* output-file.c (output_file_create): Don't try to open using
[binutils.git] / bfd / elf32-i386.c
blob02a08f77d37d0ede884bb3745424f44e0e5e6b8c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static boolean elf_i386_adjust_dynamic_symbol
45 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
46 static boolean allocate_plt_and_got_and_discard_relocs
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_i386_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50 static boolean elf_i386_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53 static boolean elf_i386_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56 static boolean elf_i386_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
59 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
61 #include "elf/i386.h"
63 static reloc_howto_type elf_howto_table[]=
65 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
66 bfd_elf_generic_reloc, "R_386_NONE",
67 true, 0x00000000, 0x00000000, false),
68 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
69 bfd_elf_generic_reloc, "R_386_32",
70 true, 0xffffffff, 0xffffffff, false),
71 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
72 bfd_elf_generic_reloc, "R_386_PC32",
73 true, 0xffffffff, 0xffffffff, true),
74 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_386_GOT32",
76 true, 0xffffffff, 0xffffffff, false),
77 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_386_PLT32",
79 true, 0xffffffff, 0xffffffff, true),
80 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_386_COPY",
82 true, 0xffffffff, 0xffffffff, false),
83 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
85 true, 0xffffffff, 0xffffffff, false),
86 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
88 true, 0xffffffff, 0xffffffff, false),
89 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_386_RELATIVE",
91 true, 0xffffffff, 0xffffffff, false),
92 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_386_GOTOFF",
94 true, 0xffffffff, 0xffffffff, false),
95 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_386_GOTPC",
97 true, 0xffffffff, 0xffffffff, true),
99 /* We have a gap in the reloc numbers here.
100 R_386_standard counts the number up to this point, and
101 R_386_ext_offset is the value to subtract from a reloc type of
102 R_386_16 thru R_386_PC8 to form an index into this table. */
103 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
104 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
106 /* The remaining relocs are a GNU extension. */
107 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_386_16",
109 true, 0xffff, 0xffff, false),
110 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_386_PC16",
112 true, 0xffff, 0xffff, true),
113 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_386_8",
115 true, 0xff, 0xff, false),
116 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_386_PC8",
118 true, 0xff, 0xff, true),
120 /* Another gap. */
121 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
122 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
124 /* GNU extension to record C++ vtable hierarchy. */
125 HOWTO (R_386_GNU_VTINHERIT, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 0, /* bitsize */
129 false, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_dont, /* complain_on_overflow */
132 NULL, /* special_function */
133 "R_386_GNU_VTINHERIT", /* name */
134 false, /* partial_inplace */
135 0, /* src_mask */
136 0, /* dst_mask */
137 false),
139 /* GNU extension to record C++ vtable member usage. */
140 HOWTO (R_386_GNU_VTENTRY, /* type */
141 0, /* rightshift */
142 2, /* size (0 = byte, 1 = short, 2 = long) */
143 0, /* bitsize */
144 false, /* pc_relative */
145 0, /* bitpos */
146 complain_overflow_dont, /* complain_on_overflow */
147 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
148 "R_386_GNU_VTENTRY", /* name */
149 false, /* partial_inplace */
150 0, /* src_mask */
151 0, /* dst_mask */
152 false)
154 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
158 #ifdef DEBUG_GEN_RELOC
159 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
160 #else
161 #define TRACE(str)
162 #endif
164 static reloc_howto_type *
165 elf_i386_reloc_type_lookup (abfd, code)
166 bfd *abfd ATTRIBUTE_UNUSED;
167 bfd_reloc_code_real_type code;
169 switch (code)
171 case BFD_RELOC_NONE:
172 TRACE ("BFD_RELOC_NONE");
173 return &elf_howto_table[(unsigned int) R_386_NONE ];
175 case BFD_RELOC_32:
176 TRACE ("BFD_RELOC_32");
177 return &elf_howto_table[(unsigned int) R_386_32 ];
179 case BFD_RELOC_CTOR:
180 TRACE ("BFD_RELOC_CTOR");
181 return &elf_howto_table[(unsigned int) R_386_32 ];
183 case BFD_RELOC_32_PCREL:
184 TRACE ("BFD_RELOC_PC32");
185 return &elf_howto_table[(unsigned int) R_386_PC32 ];
187 case BFD_RELOC_386_GOT32:
188 TRACE ("BFD_RELOC_386_GOT32");
189 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
191 case BFD_RELOC_386_PLT32:
192 TRACE ("BFD_RELOC_386_PLT32");
193 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
195 case BFD_RELOC_386_COPY:
196 TRACE ("BFD_RELOC_386_COPY");
197 return &elf_howto_table[(unsigned int) R_386_COPY ];
199 case BFD_RELOC_386_GLOB_DAT:
200 TRACE ("BFD_RELOC_386_GLOB_DAT");
201 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
203 case BFD_RELOC_386_JUMP_SLOT:
204 TRACE ("BFD_RELOC_386_JUMP_SLOT");
205 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
207 case BFD_RELOC_386_RELATIVE:
208 TRACE ("BFD_RELOC_386_RELATIVE");
209 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
211 case BFD_RELOC_386_GOTOFF:
212 TRACE ("BFD_RELOC_386_GOTOFF");
213 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
215 case BFD_RELOC_386_GOTPC:
216 TRACE ("BFD_RELOC_386_GOTPC");
217 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
219 /* The remaining relocs are a GNU extension. */
220 case BFD_RELOC_16:
221 TRACE ("BFD_RELOC_16");
222 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
224 case BFD_RELOC_16_PCREL:
225 TRACE ("BFD_RELOC_16_PCREL");
226 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
228 case BFD_RELOC_8:
229 TRACE ("BFD_RELOC_8");
230 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
232 case BFD_RELOC_8_PCREL:
233 TRACE ("BFD_RELOC_8_PCREL");
234 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
236 case BFD_RELOC_VTABLE_INHERIT:
237 TRACE ("BFD_RELOC_VTABLE_INHERIT");
238 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
239 - R_386_vt_offset];
241 case BFD_RELOC_VTABLE_ENTRY:
242 TRACE ("BFD_RELOC_VTABLE_ENTRY");
243 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
244 - R_386_vt_offset];
246 default:
247 break;
250 TRACE ("Unknown");
251 return 0;
254 static void
255 elf_i386_info_to_howto (abfd, cache_ptr, dst)
256 bfd *abfd ATTRIBUTE_UNUSED;
257 arelent *cache_ptr ATTRIBUTE_UNUSED;
258 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
260 abort ();
263 static void
264 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
265 bfd *abfd ATTRIBUTE_UNUSED;
266 arelent *cache_ptr;
267 Elf32_Internal_Rel *dst;
269 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
270 unsigned int indx;
272 if ((indx = r_type) >= R_386_standard
273 && ((indx = r_type - R_386_ext_offset) - R_386_standard
274 >= R_386_ext - R_386_standard)
275 && ((indx = r_type - R_386_vt_offset) - R_386_ext
276 >= R_386_vt - R_386_ext))
278 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
279 bfd_get_filename (abfd), (int) r_type);
280 indx = (unsigned int) R_386_NONE;
282 cache_ptr->howto = &elf_howto_table[indx];
285 /* Return whether a symbol name implies a local label. The UnixWare
286 2.1 cc generates temporary symbols that start with .X, so we
287 recognize them here. FIXME: do other SVR4 compilers also use .X?.
