1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 typedef unsigned long int insn32
;
21 typedef unsigned short int insn16
;
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd
*, flagword
));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd
*, bfd
*));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd
*, bfd
*));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd
*, PTR
));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym
*, int));
33 static struct bfd_link_hash_table
*elf32_arm_link_hash_table_create
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
37 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
38 const char *, unsigned char, struct elf_link_hash_entry
*));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32
, int));
41 static struct elf_link_hash_entry
*find_thumb_glue
42 PARAMS ((struct bfd_link_info
*, CONST
char *, bfd
*));
43 static struct elf_link_hash_entry
*find_arm_glue
44 PARAMS ((struct bfd_link_info
*, CONST
char *, bfd
*));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd
*, struct bfd_link_info
*));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info
*, const char *, bfd
*, bfd
*, asection
*,
53 bfd_byte
*, asection
*, bfd_vma
, bfd_signed_vma
, bfd_vma
));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info
*, const char *, bfd
*, bfd
*, asection
*,
56 bfd_byte
*, asection
*, bfd_vma
, bfd_signed_vma
, bfd_vma
));
58 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
60 /* The linker script knows the section names for placement.
61 The entry_names are used to do simple name mangling on the stubs.
62 Given a function name, and its type, the stub can be found. The
63 name can be changed. The only requirement is the %s be present. */
64 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
65 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
67 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
68 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
70 /* The name of the dynamic interpreter. This is put in the .interp
72 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
74 /* The size in bytes of an entry in the procedure linkage table. */
75 #define PLT_ENTRY_SIZE 16
77 /* The first entry in a procedure linkage table looks like
78 this. It is set up so that any shared library function that is
79 called before the relocation has been set up calls the dynamic
81 static const unsigned long elf32_arm_plt0_entry
[PLT_ENTRY_SIZE
/ 4] =
83 0xe52de004, /* str lr, [sp, #-4]! */
84 0xe59fe010, /* ldr lr, [pc, #16] */
85 0xe08fe00e, /* add lr, pc, lr */
86 0xe5bef008 /* ldr pc, [lr, #8]! */
89 /* Subsequent entries in a procedure linkage table look like
91 static const unsigned long elf32_arm_plt_entry
[PLT_ENTRY_SIZE
/ 4] =
93 0xe59fc004, /* ldr ip, [pc, #4] */
94 0xe08fc00c, /* add ip, pc, ip */
95 0xe59cf000, /* ldr pc, [ip] */
96 0x00000000 /* offset to symbol in got */
99 /* The ARM linker needs to keep track of the number of relocs that it
100 decides to copy in check_relocs for each symbol. This is so that
101 it can discard PC relative relocs if it doesn't need them when
102 linking with -Bsymbolic. We store the information in a field
103 extending the regular ELF linker hash table. */
105 /* This structure keeps track of the number of PC relative relocs we
106 have copied for a given symbol. */
107 struct elf32_arm_pcrel_relocs_copied
110 struct elf32_arm_pcrel_relocs_copied
* next
;
111 /* A section in dynobj. */
113 /* Number of relocs copied in this section. */
117 /* Arm ELF linker hash entry. */
118 struct elf32_arm_link_hash_entry
120 struct elf_link_hash_entry root
;
122 /* Number of PC relative relocs copied for this symbol. */
123 struct elf32_arm_pcrel_relocs_copied
* pcrel_relocs_copied
;
126 /* Declare this now that the above structures are defined. */
127 static boolean elf32_arm_discard_copies
128 PARAMS ((struct elf32_arm_link_hash_entry
*, PTR
));
130 /* Traverse an arm ELF linker hash table. */
131 #define elf32_arm_link_hash_traverse(table, func, info) \
132 (elf_link_hash_traverse \
134 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
137 /* Get the ARM elf linker hash table from a link_info structure. */
138 #define elf32_arm_hash_table(info) \
139 ((struct elf32_arm_link_hash_table *) ((info)->hash))
141 /* ARM ELF linker hash table. */
142 struct elf32_arm_link_hash_table
144 /* The main hash table. */
145 struct elf_link_hash_table root
;
147 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
148 long int thumb_glue_size
;
150 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
151 long int arm_glue_size
;
153 /* An arbitary input BFD chosen to hold the glue sections. */
154 bfd
* bfd_of_glue_owner
;
156 /* A boolean indicating whether knowledge of the ARM's pipeline
157 length should be applied by the linker. */
158 int no_pipeline_knowledge
;
161 /* Create an entry in an ARM ELF linker hash table. */
163 static struct bfd_hash_entry
*
164 elf32_arm_link_hash_newfunc (entry
, table
, string
)
165 struct bfd_hash_entry
* entry
;
166 struct bfd_hash_table
* table
;
169 struct elf32_arm_link_hash_entry
* ret
=
170 (struct elf32_arm_link_hash_entry
*) entry
;
172 /* Allocate the structure if it has not already been allocated by a
174 if (ret
== (struct elf32_arm_link_hash_entry
*) NULL
)
175 ret
= ((struct elf32_arm_link_hash_entry
*)
176 bfd_hash_allocate (table
,
177 sizeof (struct elf32_arm_link_hash_entry
)));
178 if (ret
== (struct elf32_arm_link_hash_entry
*) NULL
)
179 return (struct bfd_hash_entry
*) ret
;
181 /* Call the allocation method of the superclass. */
182 ret
= ((struct elf32_arm_link_hash_entry
*)
183 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
185 if (ret
!= (struct elf32_arm_link_hash_entry
*) NULL
)
186 ret
->pcrel_relocs_copied
= NULL
;
188 return (struct bfd_hash_entry
*) ret
;
191 /* Create an ARM elf linker hash table. */
193 static struct bfd_link_hash_table
*
194 elf32_arm_link_hash_table_create (abfd
)
197 struct elf32_arm_link_hash_table
*ret
;
199 ret
= ((struct elf32_arm_link_hash_table
*)
200 bfd_alloc (abfd
, sizeof (struct elf32_arm_link_hash_table
)));
201 if (ret
== (struct elf32_arm_link_hash_table
*) NULL
)
204 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
205 elf32_arm_link_hash_newfunc
))
207 bfd_release (abfd
, ret
);
211 ret
->thumb_glue_size
= 0;
212 ret
->arm_glue_size
= 0;
213 ret
->bfd_of_glue_owner
= NULL
;
214 ret
->no_pipeline_knowledge
= 0;
216 return &ret
->root
.root
;
219 /* Locate the Thumb encoded calling stub for NAME. */
221 static struct elf_link_hash_entry
*
222 find_thumb_glue (link_info
, name
, input_bfd
)
223 struct bfd_link_info
*link_info
;
228 struct elf_link_hash_entry
*hash
;
229 struct elf32_arm_link_hash_table
*hash_table
;
231 /* We need a pointer to the armelf specific hash table. */
232 hash_table
= elf32_arm_hash_table (link_info
);
235 bfd_malloc (strlen (name
) + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1));
237 BFD_ASSERT (tmp_name
);
239 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
241 hash
= elf_link_hash_lookup
242 (&(hash_table
)->root
, tmp_name
, false, false, true);
245 /* xgettext:c-format */
246 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
247 bfd_get_filename (input_bfd
), tmp_name
, name
);
254 /* Locate the ARM encoded calling stub for NAME. */
256 static struct elf_link_hash_entry
*
257 find_arm_glue (link_info
, name
, input_bfd
)
258 struct bfd_link_info
*link_info
;
263 struct elf_link_hash_entry
*myh
;
264 struct elf32_arm_link_hash_table
*hash_table
;
266 /* We need a pointer to the elfarm specific hash table. */
267 hash_table
= elf32_arm_hash_table (link_info
);
270 bfd_malloc (strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1));
272 BFD_ASSERT (tmp_name
);
274 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
276 myh
= elf_link_hash_lookup
277 (&(hash_table
)->root
, tmp_name
, false, false, true);
280 /* xgettext:c-format */
281 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
282 bfd_get_filename (input_bfd
), tmp_name
, name
);
296 .word func @ behave as if you saw a ARM_32 reloc. */
298 #define ARM2THUMB_GLUE_SIZE 12
299 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
300 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
301 static const insn32 a2t3_func_addr_insn
= 0x00000001;
303 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
307 __func_from_thumb: __func_from_thumb:
309 nop ldr r6, __func_addr
311 __func_change_to_arm: bx r6
313 __func_back_to_thumb:
319 #define THUMB2ARM_GLUE_SIZE 8
320 static const insn16 t2a1_bx_pc_insn
= 0x4778;
321 static const insn16 t2a2_noop_insn
= 0x46c0;
322 static const insn32 t2a3_b_insn
= 0xea000000;
324 static const insn16 t2a1_push_insn
= 0xb540;
325 static const insn16 t2a2_ldr_insn
= 0x4e03;
326 static const insn16 t2a3_mov_insn
= 0x46fe;
327 static const insn16 t2a4_bx_insn
= 0x4730;
328 static const insn32 t2a5_pop_insn
= 0xe8bd4040;
329 static const insn32 t2a6_bx_insn
= 0xe12fff1e;
332 bfd_elf32_arm_allocate_interworking_sections (info
)
333 struct bfd_link_info
* info
;
337 struct elf32_arm_link_hash_table
* globals
;
339 globals
= elf32_arm_hash_table (info
);
341 BFD_ASSERT (globals
!= NULL
);
343 if (globals
->arm_glue_size
!= 0)
345 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
347 s
= bfd_get_section_by_name
348 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
350 BFD_ASSERT (s
!= NULL
);
352 foo
= (bfd_byte
*) bfd_alloc
353 (globals
->bfd_of_glue_owner
, globals
->arm_glue_size
);
355 s
->_raw_size
= s
->_cooked_size
= globals
->arm_glue_size
;
359 if (globals
->thumb_glue_size
!= 0)
361 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
363 s
= bfd_get_section_by_name
364 (globals
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
366 BFD_ASSERT (s
!= NULL
);
368 foo
= (bfd_byte
*) bfd_alloc
369 (globals
->bfd_of_glue_owner
, globals
->thumb_glue_size
);
371 s
->_raw_size
= s
->_cooked_size
= globals
->thumb_glue_size
;
379 record_arm_to_thumb_glue (link_info
, h
)
380 struct bfd_link_info
* link_info
;
381 struct elf_link_hash_entry
* h
;
383 const char * name
= h
->root
.root
.string
;
384 register asection
* s
;
386 struct elf_link_hash_entry
* myh
;
387 struct elf32_arm_link_hash_table
* globals
;
389 globals
= elf32_arm_hash_table (link_info
);
391 BFD_ASSERT (globals
!= NULL
);
392 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
394 s
= bfd_get_section_by_name
395 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
397 BFD_ASSERT (s
!= NULL
);
400 bfd_malloc (strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1));
402 BFD_ASSERT (tmp_name
);
404 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
406 myh
= elf_link_hash_lookup
407 (&(globals
)->root
, tmp_name
, false, false, true);
411 /* We've already seen this guy. */
416 /* The only trick here is using hash_table->arm_glue_size as the value. Even
417 though the section isn't allocated yet, this is where we will be putting
419 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
, tmp_name
,
421 s
, globals
->arm_glue_size
+ 1,
423 (struct bfd_link_hash_entry
**) &myh
);
427 globals
->arm_glue_size
+= ARM2THUMB_GLUE_SIZE
;
433 record_thumb_to_arm_glue (link_info
, h
)
434 struct bfd_link_info
*link_info
;
435 struct elf_link_hash_entry
*h
;
437 const char *name
= h
->root
.root
.string
;
438 register asection
*s
;
440 struct elf_link_hash_entry
*myh
;
441 struct elf32_arm_link_hash_table
*hash_table
;
444 hash_table
= elf32_arm_hash_table (link_info
);
446 BFD_ASSERT (hash_table
!= NULL
);
447 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
449 s
= bfd_get_section_by_name
450 (hash_table
->bfd_of_glue_owner
, THUMB2ARM_GLUE_SECTION_NAME
);
452 BFD_ASSERT (s
!= NULL
);
454 tmp_name
= (char *) bfd_malloc (strlen (name
) + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
456 BFD_ASSERT (tmp_name
);
458 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
460 myh
= elf_link_hash_lookup
461 (&(hash_table
)->root
, tmp_name
, false, false, true);
465 /* We've already seen this guy. */
470 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
, tmp_name
,
471 BSF_GLOBAL
, s
, hash_table
->thumb_glue_size
+ 1,
473 (struct bfd_link_hash_entry
**) &myh
);
475 /* If we mark it 'Thumb', the disassembler will do a better job. */
476 bind
= ELF_ST_BIND (myh
->type
);
477 myh
->type
= ELF_ST_INFO (bind
, STT_ARM_TFUNC
);
481 #define CHANGE_TO_ARM "__%s_change_to_arm"
482 #define BACK_FROM_ARM "__%s_back_from_arm"
484 /* Allocate another symbol to mark where we switch to Arm mode. */
485 tmp_name
= (char *) bfd_malloc (strlen (name
) + strlen (CHANGE_TO_ARM
) + 1);
487 BFD_ASSERT (tmp_name
);
489 sprintf (tmp_name
, CHANGE_TO_ARM
, name
);
493 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
, tmp_name
,
494 BSF_LOCAL
, s
, hash_table
->thumb_glue_size
+ 4,
496 (struct bfd_link_hash_entry
**) &myh
);
500 hash_table
->thumb_glue_size
+= THUMB2ARM_GLUE_SIZE
;
505 /* Select a BFD to be used to hold the sections used by the glue code.
