMMON
)
1399 sec
= bfd_com_section_ptr
;
1400 /* What ELF calls the size we call the value. What ELF
1401 calls the value we call the alignment. */
1402 value
= sym
.st_size
;
1406 /* Leave it up to the processor backend. */
1409 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
, sym
.st_name
);
1410 if (name
== (const char *) NULL
)
1413 if (add_symbol_hook
)
1415 if (! (*add_symbol_hook
) (abfd
, info
, &sym
, &name
, &flags
, &sec
,
1419 /* The hook function sets the name to NULL if this symbol
1420 should be skipped for some reason. */
1421 if (name
== (const char *) NULL
)
1425 /* Sanity check that all possibilities were handled. */
1426 if (sec
== (asection
*) NULL
)
1428 bfd_set_error (bfd_error_bad_value
);
1432 if (bfd_is_und_section (sec
)
1433 || bfd_is_com_section (sec
))
1438 size_change_ok
= false;
1439 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
1441 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1443 Elf_Internal_Versym iver
;
1444 unsigned int vernum
= 0;
1449 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
1450 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
1452 /* If this is a hidden symbol, or if it is not version
1453 1, we append the version name to the symbol name.
1454 However, we do not modify a non-hidden absolute
1455 symbol, because it might be the version symbol
1456 itself. FIXME: What if it isn't? */
1457 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
1458 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
1461 int namelen
, newlen
;
1464 if (sym
.st_shndx
!= SHN_UNDEF
)
1466 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
1468 (*_bfd_error_handler
)
1469 (_("%s: %s: invalid version %u (max %d)"),
1470 bfd_get_filename (abfd
), name
, vernum
,
1471 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
1472 bfd_set_error (bfd_error_bad_value
);
1475 else if (vernum
> 1)
1477 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1483 /* We cannot simply test for the number of
1484 entries in the VERNEED section since the
1485 numbers for the needed versions do not start
1487 Elf_Internal_Verneed
*t
;
1490 for (t
= elf_tdata (abfd
)->verref
;
1494 Elf_Internal_Vernaux
*a
;
1496 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1498 if (a
->vna_other
== vernum
)
1500 verstr
= a
->vna_nodename
;
1509 (*_bfd_error_handler
)
1510 (_("%s: %s: invalid needed version %d"),
1511 bfd_get_filename (abfd
), name
, vernum
);
1512 bfd_set_error (bfd_error_bad_value
);
1517 namelen
= strlen (name
);
1518 newlen
= namelen
+ strlen (verstr
) + 2;
1519 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
1522 newname
= (char *) bfd_alloc (abfd
, newlen
);
1523 if (newname
== NULL
)
1525 strcpy (newname
, name
);
1526 p
= newname
+ namelen
;
1528 /* If this is a defined non-hidden version symbol,
1529 we add another @ to the name. This indicates the
1530 default version of the symbol. */
1531 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1532 && sym
.st_shndx
!= SHN_UNDEF
)
1540 if (! elf_merge_symbol (abfd
, info
, name
, &sym
, &sec
, &value
,
1541 sym_hash
, &override
, &type_change_ok
,
1542 &size_change_ok
, dt_needed
))
1549 while (h
->root
.type
== bfd_link_hash_indirect
1550 || h
->root
.type
== bfd_link_hash_warning
)
1551 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1553 /* Remember the old alignment if this is a common symbol, so
1554 that we don't reduce the alignment later on. We can't
1555 check later, because _bfd_generic_link_add_one_symbol
1556 will set a default for the alignment which we want to
1558 if (h
->root
.type
== bfd_link_hash_common
)
1559 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1561 if (elf_tdata (abfd
)->verdef
!= NULL
1565 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
1568 if (! (_bfd_generic_link_add_one_symbol
1569 (info
, abfd
, name
, flags
, sec
, value
, (const char *) NULL
,
1570 false, collect
, (struct bfd_link_hash_entry
**) sym_hash
)))
1574 while (h
->root
.type
== bfd_link_hash_indirect
1575 || h
->root
.type
== bfd_link_hash_warning
)
1576 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1579 new_weakdef
= false;
1582 && (flags
& BSF_WEAK
) != 0
1583 && ELF_ST_TYPE (sym
.st_info
) != STT_FUNC
1584 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1585 && h
->weakdef
== NULL
)
1587 /* Keep a list of all weak defined non function symbols from
1588 a dynamic object, using the weakdef field. Later in this
1589 function we will set the weakdef field to the correct
1590 value. We only put non-function symbols from dynamic
1591 objects on this list, because that happens to be the only
1592 time we need to know the normal symbol corresponding to a
1593 weak symbol, and the information is time consuming to
1594 figure out. If the weakdef field is not already NULL,
1595 then this symbol was already defined by some previous
1596 dynamic object, and we will be using that previous
1597 definition anyhow. */
1604 /* Set the alignment of a common symbol. */
1605 if (sym
.st_shndx
== SHN_COMMON
1606 && h
->root
.type
== bfd_link_hash_common
)
1610 align
= bfd_log2 (sym
.st_value
);
1611 if (align
> old_alignment
1612 /* Permit an alignment power of zero if an alignment of one
1613 is specified and no other alignments have been specified. */
1614 || (sym
.st_value
== 1 && old_alignment
== 0))
1615 h
->root
.u
.c
.p
->alignment_power
= align
;
1618 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1624 /* Remember the symbol size and type. */
1625 if (sym
.st_size
!= 0
1626 && (definition
|| h
->size
== 0))
1628 if (h
->size
!= 0 && h
->size
!= sym
.st_size
&& ! size_change_ok
)
1629 (*_bfd_error_handler
)
1630 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631 name
, (unsigned long) h
->size
, (unsigned long) sym
.st_size
,
1632 bfd_get_filename (abfd
));
1634 h
->size
= sym
.st_size
;
1637 /* If this is a common symbol, then we always want H->SIZE
1638 to be the size of the common symbol. The code just above
1639 won't fix the size if a common symbol becomes larger. We
1640 don't warn about a size change here, because that is
1641 covered by --warn-common. */
1642 if (h
->root
.type
== bfd_link_hash_common
)
1643 h
->size
= h
->root
.u
.c
.size
;
1645 if (ELF_ST_TYPE (sym
.st_info
) != STT_NOTYPE
1646 && (definition
|| h
->type
== STT_NOTYPE
))
1648 if (h
->type
!= STT_NOTYPE
1649 && h
->type
!= ELF_ST_TYPE (sym
.st_info
)
1650 && ! type_change_ok
)
1651 (*_bfd_error_handler
)
1652 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653 name
, h
->type
, ELF_ST_TYPE (sym
.st_info
),
1654 bfd_get_filename (abfd
));
1656 h
->type
= ELF_ST_TYPE (sym
.st_info
);
1659 /* If st_other has a processor-specific meaning, specific code
1660 might be needed here. */
1661 if (sym
.st_other
!= 0)
1663 /* Combine visibilities, using the most constraining one. */
1664 unsigned char hvis
= ELF_ST_VISIBILITY (h
->other
);
1665 unsigned char symvis
= ELF_ST_VISIBILITY (sym
.st_other
);
1667 if (symvis
&& (hvis
> symvis
|| hvis
== 0))
1668 h
->other
= sym
.st_other
;
1670 /* If neither has visibility, use the st_other of the
1671 definition. This is an arbitrary choice, since the
1672 other bits have no general meaning. */
1673 if (!symvis
&& !hvis
1674 && (definition
|| h
->other
== 0))
1675 h
->other
= sym
.st_other
;
1678 /* Set a flag in the hash table entry indicating the type of
1679 reference or definition we just found. Keep a count of
1680 the number of dynamic symbols we find. A dynamic symbol
1681 is one which is referenced or defined by both a regular
1682 object and a shared object. */
1683 old_flags
= h
->elf_link_hash_flags
;
1689 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
1690 if (bind
!= STB_WEAK
)
1691 new_flag
|= ELF_LINK_HASH_REF_REGULAR_NONWEAK
;
1694 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
1696 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
1697 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
1703 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
1705 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
1706 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
1707 | ELF_LINK_HASH_REF_REGULAR
)) != 0
1708 || (h
->weakdef
!= NULL
1710 && h
->weakdef
->dynindx
!= -1))
1714 h
->elf_link_hash_flags
|= new_flag
;
1716 /* If this symbol has a version, and it is the default
1717 version, we create an indirect symbol from the default
1718 name to the fully decorated name. This will cause
1719 external references which do not specify a version to be
1720 bound to this version of the symbol. */
1721 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
1725 p
= strchr (name
, ELF_VER_CHR
);
1726 if (p
!= NULL
&& p
[1] == ELF_VER_CHR
)
1729 struct elf_link_hash_entry
*hi
;
1732 shortname
= bfd_hash_allocate (&info
->hash
->table
,
1734 if (shortname
== NULL
)
1736 strncpy (shortname
, name
, p
- name
);
1737 shortname
[p
- name
] = '\0';
1739 /* We are going to create a new symbol. Merge it
1740 with any existing symbol with this name. For the
1741 purposes of the merge, act as though we were
1742 defining the symbol we just defined, although we
1743 actually going to define an indirect symbol. */
1744 type_change_ok
= false;
1745 size_change_ok
= false;
1746 if (! elf_merge_symbol (abfd
, info
, shortname
, &sym
, &sec
,
1747 &value
, &hi
, &override
,
1749 &size_change_ok
, dt_needed
))
1754 if (! (_bfd_generic_link_add_one_symbol
1755 (info
, abfd
, shortname
, BSF_INDIRECT
,
1756 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false,
1757 collect
, (struct bfd_link_hash_entry
**) &hi
)))
1762 /* In this case the symbol named SHORTNAME is
1763 overriding the indirect symbol we want to
1764 add. We were planning on making SHORTNAME an
1765 indirect symbol referring to NAME. SHORTNAME
1766 is the name without a version. NAME is the
1767 fully versioned name, and it is the default
1770 Overriding means that we already saw a
1771 definition for the symbol SHORTNAME in a
1772 regular object, and it is overriding the
1773 symbol defined in the dynamic object.
1775 When this happens, we actually want to change
1776 NAME, the symbol we just added, to refer to
1777 SHORTNAME. This will cause references to
1778 NAME in the shared object to become
1779 references to SHORTNAME in the regular
1780 object. This is what we expect when we
1781 override a function in a shared object: that
1782 the references in the shared object will be
1783 mapped to the definition in the regular
1786 while (hi
->root
.type
== bfd_link_hash_indirect
1787 || hi
->root
.type
== bfd_link_hash_warning
)
1788 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1790 h
->root
.type
= bfd_link_hash_indirect
;
1791 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1792 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1794 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1795 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1796 if (hi
->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_REGULAR
1798 | ELF_LINK_HASH_DEF_REGULAR
))
1800 if (! _bfd_elf_link_record_dynamic_symbol (info
,
1806 /* Now set HI to H, so that the following code
1807 will set the other fields correctly. */
1811 /* If there is a duplicate definition somewhere,
1812 then HI may not point to an indirect symbol. We
1813 will have reported an error to the user in that
1816 if (hi
->root
.type
== bfd_link_hash_indirect
)
1818 struct elf_link_hash_entry
*ht
;
1820 /* If the symbol became indirect, then we assume
1821 that we have not seen a definition before. */
1822 BFD_ASSERT ((hi
->elf_link_hash_flags
1823 & (ELF_LINK_HASH_DEF_DYNAMIC
1824 | ELF_LINK_HASH_DEF_REGULAR
))
1827 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1828 (*bed
->elf_backend_copy_indirect_symbol
) (ht
, hi
);
1830 /* See if the new flags lead us to realize that
1831 the symbol must be dynamic. */
1837 || ((hi
->elf_link_hash_flags
1838 & ELF_LINK_HASH_REF_DYNAMIC
)
1844 if ((hi
->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1851 /* We also need to define an indirection from the
1852 nondefault version of the symbol. */
1854 shortname
= bfd_hash_allocate (&info
->hash
->table
,
1856 if (shortname
== NULL
)
1858 strncpy (shortname
, name
, p
- name
);
1859 strcpy (shortname
+ (p
- name
), p
+ 1);
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok
= false;
1863 size_change_ok
= false;
1864 if (! elf_merge_symbol (abfd
, info
, shortname
, &sym
, &sec
,
1865 &value
, &hi
, &override
,
1867 &size_change_ok
, dt_needed
))
1872 /* Here SHORTNAME is a versioned name, so we
1873 don't expect to see the type of override we
1874 do in the case above. */
1875 (*_bfd_error_handler
)
1876 (_("%s: warning: unexpected redefinition of `%s'"),
1877 bfd_get_filename (abfd
), shortname
);
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info
, abfd
, shortname
, BSF_INDIRECT
,
1883 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, false,
1884 collect
, (struct bfd_link_hash_entry
**) &hi
)))
1887 /* If there is a duplicate definition somewhere,
1888 then HI may not point to an indirect symbol.
1889 We will have reported an error to the user in
1892 if (hi
->root
.type
== bfd_link_hash_indirect
)
1894 /* If the symbol became indirect, then we
1895 assume that we have not seen a definition
1897 BFD_ASSERT ((hi
->elf_link_hash_flags
1898 & (ELF_LINK_HASH_DEF_DYNAMIC
1899 | ELF_LINK_HASH_DEF_REGULAR
))
1902 (*bed
->elf_backend_copy_indirect_symbol
) (h
, hi
);
1904 /* See if the new flags lead us to realize
1905 that the symbol must be dynamic. */
1911 || ((hi
->elf_link_hash_flags
1912 & ELF_LINK_HASH_REF_DYNAMIC
)
1918 if ((hi
->elf_link_hash_flags
1919 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1928 if (dynsym
&& h
->dynindx
== -1)
1930 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
1932 if (h
->weakdef
!= NULL
1934 && h
->weakdef
->dynindx
== -1)
1936 if (! _bfd_elf_link_record_dynamic_symbol (info
,
1941 else if (dynsym
&& h
->dynindx
!= -1)
1942 /* If the symbol already has a dynamic index, but
1943 visibility says it should not be visible, turn it into
1945 switch (ELF_ST_VISIBILITY (h
->other
))
1949 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
1950 (*bed
->elf_backend_hide_symbol
) (info
, h
);
1954 if (dt_needed
&& definition
1955 && (h
->elf_link_hash_flags
1956 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1958 bfd_size_type oldsize
;
1959 bfd_size_type strindex
;
1961 /* The symbol from a DT_NEEDED object is referenced from
1962 the regular object to create a dynamic executable. We
1963 have to make sure there is a DT_NEEDED entry for it. */
1966 oldsize
= _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
1967 strindex
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
1968 elf_dt_soname (abfd
),
1970 if (strindex
== (bfd_size_type
) -1)
1974 == _bfd_stringtab_size (elf_hash_table (info
)->dynstr
))
1977 Elf_External_Dyn
*dyncon
, *dynconend
;
1979 sdyn
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
1981 BFD_ASSERT (sdyn
!= NULL
);
1983 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
1984 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
1986 for (; dyncon
< dynconend
; dyncon
++)
1988 Elf_Internal_Dyn dyn
;
1990 elf_swap_dyn_in (elf_hash_table (info
)->dynobj
,
1992 BFD_ASSERT (dyn
.d_tag
!= DT_NEEDED
||
1993 dyn
.d_un
.d_val
!= strindex
);
1997 if (! elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
2003 /* Now set the weakdefs field correctly for all the weak defined
2004 symbols we found. The only way to do this is to search all the
2005 symbols. Since we only need the information for non functions in
2006 dynamic objects, that's the only time we actually put anything on
2007 the list WEAKS. We need this information so that if a regular
2008 object refers to a symbol defined weakly in a dynamic object, the
2009 real symbol in the dynamic object is also put in the dynamic
2010 symbols; we also must arrange for both symbols to point to the
2011 same memory location. We could handle the general case of symbol
2012 aliasing, but a general symbol alias can only be generated in
2013 assembler code, handling it correctly would be very time
2014 consuming, and other ELF linkers don't handle general aliasing
2016 while (weaks
!= NULL
)
2018 struct elf_link_hash_entry
*hlook
;
2021 struct elf_link_hash_entry
**hpp
;
2022 struct elf_link_hash_entry
**hppend
;
2025 weaks
= hlook
->weakdef
;
2026 hlook
->weakdef
= NULL
;
2028 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
2029 || hlook
->root
.type
== bfd_link_hash_defweak
2030 || hlook
->root
.type
== bfd_link_hash_common
2031 || hlook
->root
.type
== bfd_link_hash_indirect
);
2032 slook
= hlook
->root
.u
.def
.section
;
2033 vlook
= hlook
->root
.u
.def
.value
;
2035 hpp
= elf_sym_hashes (abfd
);
2036 hppend
= hpp
+ extsymcount
;
2037 for (; hpp
< hppend
; hpp
++)
2039 struct elf_link_hash_entry
*h
;
2042 if (h
!= NULL
&& h
!= hlook
2043 && h
->root
.type
== bfd_link_hash_defined
2044 && h
->root
.u
.def
.section
== slook
2045 && h
->root
.u
.def
.value
== vlook
)
2049 /* If the weak definition is in the list of dynamic
2050 symbols, make sure the real definition is put there
2052 if (hlook
->dynindx
!= -1
2053 && h
->dynindx
== -1)
2055 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2059 /* If the real definition is in the list of dynamic
2060 symbols, make sure the weak definition is put there
2061 as well. If we don't do this, then the dynamic
2062 loader might not merge the entries for the real
2063 definition and the weak definition. */
2064 if (h
->dynindx
!= -1
2065 && hlook
->dynindx
== -1)
2067 if (! _bfd_elf_link_record_dynamic_symbol (info
, hlook
))
2082 if (extversym
!= NULL
)
2088 /* If this object is the same format as the output object, and it is
2089 not a shared library, then let the backend look through the
2092 This is required to build global offset table entries and to
2093 arrange for dynamic relocs. It is not required for the
2094 particular common case of linking non PIC code, even when linking
2095 against shared libraries, but unfortunately there is no way of
2096 knowing whether an object file has been compiled PIC or not.
2097 Looking through the relocs is not particularly time consuming.
2098 The problem is that we must either (1) keep the relocs in memory,
2099 which causes the linker to require additional runtime memory or
2100 (2) read the relocs twice from the input file, which wastes time.