288 If so, we should move the .X recognition into
289 _bfd_elf_is_local_label_name. */
291 static boolean
292 elf_i386_is_local_label_name (abfd, name)
293 bfd *abfd;
294 const char *name;
296 if (name[0] == '.' && name[1] == 'X')
297 return true;
299 return _bfd_elf_is_local_label_name (abfd, name);
302 /* Functions for the i386 ELF linker. */
304 /* The name of the dynamic interpreter. This is put in the .interp
305 section. */
307 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
309 /* The size in bytes of an entry in the procedure linkage table. */
311 #define PLT_ENTRY_SIZE 16
313 /* The first entry in an absolute procedure linkage table looks like
314 this. See the SVR4 ABI i386 supplement to see how this works. */
316 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
318 0xff, 0x35, /* pushl contents of address */
319 0, 0, 0, 0, /* replaced with address of .got + 4. */
320 0xff, 0x25, /* jmp indirect */
321 0, 0, 0, 0, /* replaced with address of .got + 8. */
322 0, 0, 0, 0 /* pad out to 16 bytes. */
325 /* Subsequent entries in an absolute procedure linkage table look like
326 this. */
328 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
330 0xff, 0x25, /* jmp indirect */
331 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
332 0x68, /* pushl immediate */
333 0, 0, 0, 0, /* replaced with offset into relocation table. */
334 0xe9, /* jmp relative */
335 0, 0, 0, 0 /* replaced with offset to start of .plt. */
338 /* The first entry in a PIC procedure linkage table look like this. */
340 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
342 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
343 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
344 0, 0, 0, 0 /* pad out to 16 bytes. */
347 /* Subsequent entries in a PIC procedure linkage table look like this. */
349 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
351 0xff, 0xa3, /* jmp *offset(%ebx) */
352 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
353 0x68, /* pushl immediate */
354 0, 0, 0, 0, /* replaced with offset into relocation table. */
355 0xe9, /* jmp relative */
356 0, 0, 0, 0 /* replaced with offset to start of .plt. */
359 /* The i386 linker needs to keep track of the number of relocs that it
360 decides to copy as dynamic relocs in check_relocs for each symbol.
361 This is so that it can later discard them if they are found to be
362 unnecessary. We store the information in a field extending the
363 regular ELF linker hash table. */
365 struct elf_i386_dyn_relocs
367 /* Next section. */
368 struct elf_i386_dyn_relocs *next;
369 /* A section in dynobj. */
370 asection *section;
371 /* Number of relocs copied in this section. */
372 bfd_size_type count;
375 /* i386 ELF linker hash entry. */
377 struct elf_i386_link_hash_entry
379 struct elf_link_hash_entry root;
381 /* Number of PC relative relocs copied for this symbol. */
382 struct elf_i386_dyn_relocs *dyn_relocs;
385 /* i386 ELF linker hash table. */
387 struct elf_i386_link_hash_table
389 struct elf_link_hash_table root;
391 /* Short-cuts to get to dynamic linker sections. */
392 asection *sgot;
393 asection *sgotplt;
394 asection *srelgot;
395 asection *splt;
396 asection *srelplt;
397 asection *sdynbss;
398 asection *srelbss;
401 /* Get the i386 ELF linker hash table from a link_info structure. */
403 #define elf_i386_hash_table(p) \
404 ((struct elf_i386_link_hash_table *) ((p)->hash))
406 /* Create an entry in an i386 ELF linker hash table. */
408 static struct bfd_hash_entry *
409 elf_i386_link_hash_newfunc (entry, table, string)
410 struct bfd_hash_entry *entry;
411 struct bfd_hash_table *table;
412 const char *string;
414 struct elf_i386_link_hash_entry *ret =
415 (struct elf_i386_link_hash_entry *) entry;
417 /* Allocate the structure if it has not already been allocated by a
418 subclass. */
419 if (ret == (struct elf_i386_link_hash_entry *) NULL)
420 ret = ((struct elf_i386_link_hash_entry *)
421 bfd_hash_allocate (table,
422 sizeof (struct elf_i386_link_hash_entry)));
423 if (ret == (struct elf_i386_link_hash_entry *) NULL)
424 return (struct bfd_hash_entry *) ret;
426 /* Call the allocation method of the superclass. */
427 ret = ((struct elf_i386_link_hash_entry *)
428 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
429 table, string));
430 if (ret != (struct elf_i386_link_hash_entry *) NULL)
432 ret->dyn_relocs = NULL;
435 return (struct bfd_hash_entry *) ret;
438 /* Create an i386 ELF linker hash table. */
440 static struct bfd_link_hash_table *
441 elf_i386_link_hash_table_create (abfd)
442 bfd *abfd;
444 struct elf_i386_link_hash_table *ret;
446 ret = ((struct elf_i386_link_hash_table *)
447 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
448 if (ret == (struct elf_i386_link_hash_table *) NULL)
449 return NULL;
451 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
452 elf_i386_link_hash_newfunc))
454 bfd_release (abfd, ret);
455 return NULL;
458 ret->sgot = NULL;
459 ret->sgotplt = NULL;
460 ret->srelgot = NULL;
461 ret->splt = NULL;
462 ret->srelplt = NULL;
463 ret->sdynbss = NULL;
464 ret->srelbss = NULL;
466 return &ret->root.root;
469 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
470 shortcuts to them in our hash table. */
472 static boolean
473 create_got_section (dynobj, info)
474 bfd *dynobj;
475 struct bfd_link_info *info;
477 struct elf_i386_link_hash_table *htab;
479 if (! _bfd_elf_create_got_section (dynobj, info))
480 return false;
482 htab = elf_i386_hash_table (info);
483 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
484 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
485 if (!htab->sgot || !htab->sgotplt)
486 abort ();
488 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
489 if (htab->srelgot == NULL
490 || ! bfd_set_section_flags (dynobj, htab->srelgot,
491 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
492 | SEC_IN_MEMORY | SEC_LINKER_CREATED
493 | SEC_READONLY))
494 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
495 return false;
496 return true;
499 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
500 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
501 hash table. */
503 static boolean
504 elf_i386_create_dynamic_sections (dynobj, info)
505 bfd *dynobj;
506 struct bfd_link_info *info;
508 struct elf_i386_link_hash_table *htab;
510 htab = elf_i386_hash_table (info);
511 if (!htab->sgot && !create_got_section (dynobj, info))
512 return false;
514 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
515 return false;
517 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
518 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
519 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
520 if (!info->shared)
521 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
523 if (!htab->splt || !htab->srelplt || !htab->sdynbss
524 || (!info->shared && !htab->srelbss))
525 abort ();
527 return true;
530 /* Look through the relocs for a section during the first phase, and
531 allocate space in the global offset table or procedure linkage
532 table. */
534 static boolean
535 elf_i386_check_relocs (abfd, info, sec, relocs)
536 bfd *abfd;
537 struct bfd_link_info *info;
538 asection *sec;
539 const Elf_Internal_Rela *relocs;
541 struct elf_i386_link_hash_table *htab;
542 bfd *dynobj;
543 Elf_Internal_Shdr *symtab_hdr;
544 struct elf_link_hash_entry **sym_hashes;
