2000-12-22 H.J. Lu <hjl@gnu.org>
[binutils.git] / bfd / reloc.c
blobed02c63046bc7e79268a35289c26a2abadb4fb60
1 /* BFD support for handling relocation entries.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23 SECTION
24 Relocations
26 BFD maintains relocations in much the same way it maintains
27 symbols: they are left alone until required, then read in
28 en-masse and translated into an internal form. A common
29 routine <<bfd_perform_relocation>> acts upon the
30 canonical form to do the fixup.
32 Relocations are maintained on a per section basis,
33 while symbols are maintained on a per BFD basis.
35 All that a back end has to do to fit the BFD interface is to create
36 a <<struct reloc_cache_entry>> for each relocation
37 in a particular section, and fill in the right bits of the structures.
39 @menu
40 @* typedef arelent::
41 @* howto manager::
42 @end menu
46 /* DO compile in the reloc_code name table from libbfd.h. */
47 #define _BFD_MAKE_TABLE_bfd_reloc_code_real
49 #include "bfd.h"
50 #include "sysdep.h"
51 #include "bfdlink.h"
52 #include "libbfd.h"
54 DOCDD
55 INODE
56 typedef arelent, howto manager, Relocations, Relocations
58 SUBSECTION
59 typedef arelent
61 This is the structure of a relocation entry:
63 CODE_FRAGMENT
65 .typedef enum bfd_reloc_status
67 . {* No errors detected *}
68 . bfd_reloc_ok,
70 . {* The relocation was performed, but there was an overflow. *}
71 . bfd_reloc_overflow,
73 . {* The address to relocate was not within the section supplied. *}
74 . bfd_reloc_outofrange,
76 . {* Used by special functions *}
77 . bfd_reloc_continue,
79 . {* Unsupported relocation size requested. *}
80 . bfd_reloc_notsupported,
82 . {* Unused *}
83 . bfd_reloc_other,
85 . {* The symbol to relocate against was undefined. *}
86 . bfd_reloc_undefined,
88 . {* The relocation was performed, but may not be ok - presently
89 . generated only when linking i960 coff files with i960 b.out
90 . symbols. If this type is returned, the error_message argument
91 . to bfd_perform_relocation will be set. *}
92 . bfd_reloc_dangerous
93 . }
94 . bfd_reloc_status_type;
97 .typedef struct reloc_cache_entry
99 . {* A pointer into the canonical table of pointers *}
100 . struct symbol_cache_entry **sym_ptr_ptr;
102 . {* offset in section *}
103 . bfd_size_type address;
105 . {* addend for relocation value *}
106 . bfd_vma addend;
108 . {* Pointer to how to perform the required relocation *}
109 . reloc_howto_type *howto;
111 .} arelent;
116 DESCRIPTION
118 Here is a description of each of the fields within an <<arelent>>:
120 o <<sym_ptr_ptr>>
122 The symbol table pointer points to a pointer to the symbol
123 associated with the relocation request. It is
124 the pointer into the table returned by the back end's
125 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
126 through a pointer to a pointer so that tools like the linker
127 can fix up all the symbols of the same name by modifying only
128 one pointer. The relocation routine looks in the symbol and
129 uses the base of the section the symbol is attached to and the
130 value of the symbol as the initial relocation offset. If the
131 symbol pointer is zero, then the section provided is looked up.
133 o <<address>>
135 The <<address>> field gives the offset in bytes from the base of
136 the section data which owns the relocation record to the first
137 byte of relocatable information. The actual data relocated
138 will be relative to this point; for example, a relocation
139 type which modifies the bottom two bytes of a four byte word
140 would not touch the first byte pointed to in a big endian
141 world.
143 o <<addend>>
145 The <<addend>> is a value provided by the back end to be added (!)
146 to the relocation offset. Its interpretation is dependent upon
147 the howto. For example, on the 68k the code:
150 | char foo[];
151 | main()
153 | return foo[0x12345678];
156 Could be compiled into:
158 | linkw fp,#-4
159 | moveb @@#12345678,d0
160 | extbl d0
161 | unlk fp
162 | rts
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
169 |RELOCATION RECORDS FOR [.text]:
170 |offset type value
171 |00000006 32 _foo
173 |00000000 4e56 fffc ; linkw fp,#-4
174 |00000004 1039 1234 5678 ; moveb @@#12345678,d0
175 |0000000a 49c0 ; extbl d0
176 |0000000c 4e5e ; unlk fp
177 |0000000e 4e75 ; rts
180 Using coff and an 88k, some instructions don't have enough
181 space in them to represent the full address range, and
182 pointers have to be loaded in two parts. So you'd get something like:
185 | or.u r13,r0,hi16(_foo+0x12345678)
186 | ld.b r2,r13,lo16(_foo+0x12345678)
187 | jmp r1
190 This should create two relocs, both pointing to <<_foo>>, and with
191 0x12340000 in their addend field. The data would consist of:
194 |RELOCATION RECORDS FOR [.text]:
195 |offset type value
196 |00000002 HVRT16 _foo+0x12340000
197 |00000006 LVRT16 _foo+0x12340000
199 |00000000 5da05678 ; or.u r13,r0,0x5678
200 |00000004 1c4d5678 ; ld.b r2,r13,0x5678
201 |00000008 f400c001 ; jmp r1
204 The relocation routine digs out the value from the data, adds
205 it to the addend to get the original offset, and then adds the
206 value of <<_foo>>. Note that all 32 bits have to be kept around
207 somewhere, to cope with carry from bit 15 to bit 16.
209 One further example is the sparc and the a.out format. The
210 sparc has a similar problem to the 88k, in that some
211 instructions don't have room for an entire offset, but on the
212 sparc the parts are created in odd sized lumps. The designers of
213 the a.out format chose to not use the data within the section
214 for storing part of the offset; all the offset is kept within
215 the reloc. Anything in the data should be ignored.
217 | save %sp,-112,%sp
218 | sethi %hi(_foo+0x12345678),%g2
219 | ldsb [%g2+%lo(_foo+0x12345678)],%i0
220 | ret
221 | restore
223 Both relocs contain a pointer to <<foo>>, and the offsets
224 contain junk.
227 |RELOCATION RECORDS FOR [.text]:
228 |offset type value
229 |00000004 HI22 _foo+0x12345678
230 |00000008 LO10 _foo+0x12345678
232 |00000000 9de3bf90 ; save %sp,-112,%sp
233 |00000004 05000000 ; sethi %hi(_foo+0),%g2
234 |00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
235 |0000000c 81c7e008 ; ret
236 |00000010 81e80000 ; restore
239 o <<howto>>
241 The <<howto>> field can be imagined as a
242 relocation instruction. It is a pointer to a structure which
243 contains information on what to do with all of the other
244 information in the reloc record and data section. A back end
245 would normally have a relocation instruction set and turn
246 relocations into pointers to the correct structure on input -
247 but it would be possible to create each howto field on demand.
252 SUBSUBSECTION
253 <<enum complain_overflow>>
255 Indicates what sort of overflow checking should be done when
256 performing a relocation.
258 CODE_FRAGMENT
260 .enum complain_overflow
262 . {* Do not complain on overflow. *}
263 . complain_overflow_dont,
265 . {* Complain if the bitfield overflows, whether it is considered
266 . as signed or unsigned. *}
267 . complain_overflow_bitfield,
269 . {* Complain if the value overflows when considered as signed
270 . number. *}
271 . complain_overflow_signed,
273 . {* Complain if the value overflows when considered as an
274 . unsigned number. *}
275 . complain_overflow_unsigned
281 SUBSUBSECTION
282 <<reloc_howto_type>>
284 The <<reloc_howto_type>> is a structure which contains all the
285 information that libbfd needs to know to tie up a back end's data.
287 CODE_FRAGMENT
288 .struct symbol_cache_entry; {* Forward declaration *}
290 .struct reloc_howto_struct
292 . {* The type field has mainly a documentary use - the back end can
293 . do what it wants with it, though normally the back end's
294 . external idea of what a reloc number is stored
295 . in this field. For example, a PC relative word relocation
296 . in a coff environment has the type 023 - because that's
297 . what the outside world calls a R_PCRWORD reloc. *}
298 . unsigned int type;
300 . {* The value the final relocation is shifted right by. This drops
301 . unwanted data from the relocation. *}
302 . unsigned int rightshift;
304 . {* The size of the item to be relocated. This is *not* a
305 . power-of-two measure. To get the number of bytes operated
306 . on by a type of relocation, use bfd_get_reloc_size. *}
307 . int size;
309 . {* The number of bits in the item to be relocated. This is used
310 . when doing overflow checking. *}
311 . unsigned int bitsize;
313 . {* Notes that the relocation is relative to the location in the
314 . data section of the addend. The relocation function will
315 . subtract from the relocation value the address of the location
316 . being relocated. *}
317 . boolean pc_relative;
319 . {* The bit position of the reloc value in the destination.
320 . The relocated value is left shifted by this amount. *}
321 . unsigned int bitpos;
323 . {* What type of overflow error should be checked for when
324 . relocating. *}
325 . enum complain_overflow complain_on_overflow;
327 . {* If this field is non null, then the supplied function is
328 . called rather than the normal function. This allows really
329 . strange relocation methods to be accomodated (e.g., i960 callj
330 . instructions). *}
331 . bfd_reloc_status_type (*special_function)
332 . PARAMS ((bfd *abfd,
333 . arelent *reloc_entry,
334 . struct symbol_cache_entry *symbol,
335 . PTR data,
336 . asection *input_section,
337 . bfd *output_bfd,
338 . char **error_message));
340 . {* The textual name of the relocation type. *}
341 . char *name;
343 . {* Some formats record a relocation addend in the section contents
344 . rather than with the relocation. For ELF formats this is the
345 . distinction between USE_REL and USE_RELA (though the code checks
346 . for USE_REL == 1/0). The value of this field is TRUE if the
347 . addend is recorded with the section contents; when performing a
348 . partial link (ld -r) the section contents (the data) will be
349 . modified. The value of this field is FALSE if addends are
350 . recorded with the relocation (in arelent.addend); when performing
351 . a partial link the relocation will be modified.
352 . All relocations for all ELF USE_RELA targets should set this field
353 . to FALSE (values of TRUE should be looked on with suspicion).
354 . However, the converse is not true: not all relocations of all ELF
355 . USE_REL targets set this field to TRUE. Why this is so is peculiar
356 . to each particular target. For relocs that aren't used in partial
357 . links (e.g. GOT stuff) it doesn't matter what this is set to. *}
358 . boolean partial_inplace;
360 . {* The src_mask selects which parts of the read in data
361 . are to be used in the relocation sum. E.g., if this was an 8 bit
362 . byte of data which we read and relocated, this would be
363 . 0x000000ff. When we have relocs which have an addend, such as
364 . sun4 extended relocs, the value in the offset part of a
365 . relocating field is garbage so we never use it. In this case
366 . the mask would be 0x00000000. *}
367 . bfd_vma src_mask;
369 . {* The dst_mask selects which parts of the instruction are replaced
370 . into the instruction. In most cases src_mask == dst_mask,
371 . except in the above special case, where dst_mask would be
372 . 0x000000ff, and src_mask would be 0x00000000. *}
373 . bfd_vma dst_mask;
375 . {* When some formats create PC relative instructions, they leave
376 . the value of the pc of the place being relocated in the offset
377 . slot of the instruction, so that a PC relative relocation can
378 . be made just by adding in an ordinary offset (e.g., sun3 a.out).
379 . Some formats leave the displacement part of an instruction
380 . empty (e.g., m88k bcs); this flag signals the fact.*}
381 . boolean pcrel_offset;
388 FUNCTION
389 The HOWTO Macro
391 DESCRIPTION
392 The HOWTO define is horrible and will go away.
395 .#define HOWTO(C, R,S,B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
396 . {(unsigned)C,R,S,B, P, BI, O,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}
398 DESCRIPTION
399 And will be replaced with the totally magic way. But for the
400 moment, we are compatible, so do it this way.
403 .#define NEWHOWTO( FUNCTION, NAME,SIZE,REL,IN) HOWTO(0,0,SIZE,0,REL,0,complain_overflow_dont,FUNCTION, NAME,false,0,0,IN)
406 DESCRIPTION
407 This is used to fill in an empty howto entry in an array.
409 .#define EMPTY_HOWTO(C) \
410 . HOWTO((C),0,0,0,false,0,complain_overflow_dont,NULL,NULL,false,0,0,false)
413 DESCRIPTION
414 Helper routine to turn a symbol into a relocation value.
416 .#define HOWTO_PREPARE(relocation, symbol) \
417 . { \
418 . if (symbol != (asymbol *)NULL) { \
419 . if (bfd_is_com_section (symbol->section)) { \
420 . relocation = 0; \
421 . } \
422 . else { \
423 . relocation = symbol->value; \
424 . } \
425 . } \
431 FUNCTION
432 bfd_get_reloc_size
434 SYNOPSIS
435 unsigned int bfd_get_reloc_size (reloc_howto_type *);
437 DESCRIPTION
438 For a reloc_howto_type that operates on a fixed number of bytes,
439 this returns the number of bytes operated on.
