1 // icf.cc -- Identical Code Folding.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each foldable section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
43 // int funcA () int funcB ()
45 // return foo(); return goo();
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
65 // int funcA (int a) int funcB (int a)
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
96 // Caveat with using function pointers :
97 // ------------------------------------
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken. Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
112 // Caveat with safe folding :
113 // ------------------------
115 // This applies only to x86_64.
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object. Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects. PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types. Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
135 // How to run : --icf=[safe|all|none]
136 // Optional parameters : --icf-iterations <num> --print-icf-sections
138 // Performance : Less than 20 % link-time overhead on industry strength
139 // applications. Up to 6 % text size reductions.
146 #include "libiberty.h"
147 #include "demangle.h"
149 #include "int_encoding.h"
154 // This function determines if a section or a group of identical
155 // sections has unique contents. Such unique sections or groups can be
156 // declared final and need not be processed any further.
158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160 // sections is already known to be unique.
161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
162 // that cannot be folded. SECTION_CONTENTS are NULL
163 // implies that this function is being called for the
164 // first time before the first iteration of icf.
167 preprocess_for_unique_sections(const std::vector
<Section_id
>& id_section
,
168 std::vector
<bool>* is_secn_or_group_unique
,
169 std::vector
<std::string
>* section_contents
)
171 Unordered_map
<uint32_t, unsigned int> uniq_map
;
172 std::pair
<Unordered_map
<uint32_t, unsigned int>::iterator
, bool>
175 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
177 if ((*is_secn_or_group_unique
)[i
])
181 Section_id secn
= id_section
[i
];
182 section_size_type plen
;
183 if (section_contents
== NULL
)
185 // Lock the object so we can read from it. This is only called
186 // single-threaded from queue_middle_tasks, so it is OK to lock.
187 // Unfortunately we have no way to pass in a Task token.
188 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
189 Task_lock_obj
<Object
> tl(dummy_task
, secn
.first
);
190 const unsigned char* contents
;
191 contents
= secn
.first
->section_contents(secn
.second
,
194 cksum
= xcrc32(contents
, plen
, 0xffffffff);
198 const unsigned char* contents_array
= reinterpret_cast
199 <const unsigned char*>((*section_contents
)[i
].c_str());
200 cksum
= xcrc32(contents_array
, (*section_contents
)[i
].length(),
203 uniq_map_insert
= uniq_map
.insert(std::make_pair(cksum
, i
));
204 if (uniq_map_insert
.second
)
206 (*is_secn_or_group_unique
)[i
] = true;
210 (*is_secn_or_group_unique
)[i
] = false;
211 (*is_secn_or_group_unique
)[uniq_map_insert
.first
->second
] = false;
216 // This returns the buffer containing the section's contents, both
217 // text and relocs. Relocs are differentiated as those pointing to
218 // sections that could be folded and those that cannot. Only relocs
219 // pointing to sections that could be folded are recomputed on
220 // subsequent invocations of this function.
222 // FIRST_ITERATION : true if it is the first invocation.
223 // SECN : Section for which contents are desired.
224 // SECTION_NUM : Unique section number of this section.
225 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
227 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
228 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
232 get_section_contents(bool first_iteration
,
233 const Section_id
& secn
,
234 unsigned int section_num
,
235 unsigned int* num_tracked_relocs
,
236 Symbol_table
* symtab
,
237 const std::vector
<unsigned int>& kept_section_id
,
238 std::vector
<std::string
>* section_contents
)
240 // Lock the object so we can read from it. This is only called
241 // single-threaded from queue_middle_tasks, so it is OK to lock.
242 // Unfortunately we have no way to pass in a Task token.
243 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
244 Task_lock_obj
<Object
> tl(dummy_task
, secn
.first
);
246 section_size_type plen
;
247 const unsigned char* contents
= NULL
;
249 contents
= secn
.first
->section_contents(secn
.second
, &plen
, false);
251 // The buffer to hold all the contents including relocs. A checksum
252 // is then computed on this buffer.
254 std::string icf_reloc_buffer
;
256 if (num_tracked_relocs
)
257 *num_tracked_relocs
= 0;
259 Icf::Reloc_info_list
& reloc_info_list
=
260 symtab
->icf()->reloc_info_list();
262 Icf::Reloc_info_list::iterator it_reloc_info_list
=
263 reloc_info_list
.find(secn
);
266 icf_reloc_buffer
.clear();
268 // Process relocs and put them into the buffer.