545 bfd_signed_vma *local_got_refcounts;
546 const Elf_Internal_Rela *rel;
547 const Elf_Internal_Rela *rel_end;
548 asection *sreloc;
550 if (info->relocateable)
551 return true;
553 htab = elf_i386_hash_table (info);
554 dynobj = htab->root.dynobj;
555 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
556 sym_hashes = elf_sym_hashes (abfd);
557 local_got_refcounts = elf_local_got_refcounts (abfd);
559 sreloc = NULL;
561 rel_end = relocs + sec->reloc_count;
562 for (rel = relocs; rel < rel_end; rel++)
564 unsigned long r_symndx;
565 struct elf_link_hash_entry *h;
567 r_symndx = ELF32_R_SYM (rel->r_info);
569 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
571 if (abfd->my_archive)
572 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
573 bfd_get_filename (abfd->my_archive),
574 bfd_get_filename (abfd),
575 r_symndx);
576 else
577 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
578 bfd_get_filename (abfd),
579 r_symndx);
580 return false;
583 if (r_symndx < symtab_hdr->sh_info)
584 h = NULL;
585 else
586 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
588 /* Some relocs require a global offset table. */
589 if (htab->sgot == NULL)
591 switch (ELF32_R_TYPE (rel->r_info))
593 case R_386_GOT32:
594 case R_386_GOTOFF:
595 case R_386_GOTPC:
596 if (dynobj == NULL)
597 htab->root.dynobj = dynobj = abfd;
598 if (!create_got_section (dynobj, info))
599 return false;
600 break;
602 default:
603 break;
607 switch (ELF32_R_TYPE (rel->r_info))
609 case R_386_GOT32:
610 /* This symbol requires a global offset table entry. */
611 if (h != NULL)
613 if (h->got.refcount == -1)
614 h->got.refcount = 1;
615 else
616 h->got.refcount += 1;
618 else
620 /* This is a global offset table entry for a local symbol. */
621 if (local_got_refcounts == NULL)
623 size_t size;
625 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
626 local_got_refcounts = ((bfd_signed_vma *)
627 bfd_alloc (abfd, size));
628 if (local_got_refcounts == NULL)
629 return false;
630 elf_local_got_refcounts (abfd) = local_got_refcounts;
631 memset (local_got_refcounts, -1, size);
633 if (local_got_refcounts[r_symndx] == -1)
634 local_got_refcounts[r_symndx] = 1;
635 else
636 local_got_refcounts[r_symndx] += 1;
638 break;
640 case R_386_PLT32:
641 /* This symbol requires a procedure linkage table entry. We
642 actually build the entry in adjust_dynamic_symbol,
643 because this might be a case of linking PIC code which is
644 never referenced by a dynamic object, in which case we
645 don't need to generate a procedure linkage table entry
646 after all. */
648 /* If this is a local symbol, we resolve it directly without
649 creating a procedure linkage table entry. */
650 if (h == NULL)
651 continue;
653 if (h->plt.refcount == -1)
655 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
656 h->plt.refcount = 1;
658 else
659 h->plt.refcount += 1;
660 break;
662 case R_386_32:
663 case R_386_PC32:
664 if (h != NULL && !info->shared)
666 /* If this reloc is in a read-only section, we might
667 need a copy reloc. */
668 if ((sec->flags & SEC_READONLY) != 0)
669 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
671 /* We may need a .plt entry if the function this reloc
672 refers to is in a shared lib. */
673 if (h->plt.refcount == -1)
674 h->plt.refcount = 1;
675 else
676 h->plt.refcount += 1;
679 /* If we are creating a shared library, and this is a reloc
680 against a global symbol, or a non PC relative reloc
681 against a local symbol, then we need to copy the reloc
682 into the shared library. However, if we are linking with
683 -Bsymbolic, we do not need to copy a reloc against a
684 global symbol which is defined in an object we are
685 including in the link (i.e., DEF_REGULAR is set). At
686 this point we have not seen all the input files, so it is
687 possible that DEF_REGULAR is not set now but will be set
688 later (it is never cleared). In case of a weak definition,
689 DEF_REGULAR may be cleared later by a strong definition in
690 a shared library. We account for that possibility below by
691 storing information in the relocs_copied field of the hash
692 table entry. A similar situation occurs when creating
693 shared libraries and symbol visibility changes render the
694 symbol local.
695 If on the other hand, we are creating an executable, we
696 may need to keep relocations for symbols satisfied by a
697 dynamic library if we manage to avoid copy relocs for the
698 symbol. */
699 if ((info->shared
700 && (sec->flags & SEC_ALLOC) != 0
701 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
702 || (h != NULL
703 && (! info->symbolic
704 || h->root.type == bfd_link_hash_defweak
705 || (h->elf_link_hash_flags
706 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
707 || (!info->shared
708 && (sec->flags & SEC_ALLOC) != 0
709 && h != NULL
710 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
711 && (h->root.type == bfd_link_hash_defweak
712 || (h->elf_link_hash_flags
713 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
715 /* We must copy these reloc types into the output file.
716 Create a reloc section in dynobj and make room for
717 this reloc. */
718 if (dynobj == NULL)
719 htab->root.dynobj = dynobj = abfd;
721 if (sreloc == NULL)
723 const char *name;
725 name = (bfd_elf_string_from_elf_section
726 (abfd,
727 elf_elfheader (abfd)->e_shstrndx,
728 elf_section_data (sec)->rel_hdr.sh_name));
729 if (name == NULL)
730 return false;
732 if (strncmp (name, ".rel", 4) != 0
733 || strcmp (bfd_get_section_name (abfd, sec),
734 name + 4) != 0)
736 if (abfd->my_archive)
737 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
738 bfd_get_filename (abfd->my_archive),
739 bfd_get_filename (abfd),
740 name);
741 else
742 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
743 bfd_get_filename (abfd),
744 name);
747 sreloc = bfd_get_section_by_name (dynobj, name);
748 if (sreloc == NULL)
750 flagword flags;
752 sreloc = bfd_make_section (dynobj, name);
753 flags = (SEC_HAS_CONTENTS | SEC_READONLY
754 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
755 if ((sec->flags & SEC_ALLOC) != 0)
756 flags |= SEC_ALLOC | SEC_LOAD;
757 if (sreloc == NULL
758 || ! bfd_set_section_flags (dynobj, sreloc, flags)
759 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
760 return false;
764 sreloc->_raw_size += sizeof (Elf32_External_Rel);
766 /* If this is a global symbol, we count the number of PC
767 relative relocations we have entered for this symbol,
768 so that we can discard them later as necessary. Note
769 that this function is only called if we are using an
770 elf_i386 linker hash table, which means that h is
771 really a pointer to an elf_i386_link_hash_entry. */
772 if (!info->shared
773 || (h != NULL
774 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
776 struct elf_i386_link_hash_entry *eh;
777 struct elf_i386_dyn_relocs *p;
779 eh = (struct elf_i386_link_hash_entry *) h;
781 for (p = eh->dyn_relocs; p != NULL; p = p->next)
782 if (p->section == sreloc)
783 break;
785 if (p == NULL)
787 p = ((struct elf_i386_dyn_relocs *)
788 bfd_alloc (dynobj, sizeof *p));
789 if (p == NULL)
790 return false;
791 p->next = eh->dyn_relocs;
792 eh->dyn_relocs = p;
793 p->section = sreloc;
794 p->count = 0;
797 ++p->count;
801 break;
803 /* This relocation describes the C++ object vtable hierarchy.