506 This function is called from the linker scripts in ld/emultempl/
510 bfd_elf32_arm_get_bfd_for_interworking (abfd
, info
)
512 struct bfd_link_info
*info
;
514 struct elf32_arm_link_hash_table
*globals
;
518 /* If we are only performing a partial link do not bother
519 getting a bfd to hold the glue. */
520 if (info
->relocateable
)
523 globals
= elf32_arm_hash_table (info
);
525 BFD_ASSERT (globals
!= NULL
);
527 if (globals
->bfd_of_glue_owner
!= NULL
)
530 sec
= bfd_get_section_by_name (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
534 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
535 will prevent elf_link_input_bfd() from processing the contents
537 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_CODE
| SEC_READONLY
;
539 sec
= bfd_make_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
);
542 || !bfd_set_section_flags (abfd
, sec
, flags
)
543 || !bfd_set_section_alignment (abfd
, sec
, 2))
546 /* Set the gc mark to prevent the section from being removed by garbage
547 collection, despite the fact that no relocs refer to this section. */
551 sec
= bfd_get_section_by_name (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
555 flags
= SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_CODE
| SEC_READONLY
;
557 sec
= bfd_make_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
);
560 || !bfd_set_section_flags (abfd
, sec
, flags
)
561 || !bfd_set_section_alignment (abfd
, sec
, 2))
567 /* Save the bfd for later use. */
568 globals
->bfd_of_glue_owner
= abfd
;
574 bfd_elf32_arm_process_before_allocation (abfd
, link_info
, no_pipeline_knowledge
)
576 struct bfd_link_info
*link_info
;
577 int no_pipeline_knowledge
;
579 Elf_Internal_Shdr
*symtab_hdr
;
580 Elf_Internal_Rela
*free_relocs
= NULL
;
581 Elf_Internal_Rela
*irel
, *irelend
;
582 bfd_byte
*contents
= NULL
;
583 bfd_byte
*free_contents
= NULL
;
584 Elf32_External_Sym
*extsyms
= NULL
;
585 Elf32_External_Sym
*free_extsyms
= NULL
;
588 struct elf32_arm_link_hash_table
*globals
;
590 /* If we are only performing a partial link do not bother
591 to construct any glue. */
592 if (link_info
->relocateable
)
595 /* Here we have a bfd that is to be included on the link. We have a hook
596 to do reloc rummaging, before section sizes are nailed down. */
597 globals
= elf32_arm_hash_table (link_info
);
599 BFD_ASSERT (globals
!= NULL
);
600 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
602 globals
->no_pipeline_knowledge
= no_pipeline_knowledge
;
604 /* Rummage around all the relocs and map the glue vectors. */
605 sec
= abfd
->sections
;
610 for (; sec
!= NULL
; sec
= sec
->next
)
612 if (sec
->reloc_count
== 0)
615 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
617 /* Load the relocs. */
618 irel
= (_bfd_elf32_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
619 (Elf_Internal_Rela
*) NULL
, false));
621 BFD_ASSERT (irel
!= 0);
623 irelend
= irel
+ sec
->reloc_count
;
624 for (; irel
< irelend
; irel
++)
627 unsigned long r_index
;
629 struct elf_link_hash_entry
*h
;
631 r_type
= ELF32_R_TYPE (irel
->r_info
);
632 r_index
= ELF32_R_SYM (irel
->r_info
);
634 /* These are the only relocation types we care about. */
635 if ( r_type
!= R_ARM_PC24
636 && r_type
!= R_ARM_THM_PC22
)
639 /* Get the section contents if we haven't done so already. */
640 if (contents
== NULL
)
642 /* Get cached copy if it exists. */
643 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
644 contents
= elf_section_data (sec
)->this_hdr
.contents
;
647 /* Go get them off disk. */
648 contents
= (bfd_byte
*) bfd_malloc (sec
->_raw_size
);
649 if (contents
== NULL
)
652 free_contents
= contents
;
654 if (!bfd_get_section_contents (abfd
, sec
, contents
,
655 (file_ptr
) 0, sec
->_raw_size
))
660 /* Read this BFD's symbols if we haven't done so already. */
663 /* Get cached copy if it exists. */
664 if (symtab_hdr
->contents
!= NULL
)
665 extsyms
= (Elf32_External_Sym
*) symtab_hdr
->contents
;
668 /* Go get them off disk. */
669 extsyms
= ((Elf32_External_Sym
*)
670 bfd_malloc (symtab_hdr
->sh_size
));
674 free_extsyms
= extsyms
;
676 if (bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
677 || (bfd_read (extsyms
, 1, symtab_hdr
->sh_size
, abfd
)
678 != symtab_hdr
->sh_size
))
683 /* If the relocation is not against a symbol it cannot concern us. */
686 /* We don't care about local symbols. */
687 if (r_index
< symtab_hdr
->sh_info
)
690 /* This is an external symbol. */
691 r_index
-= symtab_hdr
->sh_info
;
692 h
= (struct elf_link_hash_entry
*)
693 elf_sym_hashes (abfd
)[r_index
];
695 /* If the relocation is against a static symbol it must be within
696 the current section and so cannot be a cross ARM/Thumb relocation. */
703 /* This one is a call from arm code. We need to look up
704 the target of the call. If it is a thumb target, we
706 if (ELF_ST_TYPE(h
->type
) == STT_ARM_TFUNC
)
707 record_arm_to_thumb_glue (link_info
, h
);
711 /* This one is a call from thumb code. We look
712 up the target of the call. If it is not a thumb
713 target, we insert glue. */
714 if (ELF_ST_TYPE (h
->type
) != STT_ARM_TFUNC
)
715 record_thumb_to_arm_glue (link_info
, h
);
727 if (free_relocs
!= NULL
)
729 if (free_contents
!= NULL
)
730 free (free_contents
);
731 if (free_extsyms
!= NULL
)
737 /* The thumb form of a long branch is a bit finicky, because the offset
738 encoding is split over two fields, each in it's own instruction. They
739 can occur in any order. So given a thumb form of long branch, and an
740 offset, insert the offset into the thumb branch and return finished
743 It takes two thumb instructions to encode the target address. Each has
744 11 bits to invest. The upper 11 bits are stored in one (identifed by
745 H-0.. see below), the lower 11 bits are stored in the other (identified
748 Combine together and shifted left by 1 (it's a half word address) and
752 H-0, upper address-0 = 000
754 H-1, lower address-0 = 800
756 They can be ordered either way, but the arm tools I've seen always put
757 the lower one first. It probably doesn't matter. krk@cygnus.com
759 XXX: Actually the order does matter. The second instruction (H-1)
760 moves the computed address into the PC, so it must be the second one
761 in the sequence. The problem, however is that whilst little endian code
762 stores the instructions in HI then LOW order, big endian code does the
763 reverse. nickc@cygnus.com. */
765 #define LOW_HI_ORDER 0xF800F000
766 #define HI_LOW_ORDER 0xF000F800
769 insert_thumb_branch (br_insn
, rel_off
)
773 unsigned int low_bits
;
774 unsigned int high_bits
;
776 BFD_ASSERT ((rel_off
& 1) != 1);
778 rel_off
>>= 1; /* Half word aligned address. */
779 low_bits
= rel_off
& 0x000007FF; /* The bottom 11 bits. */
780 high_bits
= (rel_off
>> 11) & 0x000007FF; /* The top 11 bits. */
782 if ((br_insn
& LOW_HI_ORDER
) == LOW_HI_ORDER
)
783 br_insn
= LOW_HI_ORDER
| (low_bits
<< 16) | high_bits
;
784 else if ((br_insn
& HI_LOW_ORDER
) == HI_LOW_ORDER
)
785 br_insn
= HI_LOW_ORDER
| (high_bits
<< 16) | low_bits
;
787 /* FIXME: abort is probably not the right call. krk@cygnus.com */
788 abort (); /* error - not a valid branch instruction form. */
793 /* Thumb code calling an ARM function. */
796 elf32_thumb_to_arm_stub (info
, name
, input_bfd
, output_bfd
, input_section
,
797 hit_data
, sym_sec
, offset
, addend
, val
)
798 struct bfd_link_info
* info
;
802 asection
* input_section
;
806 bfd_signed_vma addend
;
811 unsigned long int tmp
;
813 struct elf_link_hash_entry
* myh
;
814 struct elf32_arm_link_hash_table
* globals
;
816 myh
= find_thumb_glue (info
, name
, input_bfd
);
820 globals
= elf32_arm_hash_table (info
);
822 BFD_ASSERT (globals
!= NULL
);
823 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
825 my_offset
= myh
->root
.u
.def
.value
;
827 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
828 THUMB2ARM_GLUE_SECTION_NAME
);
830 BFD_ASSERT (s
!= NULL
);
831 BFD_ASSERT (s
->contents
!= NULL
);
832 BFD_ASSERT (s
->output_section
!= NULL
);
834 if ((my_offset
& 0x01) == 0x01)
837 && sym_sec
->owner
!= NULL
838 && !INTERWORK_FLAG (sym_sec
->owner
))
841 (_("%s(%s): warning: interworking not enabled."),
842 bfd_get_filename (sym_sec
->owner
), name
);
844 (_(" first occurrence: %s: thumb call to arm"),
845 bfd_get_filename (input_bfd
));
851 myh
->root
.u
.def
.value
= my_offset
;
853 bfd_put_16 (output_bfd
, t2a1_bx_pc_insn
,
854 s
->contents
+ my_offset
);
856 bfd_put_16 (output_bfd
, t2a2_noop_insn
,
857 s
->contents
+ my_offset
+ 2);
860 /* Address of destination of the stub. */