2101 This would be a good case for using mmap.
2103 I have no idea how to handle linking PIC code into a file of a
2104 different format. It probably can't be done. */
2105 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
2107 && abfd
->xvec
== info
->hash
->creator
2108 && check_relocs
!= NULL
)
2112 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2114 Elf_Internal_Rela
*internal_relocs
;
2117 if ((o
->flags
& SEC_RELOC
) == 0
2118 || o
->reloc_count
== 0
2119 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2120 && (o
->flags
& SEC_DEBUGGING
) != 0)
2121 || bfd_is_abs_section (o
->output_section
))
2124 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
2125 (abfd
, o
, (PTR
) NULL
,
2126 (Elf_Internal_Rela
*) NULL
,
2127 info
->keep_memory
));
2128 if (internal_relocs
== NULL
)
2131 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
2133 if (! info
->keep_memory
)
2134 free (internal_relocs
);
2141 /* If this is a non-traditional, non-relocateable link, try to
2142 optimize the handling of the .stab/.stabstr sections. */
2144 && ! info
->relocateable
2145 && ! info
->traditional_format
2146 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
2147 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
2149 asection
*stab
, *stabstr
;
2151 stab
= bfd_get_section_by_name (abfd
, ".stab");
2154 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
2156 if (stabstr
!= NULL
)
2158 struct bfd_elf_section_data
*secdata
;
2160 secdata
= elf_section_data (stab
);
2161 if (! _bfd_link_section_stabs (abfd
,
2162 &elf_hash_table (info
)->stab_info
,
2164 &secdata
->stab_info
))
2170 if (! info
->relocateable
&& ! dynamic
)
2174 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
2175 if ((s
->flags
& SEC_MERGE
)
2176 && ! _bfd_merge_section (abfd
,
2177 &elf_hash_table (info
)->merge_info
,
2178 s
, &elf_section_data (s
)->merge_info
))
2189 if (extversym
!= NULL
)
2194 /* Create some sections which will be filled in with dynamic linking
2195 information. ABFD is an input file which requires dynamic sections
2196 to be created. The dynamic sections take up virtual memory space
2197 when the final executable is run, so we need to create them before
2198 addresses are assigned to the output sections. We work out the
2199 actual contents and size of these sections later. */
2202 elf_link_create_dynamic_sections (abfd
, info
)
2204 struct bfd_link_info
*info
;
2207 register asection
*s
;
2208 struct elf_link_hash_entry
*h
;
2209 struct elf_backend_data
*bed
;
2211 if (elf_hash_table (info
)->dynamic_sections_created
)
2214 /* Make sure that all dynamic sections use the same input BFD. */
2215 if (elf_hash_table (info
)->dynobj
== NULL
)
2216 elf_hash_table (info
)->dynobj
= abfd
;
2218 abfd
= elf_hash_table (info
)->dynobj
;
2220 /* Note that we set the SEC_IN_MEMORY flag for all of these
2222 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
2223 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2225 /* A dynamically linked executable has a .interp section, but a
2226 shared library does not. */
2229 s
= bfd_make_section (abfd
, ".interp");
2231 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2235 /* Create sections to hold version informations. These are removed
2236 if they are not needed. */
2237 s
= bfd_make_section (abfd
, ".gnu.version_d");
2239 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2240 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2243 s
= bfd_make_section (abfd
, ".gnu.version");
2245 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2246 || ! bfd_set_section_alignment (abfd
, s
, 1))
2249 s
= bfd_make_section (abfd
, ".gnu.version_r");
2251 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2252 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2255 s
= bfd_make_section (abfd
, ".dynsym");
2257 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2258 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2261 s
= bfd_make_section (abfd
, ".dynstr");
2263 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2266 /* Create a strtab to hold the dynamic symbol names. */
2267 if (elf_hash_table (info
)->dynstr
== NULL
)
2269 elf_hash_table (info
)->dynstr
= elf_stringtab_init ();
2270 if (elf_hash_table (info
)->dynstr
== NULL
)
2274 s
= bfd_make_section (abfd
, ".dynamic");
2276 || ! bfd_set_section_flags (abfd
, s
, flags
)
2277 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2280 /* The special symbol _DYNAMIC is always set to the start of the
2281 .dynamic section. This call occurs before we have processed the
2282 symbols for any dynamic object, so we don't have to worry about
2283 overriding a dynamic definition. We could set _DYNAMIC in a
2284 linker script, but we only want to define it if we are, in fact,
2285 creating a .dynamic section. We don't want to define it if there
2286 is no .dynamic section, since on some ELF platforms the start up
2287 code examines it to decide how to initialize the process. */
2289 if (! (_bfd_generic_link_add_one_symbol
2290 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, (bfd_vma
) 0,
2291 (const char *) NULL
, false, get_elf_backend_data (abfd
)->collect
,
2292 (struct bfd_link_hash_entry
**) &h
)))
2294 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2295 h
->type
= STT_OBJECT
;
2298 && ! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2301 bed
= get_elf_backend_data (abfd
);
2303 s
= bfd_make_section (abfd
, ".hash");
2305 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2306 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2308 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
2310 /* Let the backend create the rest of the sections. This lets the
2311 backend set the right flags. The backend will normally create
2312 the .got and .plt sections. */
2313 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
2316 elf_hash_table (info
)->dynamic_sections_created
= true;
2321 /* Add an entry to the .dynamic table. */
2324 elf_add_dynamic_entry (info
, tag
, val
)
2325 struct bfd_link_info
*info
;
2329 Elf_Internal_Dyn dyn
;
2333 bfd_byte
*newcontents
;
2335 dynobj
= elf_hash_table (info
)->dynobj
;
2337 s
= bfd_get_section_by_name (dynobj
, ".dynamic");
2338 BFD_ASSERT (s
!= NULL
);
2340 newsize
= s
->_raw_size
+ sizeof (Elf_External_Dyn
);
2341 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
2342 if (newcontents
== NULL
)
2346 dyn
.d_un
.d_val
= val
;
2347 elf_swap_dyn_out (dynobj
, &dyn
,
2348 (Elf_External_Dyn
*) (newcontents
+ s
->_raw_size
));
2350 s
->_raw_size
= newsize
;
2351 s
->contents
= newcontents
;
2356 /* Record a new local dynamic symbol. */
2359 elf_link_record_local_dynamic_symbol (info
, input_bfd
, input_indx
)
2360 struct bfd_link_info
*info
;
2364 struct elf_link_local_dynamic_entry
*entry
;
2365 struct elf_link_hash_table
*eht
;
2366 struct bfd_strtab_hash
*dynstr
;
2367 Elf_External_Sym esym
;
2368 unsigned long dynstr_index
;
2371 /* See if the entry exists already. */
2372 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
2373 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
2376 entry
= (struct elf_link_local_dynamic_entry
*)
2377 bfd_alloc (input_bfd
, sizeof (*entry
));
2381 /* Go find the symbol, so that we can find it's name. */
2382 if (bfd_seek (input_bfd
,
2383 (elf_tdata (input_bfd
)->symtab_hdr
.sh_offset
2384 + input_indx
* sizeof (Elf_External_Sym
)),
2386 || (bfd_read (&esym
, sizeof (Elf_External_Sym
), 1, input_bfd
)
2387 != sizeof (Elf_External_Sym
)))
2389 elf_swap_symbol_in (input_bfd
, &esym
, &entry
->isym
);
2391 name
= (bfd_elf_string_from_elf_section
2392 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
2393 entry
->isym
.st_name
));
2395 dynstr
= elf_hash_table (info
)->dynstr
;
2398 /* Create a strtab to hold the dynamic symbol names. */
2399 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_stringtab_init ();
2404 dynstr_index
= _bfd_stringtab_add (dynstr
, name
, true, false);
2405 if (dynstr_index
== (unsigned long) -1)
2407 entry
->isym
.st_name
= dynstr_index
;
2409 eht
= elf_hash_table (info
);
2411 entry
->next
= eht
->dynlocal
;
2412 eht
->dynlocal
= entry
;
2413 entry
->input_bfd
= input_bfd
;
2414 entry
->input_indx
= input_indx
;
2417 /* Whatever binding the symbol had before, it's now local. */
2419 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
2421 /* The dynindx will be set at the end of size_dynamic_sections. */
2426 /* Read and swap the relocs from the section indicated by SHDR. This
2427 may be either a REL or a RELA section. The relocations are
2428 translated into RELA relocations and stored in INTERNAL_RELOCS,
2429 which should have already been allocated to contain enough space.
2430 The EXTERNAL_RELOCS are a buffer where the external form of the
2431 relocations should be stored.
2433 Returns false if something goes wrong. */
2436 elf_link_read_relocs_from_section (abfd
, shdr
, external_relocs
,
2439 Elf_Internal_Shdr
*shdr
;
2440 PTR external_relocs
;
2441 Elf_Internal_Rela
*internal_relocs
;
2443 struct elf_backend_data
*bed
;
2445 /* If there aren't any relocations, that's OK. */
2449 /* Position ourselves at the start of the section. */
2450 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2453 /* Read the relocations. */
2454 if (bfd_read (external_relocs
, 1, shdr
->sh_size
, abfd
)
2458 bed
= get_elf_backend_data (abfd
);
2460 /* Convert the external relocations to the internal format. */
2461 if (shdr
->sh_entsize
== sizeof (Elf_External_Rel
))
2463 Elf_External_Rel
*erel
;
2464 Elf_External_Rel
*erelend
;
2465 Elf_Internal_Rela
*irela
;
2466 Elf_Internal_Rel
*irel
;
2468 erel
= (Elf_External_Rel
*) external_relocs
;
2469 erelend
= erel
+ NUM_SHDR_ENTRIES (shdr
);
2470 irela
= internal_relocs
;
2471 irel
= bfd_alloc (abfd
, (bed
->s
->int_rels_per_ext_rel
2472 * sizeof (Elf_Internal_Rel
)));
2473 for (; erel
< erelend
; erel
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2477 if (bed
->s
->swap_reloc_in
)
2478 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
2480 elf_swap_reloc_in (abfd
, erel
, irel
);
2482 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; ++i
)
2484 irela
[i
].r_offset
= irel
[i
].r_offset
;
2485 irela
[i
].r_info
= irel
[i
].r_info
;
2486 irela
[i
].r_addend
= 0;
2492 Elf_External_Rela
*erela
;
2493 Elf_External_Rela
*erelaend
;
2494 Elf_Internal_Rela
*irela
;
2496 BFD_ASSERT (shdr
->sh_entsize
== sizeof (Elf_External_Rela
));
2498 erela
= (Elf_External_Rela
*) external_relocs
;
2499 erelaend
= erela
+ NUM_SHDR_ENTRIES (shdr
);
2500 irela
= internal_relocs
;
2501 for (; erela
< erelaend
; erela
++, irela
+= bed
->s
->int_rels_per_ext_rel
)
2503 if (bed
->s
->swap_reloca_in
)
2504 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
2506 elf_swap_reloca_in (abfd
, erela
, irela
);
2513 /* Read and swap the relocs for a section O. They may have been
2514 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2515 not NULL, they are used as buffers to read into. They are known to
2516 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2517 the return value is allocated using either malloc or bfd_alloc,
2518 according to the KEEP_MEMORY argument. If O has two relocation
2519 sections (both REL and RELA relocations), then the REL_HDR
2520 relocations will appear first in INTERNAL_RELOCS, followed by the
2521 REL_HDR2 relocations. */
2524 NAME(_bfd_elf
,link_read_relocs
) (abfd
, o
, external_relocs
, internal_relocs
,
2528 PTR external_relocs
;
2529 Elf_Internal_Rela
*internal_relocs
;
2530 boolean keep_memory
;
2532 Elf_Internal_Shdr
*rel_hdr
;
2534 Elf_Internal_Rela
*alloc2
= NULL
;
2535 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2537 if (elf_section_data (o
)->relocs
!= NULL
)
2538 return elf_section_data (o
)->relocs
;
2540 if (o
->reloc_count
== 0)
2543 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2545 if (internal_relocs
== NULL
)
2549 size
= (o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
2550 * sizeof (Elf_Internal_Rela
));
2552 internal_relocs
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2554 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2555 if (internal_relocs
== NULL
)
2559 if (external_relocs
== NULL
)
2561 size_t size
= (size_t) rel_hdr
->sh_size
;
2563 if (elf_section_data (o
)->rel_hdr2
)
2564 size
+= (size_t) elf_section_data (o
)->rel_hdr2
->sh_size
;
2565 alloc1
= (PTR
) bfd_malloc (size
);
2568 external_relocs
= alloc1
;
2571 if (!elf_link_read_relocs_from_section (abfd
, rel_hdr
,
2575 if (!elf_link_read_relocs_from_section
2577 elf_section_data (o
)->rel_hdr2
,
2578 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2579 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2580 * bed
->s
->int_rels_per_ext_rel
)))
2583 /* Cache the results for next time, if we can. */
2585 elf_section_data (o
)->relocs
= internal_relocs
;
2590 /* Don't free alloc2, since if it was allocated we are passing it
2591 back (under the name of internal_relocs). */
2593 return internal_relocs
;
2603 /* Record an assignment to a symbol made by a linker script. We need
2604 this in case some dynamic object refers to this symbol. */
2608 NAME(bfd_elf
,record_link_assignment
) (output_bfd
, info
, name
, provide
)
2609 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2610 struct bfd_link_info
*info
;
2614 struct elf_link_hash_entry
*h
;
2616 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2619 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, true, true, false);
2623 if (h
->root
.type
== bfd_link_hash_new
)
2624 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
2626 /* If this symbol is being provided by the linker script, and it is
2627 currently defined by a dynamic object, but not by a regular
2628 object, then mark it as undefined so that the generic linker will
2629 force the correct value. */
2631 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2632 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2633 h
->root
.type
= bfd_link_hash_undefined
;
2635 /* If this symbol is not being provided by the linker script, and it is
2636 currently defined by a dynamic object, but not by a regular object,
2637 then clear out any version information because the symbol will not be
2638 associated with the dynamic object any more. */
2640 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2641 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2642 h
->verinfo
.verdef
= NULL
;
2644 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2646 /* When possible, keep the original type of the symbol */
2647 if (h
->type
== STT_NOTYPE
)
2648 h
->type
= STT_OBJECT
;
2650 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2651 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
2653 && h
->dynindx
== -1)
2655 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2658 /* If this is a weak defined symbol, and we know a corresponding
2659 real symbol from the same dynamic object, make sure the real
2660 symbol is also made into a dynamic symbol. */
2661 if (h
->weakdef
!= NULL
2662 && h
->weakdef
->dynindx
== -1)
2664 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2672 /* This structure is used to pass information to
2673 elf_link_assign_sym_version. */
2675 struct elf_assign_sym_version_info
2679 /* General link information. */
2680 struct bfd_link_info
*info
;
2682 struct bfd_elf_version_tree
*verdefs
;
2683 /* Whether we had a failure. */
2687 /* This structure is used to pass information to
2688 elf_link_find_version_dependencies. */
2690 struct elf_find_verdep_info
2694 /* General link information. */
2695 struct bfd_link_info
*info
;
2696 /* The number of dependencies. */
2698 /* Whether we had a failure. */
2702 /* Array used to determine the number of hash table buckets to use
2703 based on the number of symbols there are. If there are fewer than
2704 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2705 fewer than 37 we use 17 buckets, and so forth. We never use more
2706 than 32771 buckets. */
2708 static const size_t elf_buckets
[] =
2710 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2714 /* Compute bucket count for hashing table. We do not use a static set
2715 of possible tables sizes anymore. Instead we determine for all
2716 possible reasonable sizes of the table the outcome (i.e., the
2717 number of collisions etc) and choose the best solution. The
2718 weighting functions are not too simple to allow the table to grow
2719 without bounds. Instead one of the weighting factors is the size.