804 Reconstruct it for later use during GC. */
805 case R_386_GNU_VTINHERIT:
806 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
807 return false;
808 break;
810 /* This relocation describes which C++ vtable entries are actually
811 used. Record for later use during GC. */
812 case R_386_GNU_VTENTRY:
813 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
814 return false;
815 break;
817 default:
818 break;
822 return true;
825 /* Return the section that should be marked against GC for a given
826 relocation. */
828 static asection *
829 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
830 bfd *abfd;
831 struct bfd_link_info *info ATTRIBUTE_UNUSED;
832 Elf_Internal_Rela *rel;
833 struct elf_link_hash_entry *h;
834 Elf_Internal_Sym *sym;
836 if (h != NULL)
838 switch (ELF32_R_TYPE (rel->r_info))
840 case R_386_GNU_VTINHERIT:
841 case R_386_GNU_VTENTRY:
842 break;
844 default:
845 switch (h->root.type)
847 case bfd_link_hash_defined:
848 case bfd_link_hash_defweak:
849 return h->root.u.def.section;
851 case bfd_link_hash_common:
852 return h->root.u.c.p->section;
854 default:
855 break;
859 else
861 if (!(elf_bad_symtab (abfd)
862 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
863 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
864 && sym->st_shndx != SHN_COMMON))
866 return bfd_section_from_elf_index (abfd, sym->st_shndx);
870 return NULL;
873 /* Update the got entry reference counts for the section being removed. */
875 static boolean
876 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
877 bfd *abfd;
878 struct bfd_link_info *info;
879 asection *sec;
880 const Elf_Internal_Rela *relocs;
882 Elf_Internal_Shdr *symtab_hdr;
883 struct elf_link_hash_entry **sym_hashes;
884 bfd_signed_vma *local_got_refcounts;
885 const Elf_Internal_Rela *rel, *relend;
886 unsigned long r_symndx;
887 struct elf_link_hash_entry *h;
888 bfd *dynobj;
890 dynobj = elf_hash_table (info)->dynobj;
891 if (dynobj == NULL)
892 return true;
894 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
895 sym_hashes = elf_sym_hashes (abfd);
896 local_got_refcounts = elf_local_got_refcounts (abfd);
898 relend = relocs + sec->reloc_count;
899 for (rel = relocs; rel < relend; rel++)
900 switch (ELF32_R_TYPE (rel->r_info))
902 case R_386_GOT32:
903 case R_386_GOTOFF:
904 case R_386_GOTPC:
905 r_symndx = ELF32_R_SYM (rel->r_info);
906 if (r_symndx >= symtab_hdr->sh_info)
908 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
909 if (h->got.refcount > 0)
910 h->got.refcount -= 1;
912 else if (local_got_refcounts != NULL)
914 if (local_got_refcounts[r_symndx] > 0)
915 local_got_refcounts[r_symndx] -= 1;
917 break;
919 case R_386_32:
920 case R_386_PC32:
921 if (info->shared)
922 break;
923 /* Fall through. */
925 case R_386_PLT32:
926 r_symndx = ELF32_R_SYM (rel->r_info);
927 if (r_symndx >= symtab_hdr->sh_info)
929 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
930 if (h->plt.refcount > 0)
931 h->plt.refcount -= 1;
933 break;
935 default:
936 break;
939 return true;
942 /* Adjust a symbol defined by a dynamic object and referenced by a
943 regular object. The current definition is in some section of the
944 dynamic object, but we're not including those sections. We have to
945 change the definition to something the rest of the link can
946 understand. */
948 static boolean
949 elf_i386_adjust_dynamic_symbol (info, h)
950 struct bfd_link_info *info;
951 struct elf_link_hash_entry *h;
953 struct elf_i386_link_hash_table *htab;
954 bfd *dynobj;
955 asection *s;
956 unsigned int power_of_two;
958 htab = elf_i386_hash_table (info);
959 dynobj = htab->root.dynobj;
961 /* If this is a function, put it in the procedure linkage table. We
962 will fill in the contents of the procedure linkage table later,
963 when we know the address of the .got section. */
964 if (h->type == STT_FUNC
965 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
967 if (h->plt.refcount <= 0
968 || (! info->shared
969 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
970 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
972 /* This case can occur if we saw a PLT32 reloc in an input
973 file, but the symbol was never referred to by a dynamic
974 object, or if all references were garbage collected. In
975 such a case, we don't actually need to build a procedure
976 linkage table, and we can just do a PC32 reloc instead. */
977 h->plt.refcount = (bfd_vma) -1;
978 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
981 return true;
983 else
984 /* It's possible that we incorrectly decided a .plt reloc was
985 needed for an R_386_PC32 reloc to a non-function sym in
986 check_relocs. We can't decide accurately between function and
987 non-function syms in check-relocs; Objects loaded later in
988 the link may change h->type. So fix it now. */
989 h->plt.refcount = (bfd_vma) -1;
991 /* If this is a weak symbol, and there is a real definition, the
992 processor independent code will have arranged for us to see the
993 real definition first, and we can just use the same value. */
994 if (h->weakdef != NULL)
996 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
997 || h->weakdef->root.type == bfd_link_hash_defweak);
998 h->root.u.def.section = h->weakdef->root.u.def.section;
999 h->root.u.def.value = h->weakdef->root.u.def.value;
1000 return true;
1003 /* This is a reference to a symbol defined by a dynamic object which
1004 is not a function. */
1006 /* If we are creating a shared library, we must presume that the
1007 only references to the symbol are via the global offset table.
1008 For such cases we need not do anything here; the relocations will
1009 be handled correctly by relocate_section. */
1010 if (info->shared)
1011 return true;
1013 /* If there are no references to this symbol that do not use the
1014 GOT, we don't need to generate a copy reloc. */
1015 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1016 return true;
1018 /* We must allocate the symbol in our .dynbss section, which will
1019 become part of the .bss section of the executable. There will be
1020 an entry for this symbol in the .dynsym section. The dynamic
1021 object will contain position independent code, so all references
1022 from the dynamic object to this symbol will go through the global
1023 offset table. The dynamic linker will use the .dynsym entry to
1024 determine the address it must put in the global offset table, so
1025 both the dynamic object and the regular object will refer to the
1026 same memory location for the variable. */
1028 s = htab->sdynbss;
1029 if (s == NULL)
1030 abort ();
1032 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1033 copy the initial value out of the dynamic object and into the
1034 runtime process image. We need to remember the offset into the
1035 .rel.bss section we are going to use. */
1036 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1038 asection *srel;
1040 srel = htab->srelbss;
1041 if (srel == NULL)
1042 abort ();
1043 srel->_raw_size += sizeof (Elf32_External_Rel);
1044 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1047 /* We need to figure out the alignment required for this symbol. I
1048 have no idea how ELF linkers handle this. */
1049 power_of_two = bfd_log2 (h->size);
1050 if (power_of_two > 3)
1051 power_of_two = 3;
1053 /* Apply the required alignment. */
1054 s->_raw_size = BFD_ALIGN (s->_raw_size,
1055 (bfd_size_type) (1 << power_of_two));
1056 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1058 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1059 return false;
1062 /* Define the symbol as being at this point in the section. */
1063 h->root.u.def.section = s;
1064 h->root.u.def.value = s->_raw_size;
1066 /* Increment the section size to make room for the symbol. */
1067 s->_raw_size += h->size;
1069 return true;
1072 /* This is the condition under which elf_i386_finish_dynamic_symbol
1073 will be called from elflink.h. If elflink.h doesn't call our
1074 finish_dynamic_symbol routine, we'll need to do something about
1075 initializing any .plt and .got entries in elf_i386_relocate_section. */
1076 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1077 ((DYN) \
1078 && ((INFO)->shared \
1079 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1080 && ((H)->dynindx != -1 \
1081 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1083 /* Allocate space in .plt, .got and associated reloc sections for
1084 global syms. Also discards space allocated for relocs in the
1085 check_relocs function that we subsequently have found to be
1086 unneeded. */
1088 static boolean
1089 allocate_plt_and_got_and_discard_relocs (h, inf)
1090 struct elf_link_hash_entry *h;
1091 PTR inf;
1093 struct bfd_link_info *info;
1094 struct elf_i386_link_hash_table *htab;
1095 asection *s;
1096 struct elf_i386_link_hash_entry *eh;
1098 if (h->root.type == bfd_link_hash_indirect
1099 || h->root.type == bfd_link_hash_warning)
1100 return true;
1102 info = (struct bfd_link_info *) inf;
1103 htab = elf_i386_hash_table (info);
1105 if (htab->root.dynamic_sections_created
1106 && h->plt.refcount > 0)
1108 /* Make sure this symbol is output as a dynamic symbol.