861 ((bfd_signed_vma
) val
)
863 /* Offset from the start of the current section to the start of the stubs. */
865 /* Offset of the start of this stub from the start of the stubs. */
867 /* Address of the start of the current section. */
868 + s
->output_section
->vma
)
869 /* The branch instruction is 4 bytes into the stub. */
871 /* ARM branches work from the pc of the instruction + 8. */
874 bfd_put_32 (output_bfd
,
875 t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
876 s
->contents
+ my_offset
+ 4);
879 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
881 /* Now go back and fix up the original BL insn to point
886 - (input_section
->output_offset
890 tmp
= bfd_get_32 (input_bfd
, hit_data
891 - input_section
->vma
);
893 bfd_put_32 (output_bfd
,
894 insert_thumb_branch (tmp
, ret_offset
),
895 hit_data
- input_section
->vma
);
900 /* Arm code calling a Thumb function. */
903 elf32_arm_to_thumb_stub (info
, name
, input_bfd
, output_bfd
, input_section
,
904 hit_data
, sym_sec
, offset
, addend
, val
)
905 struct bfd_link_info
* info
;
909 asection
* input_section
;
913 bfd_signed_vma addend
;
916 unsigned long int tmp
;
920 struct elf_link_hash_entry
* myh
;
921 struct elf32_arm_link_hash_table
* globals
;
923 myh
= find_arm_glue (info
, name
, input_bfd
);
927 globals
= elf32_arm_hash_table (info
);
929 BFD_ASSERT (globals
!= NULL
);
930 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
932 my_offset
= myh
->root
.u
.def
.value
;
933 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
934 ARM2THUMB_GLUE_SECTION_NAME
);
935 BFD_ASSERT (s
!= NULL
);
936 BFD_ASSERT (s
->contents
!= NULL
);
937 BFD_ASSERT (s
->output_section
!= NULL
);
939 if ((my_offset
& 0x01) == 0x01)
942 && sym_sec
->owner
!= NULL
943 && !INTERWORK_FLAG (sym_sec
->owner
))
946 (_("%s(%s): warning: interworking not enabled."),
947 bfd_get_filename (sym_sec
->owner
), name
);
949 (_(" first occurrence: %s: arm call to thumb"),
950 bfd_get_filename (input_bfd
));
954 myh
->root
.u
.def
.value
= my_offset
;
956 bfd_put_32 (output_bfd
, a2t1_ldr_insn
,
957 s
->contents
+ my_offset
);
959 bfd_put_32 (output_bfd
, a2t2_bx_r12_insn
,
960 s
->contents
+ my_offset
+ 4);
962 /* It's a thumb address. Add the low order bit. */
963 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
964 s
->contents
+ my_offset
+ 8);
967 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
969 tmp
= bfd_get_32 (input_bfd
, hit_data
);
970 tmp
= tmp
& 0xFF000000;
972 /* Somehow these are both 4 too far, so subtract 8. */
973 ret_offset
= s
->output_offset
975 + s
->output_section
->vma
976 - (input_section
->output_offset
977 + input_section
->output_section
->vma
981 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
983 bfd_put_32 (output_bfd
, tmp
, hit_data
984 - input_section
->vma
);
989 /* Perform a relocation as part of a final link. */
991 static bfd_reloc_status_type
992 elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
993 input_section
, contents
, rel
, value
,
994 info
, sym_sec
, sym_name
, sym_flags
, h
)
995 reloc_howto_type
* howto
;
998 asection
* input_section
;
1000 Elf_Internal_Rela
* rel
;
1002 struct bfd_link_info
* info
;
1004 const char * sym_name
;
1005 unsigned char sym_flags
;
1006 struct elf_link_hash_entry
* h
;
1008 unsigned long r_type
= howto
->type
;
1009 unsigned long r_symndx
;
1010 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
1011 bfd
* dynobj
= NULL
;
1012 Elf_Internal_Shdr
* symtab_hdr
;
1013 struct elf_link_hash_entry
** sym_hashes
;
1014 bfd_vma
* local_got_offsets
;
1015 asection
* sgot
= NULL
;
1016 asection
* splt
= NULL
;
1017 asection
* sreloc
= NULL
;
1019 bfd_signed_vma signed_addend
;
1020 struct elf32_arm_link_hash_table
* globals
;
1022 /* If the start address has been set, then set the EF_ARM_HASENTRY
1023 flag. Setting this more than once is redundant, but the cost is
1024 not too high, and it keeps the code simple.
1026 The test is done here, rather than somewhere else, because the
1027 start address is only set just before the final link commences.
1029 Note - if the user deliberately sets a start address of 0, the
1030 flag will not be set. */
1031 if (bfd_get_start_address (output_bfd
) != 0)
1032 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
1034 globals
= elf32_arm_hash_table (info
);
1036 dynobj
= elf_hash_table (info
)->dynobj
;
1039 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1040 splt
= bfd_get_section_by_name (dynobj
, ".plt");
1042 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
1043 sym_hashes
= elf_sym_hashes (input_bfd
);
1044 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1045 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1048 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
1050 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1053 signed_addend
&= ~ howto
->src_mask
;
1054 signed_addend
|= addend
;
1057 signed_addend
= addend
;
1059 addend
= signed_addend
= rel
->r_addend
;
1065 return bfd_reloc_ok
;
1073 /* When generating a shared object, these relocations are copied
1074 into the output file to be resolved at run time. */
1076 && (r_type
!= R_ARM_PC24
1079 && (! info
->symbolic
1080 || (h
->elf_link_hash_flags
1081 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1083 Elf_Internal_Rel outrel
;
1084 boolean skip
, relocate
;
1090 name
= (bfd_elf_string_from_elf_section
1092 elf_elfheader (input_bfd
)->e_shstrndx
,
1093 elf_section_data (input_section
)->rel_hdr
.sh_name
));
1095 return bfd_reloc_notsupported
;
1097 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
1098 && strcmp (bfd_get_section_name (input_bfd
,
1102 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1103 BFD_ASSERT (sreloc
!= NULL
);
1108 if (elf_section_data (input_section
)->stab_info
== NULL
)
1109 outrel
.r_offset
= rel
->r_offset
;
1114 off
= (_bfd_stab_section_offset
1115 (output_bfd
, &elf_hash_table (info
)->stab_info
,
1117 & elf_section_data (input_section
)->stab_info
,
1119 if (off
== (bfd_vma
) -1)
1121 outrel
.r_offset
= off
;
1124 outrel
.r_offset
+= (input_section
->output_section
->vma
1125 + input_section
->output_offset
);
1129 memset (&outrel
, 0, sizeof outrel
);
1132 else if (r_type
== R_ARM_PC24
)
1134 BFD_ASSERT (h
!= NULL
&& h
->dynindx
!= -1);
1135 if ((input_section
->flags
& SEC_ALLOC
) != 0)
1139 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_PC24
);
1144 || ((info
->symbolic
|| h
->dynindx
== -1)
1145 && (h
->elf_link_hash_flags
1146 & ELF_LINK_HASH_DEF_REGULAR
) != 0))
1149 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1153 BFD_ASSERT (h
->dynindx
!= -1);
1154 if ((input_section
->flags
& SEC_ALLOC
) != 0)
1158 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_ABS32
);
1162 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1163 (((Elf32_External_Rel
*)
1165 + sreloc
->reloc_count
));
1166 ++sreloc
->reloc_count
;
1168 /* If this reloc is against an external symbol, we do not want to
1169 fiddle with the addend. Otherwise, we need to include the symbol
1170 value so that it becomes an addend for the dynamic reloc. */
1172 return bfd_reloc_ok
;
1174 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1175 contents
, rel
->r_offset
, value
,
1178 else switch (r_type
)
1181 case R_ARM_XPC25
: /* Arm BLX instruction. */
1183 case R_ARM_PC24
: /* Arm B/BL instruction */
1185 if (r_type
== R_ARM_XPC25
)
1187 /* Check for Arm calling Arm function. */
1188 /* FIXME: Should we translate the instruction into a BL
1189 instruction instead ? */
1190 if (sym_flags
!= STT_ARM_TFUNC
)
1191 _bfd_error_handler (_("\
1192 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1193 bfd_get_filename (input_bfd
),
1194 h
? h
->root
.root
.string
: "(local)");
1199 /* Check for Arm calling Thumb function. */
1200 if (sym_flags
== STT_ARM_TFUNC
)
1202 elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
, output_bfd
,
1203 input_section
, hit_data
, sym_sec
, rel
->r_offset
,
1204 signed_addend
, value
);
1205 return bfd_reloc_ok
;
1209 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1210 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0)
1212 /* The old way of doing things. Trearing the addend as a
1213 byte sized field and adding in the pipeline offset. */
1214 value
-= (input_section
->output_section
->vma
1215 + input_section
->output_offset
);
1216 value
-= rel
->r_offset
;
1219 if (! globals
->no_pipeline_knowledge
)
1224 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1226 S is the address of the symbol in the relocation.