442 unsigned int
443 bfd_get_reloc_size (howto)
444 reloc_howto_type *howto;
446 switch (howto->size)
448 case 0: return 1;
449 case 1: return 2;
450 case 2: return 4;
451 case 3: return 0;
452 case 4: return 8;
453 case 8: return 16;
454 case -2: return 4;
455 default: abort ();
460 TYPEDEF
461 arelent_chain
463 DESCRIPTION
465 How relocs are tied together in an <<asection>>:
467 .typedef struct relent_chain {
468 . arelent relent;
469 . struct relent_chain *next;
470 .} arelent_chain;
474 /* N_ONES produces N one bits, without overflowing machine arithmetic. */
475 #define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
478 FUNCTION
479 bfd_check_overflow
481 SYNOPSIS
482 bfd_reloc_status_type
483 bfd_check_overflow
484 (enum complain_overflow how,
485 unsigned int bitsize,
486 unsigned int rightshift,
487 unsigned int addrsize,
488 bfd_vma relocation);
490 DESCRIPTION
491 Perform overflow checking on @var{relocation} which has
492 @var{bitsize} significant bits and will be shifted right by
493 @var{rightshift} bits, on a machine with addresses containing
494 @var{addrsize} significant bits. The result is either of
495 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
499 bfd_reloc_status_type
500 bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
501 enum complain_overflow how;
502 unsigned int bitsize;
503 unsigned int rightshift;
504 unsigned int addrsize;
505 bfd_vma relocation;
507 bfd_vma fieldmask, addrmask, signmask, ss, a;
508 bfd_reloc_status_type flag = bfd_reloc_ok;
510 a = relocation;
512 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
513 we'll be permissive: extra bits in the field mask will
514 automatically extend the address mask for purposes of the
515 overflow check. */
516 fieldmask = N_ONES (bitsize);
517 addrmask = N_ONES (addrsize) | fieldmask;
519 switch (how)
521 case complain_overflow_dont:
522 break;
524 case complain_overflow_signed:
525 /* If any sign bits are set, all sign bits must be set. That
526 is, A must be a valid negative address after shifting. */
527 a = (a & addrmask) >> rightshift;
528 signmask = ~ (fieldmask >> 1);
529 ss = a & signmask;
530 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
531 flag = bfd_reloc_overflow;
532 break;
534 case complain_overflow_unsigned:
535 /* We have an overflow if the address does not fit in the field. */
536 a = (a & addrmask) >> rightshift;
537 if ((a & ~ fieldmask) != 0)
538 flag = bfd_reloc_overflow;
539 break;
541 case complain_overflow_bitfield:
542 /* Bitfields are sometimes signed, sometimes unsigned. We
543 explicitly allow an address wrap too, which means a bitfield
544 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
545 if the value has some, but not all, bits set outside the
546 field. */
547 a >>= rightshift;
548 ss = a & ~ fieldmask;
549 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
550 flag = bfd_reloc_overflow;
551 break;
553 default:
554 abort ();
557 return flag;
561 FUNCTION
562 bfd_perform_relocation
564 SYNOPSIS
565 bfd_reloc_status_type
566 bfd_perform_relocation
567 (bfd *abfd,
568 arelent *reloc_entry,
569 PTR data,
570 asection *input_section,
571 bfd *output_bfd,
572 char **error_message);
574 DESCRIPTION
575 If @var{output_bfd} is supplied to this function, the
576 generated image will be relocatable; the relocations are
577 copied to the output file after they have been changed to
578 reflect the new state of the world. There are two ways of
579 reflecting the results of partial linkage in an output file:
580 by modifying the output data in place, and by modifying the
581 relocation record. Some native formats (e.g., basic a.out and
582 basic coff) have no way of specifying an addend in the
583 relocation type, so the addend has to go in the output data.
584 This is no big deal since in these formats the output data
585 slot will always be big enough for the addend. Complex reloc
586 types with addends were invented to solve just this problem.
587 The @var{error_message} argument is set to an error message if
588 this return @code{bfd_reloc_dangerous}.
593 bfd_reloc_status_type
594 bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
595 error_message)
596 bfd *abfd;
597 arelent *reloc_entry;
598 PTR data;
599 asection *input_section;
600 bfd *output_bfd;
601 char **error_message;
603 bfd_vma relocation;
604 bfd_reloc_status_type flag = bfd_reloc_ok;
605 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
606 bfd_vma output_base = 0;
607 reloc_howto_type *howto = reloc_entry->howto;
608 asection *reloc_target_output_section;
609 asymbol *symbol;
611 symbol = *(reloc_entry->sym_ptr_ptr);
612 if (bfd_is_abs_section (symbol->section)
613 && output_bfd != (bfd *) NULL)
615 reloc_entry->address += input_section->output_offset;
616 return bfd_reloc_ok;
619 /* If we are not producing relocateable output, return an error if
620 the symbol is not defined. An undefined weak symbol is
621 considered to have a value of zero (SVR4 ABI, p. 4-27). */
622 if (bfd_is_und_section (symbol->section)
623 && (symbol->flags & BSF_WEAK) == 0
624 && output_bfd == (bfd *) NULL)
625 flag = bfd_reloc_undefined;
627 /* If there is a function supplied to handle this relocation type,
628 call it. It'll return `bfd_reloc_continue' if further processing
629 can be done. */
630 if (howto->special_function)
632 bfd_reloc_status_type cont;
633 cont = howto->special_function (abfd, reloc_entry, symbol, data,
634 input_section, output_bfd,
635 error_message);
636 if (cont != bfd_reloc_continue)
637 return cont;
640 /* Is the address of the relocation really within the section? */
641 if (reloc_entry->address > input_section->_cooked_size /
642 bfd_octets_per_byte (abfd))
643 return bfd_reloc_outofrange;
645 /* Work out which section the relocation is targetted at and the
646 initial relocation command value. */
648 /* Get symbol value. (Common symbols are special.) */
649 if (bfd_is_com_section (symbol->section))
650 relocation = 0;
651 else
652 relocation = symbol->value;
655 reloc_target_output_section = symbol->section->output_section;
657 /* Convert input-section-relative symbol value to absolute. */
658 if (output_bfd && howto->partial_inplace == false)
659 output_base = 0;
660 else
661 output_base = reloc_target_output_section->vma;
663 relocation += output_base + symbol->section->output_offset;
665 /* Add in supplied addend. */
666 relocation += reloc_entry->addend;
668 /* Here the variable relocation holds the final address of the
669 symbol we are relocating against, plus any addend. */
671 if (howto->pc_relative == true)
673 /* This is a PC relative relocation. We want to set RELOCATION
674 to the distance between the address of the symbol and the
675 location. RELOCATION is already the address of the symbol.
677 We start by subtracting the address of the section containing
678 the location.
680 If pcrel_offset is set, we must further subtract the position
681 of the location within the section. Some targets arrange for
682 the addend to be the negative of the position of the location
683 within the section; for example, i386-aout does this. For
684 i386-aout, pcrel_offset is false. Some other targets do not
685 include the position of the location; for example, m88kbcs,
686 or ELF. For those targets, pcrel_offset is true.
688 If we are producing relocateable output, then we must ensure
689 that this reloc will be correctly computed when the final
690 relocation is done. If pcrel_offset is false we want to wind
691 up with the negative of the location within the section,
692 which means we must adjust the existing addend by the change
693 in the location within the section. If pcrel_offset is true
694 we do not want to adjust the existing addend at all.
696 FIXME: This seems logical to me, but for the case of
697 producing relocateable output it is not what the code
698 actually does. I don't want to change it, because it seems
699 far too likely that something will break. */
701 relocation -=
702 input_section->output_section->vma + input_section->output_offset;
704 if (howto->pcrel_offset == true)
705 relocation -= reloc_entry->address;
708 if (output_bfd != (bfd *) NULL)
710 if (howto->partial_inplace == false)
712 /* This is a partial relocation, and we want to apply the relocation
713 to the reloc entry rather than the raw data. Modify the reloc
714 inplace to reflect what we now know. */
715 reloc_entry->addend = relocation;
716 reloc_entry->address += input_section->output_offset;
717 return flag;
719 else
721 /* This is a partial relocation, but inplace, so modify the
722 reloc record a bit.
724 If we've relocated with a symbol with a section, change
725 into a ref to the section belonging to the symbol. */
727 reloc_entry->address += input_section->output_offset;
729 /* WTF?? */
730 if (abfd->xvec->flavour == bfd_target_coff_flavour
731 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
732 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
734 #if 1
735 /* For m68k-coff, the addend was being subtracted twice during
736 relocation with -r. Removing the line below this comment
737 fixes that problem; see PR 2953.
739 However, Ian wrote the following, regarding removing the line below,
740 which explains why it is still enabled: --djm
742 If you put a patch like that into BFD you need to check all the COFF
743 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
744 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
745 problem in a different way. There may very well be a reason that the
746 code works as it does.
748 Hmmm. The first obvious point is that bfd_perform_relocation should
749 not have any tests that depend upon the flavour. It's seem like
750 entirely the wrong place for such a thing. The second obvious point
751 is that the current code ignores the reloc addend when producing
752 relocateable output for COFF. That's peculiar. In fact, I really
753 have no idea what the point of the line you want to remove is.
755 A typical COFF reloc subtracts the old value of the symbol and adds in
756 the new value to the location in the object file (if it's a pc
757 relative reloc it adds the difference between the symbol value and the
758 location). When relocating we need to preserve that property.
760 BFD handles this by setting the addend to the negative of the old
761 value of the symbol. Unfortunately it handles common symbols in a
762 non-standard way (it doesn't subtract the old value) but that's a
763 different story (we can't change it without losing backward
764 compatibility with old object files) (coff-i386 does subtract the old
765 value, to be compatible with existing coff-i386 targets, like SCO).
767 So everything works fine when not producing relocateable output. When
768 we are producing relocateable output, logically we should do exactly
769 what we do when not producing relocateable output. Therefore, your
770 patch is correct. In fact, it should probably always just set
771 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
772 add the value into the object file. This won't hurt the COFF code,
773 which doesn't use the addend; I'm not sure what it will do to other
774 formats (the thing to check for would be whether any formats both use
775 the addend and set partial_inplace).
777 When I wanted to make coff-i386 produce relocateable output, I ran
778 into the problem that you are running into: I wanted to remove that
779 line. Rather than risk it, I made the coff-i386 relocs use a special
780 function; it's coff_i386_reloc in coff-i386.c. The function
781 specifically adds the addend field into the object file, knowing that
782 bfd_perform_relocation is not going to. If you remove that line, then
783 coff-i386.c will wind up adding the addend field in twice. It's
784 trivial to fix; it just needs to be done.
786 The problem with removing the line is just that it may break some
787 working code. With BFD it's hard to be sure of anything. The right
788 way to deal with this is simply to build and test at least all the
789 supported COFF targets. It should be straightforward if time and disk
790 space consuming. For each target:
791 1) build the linker
792 2) generate some executable, and link it using -r (I would
793 probably use paranoia.o and link against newlib/libc.a, which
794 for all the supported targets would be available in
795 /usr/cygnus/progressive/H-host/target/lib/libc.a).
796 3) make the change to reloc.c
797 4) rebuild the linker
798 5) repeat step 2
799 6) if the resulting object files are the same, you have at least
800 made it no worse
801 7) if they are different you have to figure out which version is
802 right
804 relocation -= reloc_entry->addend;
805 #endif
806 reloc_entry->addend = 0;
808 else
810 reloc_entry->addend = relocation;
814 else
816 reloc_entry->addend = 0;
819 /* FIXME: This overflow checking is incomplete, because the value
820 might have overflowed before we get here. For a correct check we
821 need to compute the value in a size larger than bitsize, but we
822 can't reasonably do that for a reloc the same size as a host
823 machine word.