1109 Undefined weak syms won't yet be marked as dynamic. */
1110 if (h->dynindx == -1
1111 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1113 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1114 return false;
1117 s = htab->splt;
1118 if (s == NULL)
1119 abort ();
1121 /* If this is the first .plt entry, make room for the special
1122 first entry. */
1123 if (s->_raw_size == 0)
1124 s->_raw_size += PLT_ENTRY_SIZE;
1126 h->plt.offset = s->_raw_size;
1128 /* If this symbol is not defined in a regular file, and we are
1129 not generating a shared library, then set the symbol to this
1130 location in the .plt. This is required to make function
1131 pointers compare as equal between the normal executable and
1132 the shared library. */
1133 if (! info->shared
1134 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1136 h->root.u.def.section = s;
1137 h->root.u.def.value = h->plt.offset;
1140 /* Make room for this entry. */
1141 s->_raw_size += PLT_ENTRY_SIZE;
1143 /* We also need to make an entry in the .got.plt section, which
1144 will be placed in the .got section by the linker script. */
1145 s = htab->sgotplt;
1146 if (s == NULL)
1147 abort ();
1148 s->_raw_size += 4;
1150 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1152 /* We also need to make an entry in the .rel.plt section. */
1153 s = htab->srelplt;
1154 if (s == NULL)
1155 abort ();
1156 s->_raw_size += sizeof (Elf32_External_Rel);
1159 else
1161 h->plt.offset = (bfd_vma) -1;
1162 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1165 if (h->got.refcount > 0)
1167 boolean dyn;
1169 /* Make sure this symbol is output as a dynamic symbol.
1170 Undefined weak syms won't yet be marked as dynamic. */
1171 if (h->dynindx == -1
1172 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1174 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1175 return false;
1178 s = htab->sgot;
1179 h->got.offset = s->_raw_size;
1180 s->_raw_size += 4;
1181 dyn = htab->root.dynamic_sections_created;
1182 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1183 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1185 else
1186 h->got.offset = (bfd_vma) -1;
1188 /* In the shared -Bsymbolic case, discard space allocated for
1189 dynamic relocs against symbols which turn out to be defined
1190 in regular objects. For the normal shared case, discard space
1191 for relocs that have become local due to symbol visibility
1192 changes. For the non-shared case, discard space for symbols
1193 which turn out to need copy relocs or are not dynamic. */
1195 eh = (struct elf_i386_link_hash_entry *) h;
1196 if (eh->dyn_relocs == NULL)
1197 return true;
1199 if (!info->shared
1200 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1201 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1202 || (htab->root.dynamic_sections_created
1203 && (h->root.type == bfd_link_hash_undefweak
1204 || h->root.type == bfd_link_hash_undefined))))
1206 /* Make sure this symbol is output as a dynamic symbol.
1207 Undefined weak syms won't yet be marked as dynamic. */
1208 if (h->dynindx == -1
1209 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1211 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1212 return false;
1215 /* If that succeeded, we know we'll be keeping all the relocs. */
1216 if (h->dynindx != -1)
1217 return true;
1220 if (!info->shared
1221 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1222 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1223 || info->symbolic)))
1225 struct elf_i386_dyn_relocs *c;
1227 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1228 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1231 return true;
1234 /* Set the sizes of the dynamic sections. */
1236 static boolean
1237 elf_i386_size_dynamic_sections (output_bfd, info)
1238 bfd *output_bfd;
1239 struct bfd_link_info *info;
1241 struct elf_i386_link_hash_table *htab;
1242 bfd *dynobj;
1243 asection *s;
1244 boolean relocs;
1245 boolean reltext;
1246 bfd *i;
1248 htab = elf_i386_hash_table (info);
1249 dynobj = htab->root.dynobj;
1250 if (dynobj == NULL)
1251 abort ();
1253 if (htab->root.dynamic_sections_created)
1255 /* Set the contents of the .interp section to the interpreter. */
1256 if (! info->shared)
1258 s = bfd_get_section_by_name (dynobj, ".interp");
1259 if (s == NULL)
1260 abort ();
1261 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1262 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1266 /* Set up .got offsets for local syms. */
1267 for (i = info->input_bfds; i; i = i->link_next)
1269 bfd_signed_vma *local_got;
1270 bfd_signed_vma *end_local_got;
1271 bfd_size_type locsymcount;
1272 Elf_Internal_Shdr *symtab_hdr;
1273 asection *srel;
1275 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1276 continue;
1278 local_got = elf_local_got_refcounts (i);
1279 if (!local_got)
1280 continue;
1282 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1283 locsymcount = symtab_hdr->sh_info;
1284 end_local_got = local_got + locsymcount;
1285 s = htab->sgot;
1286 srel = htab->srelgot;
1287 for (; local_got < end_local_got; ++local_got)
1289 if (*local_got > 0)
1291 *local_got = s->_raw_size;
1292 s->_raw_size += 4;
1293 if (info->shared)
1294 srel->_raw_size += sizeof (Elf32_External_Rel);
1296 else
1297 *local_got = (bfd_vma) -1;
1301 /* Allocate global sym .plt and .got entries. Also discard all
1302 unneeded relocs. */
1303 elf_link_hash_traverse (&htab->root,
1304 allocate_plt_and_got_and_discard_relocs,
1305 (PTR) info);
1307 /* We now have determined the sizes of the various dynamic sections.
1308 Allocate memory for them. */
1309 relocs = false;
1310 reltext = false;
1311 for (s = dynobj->sections; s != NULL; s = s->next)
1313 if ((s->flags & SEC_LINKER_CREATED) == 0)
1314 continue;
1316 if (s == htab->splt
1317 || s == htab->sgot
1318 || s == htab->sgotplt)
1320 /* Strip this section if we don't need it; see the
1321 comment below. */
1323 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1325 if (s->_raw_size == 0)
1327 /* If we don't need this section, strip it from the
1328 output file. This is mostly to handle .rel.bss and
1329 .rel.plt. We must create both sections in
1330 create_dynamic_sections, because they must be created
1331 before the linker maps input sections to output
1332 sections. The linker does that before
1333 adjust_dynamic_symbol is called, and it is that
1334 function which decides whether anything needs to go
1335 into these sections. */
1337 else
1339 asection *target;
1341 /* Remember whether there are any reloc sections other
1342 than .rel.plt. */
1343 if (s != htab->srelplt)
1345 const char *outname;
1347 relocs = true;
1349 /* If this relocation section applies to a read only
1350 section, then we probably need a DT_TEXTREL
1351 entry. The entries in the .rel.plt section
1352 really apply to the .got section, which we
1353 created ourselves and so know is not readonly. */
1354 outname = bfd_get_section_name (output_bfd,
1355 s->output_section);
1356 target = bfd_get_section_by_name (output_bfd, outname + 4);
1357 if (target != NULL
1358 && (target->flags & SEC_READONLY) != 0
1359 && (target->flags & SEC_ALLOC) != 0)
1360 reltext = true;
1363 /* We use the reloc_count field as a counter if we need
1364 to copy relocs into the output file. */
1365 s->reloc_count = 0;
1368 else
1370 /* It's not one of our sections, so don't allocate space. */
1371 continue;
1374 if (s->_raw_size == 0)
1376 _bfd_strip_section_from_output (info, s);
1377 continue;
1380 /* Allocate memory for the section contents. We use bfd_zalloc
1381 here in case unused entries are not reclaimed before the
1382 section's contents are written out. This should not happen,
1383 but this way if it does, we get a R_386_NONE reloc instead
1384 of garbage. */
1385 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1386 if (s->contents == NULL)
1387 return false;
1390 if (htab->root.dynamic_sections_created)
1392 /* Add some entries to the .dynamic section. We fill in the
1393 values later, in elf_i386_finish_dynamic_sections, but we
1394 must add the entries now so that we get the correct size for