1227 P is address of the instruction being relocated.
1228 A is the addend (extracted from the instruction) in bytes.
1230 S is held in 'value'.
1231 P is the base address of the section containing the instruction
1232 plus the offset of the reloc into that section, ie:
1233 (input_section->output_section->vma +
1234 input_section->output_offset +
1236 A is the addend, converted into bytes, ie:
1239 Note: None of these operations have knowledge of the pipeline
1240 size of the processor, thus it is up to the assembler to encode
1241 this information into the addend. */
1242 value
-= (input_section
->output_section
->vma
1243 + input_section
->output_offset
);
1244 value
-= rel
->r_offset
;
1245 value
+= (signed_addend
<< howto
->size
);
1247 /* Previous versions of this code also used to add in the pipeline
1248 offset here. This is wrong because the linker is not supposed
1249 to know about such things, and one day it might change. In order
1250 to support old binaries that need the old behaviour however, so
1251 we attempt to detect which ABI was used to create the reloc. */
1252 if (! globals
->no_pipeline_knowledge
)
1254 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form */
1256 i_ehdrp
= elf_elfheader (input_bfd
);
1258 if (i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1263 signed_addend
= value
;
1264 signed_addend
>>= howto
->rightshift
;
1266 /* It is not an error for an undefined weak reference to be
1267 out of range. Any program that branches to such a symbol
1268 is going to crash anyway, so there is no point worrying
1269 about getting the destination exactly right. */
1270 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
1272 /* Perform a signed range check. */
1273 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
1274 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
1275 return bfd_reloc_overflow
;
1279 /* If necessary set the H bit in the BLX instruction. */
1280 if (r_type
== R_ARM_XPC25
&& ((value
& 2) == 2))
1281 value
= (signed_addend
& howto
->dst_mask
)
1282 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
))
1286 value
= (signed_addend
& howto
->dst_mask
)
1287 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
1292 if (sym_flags
== STT_ARM_TFUNC
)
1297 value
-= (input_section
->output_section
->vma
1298 + input_section
->output_offset
+ rel
->r_offset
);
1303 bfd_put_32 (input_bfd
, value
, hit_data
);
1304 return bfd_reloc_ok
;
1308 if ((long) value
> 0x7f || (long) value
< -0x80)
1309 return bfd_reloc_overflow
;
1311 bfd_put_8 (input_bfd
, value
, hit_data
);
1312 return bfd_reloc_ok
;
1317 if ((long) value
> 0x7fff || (long) value
< -0x8000)
1318 return bfd_reloc_overflow
;
1320 bfd_put_16 (input_bfd
, value
, hit_data
);
1321 return bfd_reloc_ok
;
1324 /* Support ldr and str instruction for the arm */
1325 /* Also thumb b (unconditional branch). ??? Really? */
1328 if ((long) value
> 0x7ff || (long) value
< -0x800)
1329 return bfd_reloc_overflow
;
1331 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0xfffff000);
1332 bfd_put_32 (input_bfd
, value
, hit_data
);
1333 return bfd_reloc_ok
;
1335 case R_ARM_THM_ABS5
:
1336 /* Support ldr and str instructions for the thumb. */
1338 /* Need to refetch addend. */
1339 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
1340 /* ??? Need to determine shift amount from operand size. */
1341 addend
>>= howto
->rightshift
;
1345 /* ??? Isn't value unsigned? */
1346 if ((long) value
> 0x1f || (long) value
< -0x10)
1347 return bfd_reloc_overflow
;
1349 /* ??? Value needs to be properly shifted into place first. */
1350 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
1351 bfd_put_16 (input_bfd
, value
, hit_data
);
1352 return bfd_reloc_ok
;
1355 case R_ARM_THM_XPC22
:
1357 case R_ARM_THM_PC22
:
1358 /* Thumb BL (branch long instruction). */
1361 boolean overflow
= false;
1362 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
1363 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
1364 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
1365 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
1367 bfd_signed_vma signed_check
;
1370 /* Need to refetch the addend and squish the two 11 bit pieces
1373 bfd_vma upper
= upper_insn
& 0x7ff;
1374 bfd_vma lower
= lower_insn
& 0x7ff;
1375 upper
= (upper
^ 0x400) - 0x400; /* Sign extend. */
1376 addend
= (upper
<< 12) | (lower
<< 1);
1377 signed_addend
= addend
;
1381 if (r_type
== R_ARM_THM_XPC22
)
1383 /* Check for Thumb to Thumb call. */
1384 /* FIXME: Should we translate the instruction into a BL
1385 instruction instead ? */
1386 if (sym_flags
== STT_ARM_TFUNC
)
1387 _bfd_error_handler (_("\
1388 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1389 bfd_get_filename (input_bfd
),
1390 h
? h
->root
.root
.string
: "(local)");
1395 /* If it is not a call to Thumb, assume call to Arm.
1396 If it is a call relative to a section name, then it is not a
1397 function call at all, but rather a long jump. */
1398 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
)
1400 if (elf32_thumb_to_arm_stub
1401 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
1402 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
))
1403 return bfd_reloc_ok
;
1405 return bfd_reloc_dangerous
;
1409 relocation
= value
+ signed_addend
;
1411 relocation
-= (input_section
->output_section
->vma
1412 + input_section
->output_offset
1415 if (! globals
->no_pipeline_knowledge
)
1417 Elf_Internal_Ehdr
* i_ehdrp
; /* Elf file header, internal form. */
1419 i_ehdrp
= elf_elfheader (input_bfd
);
1421 /* Previous versions of this code also used to add in the pipline
1422 offset here. This is wrong because the linker is not supposed
1423 to know about such things, and one day it might change. In order
1424 to support old binaries that need the old behaviour however, so
1425 we attempt to detect which ABI was used to create the reloc. */
1426 if ( strcmp (bfd_get_target (input_bfd
), "elf32-littlearm-oabi") == 0
1427 || strcmp (bfd_get_target (input_bfd
), "elf32-bigarm-oabi") == 0
1428 || i_ehdrp
->e_ident
[EI_OSABI
] == 0)
1432 check
= relocation
>> howto
->rightshift
;
1434 /* If this is a signed value, the rightshift just dropped
1435 leading 1 bits (assuming twos complement). */
1436 if ((bfd_signed_vma
) relocation
>= 0)
1437 signed_check
= check
;
1439 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
1441 /* Assumes two's complement. */
1442 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
1445 /* Put RELOCATION back into the insn. */
1446 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 12) & 0x7ff);
1447 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x7ff) | ((relocation
>> 1) & 0x7ff);
1450 if (r_type
== R_ARM_THM_XPC22
1451 && ((lower_insn
& 0x1800) == 0x0800))
1452 /* Remove bit zero of the adjusted offset. Bit zero can only be
1453 set if the upper insn is at a half-word boundary, since the
1454 destination address, an ARM instruction, must always be on a
1455 word boundary. The semantics of the BLX (1) instruction, however,
1456 are that bit zero in the offset must always be zero, and the
1457 corresponding bit one in the target address will be set from bit
1458 one of the source address. */
1461 /* Put the relocated value back in the object file: */
1462 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
1463 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
1465 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
1469 case R_ARM_GNU_VTINHERIT
:
1470 case R_ARM_GNU_VTENTRY
:
1471 return bfd_reloc_ok
;
1474 return bfd_reloc_notsupported
;
1476 case R_ARM_GLOB_DAT
:
1477 return bfd_reloc_notsupported
;
1479 case R_ARM_JUMP_SLOT
:
1480 return bfd_reloc_notsupported
;
1482 case R_ARM_RELATIVE
:
1483 return bfd_reloc_notsupported
;
1486 /* Relocation is relative to the start of the
1487 global offset table. */
1489 BFD_ASSERT (sgot
!= NULL
);
1491 return bfd_reloc_notsupported
;
1493 /* Note that sgot->output_offset is not involved in this
1494 calculation. We always want the start of .got. If we
1495 define _GLOBAL_OFFSET_TABLE in a different way, as is
1496 permitted by the ABI, we might have to change this
1498 value
-= sgot
->output_section
->vma
;
1499 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1500 contents
, rel
->r_offset
, value
,
1504 /* Use global offset table as symbol value. */
1505 BFD_ASSERT (sgot
!= NULL
);
1508 return bfd_reloc_notsupported
;
1510 value
= sgot
->output_section
->vma
;
1511 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1512 contents
, rel
->r_offset
, value
,
1516 /* Relocation is to the entry for this symbol in the
1517 global offset table. */
1519 return bfd_reloc_notsupported
;
1525 off
= h
->got
.offset
;
1526 BFD_ASSERT (off
!= (bfd_vma
) -1);
1528 if (!elf_hash_table (info
)->dynamic_sections_created
||
1529 (info
->shared
&& (info
->symbolic
|| h
->dynindx
== -1)
1530 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1532 /* This is actually a static link, or it is a -Bsymbolic link
1533 and the symbol is defined locally. We must initialize this
1534 entry in the global offset table. Since the offset must
1535 always be a multiple of 4, we use the least significant bit
1536 to record whether we have initialized it already.
1538 When doing a dynamic link, we create a .rel.got relocation
1539 entry to initialize the value. This is done in the
1540 finish_dynamic_symbol routine. */
1545 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1550 value
= sgot
->output_offset
+ off
;
1556 BFD_ASSERT (local_got_offsets
!= NULL
&&
1557 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1559 off
= local_got_offsets
[r_symndx
];
1561 /* The offset must always be a multiple of 4. We use the
1562 least significant bit to record whether we have already
1563 generated the necessary reloc. */
1568 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
1573 Elf_Internal_Rel outrel
;
1575 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
1576 BFD_ASSERT (srelgot
!= NULL
);
1578 outrel
.r_offset
= (sgot
->output_section
->vma
1579 + sgot
->output_offset
1581 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
1582 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
1583 (((Elf32_External_Rel
*)
1585 + srelgot
->reloc_count
));
1586 ++srelgot
->reloc_count
;
1589 local_got_offsets
[r_symndx
] |= 1;
1592 value
= sgot
->output_offset
+ off
;
1595 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1596 contents
, rel
->r_offset
, value
,
1600 /* Relocation is to the entry for this symbol in the
1601 procedure linkage table. */
1603 /* Resolve a PLT32 reloc against a local symbol directly,
1604 without using the procedure linkage table. */
1606 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1607 contents
, rel
->r_offset
, value
,
1610 if (h
->plt
.offset
== (bfd_vma
) -1)
1611 /* We didn't make a PLT entry for this symbol. This
1612 happens when statically linking PIC code, or when
1613 using -Bsymbolic. */
1614 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1615 contents
, rel
->r_offset
, value
,
1618 BFD_ASSERT(splt
!= NULL
);
1620 return bfd_reloc_notsupported
;
1622 value
= (splt
->output_section
->vma
1623 + splt
->output_offset
1625 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
1626 contents
, rel
->r_offset
, value
,
1630 return bfd_reloc_notsupported
;
1632 case R_ARM_AMP_VCALL9
:
1633 return bfd_reloc_notsupported
;
1635 case R_ARM_RSBREL32
:
1636 return bfd_reloc_notsupported
;
1638 case R_ARM_THM_RPC22
:
1639 return bfd_reloc_notsupported
;
1642 return bfd_reloc_notsupported
;
1645 return bfd_reloc_notsupported
;
1648 return bfd_reloc_notsupported
;
1651 return bfd_reloc_notsupported
;
1654 return bfd_reloc_notsupported
;
1659 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1661 arm_add_to_rel (abfd
, address
, howto
, increment
)
1664 reloc_howto_type
* howto
;
1665 bfd_signed_vma increment
;
1667 bfd_signed_vma addend
;
1669 if (howto
->type
== R_ARM_THM_PC22
)
1671 int upper_insn
, lower_insn
;
1674 upper_insn
= bfd_get_16 (abfd
, address
);
1675 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
1676 upper
= upper_insn
& 0x7ff;
1677 lower
= lower_insn
& 0x7ff;
1679 addend
= (upper
<< 12) | (lower
<< 1);
1680 addend
+= increment
;
1683 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
1684 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
1686 bfd_put_16 (abfd
, upper_insn
, address
);
1687 bfd_put_16 (abfd
, lower_insn
, address
+ 2);
1693 contents
= bfd_get_32 (abfd
, address
);
1695 /* Get the (signed) value from the instruction. */
1696 addend
= contents
& howto
->src_mask
;
1697 if (addend
& ((howto
->src_mask
+ 1) >> 1))
1699 bfd_signed_vma mask
;
1702 mask
&= ~ howto
->src_mask
;
1706 /* Add in the increment, (which is a byte value). */
1707 switch (howto
->type
)
1710 addend
+= increment
;
1714 addend
<<= howto
->size
;
1715 addend
+= increment
;
1717 /* Should we check for overflow here ? */
1719 /* Drop any undesired bits. */
1720 addend
>>= howto
->rightshift
;
1724 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
1726 bfd_put_32 (abfd
, contents
, address
);
1729 #endif /* USE_REL */
1731 /* Relocate an ARM ELF section. */
1733 elf32_arm_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1734 contents
, relocs
, local_syms
, local_sections
)
1736 struct bfd_link_info
* info
;
1738 asection
* input_section
;
1739 bfd_byte
* contents
;
1740 Elf_Internal_Rela
* relocs
;
1741 Elf_Internal_Sym
* local_syms
;
1742 asection
** local_sections
;
1744 Elf_Internal_Shdr
* symtab_hdr
;
1745 struct elf_link_hash_entry
** sym_hashes
;
1746 Elf_Internal_Rela
* rel
;
1747 Elf_Internal_Rela
* relend
;
1750 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
1751 sym_hashes
= elf_sym_hashes (input_bfd
);
1754 relend
= relocs
+ input_section
->reloc_count
;
1755 for (; rel
< relend
; rel
++)
1758 reloc_howto_type
* howto
;
1759 unsigned long r_symndx
;
1760 Elf_Internal_Sym
* sym
;
1762 struct elf_link_hash_entry
* h
;
1764 bfd_reloc_status_type r
;
1767 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1768 r_type
= ELF32_R_TYPE (rel
->r_info
);
1770 if ( r_type
== R_ARM_GNU_VTENTRY
1771 || r_type
== R_ARM_GNU_VTINHERIT
)
1774 elf32_arm_info_to_howto (input_bfd
, & bfd_reloc
, rel
);
1775 howto
= bfd_reloc
.howto
;
1777 if (info
->relocateable
)
1779 /* This is a relocateable link. We don't have to change
1780 anything, unless the reloc is against a section symbol,
1781 in which case we have to adjust according to where the
1782 section symbol winds up in the output section. */
1783 if (r_symndx
< symtab_hdr
->sh_info
)
1785 sym
= local_syms
+ r_symndx
;
1786 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1788 sec
= local_sections
[r_symndx
];
1790 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
1791 howto
, sec
->output_offset
+ sym
->st_value
);
1793 rel
->r_addend
+= (sec
->output_offset
+ sym
->st_value
)
1794 >> howto
->rightshift
;
1802 /* This is a final link. */
1807 if (r_symndx
< symtab_hdr
->sh_info
)
1809 sym
= local_syms
+ r_symndx
;
1810 sec
= local_sections
[r_symndx
];
1811 relocation
= (sec
->output_section
->vma
1812 + sec
->output_offset
1817 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1819 while ( h
->root
.type
== bfd_link_hash_indirect
1820 || h
->root
.type
== bfd_link_hash_warning
)
1821 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1823 if ( h
->root
.type
== bfd_link_hash_defined
1824 || h
->root
.type
== bfd_link_hash_defweak
)
1826 int relocation_needed
= 1;
1828 sec
= h
->root
.u
.def
.section
;
1830 /* In these cases, we don't need the relocation value.