270 if (it_reloc_info_list
!= reloc_info_list
.end())
272 Icf::Sections_reachable_info v
=
273 (it_reloc_info_list
->second
).section_info
;
274 // Stores the information of the symbol pointed to by the reloc.
275 Icf::Symbol_info s
= (it_reloc_info_list
->second
).symbol_info
;
276 // Stores the addend and the symbol value.
277 Icf::Addend_info a
= (it_reloc_info_list
->second
).addend_info
;
278 // Stores the offset of the reloc.
279 Icf::Offset_info o
= (it_reloc_info_list
->second
).offset_info
;
280 Icf::Reloc_addend_size_info reloc_addend_size_info
=
281 (it_reloc_info_list
->second
).reloc_addend_size_info
;
282 Icf::Sections_reachable_info::iterator it_v
= v
.begin();
283 Icf::Symbol_info::iterator it_s
= s
.begin();
284 Icf::Addend_info::iterator it_a
= a
.begin();
285 Icf::Offset_info::iterator it_o
= o
.begin();
286 Icf::Reloc_addend_size_info::iterator it_addend_size
=
287 reloc_addend_size_info
.begin();
289 for (; it_v
!= v
.end(); ++it_v
, ++it_s
, ++it_a
, ++it_o
, ++it_addend_size
)
291 // ADDEND_STR stores the symbol value and addend and offset,
292 // each at most 16 hex digits long. it_a points to a pair
293 // where first is the symbol value and second is the
297 // It would be nice if we could use format macros in inttypes.h
298 // here but there are not in ISO/IEC C++ 1998.
299 snprintf(addend_str
, sizeof(addend_str
), "%llx %llx %llux",
300 static_cast<long long>((*it_a
).first
),
301 static_cast<long long>((*it_a
).second
),
302 static_cast<unsigned long long>(*it_o
));
304 // If the symbol pointed to by the reloc is not in an ordinary
305 // section or if the symbol type is not FROM_OBJECT, then the
307 if (it_v
->first
== NULL
)
311 // If the symbol name is available, use it.
313 buffer
.append((*it_s
)->name());
314 // Append the addend.
315 buffer
.append(addend_str
);
321 Section_id
reloc_secn(it_v
->first
, it_v
->second
);
323 // If this reloc turns back and points to the same section,
324 // like a recursive call, use a special symbol to mark this.
325 if (reloc_secn
.first
== secn
.first
326 && reloc_secn
.second
== secn
.second
)
331 buffer
.append(addend_str
);
336 Icf::Uniq_secn_id_map
& section_id_map
=
337 symtab
->icf()->section_to_int_map();
338 Icf::Uniq_secn_id_map::iterator section_id_map_it
=
339 section_id_map
.find(reloc_secn
);
340 bool is_sym_preemptible
= (*it_s
!= NULL
341 && !(*it_s
)->is_from_dynobj()
342 && !(*it_s
)->is_undefined()
343 && (*it_s
)->is_preemptible());
344 if (!is_sym_preemptible
345 && section_id_map_it
!= section_id_map
.end())
347 // This is a reloc to a section that might be folded.
348 if (num_tracked_relocs
)
349 (*num_tracked_relocs
)++;
351 char kept_section_str
[10];
352 unsigned int secn_id
= section_id_map_it
->second
;
353 snprintf(kept_section_str
, sizeof(kept_section_str
), "%u",
354 kept_section_id
[secn_id
]);
357 buffer
.append("ICF_R");
358 buffer
.append(addend_str
);
360 icf_reloc_buffer
.append(kept_section_str
);
361 // Append the addend.
362 icf_reloc_buffer
.append(addend_str
);
363 icf_reloc_buffer
.append("@");
367 // This is a reloc to a section that cannot be folded.
368 // Process it only in the first iteration.
369 if (!first_iteration
)
372 uint64_t secn_flags
= (it_v
->first
)->section_flags(it_v
->second
);
373 // This reloc points to a merge section. Hash the
374 // contents of this section.