1395 the .dynamic section. The DT_DEBUG entry is filled in by the
1396 dynamic linker and used by the debugger. */
1397 if (! info->shared)
1399 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1400 return false;
1403 if (htab->splt->_raw_size != 0)
1405 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1406 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1407 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1408 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1409 return false;
1412 if (relocs)
1414 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1415 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1416 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1417 sizeof (Elf32_External_Rel)))
1418 return false;
1421 if (reltext)
1423 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1424 return false;
1425 info->flags |= DF_TEXTREL;
1429 return true;
1432 /* Relocate an i386 ELF section. */
1434 static boolean
1435 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1436 contents, relocs, local_syms, local_sections)
1437 bfd *output_bfd;
1438 struct bfd_link_info *info;
1439 bfd *input_bfd;
1440 asection *input_section;
1441 bfd_byte *contents;
1442 Elf_Internal_Rela *relocs;
1443 Elf_Internal_Sym *local_syms;
1444 asection **local_sections;
1446 struct elf_i386_link_hash_table *htab;
1447 bfd *dynobj;
1448 Elf_Internal_Shdr *symtab_hdr;
1449 struct elf_link_hash_entry **sym_hashes;
1450 bfd_vma *local_got_offsets;
1451 asection *sreloc;
1452 Elf_Internal_Rela *rel;
1453 Elf_Internal_Rela *relend;
1455 htab = elf_i386_hash_table (info);
1456 dynobj = htab->root.dynobj;
1457 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1458 sym_hashes = elf_sym_hashes (input_bfd);
1459 local_got_offsets = elf_local_got_offsets (input_bfd);
1461 sreloc = NULL;
1462 rel = relocs;
1463 relend = relocs + input_section->reloc_count;
1464 for (; rel < relend; rel++)
1466 int r_type;
1467 reloc_howto_type *howto;
1468 unsigned long r_symndx;
1469 struct elf_link_hash_entry *h;
1470 Elf_Internal_Sym *sym;
1471 asection *sec;
1472 bfd_vma off;
1473 bfd_vma relocation;
1474 boolean unresolved_reloc;
1475 bfd_reloc_status_type r;
1476 unsigned int indx;
1478 r_type = ELF32_R_TYPE (rel->r_info);
1479 if (r_type == (int) R_386_GNU_VTINHERIT
1480 || r_type == (int) R_386_GNU_VTENTRY)
1481 continue;
1483 if ((indx = (unsigned) r_type) >= R_386_standard
1484 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1485 >= R_386_ext - R_386_standard))
1487 bfd_set_error (bfd_error_bad_value);
1488 return false;
1490 howto = elf_howto_table + indx;
1492 r_symndx = ELF32_R_SYM (rel->r_info);
1494 if (info->relocateable)
1496 /* This is a relocateable link. We don't have to change
1497 anything, unless the reloc is against a section symbol,
1498 in which case we have to adjust according to where the
1499 section symbol winds up in the output section. */
1500 if (r_symndx < symtab_hdr->sh_info)
1502 sym = local_syms + r_symndx;
1503 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1505 bfd_vma val;
1507 sec = local_sections[r_symndx];
1508 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1509 val += sec->output_offset + sym->st_value;
1510 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1514 continue;
1517 /* This is a final link. */
1518 h = NULL;
1519 sym = NULL;
1520 sec = NULL;
1521 unresolved_reloc = false;
1522 if (r_symndx < symtab_hdr->sh_info)
1524 sym = local_syms + r_symndx;
1525 sec = local_sections[r_symndx];
1526 relocation = (sec->output_section->vma
1527 + sec->output_offset
1528 + sym->st_value);
1530 else
1532 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1533 while (h->root.type == bfd_link_hash_indirect
1534 || h->root.type == bfd_link_hash_warning)
1535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1537 relocation = 0;
1538 if (h->root.type == bfd_link_hash_defined
1539 || h->root.type == bfd_link_hash_defweak)
1541 sec = h->root.u.def.section;
1542 if (sec->output_section == NULL)
1543 /* Set a flag that will be cleared later if we find a
1544 relocation value for this symbol. output_section
1545 is typically NULL for symbols satisfied by a shared
1546 library. */
1547 unresolved_reloc = true;
1548 else
1549 relocation = (h->root.u.def.value
1550 + sec->output_section->vma
1551 + sec->output_offset);
1553 else if (h->root.type == bfd_link_hash_undefweak)
1555 else if (info->shared && !info->symbolic
1556 && !info->no_undefined
1557 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1559 else
1561 if (! ((*info->callbacks->undefined_symbol)
1562 (info, h->root.root.string, input_bfd,
1563 input_section, rel->r_offset,
1564 (!info->shared || info->no_undefined
1565 || ELF_ST_VISIBILITY (h->other)))))
1566 return false;
1570 switch (r_type)
1572 case R_386_GOT32:
1573 /* Relocation is to the entry for this symbol in the global
1574 offset table. */
1575 if (htab->sgot == NULL)
1576 abort ();
1578 if (h != NULL)
1580 boolean dyn;
1582 off = h->got.offset;
1583 dyn = htab->root.dynamic_sections_created;
1584 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1585 || (info->shared
1586 && (info->symbolic
1587 || h->dynindx == -1
1588 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1589 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1591 /* This is actually a static link, or it is a
1592 -Bsymbolic link and the symbol is defined
1593 locally, or the symbol was forced to be local
1594 because of a version file. We must initialize
1595 this entry in the global offset table. Since the
1596 offset must always be a multiple of 4, we use the
1597 least significant bit to record whether we have
1598 initialized it already.
1600 When doing a dynamic link, we create a .rel.got
1601 relocation entry to initialize the value. This
1602 is done in the finish_dynamic_symbol routine. */
1603 if ((off & 1) != 0)
1604 off &= ~1;
1605 else
1607 bfd_put_32 (output_bfd, relocation,
1608 htab->sgot->contents + off);
1609 h->got.offset |= 1;
1612 else
1613 unresolved_reloc = false;
1615 else
1617 if (local_got_offsets == NULL)
1618 abort ();
1620 off = local_got_offsets[r_symndx];
1622 /* The offset must always be a multiple of 4. We use
1623 the least significant bit to record whether we have
1624 already generated the necessary reloc. */
1625 if ((off & 1) != 0)
1626 off &= ~1;
1627 else
1629 bfd_put_32 (output_bfd, relocation,
1630 htab->sgot->contents + off);
1632 if (info->shared)
1634 asection *srelgot;
1635 Elf_Internal_Rel outrel;
1637 srelgot = htab->srelgot;
1638 if (srelgot == NULL)
1639 abort ();
1641 outrel.r_offset = (htab->sgot->output_section->vma
1642 + htab->sgot->output_offset
1643 + off);
1644 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1645 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1646 (((Elf32_External_Rel *)
1647 srelgot->contents)
1648 + srelgot->reloc_count));
1649 ++srelgot->reloc_count;
1652 local_got_offsets[r_symndx] |= 1;
1656 if (off >= (bfd_vma) -2)
1657 abort ();
1659 relocation = htab->sgot->output_offset + off;
1660 break;
1662 case R_386_GOTOFF:
1663 /* Relocation is relative to the start of the global offset
1664 table. */
1666 /* Note that sgot->output_offset is not involved in this
1667 calculation. We always want the start of .got. If we
1668 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1669 permitted by the ABI, we might have to change this
1670 calculation. */
1671 relocation -= htab->sgot->output_section->vma;
1672 break;
1674 case R_386_GOTPC:
1675 /* Use global offset table as symbol value. */
1676 relocation = htab->sgot->output_section->vma;
1677 unresolved_reloc = false;
1678 break;
1680 case R_386_PLT32:
1681 /* Relocation is to the entry for this symbol in the
1682 procedure linkage table. */
1684 /* Resolve a PLT32 reloc against a local symbol directly,
1685 without using the procedure linkage table. */
1686 if (h == NULL)
1687 break;
1689 if (h->plt.offset == (bfd_vma) -1
1690 || htab->splt == NULL)
1692 /* We didn't make a PLT entry for this symbol. This
1693 happens when statically linking PIC code, or when