1831 We check specially because in some obscure cases
1832 sec->output_section will be NULL. */
1839 (!info
->symbolic
&& h
->dynindx
!= -1)
1840 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1842 && ((input_section
->flags
& SEC_ALLOC
) != 0
1843 /* DWARF will emit R_ARM_ABS32 relocations in its
1844 sections against symbols defined externally
1845 in shared libraries. We can't do anything
1847 || ((input_section
->flags
& SEC_DEBUGGING
) != 0
1848 && (h
->elf_link_hash_flags
1849 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0))
1851 relocation_needed
= 0;
1855 relocation_needed
= 0;
1859 if (elf_hash_table(info
)->dynamic_sections_created
1861 || (!info
->symbolic
&& h
->dynindx
!= -1)
1862 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1865 relocation_needed
= 0;
1869 if (h
->plt
.offset
!= (bfd_vma
)-1)
1870 relocation_needed
= 0;
1874 if (sec
->output_section
== NULL
)
1876 (*_bfd_error_handler
)
1877 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1878 bfd_get_filename (input_bfd
), h
->root
.root
.string
,
1879 bfd_get_section_name (input_bfd
, input_section
));
1880 relocation_needed
= 0;
1884 if (relocation_needed
)
1885 relocation
= h
->root
.u
.def
.value
1886 + sec
->output_section
->vma
1887 + sec
->output_offset
;
1891 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1893 else if (info
->shared
&& !info
->symbolic
1894 && !info
->no_undefined
1895 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
1899 if (!((*info
->callbacks
->undefined_symbol
)
1900 (info
, h
->root
.root
.string
, input_bfd
,
1901 input_section
, rel
->r_offset
,
1902 (!info
->shared
|| info
->no_undefined
1903 || ELF_ST_VISIBILITY (h
->other
)))))
1910 name
= h
->root
.root
.string
;
1913 name
= (bfd_elf_string_from_elf_section
1914 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
1915 if (name
== NULL
|| *name
== '\0')
1916 name
= bfd_section_name (input_bfd
, sec
);
1919 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
1920 input_section
, contents
, rel
,
1921 relocation
, info
, sec
, name
,
1922 (h
? ELF_ST_TYPE (h
->type
) :
1923 ELF_ST_TYPE (sym
->st_info
)), h
);
1925 if (r
!= bfd_reloc_ok
)
1927 const char * msg
= (const char *) 0;
1931 case bfd_reloc_overflow
:
1932 /* If the overflowing reloc was to an undefined symbol,
1933 we have already printed one error message and there
1934 is no point complaining again. */
1936 h
->root
.type
!= bfd_link_hash_undefined
)
1937 && (!((*info
->callbacks
->reloc_overflow
)
1938 (info
, name
, howto
->name
, (bfd_vma
) 0,
1939 input_bfd
, input_section
, rel
->r_offset
))))
1943 case bfd_reloc_undefined
:
1944 if (!((*info
->callbacks
->undefined_symbol
)
1945 (info
, name
, input_bfd
, input_section
,
1946 rel
->r_offset
, true)))
1950 case bfd_reloc_outofrange
:
1951 msg
= _("internal error: out of range error");
1954 case bfd_reloc_notsupported
:
1955 msg
= _("internal error: unsupported relocation error");
1958 case bfd_reloc_dangerous
:
1959 msg
= _("internal error: dangerous error");
1963 msg
= _("internal error: unknown error");
1967 if (!((*info
->callbacks
->warning
)
1968 (info
, msg
, name
, input_bfd
, input_section
,
1979 /* Function to keep ARM specific flags in the ELF header. */
1981 elf32_arm_set_private_flags (abfd
, flags
)
1985 if (elf_flags_init (abfd
)
1986 && elf_elfheader (abfd
)->e_flags
!= flags
)
1988 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
1990 if (flags
& EF_ARM_INTERWORK
)
1991 _bfd_error_handler (_("\
1992 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1993 bfd_get_filename (abfd
));
1995 _bfd_error_handler (_("\
1996 Warning: Clearing the interwork flag of %s due to outside request"),
1997 bfd_get_filename (abfd
));
2002 elf_elfheader (abfd
)->e_flags
= flags
;
2003 elf_flags_init (abfd
) = true;
2009 /* Copy backend specific data from one object module to another. */
2012 elf32_arm_copy_private_bfd_data (ibfd
, obfd
)
2019 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2020 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2023 in_flags
= elf_elfheader (ibfd
)->e_flags
;
2024 out_flags
= elf_elfheader (obfd
)->e_flags
;
2026 if (elf_flags_init (obfd
)
2027 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
2028 && in_flags
!= out_flags
)
2030 /* Cannot mix APCS26 and APCS32 code. */
2031 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
2034 /* Cannot mix float APCS and non-float APCS code. */
2035 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
2038 /* If the src and dest have different interworking flags
2039 then turn off the interworking bit. */
2040 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
2042 if (out_flags
& EF_ARM_INTERWORK
)
2043 _bfd_error_handler (_("\
2044 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2045 bfd_get_filename (obfd
), bfd_get_filename (ibfd
));
2047 in_flags
&= ~EF_ARM_INTERWORK
;
2050 /* Likewise for PIC, though don't warn for this case. */
2051 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
2052 in_flags
&= ~EF_ARM_PIC
;
2055 elf_elfheader (obfd
)->e_flags
= in_flags
;
2056 elf_flags_init (obfd
) = true;
2061 /* Merge backend specific data from an object file to the output
2062 object file when linking. */
2065 elf32_arm_merge_private_bfd_data (ibfd
, obfd
)
2071 boolean flags_compatible
= true;
2072 boolean null_input_bfd
= true;
2075 /* Check if we have the same endianess. */
2076 if (_bfd_generic_verify_endian_match (ibfd
, obfd
) == false)
2079 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2080 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2083 /* The input BFD must have had its flags initialised. */
2084 /* The following seems bogus to me -- The flags are initialized in
2085 the assembler but I don't think an elf_flags_init field is
2086 written into the object. */
2087 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2089 in_flags
= elf_elfheader (ibfd
)->e_flags
;
2090 out_flags
= elf_elfheader (obfd
)->e_flags
;
2092 if (!elf_flags_init (obfd
))
2094 /* If the input is the default architecture and had the default
2095 flags then do not bother setting the flags for the output
2096 architecture, instead allow future merges to do this. If no
2097 future merges ever set these flags then they will retain their
2098 uninitialised values, which surprise surprise, correspond
2099 to the default values. */
2100 if (bfd_get_arch_info (ibfd
)->the_default
2101 && elf_elfheader (ibfd
)->e_flags
== 0)
2104 elf_flags_init (obfd
) = true;
2105 elf_elfheader (obfd
)->e_flags
= in_flags
;
2107 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2108 && bfd_get_arch_info (obfd
)->the_default
)
2109 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
2114 /* Identical flags must be compatible. */
2115 if (in_flags
== out_flags
)
2118 /* Check to see if the input BFD actually contains any sections.