2720 Therefore the result is always a good payoff between few collisions
2721 (= short chain lengths) and table size. */
2723 compute_bucket_count (info
)
2724 struct bfd_link_info
*info
;
2726 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2727 size_t best_size
= 0;
2728 unsigned long int *hashcodes
;
2729 unsigned long int *hashcodesp
;
2730 unsigned long int i
;
2732 /* Compute the hash values for all exported symbols. At the same
2733 time store the values in an array so that we could use them for
2735 hashcodes
= (unsigned long int *) bfd_malloc (dynsymcount
2736 * sizeof (unsigned long int));
2737 if (hashcodes
== NULL
)
2739 hashcodesp
= hashcodes
;
2741 /* Put all hash values in HASHCODES. */
2742 elf_link_hash_traverse (elf_hash_table (info
),
2743 elf_collect_hash_codes
, &hashcodesp
);
2745 /* We have a problem here. The following code to optimize the table
2746 size requires an integer type with more the 32 bits. If
2747 BFD_HOST_U_64_BIT is set we know about such a type. */
2748 #ifdef BFD_HOST_U_64_BIT
2749 if (info
->optimize
== true)
2751 unsigned long int nsyms
= hashcodesp
- hashcodes
;
2754 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
2755 unsigned long int *counts
;
2757 /* Possible optimization parameters: if we have NSYMS symbols we say
2758 that the hashing table must at least have NSYMS/4 and at most
2760 minsize
= nsyms
/ 4;
2763 best_size
= maxsize
= nsyms
* 2;
2765 /* Create array where we count the collisions in. We must use bfd_malloc
2766 since the size could be large. */
2767 counts
= (unsigned long int *) bfd_malloc (maxsize
2768 * sizeof (unsigned long int));
2775 /* Compute the "optimal" size for the hash table. The criteria is a
2776 minimal chain length. The minor criteria is (of course) the size
2778 for (i
= minsize
; i
< maxsize
; ++i
)
2780 /* Walk through the array of hashcodes and count the collisions. */
2781 BFD_HOST_U_64_BIT max
;
2782 unsigned long int j
;
2783 unsigned long int fact
;
2785 memset (counts
, '\0', i
* sizeof (unsigned long int));
2787 /* Determine how often each hash bucket is used. */
2788 for (j
= 0; j
< nsyms
; ++j
)
2789 ++counts
[hashcodes
[j
] % i
];
2791 /* For the weight function we need some information about the
2792 pagesize on the target. This is information need not be 100%
2793 accurate. Since this information is not available (so far) we
2794 define it here to a reasonable default value. If it is crucial
2795 to have a better value some day simply define this value. */
2796 # ifndef BFD_TARGET_PAGESIZE
2797 # define BFD_TARGET_PAGESIZE (4096)
2800 /* We in any case need 2 + NSYMS entries for the size values and
2802 max
= (2 + nsyms
) * (ARCH_SIZE
/ 8);
2805 /* Variant 1: optimize for short chains. We add the squares
2806 of all the chain lengths (which favous many small chain
2807 over a few long chains). */
2808 for (j
= 0; j
< i
; ++j
)
2809 max
+= counts
[j
] * counts
[j
];
2811 /* This adds penalties for the overall size of the table. */
2812 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2815 /* Variant 2: Optimize a lot more for small table. Here we
2816 also add squares of the size but we also add penalties for
2817 empty slots (the +1 term). */
2818 for (j
= 0; j
< i
; ++j
)
2819 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
2821 /* The overall size of the table is considered, but not as
2822 strong as in variant 1, where it is squared. */
2823 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2827 /* Compare with current best results. */
2828 if (max
< best_chlen
)
2838 #endif /* defined (BFD_HOST_U_64_BIT) */
2840 /* This is the fallback solution if no 64bit type is available or if we
2841 are not supposed to spend much time on optimizations. We select the
2842 bucket count using a fixed set of numbers. */
2843 for (i
= 0; elf_buckets
[i
] != 0; i
++)
2845 best_size
= elf_buckets
[i
];
2846 if (dynsymcount
< elf_buckets
[i
+ 1])
2851 /* Free the arrays we needed. */
2857 /* Set up the sizes and contents of the ELF dynamic sections. This is
2858 called by the ELF linker emulation before_allocation routine. We
2859 must set the sizes of the sections before the linker sets the
2860 addresses of the various sections. */
2863 NAME(bfd_elf
,size_dynamic_sections
) (output_bfd
, soname
, rpath
,
2865 auxiliary_filters
, info
, sinterpptr
,
2870 const char *filter_shlib
;
2871 const char * const *auxiliary_filters
;
2872 struct bfd_link_info
*info
;
2873 asection
**sinterpptr
;
2874 struct bfd_elf_version_tree
*verdefs
;
2876 bfd_size_type soname_indx
;
2878 struct elf_backend_data
*bed
;
2879 struct elf_assign_sym_version_info asvinfo
;
2883 soname_indx
= (bfd_size_type
) -1;
2885 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2888 /* The backend may have to create some sections regardless of whether
2889 we're dynamic or not. */
2890 bed
= get_elf_backend_data (output_bfd
);
2891 if (bed
->elf_backend_always_size_sections
2892 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
2895 dynobj
= elf_hash_table (info
)->dynobj
;
2897 /* If there were no dynamic objects in the link, there is nothing to
2902 if (elf_hash_table (info
)->dynamic_sections_created
)
2904 struct elf_info_failed eif
;
2905 struct elf_link_hash_entry
*h
;
2908 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
2909 BFD_ASSERT (*sinterpptr
!= NULL
|| info
->shared
);
2913 soname_indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2914 soname
, true, true);
2915 if (soname_indx
== (bfd_size_type
) -1
2916 || ! elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
2922 if (! elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
2924 info
->flags
|= DF_SYMBOLIC
;
2931 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
, rpath
,
2933 if (indx
== (bfd_size_type
) -1
2934 || ! elf_add_dynamic_entry (info
, DT_RPATH
, indx
)
2936 && ! elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
)))
2940 if (filter_shlib
!= NULL
)
2944 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2945 filter_shlib
, true, true);
2946 if (indx
== (bfd_size_type
) -1
2947 || ! elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
2951 if (auxiliary_filters
!= NULL
)
2953 const char * const *p
;
2955 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
2959 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
2961 if (indx
== (bfd_size_type
) -1
2962 || ! elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
2968 eif
.verdefs
= verdefs
;
2971 /* If we are supposed to export all symbols into the dynamic symbol
2972 table (this is not the normal case), then do so. */
2973 if (info
->export_dynamic
)
2975 elf_link_hash_traverse (elf_hash_table (info
), elf_export_symbol
,
2981 /* Attach all the symbols to their version information. */
2982 asvinfo
.output_bfd
= output_bfd
;
2983 asvinfo
.info
= info
;
2984 asvinfo
.verdefs
= verdefs
;
2985 asvinfo
.failed
= false;
2987 elf_link_hash_traverse (elf_hash_table (info
),
2988 elf_link_assign_sym_version
,
2993 /* Find all symbols which were defined in a dynamic object and make
2994 the backend pick a reasonable value for them. */
2995 elf_link_hash_traverse (elf_hash_table (info
),
2996 elf_adjust_dynamic_symbol
,
3001 /* Add some entries to the .dynamic section. We fill in some of the
3002 values later, in elf_bfd_final_link, but we must add the entries
3003 now so that we know the final size of the .dynamic section. */
3005 /* If there are initialization and/or finalization functions to
3006 call then add the corresponding DT_INIT/DT_FINI entries. */
3007 h
= (info
->init_function
3008 ? elf_link_hash_lookup (elf_hash_table (info
),
3009 info
->init_function
, false,
3013 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3014 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3016 if (! elf_add_dynamic_entry (info
, DT_INIT
, 0))
3019 h
= (info
->fini_function
3020 ? elf_link_hash_lookup (elf_hash_table (info
),
3021 info
->fini_function
, false,
3025 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3026 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3028 if (! elf_add_dynamic_entry (info
, DT_FINI
, 0))
3032 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
3033 /* If .dynstr is excluded from the link, we don't want any of
3034 these tags. Strictly, we should be checking each section
3035 individually; This quick check covers for the case where
3036 someone does a /DISCARD/ : { *(*) }. */
3037 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
3039 bfd_size_type strsize
;
3041 strsize
= _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
3042 if (! elf_add_dynamic_entry (info
, DT_HASH
, 0)
3043 || ! elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
3044 || ! elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
3045 || ! elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
3046 || ! elf_add_dynamic_entry (info
, DT_SYMENT
,
3047 sizeof (Elf_External_Sym
)))
3052 /* The backend must work out the sizes of all the other dynamic
3054 if (bed
->elf_backend_size_dynamic_sections
3055 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
3058 if (elf_hash_table (info
)->dynamic_sections_created
)
3062 size_t bucketcount
= 0;
3063 size_t hash_entry_size
;
3065 /* Set up the version definition section. */
3066 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3067 BFD_ASSERT (s
!= NULL
);
3069 /* We may have created additional version definitions if we are
3070 just linking a regular application. */
3071 verdefs
= asvinfo
.verdefs
;
3073 if (verdefs
== NULL
)
3074 _bfd_strip_section_from_output (info
, s
);
3079 struct bfd_elf_version_tree
*t
;
3081 Elf_Internal_Verdef def
;
3082 Elf_Internal_Verdaux defaux
;
3087 /* Make space for the base version. */
3088 size
+= sizeof (Elf_External_Verdef
);
3089 size
+= sizeof (Elf_External_Verdaux
);
3092 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3094 struct bfd_elf_version_deps
*n
;
3096 size
+= sizeof (Elf_External_Verdef
);
3097 size
+= sizeof (Elf_External_Verdaux
);
3100 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3101 size
+= sizeof (Elf_External_Verdaux
);
3104 s
->_raw_size
= size
;
3105 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3106 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3109 /* Fill in the version definition section. */
3113 def
.vd_version
= VER_DEF_CURRENT
;
3114 def
.vd_flags
= VER_FLG_BASE
;
3117 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3118 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3119 + sizeof (Elf_External_Verdaux
));
3121 if (soname_indx
!= (bfd_size_type
) -1)
3123 def
.vd_hash
= bfd_elf_hash (soname
);
3124 defaux
.vda_name
= soname_indx
;
3131 name
= basename (output_bfd
->filename
);
3132 def
.vd_hash
= bfd_elf_hash (name
);
3133 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
3135 if (indx
== (bfd_size_type
) -1)
3137 defaux
.vda_name
= indx
;
3139 defaux
.vda_next
= 0;
3141 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3142 (Elf_External_Verdef
*)p
);
3143 p
+= sizeof (Elf_External_Verdef
);
3144 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3145 (Elf_External_Verdaux
*) p
);
3146 p
+= sizeof (Elf_External_Verdaux
);
3148 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3151 struct bfd_elf_version_deps
*n
;
3152 struct elf_link_hash_entry
*h
;
3155 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3158 /* Add a symbol representing this version. */
3160 if (! (_bfd_generic_link_add_one_symbol
3161 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
3162 (bfd_vma
) 0, (const char *) NULL
, false,
3163 get_elf_backend_data (dynobj
)->collect
,
3164 (struct bfd_link_hash_entry
**) &h
)))
3166 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
3167 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3168 h
->type
= STT_OBJECT
;
3169 h
->verinfo
.vertree
= t
;
3171 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
3174 def
.vd_version
= VER_DEF_CURRENT
;
3176 if (t
->globals
== NULL
&& t
->locals
== NULL
&& ! t
->used
)
3177 def
.vd_flags
|= VER_FLG_WEAK
;
3178 def
.vd_ndx
= t
->vernum
+ 1;
3179 def
.vd_cnt
= cdeps
+ 1;
3180 def
.vd_hash
= bfd_elf_hash (t
->name
);
3181 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3182 if (t
->next
!= NULL
)
3183 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3184 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
3188 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3189 (Elf_External_Verdef
*) p
);
3190 p
+= sizeof (Elf_External_Verdef
);
3192 defaux
.vda_name
= h
->dynstr_index
;
3193 if (t
->deps
== NULL
)
3194 defaux
.vda_next
= 0;
3196 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3197 t
->name_indx
= defaux
.vda_name
;
3199 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3200 (Elf_External_Verdaux
*) p
);
3201 p
+= sizeof (Elf_External_Verdaux
);
3203 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3205 if (n
->version_needed
== NULL
)
3207 /* This can happen if there was an error in the
3209 defaux
.vda_name
= 0;
3212 defaux
.vda_name
= n
->version_needed
->name_indx
;
3213 if (n
->next
== NULL
)
3214 defaux
.vda_next
= 0;
3216 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3218 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3219 (Elf_External_Verdaux
*) p
);
3220 p
+= sizeof (Elf_External_Verdaux
);
3224 if (! elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
3225 || ! elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
3228 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
3231 if (info
->new_dtags
&& info
->flags
)
3233 if (! elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
3240 info
->flags_1
&= ~ (DF_1_INITFIRST
3243 if (! elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
3247 /* Work out the size of the version reference section. */
3249 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3250 BFD_ASSERT (s
!= NULL
);
3252 struct elf_find_verdep_info sinfo
;
3254 sinfo
.output_bfd
= output_bfd
;
3256 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
3257 if (sinfo
.vers
== 0)
3259 sinfo
.failed
= false;
3261 elf_link_hash_traverse (elf_hash_table (info
),
3262 elf_link_find_version_dependencies
,
3265 if (elf_tdata (output_bfd
)->verref
== NULL
)
3266 _bfd_strip_section_from_output (info
, s
);
3269 Elf_Internal_Verneed
*t
;
3274 /* Build the version definition section. */
3277 for (t
= elf_tdata (output_bfd
)->verref
;
3281 Elf_Internal_Vernaux
*a
;
3283 size
+= sizeof (Elf_External_Verneed
);
3285 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3286 size
+= sizeof (Elf_External_Vernaux
);
3289 s
->_raw_size
= size
;
3290 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, size
);
3291 if (s
->contents
== NULL
)
3295 for (t
= elf_tdata (output_bfd
)->verref
;
3300 Elf_Internal_Vernaux
*a
;
3304 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3307 t
->vn_version
= VER_NEED_CURRENT
;
3309 if (elf_dt_name (t
->vn_bfd
) != NULL
)
3310 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
3311 elf_dt_name (t
->vn_bfd
),
3314 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
3315 basename (t
->vn_bfd
->filename
),
3317 if (indx
== (bfd_size_type
) -1)
3320 t
->vn_aux
= sizeof (Elf_External_Verneed
);
3321 if (t
->vn_nextref
== NULL
)
3324 t
->vn_next
= (sizeof (Elf_External_Verneed
)
3325 + caux
* sizeof (Elf_External_Vernaux
));
3327 _bfd_elf_swap_verneed_out (output_bfd
, t
,
3328 (Elf_External_Verneed
*) p
);
3329 p
+= sizeof (Elf_External_Verneed
);
3331 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3333 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
3334 indx
= _bfd_stringtab_add (elf_hash_table (info
)->dynstr
,
3335 a
->vna_nodename
, true, false);
3336 if (indx
== (bfd_size_type
) -1)
3339 if (a
->vna_nextptr
== NULL
)
3342 a
->vna_next
= sizeof (Elf_External_Vernaux
);
3344 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
3345 (Elf_External_Vernaux
*) p
);
3346 p
+= sizeof (Elf_External_Vernaux
);
3350 if (! elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
3351 || ! elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
3354 elf_tdata (output_bfd
)->cverrefs
= crefs
;
3358 /* Assign dynsym indicies. In a shared library we generate a
3359 section symbol for each output section, which come first.
3360 Next come all of the back-end allocated local dynamic syms,
3361 followed by the rest of the global symbols. */
3363 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3365 /* Work out the size of the symbol version section. */
3366 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
3367 BFD_ASSERT (s
!= NULL
);
3368 if (dynsymcount
== 0
3369 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
3371 _bfd_strip_section_from_output (info
, s
);
3372 /* The DYNSYMCOUNT might have changed if we were going to
3373 output a dynamic symbol table entry for S. */
3374 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3378 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
3379 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3380 if (s
->contents
== NULL
)
3383 if (! elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
3387 /* Set the size of the .dynsym and .hash sections. We counted
3388 the number of dynamic symbols in elf_link_add_object_symbols.
3389 We will build the contents of .dynsym and .hash when we build
3390 the final symbol table, because until then we do not know the
3391 correct value to give the symbols. We built the .dynstr
3392 section as we went along in elf_link_add_object_symbols. */
3393 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
3394 BFD_ASSERT (s
!= NULL
);
3395 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Sym
);
3396 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3397 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3400 if (dynsymcount
!= 0)
3402 Elf_Internal_Sym isym
;
3404 /* The first entry in .dynsym is a dummy symbol. */
3411 elf_swap_symbol_out (output_bfd
, &isym
,
3412 (PTR
) (Elf_External_Sym
*) s
->contents
);
3415 /* Compute the size of the hashing table. As a side effect this
3416 computes the hash values for all the names we export. */
3417 bucketcount
= compute_bucket_count (info
);
3419 s
= bfd_get_section_by_name (dynobj
, ".hash");
3420 BFD_ASSERT (s
!= NULL
);
3421 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
3422 s
->_raw_size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
3423 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3424 if (s
->contents
== NULL
)
3426 memset (s
->contents
, 0, (size_t) s
->_raw_size
);
3428 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
3429 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
3430 s
->contents
+ hash_entry_size
);
3432 elf_hash_table (info
)->bucketcount
= bucketcount
;
3434 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
3435 BFD_ASSERT (s
!= NULL
);
3436 s
->_raw_size
= _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
3438 if (! elf_add_dynamic_entry (info
, DT_NULL
, 0))
3445 /* Fix up the flags for a symbol. This handles various cases which
3446 can only be fixed after all the input files are seen. This is
3447 currently called by both adjust_dynamic_symbol and
3448 assign_sym_version, which is unnecessary but perhaps more robust in
3449 the face of future changes. */
3452 elf_fix_symbol_flags (h
, eif
)
3453 struct elf_link_hash_entry
*h
;
3454 struct elf_info_failed
*eif
;
3456 /* If this symbol was mentioned in a non-ELF file, try to set
3457 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3458 permit a non-ELF file to correctly refer to a symbol defined in
3459 an ELF dynamic object. */
3460 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
3462 while (h
->root
.type
== bfd_link_hash_indirect
)
3463 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3465 if (h
->root
.type
!= bfd_link_hash_defined
3466 && h
->root
.type
!= bfd_link_hash_defweak
)
3467 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3468 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3471 if (h
->root
.u
.def
.section
->owner
!= NULL
3472 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3473 == bfd_target_elf_flavour
))
3474 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3475 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3477 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3480 if (h
->dynindx
== -1
3481 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3482 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
3484 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3493 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3494 was first seen in a non-ELF file. Fortunately, if the symbol
3495 was first seen in an ELF file, we're probably OK unless the
3496 symbol was defined in a non-ELF file. Catch that case here.
3497 FIXME: We're still in trouble if the symbol was first seen in
3498 a dynamic object, and then later in a non-ELF regular object. */
3499 if ((h
->root
.type
== bfd_link_hash_defined
3500 || h
->root
.type
== bfd_link_hash_defweak
)
3501 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3502 && (h
->root
.u
.def
.section
->owner
!= NULL
3503 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3504 != bfd_target_elf_flavour
)
3505 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
3506 && (h
->elf_link_hash_flags
3507 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
3508 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3511 /* If this is a final link, and the symbol was defined as a common
3512 symbol in a regular object file, and there was no definition in
3513 any dynamic object, then the linker will have allocated space for
3514 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3515 flag will not have been set. */
3516 if (h
->root
.type
== bfd_link_hash_defined
3517 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3518 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
3519 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3520 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3521 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3523 /* If -Bsymbolic was used (which means to bind references to global
3524 symbols to the definition within the shared object), and this
3525 symbol was defined in a regular object, then it actually doesn't
3526 need a PLT entry, and we can accomplish that by forcing it local.
3527 Likewise, if the symbol has hidden or internal visibility.
3528 FIXME: It might be that we also do not need a PLT for other
3529 non-hidden visibilities, but we would have to tell that to the
3530 backend specifically; we can't just clear PLT-related data here. */
3531 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
3532 && eif
->info
->shared
3533 && (eif
->info
->symbolic
3534 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3535 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3536 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3538 struct elf_backend_data
*bed
;
3539 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3540 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3541 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3542 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3543 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
);
3546 /* If this is a weak defined symbol in a dynamic object, and we know
3547 the real definition in the dynamic object, copy interesting flags
3548 over to the real definition. */
3549 if (h
->weakdef
!= NULL
)
3551 struct elf_link_hash_entry
*weakdef
;
3553 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
3554 || h
->root
.type
== bfd_link_hash_defweak
);
3555 weakdef
= h
->weakdef
;
3556 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
3557 || weakdef
->root
.type
== bfd_link_hash_defweak
);
3558 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
3560 /* If the real definition is defined by a regular object file,
3561 don't do anything special. See the longer description in
3562 elf_adjust_dynamic_symbol, below. */
3563 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3566 weakdef
->elf_link_hash_flags
|=
3567 (h
->elf_link_hash_flags
3568 & (ELF_LINK_HASH_REF_REGULAR
3569 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3570 | ELF_LINK_NON_GOT_REF
));
3576 /* Make the backend pick a good value for a dynamic symbol. This is
3577 called via elf_link_hash_traverse, and also calls itself
3581 elf_adjust_dynamic_symbol (h
, data
)
3582 struct elf_link_hash_entry
*h
;
3585 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3587 struct elf_backend_data
*bed
;
3589 /* Ignore indirect symbols. These are added by the versioning code. */
3590 if (h
->root
.type
== bfd_link_hash_indirect
)
3593 /* Fix the symbol flags. */
3594 if (! elf_fix_symbol_flags (h
, eif
))
3597 /* If this symbol does not require a PLT entry, and it is not
3598 defined by a dynamic object, or is not referenced by a regular
3599 object, ignore it. We do have to handle a weak defined symbol,
3600 even if no regular object refers to it, if we decided to add it
3601 to the dynamic symbol table. FIXME: Do we normally need to worry
3602 about symbols which are defined by one dynamic object and
3603 referenced by another one? */
3604 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
3605 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3606 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3607 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
3608 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
3610 h
->plt
.offset
= (bfd_vma
) -1;
3614 /* If we've already adjusted this symbol, don't do it again. This
3615 can happen via a recursive call. */
3616 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
3619 /* Don't look at this symbol again. Note that we must set this
3620 after checking the above conditions, because we may look at a
3621 symbol once, decide not to do anything, and then get called
3622 recursively later after REF_REGULAR is set below. */
3623 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
3625 /* If this is a weak definition, and we know a real definition, and
3626 the real symbol is not itself defined by a regular object file,
3627 then get a good value for the real definition. We handle the
3628 real symbol first, for the convenience of the backend routine.