375 if ((secn_flags
& elfcpp::SHF_MERGE
) != 0
376 && parameters
->target().can_icf_inline_merge_sections ())
379 (it_v
->first
)->section_entsize(it_v
->second
);
380 long long offset
= it_a
->first
;
382 unsigned long long addend
= it_a
->second
;
383 // Ignoring the addend when it is a negative value. See the
384 // comments in Merged_symbol_value::Value in object.h.
385 if (addend
< 0xffffff00)
386 offset
= offset
+ addend
;
388 // For SHT_REL relocation sections, the addend is stored in the
389 // text section at the relocation offset.
390 uint64_t reloc_addend_value
= 0;
391 const unsigned char* reloc_addend_ptr
=
392 contents
+ static_cast<unsigned long long>(*it_o
);
393 switch(*it_addend_size
)
402 read_from_pointer
<8>(reloc_addend_ptr
);
408 read_from_pointer
<16>(reloc_addend_ptr
);
414 read_from_pointer
<32>(reloc_addend_ptr
);
420 read_from_pointer
<64>(reloc_addend_ptr
);
426 offset
= offset
+ reloc_addend_value
;
428 section_size_type secn_len
;
429 const unsigned char* str_contents
=
430 (it_v
->first
)->section_contents(it_v
->second
,
433 if ((secn_flags
& elfcpp::SHF_STRINGS
) != 0)
435 // String merge section.
436 const char* str_char
=
437 reinterpret_cast<const char*>(str_contents
);
442 buffer
.append(str_char
);
447 const uint16_t* ptr_16
=
448 reinterpret_cast<const uint16_t*>(str_char
);
449 unsigned int strlen_16
= 0;
450 // Find the NULL character.
451 while(*(ptr_16
+ strlen_16
) != 0)
453 buffer
.append(str_char
, strlen_16
* 2);
458 const uint32_t* ptr_32
=
459 reinterpret_cast<const uint32_t*>(str_char
);
460 unsigned int strlen_32
= 0;
461 // Find the NULL character.
462 while(*(ptr_32
+ strlen_32
) != 0)
464 buffer
.append(str_char
, strlen_32
* 4);
473 // Use the entsize to determine the length.
474 buffer
.append(reinterpret_cast<const
475 char*>(str_contents
),
480 else if ((*it_s
) != NULL
)
482 // If symbol name is available use that.
483 buffer
.append((*it_s
)->name());
484 // Append the addend.
485 buffer
.append(addend_str
);
490 // Symbol name is not available, like for a local symbol,
491 // use object and section id.
492 buffer
.append(it_v
->first
->name());
494 snprintf(secn_id
, sizeof(secn_id
), "%u",it_v
->second
);
495 buffer
.append(secn_id
);
496 // Append the addend.
497 buffer
.append(addend_str
);
506 buffer
.append("Contents = ");
507 buffer
.append(reinterpret_cast<const char*>(contents
), plen
);
508 // Store the section contents that dont change to avoid recomputing
509 // during the next call to this function.
510 (*section_contents
)[section_num
] = buffer
;
514 gold_assert(buffer
.empty());
515 // Reuse the contents computed in the previous iteration.
516 buffer
.append((*section_contents
)[section_num
]);
519 buffer
.append(icf_reloc_buffer
);
523 // This function computes a checksum on each section to detect and form
524 // groups of identical sections. The first iteration does this for all
526 // Further iterations do this only for the kept sections from each group to
527 // determine if larger groups of identical sections could be formed. The
528 // first section in each group is the kept section for that group.
530 // CRC32 is the checksumming algorithm and can have collisions. That is,
531 // two sections with different contents can have the same checksum. Hence,
532 // a multimap is used to maintain more than one group of checksum
533 // identical sections. A section is added to a group only after its
534 // contents are explicitly compared with the kept section of the group.
537 // ITERATION_NUM : Invocation instance of this function.
538 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
540 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
541 // ID_SECTION : Vector mapping a section to an unique integer.
542 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
543 // sections is already known to be unique.