2119 If not, its flags may not have been initialised either, but it cannot
2120 actually cause any incompatibility. */
2121 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2123 /* Ignore synthetic glue sections. */
2124 if (strcmp (sec
->name
, ".glue_7")
2125 && strcmp (sec
->name
, ".glue_7t"))
2127 null_input_bfd
= false;
2134 /* Complain about various flag mismatches. */
2135 if (EF_ARM_EABI_VERSION (in_flags
) != EF_ARM_EABI_VERSION (out_flags
))
2137 _bfd_error_handler (_("\
2138 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2139 bfd_get_filename (ibfd
),
2140 (in_flags
& EF_ARM_EABIMASK
) >> 24,
2141 bfd_get_filename (obfd
),
2142 (out_flags
& EF_ARM_EABIMASK
) >> 24);
2146 /* Not sure what needs to be checked for EABI versions >= 1. */
2147 if (EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
2149 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
2151 _bfd_error_handler (_("\
2152 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2153 bfd_get_filename (ibfd
),
2154 in_flags
& EF_ARM_APCS_26
? 26 : 32,
2155 bfd_get_filename (obfd
),
2156 out_flags
& EF_ARM_APCS_26
? 26 : 32);
2157 flags_compatible
= false;
2160 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
2162 _bfd_error_handler (_("\
2163 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2164 bfd_get_filename (ibfd
),
2165 in_flags
& EF_ARM_APCS_FLOAT
? _("float") : _("integer"),
2166 bfd_get_filename (obfd
),
2167 out_flags
& EF_ARM_APCS_26
? _("float") : _("integer"));
2168 flags_compatible
= false;
2171 #ifdef EF_ARM_SOFT_FLOAT
2172 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
2174 _bfd_error_handler (_ ("\
2175 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2176 bfd_get_filename (ibfd
),
2177 in_flags
& EF_ARM_SOFT_FLOAT
? _("soft") : _("hard"),
2178 bfd_get_filename (obfd
),
2179 out_flags
& EF_ARM_SOFT_FLOAT
? _("soft") : _("hard"));
2180 flags_compatible
= false;
2184 /* Interworking mismatch is only a warning. */
2185 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
2186 _bfd_error_handler (_("\
2187 Warning: %s %s interworking, whereas %s %s"),
2188 bfd_get_filename (ibfd
),
2189 in_flags
& EF_ARM_INTERWORK
? _("supports") : _("does not support"),
2190 bfd_get_filename (obfd
),
2191 out_flags
& EF_ARM_INTERWORK
? _("does") : _("does not"));
2194 return flags_compatible
;
2197 /* Display the flags field. */
2200 elf32_arm_print_private_bfd_data (abfd
, ptr
)
2204 FILE * file
= (FILE *) ptr
;
2205 unsigned long flags
;
2207 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
2209 /* Print normal ELF private data. */
2210 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
2212 flags
= elf_elfheader (abfd
)->e_flags
;
2213 /* Ignore init flag - it may not be set, despite the flags field
2214 containing valid data. */
2216 /* xgettext:c-format */
2217 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
2219 switch (EF_ARM_EABI_VERSION (flags
))
2221 case EF_ARM_EABI_UNKNOWN
:
2222 /* The following flag bits are GNU extenstions and not part of the
2223 official ARM ELF extended ABI. Hence they are only decoded if
2224 the EABI version is not set. */
2225 if (flags
& EF_ARM_INTERWORK
)
2226 fprintf (file
, _(" [interworking enabled]"));
2228 if (flags
& EF_ARM_APCS_26
)
2229 fprintf (file
, _(" [APCS-26]"));
2231 fprintf (file
, _(" [APCS-32]"));
2233 if (flags
& EF_ARM_APCS_FLOAT
)
2234 fprintf (file
, _(" [floats passed in float registers]"));
2236 if (flags
& EF_ARM_PIC
)
2237 fprintf (file
, _(" [position independent]"));
2239 if (flags
& EF_ARM_NEW_ABI
)
2240 fprintf (file
, _(" [new ABI]"));
2242 if (flags
& EF_ARM_OLD_ABI
)
2243 fprintf (file
, _(" [old ABI]"));
2245 if (flags
& EF_ARM_SOFT_FLOAT
)
2246 fprintf (file
, _(" [software FP]"));
2248 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
| EF_ARM_PIC
2249 | EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
| EF_ARM_SOFT_FLOAT
);
2252 case EF_ARM_EABI_VER1
:
2253 fprintf (file
, _(" [Version1 EABI]"));
2255 if (flags
& EF_ARM_SYMSARESORTED
)
2256 fprintf (file
, _(" [sorted symbol table]"));
2258 fprintf (file
, _(" [unsorted symbol table]"));
2260 flags
&= ~ EF_ARM_SYMSARESORTED
;
2263 case EF_ARM_EABI_VER2
:
2264 fprintf (file
, _(" [Version2 EABI]"));
2266 if (flags
& EF_ARM_SYMSARESORTED
)
2267 fprintf (file
, _(" [sorted symbol table]"));
2269 fprintf (file
, _(" [unsorted symbol table]"));
2271 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
2272 fprintf (file
, _(" [dynamic symbols use segment index]"));
2274 if (flags
& EF_ARM_MAPSYMSFIRST
)
2275 fprintf (file
, _(" [mapping symbols precede others]"));
2277 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
2278 | EF_ARM_MAPSYMSFIRST
);
2282 fprintf (file
, _(" <EABI version unrecognised>"));
2286 flags
&= ~ EF_ARM_EABIMASK
;
2288 if (flags
& EF_ARM_RELEXEC
)
2289 fprintf (file
, _(" [relocatable executable]"));
2291 if (flags
& EF_ARM_HASENTRY
)
2292 fprintf (file
, _(" [has entry point]"));
2294 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
2297 fprintf (file
, _("<Unrecognised flag bits set>"));
2305 elf32_arm_get_symbol_type (elf_sym
, type
)
2306 Elf_Internal_Sym
* elf_sym
;
2309 switch (ELF_ST_TYPE (elf_sym
->st_info
))
2312 return ELF_ST_TYPE (elf_sym
->st_info
);
2315 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2316 This allows us to distinguish between data used by Thumb instructions
2317 and non-data (which is probably code) inside Thumb regions of an
2319 if (type
!= STT_OBJECT
)
2320 return ELF_ST_TYPE (elf_sym
->st_info
);
2331 elf32_arm_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
2333 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2334 Elf_Internal_Rela
*rel
;
2335 struct elf_link_hash_entry
*h
;
2336 Elf_Internal_Sym
*sym
;
2340 switch (ELF32_R_TYPE (rel
->r_info
))
2342 case R_ARM_GNU_VTINHERIT
:
2343 case R_ARM_GNU_VTENTRY
:
2347 switch (h
->root
.type
)
2349 case bfd_link_hash_defined
:
2350 case bfd_link_hash_defweak
:
2351 return h
->root
.u
.def
.section
;
2353 case bfd_link_hash_common
:
2354 return h
->root
.u
.c
.p
->section
;
2363 if (!(elf_bad_symtab (abfd
)
2364 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
2365 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
2366 && sym
->st_shndx
!= SHN_COMMON
))
2368 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
2374 /* Update the got entry reference counts for the section being removed. */
2377 elf32_arm_gc_sweep_hook (abfd
, info
, sec
, relocs
)
2378 bfd
*abfd ATTRIBUTE_UNUSED
;
2379 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2380 asection
*sec ATTRIBUTE_UNUSED
;
2381 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
2383 /* We don't support garbage collection of GOT and PLT relocs yet. */
2387 /* Look through the relocs for a section during the first phase. */
2390 elf32_arm_check_relocs (abfd
, info
, sec
, relocs
)
2392 struct bfd_link_info
* info
;
2394 const Elf_Internal_Rela
* relocs
;
2396 Elf_Internal_Shdr
* symtab_hdr
;
2397 struct elf_link_hash_entry
** sym_hashes
;
2398 struct elf_link_hash_entry
** sym_hashes_end
;
2399 const Elf_Internal_Rela
* rel
;
2400 const Elf_Internal_Rela
* rel_end
;
2402 asection
* sgot
, *srelgot
, *sreloc
;
2403 bfd_vma
* local_got_offsets
;
2405 if (info
->relocateable
)
2408 sgot
= srelgot
= sreloc
= NULL
;
2410 dynobj
= elf_hash_table (info
)->dynobj
;
2411 local_got_offsets
= elf_local_got_offsets (abfd
);
2413 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2414 sym_hashes
= elf_sym_hashes (abfd
);
2415 sym_hashes_end
= sym_hashes
2416 + symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
2418 if (!elf_bad_symtab (abfd
))
2419 sym_hashes_end
-= symtab_hdr
->sh_info
;
2421 rel_end
= relocs
+ sec
->reloc_count
;
2422 for (rel
= relocs
; rel
< rel_end
; rel
++)
2424 struct elf_link_hash_entry
*h
;
2425 unsigned long r_symndx
;
2427 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2428 if (r_symndx
< symtab_hdr
->sh_info
)
2431 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2433 /* Some relocs require a global offset table. */
2436 switch (ELF32_R_TYPE (rel
->r_info
))
2441 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
2442 if (! _bfd_elf_create_got_section (dynobj
, info
))
2451 switch (ELF32_R_TYPE (rel
->r_info
))
2454 /* This symbol requires a global offset table entry. */
2457 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2458 BFD_ASSERT (sgot
!= NULL
);
2461 /* Get the got relocation section if necessary. */
2463 && (h
!= NULL
|| info
->shared
))
2465 srelgot
= bfd_get_section_by_name (dynobj
, ".rel.got");
2467 /* If no got relocation section, make one and initialize. */
2468 if (srelgot
== NULL
)
2470 srelgot
= bfd_make_section (dynobj
, ".rel.got");
2472 || ! bfd_set_section_flags (dynobj
, srelgot
,
2477 | SEC_LINKER_CREATED
2479 || ! bfd_set_section_alignment (dynobj
, srelgot
, 2))
2486 if (h
->got
.offset
!= (bfd_vma
) -1)
2487 /* We have already allocated space in the .got. */
2490 h
->got
.offset
= sgot
->_raw_size
;
2492 /* Make sure this symbol is output as a dynamic symbol. */
2493 if (h
->dynindx
== -1)
2494 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2497 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
2501 /* This is a global offset table entry for a local
2503 if (local_got_offsets
== NULL
)
2506 register unsigned int i
;
2508 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
2509 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
2510 if (local_got_offsets
== NULL
)
2512 elf_local_got_offsets (abfd
) = local_got_offsets
;
2513 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
2514 local_got_offsets
[i
] = (bfd_vma
) -1;
2517 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
2518 /* We have already allocated space in the .got. */
2521 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
2524 /* If we are generating a shared object, we need to
2525 output a R_ARM_RELATIVE reloc so that the dynamic
2526 linker can adjust this GOT entry. */
2527 srelgot
->_raw_size
+= sizeof (Elf32_External_Rel
);
2530 sgot
->_raw_size
+= 4;
2534 /* This symbol requires a procedure linkage table entry. We
2535 actually build the entry in adjust_dynamic_symbol,
2536 because this might be a case of linking PIC code which is
2537 never referenced by a dynamic object, in which case we
2538 don't need to generate a procedure linkage table entry
2541 /* If this is a local symbol, we resolve it directly without
2542 creating a procedure linkage table entry. */
2546 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
2552 /* If we are creating a shared library, and this is a reloc
2553 against a global symbol, or a non PC relative reloc
2554 against a local symbol, then we need to copy the reloc
2555 into the shared library. However, if we are linking with
2556 -Bsymbolic, we do not need to copy a reloc against a
2557 global symbol which is defined in an object we are
2558 including in the link (i.e., DEF_REGULAR is set). At
2559 this point we have not seen all the input files, so it is
2560 possible that DEF_REGULAR is not set now but will be set
2561 later (it is never cleared). We account for that
2562 possibility below by storing information in the
2563 pcrel_relocs_copied field of the hash table entry. */
2565 && (ELF32_R_TYPE (rel
->r_info
) != R_ARM_PC24
2567 && (! info
->symbolic
2568 || (h
->elf_link_hash_flags
2569 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
2571 /* When creating a shared object, we must copy these
2572 reloc types into the output file. We create a reloc
2573 section in dynobj and make room for this reloc. */
2578 name
= (bfd_elf_string_from_elf_section
2580 elf_elfheader (abfd
)->e_shstrndx
,
2581 elf_section_data (sec
)->rel_hdr
.sh_name
));
2585 BFD_ASSERT (strncmp (name
, ".rel", 4) == 0
2586 && strcmp (bfd_get_section_name (abfd
, sec
),
2589 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2594 sreloc
= bfd_make_section (dynobj
, name
);
2595 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
2596 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2597 if ((sec
->flags
& SEC_ALLOC
) != 0)
2598 flags
|= SEC_ALLOC
| SEC_LOAD
;
2600 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
2601 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
2606 sreloc
->_raw_size
+= sizeof (Elf32_External_Rel
);
2607 /* If we are linking with -Bsymbolic, and this is a
2608 global symbol, we count the number of PC relative
2609 relocations we have entered for this symbol, so that
2610 we can discard them again if the symbol is later
2611 defined by a regular object. Note that this function
2612 is only called if we are using an elf_i386 linker
2613 hash table, which means that h is really a pointer to
2614 an elf_i386_link_hash_entry. */
2615 if (h
!= NULL
&& info
->symbolic
2616 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_PC24
)
2618 struct elf32_arm_link_hash_entry
* eh
;
2619 struct elf32_arm_pcrel_relocs_copied
* p
;
2621 eh
= (struct elf32_arm_link_hash_entry
*) h
;
2623 for (p
= eh
->pcrel_relocs_copied
; p
!= NULL
; p
= p
->next
)
2624 if (p
->section
== sreloc
)
2629 p
= ((struct elf32_arm_pcrel_relocs_copied
*)
2630 bfd_alloc (dynobj
, sizeof * p
));
2634 p
->next
= eh
->pcrel_relocs_copied
;
2635 eh
->pcrel_relocs_copied
= p
;
2636 p
->section
= sreloc
;
2645 /* This relocation describes the C++ object vtable hierarchy.