3630 Note that there is a confusing case here. If the real definition
3631 is defined by a regular object file, we don't get the real symbol
3632 from the dynamic object, but we do get the weak symbol. If the
3633 processor backend uses a COPY reloc, then if some routine in the
3634 dynamic object changes the real symbol, we will not see that
3635 change in the corresponding weak symbol. This is the way other
3636 ELF linkers work as well, and seems to be a result of the shared
3639 I will clarify this issue. Most SVR4 shared libraries define the
3640 variable _timezone and define timezone as a weak synonym. The
3641 tzset call changes _timezone. If you write
3642 extern int timezone;
3644 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3645 you might expect that, since timezone is a synonym for _timezone,
3646 the same number will print both times. However, if the processor
3647 backend uses a COPY reloc, then actually timezone will be copied
3648 into your process image, and, since you define _timezone
3649 yourself, _timezone will not. Thus timezone and _timezone will
3650 wind up at different memory locations. The tzset call will set
3651 _timezone, leaving timezone unchanged. */
3653 if (h
->weakdef
!= NULL
)
3655 /* If we get to this point, we know there is an implicit
3656 reference by a regular object file via the weak symbol H.
3657 FIXME: Is this really true? What if the traversal finds
3658 H->WEAKDEF before it finds H? */
3659 h
->weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
3661 if (! elf_adjust_dynamic_symbol (h
->weakdef
, (PTR
) eif
))
3665 /* If a symbol has no type and no size and does not require a PLT
3666 entry, then we are probably about to do the wrong thing here: we
3667 are probably going to create a COPY reloc for an empty object.
3668 This case can arise when a shared object is built with assembly
3669 code, and the assembly code fails to set the symbol type. */
3671 && h
->type
== STT_NOTYPE
3672 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
3673 (*_bfd_error_handler
)
3674 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3675 h
->root
.root
.string
);
3677 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
3678 bed
= get_elf_backend_data (dynobj
);
3679 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
3688 /* This routine is used to export all defined symbols into the dynamic
3689 symbol table. It is called via elf_link_hash_traverse. */
3692 elf_export_symbol (h
, data
)
3693 struct elf_link_hash_entry
*h
;
3696 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3698 /* Ignore indirect symbols. These are added by the versioning code. */
3699 if (h
->root
.type
== bfd_link_hash_indirect
)
3702 if (h
->dynindx
== -1
3703 && (h
->elf_link_hash_flags
3704 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
3706 struct bfd_elf_version_tree
*t
;
3707 struct bfd_elf_version_expr
*d
;
3709 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
3711 if (t
->globals
!= NULL
)
3713 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3715 if ((*d
->match
) (d
, h
->root
.root
.string
))
3720 if (t
->locals
!= NULL
)
3722 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
3724 if ((*d
->match
) (d
, h
->root
.root
.string
))
3733 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3744 /* Look through the symbols which are defined in other shared
3745 libraries and referenced here. Update the list of version
3746 dependencies. This will be put into the .gnu.version_r section.
3747 This function is called via elf_link_hash_traverse. */
3750 elf_link_find_version_dependencies (h
, data
)
3751 struct elf_link_hash_entry
*h
;
3754 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
3755 Elf_Internal_Verneed
*t
;
3756 Elf_Internal_Vernaux
*a
;
3758 /* We only care about symbols defined in shared objects with version
3760 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3761 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3763 || h
->verinfo
.verdef
== NULL
)
3766 /* See if we already know about this version. */
3767 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
3769 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
3772 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3773 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
3779 /* This is a new version. Add it to tree we are building. */
3783 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->output_bfd
, sizeof *t
);
3786 rinfo
->failed
= true;
3790 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
3791 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
3792 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
3795 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->output_bfd
, sizeof *a
);
3797 /* Note that we are copying a string pointer here, and testing it
3798 above. If bfd_elf_string_from_elf_section is ever changed to
3799 discard the string data when low in memory, this will have to be
3801 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
3803 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
3804 a
->vna_nextptr
= t
->vn_auxptr
;
3806 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
3809 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
3816 /* Figure out appropriate versions for all the symbols. We may not
3817 have the version number script until we have read all of the input
3818 files, so until that point we don't know which symbols should be
3819 local. This function is called via elf_link_hash_traverse. */
3822 elf_link_assign_sym_version (h
, data
)
3823 struct elf_link_hash_entry
*h
;
3826 struct elf_assign_sym_version_info
*sinfo
=
3827 (struct elf_assign_sym_version_info
*) data
;
3828 struct bfd_link_info
*info
= sinfo
->info
;
3829 struct elf_backend_data
*bed
;
3830 struct elf_info_failed eif
;
3833 /* Fix the symbol flags. */
3836 if (! elf_fix_symbol_flags (h
, &eif
))
3839 sinfo
->failed
= true;
3843 /* We only need version numbers for symbols defined in regular
3845 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3848 bed
= get_elf_backend_data (sinfo
->output_bfd
);
3849 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
3850 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
3852 struct bfd_elf_version_tree
*t
;
3857 /* There are two consecutive ELF_VER_CHR characters if this is
3858 not a hidden symbol. */
3860 if (*p
== ELF_VER_CHR
)
3866 /* If there is no version string, we can just return out. */
3870 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
3874 /* Look for the version. If we find it, it is no longer weak. */
3875 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
3877 if (strcmp (t
->name
, p
) == 0)
3881 struct bfd_elf_version_expr
*d
;
3883 len
= p
- h
->root
.root
.string
;
3884 alc
= bfd_alloc (sinfo
->output_bfd
, len
);
3887 strncpy (alc
, h
->root
.root
.string
, len
- 1);
3888 alc
[len
- 1] = '\0';
3889 if (alc
[len
- 2] == ELF_VER_CHR
)
3890 alc
[len
- 2] = '\0';
3892 h
->verinfo
.vertree
= t
;
3896 if (t
->globals
!= NULL
)
3898 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3899 if ((*d
->match
) (d
, alc
))
3903 /* See if there is anything to force this symbol to
3905 if (d
== NULL
&& t
->locals
!= NULL
)
3907 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
3909 if ((*d
->match
) (d
, alc
))
3911 if (h
->dynindx
!= -1
3913 && ! info
->export_dynamic
)
3915 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
3916 (*bed
->elf_backend_hide_symbol
) (info
, h
);
3917 /* FIXME: The name of the symbol has
3918 already been recorded in the dynamic
3919 string table section. */
3927 bfd_release (sinfo
->output_bfd
, alc
);
3932 /* If we are building an application, we need to create a
3933 version node for this version. */
3934 if (t
== NULL
&& ! info
->shared
)
3936 struct bfd_elf_version_tree
**pp
;
3939 /* If we aren't going to export this symbol, we don't need
3940 to worry about it. */
3941 if (h
->dynindx
== -1)
3944 t
= ((struct bfd_elf_version_tree
*)
3945 bfd_alloc (sinfo
->output_bfd
, sizeof *t
));
3948 sinfo
->failed
= true;
3957 t
->name_indx
= (unsigned int) -1;
3961 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
3963 t
->vernum
= version_index
;
3967 h
->verinfo
.vertree
= t
;
3971 /* We could not find the version for a symbol when
3972 generating a shared archive. Return an error. */
3973 (*_bfd_error_handler
)
3974 (_("%s: undefined versioned symbol name %s"),
3975 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
3976 bfd_set_error (bfd_error_bad_value
);
3977 sinfo
->failed
= true;
3982 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
3985 /* If we don't have a version for this symbol, see if we can find
3987 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
3989 struct bfd_elf_version_tree
*t
;
3990 struct bfd_elf_version_tree
*deflt
;
3991 struct bfd_elf_version_expr
*d
;
3993 /* See if can find what version this symbol is in. If the
3994 symbol is supposed to be local, then don't actually register
3997 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
3999 if (t
->globals
!= NULL
)
4001 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4003 if ((*d
->match
) (d
, h
->root
.root
.string
))
4005 h
->verinfo
.vertree
= t
;
4014 if (t
->locals
!= NULL
)
4016 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4018 if (d
->pattern
[0] == '*' && d
->pattern
[1] == '\0')
4020 else if ((*d
->match
) (d
, h
->root
.root
.string
))
4022 h
->verinfo
.vertree
= t
;
4023 if (h
->dynindx
!= -1
4025 && ! info
->export_dynamic
)
4027 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4028 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4029 /* FIXME: The name of the symbol has already
4030 been recorded in the dynamic string table
4042 if (deflt
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4044 h
->verinfo
.vertree
= deflt
;
4045 if (h
->dynindx
!= -1
4047 && ! info
->export_dynamic
)
4049 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
4050 (*bed
->elf_backend_hide_symbol
) (info
, h
);
4051 /* FIXME: The name of the symbol has already been
4052 recorded in the dynamic string table section. */
4060 /* Final phase of ELF linker. */
4062 /* A structure we use to avoid passing large numbers of arguments. */
4064 struct elf_final_link_info
4066 /* General link information. */
4067 struct bfd_link_info
*info
;
4070 /* Symbol string table. */
4071 struct bfd_strtab_hash
*symstrtab
;
4072 /* .dynsym section. */
4073 asection
*dynsym_sec
;
4074 /* .hash section. */
4076 /* symbol version section (.gnu.version). */
4077 asection
*symver_sec
;
4078 /* Buffer large enough to hold contents of any section. */
4080 /* Buffer large enough to hold external relocs of any section. */
4081 PTR external_relocs
;
4082 /* Buffer large enough to hold internal relocs of any section. */
4083 Elf_Internal_Rela
*internal_relocs
;
4084 /* Buffer large enough to hold external local symbols of any input
4086 Elf_External_Sym
*external_syms
;
4087 /* Buffer large enough to hold internal local symbols of any input
4089 Elf_Internal_Sym
*internal_syms
;
4090 /* Array large enough to hold a symbol index for each local symbol
4091 of any input BFD. */
4093 /* Array large enough to hold a section pointer for each local
4094 symbol of any input BFD. */
4095 asection
**sections
;
4096 /* Buffer to hold swapped out symbols. */
4097 Elf_External_Sym
*symbuf
;
4098 /* Number of swapped out symbols in buffer. */
4099 size_t symbuf_count
;
4100 /* Number of symbols which fit in symbuf. */
4104 static boolean elf_link_output_sym
4105 PARAMS ((struct elf_final_link_info
*, const char *,
4106 Elf_Internal_Sym
*, asection
*));
4107 static boolean elf_link_flush_output_syms
4108 PARAMS ((struct elf_final_link_info
*));
4109 static boolean elf_link_output_extsym
4110 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4111 static boolean elf_link_sec_merge_syms
4112 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4113 static boolean elf_link_input_bfd
4114 PARAMS ((struct elf_final_link_info
*, bfd
*));
4115 static boolean elf_reloc_link_order
4116 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
4117 struct bfd_link_order
*));
4119 /* This struct is used to pass information to elf_link_output_extsym. */
4121 struct elf_outext_info
4125 struct elf_final_link_info
*finfo
;
4128 /* Compute the size of, and allocate space for, REL_HDR which is the
4129 section header for a section containing relocations for O. */
4132 elf_link_size_reloc_section (abfd
, rel_hdr
, o
)
4134 Elf_Internal_Shdr
*rel_hdr
;
4137 unsigned reloc_count
;
4138 unsigned num_rel_hashes
;
4140 /* Figure out how many relocations there will be. */
4141 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
4142 reloc_count
= elf_section_data (o
)->rel_count
;
4144 reloc_count
= elf_section_data (o
)->rel_count2
;
4146 num_rel_hashes
= o
->reloc_count
;
4147 if (num_rel_hashes
< reloc_count
)
4148 num_rel_hashes
= reloc_count
;
4150 /* That allows us to calculate the size of the section. */
4151 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
4153 /* The contents field must last into write_object_contents, so we
4154 allocate it with bfd_alloc rather than malloc. Also since we
4155 cannot be sure that the contents will actually be filled in,
4156 we zero the allocated space. */
4157 rel_hdr
->contents
= (PTR
) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
4158 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
4161 /* We only allocate one set of hash entries, so we only do it the
4162 first time we are called. */
4163 if (elf_section_data (o
)->rel_hashes
== NULL
4166 struct elf_link_hash_entry
**p
;
4168 p
= ((struct elf_link_hash_entry
**)
4169 bfd_zmalloc (num_rel_hashes
4170 * sizeof (struct elf_link_hash_entry
*)));
4174 elf_section_data (o
)->rel_hashes
= p
;
4180 /* When performing a relocateable link, the input relocations are
4181 preserved. But, if they reference global symbols, the indices
4182 referenced must be updated. Update all the relocations in
4183 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4186 elf_link_adjust_relocs (abfd
, rel_hdr
, count
, rel_hash
)
4188 Elf_Internal_Shdr
*rel_hdr
;
4190 struct elf_link_hash_entry
**rel_hash
;
4193 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4194 Elf_Internal_Rel
*irel
;
4195 Elf_Internal_Rela
*irela
;
4197 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (sizeof (Elf_Internal_Rel
)
4198 * bed
->s
->int_rels_per_ext_rel
);
4201 (*_bfd_error_handler
) (_("Error: out of memory"));
4205 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (sizeof (Elf_Internal_Rela
)
4206 * bed
->s
->int_rels_per_ext_rel
);
4209 (*_bfd_error_handler
) (_("Error: out of memory"));
4213 for (i
= 0; i
< count
; i
++, rel_hash
++)
4215 if (*rel_hash
== NULL
)
4218 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
4220 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
4222 Elf_External_Rel
*erel
;
4225 erel
= (Elf_External_Rel
*) rel_hdr
->contents
+ i
;
4226 if (bed
->s
->swap_reloc_in
)
4227 (*bed
->s
->swap_reloc_in
) (abfd
, (bfd_byte
*) erel
, irel
);
4229 elf_swap_reloc_in (abfd
, erel
, irel
);
4231 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4232 irel
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4233 ELF_R_TYPE (irel
[j
].r_info
));
4235 if (bed
->s
->swap_reloc_out
)
4236 (*bed
->s
->swap_reloc_out
) (abfd
, irel
, (bfd_byte
*) erel
);
4238 elf_swap_reloc_out (abfd
, irel
, erel
);
4242 Elf_External_Rela
*erela
;
4245 BFD_ASSERT (rel_hdr
->sh_entsize
4246 == sizeof (Elf_External_Rela
));
4248 erela
= (Elf_External_Rela
*) rel_hdr
->contents
+ i
;
4249 if (bed
->s
->swap_reloca_in
)
4250 (*bed
->s
->swap_reloca_in
) (abfd
, (bfd_byte
*) erela
, irela
);
4252 elf_swap_reloca_in (abfd
, erela
, irela
);
4254 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4255 irela
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4256 ELF_R_TYPE (irela
[j
].r_info
));
4258 if (bed
->s
->swap_reloca_out
)
4259 (*bed
->s
->swap_reloca_out
) (abfd
, irela
, (bfd_byte
*) erela
);
4261 elf_swap_reloca_out (abfd
, irela
, erela
);
4269 /* Do the final step of an ELF link. */
4272 elf_bfd_final_link (abfd
, info
)
4274 struct bfd_link_info
*info
;
4277 boolean emit_relocs
;
4279 struct elf_final_link_info finfo
;
4280 register asection
*o
;
4281 register struct bfd_link_order
*p
;
4283 size_t max_contents_size
;
4284 size_t max_external_reloc_size
;
4285 size_t max_internal_reloc_count
;
4286 size_t max_sym_count
;
4288 Elf_Internal_Sym elfsym
;
4290 Elf_Internal_Shdr
*symtab_hdr
;
4291 Elf_Internal_Shdr
*symstrtab_hdr
;
4292 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4293 struct elf_outext_info eoinfo
;
4297 abfd
->flags
|= DYNAMIC
;
4299 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
4300 dynobj
= elf_hash_table (info
)->dynobj
;
4302 emit_relocs
= (info
->relocateable
4303 || info
->emitrelocations
4304 || bed
->elf_backend_emit_relocs
);
4307 finfo
.output_bfd
= abfd
;
4308 finfo
.symstrtab
= elf_stringtab_init ();
4309 if (finfo
.symstrtab
== NULL
)
4314 finfo
.dynsym_sec
= NULL
;
4315 finfo
.hash_sec
= NULL
;
4316 finfo
.symver_sec
= NULL
;
4320 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
4321 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
4322 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
4323 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
4324 /* Note that it is OK if symver_sec is NULL. */
4327 finfo
.contents
= NULL
;
4328 finfo
.external_relocs
= NULL
;
4329 finfo
.internal_relocs
= NULL
;
4330 finfo
.external_syms
= NULL
;
4331 finfo
.internal_syms
= NULL
;
4332 finfo
.indices
= NULL
;
4333 finfo
.sections
= NULL
;
4334 finfo
.symbuf
= NULL
;
4335 finfo
.symbuf_count
= 0;
4337 /* Count up the number of relocations we will output for each output
4338 section, so that we know the sizes of the reloc sections. We
4339 also figure out some maximum sizes. */
4340 max_contents_size
= 0;
4341 max_external_reloc_size
= 0;
4342 max_internal_reloc_count
= 0;
4345 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4349 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
4351 if (p
->type
== bfd_section_reloc_link_order
4352 || p
->type
== bfd_symbol_reloc_link_order
)
4354 else if (p
->type
== bfd_indirect_link_order
)
4358 sec
= p
->u
.indirect
.section
;
4360 /* Mark all sections which are to be included in the
4361 link. This will normally be every section. We need
4362 to do this so that we can identify any sections which
4363 the linker has decided to not include. */
4364 sec
->linker_mark
= true;
4366 if (sec
->flags
& SEC_MERGE
)
4369 if (info
->relocateable
|| info
->emitrelocations
)
4370 o
->reloc_count
+= sec
->reloc_count
;
4371 else if (bed
->elf_backend_count_relocs
)
4373 Elf_Internal_Rela
* relocs
;
4375 relocs
= (NAME(_bfd_elf
,link_read_relocs
)
4376 (abfd
, sec
, (PTR
) NULL
,
4377 (Elf_Internal_Rela
*) NULL
, info
->keep_memory
));
4379 o
->reloc_count
+= (*bed
->elf_backend_count_relocs
)
4382 if (!info
->keep_memory
)
4386 if (sec
->_raw_size
> max_contents_size
)
4387 max_contents_size
= sec
->_raw_size
;
4388 if (sec
->_cooked_size
> max_contents_size
)
4389 max_contents_size
= sec
->_cooked_size
;
4391 /* We are interested in just local symbols, not all
4393 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
4394 && (sec
->owner
->flags
& DYNAMIC
) == 0)
4398 if (elf_bad_symtab (sec
->owner
))
4399 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
4400 / sizeof (Elf_External_Sym
));
4402 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
4404 if (sym_count
> max_sym_count
)
4405 max_sym_count
= sym_count
;
4407 if ((sec
->flags
& SEC_RELOC
) != 0)
4411 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
4412 if (ext_size
> max_external_reloc_size
)
4413 max_external_reloc_size
= ext_size
;
4414 if (sec
->reloc_count
> max_internal_reloc_count
)
4415 max_internal_reloc_count
= sec
->reloc_count
;
4421 if (o
->reloc_count
> 0)
4422 o
->flags
|= SEC_RELOC
;
4425 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4426 set it (this is probably a bug) and if it is set
4427 assign_section_numbers will create a reloc section. */
4428 o
->flags
&=~ SEC_RELOC
;
4431 /* If the SEC_ALLOC flag is not set, force the section VMA to
4432 zero. This is done in elf_fake_sections as well, but forcing
4433 the VMA to 0 here will ensure that relocs against these
4434 sections are handled correctly. */
4435 if ((o
->flags
& SEC_ALLOC
) == 0
4436 && ! o
->user_set_vma
)
4440 if (! info
->relocateable
&& merged
)
4441 elf_link_hash_traverse (elf_hash_table (info
),
4442 elf_link_sec_merge_syms
, (PTR
) abfd
);
4444 /* Figure out the file positions for everything but the symbol table
4445 and the relocs. We set symcount to force assign_section_numbers
4446 to create a symbol table. */
4447 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
4448 BFD_ASSERT (! abfd
->output_has_begun
);
4449 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
4452 /* Figure out how many relocations we will have in each section.