824 FIXME: We should also do overflow checking on the result after
825 adding in the value contained in the object file. */
826 if (howto->complain_on_overflow != complain_overflow_dont
827 && flag == bfd_reloc_ok)
828 flag = bfd_check_overflow (howto->complain_on_overflow,
829 howto->bitsize,
830 howto->rightshift,
831 bfd_arch_bits_per_address (abfd),
832 relocation);
835 Either we are relocating all the way, or we don't want to apply
836 the relocation to the reloc entry (probably because there isn't
837 any room in the output format to describe addends to relocs)
840 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
841 (OSF version 1.3, compiler version 3.11). It miscompiles the
842 following program:
844 struct str
846 unsigned int i0;
847 } s = { 0 };
850 main ()
852 unsigned long x;
854 x = 0x100000000;
855 x <<= (unsigned long) s.i0;
856 if (x == 0)
857 printf ("failed\n");
858 else
859 printf ("succeeded (%lx)\n", x);
863 relocation >>= (bfd_vma) howto->rightshift;
865 /* Shift everything up to where it's going to be used */
867 relocation <<= (bfd_vma) howto->bitpos;
869 /* Wait for the day when all have the mask in them */
871 /* What we do:
872 i instruction to be left alone
873 o offset within instruction
874 r relocation offset to apply
875 S src mask
876 D dst mask
877 N ~dst mask
878 A part 1
879 B part 2
880 R result
882 Do this:
883 (( i i i i i o o o o o from bfd_get<size>
884 and S S S S S) to get the size offset we want
885 + r r r r r r r r r r) to get the final value to place
886 and D D D D D to chop to right size
887 -----------------------
888 = A A A A A
889 And this:
890 ( i i i i i o o o o o from bfd_get<size>
891 and N N N N N ) get instruction
892 -----------------------
893 = B B B B B
895 And then:
896 ( B B B B B
897 or A A A A A)
898 -----------------------
899 = R R R R R R R R R R put into bfd_put<size>
902 #define DOIT(x) \
903 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
905 switch (howto->size)
907 case 0:
909 char x = bfd_get_8 (abfd, (char *) data + octets);
910 DOIT (x);
911 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
913 break;
915 case 1:
917 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
918 DOIT (x);
919 bfd_put_16 (abfd, x, (unsigned char *) data + octets);
921 break;
922 case 2:
924 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
925 DOIT (x);
926 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
928 break;
929 case -2:
931 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
932 relocation = -relocation;
933 DOIT (x);
934 bfd_put_32 (abfd, x, (bfd_byte *) data + octets);
936 break;
938 case -1:
940 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
941 relocation = -relocation;
942 DOIT (x);
943 bfd_put_16 (abfd, x, (bfd_byte *) data + octets);
945 break;
947 case 3:
948 /* Do nothing */
949 break;
951 case 4:
952 #ifdef BFD64
954 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
955 DOIT (x);
956 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
958 #else
959 abort ();
960 #endif
961 break;
962 default:
963 return bfd_reloc_other;
966 return flag;
970 FUNCTION
971 bfd_install_relocation
973 SYNOPSIS
974 bfd_reloc_status_type
975 bfd_install_relocation
976 (bfd *abfd,
977 arelent *reloc_entry,
978 PTR data, bfd_vma data_start,
979 asection *input_section,
980 char **error_message);
982 DESCRIPTION
983 This looks remarkably like <<bfd_perform_relocation>>, except it
984 does not expect that the section contents have been filled in.
985 I.e., it's suitable for use when creating, rather than applying
986 a relocation.
988 For now, this function should be considered reserved for the
989 assembler.
994 bfd_reloc_status_type
995 bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
996 input_section, error_message)
997 bfd *abfd;
998 arelent *reloc_entry;
999 PTR data_start;
1000 bfd_vma data_start_offset;
1001 asection *input_section;
1002 char **error_message;
1004 bfd_vma relocation;
1005 bfd_reloc_status_type flag = bfd_reloc_ok;
1006 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1007 bfd_vma output_base = 0;
1008 reloc_howto_type *howto = reloc_entry->howto;
1009 asection *reloc_target_output_section;
1010 asymbol *symbol;
1011 bfd_byte *data;
1013 symbol = *(reloc_entry->sym_ptr_ptr);
1014 if (bfd_is_abs_section (symbol->section))
1016 reloc_entry->address += input_section->output_offset;
1017 return bfd_reloc_ok;
1020 /* If there is a function supplied to handle this relocation type,
1021 call it. It'll return `bfd_reloc_continue' if further processing
1022 can be done. */
1023 if (howto->special_function)
1025 bfd_reloc_status_type cont;
1027 /* XXX - The special_function calls haven't been fixed up to deal
1028 with creating new relocations and section contents. */
1029 cont = howto->special_function (abfd, reloc_entry, symbol,
1030 /* XXX - Non-portable! */
1031 ((bfd_byte *) data_start
1032 - data_start_offset),
1033 input_section, abfd, error_message);
1034 if (cont != bfd_reloc_continue)
1035 return cont;
1038 /* Is the address of the relocation really within the section? */
1039 if (reloc_entry->address > input_section->_cooked_size)
1040 return bfd_reloc_outofrange;
1042 /* Work out which section the relocation is targetted at and the
1043 initial relocation command value. */
1045 /* Get symbol value. (Common symbols are special.) */
1046 if (bfd_is_com_section (symbol->section))
1047 relocation = 0;
1048 else
1049 relocation = symbol->value;
1051 reloc_target_output_section = symbol->section->output_section;
1053 /* Convert input-section-relative symbol value to absolute. */
1054 if (howto->partial_inplace == false)
1055 output_base = 0;
1056 else
1057 output_base = reloc_target_output_section->vma;
1059 relocation += output_base + symbol->section->output_offset;
1061 /* Add in supplied addend. */
1062 relocation += reloc_entry->addend;
1064 /* Here the variable relocation holds the final address of the
1065 symbol we are relocating against, plus any addend. */
1067 if (howto->pc_relative == true)
1069 /* This is a PC relative relocation. We want to set RELOCATION
1070 to the distance between the address of the symbol and the
1071 location. RELOCATION is already the address of the symbol.
1073 We start by subtracting the address of the section containing
1074 the location.
1076 If pcrel_offset is set, we must further subtract the position
1077 of the location within the section. Some targets arrange for
1078 the addend to be the negative of the position of the location
1079 within the section; for example, i386-aout does this. For
1080 i386-aout, pcrel_offset is false. Some other targets do not
1081 include the position of the location; for example, m88kbcs,
1082 or ELF. For those targets, pcrel_offset is true.
1084 If we are producing relocateable output, then we must ensure
1085 that this reloc will be correctly computed when the final
1086 relocation is done. If pcrel_offset is false we want to wind
1087 up with the negative of the location within the section,
1088 which means we must adjust the existing addend by the change
1089 in the location within the section. If pcrel_offset is true
1090 we do not want to adjust the existing addend at all.
1092 FIXME: This seems logical to me, but for the case of
1093 producing relocateable output it is not what the code
1094 actually does. I don't want to change it, because it seems
1095 far too likely that something will break. */
1097 relocation -=
1098 input_section->output_section->vma + input_section->output_offset;
1100 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1101 relocation -= reloc_entry->address;
1104 if (howto->partial_inplace == false)
1106 /* This is a partial relocation, and we want to apply the relocation
1107 to the reloc entry rather than the raw data. Modify the reloc
1108 inplace to reflect what we now know. */
1109 reloc_entry->addend = relocation;
1110 reloc_entry->address += input_section->output_offset;
1111 return flag;
1113 else
1115 /* This is a partial relocation, but inplace, so modify the
1116 reloc record a bit.
1118 If we've relocated with a symbol with a section, change
1119 into a ref to the section belonging to the symbol. */
1121 reloc_entry->address += input_section->output_offset;
1123 /* WTF?? */
1124 if (abfd->xvec->flavour == bfd_target_coff_flavour
1125 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1126 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1128 #if 1
1129 /* For m68k-coff, the addend was being subtracted twice during
1130 relocation with -r. Removing the line below this comment
1131 fixes that problem; see PR 2953.
1133 However, Ian wrote the following, regarding removing the line below,
1134 which explains why it is still enabled: --djm
1136 If you put a patch like that into BFD you need to check all the COFF
1137 linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1138 SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1139 problem in a different way. There may very well be a reason that the
1140 code works as it does.
1142 Hmmm. The first obvious point is that bfd_install_relocation should
1143 not have any tests that depend upon the flavour. It's seem like
1144 entirely the wrong place for such a thing. The second obvious point
1145 is that the current code ignores the reloc addend when producing
1146 relocateable output for COFF. That's peculiar. In fact, I really
1147 have no idea what the point of the line you want to remove is.
1149 A typical COFF reloc subtracts the old value of the symbol and adds in
1150 the new value to the location in the object file (if it's a pc
1151 relative reloc it adds the difference between the symbol value and the
1152 location). When relocating we need to preserve that property.
1154 BFD handles this by setting the addend to the negative of the old
1155 value of the symbol. Unfortunately it handles common symbols in a
1156 non-standard way (it doesn't subtract the old value) but that's a
1157 different story (we can't change it without losing backward
1158 compatibility with old object files) (coff-i386 does subtract the old
1159 value, to be compatible with existing coff-i386 targets, like SCO).
1161 So everything works fine when not producing relocateable output. When
1162 we are producing relocateable output, logically we should do exactly
1163 what we do when not producing relocateable output. Therefore, your
1164 patch is correct. In fact, it should probably always just set
1165 reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1166 add the value into the object file. This won't hurt the COFF code,
1167 which doesn't use the addend; I'm not sure what it will do to other
1168 formats (the thing to check for would be whether any formats both use
1169 the addend and set partial_inplace).
1171 When I wanted to make coff-i386 produce relocateable output, I ran
1172 into the problem that you are running into: I wanted to remove that
1173 line. Rather than risk it, I made the coff-i386 relocs use a special
1174 function; it's coff_i386_reloc in coff-i386.c. The function
1175 specifically adds the addend field into the object file, knowing that
1176 bfd_install_relocation is not going to. If you remove that line, then
1177 coff-i386.c will wind up adding the addend field in twice. It's
1178 trivial to fix; it just needs to be done.
1180 The problem with removing the line is just that it may break some
1181 working code. With BFD it's hard to be sure of anything. The right
1182 way to deal with this is simply to build and test at least all the
1183 supported COFF targets. It should be straightforward if time and disk
1184 space consuming. For each target:
1185 1) build the linker
1186 2) generate some executable, and link it using -r (I would
1187 probably use paranoia.o and link against newlib/libc.a, which
1188 for all the supported targets would be available in
1189 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1190 3) make the change to reloc.c
1191 4) rebuild the linker
1192 5) repeat step 2
1193 6) if the resulting object files are the same, you have at least
1194 made it no worse
1195 7) if they are different you have to figure out which version is
1196 right
1198 relocation -= reloc_entry->addend;
1199 #endif
1200 reloc_entry->addend = 0;
1202 else
1204 reloc_entry->addend = relocation;
1208 /* FIXME: This overflow checking is incomplete, because the value
1209 might have overflowed before we get here. For a correct check we
1210 need to compute the value in a size larger than bitsize, but we
1211 can't reasonably do that for a reloc the same size as a host
1212 machine word.
1213 FIXME: We should also do overflow checking on the result after
1214 adding in the value contained in the object file. */
1215 if (howto->complain_on_overflow != complain_overflow_dont)
1216 flag = bfd_check_overflow (howto->complain_on_overflow,
1217 howto->bitsize,
1218 howto->rightshift,
1219 bfd_arch_bits_per_address (abfd),
1220 relocation);
1223 Either we are relocating all the way, or we don't want to apply
1224 the relocation to the reloc entry (probably because there isn't
1225 any room in the output format to describe addends to relocs)
1228 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1229 (OSF version 1.3, compiler version 3.11). It miscompiles the
1230 following program:
1232 struct str
1234 unsigned int i0;
1235 } s = { 0 };
1238 main ()
1240 unsigned long x;
1242 x = 0x100000000;
1243 x <<= (unsigned long) s.i0;
1244 if (x == 0)
1245 printf ("failed\n");
1246 else
1247 printf ("succeeded (%lx)\n", x);
1251 relocation >>= (bfd_vma) howto->rightshift;
1253 /* Shift everything up to where it's going to be used */
1255 relocation <<= (bfd_vma) howto->bitpos;
1257 /* Wait for the day when all have the mask in them */
1259 /* What we do:
1260 i instruction to be left alone
1261 o offset within instruction
1262 r relocation offset to apply
1263 S src mask
1264 D dst mask
1265 N ~dst mask
1266 A part 1
1267 B part 2
1268 R result
1270 Do this:
1271 (( i i i i i o o o o o from bfd_get<size>
1272 and S S S S S) to get the size offset we want
1273 + r r r r r r r r r r) to get the final value to place
1274 and D D D D D to chop to right size
1275 -----------------------
1276 = A A A A A
1277 And this:
1278 ( i i i i i o o o o o from bfd_get<size>
1279 and N N N N N ) get instruction
1280 -----------------------
1281 = B B B B B
1283 And then:
1284 ( B B B B B
1285 or A A A A A)
1286 -----------------------
1287 = R R R R R R R R R R put into bfd_put<size>
1290 #define DOIT(x) \
1291 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1293 data = (bfd_byte *) data_start + (octets - data_start_offset);
1295 switch (howto->size)
1297 case 0:
1299 char x = bfd_get_8 (abfd, (char *) data);
1300 DOIT (x);
1301 bfd_put_8 (abfd, x, (unsigned char *) data);
1303 break;
1305 case 1:
1307 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1308 DOIT (x);
1309 bfd_put_16 (abfd, x, (unsigned char *) data);
1311 break;
1312 case 2:
1314 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1315 DOIT (x);
1316 bfd_put_32 (abfd, x, (bfd_byte *) data);
1318 break;
1319 case -2:
1321 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1322 relocation = -relocation;
1323 DOIT (x);
1324 bfd_put_32 (abfd, x, (bfd_byte *) data);
1326 break;
1328 case 3:
1329 /* Do nothing */
1330 break;
1332 case 4:
1334 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1335 DOIT (x);
1336 bfd_put_64 (abfd, x, (bfd_byte *) data);
1338 break;
1339 default:
1340 return bfd_reloc_other;
1343 return flag;
1346 /* This relocation routine is used by some of the backend linkers.
1347 They do not construct asymbol or arelent structures, so there is no
1348 reason for them to use bfd_perform_relocation. Also,
1349 bfd_perform_relocation is so hacked up it is easier to write a new
1350 function than to try to deal with it.