2646 Reconstruct it for later use during GC. */
2647 case R_ARM_GNU_VTINHERIT
:
2648 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2652 /* This relocation describes which C++ vtable entries are actually
2653 used. Record for later use during GC. */
2654 case R_ARM_GNU_VTENTRY
:
2655 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
2664 /* Find the nearest line to a particular section and offset, for error
2665 reporting. This code is a duplicate of the code in elf.c, except
2666 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2669 elf32_arm_find_nearest_line
2670 (abfd
, section
, symbols
, offset
, filename_ptr
, functionname_ptr
, line_ptr
)
2675 CONST
char ** filename_ptr
;
2676 CONST
char ** functionname_ptr
;
2677 unsigned int * line_ptr
;
2680 const char * filename
;
2685 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
2686 filename_ptr
, functionname_ptr
,
2688 &elf_tdata (abfd
)->dwarf2_find_line_info
))
2691 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
2692 &found
, filename_ptr
,
2693 functionname_ptr
, line_ptr
,
2694 &elf_tdata (abfd
)->line_info
))
2700 if (symbols
== NULL
)
2707 for (p
= symbols
; *p
!= NULL
; p
++)
2711 q
= (elf_symbol_type
*) *p
;
2713 if (bfd_get_section (&q
->symbol
) != section
)
2716 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
2721 filename
= bfd_asymbol_name (&q
->symbol
);
2726 if (q
->symbol
.section
== section
2727 && q
->symbol
.value
>= low_func
2728 && q
->symbol
.value
<= offset
)
2730 func
= (asymbol
*) q
;
2731 low_func
= q
->symbol
.value
;
2740 *filename_ptr
= filename
;
2741 *functionname_ptr
= bfd_asymbol_name (func
);
2747 /* Adjust a symbol defined by a dynamic object and referenced by a
2748 regular object. The current definition is in some section of the
2749 dynamic object, but we're not including those sections. We have to
2750 change the definition to something the rest of the link can
2754 elf32_arm_adjust_dynamic_symbol (info
, h
)
2755 struct bfd_link_info
* info
;
2756 struct elf_link_hash_entry
* h
;
2760 unsigned int power_of_two
;
2762 dynobj
= elf_hash_table (info
)->dynobj
;
2764 /* Make sure we know what is going on here. */
2765 BFD_ASSERT (dynobj
!= NULL
2766 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
2767 || h
->weakdef
!= NULL
2768 || ((h
->elf_link_hash_flags
2769 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2770 && (h
->elf_link_hash_flags
2771 & ELF_LINK_HASH_REF_REGULAR
) != 0
2772 && (h
->elf_link_hash_flags
2773 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
2775 /* If this is a function, put it in the procedure linkage table. We
2776 will fill in the contents of the procedure linkage table later,
2777 when we know the address of the .got section. */
2778 if (h
->type
== STT_FUNC
2779 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
2782 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
2783 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0)
2785 /* This case can occur if we saw a PLT32 reloc in an input
2786 file, but the symbol was never referred to by a dynamic
2787 object. In such a case, we don't actually need to build
2788 a procedure linkage table, and we can just do a PC32
2790 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
2794 /* Make sure this symbol is output as a dynamic symbol. */
2795 if (h
->dynindx
== -1)
2797 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2801 s
= bfd_get_section_by_name (dynobj
, ".plt");
2802 BFD_ASSERT (s
!= NULL
);
2804 /* If this is the first .plt entry, make room for the special
2806 if (s
->_raw_size
== 0)
2807 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2809 /* If this symbol is not defined in a regular file, and we are
2810 not generating a shared library, then set the symbol to this
2811 location in the .plt. This is required to make function
2812 pointers compare as equal between the normal executable and
2813 the shared library. */
2815 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2817 h
->root
.u
.def
.section
= s
;
2818 h
->root
.u
.def
.value
= s
->_raw_size
;
2821 h
->plt
.offset
= s
->_raw_size
;
2823 /* Make room for this entry. */
2824 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2826 /* We also need to make an entry in the .got.plt section, which
2827 will be placed in the .got section by the linker script. */
2828 s
= bfd_get_section_by_name (dynobj
, ".got.plt");
2829 BFD_ASSERT (s
!= NULL
);
2832 /* We also need to make an entry in the .rel.plt section. */
2834 s
= bfd_get_section_by_name (dynobj
, ".rel.plt");
2835 BFD_ASSERT (s
!= NULL
);
2836 s
->_raw_size
+= sizeof (Elf32_External_Rel
);
2841 /* If this is a weak symbol, and there is a real definition, the
2842 processor independent code will have arranged for us to see the
2843 real definition first, and we can just use the same value. */
2844 if (h
->weakdef
!= NULL
)
2846 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
2847 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
2848 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
2849 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
2853 /* This is a reference to a symbol defined by a dynamic object which
2854 is not a function. */
2856 /* If we are creating a shared library, we must presume that the
2857 only references to the symbol are via the global offset table.
2858 For such cases we need not do anything here; the relocations will
2859 be handled correctly by relocate_section. */
2863 /* We must allocate the symbol in our .dynbss section, which will
2864 become part of the .bss section of the executable. There will be
2865 an entry for this symbol in the .dynsym section. The dynamic
2866 object will contain position independent code, so all references
2867 from the dynamic object to this symbol will go through the global
2868 offset table. The dynamic linker will use the .dynsym entry to
2869 determine the address it must put in the global offset table, so
2870 both the dynamic object and the regular object will refer to the
2871 same memory location for the variable. */
2872 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
2873 BFD_ASSERT (s
!= NULL
);
2875 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2876 copy the initial value out of the dynamic object and into the
2877 runtime process image. We need to remember the offset into the
2878 .rel.bss section we are going to use. */
2879 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
2883 srel
= bfd_get_section_by_name (dynobj
, ".rel.bss");
2884 BFD_ASSERT (srel
!= NULL
);
2885 srel
->_raw_size
+= sizeof (Elf32_External_Rel
);
2886 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
2889 /* We need to figure out the alignment required for this symbol. I
2890 have no idea how ELF linkers handle this. */
2891 power_of_two
= bfd_log2 (h
->size
);
2892 if (power_of_two
> 3)
2895 /* Apply the required alignment. */
2896 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
2897 (bfd_size_type
) (1 << power_of_two
));
2898 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
2900 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
2904 /* Define the symbol as being at this point in the section. */
2905 h
->root
.u
.def
.section
= s
;
2906 h
->root
.u
.def
.value
= s
->_raw_size
;
2908 /* Increment the section size to make room for the symbol. */
2909 s
->_raw_size
+= h
->size
;
2914 /* Set the sizes of the dynamic sections. */
2917 elf32_arm_size_dynamic_sections (output_bfd
, info
)
2919 struct bfd_link_info
* info
;
2927 dynobj
= elf_hash_table (info
)->dynobj
;
2928 BFD_ASSERT (dynobj
!= NULL
);
2930 if (elf_hash_table (info
)->dynamic_sections_created
)
2932 /* Set the contents of the .interp section to the interpreter. */
2935 s
= bfd_get_section_by_name (dynobj
, ".interp");
2936 BFD_ASSERT (s
!= NULL
);
2937 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2938 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2943 /* We may have created entries in the .rel.got section.
2944 However, if we are not creating the dynamic sections, we will
2945 not actually use these entries. Reset the size of .rel.got,
2946 which will cause it to get stripped from the output file
2948 s
= bfd_get_section_by_name (dynobj
, ".rel.got");