4453 Just using RELOC_COUNT isn't good enough since that doesn't
4454 maintain a separate value for REL vs. RELA relocations. */
4456 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
4457 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
4459 asection
*output_section
;
4461 if (! o
->linker_mark
)
4463 /* This section was omitted from the link. */
4467 output_section
= o
->output_section
;
4469 if (output_section
!= NULL
4470 && (o
->flags
& SEC_RELOC
) != 0)
4472 struct bfd_elf_section_data
*esdi
4473 = elf_section_data (o
);
4474 struct bfd_elf_section_data
*esdo
4475 = elf_section_data (output_section
);
4476 unsigned int *rel_count
;
4477 unsigned int *rel_count2
;
4479 /* We must be careful to add the relocation froms the
4480 input section to the right output count. */
4481 if (esdi
->rel_hdr
.sh_entsize
== esdo
->rel_hdr
.sh_entsize
)
4483 rel_count
= &esdo
->rel_count
;
4484 rel_count2
= &esdo
->rel_count2
;
4488 rel_count
= &esdo
->rel_count2
;
4489 rel_count2
= &esdo
->rel_count
;
4492 *rel_count
+= NUM_SHDR_ENTRIES (& esdi
->rel_hdr
);
4494 *rel_count2
+= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
4495 output_section
->flags
|= SEC_RELOC
;
4499 /* That created the reloc sections. Set their sizes, and assign
4500 them file positions, and allocate some buffers. */
4501 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4503 if ((o
->flags
& SEC_RELOC
) != 0)
4505 if (!elf_link_size_reloc_section (abfd
,
4506 &elf_section_data (o
)->rel_hdr
,
4510 if (elf_section_data (o
)->rel_hdr2
4511 && !elf_link_size_reloc_section (abfd
,
4512 elf_section_data (o
)->rel_hdr2
,
4517 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4518 to count upwards while actually outputting the relocations. */
4519 elf_section_data (o
)->rel_count
= 0;
4520 elf_section_data (o
)->rel_count2
= 0;
4523 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4525 /* We have now assigned file positions for all the sections except
4526 .symtab and .strtab. We start the .symtab section at the current
4527 file position, and write directly to it. We build the .strtab
4528 section in memory. */
4529 bfd_get_symcount (abfd
) = 0;
4530 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
4531 /* sh_name is set in prep_headers. */
4532 symtab_hdr
->sh_type
= SHT_SYMTAB
;
4533 symtab_hdr
->sh_flags
= 0;
4534 symtab_hdr
->sh_addr
= 0;
4535 symtab_hdr
->sh_size
= 0;
4536 symtab_hdr
->sh_entsize
= sizeof (Elf_External_Sym
);
4537 /* sh_link is set in assign_section_numbers. */
4538 /* sh_info is set below. */
4539 /* sh_offset is set just below. */
4540 symtab_hdr
->sh_addralign
= bed
->s
->file_align
;
4542 off
= elf_tdata (abfd
)->next_file_pos
;
4543 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, true);
4545 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4546 incorrect. We do not yet know the size of the .symtab section.
4547 We correct next_file_pos below, after we do know the size. */
4549 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4550 continuously seeking to the right position in the file. */
4551 if (! info
->keep_memory
|| max_sym_count
< 20)
4552 finfo
.symbuf_size
= 20;
4554 finfo
.symbuf_size
= max_sym_count
;
4555 finfo
.symbuf
= ((Elf_External_Sym
*)
4556 bfd_malloc (finfo
.symbuf_size
* sizeof (Elf_External_Sym
)));
4557 if (finfo
.symbuf
== NULL
)
4560 /* Start writing out the symbol table. The first symbol is always a
4562 if (info
->strip
!= strip_all
4565 elfsym
.st_value
= 0;
4568 elfsym
.st_other
= 0;
4569 elfsym
.st_shndx
= SHN_UNDEF
;
4570 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
4571 &elfsym
, bfd_und_section_ptr
))
4576 /* Some standard ELF linkers do this, but we don't because it causes
4577 bootstrap comparison failures. */
4578 /* Output a file symbol for the output file as the second symbol.
4579 We output this even if we are discarding local symbols, although
4580 I'm not sure if this is correct. */
4581 elfsym
.st_value
= 0;
4583 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
4584 elfsym
.st_other
= 0;
4585 elfsym
.st_shndx
= SHN_ABS
;
4586 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
4587 &elfsym
, bfd_abs_section_ptr
))
4591 /* Output a symbol for each section. We output these even if we are
4592 discarding local symbols, since they are used for relocs. These
4593 symbols have no names. We store the index of each one in the
4594 index field of the section, so that we can find it again when
4595 outputting relocs. */
4596 if (info
->strip
!= strip_all
4600 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
4601 elfsym
.st_other
= 0;
4602 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
4604 o
= section_from_elf_index (abfd
, i
);
4606 o
->target_index
= bfd_get_symcount (abfd
);
4607 elfsym
.st_shndx
= i
;
4608 if (info
->relocateable
|| o
== NULL
)
4609 elfsym
.st_value
= 0;
4611 elfsym
.st_value
= o
->vma
;
4612 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
4618 /* Allocate some memory to hold information read in from the input
4620 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
4621 finfo
.external_relocs
= (PTR
) bfd_malloc (max_external_reloc_size
);
4622 finfo
.internal_relocs
= ((Elf_Internal_Rela
*)
4623 bfd_malloc (max_internal_reloc_count
4624 * sizeof (Elf_Internal_Rela
)
4625 * bed
->s
->int_rels_per_ext_rel
));
4626 finfo
.external_syms
= ((Elf_External_Sym
*)
4627 bfd_malloc (max_sym_count
4628 * sizeof (Elf_External_Sym
)));
4629 finfo
.internal_syms
= ((Elf_Internal_Sym
*)
4630 bfd_malloc (max_sym_count
4631 * sizeof (Elf_Internal_Sym
)));
4632 finfo
.indices
= (long *) bfd_malloc (max_sym_count
* sizeof (long));
4633 finfo
.sections
= ((asection
**)
4634 bfd_malloc (max_sym_count
* sizeof (asection
*)));
4635 if ((finfo
.contents
== NULL
&& max_contents_size
!= 0)
4636 || (finfo
.external_relocs
== NULL
&& max_external_reloc_size
!= 0)
4637 || (finfo
.internal_relocs
== NULL
&& max_internal_reloc_count
!= 0)
4638 || (finfo
.external_syms
== NULL
&& max_sym_count
!= 0)
4639 || (finfo
.internal_syms
== NULL
&& max_sym_count
!= 0)
4640 || (finfo
.indices
== NULL
&& max_sym_count
!= 0)
4641 || (finfo
.sections
== NULL
&& max_sym_count
!= 0))
4644 /* Since ELF permits relocations to be against local symbols, we
4645 must have the local symbols available when we do the relocations.
4646 Since we would rather only read the local symbols once, and we
4647 would rather not keep them in memory, we handle all the
4648 relocations for a single input file at the same time.
4650 Unfortunately, there is no way to know the total number of local
4651 symbols until we have seen all of them, and the local symbol
4652 indices precede the global symbol indices. This means that when
4653 we are generating relocateable output, and we see a reloc against
4654 a global symbol, we can not know the symbol index until we have
4655 finished examining all the local symbols to see which ones we are
4656 going to output. To deal with this, we keep the relocations in
4657 memory, and don't output them until the end of the link. This is
4658 an unfortunate waste of memory, but I don't see a good way around
4659 it. Fortunately, it only happens when performing a relocateable
4660 link, which is not the common case. FIXME: If keep_memory is set
4661 we could write the relocs out and then read them again; I don't
4662 know how bad the memory loss will be. */
4664 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
4665 sub
->output_has_begun
= false;
4666 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4668 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
4670 if (p
->type
== bfd_indirect_link_order
4671 && (bfd_get_flavour (p
->u
.indirect
.section
->owner
)
4672 == bfd_target_elf_flavour
))
4674 sub
= p
->u
.indirect
.section
->owner
;
4675 if (! sub
->output_has_begun
)
4677 if (! elf_link_input_bfd (&finfo
, sub
))
4679 sub
->output_has_begun
= true;
4682 else if (p
->type
== bfd_section_reloc_link_order
4683 || p
->type
== bfd_symbol_reloc_link_order
)
4685 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
4690 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
4696 /* That wrote out all the local symbols. Finish up the symbol table
4697 with the global symbols. Even if we want to strip everything we
4698 can, we still need to deal with those global symbols that got
4699 converted to local in a version script. */
4703 /* Output any global symbols that got converted to local in a
4704 version script. We do this in a separate step since ELF
4705 requires all local symbols to appear prior to any global
4706 symbols. FIXME: We should only do this if some global
4707 symbols were, in fact, converted to become local. FIXME:
4708 Will this work correctly with the Irix 5 linker? */
4709 eoinfo
.failed
= false;
4710 eoinfo
.finfo
= &finfo
;
4711 eoinfo
.localsyms
= true;
4712 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
4718 /* The sh_info field records the index of the first non local symbol. */
4719 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
4722 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
4724 Elf_Internal_Sym sym
;
4725 Elf_External_Sym
*dynsym
=
4726 (Elf_External_Sym
*)finfo
.dynsym_sec
->contents
;
4727 long last_local
= 0;
4729 /* Write out the section symbols for the output sections. */
4736 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
4739 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4742 indx
= elf_section_data (s
)->this_idx
;
4743 BFD_ASSERT (indx
> 0);
4744 sym
.st_shndx
= indx
;
4745 sym
.st_value
= s
->vma
;
4747 elf_swap_symbol_out (abfd
, &sym
,
4748 dynsym
+ elf_section_data (s
)->dynindx
);
4751 last_local
= bfd_count_sections (abfd
);
4754 /* Write out the local dynsyms. */
4755 if (elf_hash_table (info
)->dynlocal
)
4757 struct elf_link_local_dynamic_entry
*e
;
4758 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
4762 sym
.st_size
= e
->isym
.st_size
;
4763 sym
.st_other
= e
->isym
.st_other
;
4765 /* Copy the internal symbol as is.
4766 Note that we saved a word of storage and overwrote
4767 the original st_name with the dynstr_index. */
4770 if (e
->isym
.st_shndx
> 0 && e
->isym
.st_shndx
< SHN_LORESERVE
)
4772 s
= bfd_section_from_elf_index (e
->input_bfd
,
4776 elf_section_data (s
->output_section
)->this_idx
;
4777 sym
.st_value
= (s
->output_section
->vma
4779 + e
->isym
.st_value
);
4782 if (last_local
< e
->dynindx
)
4783 last_local
= e
->dynindx
;
4785 elf_swap_symbol_out (abfd
, &sym
, dynsym
+ e
->dynindx
);
4789 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
4793 /* We get the global symbols from the hash table. */
4794 eoinfo
.failed
= false;
4795 eoinfo
.localsyms
= false;
4796 eoinfo
.finfo
= &finfo
;
4797 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
4802 /* If backend needs to output some symbols not present in the hash
4803 table, do it now. */
4804 if (bed
->elf_backend_output_arch_syms
)
4806 if (! (*bed
->elf_backend_output_arch_syms
)
4807 (abfd
, info
, (PTR
) &finfo
,
4808 (boolean (*) PARAMS ((PTR
, const char *,
4809 Elf_Internal_Sym
*, asection
*)))
4810 elf_link_output_sym
))
4814 /* Flush all symbols to the file. */
4815 if (! elf_link_flush_output_syms (&finfo
))
4818 /* Now we know the size of the symtab section. */
4819 off
+= symtab_hdr
->sh_size
;
4821 /* Finish up and write out the symbol string table (.strtab)
4823 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
4824 /* sh_name was set in prep_headers. */
4825 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
4826 symstrtab_hdr
->sh_flags
= 0;
4827 symstrtab_hdr
->sh_addr
= 0;
4828 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
4829 symstrtab_hdr
->sh_entsize
= 0;
4830 symstrtab_hdr
->sh_link
= 0;
4831 symstrtab_hdr
->sh_info
= 0;
4832 /* sh_offset is set just below. */
4833 symstrtab_hdr
->sh_addralign
= 1;
4835 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, true);
4836 elf_tdata (abfd
)->next_file_pos
= off
;
4838 if (bfd_get_symcount (abfd
) > 0)
4840 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
4841 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
4845 /* Adjust the relocs to have the correct symbol indices. */
4846 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4848 if ((o
->flags
& SEC_RELOC
) == 0)
4851 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
4852 elf_section_data (o
)->rel_count
,
4853 elf_section_data (o
)->rel_hashes
);
4854 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
4855 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
4856 elf_section_data (o
)->rel_count2
,
4857 (elf_section_data (o
)->rel_hashes
4858 + elf_section_data (o
)->rel_count
));
4860 /* Set the reloc_count field to 0 to prevent write_relocs from
4861 trying to swap the relocs out itself. */
4865 /* If we are linking against a dynamic object, or generating a
4866 shared library, finish up the dynamic linking information. */
4869 Elf_External_Dyn
*dyncon
, *dynconend
;
4871 /* Fix up .dynamic entries. */
4872 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
4873 BFD_ASSERT (o
!= NULL
);
4875 dyncon
= (Elf_External_Dyn
*) o
->contents
;
4876 dynconend
= (Elf_External_Dyn
*) (o
->contents
+ o
->_raw_size
);
4877 for (; dyncon
< dynconend
; dyncon
++)
4879 Elf_Internal_Dyn dyn
;
4883 elf_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4890 name
= info
->init_function
;
4893 name
= info
->fini_function
;
4896 struct elf_link_hash_entry
*h
;
4898 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
4899 false, false, true);
4901 && (h
->root
.type
== bfd_link_hash_defined
4902 || h
->root
.type
== bfd_link_hash_defweak
))
4904 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
4905 o
= h
->root
.u
.def
.section
;
4906 if (o
->output_section
!= NULL
)
4907 dyn
.d_un
.d_val
+= (o
->output_section
->vma
4908 + o
->output_offset
);
4911 /* The symbol is imported from another shared
4912 library and does not apply to this one. */
4916 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
4931 name
= ".gnu.version_d";
4934 name
= ".gnu.version_r";
4937 name
= ".gnu.version";
4939 o
= bfd_get_section_by_name (abfd
, name
);
4940 BFD_ASSERT (o
!= NULL
);
4941 dyn
.d_un
.d_ptr
= o
->vma
;
4942 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
4949 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
4954 for (i
= 1; i
< elf_elfheader (abfd
)->e_shnum
; i
++)
4956 Elf_Internal_Shdr
*hdr
;
4958 hdr
= elf_elfsections (abfd
)[i
];
4959 if (hdr
->sh_type
== type
4960 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
4962 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
4963 dyn
.d_un
.d_val
+= hdr
->sh_size
;
4966 if (dyn
.d_un
.d_val
== 0
4967 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
4968 dyn
.d_un
.d_val
= hdr
->sh_addr
;
4972 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
4978 /* If we have created any dynamic sections, then output them. */
4981 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
4984 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4986 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
4987 || o
->_raw_size
== 0
4988 || o
->output_section
== bfd_abs_section_ptr
)
4990 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
4992 /* At this point, we are only interested in sections
4993 created by elf_link_create_dynamic_sections. */
4996 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
4998 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
5000 if (! bfd_set_section_contents (abfd
, o
->output_section
,
5001 o
->contents
, o
->output_offset
,
5009 /* The contents of the .dynstr section are actually in a
5011 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
5012 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
5013 || ! _bfd_stringtab_emit (abfd
,
5014 elf_hash_table (info
)->dynstr
))
5020 /* If we have optimized stabs strings, output them. */
5021 if (elf_hash_table (info
)->stab_info
!= NULL
)
5023 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
5027 if (finfo
.symstrtab
!= NULL
)
5028 _bfd_stringtab_free (finfo
.symstrtab
);
5029 if (finfo
.contents
!= NULL
)
5030 free (finfo
.contents
);
5031 if (finfo
.external_relocs
!= NULL
)
5032 free (finfo
.external_relocs
);
5033 if (finfo
.internal_relocs
!= NULL
)
5034 free (finfo
.internal_relocs
);
5035 if (finfo
.external_syms
!= NULL
)
5036 free (finfo
.external_syms
);
5037 if (finfo
.internal_syms
!= NULL
)
5038 free (finfo
.internal_syms
);
5039 if (finfo
.indices
!= NULL
)
5040 free (finfo
.indices
);
5041 if (finfo
.sections
!= NULL
)
5042 free (finfo
.sections
);
5043 if (finfo
.symbuf
!= NULL
)
5044 free (finfo
.symbuf
);
5045 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5047 if ((o
->flags
& SEC_RELOC
) != 0
5048 && elf_section_data (o
)->rel_hashes
!= NULL
)
5049 free (elf_section_data (o
)->rel_hashes
);
5052 elf_tdata (abfd
)->linker
= true;
5057 if (finfo
.symstrtab
!= NULL
)
5058 _bfd_stringtab_free (finfo
.symstrtab
);
5059 if (finfo
.contents
!= NULL
)
5060 free (finfo
.contents
);
5061 if (finfo
.external_relocs
!= NULL
)
5062 free (finfo
.external_relocs
);
5063 if (finfo
.internal_relocs
!= NULL
)
5064 free (finfo
.internal_relocs
);
5065 if (finfo
.external_syms
!= NULL
)
5066 free (finfo
.external_syms
);
5067 if (finfo
.internal_syms
!= NULL
)
5068 free (finfo
.internal_syms
);
5069 if (finfo
.indices
!= NULL
)
5070 free (finfo
.indices
);
5071 if (finfo
.sections
!= NULL
)
5072 free (finfo
.sections
);
5073 if (finfo
.symbuf
!= NULL
)
5074 free (finfo
.symbuf
);
5075 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5077 if ((o
->flags
& SEC_RELOC
) != 0
5078 && elf_section_data (o
)->rel_hashes
!= NULL
)
5079 free (elf_section_data (o
)->rel_hashes
);
5085 /* Add a symbol to the output symbol table. */
5088 elf_link_output_sym (finfo
, name
, elfsym
, input_sec
)
5089 struct elf_final_link_info
*finfo
;
5091 Elf_Internal_Sym
*elfsym
;
5092 asection
*input_sec
;
5094 boolean (*output_symbol_hook
) PARAMS ((bfd
*,
5095 struct bfd_link_info
*info
,
5100 output_symbol_hook
= get_elf_backend_data (finfo
->output_bfd
)->
5101 elf_backend_link_output_symbol_hook
;
5102 if (output_symbol_hook
!= NULL
)
5104 if (! ((*output_symbol_hook
)
5105 (finfo
->output_bfd