1352 This routine does a final relocation. Whether it is useful for a
1353 relocateable link depends upon how the object format defines
1354 relocations.
1356 FIXME: This routine ignores any special_function in the HOWTO,
1357 since the existing special_function values have been written for
1358 bfd_perform_relocation.
1360 HOWTO is the reloc howto information.
1361 INPUT_BFD is the BFD which the reloc applies to.
1362 INPUT_SECTION is the section which the reloc applies to.
1363 CONTENTS is the contents of the section.
1364 ADDRESS is the address of the reloc within INPUT_SECTION.
1365 VALUE is the value of the symbol the reloc refers to.
1366 ADDEND is the addend of the reloc. */
1368 bfd_reloc_status_type
1369 _bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1370 value, addend)
1371 reloc_howto_type *howto;
1372 bfd *input_bfd;
1373 asection *input_section;
1374 bfd_byte *contents;
1375 bfd_vma address;
1376 bfd_vma value;
1377 bfd_vma addend;
1379 bfd_vma relocation;
1381 /* Sanity check the address. */
1382 if (address > input_section->_raw_size)
1383 return bfd_reloc_outofrange;
1385 /* This function assumes that we are dealing with a basic relocation
1386 against a symbol. We want to compute the value of the symbol to
1387 relocate to. This is just VALUE, the value of the symbol, plus
1388 ADDEND, any addend associated with the reloc. */
1389 relocation = value + addend;
1391 /* If the relocation is PC relative, we want to set RELOCATION to
1392 the distance between the symbol (currently in RELOCATION) and the
1393 location we are relocating. Some targets (e.g., i386-aout)
1394 arrange for the contents of the section to be the negative of the
1395 offset of the location within the section; for such targets
1396 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1397 simply leave the contents of the section as zero; for such
1398 targets pcrel_offset is true. If pcrel_offset is false we do not
1399 need to subtract out the offset of the location within the
1400 section (which is just ADDRESS). */
1401 if (howto->pc_relative)
1403 relocation -= (input_section->output_section->vma
1404 + input_section->output_offset);
1405 if (howto->pcrel_offset)
1406 relocation -= address;
1409 return _bfd_relocate_contents (howto, input_bfd, relocation,
1410 contents + address);
1413 /* Relocate a given location using a given value and howto. */
1415 bfd_reloc_status_type
1416 _bfd_relocate_contents (howto, input_bfd, relocation, location)
1417 reloc_howto_type *howto;
1418 bfd *input_bfd;
1419 bfd_vma relocation;
1420 bfd_byte *location;
1422 int size;
1423 bfd_vma x = 0;
1424 bfd_reloc_status_type flag;
1425 unsigned int rightshift = howto->rightshift;
1426 unsigned int bitpos = howto->bitpos;
1428 /* If the size is negative, negate RELOCATION. This isn't very
1429 general. */
1430 if (howto->size < 0)
1431 relocation = -relocation;
1433 /* Get the value we are going to relocate. */
1434 size = bfd_get_reloc_size (howto);
1435 switch (size)
1437 default:
1438 case 0:
1439 abort ();
1440 case 1:
1441 x = bfd_get_8 (input_bfd, location);
1442 break;
1443 case 2:
1444 x = bfd_get_16 (input_bfd, location);
1445 break;
1446 case 4:
1447 x = bfd_get_32 (input_bfd, location);
1448 break;
1449 case 8:
1450 #ifdef BFD64
1451 x = bfd_get_64 (input_bfd, location);
1452 #else
1453 abort ();
1454 #endif
1455 break;
1458 /* Check for overflow. FIXME: We may drop bits during the addition
1459 which we don't check for. We must either check at every single
1460 operation, which would be tedious, or we must do the computations
1461 in a type larger than bfd_vma, which would be inefficient. */
1462 flag = bfd_reloc_ok;
1463 if (howto->complain_on_overflow != complain_overflow_dont)
1465 bfd_vma addrmask, fieldmask, signmask, ss;
1466 bfd_vma a, b, sum;
1468 /* Get the values to be added together. For signed and unsigned
1469 relocations, we assume that all values should be truncated to
1470 the size of an address. For bitfields, all the bits matter.
1471 See also bfd_check_overflow. */
1472 fieldmask = N_ONES (howto->bitsize);
1473 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1474 a = relocation;
1475 b = x & howto->src_mask;
1477 switch (howto->complain_on_overflow)
1479 case complain_overflow_signed:
1480 a = (a & addrmask) >> rightshift;
1482 /* If any sign bits are set, all sign bits must be set.
1483 That is, A must be a valid negative address after
1484 shifting. */
1485 signmask = ~ (fieldmask >> 1);
1486 ss = a & signmask;
1487 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
1488 flag = bfd_reloc_overflow;
1490 /* We only need this next bit of code if the sign bit of B
1491 is below the sign bit of A. This would only happen if
1492 SRC_MASK had fewer bits than BITSIZE. Note that if
1493 SRC_MASK has more bits than BITSIZE, we can get into
1494 trouble; we would need to verify that B is in range, as
1495 we do for A above. */
1496 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1498 /* Set all the bits above the sign bit. */
1499 b = (b ^ signmask) - signmask;
1501 b = (b & addrmask) >> bitpos;
1503 /* Now we can do the addition. */
1504 sum = a + b;
1506 /* See if the result has the correct sign. Bits above the
1507 sign bit are junk now; ignore them. If the sum is
1508 positive, make sure we did not have all negative inputs;
1509 if the sum is negative, make sure we did not have all
1510 positive inputs. The test below looks only at the sign
1511 bits, and it really just
1512 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1514 signmask = (fieldmask >> 1) + 1;
1515 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
1516 flag = bfd_reloc_overflow;
1518 break;
1520 case complain_overflow_unsigned:
1521 /* Checking for an unsigned overflow is relatively easy:
1522 trim the addresses and add, and trim the result as well.
1523 Overflow is normally indicated when the result does not
1524 fit in the field. However, we also need to consider the
1525 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1526 input is 0x80000000, and bfd_vma is only 32 bits; then we
1527 will get sum == 0, but there is an overflow, since the
1528 inputs did not fit in the field. Instead of doing a
1529 separate test, we can check for this by or-ing in the
1530 operands when testing for the sum overflowing its final
1531 field. */
1532 a = (a & addrmask) >> rightshift;
1533 b = (b & addrmask) >> bitpos;
1534 sum = (a + b) & addrmask;
1535 if ((a | b | sum) & ~ fieldmask)
1536 flag = bfd_reloc_overflow;
1538 break;
1540 case complain_overflow_bitfield:
1541 /* Much like the signed check, but for a field one bit
1542 wider, and no trimming inputs with addrmask. We allow a
1543 bitfield to represent numbers in the range -2**n to
1544 2**n-1, where n is the number of bits in the field.
1545 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1546 overflow, which is exactly what we want. */
1547 a >>= rightshift;
1549 signmask = ~ fieldmask;
1550 ss = a & signmask;
1551 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1552 flag = bfd_reloc_overflow;
1554 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
1555 b = (b ^ signmask) - signmask;
1557 b >>= bitpos;
1559 sum = a + b;
1561 /* We mask with addrmask here to explicitly allow an address
1562 wrap-around. The Linux kernel relies on it, and it is
1563 the only way to write assembler code which can run when
1564 loaded at a location 0x80000000 away from the location at
1565 which it is linked. */
1566 signmask = fieldmask + 1;
1567 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
1568 flag = bfd_reloc_overflow;
1570 break;
1572 default:
1573 abort ();
1577 /* Put RELOCATION in the right bits. */
1578 relocation >>= (bfd_vma) rightshift;
1579 relocation <<= (bfd_vma) bitpos;
1581 /* Add RELOCATION to the right bits of X. */
1582 x = ((x & ~howto->dst_mask)
1583 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1585 /* Put the relocated value back in the object file. */
1586 switch (size)
1588 default:
1589 case 0:
1590 abort ();
1591 case 1:
1592 bfd_put_8 (input_bfd, x, location);
1593 break;
1594 case 2:
1595 bfd_put_16 (input_bfd, x, location);
1596 break;
1597 case 4:
1598 bfd_put_32 (input_bfd, x, location);
1599 break;
1600 case 8:
1601 #ifdef BFD64
1602 bfd_put_64 (input_bfd, x, location);
1603 #else
1604 abort ();
1605 #endif
1606 break;
1609 return flag;
1613 DOCDD
1614 INODE
1615 howto manager, , typedef arelent, Relocations
1617 SECTION
1618 The howto manager
1620 When an application wants to create a relocation, but doesn't
1621 know what the target machine might call it, it can find out by
1622 using this bit of code.
1627 TYPEDEF
1628 bfd_reloc_code_type
1630 DESCRIPTION
1631 The insides of a reloc code. The idea is that, eventually, there
1632 will be one enumerator for every type of relocation we ever do.
1633 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1634 return a howto pointer.
1636 This does mean that the application must determine the correct
1637 enumerator value; you can't get a howto pointer from a random set
1638 of attributes.
1640 SENUM
1641 bfd_reloc_code_real
1643 ENUM
1644 BFD_RELOC_64
1645 ENUMX
1646 BFD_RELOC_32
1647 ENUMX
1648 BFD_RELOC_26
1649 ENUMX
1650 BFD_RELOC_24
1651 ENUMX
1652 BFD_RELOC_16
1653 ENUMX
1654 BFD_RELOC_14
1655 ENUMX
1656 BFD_RELOC_8
1657 ENUMDOC
1658 Basic absolute relocations of N bits.
1660 ENUM
1661 BFD_RELOC_64_PCREL
1662 ENUMX
1663 BFD_RELOC_32_PCREL
1664 ENUMX
1665 BFD_RELOC_24_PCREL
1666 ENUMX
1667 BFD_RELOC_16_PCREL
1668 ENUMX
1669 BFD_RELOC_12_PCREL
1670 ENUMX
1671 BFD_RELOC_8_PCREL
1672 ENUMDOC
1673 PC-relative relocations. Sometimes these are relative to the address
1674 of the relocation itself; sometimes they are relative to the start of
1675 the section containing the relocation. It depends on the specific target.
1677 The 24-bit relocation is used in some Intel 960 configurations.
1679 ENUM
1680 BFD_RELOC_32_GOT_PCREL
1681 ENUMX
1682 BFD_RELOC_16_GOT_PCREL
1683 ENUMX
1684 BFD_RELOC_8_GOT_PCREL
1685 ENUMX
1686 BFD_RELOC_32_GOTOFF
1687 ENUMX
1688 BFD_RELOC_16_GOTOFF
1689 ENUMX
1690 BFD_RELOC_LO16_GOTOFF
1691 ENUMX
1692 BFD_RELOC_HI16_GOTOFF
1693 ENUMX
1694 BFD_RELOC_HI16_S_GOTOFF
1695 ENUMX
1696 BFD_RELOC_8_GOTOFF
1697 ENUMX
1698 BFD_RELOC_32_PLT_PCREL
1699 ENUMX
1700 BFD_RELOC_24_PLT_PCREL
1701 ENUMX
1702 BFD_RELOC_16_PLT_PCREL
1703 ENUMX
1704 BFD_RELOC_8_PLT_PCREL
1705 ENUMX
1706 BFD_RELOC_32_PLTOFF
1707 ENUMX
1708 BFD_RELOC_16_PLTOFF
1709 ENUMX
1710 BFD_RELOC_LO16_PLTOFF
1711 ENUMX
1712 BFD_RELOC_HI16_PLTOFF
1713 ENUMX
1714 BFD_RELOC_HI16_S_PLTOFF
1715 ENUMX
1716 BFD_RELOC_8_PLTOFF
1717 ENUMDOC
1718 For ELF.
1720 ENUM
1721 BFD_RELOC_68K_GLOB_DAT
1722 ENUMX
1723 BFD_RELOC_68K_JMP_SLOT
1724 ENUMX
1725 BFD_RELOC_68K_RELATIVE
1726 ENUMDOC
1727 Relocations used by 68K ELF.
1729 ENUM
1730 BFD_RELOC_32_BASEREL
1731 ENUMX
1732 BFD_RELOC_16_BASEREL
1733 ENUMX
1734 BFD_RELOC_LO16_BASEREL
1735 ENUMX
1736 BFD_RELOC_HI16_BASEREL
1737 ENUMX
1738 BFD_RELOC_HI16_S_BASEREL
1739 ENUMX
1740 BFD_RELOC_8_BASEREL
1741 ENUMX
1742 BFD_RELOC_RVA
1743 ENUMDOC
1744 Linkage-table relative.
1746 ENUM
1747 BFD_RELOC_8_FFnn
1748 ENUMDOC
1749 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1751 ENUM
1752 BFD_RELOC_32_PCREL_S2
1753 ENUMX
1754 BFD_RELOC_16_PCREL_S2
1755 ENUMX
1756 BFD_RELOC_23_PCREL_S2
1757 ENUMDOC
1758 These PC-relative relocations are stored as word displacements --
1759 i.e., byte displacements shifted right two bits. The 30-bit word
1760 displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1761 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1762 signed 16-bit displacement is used on the MIPS, and the 23-bit
1763 displacement is used on the Alpha.