2953 /* If this is a -Bsymbolic shared link, then we need to discard all
2954 PC relative relocs against symbols defined in a regular object.
2955 We allocated space for them in the check_relocs routine, but we
2956 will not fill them in in the relocate_section routine. */
2957 if (info
->shared
&& info
->symbolic
)
2958 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info
),
2959 elf32_arm_discard_copies
,
2962 /* The check_relocs and adjust_dynamic_symbol entry points have
2963 determined the sizes of the various dynamic sections. Allocate
2968 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2973 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2976 /* It's OK to base decisions on the section name, because none
2977 of the dynobj section names depend upon the input files. */
2978 name
= bfd_get_section_name (dynobj
, s
);
2982 if (strcmp (name
, ".plt") == 0)
2984 if (s
->_raw_size
== 0)
2986 /* Strip this section if we don't need it; see the
2992 /* Remember whether there is a PLT. */
2996 else if (strncmp (name
, ".rel", 4) == 0)
2998 if (s
->_raw_size
== 0)
3000 /* If we don't need this section, strip it from the
3001 output file. This is mostly to handle .rel.bss and
3002 .rel.plt. We must create both sections in
3003 create_dynamic_sections, because they must be created
3004 before the linker maps input sections to output
3005 sections. The linker does that before
3006 adjust_dynamic_symbol is called, and it is that
3007 function which decides whether anything needs to go
3008 into these sections. */
3015 /* Remember whether there are any reloc sections other
3017 if (strcmp (name
, ".rel.plt") != 0)
3019 const char *outname
;
3023 /* If this relocation section applies to a read only
3024 section, then we probably need a DT_TEXTREL
3025 entry. The entries in the .rel.plt section
3026 really apply to the .got section, which we
3027 created ourselves and so know is not readonly. */
3028 outname
= bfd_get_section_name (output_bfd
,
3030 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
3033 && (target
->flags
& SEC_READONLY
) != 0
3034 && (target
->flags
& SEC_ALLOC
) != 0)
3038 /* We use the reloc_count field as a counter if we need
3039 to copy relocs into the output file. */
3043 else if (strncmp (name
, ".got", 4) != 0)
3045 /* It's not one of our sections, so don't allocate space. */
3053 for (spp
= &s
->output_section
->owner
->sections
;
3054 *spp
!= s
->output_section
;
3055 spp
= &(*spp
)->next
)
3057 *spp
= s
->output_section
->next
;
3058 --s
->output_section
->owner
->section_count
;
3063 /* Allocate memory for the section contents. */
3064 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
3065 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3069 if (elf_hash_table (info
)->dynamic_sections_created
)
3071 /* Add some entries to the .dynamic section. We fill in the
3072 values later, in elf32_arm_finish_dynamic_sections, but we
3073 must add the entries now so that we get the correct size for
3074 the .dynamic section. The DT_DEBUG entry is filled in by the
3075 dynamic linker and used by the debugger. */
3078 if (! bfd_elf32_add_dynamic_entry (info
, DT_DEBUG
, 0))
3084 if ( ! bfd_elf32_add_dynamic_entry (info
, DT_PLTGOT
, 0)
3085 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
3086 || ! bfd_elf32_add_dynamic_entry (info
, DT_PLTREL
, DT_REL
)
3087 || ! bfd_elf32_add_dynamic_entry (info
, DT_JMPREL
, 0))
3093 if ( ! bfd_elf32_add_dynamic_entry (info
, DT_REL
, 0)
3094 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELSZ
, 0)
3095 || ! bfd_elf32_add_dynamic_entry (info
, DT_RELENT
,
3096 sizeof (Elf32_External_Rel
)))
3102 if (! bfd_elf32_add_dynamic_entry (info
, DT_TEXTREL
, 0))
3104 info
->flags
|= DF_TEXTREL
;
3111 /* This function is called via elf32_arm_link_hash_traverse if we are
3112 creating a shared object with -Bsymbolic. It discards the space
3113 allocated to copy PC relative relocs against symbols which are
3114 defined in regular objects. We allocated space for them in the
3115 check_relocs routine, but we won't fill them in in the
3116 relocate_section routine. */
3119 elf32_arm_discard_copies (h
, ignore
)
3120 struct elf32_arm_link_hash_entry
* h
;
3121 PTR ignore ATTRIBUTE_UNUSED
;
3123 struct elf32_arm_pcrel_relocs_copied
* s
;
3125 /* We only discard relocs for symbols defined in a regular object. */
3126 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3129 for (s
= h
->pcrel_relocs_copied
; s
!= NULL
; s
= s
->next
)
3130 s
->section
->_raw_size
-= s
->count
* sizeof (Elf32_External_Rel
);
3135 /* Finish up dynamic symbol handling. We set the contents of various
3136 dynamic sections here. */
3139 elf32_arm_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
3141 struct bfd_link_info
* info
;
3142 struct elf_link_hash_entry
* h
;
3143 Elf_Internal_Sym
* sym
;
3147 dynobj
= elf_hash_table (info
)->dynobj
;
3149 if (h
->plt
.offset
!= (bfd_vma
) -1)
3156 Elf_Internal_Rel rel
;
3158 /* This symbol has an entry in the procedure linkage table. Set
3161 BFD_ASSERT (h
->dynindx
!= -1);
3163 splt
= bfd_get_section_by_name (dynobj
, ".plt");
3164 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
3165 srel
= bfd_get_section_by_name (dynobj
, ".rel.plt");
3166 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srel
!= NULL
);
3168 /* Get the index in the procedure linkage table which
3169 corresponds to this symbol. This is the index of this symbol
3170 in all the symbols for which we are making plt entries. The
3171 first entry in the procedure linkage table is reserved. */
3172 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3174 /* Get the offset into the .got table of the entry that
3175 corresponds to this function. Each .got entry is 4 bytes.
3176 The first three are reserved. */
3177 got_offset
= (plt_index
+ 3) * 4;
3179 /* Fill in the entry in the procedure linkage table. */
3180 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[0],
3181 splt
->contents
+ h
->plt
.offset
+ 0);
3182 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[1],
3183 splt
->contents
+ h
->plt
.offset
+ 4);
3184 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[2],
3185 splt
->contents
+ h
->plt
.offset
+ 8);
3186 bfd_put_32 (output_bfd
,
3187 (sgot
->output_section
->vma
3188 + sgot
->output_offset
3190 - splt
->output_section
->vma
3191 - splt
->output_offset
3192 - h
->plt
.offset
- 12),
3193 splt
->contents
+ h
->plt
.offset
+ 12);
3195 /* Fill in the entry in the global offset table. */
3196 bfd_put_32 (output_bfd
,
3197 (splt
->output_section
->vma
3198 + splt
->output_offset
),
3199 sgot
->contents
+ got_offset
);
3201 /* Fill in the entry in the .rel.plt section. */
3202 rel
.r_offset
= (sgot
->output_section
->vma
3203 + sgot
->output_offset
3205 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
3206 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3207 ((Elf32_External_Rel
*) srel
->contents
3210 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3212 /* Mark the symbol as undefined, rather than as defined in
3213 the .plt section. Leave the value alone. */
3214 sym
->st_shndx
= SHN_UNDEF
;
3215 /* If the symbol is weak, we do need to clear the value.
3216 Otherwise, the PLT entry would provide a definition for
3217 the symbol even if the symbol wasn't defined anywhere,
3218 and so the symbol would never be NULL. */
3219 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
3225 if (h
->got
.offset
!= (bfd_vma
) -1)
3229 Elf_Internal_Rel rel
;
3231 /* This symbol has an entry in the global offset table. Set it
3233 sgot
= bfd_get_section_by_name (dynobj
, ".got");
3234 srel
= bfd_get_section_by_name (dynobj
, ".rel.got");
3235 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
3237 rel
.r_offset
= (sgot
->output_section
->vma
3238 + sgot
->output_offset
3239 + (h
->got
.offset
&~ 1));
3241 /* If this is a -Bsymbolic link, and the symbol is defined
3242 locally, we just want to emit a RELATIVE reloc. The entry in
3243 the global offset table will already have been initialized in
3244 the relocate_section function. */
3246 && (info
->symbolic
|| h
->dynindx
== -1)
3247 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
3248 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
3251 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
3252 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
3255 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3256 ((Elf32_External_Rel
*) srel
->contents
3257 + srel
->reloc_count
));
3258 ++srel
->reloc_count
;
3261 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
3264 Elf_Internal_Rel rel
;
3266 /* This symbol needs a copy reloc. Set it up. */
3267 BFD_ASSERT (h
->dynindx
!= -1
3268 && (h
->root
.type
== bfd_link_hash_defined
3269 || h
->root
.type
== bfd_link_hash_defweak
));
3271 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
3273 BFD_ASSERT (s
!= NULL
);
3275 rel
.r_offset
= (h
->root
.u
.def
.value
3276 + h
->root
.u
.def
.section
->output_section
->vma
3277 + h
->root
.u
.def
.section
->output_offset
);
3278 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
3279 bfd_elf32_swap_reloc_out (output_bfd
, &rel
,
3280 ((Elf32_External_Rel
*) s
->contents
3285 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3286 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3287 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
3288 sym
->st_shndx
= SHN_ABS
;
3293 /* Finish up the dynamic sections. */
3296 elf32_arm_finish_dynamic_sections (output_bfd
, info
)
3298 struct bfd_link_info
* info
;
3304 dynobj
= elf_hash_table (info
)->dynobj
;
3306 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
3307 BFD_ASSERT (sgot
!= NULL
);
3308 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3310 if (elf_hash_table (info
)->dynamic_sections_created
)
3313 Elf32_External_Dyn
*dyncon
, *dynconend
;
3315 splt
= bfd_get_section_by_name (dynobj
, ".plt");
3316 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
3318 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
3319 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
3321 for (; dyncon
< dynconend
; dyncon
++)
3323 Elf_Internal_Dyn dyn
;
3327 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3340 s
= bfd_get_section_by_name (output_bfd
, name
);
3341 BFD_ASSERT (s
!= NULL
);
3342 dyn
.d_un
.d_ptr
= s
->vma
;
3343 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3347 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
3348 BFD_ASSERT (s
!= NULL
);
3349 if (s
->_cooked_size
!= 0)
3350 dyn
.d_un
.d_val
= s
->_cooked_size
;
3352 dyn
.d_un
.d_val
= s
->_raw_size
;
3353 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3357 /* My reading of the SVR4 ABI indicates that the
3358 procedure linkage table relocs (DT_JMPREL) should be
3359 included in the overall relocs (DT_REL). This is
3360 what Solaris does. However, UnixWare can not handle
3361 that case. Therefore, we override the DT_RELSZ entry
3362 here to make it not include the JMPREL relocs. Since
3363 the linker script arranges for .rel.plt to follow all
3364 other relocation sections, we don't have to worry
3365 about changing the DT_REL entry. */
3366 s
= bfd_get_section_by_name (output_bfd
, ".rel.plt");
3369 if (s
->_cooked_size
!= 0)
3370 dyn
.d_un
.d_val
-= s
->_cooked_size
;
3372 dyn
.d_un
.d_val
-= s
->_raw_size
;
3374 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3379 /* Fill in the first entry in the procedure linkage table. */
3380 if (splt
->_raw_size
> 0)
3382 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[0], splt
->contents
+ 0);
3383 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[1], splt
->contents
+ 4);
3384 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[2], splt
->contents
+ 8);
3385 bfd_put_32 (output_bfd
, elf32_arm_plt0_entry
[3], splt
->contents
+ 12);
3388 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3389 really seem like the right value. */
3390 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
3393 /* Fill in the first three entries in the global offset table. */
3394 if (sgot
->_raw_size
> 0)
3397 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
3399 bfd_put_32 (output_bfd
,
3400 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3402 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
3403 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
3406 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
3412 elf32_arm_post_process_headers (abfd
, link_info
)
3414 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
3416 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
3418 i_ehdrp
= elf_elfheader (abfd
);
3420 i_ehdrp
->e_ident
[EI_OSABI
] = ARM_ELF_OS_ABI_VERSION
;
3421 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
3424 #define ELF_ARCH bfd_arch_arm
3425 #define ELF_MACHINE_CODE EM_ARM
3426 #define ELF_MAXPAGESIZE 0x8000
3428 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3429 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3430 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3431 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3432 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3433 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3434 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3436 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3437 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3438 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3439 #define elf_backend_check_relocs elf32_arm_check_relocs
3440 #define elf_backend_relocate_section elf32_arm_relocate_section
3441 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3442 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3443 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3444 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3445 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3446 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3448 #define elf_backend_can_gc_sections 1
3449 #define elf_backend_plt_readonly 1
3450 #define elf_backend_want_got_plt 1
3451 #define elf_backend_want_plt_sym 0
3453 #define elf_backend_got_header_size 12
3454 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3456 #include "elf32-target.h"