, finfo
->info
, name
, elfsym
, input_sec
)))
5109 if (name
== (const char *) NULL
|| *name
== '\0')
5110 elfsym
->st_name
= 0;
5111 else if (input_sec
->flags
& SEC_EXCLUDE
)
5112 elfsym
->st_name
= 0;
5115 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
5118 if (elfsym
->st_name
== (unsigned long) -1)
5122 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
5124 if (! elf_link_flush_output_syms (finfo
))
5128 elf_swap_symbol_out (finfo
->output_bfd
, elfsym
,
5129 (PTR
) (finfo
->symbuf
+ finfo
->symbuf_count
));
5130 ++finfo
->symbuf_count
;
5132 ++ bfd_get_symcount (finfo
->output_bfd
);
5137 /* Flush the output symbols to the file. */
5140 elf_link_flush_output_syms (finfo
)
5141 struct elf_final_link_info
*finfo
;
5143 if (finfo
->symbuf_count
> 0)
5145 Elf_Internal_Shdr
*symtab
;
5147 symtab
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
5149 if (bfd_seek (finfo
->output_bfd
, symtab
->sh_offset
+ symtab
->sh_size
,
5151 || (bfd_write ((PTR
) finfo
->symbuf
, finfo
->symbuf_count
,
5152 sizeof (Elf_External_Sym
), finfo
->output_bfd
)
5153 != finfo
->symbuf_count
* sizeof (Elf_External_Sym
)))
5156 symtab
->sh_size
+= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5158 finfo
->symbuf_count
= 0;
5164 /* Adjust all external symbols pointing into SEC_MERGE sections
5165 to reflect the object merging within the sections. */
5168 elf_link_sec_merge_syms (h
, data
)
5169 struct elf_link_hash_entry
*h
;
5174 if ((h
->root
.type
== bfd_link_hash_defined
5175 || h
->root
.type
== bfd_link_hash_defweak
)
5176 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
5177 && elf_section_data (sec
)->merge_info
)
5179 bfd
*output_bfd
= (bfd
*) data
;
5181 h
->root
.u
.def
.value
=
5182 _bfd_merged_section_offset (output_bfd
,
5183 &h
->root
.u
.def
.section
,
5184 elf_section_data (sec
)->merge_info
,
5185 h
->root
.u
.def
.value
, (bfd_vma
) 0);
5191 /* Add an external symbol to the symbol table. This is called from
5192 the hash table traversal routine. When generating a shared object,
5193 we go through the symbol table twice. The first time we output
5194 anything that might have been forced to local scope in a version
5195 script. The second time we output the symbols that are still
5199 elf_link_output_extsym (h
, data
)
5200 struct elf_link_hash_entry
*h
;
5203 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
5204 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
5206 Elf_Internal_Sym sym
;
5207 asection
*input_sec
;
5209 /* Decide whether to output this symbol in this pass. */
5210 if (eoinfo
->localsyms
)
5212 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5217 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5221 /* If we are not creating a shared library, and this symbol is
5222 referenced by a shared library but is not defined anywhere, then
5223 warn that it is undefined. If we do not do this, the runtime
5224 linker will complain that the symbol is undefined when the
5225 program is run. We don't have to worry about symbols that are
5226 referenced by regular files, because we will already have issued
5227 warnings for them. */
5228 if (! finfo
->info
->relocateable
5229 && ! finfo
->info
->allow_shlib_undefined
5230 && ! finfo
->info
->shared
5231 && h
->root
.type
== bfd_link_hash_undefined
5232 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
5233 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5235 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
5236 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
5237 (asection
*) NULL
, 0, true)))
5239 eoinfo
->failed
= true;
5244 /* We don't want to output symbols that have never been mentioned by
5245 a regular file, or that we have been told to strip. However, if
5246 h->indx is set to -2, the symbol is used by a reloc and we must
5250 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
5251 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
5252 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
5253 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
5255 else if (finfo
->info
->strip
== strip_all
5256 || (finfo
->info
->strip
== strip_some
5257 && bfd_hash_lookup (finfo
->info
->keep_hash
,
5258 h
->root
.root
.string
,
5259 false, false) == NULL
))
5264 /* If we're stripping it, and it's not a dynamic symbol, there's
5265 nothing else to do unless it is a forced local symbol. */
5268 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5272 sym
.st_size
= h
->size
;
5273 sym
.st_other
= h
->other
;
5274 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5275 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
5276 else if (h
->root
.type
== bfd_link_hash_undefweak
5277 || h
->root
.type
== bfd_link_hash_defweak
)
5278 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
5280 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
5282 switch (h
->root
.type
)
5285 case bfd_link_hash_new
:
5289 case bfd_link_hash_undefined
:
5290 input_sec
= bfd_und_section_ptr
;
5291 sym
.st_shndx
= SHN_UNDEF
;
5294 case bfd_link_hash_undefweak
:
5295 input_sec
= bfd_und_section_ptr
;
5296 sym
.st_shndx
= SHN_UNDEF
;
5299 case bfd_link_hash_defined
:
5300 case bfd_link_hash_defweak
:
5302 input_sec
= h
->root
.u
.def
.section
;
5303 if (input_sec
->output_section
!= NULL
)
5306 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
5307 input_sec
->output_section
);
5308 if (sym
.st_shndx
== (unsigned short) -1)
5310 (*_bfd_error_handler
)
5311 (_("%s: could not find output section %s for input section %s"),
5312 bfd_get_filename (finfo
->output_bfd
),
5313 input_sec
->output_section
->name
,
5315 eoinfo
->failed
= true;
5319 /* ELF symbols in relocateable files are section relative,
5320 but in nonrelocateable files they are virtual
5322 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
5323 if (! finfo
->info
->relocateable
)
5324 sym
.st_value
+= input_sec
->output_section
->vma
;
5328 BFD_ASSERT (input_sec
->owner
== NULL
5329 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
5330 sym
.st_shndx
= SHN_UNDEF
;
5331 input_sec
= bfd_und_section_ptr
;
5336 case bfd_link_hash_common
:
5337 input_sec
= h
->root
.u
.c
.p
->section
;
5338 sym
.st_shndx
= SHN_COMMON
;
5339 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
5342 case bfd_link_hash_indirect
:
5343 /* These symbols are created by symbol versioning. They point
5344 to the decorated version of the name. For example, if the
5345 symbol foo@@GNU_1.2 is the default, which should be used when
5346 foo is used with no version, then we add an indirect symbol
5347 foo which points to foo@@GNU_1.2. We ignore these symbols,
5348 since the indirected symbol is already in the hash table. */
5351 case bfd_link_hash_warning
:
5352 /* We can't represent these symbols in ELF, although a warning
5353 symbol may have come from a .gnu.warning.SYMBOL section. We
5354 just put the target symbol in the hash table. If the target
5355 symbol does not really exist, don't do anything. */
5356 if (h
->root
.u
.i
.link
->type
== bfd_link_hash_new
)
5358 return (elf_link_output_extsym
5359 ((struct elf_link_hash_entry
*) h
->root
.u
.i
.link
, data
));
5362 /* Give the processor backend a chance to tweak the symbol value,
5363 and also to finish up anything that needs to be done for this
5365 if ((h
->dynindx
!= -1
5366 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5367 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
5369 struct elf_backend_data
*bed
;
5371 bed
= get_elf_backend_data (finfo
->output_bfd
);
5372 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
5373 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
5375 eoinfo
->failed
= true;
5380 /* If we are marking the symbol as undefined, and there are no
5381 non-weak references to this symbol from a regular object, then
5382 mark the symbol as weak undefined; if there are non-weak
5383 references, mark the symbol as strong. We can't do this earlier,
5384 because it might not be marked as undefined until the
5385 finish_dynamic_symbol routine gets through with it. */
5386 if (sym
.st_shndx
== SHN_UNDEF
5387 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
5388 && (ELF_ST_BIND(sym
.st_info
) == STB_GLOBAL
5389 || ELF_ST_BIND(sym
.st_info
) == STB_WEAK
))
5393 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
) != 0)
5394 bindtype
= STB_GLOBAL
;
5396 bindtype
= STB_WEAK
;
5397 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
5400 /* If a symbol is not defined locally, we clear the visibility
5402 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5403 sym
.st_other
^= ELF_ST_VISIBILITY(sym
.st_other
);
5405 /* If this symbol should be put in the .dynsym section, then put it
5406 there now. We have already know the symbol index. We also fill
5407 in the entry in the .hash section. */
5408 if (h
->dynindx
!= -1
5409 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
5413 size_t hash_entry_size
;
5414 bfd_byte
*bucketpos
;
5417 sym
.st_name
= h
->dynstr_index
;
5419 elf_swap_symbol_out (finfo
->output_bfd
, &sym
,
5420 (PTR
) (((Elf_External_Sym
*)
5421 finfo
->dynsym_sec
->contents
)
5424 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
5425 bucket
= h
->elf_hash_value
% bucketcount
;
5427 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
5428 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
5429 + (bucket
+ 2) * hash_entry_size
);
5430 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
5431 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
5432 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
5433 ((bfd_byte
*) finfo
->hash_sec
->contents
5434 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
5436 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
5438 Elf_Internal_Versym iversym
;
5440 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
5442 if (h
->verinfo
.verdef
== NULL
)
5443 iversym
.vs_vers
= 0;
5445 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
5449 if (h
->verinfo
.vertree
== NULL
)
5450 iversym
.vs_vers
= 1;
5452 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
5455 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
5456 iversym
.vs_vers
|= VERSYM_HIDDEN
;
5458 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
,
5459 (((Elf_External_Versym
*)
5460 finfo
->symver_sec
->contents
)
5465 /* If we're stripping it, then it was just a dynamic symbol, and
5466 there's nothing else to do. */
5470 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
5472 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
))
5474 eoinfo
->failed
= true;
5481 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5482 originated from the section given by INPUT_REL_HDR) to the
5486 elf_link_output_relocs (output_bfd
, input_section
, input_rel_hdr
,
5489 asection
*input_section
;
5490 Elf_Internal_Shdr
*input_rel_hdr
;
5491 Elf_Internal_Rela
*internal_relocs
;
5493 Elf_Internal_Rela
*irela
;
5494 Elf_Internal_Rela
*irelaend
;
5495 Elf_Internal_Shdr
*output_rel_hdr
;
5496 asection
*output_section
;
5497 unsigned int *rel_countp
= NULL
;
5498 struct elf_backend_data
*bed
;
5500 output_section
= input_section
->output_section
;
5501 output_rel_hdr
= NULL
;
5503 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
5504 == input_rel_hdr
->sh_entsize
)
5506 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
5507 rel_countp
= &elf_section_data (output_section
)->rel_count
;
5509 else if (elf_section_data (output_section
)->rel_hdr2
5510 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
5511 == input_rel_hdr
->sh_entsize
))
5513 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
5514 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
5517 BFD_ASSERT (output_rel_hdr
!= NULL
);
5519 bed
= get_elf_backend_data (output_bfd
);
5520 irela
= internal_relocs
;
5521 irelaend
= irela
+ NUM_SHDR_ENTRIES (input_rel_hdr
)
5522 * bed
->s
->int_rels_per_ext_rel
;
5524 if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
5526 Elf_External_Rel
*erel
;
5527 Elf_Internal_Rel
*irel
;
5529 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (bed
->s
->int_rels_per_ext_rel
5530 * sizeof (Elf_Internal_Rel
));
5533 (*_bfd_error_handler
) (_("Error: out of memory"));
5537 erel
= ((Elf_External_Rel
*) output_rel_hdr
->contents
+ *rel_countp
);
5538 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erel
++)
5542 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
5544 irel
[i
].r_offset
= irela
[i
].r_offset
;
5545 irel
[i
].r_info
= irela
[i
].r_info
;
5546 BFD_ASSERT (irela
[i
].r_addend
== 0);
5549 if (bed
->s
->swap_reloc_out
)
5550 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (PTR
) erel
);
5552 elf_swap_reloc_out (output_bfd
, irel
, erel
);
5559 Elf_External_Rela
*erela
;
5561 BFD_ASSERT (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
));
5563 erela
= ((Elf_External_Rela
*) output_rel_hdr
->contents
+ *rel_countp
);
5564 for (; irela
< irelaend
; irela
+= bed
->s
->int_rels_per_ext_rel
, erela
++)
5565 if (bed
->s
->swap_reloca_out
)
5566 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (PTR
) erela
);
5568 elf_swap_reloca_out (output_bfd
, irela
, erela
);
5571 /* Bump the counter, so that we know where to add the next set of
5573 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
5576 /* Link an input file into the linker output file. This function
5577 handles all the sections and relocations of the input file at once.
5578 This is so that we only have to read the local symbols once, and
5579 don't have to keep them in memory. */
5582 elf_link_input_bfd (finfo
, input_bfd
)
5583 struct elf_final_link_info
*finfo
;
5586 boolean (*relocate_section
) PARAMS ((bfd
*, struct bfd_link_info
*,
5587 bfd
*, asection
*, bfd_byte
*,
5588 Elf_Internal_Rela
*,
5589 Elf_Internal_Sym
*, asection
**));
5591 Elf_Internal_Shdr
*symtab_hdr
;
5594 Elf_External_Sym
*external_syms
;
5595 Elf_External_Sym
*esym
;
5596 Elf_External_Sym
*esymend
;
5597 Elf_Internal_Sym
*isym
;
5599 asection
**ppsection
;
5601 struct elf_backend_data
*bed
;
5602 boolean emit_relocs
;
5604 output_bfd
= finfo
->output_bfd
;
5605 bed
= get_elf_backend_data (output_bfd
);
5606 relocate_section
= bed
->elf_backend_relocate_section
;
5608 /* If this is a dynamic object, we don't want to do anything here:
5609 we don't want the local symbols, and we don't want the section
5611 if ((input_bfd
->flags
& DYNAMIC
) != 0)
5614 emit_relocs
= (finfo
->info
->relocateable
5615 || finfo
->info
->emitrelocations
5616 || bed
->elf_backend_emit_relocs
);
5618 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5619 if (elf_bad_symtab (input_bfd
))
5621 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
5626 locsymcount
= symtab_hdr
->sh_info
;
5627 extsymoff
= symtab_hdr
->sh_info
;
5630 /* Read the local symbols. */
5631 if (symtab_hdr
->contents
!= NULL
)
5632 external_syms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
5633 else if (locsymcount
== 0)
5634 external_syms
= NULL
;
5637 external_syms
= finfo
->external_syms
;
5638 if (bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
5639 || (bfd_read (external_syms
, sizeof (Elf_External_Sym
),
5640 locsymcount
, input_bfd
)
5641 != locsymcount
* sizeof (Elf_External_Sym
)))
5645 /* Swap in the local symbols and write out the ones which we know
5646 are going into the output file. */
5647 esym
= external_syms
;
5648 esymend
= esym
+ locsymcount
;
5649 isym
= finfo
->internal_syms
;
5650 pindex
= finfo
->indices
;
5651 ppsection
= finfo
->sections
;
5652 for (; esym
< esymend
; esym
++, isym
++, pindex
++, ppsection
++)
5656 Elf_Internal_Sym osym
;
5658 elf_swap_symbol_in (input_bfd
, esym
, isym
);
5661 if (elf_bad_symtab (input_bfd
))
5663 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
5671 if (isym
->st_shndx
== SHN_UNDEF
)
5673 isec
= bfd_und_section_ptr
;
5676 else if (isym
->st_shndx
> 0 && isym
->st_shndx
< SHN_LORESERVE
)
5678 isec
= section_from_elf_index (input_bfd
, isym
->st_shndx
);
5679 if (isec
&& elf_section_data (isec
)->merge_info
5680 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
5682 _bfd_merged_section_offset (output_bfd
, &isec
,
5683 elf_section_data (isec
)->merge_info
,
5684 isym
->st_value
, (bfd_vma
) 0);
5686 else if (isym
->st_shndx
== SHN_ABS
)
5688 isec
= bfd_abs_section_ptr
;
5691 else if (isym
->st_shndx
== SHN_COMMON
)
5693 isec
= bfd_com_section_ptr
;
5704 /* Don't output the first, undefined, symbol. */
5705 if (esym
== external_syms
)
5708 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
5712 /* Save away all section symbol values. */
5717 if (isec
->symbol
->value
!= isym
->st_value
)
5718 (*_bfd_error_handler
)
5719 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5720 bfd_get_filename (input_bfd
), isym
->st_shndx
,
5724 isec
->symbol
->value
= isym
->st_value
;
5727 /* If this is a discarded link-once section symbol, update
5728 it's value to that of the kept section symbol. The
5729 linker will keep the first of any matching link-once
5730 sections, so we should have already seen it's section
5731 symbol. I trust no-one will have the bright idea of
5732 re-ordering the bfd list... */
5734 && (bfd_get_section_flags (input_bfd
, isec
) & SEC_LINK_ONCE
) != 0
5735 && (ksec
= isec
->kept_section
) != NULL
)
5737 isym
->st_value
= ksec
->symbol
->value
;
5739 /* That put the value right, but the section info is all
5740 wrong. I hope this works. */
5741 isec
->output_offset
= ksec
->output_offset
;
5742 isec
->output_section
= ksec
->output_section
;
5745 /* We never output section symbols. Instead, we use the
5746 section symbol of the corresponding section in the output
5751 /* If we are stripping all symbols, we don't want to output this
5753 if (finfo
->info
->strip
== strip_all
)
5756 /* If we are discarding all local symbols, we don't want to
5757 output this one. If we are generating a relocateable output
5758 file, then some of the local symbols may be required by
5759 relocs; we output them below as we discover that they are
5761 if (finfo
->info
->discard
== discard_all
)
5764 /* If this symbol is defined in a section which we are
5765 discarding, we don't need to keep it, but note that
5766 linker_mark is only reliable for sections that have contents.