1765 ENUM
1766 BFD_RELOC_HI22
1767 ENUMX
1768 BFD_RELOC_LO10
1769 ENUMDOC
1770 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1771 the target word. These are used on the SPARC.
1773 ENUM
1774 BFD_RELOC_GPREL16
1775 ENUMX
1776 BFD_RELOC_GPREL32
1777 ENUMDOC
1778 For systems that allocate a Global Pointer register, these are
1779 displacements off that register. These relocation types are
1780 handled specially, because the value the register will have is
1781 decided relatively late.
1784 ENUM
1785 BFD_RELOC_I960_CALLJ
1786 ENUMDOC
1787 Reloc types used for i960/b.out.
1789 ENUM
1790 BFD_RELOC_NONE
1791 ENUMX
1792 BFD_RELOC_SPARC_WDISP22
1793 ENUMX
1794 BFD_RELOC_SPARC22
1795 ENUMX
1796 BFD_RELOC_SPARC13
1797 ENUMX
1798 BFD_RELOC_SPARC_GOT10
1799 ENUMX
1800 BFD_RELOC_SPARC_GOT13
1801 ENUMX
1802 BFD_RELOC_SPARC_GOT22
1803 ENUMX
1804 BFD_RELOC_SPARC_PC10
1805 ENUMX
1806 BFD_RELOC_SPARC_PC22
1807 ENUMX
1808 BFD_RELOC_SPARC_WPLT30
1809 ENUMX
1810 BFD_RELOC_SPARC_COPY
1811 ENUMX
1812 BFD_RELOC_SPARC_GLOB_DAT
1813 ENUMX
1814 BFD_RELOC_SPARC_JMP_SLOT
1815 ENUMX
1816 BFD_RELOC_SPARC_RELATIVE
1817 ENUMX
1818 BFD_RELOC_SPARC_UA32
1819 ENUMDOC
1820 SPARC ELF relocations. There is probably some overlap with other
1821 relocation types already defined.
1823 ENUM
1824 BFD_RELOC_SPARC_BASE13
1825 ENUMX
1826 BFD_RELOC_SPARC_BASE22
1827 ENUMDOC
1828 I think these are specific to SPARC a.out (e.g., Sun 4).
1830 ENUMEQ
1831 BFD_RELOC_SPARC_64
1832 BFD_RELOC_64
1833 ENUMX
1834 BFD_RELOC_SPARC_10
1835 ENUMX
1836 BFD_RELOC_SPARC_11
1837 ENUMX
1838 BFD_RELOC_SPARC_OLO10
1839 ENUMX
1840 BFD_RELOC_SPARC_HH22
1841 ENUMX
1842 BFD_RELOC_SPARC_HM10
1843 ENUMX
1844 BFD_RELOC_SPARC_LM22
1845 ENUMX
1846 BFD_RELOC_SPARC_PC_HH22
1847 ENUMX
1848 BFD_RELOC_SPARC_PC_HM10
1849 ENUMX
1850 BFD_RELOC_SPARC_PC_LM22
1851 ENUMX
1852 BFD_RELOC_SPARC_WDISP16
1853 ENUMX
1854 BFD_RELOC_SPARC_WDISP19
1855 ENUMX
1856 BFD_RELOC_SPARC_7
1857 ENUMX
1858 BFD_RELOC_SPARC_6
1859 ENUMX
1860 BFD_RELOC_SPARC_5
1861 ENUMEQX
1862 BFD_RELOC_SPARC_DISP64
1863 BFD_RELOC_64_PCREL
1864 ENUMX
1865 BFD_RELOC_SPARC_PLT64
1866 ENUMX
1867 BFD_RELOC_SPARC_HIX22
1868 ENUMX
1869 BFD_RELOC_SPARC_LOX10
1870 ENUMX
1871 BFD_RELOC_SPARC_H44
1872 ENUMX
1873 BFD_RELOC_SPARC_M44
1874 ENUMX
1875 BFD_RELOC_SPARC_L44
1876 ENUMX
1877 BFD_RELOC_SPARC_REGISTER
1878 ENUMDOC
1879 SPARC64 relocations
1881 ENUM
1882 BFD_RELOC_SPARC_REV32
1883 ENUMDOC
1884 SPARC little endian relocation
1886 ENUM
1887 BFD_RELOC_ALPHA_GPDISP_HI16
1888 ENUMDOC
1889 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1890 "addend" in some special way.
1891 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1892 writing; when reading, it will be the absolute section symbol. The
1893 addend is the displacement in bytes of the "lda" instruction from
1894 the "ldah" instruction (which is at the address of this reloc).
1895 ENUM
1896 BFD_RELOC_ALPHA_GPDISP_LO16
1897 ENUMDOC
1898 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1899 with GPDISP_HI16 relocs. The addend is ignored when writing the
1900 relocations out, and is filled in with the file's GP value on
1901 reading, for convenience.
1903 ENUM
1904 BFD_RELOC_ALPHA_GPDISP
1905 ENUMDOC
1906 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1907 relocation except that there is no accompanying GPDISP_LO16
1908 relocation.
1910 ENUM
1911 BFD_RELOC_ALPHA_LITERAL
1912 ENUMX
1913 BFD_RELOC_ALPHA_ELF_LITERAL
1914 ENUMX
1915 BFD_RELOC_ALPHA_LITUSE
1916 ENUMDOC
1917 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1918 the assembler turns it into a LDQ instruction to load the address of
1919 the symbol, and then fills in a register in the real instruction.
1921 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1922 section symbol. The addend is ignored when writing, but is filled
1923 in with the file's GP value on reading, for convenience, as with the
1924 GPDISP_LO16 reloc.
1926 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1927 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1928 but it generates output not based on the position within the .got
1929 section, but relative to the GP value chosen for the file during the
1930 final link stage.
1932 The LITUSE reloc, on the instruction using the loaded address, gives
1933 information to the linker that it might be able to use to optimize
1934 away some literal section references. The symbol is ignored (read
1935 as the absolute section symbol), and the "addend" indicates the type
1936 of instruction using the register:
1937 1 - "memory" fmt insn
1938 2 - byte-manipulation (byte offset reg)
1939 3 - jsr (target of branch)
1941 The GNU linker currently doesn't do any of this optimizing.
1943 ENUM
1944 BFD_RELOC_ALPHA_USER_LITERAL
1945 ENUMX
1946 BFD_RELOC_ALPHA_USER_LITUSE_BASE
1947 ENUMX
1948 BFD_RELOC_ALPHA_USER_LITUSE_BYTOFF
1949 ENUMX
1950 BFD_RELOC_ALPHA_USER_LITUSE_JSR
1951 ENUMX
1952 BFD_RELOC_ALPHA_USER_GPDISP
1953 ENUMX
1954 BFD_RELOC_ALPHA_USER_GPRELHIGH
1955 ENUMX
1956 BFD_RELOC_ALPHA_USER_GPRELLOW
1957 ENUMDOC
1958 The BFD_RELOC_ALPHA_USER_* relocations are used by the assembler to
1959 process the explicit !<reloc>!sequence relocations, and are mapped
1960 into the normal relocations at the end of processing.
1962 ENUM
1963 BFD_RELOC_ALPHA_HINT
1964 ENUMDOC
1965 The HINT relocation indicates a value that should be filled into the
1966 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1967 prediction logic which may be provided on some processors.
1969 ENUM
1970 BFD_RELOC_ALPHA_LINKAGE
1971 ENUMDOC
1972 The LINKAGE relocation outputs a linkage pair in the object file,
1973 which is filled by the linker.
1975 ENUM
1976 BFD_RELOC_ALPHA_CODEADDR
1977 ENUMDOC
1978 The CODEADDR relocation outputs a STO_CA in the object file,
1979 which is filled by the linker.
1981 ENUM
1982 BFD_RELOC_MIPS_JMP
1983 ENUMDOC
1984 Bits 27..2 of the relocation address shifted right 2 bits;
1985 simple reloc otherwise.
1987 ENUM
1988 BFD_RELOC_MIPS16_JMP
1989 ENUMDOC
1990 The MIPS16 jump instruction.
1992 ENUM
1993 BFD_RELOC_MIPS16_GPREL
1994 ENUMDOC
1995 MIPS16 GP relative reloc.
1997 ENUM
1998 BFD_RELOC_HI16
1999 ENUMDOC
2000 High 16 bits of 32-bit value; simple reloc.
2001 ENUM
2002 BFD_RELOC_HI16_S
2003 ENUMDOC
2004 High 16 bits of 32-bit value but the low 16 bits will be sign
2005 extended and added to form the final result. If the low 16
2006 bits form a negative number, we need to add one to the high value
2007 to compensate for the borrow when the low bits are added.