1694 using -Bsymbolic. */
1695 break;
1698 relocation = (htab->splt->output_section->vma
1699 + htab->splt->output_offset
1700 + h->plt.offset);
1701 unresolved_reloc = false;
1702 break;
1704 case R_386_32:
1705 case R_386_PC32:
1706 if ((info->shared
1707 && (input_section->flags & SEC_ALLOC) != 0
1708 && (r_type != R_386_PC32
1709 || (h != NULL
1710 && h->dynindx != -1
1711 && (! info->symbolic
1712 || (h->elf_link_hash_flags
1713 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1714 || (!info->shared
1715 && (input_section->flags & SEC_ALLOC) != 0
1716 && h != NULL
1717 && h->dynindx != -1
1718 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1719 && ((h->elf_link_hash_flags
1720 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1721 || h->root.type == bfd_link_hash_undefweak
1722 || h->root.type == bfd_link_hash_undefined)))
1724 Elf_Internal_Rel outrel;
1725 boolean skip, relocate;
1727 /* When generating a shared object, these relocations
1728 are copied into the output file to be resolved at run
1729 time. */
1731 if (sreloc == NULL)
1733 const char *name;
1735 name = (bfd_elf_string_from_elf_section
1736 (input_bfd,
1737 elf_elfheader (input_bfd)->e_shstrndx,
1738 elf_section_data (input_section)->rel_hdr.sh_name));
1739 if (name == NULL)
1740 return false;
1742 if (strncmp (name, ".rel", 4) != 0
1743 || strcmp (bfd_get_section_name (input_bfd,
1744 input_section),
1745 name + 4) != 0)
1747 if (input_bfd->my_archive)
1748 (*_bfd_error_handler)\
1749 (_("%s(%s): bad relocation section name `%s\'"),
1750 bfd_get_filename (input_bfd->my_archive),
1751 bfd_get_filename (input_bfd),
1752 name);
1753 else
1754 (*_bfd_error_handler)
1755 (_("%s: bad relocation section name `%s\'"),
1756 bfd_get_filename (input_bfd),
1757 name);
1758 return false;
1761 sreloc = bfd_get_section_by_name (dynobj, name);
1762 if (sreloc == NULL)
1763 abort ();
1766 skip = false;
1768 if (elf_section_data (input_section)->stab_info == NULL)
1769 outrel.r_offset = rel->r_offset;
1770 else
1772 bfd_vma off;
1774 off = (_bfd_stab_section_offset
1775 (output_bfd, htab->root.stab_info, input_section,
1776 &elf_section_data (input_section)->stab_info,
1777 rel->r_offset));
1778 if (off == (bfd_vma) -1)
1779 skip = true;
1780 outrel.r_offset = off;
1783 outrel.r_offset += (input_section->output_section->vma
1784 + input_section->output_offset);
1786 if (skip)
1788 memset (&outrel, 0, sizeof outrel);
1789 relocate = false;
1791 else if (h != NULL
1792 && h->dynindx != -1
1793 && (r_type == R_386_PC32
1794 || !info->shared
1795 || !info->symbolic
1796 || (h->elf_link_hash_flags
1797 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1800 relocate = false;
1801 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1803 else
1805 /* This symbol is local, or marked to become local. */
1806 relocate = true;
1807 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1810 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1811 (((Elf32_External_Rel *)
1812 sreloc->contents)
1813 + sreloc->reloc_count));
1814 ++sreloc->reloc_count;
1816 /* If this reloc is against an external symbol, we do
1817 not want to fiddle with the addend. Otherwise, we
1818 need to include the symbol value so that it becomes
1819 an addend for the dynamic reloc. */
1820 if (! relocate)
1821 continue;
1824 break;
1826 default:
1827 break;
1830 /* FIXME: Why do we allow debugging sections to escape this error?
1831 More importantly, why do we not emit dynamic relocs for
1832 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1833 If we had emitted the dynamic reloc, we could remove the
1834 fudge here. */
1835 if (unresolved_reloc
1836 && !(info->shared
1837 && (input_section->flags & SEC_DEBUGGING) != 0
1838 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1839 (*_bfd_error_handler)
1840 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1841 bfd_get_filename (input_bfd),
1842 bfd_get_section_name (input_bfd, input_section),
1843 (long) rel->r_offset,
1844 h->root.root.string);
1846 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1847 contents, rel->r_offset,
1848 relocation, (bfd_vma) 0);
1850 switch (r)
1852 case bfd_reloc_ok:
1853 break;
1855 case bfd_reloc_overflow:
1857 const char *name;
1859 if (h != NULL)
1860 name = h->root.root.string;
1861 else
1863 name = bfd_elf_string_from_elf_section (input_bfd,
1864 symtab_hdr->sh_link,
1865 sym->st_name);
1866 if (name == NULL)
1867 return false;
1868 if (*name == '\0')
1869 name = bfd_section_name (input_bfd, sec);
1871 if (! ((*info->callbacks->reloc_overflow)
1872 (info, name, howto->name, (bfd_vma) 0,
1873 input_bfd, input_section, rel->r_offset)))
1874 return false;
1876 break;
1878 default:
1879 case bfd_reloc_outofrange:
1880 abort ();
1881 break;
1885 return true;
1888 /* Finish up dynamic symbol handling. We set the contents of various
1889 dynamic sections here. */
1891 static boolean
1892 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1893 bfd *output_bfd;
1894 struct bfd_link_info *info;
1895 struct elf_link_hash_entry *h;
1896 Elf_Internal_Sym *sym;
1898 struct elf_i386_link_hash_table *htab;
1899 bfd *dynobj;
1901 htab = elf_i386_hash_table (info);
1902 dynobj = htab->root.dynobj;
1904 if (h->plt.offset != (bfd_vma) -1)
1906 bfd_vma plt_index;
1907 bfd_vma got_offset;
1908 Elf_Internal_Rel rel;
1910 /* This symbol has an entry in the procedure linkage table. Set
1911 it up. */
1913 if (h->dynindx == -1
1914 || htab->splt == NULL
1915 || htab->sgotplt == NULL
1916 || htab->srelplt == NULL)
1917 abort ();
1919 /* Get the index in the procedure linkage table which
1920 corresponds to this symbol. This is the index of this symbol
1921 in all the symbols for which we are making plt entries. The
1922 first entry in the procedure linkage table is reserved. */
1923 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1925 /* Get the offset into the .got table of the entry that
1926 corresponds to this function. Each .got entry is 4 bytes.
1927 The first three are reserved. */
1928 got_offset = (plt_index + 3) * 4;
1930 /* Fill in the entry in the procedure linkage table. */
1931 if (! info->shared)
1933 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1934 PLT_ENTRY_SIZE);
1935 bfd_put_32 (output_bfd,
1936 (htab->sgotplt->output_section->vma
1937 + htab->sgotplt->output_offset
1938 + got_offset),
1939 htab->splt->contents + h->plt.offset + 2);
1941 else
1943 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1944 PLT_ENTRY_SIZE);
1945 bfd_put_32 (output_bfd, got_offset,
1946 htab->splt->contents + h->plt.offset + 2);
1949 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1950 htab->splt->contents + h->plt.offset + 7);
1951 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1952 htab->splt->contents + h->plt.offset + 12);
1954 /* Fill in the entry in the global offset table. */
1955 bfd_put_32 (output_bfd,
1956 (htab->splt->output_section->vma
1957 + htab->splt->output_offset
1958 + h->plt.offset
1959 + 6),
1960 htab->sgotplt->contents + got_offset);
1962 /* Fill in the entry in the .rel.plt section. */
1963 rel.r_offset = (htab->sgotplt->output_section->vma
1964 + htab->sgotplt->output_offset
1965 + got_offset);
1966 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1967 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1968 ((Elf32_External_Rel *) htab->srelplt->contents
1969 + plt_index));
1971 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1973 /* Mark the symbol as undefined, rather than as defined in
1974 the .plt section. Leave the value alone. */
1975 sym->st_shndx = SHN_UNDEF;
1979 if (h->got.offset != (bfd_vma) -1)
1981 Elf_Internal_Rel rel;
1983 /* This symbol has an entry in the global offset table. Set it
1984 up. */
1986 if (htab->sgot == NULL || htab->srelgot == NULL)
1987 abort ();
1989 rel.r_offset = (htab->sgot->output_section->vma
1990 + htab->sgot->output_offset
1991 + (h->got.offset &~ 1));
1993 /* If this is a static link, or it is a -Bsymbolic link and the
1994 symbol is defined locally or was forced to be local because
1995 of a version file, we just want to emit a RELATIVE reloc.