5767 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5768 as well as linker_mark. */
5769 if (isym
->st_shndx
> 0
5770 && isym
->st_shndx
< SHN_LORESERVE
5772 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
5773 || (! finfo
->info
->relocateable
5774 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
5777 /* Get the name of the symbol. */
5778 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
5783 /* See if we are discarding symbols with this name. */
5784 if ((finfo
->info
->strip
== strip_some
5785 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, false, false)
5787 || (((finfo
->info
->discard
== discard_sec_merge
5788 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocateable
)
5789 || finfo
->info
->discard
== discard_l
)
5790 && bfd_is_local_label_name (input_bfd
, name
)))
5793 /* If we get here, we are going to output this symbol. */
5797 /* Adjust the section index for the output file. */
5798 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
5799 isec
->output_section
);
5800 if (osym
.st_shndx
== (unsigned short) -1)
5803 *pindex
= bfd_get_symcount (output_bfd
);
5805 /* ELF symbols in relocateable files are section relative, but
5806 in executable files they are virtual addresses. Note that
5807 this code assumes that all ELF sections have an associated
5808 BFD section with a reasonable value for output_offset; below
5809 we assume that they also have a reasonable value for
5810 output_section. Any special sections must be set up to meet
5811 these requirements. */
5812 osym
.st_value
+= isec
->output_offset
;
5813 if (! finfo
->info
->relocateable
)
5814 osym
.st_value
+= isec
->output_section
->vma
;
5816 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
))
5820 /* Relocate the contents of each section. */
5821 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5825 if (! o
->linker_mark
)
5827 /* This section was omitted from the link. */
5831 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
5832 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
5835 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
5837 /* Section was created by elf_link_create_dynamic_sections
5842 /* Get the contents of the section. They have been cached by a
5843 relaxation routine. Note that o is a section in an input
5844 file, so the contents field will not have been set by any of
5845 the routines which work on output files. */
5846 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
5847 contents
= elf_section_data (o
)->this_hdr
.contents
;
5850 contents
= finfo
->contents
;
5851 if (! bfd_get_section_contents (input_bfd
, o
, contents
,
5852 (file_ptr
) 0, o
->_raw_size
))
5856 if ((o
->flags
& SEC_RELOC
) != 0)
5858 Elf_Internal_Rela
*internal_relocs
;
5860 /* Get the swapped relocs. */
5861 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
5862 (input_bfd
, o
, finfo
->external_relocs
,
5863 finfo
->internal_relocs
, false));
5864 if (internal_relocs
== NULL
5865 && o
->reloc_count
> 0)
5868 /* Relocate the section by invoking a back end routine.
5870 The back end routine is responsible for adjusting the
5871 section contents as necessary, and (if using Rela relocs
5872 and generating a relocateable output file) adjusting the
5873 reloc addend as necessary.
5875 The back end routine does not have to worry about setting
5876 the reloc address or the reloc symbol index.
5878 The back end routine is given a pointer to the swapped in
5879 internal symbols, and can access the hash table entries
5880 for the external symbols via elf_sym_hashes (input_bfd).
5882 When generating relocateable output, the back end routine
5883 must handle STB_LOCAL/STT_SECTION symbols specially. The
5884 output symbol is going to be a section symbol
5885 corresponding to the output section, which will require
5886 the addend to be adjusted. */
5888 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
5889 input_bfd
, o
, contents
,
5891 finfo
->internal_syms
,
5897 Elf_Internal_Rela
*irela
;
5898 Elf_Internal_Rela
*irelaend
;
5899 struct elf_link_hash_entry
**rel_hash
;
5900 Elf_Internal_Shdr
*input_rel_hdr
;
5901 unsigned int next_erel
;
5902 void (* reloc_emitter
) PARAMS ((bfd
*, asection
*,
5903 Elf_Internal_Shdr
*,
5904 Elf_Internal_Rela
*));
5906 /* Adjust the reloc addresses and symbol indices. */
5908 irela
= internal_relocs
;
5910 + o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5911 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
5912 + elf_section_data (o
->output_section
)->rel_count
5913 + elf_section_data (o
->output_section
)->rel_count2
);
5914 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
5916 unsigned long r_symndx
;
5917 Elf_Internal_Sym
*isym
;
5920 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
5926 irela
->r_offset
+= o
->output_offset
;
5928 /* Relocs in an executable have to be virtual addresses. */
5929 if (finfo
->info
->emitrelocations
)
5930 irela
->r_offset
+= o
->output_section
->vma
;
5932 r_symndx
= ELF_R_SYM (irela
->r_info
);
5937 if (r_symndx
>= locsymcount
5938 || (elf_bad_symtab (input_bfd
)
5939 && finfo
->sections
[r_symndx
] == NULL
))
5941 struct elf_link_hash_entry
*rh
;
5944 /* This is a reloc against a global symbol. We
5945 have not yet output all the local symbols, so
5946 we do not know the symbol index of any global
5947 symbol. We set the rel_hash entry for this
5948 reloc to point to the global hash table entry
5949 for this symbol. The symbol index is then
5950 set at the end of elf_bfd_final_link. */
5951 indx
= r_symndx
- extsymoff
;
5952 rh
= elf_sym_hashes (input_bfd
)[indx
];
5953 while (rh
->root
.type
== bfd_link_hash_indirect
5954 || rh
->root
.type
== bfd_link_hash_warning
)
5955 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
5957 /* Setting the index to -2 tells
5958 elf_link_output_extsym that this symbol is
5960 BFD_ASSERT (rh
->indx
< 0);
5968 /* This is a reloc against a local symbol. */
5971 isym
= finfo
->internal_syms
+ r_symndx
;
5972 sec
= finfo
->sections
[r_symndx
];
5973 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
5975 /* I suppose the backend ought to fill in the
5976 section of any STT_SECTION symbol against a
5977 processor specific section. If we have
5978 discarded a section, the output_section will
5979 be the absolute section. */
5981 && (bfd_is_abs_section (sec
)
5982 || (sec
->output_section
!= NULL
5983 && bfd_is_abs_section (sec
->output_section
))))
5985 else if (sec
== NULL
|| sec
->owner
== NULL
)
5987 bfd_set_error (bfd_error_bad_value
);
5992 r_symndx
= sec
->output_section
->target_index
;
5993 BFD_ASSERT (r_symndx
!= 0);
5998 if (finfo
->indices
[r_symndx
] == -1)
6004 if (finfo
->info
->strip
== strip_all
)
6006 /* You can't do ld -r -s. */
6007 bfd_set_error (bfd_error_invalid_operation
);
6011 /* This symbol was skipped earlier, but
6012 since it is needed by a reloc, we
6013 must output it now. */
6014 link
= symtab_hdr
->sh_link
;
6015 name
= bfd_elf_string_from_elf_section (input_bfd
,
6021 osec
= sec
->output_section
;
6023 _bfd_elf_section_from_bfd_section (output_bfd
,
6025 if (isym
->st_shndx
== (unsigned short) -1)
6028 isym
->st_value
+= sec
->output_offset
;
6029 if (! finfo
->info
->relocateable
)
6030 isym
->st_value
+= osec
->vma
;
6032 finfo
->indices
[r_symndx
] = bfd_get_symcount (output_bfd
);
6034 if (! elf_link_output_sym (finfo
, name
, isym
, sec
))
6038 r_symndx
= finfo
->indices
[r_symndx
];
6041 irela
->r_info
= ELF_R_INFO (r_symndx
,
6042 ELF_R_TYPE (irela
->r_info
));
6045 /* Swap out the relocs. */
6046 if (bed
->elf_backend_emit_relocs
6047 && ! (finfo
->info
->relocateable
|| finfo
->info
->emitrelocations
))
6048 reloc_emitter
= bed
->elf_backend_emit_relocs
;
6050 reloc_emitter
= elf_link_output_relocs
;
6052 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
6053 (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6055 input_rel_hdr
= elf_section_data (o
)->rel_hdr2
;
6058 internal_relocs
+= NUM_SHDR_ENTRIES (input_rel_hdr
)
6059 * bed
->s
->int_rels_per_ext_rel
;
6060 reloc_emitter (output_bfd
, o
, input_rel_hdr
, internal_relocs
);
6066 /* Write out the modified section contents. */
6067 if (elf_section_data (o
)->stab_info
)
6069 if (! (_bfd_write_section_stabs
6070 (output_bfd
, &elf_hash_table (finfo
->info
)->stab_info
,
6071 o
, &elf_section_data (o
)->stab_info
, contents
)))
6074 else if (elf_section_data (o
)->merge_info
)
6076 if (! (_bfd_write_merged_section
6077 (output_bfd
, o
, elf_section_data (o
)->merge_info
)))
6082 if (! (o
->flags
& SEC_EXCLUDE
) &&
6083 ! bfd_set_section_contents (output_bfd
, o
->output_section
,
6084 contents
, o
->output_offset
,
6085 (o
->_cooked_size
!= 0
6095 /* Generate a reloc when linking an ELF file. This is a reloc
6096 requested by the linker, and does come from any input file. This
6097 is used to build constructor and destructor tables when linking
6101 elf_reloc_link_order (output_bfd
, info
, output_section
, link_order
)
6103 struct bfd_link_info
*info
;
6104 asection
*output_section
;
6105 struct bfd_link_order
*link_order
;
6107 reloc_howto_type
*howto
;
6111 struct elf_link_hash_entry
**rel_hash_ptr
;
6112 Elf_Internal_Shdr
*rel_hdr
;
6113 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
6115 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
6118 bfd_set_error (bfd_error_bad_value
);
6122 addend
= link_order
->u
.reloc
.p
->addend
;
6124 /* Figure out the symbol index. */
6125 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
6126 + elf_section_data (output_section
)->rel_count
6127 + elf_section_data (output_section
)->rel_count2
);
6128 if (link_order
->type
== bfd_section_reloc_link_order
)
6130 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
6131 BFD_ASSERT (indx
!= 0);
6132 *rel_hash_ptr
= NULL
;
6136 struct elf_link_hash_entry
*h
;
6138 /* Treat a reloc against a defined symbol as though it were
6139 actually against the section. */
6140 h
= ((struct elf_link_hash_entry
*)
6141 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
6142 link_order
->u
.reloc
.p
->u
.name
,
6143 false, false, true));
6145 && (h
->root
.type
== bfd_link_hash_defined
6146 || h
->root
.type
== bfd_link_hash_defweak
))
6150 section
= h
->root
.u
.def
.section
;
6151 indx
= section
->output_section
->target_index
;
6152 *rel_hash_ptr
= NULL
;
6153 /* It seems that we ought to add the symbol value to the
6154 addend here, but in practice it has already been added
6155 because it was passed to constructor_callback. */
6156 addend
+= section
->output_section
->vma
+ section
->output_offset
;
6160 /* Setting the index to -2 tells elf_link_output_extsym that
6161 this symbol is used by a reloc. */
6168 if (! ((*info
->callbacks
->unattached_reloc
)
6169 (info
, link_order
->u
.reloc
.p
->u
.name
, (bfd
*) NULL
,
6170 (asection
*) NULL
, (bfd_vma
) 0)))
6176 /* If this is an inplace reloc, we must write the addend into the
6178 if (howto
->partial_inplace
&& addend
!= 0)
6181 bfd_reloc_status_type rstat
;
6185 size
= bfd_get_reloc_size (howto
);
6186 buf
= (bfd_byte
*) bfd_zmalloc (size
);
6187 if (buf
== (bfd_byte
*) NULL
)
6189 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
6195 case bfd_reloc_outofrange
:
6197 case bfd_reloc_overflow
:
6198 if (! ((*info
->callbacks
->reloc_overflow
)
6200 (link_order
->type
== bfd_section_reloc_link_order
6201 ? bfd_section_name (output_bfd
,
6202 link_order
->u
.reloc
.p
->u
.section
)
6203 : link_order
->u
.reloc
.p
->u
.name
),
6204 howto
->name
, addend
, (bfd
*) NULL
, (asection
*) NULL
,
6212 ok
= bfd_set_section_contents (output_bfd
, output_section
, (PTR
) buf
,
6213 (file_ptr
) link_order
->offset
, size
);
6219 /* The address of a reloc is relative to the section in a
6220 relocateable file, and is a virtual address in an executable
6222 offset
= link_order
->offset
;
6223 if (! info
->relocateable
)
6224 offset
+= output_section
->vma
;
6226 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6228 if (rel_hdr
->sh_type
== SHT_REL
)
6230 Elf_Internal_Rel
*irel
;
6231 Elf_External_Rel
*erel
;
6234 irel
= (Elf_Internal_Rel
*) bfd_zmalloc (bed
->s
->int_rels_per_ext_rel
6235 * sizeof (Elf_Internal_Rel
));
6239 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6240 irel
[i
].r_offset
= offset
;
6241 irel
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
6243 erel
= ((Elf_External_Rel
*) rel_hdr
->contents
6244 + elf_section_data (output_section
)->rel_count
);
6246 if (bed
->s
->swap_reloc_out
)
6247 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, (bfd_byte
*) erel
);
6249 elf_swap_reloc_out (output_bfd
, irel
, erel
);
6255 Elf_Internal_Rela
*irela
;
6256 Elf_External_Rela
*erela
;
6259 irela
= (Elf_Internal_Rela
*) bfd_zmalloc (bed
->s
->int_rels_per_ext_rel
6260 * sizeof (Elf_Internal_Rela
));
6264 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6265 irela
[i
].r_offset
= offset
;
6266 irela
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
6267 irela
[0].r_addend
= addend
;
6269 erela
= ((Elf_External_Rela
*) rel_hdr
->contents
6270 + elf_section_data (output_section
)->rel_count
);
6272 if (bed
->s
->swap_reloca_out
)
6273 (*bed
->s
->swap_reloca_out
) (output_bfd
, irela
, (bfd_byte
*) erela
);
6275 elf_swap_reloca_out (output_bfd
, irela
, erela
);
6278 ++elf_section_data (output_section
)->rel_count
;
6283 /* Allocate a pointer to live in a linker created section. */
6286 elf_create_pointer_linker_section (abfd
, info
, lsect
, h
, rel
)
6288 struct bfd_link_info
*info
;
6289 elf_linker_section_t
*lsect
;
6290 struct elf_link_hash_entry
*h
;
6291 const Elf_Internal_Rela
*rel
;
6293 elf_linker_section_pointers_t
**ptr_linker_section_ptr
= NULL
;
6294 elf_linker_section_pointers_t
*linker_section_ptr
;
6295 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);;
6297 BFD_ASSERT (lsect
!= NULL
);
6299 /* Is this a global symbol? */
6302 /* Has this symbol already been allocated, if so, our work is done */
6303 if (_bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
6308 ptr_linker_section_ptr
= &h
->linker_section_pointer
;
6309 /* Make sure this symbol is output as a dynamic symbol. */
6310 if (h
->dynindx
== -1)
6312 if (! elf_link_record_dynamic_symbol (info
, h
))
6316 if (lsect
->rel_section
)
6317 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
6320 else /* Allocation of a pointer to a local symbol */
6322 elf_linker_section_pointers_t
**ptr
= elf_local_ptr_offsets (abfd
);
6324 /* Allocate a table to hold the local symbols if first time */
6327 unsigned int num_symbols
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
6328 register unsigned int i
;
6330 ptr
= (elf_linker_section_pointers_t
**)
6331 bfd_alloc (abfd
, num_symbols
* sizeof (elf_linker_section_pointers_t
*));
6336 elf_local_ptr_offsets (abfd
) = ptr
;
6337 for (i
= 0; i
< num_symbols
; i
++)
6338 ptr
[i
] = (elf_linker_section_pointers_t
*)0;
6341 /* Has this symbol already been allocated, if so, our work is done */
6342 if (_bfd_elf_find_pointer_linker_section (ptr
[r_symndx
],
6347 ptr_linker_section_ptr
= &ptr
[r_symndx
];
6351 /* If we are generating a shared object, we need to
6352 output a R_<xxx>_RELATIVE reloc so that the
6353 dynamic linker can adjust this GOT entry. */
6354 BFD_ASSERT (lsect
->rel_section
!= NULL
);
6355 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
6359 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6360 from internal memory. */
6361 BFD_ASSERT (ptr_linker_section_ptr
!= NULL
);
6362 linker_section_ptr
= (elf_linker_section_pointers_t
*)
6363 bfd_alloc (abfd
, sizeof (elf_linker_section_pointers_t
));
6365 if (!linker_section_ptr
)
6368 linker_section_ptr
->next
= *ptr_linker_section_ptr
;
6369 linker_section_ptr
->addend
= rel
->r_addend
;
6370 linker_section_ptr
->which
= lsect
->which
;
6371 linker_section_ptr
->written_address_p
= false;
6372 *ptr_linker_section_ptr
= linker_section_ptr
;
6375 if (lsect
->hole_size
&& lsect
->hole_offset
< lsect
->max_hole_offset
)
6377 linker_section_ptr
->offset
= lsect
->section
->_raw_size
- lsect
->hole_size
+ (ARCH_SIZE
/ 8);
6378 lsect
->hole_offset
+= ARCH_SIZE
/ 8;
6379 lsect
->sym_offset
+= ARCH_SIZE
/ 8;
6380 if (lsect
->sym_hash
) /* Bump up symbol value if needed */
6382 lsect
->sym_hash
->root
.u
.def
.value
+= ARCH_SIZE
/ 8;
6384 fprintf (stderr
, "Bump up %s by %ld, current value = %ld\n",
6385 lsect
->sym_hash
->root
.root
.string
,
6386 (long)ARCH_SIZE
/ 8,
6387 (long)lsect
->sym_hash
->root
.u
.def
.value
);
6393 linker_section_ptr
->offset
= lsect
->section
->_raw_size
;
6395 lsect
->section
->_raw_size
+= ARCH_SIZE
/ 8;
6398 fprintf (stderr
, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6399 lsect
->name
, (long)linker_section_ptr
->offset
, (long)lsect
->section
->_raw_size
);
6406 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6409 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6412 /* Fill in the address for a pointer generated in a linker section. */
6415 elf_finish_pointer_linker_section (output_bfd
, input_bfd
, info
, lsect
, h
, relocation
, rel
, relative_reloc
)
6418 struct bfd_link_info
*info
;
6419 elf_linker_section_t
*lsect
;
6420 struct elf_link_hash_entry
*h
;
6422 const Elf_Internal_Rela
*rel
;
6425 elf_linker_section_pointers_t
*linker_section_ptr
;
6427 BFD_ASSERT (lsect
!= NULL
);
6429 if (h
!= NULL
) /* global symbol */
6431 linker_section_ptr
= _bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
6435 BFD_ASSERT (linker_section_ptr
!= NULL
);
6437 if (! elf_hash_table (info
)->dynamic_sections_created
6440 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
6442 /* This is actually a static link, or it is a
6443 -Bsymbolic link and the symbol is defined
6444 locally. We must initialize this entry in the
6447 When doing a dynamic link, we create a .rela.<xxx>