2008 ENUM
2009 BFD_RELOC_LO16
2010 ENUMDOC
2011 Low 16 bits.
2012 ENUM
2013 BFD_RELOC_PCREL_HI16_S
2014 ENUMDOC
2015 Like BFD_RELOC_HI16_S, but PC relative.
2016 ENUM
2017 BFD_RELOC_PCREL_LO16
2018 ENUMDOC
2019 Like BFD_RELOC_LO16, but PC relative.
2021 ENUMEQ
2022 BFD_RELOC_MIPS_GPREL
2023 BFD_RELOC_GPREL16
2024 ENUMDOC
2025 Relocation relative to the global pointer.
2027 ENUM
2028 BFD_RELOC_MIPS_LITERAL
2029 ENUMDOC
2030 Relocation against a MIPS literal section.
2032 ENUM
2033 BFD_RELOC_MIPS_GOT16
2034 ENUMX
2035 BFD_RELOC_MIPS_CALL16
2036 ENUMEQX
2037 BFD_RELOC_MIPS_GPREL32
2038 BFD_RELOC_GPREL32
2039 ENUMX
2040 BFD_RELOC_MIPS_GOT_HI16
2041 ENUMX
2042 BFD_RELOC_MIPS_GOT_LO16
2043 ENUMX
2044 BFD_RELOC_MIPS_CALL_HI16
2045 ENUMX
2046 BFD_RELOC_MIPS_CALL_LO16
2047 ENUMX
2048 BFD_RELOC_MIPS_SUB
2049 ENUMX
2050 BFD_RELOC_MIPS_GOT_PAGE
2051 ENUMX
2052 BFD_RELOC_MIPS_GOT_OFST
2053 ENUMX
2054 BFD_RELOC_MIPS_GOT_DISP
2055 COMMENT
2056 ENUMDOC
2057 MIPS ELF relocations.
2059 COMMENT
2061 ENUM
2062 BFD_RELOC_386_GOT32
2063 ENUMX
2064 BFD_RELOC_386_PLT32
2065 ENUMX
2066 BFD_RELOC_386_COPY
2067 ENUMX
2068 BFD_RELOC_386_GLOB_DAT
2069 ENUMX
2070 BFD_RELOC_386_JUMP_SLOT
2071 ENUMX
2072 BFD_RELOC_386_RELATIVE
2073 ENUMX
2074 BFD_RELOC_386_GOTOFF
2075 ENUMX
2076 BFD_RELOC_386_GOTPC
2077 ENUMDOC
2078 i386/elf relocations
2080 ENUM
2081 BFD_RELOC_X86_64_GOT32
2082 ENUMX
2083 BFD_RELOC_X86_64_PLT32
2084 ENUMX
2085 BFD_RELOC_X86_64_COPY
2086 ENUMX
2087 BFD_RELOC_X86_64_GLOB_DAT
2088 ENUMX
2089 BFD_RELOC_X86_64_JUMP_SLOT
2090 ENUMX
2091 BFD_RELOC_X86_64_RELATIVE
2092 ENUMX
2093 BFD_RELOC_X86_64_GOTPCREL
2094 ENUMX
2095 BFD_RELOC_X86_64_32S
2096 ENUMDOC
2097 x86-64/elf relocations
2099 ENUM
2100 BFD_RELOC_NS32K_IMM_8
2101 ENUMX
2102 BFD_RELOC_NS32K_IMM_16
2103 ENUMX
2104 BFD_RELOC_NS32K_IMM_32
2105 ENUMX
2106 BFD_RELOC_NS32K_IMM_8_PCREL
2107 ENUMX
2108 BFD_RELOC_NS32K_IMM_16_PCREL
2109 ENUMX
2110 BFD_RELOC_NS32K_IMM_32_PCREL
2111 ENUMX
2112 BFD_RELOC_NS32K_DISP_8
2113 ENUMX
2114 BFD_RELOC_NS32K_DISP_16
2115 ENUMX
2116 BFD_RELOC_NS32K_DISP_32
2117 ENUMX
2118 BFD_RELOC_NS32K_DISP_8_PCREL
2119 ENUMX
2120 BFD_RELOC_NS32K_DISP_16_PCREL
2121 ENUMX
2122 BFD_RELOC_NS32K_DISP_32_PCREL
2123 ENUMDOC
2124 ns32k relocations
2126 ENUM
2127 BFD_RELOC_PJ_CODE_HI16
2128 ENUMX
2129 BFD_RELOC_PJ_CODE_LO16
2130 ENUMX
2131 BFD_RELOC_PJ_CODE_DIR16
2132 ENUMX
2133 BFD_RELOC_PJ_CODE_DIR32
2134 ENUMX
2135 BFD_RELOC_PJ_CODE_REL16
2136 ENUMX
2137 BFD_RELOC_PJ_CODE_REL32
2138 ENUMDOC
2139 Picojava relocs. Not all of these appear in object files.
2141 ENUM
2142 BFD_RELOC_PPC_B26
2143 ENUMX
2144 BFD_RELOC_PPC_BA26
2145 ENUMX
2146 BFD_RELOC_PPC_TOC16
2147 ENUMX
2148 BFD_RELOC_PPC_B16
2149 ENUMX
2150 BFD_RELOC_PPC_B16_BRTAKEN
2151 ENUMX
2152 BFD_RELOC_PPC_B16_BRNTAKEN
2153 ENUMX
2154 BFD_RELOC_PPC_BA16
2155 ENUMX
2156 BFD_RELOC_PPC_BA16_BRTAKEN
2157 ENUMX
2158 BFD_RELOC_PPC_BA16_BRNTAKEN
2159 ENUMX
2160 BFD_RELOC_PPC_COPY
2161 ENUMX
2162 BFD_RELOC_PPC_GLOB_DAT
2163 ENUMX
2164 BFD_RELOC_PPC_JMP_SLOT
2165 ENUMX
2166 BFD_RELOC_PPC_RELATIVE
2167 ENUMX
2168 BFD_RELOC_PPC_LOCAL24PC
2169 ENUMX
2170 BFD_RELOC_PPC_EMB_NADDR32
2171 ENUMX
2172 BFD_RELOC_PPC_EMB_NADDR16
2173 ENUMX
2174 BFD_RELOC_PPC_EMB_NADDR16_LO
2175 ENUMX
2176 BFD_RELOC_PPC_EMB_NADDR16_HI
2177 ENUMX
2178 BFD_RELOC_PPC_EMB_NADDR16_HA
2179 ENUMX
2180 BFD_RELOC_PPC_EMB_SDAI16
2181 ENUMX
2182 BFD_RELOC_PPC_EMB_SDA2I16
2183 ENUMX
2184 BFD_RELOC_PPC_EMB_SDA2REL
2185 ENUMX
2186 BFD_RELOC_PPC_EMB_SDA21
2187 ENUMX
2188 BFD_RELOC_PPC_EMB_MRKREF
2189 ENUMX
2190 BFD_RELOC_PPC_EMB_RELSEC16
2191 ENUMX
2192 BFD_RELOC_PPC_EMB_RELST_LO
2193 ENUMX
2194 BFD_RELOC_PPC_EMB_RELST_HI
2195 ENUMX
2196 BFD_RELOC_PPC_EMB_RELST_HA
2197 ENUMX
2198 BFD_RELOC_PPC_EMB_BIT_FLD
2199 ENUMX
2200 BFD_RELOC_PPC_EMB_RELSDA
2201 ENUMDOC
2202 Power(rs6000) and PowerPC relocations.
2204 ENUM
2205 BFD_RELOC_I370_D12
2206 ENUMDOC
2207 IBM 370/390 relocations
2209 ENUM
2210 BFD_RELOC_CTOR
2211 ENUMDOC
2212 The type of reloc used to build a contructor table - at the moment
2213 probably a 32 bit wide absolute relocation, but the target can choose.
2214 It generally does map to one of the other relocation types.
2216 ENUM
2217 BFD_RELOC_ARM_PCREL_BRANCH
2218 ENUMDOC
2219 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2220 not stored in the instruction.
2221 ENUM
2222 BFD_RELOC_ARM_PCREL_BLX
2223 ENUMDOC
2224 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2225 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2226 field in the instruction.
2227 ENUM
2228 BFD_RELOC_THUMB_PCREL_BLX
2229 ENUMDOC
2230 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2231 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2232 field in the instruction.
2233 ENUM
2234 BFD_RELOC_ARM_IMMEDIATE
2235 ENUMX
2236 BFD_RELOC_ARM_ADRL_IMMEDIATE
2237 ENUMX
2238 BFD_RELOC_ARM_OFFSET_IMM
2239 ENUMX
2240 BFD_RELOC_ARM_SHIFT_IMM
2241 ENUMX
2242 BFD_RELOC_ARM_SWI
2243 ENUMX
2244 BFD_RELOC_ARM_MULTI
2245 ENUMX
2246 BFD_RELOC_ARM_CP_OFF_IMM
2247 ENUMX
2248 BFD_RELOC_ARM_ADR_IMM
2249 ENUMX
2250 BFD_RELOC_ARM_LDR_IMM
2251 ENUMX
2252 BFD_RELOC_ARM_LITERAL
2253 ENUMX
2254 BFD_RELOC_ARM_IN_POOL
2255 ENUMX
2256 BFD_RELOC_ARM_OFFSET_IMM8
2257 ENUMX
2258 BFD_RELOC_ARM_HWLITERAL
2259 ENUMX
2260 BFD_RELOC_ARM_THUMB_ADD
2261 ENUMX
2262 BFD_RELOC_ARM_THUMB_IMM
2263 ENUMX
2264 BFD_RELOC_ARM_THUMB_SHIFT
2265 ENUMX
2266 BFD_RELOC_ARM_THUMB_OFFSET
2267 ENUMX
2268 BFD_RELOC_ARM_GOT12
2269 ENUMX
2270 BFD_RELOC_ARM_GOT32
2271 ENUMX
2272 BFD_RELOC_ARM_JUMP_SLOT
2273 ENUMX
2274 BFD_RELOC_ARM_COPY
2275 ENUMX
2276 BFD_RELOC_ARM_GLOB_DAT
2277 ENUMX
2278 BFD_RELOC_ARM_PLT32
2279 ENUMX
2280 BFD_RELOC_ARM_RELATIVE
2281 ENUMX
2282 BFD_RELOC_ARM_GOTOFF
2283 ENUMX
2284 BFD_RELOC_ARM_GOTPC
2285 ENUMDOC
2286 These relocs are only used within the ARM assembler. They are not
2287 (at present) written to any object files.
2289 ENUM
2290 BFD_RELOC_SH_PCDISP8BY2
2291 ENUMX
2292 BFD_RELOC_SH_PCDISP12BY2
2293 ENUMX
2294 BFD_RELOC_SH_IMM4
2295 ENUMX
2296 BFD_RELOC_SH_IMM4BY2
2297 ENUMX
2298 BFD_RELOC_SH_IMM4BY4
2299 ENUMX
2300 BFD_RELOC_SH_IMM8
2301 ENUMX
2302 BFD_RELOC_SH_IMM8BY2
2303 ENUMX
2304 BFD_RELOC_SH_IMM8BY4
2305 ENUMX
2306 BFD_RELOC_SH_PCRELIMM8BY2
2307 ENUMX
2308 BFD_RELOC_SH_PCRELIMM8BY4
2309 ENUMX
2310 BFD_RELOC_SH_SWITCH16
2311 ENUMX
2312 BFD_RELOC_SH_SWITCH32
2313 ENUMX
2314 BFD_RELOC_SH_USES
2315 ENUMX
2316 BFD_RELOC_SH_COUNT
2317 ENUMX
2318 BFD_RELOC_SH_ALIGN
2319 ENUMX
2320 BFD_RELOC_SH_CODE
2321 ENUMX
2322 BFD_RELOC_SH_DATA
2323 ENUMX
2324 BFD_RELOC_SH_LABEL
2325 ENUMX
2326 BFD_RELOC_SH_LOOP_START
2327 ENUMX
2328 BFD_RELOC_SH_LOOP_END
2329 ENUMX
2330 BFD_RELOC_SH_COPY
2331 ENUMX
2332 BFD_RELOC_SH_GLOB_DAT
2333 ENUMX
2334 BFD_RELOC_SH_JMP_SLOT
2335 ENUMX
2336 BFD_RELOC_SH_RELATIVE
2337 ENUMX
2338 BFD_RELOC_SH_GOTPC
2339 ENUMDOC
2340 Hitachi SH relocs. Not all of these appear in object files.
2342 ENUM
2343 BFD_RELOC_THUMB_PCREL_BRANCH9
2344 ENUMX
2345 BFD_RELOC_THUMB_PCREL_BRANCH12
2346 ENUMX
2347 BFD_RELOC_THUMB_PCREL_BRANCH23
2348 ENUMDOC
2349 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2350 be zero and is not stored in the instruction.
2352 ENUM
2353 BFD_RELOC_ARC_B22_PCREL
2354 ENUMDOC
2355 Argonaut RISC Core (ARC) relocs.
2356 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2357 not stored in the instruction. The high 20 bits are installed in bits 26
2358 through 7 of the instruction.
2359 ENUM
2360 BFD_RELOC_ARC_B26
2361 ENUMDOC
2362 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2363 stored in the instruction. The high 24 bits are installed in bits 23
2364 through 0.
2366 ENUM
2367 BFD_RELOC_D10V_10_PCREL_R
2368 ENUMDOC
2369 Mitsubishi D10V relocs.
2370 This is a 10-bit reloc with the right 2 bits
2371 assumed to be 0.
2372 ENUM
2373 BFD_RELOC_D10V_10_PCREL_L
2374 ENUMDOC
2375 Mitsubishi D10V relocs.
2376 This is a 10-bit reloc with the right 2 bits
2377 assumed to be 0. This is the same as the previous reloc
2378 except it is in the left container, i.e.,
2379 shifted left 15 bits.
2380 ENUM
2381 BFD_RELOC_D10V_18
2382 ENUMDOC
2383 This is an 18-bit reloc with the right 2 bits
2384 assumed to be 0.
2385 ENUM
2386 BFD_RELOC_D10V_18_PCREL
2387 ENUMDOC
2388 This is an 18-bit reloc with the right 2 bits
2389 assumed to be 0.
2391 ENUM
2392 BFD_RELOC_D30V_6
2393 ENUMDOC
2394 Mitsubishi D30V relocs.
2395 This is a 6-bit absolute reloc.
2396 ENUM
2397 BFD_RELOC_D30V_9_PCREL
2398 ENUMDOC
2399 This is a 6-bit pc-relative reloc with
2400 the right 3 bits assumed to be 0.
2401 ENUM
2402 BFD_RELOC_D30V_9_PCREL_R
2403 ENUMDOC
2404 This is a 6-bit pc-relative reloc with
2405 the right 3 bits assumed to be 0. Same
2406 as the previous reloc but on the right side
2407 of the container.
2408 ENUM
2409 BFD_RELOC_D30V_15
2410 ENUMDOC
2411 This is a 12-bit absolute reloc with the
2412 right 3 bitsassumed to be 0.
2413 ENUM
2414 BFD_RELOC_D30V_15_PCREL
2415 ENUMDOC
2416 This is a 12-bit pc-relative reloc with
2417 the right 3 bits assumed to be 0.
2418 ENUM
2419 BFD_RELOC_D30V_15_PCREL_R
2420 ENUMDOC
2421 This is a 12-bit pc-relative reloc with
2422 the right 3 bits assumed to be 0. Same
2423 as the previous reloc but on the right side
2424 of the container.
2425 ENUM
2426 BFD_RELOC_D30V_21
2427 ENUMDOC
2428 This is an 18-bit absolute reloc with
2429 the right 3 bits assumed to be 0.
2430 ENUM
2431 BFD_RELOC_D30V_21_PCREL
2432 ENUMDOC
2433 This is an 18-bit pc-relative reloc with
2434 the right 3 bits assumed to be 0.
2435 ENUM
2436 BFD_RELOC_D30V_21_PCREL_R
2437 ENUMDOC
2438 This is an 18-bit pc-relative reloc with
2439 the right 3 bits assumed to be 0. Same
2440 as the previous reloc but on the right side
2441 of the container.
2442 ENUM
2443 BFD_RELOC_D30V_32
2444 ENUMDOC
2445 This is a 32-bit absolute reloc.
2446 ENUM
2447 BFD_RELOC_D30V_32_PCREL
2448 ENUMDOC
2449 This is a 32-bit pc-relative reloc.
2451 ENUM
2452 BFD_RELOC_M32R_24
2453 ENUMDOC
2454 Mitsubishi M32R relocs.
2455 This is a 24 bit absolute address.
2456 ENUM
2457 BFD_RELOC_M32R_10_PCREL
2458 ENUMDOC
2459 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2460 ENUM
2461 BFD_RELOC_M32R_18_PCREL
2462 ENUMDOC
2463 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2464 ENUM
2465 BFD_RELOC_M32R_26_PCREL
2466 ENUMDOC
2467 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2468 ENUM
2469 BFD_RELOC_M32R_HI16_ULO
2470 ENUMDOC
2471 This is a 16-bit reloc containing the high 16 bits of an address
2472 used when the lower 16 bits are treated as unsigned.
2473 ENUM
2474 BFD_RELOC_M32R_HI16_SLO
2475 ENUMDOC
2476 This is a 16-bit reloc containing the high 16 bits of an address
2477 used when the lower 16 bits are treated as signed.
2478 ENUM
2479 BFD_RELOC_M32R_LO16
2480 ENUMDOC
2481 This is a 16-bit reloc containing the lower 16 bits of an address.
2482 ENUM
2483 BFD_RELOC_M32R_SDA16
2484 ENUMDOC
2485 This is a 16-bit reloc containing the small data area offset for use in
2486 add3, load, and store instructions.