544 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
548 match_sections(unsigned int iteration_num
,
549 Symbol_table
* symtab
,
550 std::vector
<unsigned int>* num_tracked_relocs
,
551 std::vector
<unsigned int>* kept_section_id
,
552 const std::vector
<Section_id
>& id_section
,
553 std::vector
<bool>* is_secn_or_group_unique
,
554 std::vector
<std::string
>* section_contents
)
556 Unordered_multimap
<uint32_t, unsigned int> section_cksum
;
557 std::pair
<Unordered_multimap
<uint32_t, unsigned int>::iterator
,
558 Unordered_multimap
<uint32_t, unsigned int>::iterator
> key_range
;
559 bool converged
= true;
561 if (iteration_num
== 1)
562 preprocess_for_unique_sections(id_section
,
563 is_secn_or_group_unique
,
566 preprocess_for_unique_sections(id_section
,
567 is_secn_or_group_unique
,
570 std::vector
<std::string
> full_section_contents
;
572 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
574 full_section_contents
.push_back("");
575 if ((*is_secn_or_group_unique
)[i
])
578 Section_id secn
= id_section
[i
];
579 std::string this_secn_contents
;
581 if (iteration_num
== 1)
583 unsigned int num_relocs
= 0;
584 this_secn_contents
= get_section_contents(true, secn
, i
, &num_relocs
,
585 symtab
, (*kept_section_id
),
587 (*num_tracked_relocs
)[i
] = num_relocs
;
591 if ((*kept_section_id
)[i
] != i
)
593 // This section is already folded into something. See
594 // if it should point to a different kept section.
595 unsigned int kept_section
= (*kept_section_id
)[i
];
596 if (kept_section
!= (*kept_section_id
)[kept_section
])
598 (*kept_section_id
)[i
] = (*kept_section_id
)[kept_section
];
602 this_secn_contents
= get_section_contents(false, secn
, i
, NULL
,
603 symtab
, (*kept_section_id
),
607 const unsigned char* this_secn_contents_array
=
608 reinterpret_cast<const unsigned char*>(this_secn_contents
.c_str());
609 cksum
= xcrc32(this_secn_contents_array
, this_secn_contents
.length(),
611 size_t count
= section_cksum
.count(cksum
);
615 // Start a group with this cksum.
616 section_cksum
.insert(std::make_pair(cksum
, i
));
617 full_section_contents
[i
] = this_secn_contents
;
621 key_range
= section_cksum
.equal_range(cksum
);
622 Unordered_multimap
<uint32_t, unsigned int>::iterator it
;
623 // Search all the groups with this cksum for a match.
624 for (it
= key_range
.first
; it
!= key_range
.second
; ++it
)
626 unsigned int kept_section
= it
->second
;
627 if (full_section_contents
[kept_section
].length()
628 != this_secn_contents
.length())
630 if (memcmp(full_section_contents
[kept_section
].c_str(),
631 this_secn_contents
.c_str(),
632 this_secn_contents
.length()) != 0)
634 (*kept_section_id
)[i
] = kept_section
;
638 if (it
== key_range
.second
)
640 // Create a new group for this cksum.
641 section_cksum
.insert(std::make_pair(cksum
, i
));
642 full_section_contents
[i
] = this_secn_contents
;
645 // If there are no relocs to foldable sections do not process
646 // this section any further.
647 if (iteration_num
== 1 && (*num_tracked_relocs
)[i
] == 0)
648 (*is_secn_or_group_unique
)[i
] = true;
654 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
655 // This function returns true if the section name is that of a ctor or a dtor.
658 is_function_ctor_or_dtor(const std::string
& section_name
)
660 const char* mangled_func_name
= strrchr(section_name
.c_str(), '.');
661 gold_assert(mangled_func_name
!= NULL
);
662 if ((is_prefix_of("._ZN", mangled_func_name
)
663 || is_prefix_of("._ZZ", mangled_func_name
))
664 && (is_gnu_v3_mangled_ctor(mangled_func_name
+ 1)
665 || is_gnu_v3_mangled_dtor(mangled_func_name
+ 1)))
672 // This is the main ICF function called in gold.cc. This does the
673 // initialization and calls match_sections repeatedly (twice by default)
674 // which computes the crc checksums and detects identical functions.
677 Icf::find_identical_sections(const Input_objects
* input_objects
,
678 Symbol_table
* symtab
)
680 unsigned int section_num
= 0;
681 std::vector
<unsigned int> num_tracked_relocs
;
682 std::vector
<bool> is_secn_or_group_unique
;
683 std::vector
<std::string
> section_contents
;
684 const Target
& target
= parameters
->target();
686 // Decide which sections are possible candidates first.