6448 relocation entry to initialize the value. This
6449 is done in the finish_dynamic_symbol routine. */
6450 if (!linker_section_ptr
->written_address_p
)
6452 linker_section_ptr
->written_address_p
= true;
6453 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
6454 lsect
->section
->contents
+ linker_section_ptr
->offset
);
6458 else /* local symbol */
6460 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6461 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
) != NULL
);
6462 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
)[r_symndx
] != NULL
);
6463 linker_section_ptr
= _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd
)[r_symndx
],
6467 BFD_ASSERT (linker_section_ptr
!= NULL
);
6469 /* Write out pointer if it hasn't been rewritten out before */
6470 if (!linker_section_ptr
->written_address_p
)
6472 linker_section_ptr
->written_address_p
= true;
6473 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
6474 lsect
->section
->contents
+ linker_section_ptr
->offset
);
6478 asection
*srel
= lsect
->rel_section
;
6479 Elf_Internal_Rela
*outrel
;
6480 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
6483 outrel
= (Elf_Internal_Rela
*) bfd_zmalloc (sizeof (Elf_Internal_Rela
)
6484 * bed
->s
->int_rels_per_ext_rel
);
6487 (*_bfd_error_handler
) (_("Error: out of memory"));
6491 /* We need to generate a relative reloc for the dynamic linker. */
6493 lsect
->rel_section
= srel
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
6496 BFD_ASSERT (srel
!= NULL
);
6498 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
6499 outrel
[i
].r_offset
= (lsect
->section
->output_section
->vma
6500 + lsect
->section
->output_offset
6501 + linker_section_ptr
->offset
);
6502 outrel
[0].r_info
= ELF_R_INFO (0, relative_reloc
);
6503 outrel
[0].r_addend
= 0;
6504 elf_swap_reloca_out (output_bfd
, outrel
,
6505 (((Elf_External_Rela
*)
6506 lsect
->section
->contents
)
6507 + elf_section_data (lsect
->section
)->rel_count
));
6508 ++elf_section_data (lsect
->section
)->rel_count
;
6515 relocation
= (lsect
->section
->output_offset
6516 + linker_section_ptr
->offset
6517 - lsect
->hole_offset
6518 - lsect
->sym_offset
);
6521 fprintf (stderr
, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6522 lsect
->name
, (long)relocation
, (long)relocation
);
6525 /* Subtract out the addend, because it will get added back in by the normal
6527 return relocation
- linker_section_ptr
->addend
;
6530 /* Garbage collect unused sections. */
6532 static boolean elf_gc_mark
6533 PARAMS ((struct bfd_link_info
*info
, asection
*sec
,
6534 asection
* (*gc_mark_hook
)
6535 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
6536 struct elf_link_hash_entry
*, Elf_Internal_Sym
*))));
6538 static boolean elf_gc_sweep
6539 PARAMS ((struct bfd_link_info
*info
,
6540 boolean (*gc_sweep_hook
)
6541 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
6542 const Elf_Internal_Rela
*relocs
))));
6544 static boolean elf_gc_sweep_symbol
6545 PARAMS ((struct elf_link_hash_entry
*h
, PTR idxptr
));
6547 static boolean elf_gc_allocate_got_offsets
6548 PARAMS ((struct elf_link_hash_entry
*h
, PTR offarg
));
6550 static boolean elf_gc_propagate_vtable_entries_used
6551 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
6553 static boolean elf_gc_smash_unused_vtentry_relocs
6554 PARAMS ((struct elf_link_hash_entry
*h
, PTR dummy
));
6556 /* The mark phase of garbage collection. For a given section, mark
6557 it, and all the sections which define symbols to which it refers. */
6560 elf_gc_mark (info
, sec
, gc_mark_hook
)
6561 struct bfd_link_info
*info
;
6563 asection
* (*gc_mark_hook
)
6564 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
6565 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
6571 /* Look through the section relocs. */
6573 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
6575 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
6576 Elf_Internal_Shdr
*symtab_hdr
;
6577 struct elf_link_hash_entry
**sym_hashes
;
6580 Elf_External_Sym
*locsyms
, *freesyms
= NULL
;
6581 bfd
*input_bfd
= sec
->owner
;
6582 struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
6584 /* GCFIXME: how to arrange so that relocs and symbols are not
6585 reread continually? */
6587 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6588 sym_hashes
= elf_sym_hashes (input_bfd
);
6590 /* Read the local symbols. */
6591 if (elf_bad_symtab (input_bfd
))
6593 nlocsyms
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6597 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
6598 if (symtab_hdr
->contents
)
6599 locsyms
= (Elf_External_Sym
*) symtab_hdr
->contents
;
6600 else if (nlocsyms
== 0)
6604 locsyms
= freesyms
=
6605 bfd_malloc (nlocsyms
* sizeof (Elf_External_Sym
));
6606 if (freesyms
== NULL
6607 || bfd_seek (input_bfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
6608 || (bfd_read (locsyms
, sizeof (Elf_External_Sym
),
6609 nlocsyms
, input_bfd
)
6610 != nlocsyms
* sizeof (Elf_External_Sym
)))
6617 /* Read the relocations. */
6618 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
6619 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
6620 info
->keep_memory
));
6621 if (relstart
== NULL
)
6626 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6628 for (rel
= relstart
; rel
< relend
; rel
++)
6630 unsigned long r_symndx
;
6632 struct elf_link_hash_entry
*h
;
6635 r_symndx
= ELF_R_SYM (rel
->r_info
);
6639 if (elf_bad_symtab (sec
->owner
))
6641 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
6642 if (ELF_ST_BIND (s
.st_info
) == STB_LOCAL
)
6643 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
6646 h
= sym_hashes
[r_symndx
- extsymoff
];
6647 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
6650 else if (r_symndx
>= nlocsyms
)
6652 h
= sym_hashes
[r_symndx
- extsymoff
];
6653 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, h
, NULL
);
6657 elf_swap_symbol_in (input_bfd
, &locsyms
[r_symndx
], &s
);
6658 rsec
= (*gc_mark_hook
) (sec
->owner
, info
, rel
, NULL
, &s
);
6661 if (rsec
&& !rsec
->gc_mark
)
6662 if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
6670 if (!info
->keep_memory
)
6680 /* The sweep phase of garbage collection. Remove all garbage sections. */
6683 elf_gc_sweep (info
, gc_sweep_hook
)
6684 struct bfd_link_info
*info
;
6685 boolean (*gc_sweep_hook
)
6686 PARAMS ((bfd
*abfd
, struct bfd_link_info
*info
, asection
*o
,
6687 const Elf_Internal_Rela
*relocs
));
6691 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
6695 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
6698 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
6700 /* Keep special sections. Keep .debug sections. */
6701 if ((o
->flags
& SEC_LINKER_CREATED
)
6702 || (o
->flags
& SEC_DEBUGGING
))
6708 /* Skip sweeping sections already excluded. */
6709 if (o
->flags
& SEC_EXCLUDE
)
6712 /* Since this is early in the link process, it is simple
6713 to remove a section from the output. */
6714 o
->flags
|= SEC_EXCLUDE
;
6716 /* But we also have to update some of the relocation
6717 info we collected before. */
6719 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
6721 Elf_Internal_Rela
*internal_relocs
;
6724 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
6725 (o
->owner
, o
, NULL
, NULL
, info
->keep_memory
));
6726 if (internal_relocs
== NULL
)
6729 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
6731 if (!info
->keep_memory
)
6732 free (internal_relocs
);
6740 /* Remove the symbols that were in the swept sections from the dynamic
6741 symbol table. GCFIXME: Anyone know how to get them out of the
6742 static symbol table as well? */
6746 elf_link_hash_traverse (elf_hash_table (info
),
6747 elf_gc_sweep_symbol
,
6750 elf_hash_table (info
)->dynsymcount
= i
;
6756 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6759 elf_gc_sweep_symbol (h
, idxptr
)
6760 struct elf_link_hash_entry
*h
;
6763 int *idx
= (int *) idxptr
;
6765 if (h
->dynindx
!= -1
6766 && ((h
->root
.type
!= bfd_link_hash_defined
6767 && h
->root
.type
!= bfd_link_hash_defweak
)
6768 || h
->root
.u
.def
.section
->gc_mark
))
6769 h
->dynindx
= (*idx
)++;
6774 /* Propogate collected vtable information. This is called through
6775 elf_link_hash_traverse. */
6778 elf_gc_propagate_vtable_entries_used (h
, okp
)
6779 struct elf_link_hash_entry
*h
;
6782 /* Those that are not vtables. */
6783 if (h
->vtable_parent
== NULL
)
6786 /* Those vtables that do not have parents, we cannot merge. */
6787 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
6790 /* If we've already been done, exit. */
6791 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
6794 /* Make sure the parent's table is up to date. */
6795 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
6797 if (h
->vtable_entries_used
== NULL
)
6799 /* None of this table's entries were referenced. Re-use the
6801 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
6802 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
6810 /* Or the parent's entries into ours. */
6811 cu
= h
->vtable_entries_used
;
6813 pu
= h
->vtable_parent
->vtable_entries_used
;
6816 asection
*sec
= h
->root
.u
.def
.section
;
6817 struct elf_backend_data
*bed
= get_elf_backend_data (sec
->owner
);
6818 int file_align
= bed
->s
->file_align
;
6820 n
= h
->vtable_parent
->vtable_entries_size
/ file_align
;
6823 if (*pu
) *cu
= true;
6833 elf_gc_smash_unused_vtentry_relocs (h
, okp
)
6834 struct elf_link_hash_entry
*h
;
6838 bfd_vma hstart
, hend
;
6839 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
6840 struct elf_backend_data
*bed
;
6843 /* Take care of both those symbols that do not describe vtables as
6844 well as those that are not loaded. */
6845 if (h
->vtable_parent
== NULL
)
6848 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
6849 || h
->root
.type
== bfd_link_hash_defweak
);
6851 sec
= h
->root
.u
.def
.section
;
6852 hstart
= h
->root
.u
.def
.value
;
6853 hend
= hstart
+ h
->size
;
6855 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
6856 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, true));
6858 return *(boolean
*)okp
= false;
6859 bed
= get_elf_backend_data (sec
->owner
);
6860 file_align
= bed
->s
->file_align
;
6862 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6864 for (rel
= relstart
; rel
< relend
; ++rel
)
6865 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
6867 /* If the entry is in use, do nothing. */
6868 if (h
->vtable_entries_used
6869 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
6871 bfd_vma entry
= (rel
->r_offset
- hstart
) / file_align
;
6872 if (h
->vtable_entries_used
[entry
])
6875 /* Otherwise, kill it. */
6876 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
6882 /* Do mark and sweep of unused sections. */
6885 elf_gc_sections (abfd
, info
)
6887 struct bfd_link_info
*info
;
6891 asection
* (*gc_mark_hook
)
6892 PARAMS ((bfd
*abfd
, struct bfd_link_info
*, Elf_Internal_Rela
*,
6893 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*));
6895 if (!get_elf_backend_data (abfd
)->can_gc_sections
6896 || info
->relocateable
|| info
->emitrelocations
6897 || elf_hash_table (info
)->dynamic_sections_created
)
6900 /* Apply transitive closure to the vtable entry usage info. */
6901 elf_link_hash_traverse (elf_hash_table (info
),
6902 elf_gc_propagate_vtable_entries_used
,
6907 /* Kill the vtable relocations that were not used. */
6908 elf_link_hash_traverse (elf_hash_table (info
),
6909 elf_gc_smash_unused_vtentry_relocs
,
6914 /* Grovel through relocs to find out who stays ... */
6916 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
6917 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
6921 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
6924 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
6926 if (o
->flags
& SEC_KEEP
)
6927 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
6932 /* ... and mark SEC_EXCLUDE for those that go. */
6933 if (!elf_gc_sweep(info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
6939 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6942 elf_gc_record_vtinherit (abfd
, sec
, h
, offset
)
6945 struct elf_link_hash_entry
*h
;
6948 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
6949 struct elf_link_hash_entry
**search
, *child
;
6950 bfd_size_type extsymcount
;
6952 /* The sh_info field of the symtab header tells us where the
6953 external symbols start. We don't care about the local symbols at
6955 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/sizeof (Elf_External_Sym
);
6956 if (!elf_bad_symtab (abfd
))
6957 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
6959 sym_hashes
= elf_sym_hashes (abfd
);
6960 sym_hashes_end
= sym_hashes
+ extsymcount
;
6962 /* Hunt down the child symbol, which is in this section at the same
6963 offset as the relocation. */
6964 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
6966 if ((child
= *search
) != NULL
6967 && (child
->root
.type
== bfd_link_hash_defined
6968 || child
->root
.type
== bfd_link_hash_defweak
)
6969 && child
->root
.u
.def
.section
== sec
6970 && child
->root
.u
.def
.value
== offset
)
6974 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
6975 bfd_get_filename (abfd
), sec
->name
,
6976 (unsigned long)offset
);
6977 bfd_set_error (bfd_error_invalid_operation
);
6983 /* This *should* only be the absolute section. It could potentially
6984 be that someone has defined a non-global vtable though, which
6985 would be bad. It isn't worth paging in the local symbols to be
6986 sure though; that case should simply be handled by the assembler. */
6988 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
6991 child
->vtable_parent
= h
;
6996 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6999 elf_gc_record_vtentry (abfd
, sec
, h
, addend
)
7000 bfd
*abfd ATTRIBUTE_UNUSED
;
7001 asection
*sec ATTRIBUTE_UNUSED
;
7002 struct elf_link_hash_entry
*h
;
7005 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7006 int file_align
= bed
->s
->file_align
;
7008 if (addend
>= h
->vtable_entries_size
)
7011 boolean
*ptr
= h
->vtable_entries_used
;
7013 /* While the symbol is undefined, we have to be prepared to handle
7015 if (h
->root
.type
== bfd_link_hash_undefined
)
7022 /* Oops! We've got a reference past the defined end of
7023 the table. This is probably a bug -- shall we warn? */
7028 /* Allocate one extra entry for use as a "done" flag for the
7029 consolidation pass. */
7030 bytes
= (size
/ file_align
+ 1) * sizeof (boolean
);
7034 ptr
= bfd_realloc (ptr
- 1, bytes
);
7040 oldbytes
= (h
->vtable_entries_size
/file_align
+ 1) * sizeof (boolean
);
7041 memset (((char *)ptr
) + oldbytes
, 0, bytes
- oldbytes
);
7045 ptr
= bfd_zmalloc (bytes
);
7050 /* And arrange for that done flag to be at index -1. */
7051 h
->vtable_entries_used
= ptr
+ 1;
7052 h
->vtable_entries_size
= size
;
7055 h
->vtable_entries_used
[addend
/ file_align
] = true;
7060 /* And an accompanying bit to work out final got entry offsets once
7061 we're done. Should be called from final_link. */
7064 elf_gc_common_finalize_got_offsets (abfd
, info
)
7066 struct bfd_link_info
*info
;
7069 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7072 /* The GOT offset is relative to the .got section, but the GOT header is
7073 put into the .got.plt section, if the backend uses it. */
7074 if (bed
->want_got_plt
)
7077 gotoff
= bed
->got_header_size
;
7079 /* Do the local .got entries first. */
7080 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
7082 bfd_signed_vma
*local_got
;
7083 bfd_size_type j
, locsymcount
;
7084 Elf_Internal_Shdr
*symtab_hdr
;
7086 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
7089 local_got
= elf_local_got_refcounts (i
);
7093 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
7094 if (elf_bad_symtab (i
))
7095 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7097 locsymcount
= symtab_hdr
->sh_info
;
7099 for (j
= 0; j
< locsymcount
; ++j
)
7101 if (local_got
[j
] > 0)
7103 local_got
[j
] = gotoff
;
7104 gotoff
+= ARCH_SIZE
/ 8;
7107 local_got
[j
] = (bfd_vma
) -1;
7111 /* Then the global .got entries. .plt refcounts are handled by
7112 adjust_dynamic_symbol */
7113 elf_link_hash_traverse (elf_hash_table (info
),
7114 elf_gc_allocate_got_offsets
,
7119 /* We need a special top-level link routine to convert got reference counts
7120 to real got offsets. */
7123 elf_gc_allocate_got_offsets (h
, offarg
)
7124 struct elf_link_hash_entry
*h
;
7127 bfd_vma
*off
= (bfd_vma
*) offarg
;
7129 if (h
->got
.refcount
> 0)
7131 h
->got
.offset
= off
[0];
7132 off
[0] += ARCH_SIZE
/ 8;
7135 h
->got
.offset
= (bfd_vma
) -1;
7140 /* Many folk need no more in the way of final link than this, once
7141 got entry reference counting is enabled. */
7144 elf_gc_common_final_link (abfd
, info
)
7146 struct bfd_link_info
*info
;
7148 if (!elf_gc_common_finalize_got_offsets (abfd
, info
))
7151 /* Invoke the regular ELF backend linker to do all the work. */
7152 return elf_bfd_final_link (abfd
, info
);
7155 /* This function will be called though elf_link_hash_traverse to store
7156 all hash value of the exported symbols in an array. */
7159 elf_collect_hash_codes (h
, data
)
7160 struct elf_link_hash_entry
*h
;
7163 unsigned long **valuep
= (unsigned long **) data
;
7169 /* Ignore indirect symbols. These are added by the versioning code. */
7170 if (h
->dynindx
== -1)
7173 name
= h
->root
.root
.string
;
7174 p
= strchr (name
, ELF_VER_CHR
);
7177 alc
= bfd_malloc (p
- name
+ 1);
7178 memcpy (alc
, name
, p
- name
);
7179 alc
[p
- name
] = '\0';
7183 /* Compute the hash value. */
7184 ha
= bfd_elf_hash (name
);
7186 /* Store the found hash value in the array given as the argument. */
7189 /* And store it in the struct so that we can put it in the hash table
7191 h
->elf_hash_value
= ha
;