2488 ENUM
2489 BFD_RELOC_V850_9_PCREL
2490 ENUMDOC
2491 This is a 9-bit reloc
2492 ENUM
2493 BFD_RELOC_V850_22_PCREL
2494 ENUMDOC
2495 This is a 22-bit reloc
2497 ENUM
2498 BFD_RELOC_V850_SDA_16_16_OFFSET
2499 ENUMDOC
2500 This is a 16 bit offset from the short data area pointer.
2501 ENUM
2502 BFD_RELOC_V850_SDA_15_16_OFFSET
2503 ENUMDOC
2504 This is a 16 bit offset (of which only 15 bits are used) from the
2505 short data area pointer.
2506 ENUM
2507 BFD_RELOC_V850_ZDA_16_16_OFFSET
2508 ENUMDOC
2509 This is a 16 bit offset from the zero data area pointer.
2510 ENUM
2511 BFD_RELOC_V850_ZDA_15_16_OFFSET
2512 ENUMDOC
2513 This is a 16 bit offset (of which only 15 bits are used) from the
2514 zero data area pointer.
2515 ENUM
2516 BFD_RELOC_V850_TDA_6_8_OFFSET
2517 ENUMDOC
2518 This is an 8 bit offset (of which only 6 bits are used) from the
2519 tiny data area pointer.
2520 ENUM
2521 BFD_RELOC_V850_TDA_7_8_OFFSET
2522 ENUMDOC
2523 This is an 8bit offset (of which only 7 bits are used) from the tiny
2524 data area pointer.
2525 ENUM
2526 BFD_RELOC_V850_TDA_7_7_OFFSET
2527 ENUMDOC
2528 This is a 7 bit offset from the tiny data area pointer.
2529 ENUM
2530 BFD_RELOC_V850_TDA_16_16_OFFSET
2531 ENUMDOC
2532 This is a 16 bit offset from the tiny data area pointer.
2533 COMMENT
2534 ENUM
2535 BFD_RELOC_V850_TDA_4_5_OFFSET
2536 ENUMDOC
2537 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2538 data area pointer.
2539 ENUM
2540 BFD_RELOC_V850_TDA_4_4_OFFSET
2541 ENUMDOC
2542 This is a 4 bit offset from the tiny data area pointer.
2543 ENUM
2544 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2545 ENUMDOC
2546 This is a 16 bit offset from the short data area pointer, with the
2547 bits placed non-contigously in the instruction.
2548 ENUM
2549 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2550 ENUMDOC
2551 This is a 16 bit offset from the zero data area pointer, with the
2552 bits placed non-contigously in the instruction.
2553 ENUM
2554 BFD_RELOC_V850_CALLT_6_7_OFFSET
2555 ENUMDOC
2556 This is a 6 bit offset from the call table base pointer.
2557 ENUM
2558 BFD_RELOC_V850_CALLT_16_16_OFFSET
2559 ENUMDOC
2560 This is a 16 bit offset from the call table base pointer.
2561 COMMENT
2563 ENUM
2564 BFD_RELOC_MN10300_32_PCREL
2565 ENUMDOC
2566 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2567 instruction.
2568 ENUM
2569 BFD_RELOC_MN10300_16_PCREL
2570 ENUMDOC
2571 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2572 instruction.
2574 ENUM
2575 BFD_RELOC_TIC30_LDP
2576 ENUMDOC
2577 This is a 8bit DP reloc for the tms320c30, where the most
2578 significant 8 bits of a 24 bit word are placed into the least
2579 significant 8 bits of the opcode.
2581 ENUM
2582 BFD_RELOC_TIC54X_PARTLS7
2583 ENUMDOC
2584 This is a 7bit reloc for the tms320c54x, where the least
2585 significant 7 bits of a 16 bit word are placed into the least
2586 significant 7 bits of the opcode.
2588 ENUM
2589 BFD_RELOC_TIC54X_PARTMS9
2590 ENUMDOC
2591 This is a 9bit DP reloc for the tms320c54x, where the most
2592 significant 9 bits of a 16 bit word are placed into the least
2593 significant 9 bits of the opcode.
2595 ENUM
2596 BFD_RELOC_TIC54X_23
2597 ENUMDOC
2598 This is an extended address 23-bit reloc for the tms320c54x.
2600 ENUM
2601 BFD_RELOC_TIC54X_16_OF_23
2602 ENUMDOC
2603 This is a 16-bit reloc for the tms320c54x, where the least
2604 significant 16 bits of a 23-bit extended address are placed into
2605 the opcode.
2607 ENUM
2608 BFD_RELOC_TIC54X_MS7_OF_23
2609 ENUMDOC
2610 This is a reloc for the tms320c54x, where the most
2611 significant 7 bits of a 23-bit extended address are placed into
2612 the opcode.
2614 ENUM
2615 BFD_RELOC_FR30_48
2616 ENUMDOC
2617 This is a 48 bit reloc for the FR30 that stores 32 bits.
2618 ENUM
2619 BFD_RELOC_FR30_20
2620 ENUMDOC
2621 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2622 two sections.
2623 ENUM
2624 BFD_RELOC_FR30_6_IN_4
2625 ENUMDOC
2626 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2627 4 bits.
2628 ENUM
2629 BFD_RELOC_FR30_8_IN_8
2630 ENUMDOC
2631 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2632 into 8 bits.
2633 ENUM
2634 BFD_RELOC_FR30_9_IN_8
2635 ENUMDOC
2636 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2637 into 8 bits.
2638 ENUM
2639 BFD_RELOC_FR30_10_IN_8
2640 ENUMDOC
2641 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2642 into 8 bits.
2643 ENUM
2644 BFD_RELOC_FR30_9_PCREL
2645 ENUMDOC
2646 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2647 short offset into 8 bits.
2648 ENUM
2649 BFD_RELOC_FR30_12_PCREL
2650 ENUMDOC
2651 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2652 short offset into 11 bits.
2654 ENUM
2655 BFD_RELOC_MCORE_PCREL_IMM8BY4
2656 ENUMX
2657 BFD_RELOC_MCORE_PCREL_IMM11BY2
2658 ENUMX
2659 BFD_RELOC_MCORE_PCREL_IMM4BY2
2660 ENUMX
2661 BFD_RELOC_MCORE_PCREL_32
2662 ENUMX
2663 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
2664 ENUMX
2665 BFD_RELOC_MCORE_RVA
2666 ENUMDOC
2667 Motorola Mcore relocations.
2669 ENUM
2670 BFD_RELOC_AVR_7_PCREL
2671 ENUMDOC
2672 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2673 short offset into 7 bits.
2674 ENUM
2675 BFD_RELOC_AVR_13_PCREL
2676 ENUMDOC
2677 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2678 short offset into 12 bits.
2679 ENUM
2680 BFD_RELOC_AVR_16_PM
2681 ENUMDOC
2682 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
2683 program memory address) into 16 bits.
2684 ENUM
2685 BFD_RELOC_AVR_LO8_LDI
2686 ENUMDOC
2687 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2688 data memory address) into 8 bit immediate value of LDI insn.
2689 ENUM
2690 BFD_RELOC_AVR_HI8_LDI
2691 ENUMDOC
2692 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2693 of data memory address) into 8 bit immediate value of LDI insn.
2694 ENUM
2695 BFD_RELOC_AVR_HH8_LDI
2696 ENUMDOC
2697 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2698 of program memory address) into 8 bit immediate value of LDI insn.
2699 ENUM
2700 BFD_RELOC_AVR_LO8_LDI_NEG
2701 ENUMDOC
2702 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2703 (usually data memory address) into 8 bit immediate value of SUBI insn.
2704 ENUM
2705 BFD_RELOC_AVR_HI8_LDI_NEG
2706 ENUMDOC
2707 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2708 (high 8 bit of data memory address) into 8 bit immediate value of
2709 SUBI insn.
2710 ENUM
2711 BFD_RELOC_AVR_HH8_LDI_NEG
2712 ENUMDOC
2713 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2714 (most high 8 bit of program memory address) into 8 bit immediate value
2715 of LDI or SUBI insn.
2716 ENUM
2717 BFD_RELOC_AVR_LO8_LDI_PM
2718 ENUMDOC
2719 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2720 command address) into 8 bit immediate value of LDI insn.
2721 ENUM
2722 BFD_RELOC_AVR_HI8_LDI_PM
2723 ENUMDOC
2724 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2725 of command address) into 8 bit immediate value of LDI insn.
2726 ENUM
2727 BFD_RELOC_AVR_HH8_LDI_PM
2728 ENUMDOC
2729 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2730 of command address) into 8 bit immediate value of LDI insn.
2731 ENUM
2732 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2733 ENUMDOC
2734 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2735 (usually command address) into 8 bit immediate value of SUBI insn.
2736 ENUM
2737 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2738 ENUMDOC
2739 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2740 (high 8 bit of 16 bit command address) into 8 bit immediate value
2741 of SUBI insn.
2742 ENUM
2743 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2744 ENUMDOC
2745 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2746 (high 6 bit of 22 bit command address) into 8 bit immediate
2747 value of SUBI insn.
2748 ENUM
2749 BFD_RELOC_AVR_CALL
2750 ENUMDOC
2751 This is a 32 bit reloc for the AVR that stores 23 bit value
2752 into 22 bits.
2754 ENUM
2755 BFD_RELOC_VTABLE_INHERIT
2756 ENUMX
2757 BFD_RELOC_VTABLE_ENTRY
2758 ENUMDOC
2759 These two relocations are used by the linker to determine which of
2760 the entries in a C++ virtual function table are actually used. When
2761 the --gc-sections option is given, the linker will zero out the entries
2762 that are not used, so that the code for those functions need not be
2763 included in the output.
2765 VTABLE_INHERIT is a zero-space relocation used to describe to the
2766 linker the inheritence tree of a C++ virtual function table. The
2767 relocation's symbol should be the parent class' vtable, and the
2768 relocation should be located at the child vtable.
2770 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2771 virtual function table entry. The reloc's symbol should refer to the
2772 table of the class mentioned in the code. Off of that base, an offset
2773 describes the entry that is being used. For Rela hosts, this offset
2774 is stored in the reloc's addend. For Rel hosts, we are forced to put
2775 this offset in the reloc's section offset.