1996 The entry in the global offset table will already have been
1997 initialized in the relocate_section function. */
1998 if (info->shared
1999 && (info->symbolic
2000 || h->dynindx == -1
2001 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2002 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2004 BFD_ASSERT((h->got.offset & 1) != 0);
2005 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2007 else
2009 BFD_ASSERT((h->got.offset & 1) == 0);
2010 bfd_put_32 (output_bfd, (bfd_vma) 0,
2011 htab->sgot->contents + h->got.offset);
2012 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2015 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2016 ((Elf32_External_Rel *) htab->srelgot->contents
2017 + htab->srelgot->reloc_count));
2018 ++htab->srelgot->reloc_count;
2021 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2023 Elf_Internal_Rel rel;
2025 /* This symbol needs a copy reloc. Set it up. */
2027 if (h->dynindx == -1
2028 || (h->root.type != bfd_link_hash_defined
2029 && h->root.type != bfd_link_hash_defweak)
2030 || htab->srelbss == NULL)
2031 abort ();
2033 rel.r_offset = (h->root.u.def.value
2034 + h->root.u.def.section->output_section->vma
2035 + h->root.u.def.section->output_offset);
2036 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2037 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2038 ((Elf32_External_Rel *) htab->srelbss->contents
2039 + htab->srelbss->reloc_count));
2040 ++htab->srelbss->reloc_count;
2043 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2044 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2045 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2046 sym->st_shndx = SHN_ABS;
2048 return true;
2051 /* Finish up the dynamic sections. */
2053 static boolean
2054 elf_i386_finish_dynamic_sections (output_bfd, info)
2055 bfd *output_bfd;
2056 struct bfd_link_info *info;
2058 struct elf_i386_link_hash_table *htab;
2059 bfd *dynobj;
2060 asection *sdyn;
2062 htab = elf_i386_hash_table (info);
2063 dynobj = htab->root.dynobj;
2064 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2066 if (htab->root.dynamic_sections_created)
2068 Elf32_External_Dyn *dyncon, *dynconend;
2070 if (sdyn == NULL || htab->sgot == NULL)
2071 abort ();
2073 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2074 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2075 for (; dyncon < dynconend; dyncon++)
2077 Elf_Internal_Dyn dyn;
2079 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2081 switch (dyn.d_tag)
2083 default:
2084 break;
2086 case DT_PLTGOT:
2087 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2088 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2089 break;
2091 case DT_JMPREL:
2092 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2093 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2094 break;
2096 case DT_PLTRELSZ:
2097 if (htab->srelplt->output_section->_cooked_size != 0)
2098 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2099 else
2100 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2101 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2102 break;
2104 case DT_RELSZ:
2105 /* My reading of the SVR4 ABI indicates that the
2106 procedure linkage table relocs (DT_JMPREL) should be
2107 included in the overall relocs (DT_REL). This is
2108 what Solaris does. However, UnixWare can not handle
2109 that case. Therefore, we override the DT_RELSZ entry
2110 here to make it not include the JMPREL relocs. Since
2111 the linker script arranges for .rel.plt to follow all
2112 other relocation sections, we don't have to worry
2113 about changing the DT_REL entry. */
2114 if (htab->srelplt != NULL)
2116 if (htab->srelplt->output_section->_cooked_size != 0)
2117 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2118 else
2119 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2121 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2122 break;
2126 /* Fill in the first entry in the procedure linkage table. */
2127 if (htab->splt && htab->splt->_raw_size > 0)
2129 if (info->shared)
2130 memcpy (htab->splt->contents,
2131 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2132 else
2134 memcpy (htab->splt->contents,
2135 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2136 bfd_put_32 (output_bfd,
2137 (htab->sgotplt->output_section->vma
2138 + htab->sgotplt->output_offset
2139 + 4),
2140 htab->splt->contents + 2);
2141 bfd_put_32 (output_bfd,
2142 (htab->sgotplt->output_section->vma
2143 + htab->sgotplt->output_offset
2144 + 8),
2145 htab->splt->contents + 8);
2148 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2149 really seem like the right value. */
2150 elf_section_data (htab->splt->output_section)
2151 ->this_hdr.sh_entsize = 4;
2155 if (htab->sgotplt)
2157 /* Fill in the first three entries in the global offset table. */
2158 if (htab->sgotplt->_raw_size > 0)
2160 bfd_put_32 (output_bfd,
2161 (sdyn == NULL ? (bfd_vma) 0
2162 : sdyn->output_section->vma + sdyn->output_offset),
2163 htab->sgotplt->contents);
2164 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2165 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2168 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2170 return true;
2173 /* Set the correct type for an x86 ELF section. We do this by the
2174 section name, which is a hack, but ought to work. */
2176 static boolean
2177 elf_i386_fake_sections (abfd, hdr, sec)
2178 bfd *abfd ATTRIBUTE_UNUSED;
2179 Elf32_Internal_Shdr *hdr;
2180 asection *sec;
2182 register const char *name;
2184 name = bfd_get_section_name (abfd, sec);
2186 if (strcmp (name, ".reloc") == 0)
2188 * This is an ugly, but unfortunately necessary hack that is
2189 * needed when producing EFI binaries on x86. It tells
2190 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2191 * containing ELF relocation info. We need this hack in order to
2192 * be able to generate ELF binaries that can be translated into
2193 * EFI applications (which are essentially COFF objects). Those
2194 * files contain a COFF ".reloc" section inside an ELFNN object,
2195 * which would normally cause BFD to segfault because it would
2196 * attempt to interpret this section as containing relocation
2197 * entries for section "oc". With this hack enabled, ".reloc"
2198 * will be treated as a normal data section, which will avoid the
2199 * segfault. However, you won't be able to create an ELFNN binary
2200 * with a section named "oc" that needs relocations, but that's
2201 * the kind of ugly side-effects you get when detecting section
2202 * types based on their names... In practice, this limitation is
2203 * unlikely to bite.
2205 hdr->sh_type = SHT_PROGBITS;
2207 return true;
2211 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2212 #define TARGET_LITTLE_NAME "elf32-i386"
2213 #define ELF_ARCH bfd_arch_i386
2214 #define ELF_MACHINE_CODE EM_386
2215 #define ELF_MAXPAGESIZE 0x1000
2217 #define elf_backend_can_gc_sections 1
2218 #define elf_backend_want_got_plt 1
2219 #define elf_backend_plt_readonly 1
2220 #define elf_backend_want_plt_sym 0
2221 #define elf_backend_got_header_size 12
2222 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2224 #define elf_info_to_howto elf_i386_info_to_howto
2225 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2227 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2228 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2229 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2231 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2232 #define elf_backend_check_relocs elf_i386_check_relocs
2233 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2234 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2235 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2236 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2237 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2238 #define elf_backend_relocate_section elf_i386_relocate_section
2239 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2240 #define elf_backend_fake_sections elf_i386_fake_sections
2242 #include "elf32-target.h"