688 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
689 p
!= input_objects
->relobj_end();
692 // Lock the object so we can read from it. This is only called
693 // single-threaded from queue_middle_tasks, so it is OK to lock.
694 // Unfortunately we have no way to pass in a Task token.
695 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
696 Task_lock_obj
<Object
> tl(dummy_task
, *p
);
698 for (unsigned int i
= 0;i
< (*p
)->shnum(); ++i
)
700 const std::string section_name
= (*p
)->section_name(i
);
701 if (!is_section_foldable_candidate(section_name
))
703 if (!(*p
)->is_section_included(i
))
705 if (parameters
->options().gc_sections()
706 && symtab
->gc()->is_section_garbage(*p
, i
))
708 // With --icf=safe, check if the mangled function name is a ctor
709 // or a dtor. The mangled function name can be obtained from the
710 // section name by stripping the section prefix.
711 if (parameters
->options().icf_safe_folding()
712 && !is_function_ctor_or_dtor(section_name
)
713 && (!target
.can_check_for_function_pointers()
714 || section_has_function_pointers(*p
, i
)))
718 this->id_section_
.push_back(Section_id(*p
, i
));
719 this->section_id_
[Section_id(*p
, i
)] = section_num
;
720 this->kept_section_id_
.push_back(section_num
);
721 num_tracked_relocs
.push_back(0);
722 is_secn_or_group_unique
.push_back(false);
723 section_contents
.push_back("");
728 unsigned int num_iterations
= 0;
730 // Default number of iterations to run ICF is 2.
731 unsigned int max_iterations
= (parameters
->options().icf_iterations() > 0)
732 ? parameters
->options().icf_iterations()
735 bool converged
= false;
737 while (!converged
&& (num_iterations
< max_iterations
))
740 converged
= match_sections(num_iterations
, symtab
,
741 &num_tracked_relocs
, &this->kept_section_id_
,
742 this->id_section_
, &is_secn_or_group_unique
,
746 if (parameters
->options().print_icf_sections())
749 gold_info(_("%s: ICF Converged after %u iteration(s)"),
750 program_name
, num_iterations
);
752 gold_info(_("%s: ICF stopped after %u iteration(s)"),
753 program_name
, num_iterations
);
756 // Unfold --keep-unique symbols.
757 for (options::String_set::const_iterator p
=
758 parameters
->options().keep_unique_begin();
759 p
!= parameters
->options().keep_unique_end();
762 const char* name
= p
->c_str();
763 Symbol
* sym
= symtab
->lookup(name
);
766 gold_warning(_("Could not find symbol %s to unfold\n"), name
);
768 else if (sym
->source() == Symbol::FROM_OBJECT
769 && !sym
->object()->is_dynamic())
771 Object
* obj
= sym
->object();
773 unsigned int shndx
= sym
->shndx(&is_ordinary
);
776 this->unfold_section(obj
, shndx
);
785 // Unfolds the section denoted by OBJ and SHNDX if folded.
788 Icf::unfold_section(Object
* obj
, unsigned int shndx
)
790 Section_id
secn(obj
, shndx
);
791 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
792 if (it
== this->section_id_
.end())
794 unsigned int section_num
= it
->second
;
795 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
796 if (kept_section_id
!= section_num
)
797 this->kept_section_id_
[section_num
] = section_num
;
800 // This function determines if the section corresponding to the
801 // given object and index is folded based on if the kept section
802 // is different from this section.
805 Icf::is_section_folded(Object
* obj
, unsigned int shndx
)
807 Section_id
secn(obj
, shndx
);
808 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
809 if (it
== this->section_id_
.end())
811 unsigned int section_num
= it
->second
;
812 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
813 return kept_section_id
!= section_num
;
816 // This function returns the folded section for the given section.
819 Icf::get_folded_section(Object
* dup_obj
, unsigned int dup_shndx
)
821 Section_id
dup_secn(dup_obj
, dup_shndx
);
822 Uniq_secn_id_map::iterator it
= this->section_id_
.find(dup_secn
);
823 gold_assert(it
!= this->section_id_
.end());
824 unsigned int section_num
= it
->second
;
825 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
826 Section_id folded_section
= this->id_section_
[kept_section_id
];
827 return folded_section
;
830 } // End of namespace gold.