2777 ENUM
2778 BFD_RELOC_IA64_IMM14
2779 ENUMX
2780 BFD_RELOC_IA64_IMM22
2781 ENUMX
2782 BFD_RELOC_IA64_IMM64
2783 ENUMX
2784 BFD_RELOC_IA64_DIR32MSB
2785 ENUMX
2786 BFD_RELOC_IA64_DIR32LSB
2787 ENUMX
2788 BFD_RELOC_IA64_DIR64MSB
2789 ENUMX
2790 BFD_RELOC_IA64_DIR64LSB
2791 ENUMX
2792 BFD_RELOC_IA64_GPREL22
2793 ENUMX
2794 BFD_RELOC_IA64_GPREL64I
2795 ENUMX
2796 BFD_RELOC_IA64_GPREL32MSB
2797 ENUMX
2798 BFD_RELOC_IA64_GPREL32LSB
2799 ENUMX
2800 BFD_RELOC_IA64_GPREL64MSB
2801 ENUMX
2802 BFD_RELOC_IA64_GPREL64LSB
2803 ENUMX
2804 BFD_RELOC_IA64_LTOFF22
2805 ENUMX
2806 BFD_RELOC_IA64_LTOFF64I
2807 ENUMX
2808 BFD_RELOC_IA64_PLTOFF22
2809 ENUMX
2810 BFD_RELOC_IA64_PLTOFF64I
2811 ENUMX
2812 BFD_RELOC_IA64_PLTOFF64MSB
2813 ENUMX
2814 BFD_RELOC_IA64_PLTOFF64LSB
2815 ENUMX
2816 BFD_RELOC_IA64_FPTR64I
2817 ENUMX
2818 BFD_RELOC_IA64_FPTR32MSB
2819 ENUMX
2820 BFD_RELOC_IA64_FPTR32LSB
2821 ENUMX
2822 BFD_RELOC_IA64_FPTR64MSB
2823 ENUMX
2824 BFD_RELOC_IA64_FPTR64LSB
2825 ENUMX
2826 BFD_RELOC_IA64_PCREL21B
2827 ENUMX
2828 BFD_RELOC_IA64_PCREL21BI
2829 ENUMX
2830 BFD_RELOC_IA64_PCREL21M
2831 ENUMX
2832 BFD_RELOC_IA64_PCREL21F
2833 ENUMX
2834 BFD_RELOC_IA64_PCREL22
2835 ENUMX
2836 BFD_RELOC_IA64_PCREL60B
2837 ENUMX
2838 BFD_RELOC_IA64_PCREL64I
2839 ENUMX
2840 BFD_RELOC_IA64_PCREL32MSB
2841 ENUMX
2842 BFD_RELOC_IA64_PCREL32LSB
2843 ENUMX
2844 BFD_RELOC_IA64_PCREL64MSB
2845 ENUMX
2846 BFD_RELOC_IA64_PCREL64LSB
2847 ENUMX
2848 BFD_RELOC_IA64_LTOFF_FPTR22
2849 ENUMX
2850 BFD_RELOC_IA64_LTOFF_FPTR64I
2851 ENUMX
2852 BFD_RELOC_IA64_LTOFF_FPTR64MSB
2853 ENUMX
2854 BFD_RELOC_IA64_LTOFF_FPTR64LSB
2855 ENUMX
2856 BFD_RELOC_IA64_SEGREL32MSB
2857 ENUMX
2858 BFD_RELOC_IA64_SEGREL32LSB
2859 ENUMX
2860 BFD_RELOC_IA64_SEGREL64MSB
2861 ENUMX
2862 BFD_RELOC_IA64_SEGREL64LSB
2863 ENUMX
2864 BFD_RELOC_IA64_SECREL32MSB
2865 ENUMX
2866 BFD_RELOC_IA64_SECREL32LSB
2867 ENUMX
2868 BFD_RELOC_IA64_SECREL64MSB
2869 ENUMX
2870 BFD_RELOC_IA64_SECREL64LSB
2871 ENUMX
2872 BFD_RELOC_IA64_REL32MSB
2873 ENUMX
2874 BFD_RELOC_IA64_REL32LSB
2875 ENUMX
2876 BFD_RELOC_IA64_REL64MSB
2877 ENUMX
2878 BFD_RELOC_IA64_REL64LSB
2879 ENUMX
2880 BFD_RELOC_IA64_LTV32MSB
2881 ENUMX
2882 BFD_RELOC_IA64_LTV32LSB
2883 ENUMX
2884 BFD_RELOC_IA64_LTV64MSB
2885 ENUMX
2886 BFD_RELOC_IA64_LTV64LSB
2887 ENUMX
2888 BFD_RELOC_IA64_IPLTMSB
2889 ENUMX
2890 BFD_RELOC_IA64_IPLTLSB
2891 ENUMX
2892 BFD_RELOC_IA64_COPY
2893 ENUMX
2894 BFD_RELOC_IA64_TPREL22
2895 ENUMX
2896 BFD_RELOC_IA64_TPREL64MSB
2897 ENUMX
2898 BFD_RELOC_IA64_TPREL64LSB
2899 ENUMX
2900 BFD_RELOC_IA64_LTOFF_TP22
2901 ENUMX
2902 BFD_RELOC_IA64_LTOFF22X
2903 ENUMX
2904 BFD_RELOC_IA64_LDXMOV
2905 ENUMDOC
2906 Intel IA64 Relocations.
2908 ENUM
2909 BFD_RELOC_M68HC11_HI8
2910 ENUMDOC
2911 Motorola 68HC11 reloc.
2912 This is the 8 bits high part of an absolute address.
2913 ENUM
2914 BFD_RELOC_M68HC11_LO8
2915 ENUMDOC
2916 Motorola 68HC11 reloc.
2917 This is the 8 bits low part of an absolute address.
2918 ENUM
2919 BFD_RELOC_M68HC11_3B
2920 ENUMDOC
2921 Motorola 68HC11 reloc.
2922 This is the 3 bits of a value.
2924 ENUM
2925 BFD_RELOC_CRIS_BDISP8
2926 ENUMX
2927 BFD_RELOC_CRIS_UNSIGNED_5
2928 ENUMX
2929 BFD_RELOC_CRIS_SIGNED_6
2930 ENUMX
2931 BFD_RELOC_CRIS_UNSIGNED_6
2932 ENUMX
2933 BFD_RELOC_CRIS_UNSIGNED_4
2934 ENUMDOC
2935 These relocs are only used within the CRIS assembler. They are not
2936 (at present) written to any object files.
2938 ENUM
2939 BFD_RELOC_860_COPY
2940 ENUMX
2941 BFD_RELOC_860_GLOB_DAT
2942 ENUMX
2943 BFD_RELOC_860_JUMP_SLOT
2944 ENUMX
2945 BFD_RELOC_860_RELATIVE
2946 ENUMX
2947 BFD_RELOC_860_PC26
2948 ENUMX
2949 BFD_RELOC_860_PLT26
2950 ENUMX
2951 BFD_RELOC_860_PC16
2952 ENUMX
2953 BFD_RELOC_860_LOW0
2954 ENUMX
2955 BFD_RELOC_860_SPLIT0
2956 ENUMX
2957 BFD_RELOC_860_LOW1
2958 ENUMX
2959 BFD_RELOC_860_SPLIT1
2960 ENUMX
2961 BFD_RELOC_860_LOW2
2962 ENUMX
2963 BFD_RELOC_860_SPLIT2
2964 ENUMX
2965 BFD_RELOC_860_LOW3
2966 ENUMX
2967 BFD_RELOC_860_LOGOT0
2968 ENUMX
2969 BFD_RELOC_860_SPGOT0
2970 ENUMX
2971 BFD_RELOC_860_LOGOT1
2972 ENUMX
2973 BFD_RELOC_860_SPGOT1
2974 ENUMX
2975 BFD_RELOC_860_LOGOTOFF0
2976 ENUMX
2977 BFD_RELOC_860_SPGOTOFF0
2978 ENUMX
2979 BFD_RELOC_860_LOGOTOFF1
2980 ENUMX
2981 BFD_RELOC_860_SPGOTOFF1
2982 ENUMX
2983 BFD_RELOC_860_LOGOTOFF2
2984 ENUMX
2985 BFD_RELOC_860_LOGOTOFF3
2986 ENUMX
2987 BFD_RELOC_860_LOPC
2988 ENUMX
2989 BFD_RELOC_860_HIGHADJ
2990 ENUMX
2991 BFD_RELOC_860_HAGOT
2992 ENUMX
2993 BFD_RELOC_860_HAGOTOFF
2994 ENUMX
2995 BFD_RELOC_860_HAPC
2996 ENUMX
2997 BFD_RELOC_860_HIGH
2998 ENUMX
2999 BFD_RELOC_860_HIGOT
3000 ENUMX
3001 BFD_RELOC_860_HIGOTOFF
3002 ENUMDOC
3003 Intel i860 Relocations.
3005 ENDSENUM
3006 BFD_RELOC_UNUSED
3007 CODE_FRAGMENT
3009 .typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3014 FUNCTION
3015 bfd_reloc_type_lookup
3017 SYNOPSIS
3018 reloc_howto_type *
3019 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3021 DESCRIPTION
3022 Return a pointer to a howto structure which, when
3023 invoked, will perform the relocation @var{code} on data from the
3024 architecture noted.
3029 reloc_howto_type *
3030 bfd_reloc_type_lookup (abfd, code)
3031 bfd *abfd;
3032 bfd_reloc_code_real_type code;
3034 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3037 static reloc_howto_type bfd_howto_32 =
3038 HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3042 INTERNAL_FUNCTION
3043 bfd_default_reloc_type_lookup
3045 SYNOPSIS
3046 reloc_howto_type *bfd_default_reloc_type_lookup
3047 (bfd *abfd, bfd_reloc_code_real_type code);
3049 DESCRIPTION
3050 Provides a default relocation lookup routine for any architecture.
3055 reloc_howto_type *
3056 bfd_default_reloc_type_lookup (abfd, code)
3057 bfd *abfd;
3058 bfd_reloc_code_real_type code;
3060 switch (code)
3062 case BFD_RELOC_CTOR:
3063 /* The type of reloc used in a ctor, which will be as wide as the
3064 address - so either a 64, 32, or 16 bitter. */
3065 switch (bfd_get_arch_info (abfd)->bits_per_address)
3067 case 64:
3068 BFD_FAIL ();
3069 case 32:
3070 return &bfd_howto_32;
3071 case 16:
3072 BFD_FAIL ();
3073 default:
3074 BFD_FAIL ();
3076 default:
3077 BFD_FAIL ();
3079 return (reloc_howto_type *) NULL;
3083 FUNCTION
3084 bfd_get_reloc_code_name
3086 SYNOPSIS
3087 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3089 DESCRIPTION
3090 Provides a printable name for the supplied relocation code.
3091 Useful mainly for printing error messages.
3094 const char *
3095 bfd_get_reloc_code_name (code)
3096 bfd_reloc_code_real_type code;
3098 if (code > BFD_RELOC_UNUSED)
3099 return 0;
3100 return bfd_reloc_code_real_names[(int)code];
3104 INTERNAL_FUNCTION
3105 bfd_generic_relax_section
3107 SYNOPSIS
3108 boolean bfd_generic_relax_section
3109 (bfd *abfd,
3110 asection *section,
3111 struct bfd_link_info *,
3112 boolean *);
3114 DESCRIPTION
3115 Provides default handling for relaxing for back ends which
3116 don't do relaxing -- i.e., does nothing.
3119 /*ARGSUSED*/
3120 boolean
3121 bfd_generic_relax_section (abfd, section, link_info, again)
3122 bfd *abfd ATTRIBUTE_UNUSED;
3123 asection *section ATTRIBUTE_UNUSED;
3124 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3125 boolean *again;
3127 *again = false;
3128 return true;
3132 INTERNAL_FUNCTION
3133 bfd_generic_gc_sections
3135 SYNOPSIS
3136 boolean bfd_generic_gc_sections
3137 (bfd *, struct bfd_link_info *);
3139 DESCRIPTION
3140 Provides default handling for relaxing for back ends which
3141 don't do section gc -- i.e., does nothing.
3144 /*ARGSUSED*/
3145 boolean
3146 bfd_generic_gc_sections (abfd, link_info)
3147 bfd *abfd ATTRIBUTE_UNUSED;
3148 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3150 return true;
3154 INTERNAL_FUNCTION
3155 bfd_generic_get_relocated_section_contents
3157 SYNOPSIS
3158 bfd_byte *
3159 bfd_generic_get_relocated_section_contents (bfd *abfd,
3160 struct bfd_link_info *link_info,
3161 struct bfd_link_order *link_order,
3162 bfd_byte *data,
3163 boolean relocateable,
3164 asymbol **symbols);
3166 DESCRIPTION
3167 Provides default handling of relocation effort for back ends
3168 which can't be bothered to do it efficiently.
3172 bfd_byte *
3173 bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3174 relocateable, symbols)
3175 bfd *abfd;
3176 struct bfd_link_info *link_info;
3177 struct bfd_link_order *link_order;
3178 bfd_byte *data;
3179 boolean relocateable;
3180 asymbol **symbols;
3182 /* Get enough memory to hold the stuff */
3183 bfd *input_bfd = link_order->u.indirect.section->owner;
3184 asection *input_section = link_order->u.indirect.section;
3186 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3187 arelent **reloc_vector = NULL;
3188 long reloc_count;
3190 if (reloc_size < 0)
3191 goto error_return;
3193 reloc_vector = (arelent **) bfd_malloc ((size_t) reloc_size);
3194 if (reloc_vector == NULL && reloc_size != 0)
3195 goto error_return;
3197 /* read in the section */
3198 if (!bfd_get_section_contents (input_bfd,
3199 input_section,
3200 (PTR) data,
3202 input_section->_raw_size))
3203 goto error_return;
3205 /* We're not relaxing the section, so just copy the size info */
3206 input_section->_cooked_size = input_section->_raw_size;
3207 input_section->reloc_done = true;
3209 reloc_count = bfd_canonicalize_reloc (input_bfd,
3210 input_section,
3211 reloc_vector,
3212 symbols);
3213 if (reloc_count < 0)
3214 goto error_return;
3216 if (reloc_count > 0)
3218 arelent **parent;
3219 for (parent = reloc_vector; *parent != (arelent *) NULL;
3220 parent++)
3222 char *error_message = (char *) NULL;
3223 bfd_reloc_status_type r =
3224 bfd_perform_relocation (input_bfd,
3225 *parent,
3226 (PTR) data,
3227 input_section,
3228 relocateable ? abfd : (bfd *) NULL,
3229 &error_message);
3231 if (relocateable)
3233 asection *os = input_section->output_section;
3235 /* A partial link, so keep the relocs */
3236 os->orelocation[os->reloc_count] = *parent;
3237 os->reloc_count++;
3240 if (r != bfd_reloc_ok)
3242 switch (r)
3244 case bfd_reloc_undefined:
3245 if (!((*link_info->callbacks->undefined_symbol)
3246 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3247 input_bfd, input_section, (*parent)->address,
3248 true)))
3249 goto error_return;
3250 break;
3251 case bfd_reloc_dangerous:
3252 BFD_ASSERT (error_message != (char *) NULL);
3253 if (!((*link_info->callbacks->reloc_dangerous)
3254 (link_info, error_message, input_bfd, input_section,
3255 (*parent)->address)))
3256 goto error_return;
3257 break;
3258 case bfd_reloc_overflow:
3259 if (!((*link_info->callbacks->reloc_overflow)
3260 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3261 (*parent)->howto->name, (*parent)->addend,
3262 input_bfd, input_section, (*parent)->address)))
3263 goto error_return;
3264 break;
3265 case bfd_reloc_outofrange:
3266 default:
3267 abort ();
3268 break;
3274 if (reloc_vector != NULL)
3275 free (reloc_vector);
3276 return data;
3278 error_return:
3279 if (reloc_vector != NULL)
3280 free (reloc_vector);
3281 return NULL;