1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 switch (bed
->s
->arch_size
)
122 bfd_set_error (bfd_error_bad_value
);
126 flags
= bed
->dynamic_sec_flags
;
128 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
130 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
133 if (bed
->want_got_plt
)
135 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
137 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
141 if (bed
->want_got_sym
)
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info
)->hgot
= h
;
153 /* The first bit of the global offset table is the header. */
154 s
->size
+= bed
->got_header_size
;
159 /* Create a strtab to hold the dynamic symbol names. */
161 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
163 struct elf_link_hash_table
*hash_table
;
165 hash_table
= elf_hash_table (info
);
166 if (hash_table
->dynobj
== NULL
)
167 hash_table
->dynobj
= abfd
;
169 if (hash_table
->dynstr
== NULL
)
171 hash_table
->dynstr
= _bfd_elf_strtab_init ();
172 if (hash_table
->dynstr
== NULL
)
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
186 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
189 register asection
*s
;
190 const struct elf_backend_data
*bed
;
192 if (! is_elf_hash_table (info
->hash
))
195 if (elf_hash_table (info
)->dynamic_sections_created
)
198 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
201 abfd
= elf_hash_table (info
)->dynobj
;
202 bed
= get_elf_backend_data (abfd
);
204 flags
= bed
->dynamic_sec_flags
;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info
->executable
)
210 s
= bfd_make_section_with_flags (abfd
, ".interp",
211 flags
| SEC_READONLY
);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
219 flags
| SEC_READONLY
);
221 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
224 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
225 flags
| SEC_READONLY
);
227 || ! bfd_set_section_alignment (abfd
, s
, 1))
230 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
231 flags
| SEC_READONLY
);
233 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
236 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
237 flags
| SEC_READONLY
);
239 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
242 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
243 flags
| SEC_READONLY
);
247 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
249 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
263 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
265 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
267 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
270 if (info
->emit_gnu_hash
)
272 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
273 flags
| SEC_READONLY
);
275 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed
->s
->arch_size
== 64)
281 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
283 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
292 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
297 /* Create dynamic sections when linking against a dynamic object. */
300 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
302 flagword flags
, pltflags
;
303 struct elf_link_hash_entry
*h
;
305 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 if (bed
->want_plt_sym
)
331 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info
)->hplt
= h
;
338 s
= bfd_make_section_with_flags (abfd
,
339 (bed
->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags
| SEC_READONLY
);
343 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
346 if (! _bfd_elf_create_got_section (abfd
, info
))
349 if (bed
->want_dynbss
)
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
359 | SEC_LINKER_CREATED
));
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
376 s
= bfd_make_section_with_flags (abfd
,
377 (bed
->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags
| SEC_READONLY
);
381 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
399 struct elf_link_hash_entry
*h
)
401 if (h
->dynindx
== -1)
403 struct elf_strtab_hash
*dynstr
;
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h
->other
))
416 if (h
->root
.type
!= bfd_link_hash_undefined
417 && h
->root
.type
!= bfd_link_hash_undefweak
)
420 if (!elf_hash_table (info
)->is_relocatable_executable
)
428 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
429 ++elf_hash_table (info
)->dynsymcount
;
431 dynstr
= elf_hash_table (info
)->dynstr
;
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
440 /* We don't put any version information in the dynamic string
442 name
= h
->root
.root
.string
;
443 p
= strchr (name
, ELF_VER_CHR
);
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
452 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
457 if (indx
== (bfd_size_type
) -1)
459 h
->dynstr_index
= indx
;
465 /* Mark a symbol dynamic. */
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
469 struct elf_link_hash_entry
*h
,
470 Elf_Internal_Sym
*sym
)
472 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
474 /* It may be called more than once on the same H. */
475 if(h
->dynamic
|| info
->relocatable
)
478 if ((info
->dynamic_data
479 && (h
->type
== STT_OBJECT
481 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
483 && h
->root
.type
== bfd_link_hash_new
484 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
492 bfd_elf_record_link_assignment (bfd
*output_bfd
,
493 struct bfd_link_info
*info
,
498 struct elf_link_hash_entry
*h
, *hv
;
499 struct elf_link_hash_table
*htab
;
500 const struct elf_backend_data
*bed
;
502 if (!is_elf_hash_table (info
->hash
))
505 htab
= elf_hash_table (info
);
506 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
510 switch (h
->root
.type
)
512 case bfd_link_hash_defined
:
513 case bfd_link_hash_defweak
:
514 case bfd_link_hash_common
:
516 case bfd_link_hash_undefweak
:
517 case bfd_link_hash_undefined
:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h
->root
.type
= bfd_link_hash_new
;
522 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
523 bfd_link_repair_undef_list (&htab
->root
);
525 case bfd_link_hash_new
:
526 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
529 case bfd_link_hash_indirect
:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed
= get_elf_backend_data (output_bfd
);
534 while (hv
->root
.type
== bfd_link_hash_indirect
535 || hv
->root
.type
== bfd_link_hash_warning
)
536 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
537 /* We don't need to update h->root.u since linker will set them
539 h
->root
.type
= bfd_link_hash_undefined
;
540 hv
->root
.type
= bfd_link_hash_indirect
;
541 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
542 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
544 case bfd_link_hash_warning
:
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
556 h
->root
.type
= bfd_link_hash_undefined
;
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
565 h
->verinfo
.verdef
= NULL
;
569 if (provide
&& hidden
)
571 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
573 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
574 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 if (!info
->relocatable
581 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
588 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
591 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h
->u
.weakdef
!= NULL
598 && h
->u
.weakdef
->dynindx
== -1)
600 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
618 struct elf_link_local_dynamic_entry
*entry
;
619 struct elf_link_hash_table
*eht
;
620 struct elf_strtab_hash
*dynstr
;
621 unsigned long dynstr_index
;
623 Elf_External_Sym_Shndx eshndx
;
624 char esym
[sizeof (Elf64_External_Sym
)];
626 if (! is_elf_hash_table (info
->hash
))
629 /* See if the entry exists already. */
630 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
631 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
634 amt
= sizeof (*entry
);
635 entry
= bfd_alloc (input_bfd
, amt
);
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
641 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
643 bfd_release (input_bfd
, entry
);
647 if (entry
->isym
.st_shndx
!= SHN_UNDEF
648 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
652 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
653 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd
, entry
);
662 name
= (bfd_elf_string_from_elf_section
663 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
664 entry
->isym
.st_name
));
666 dynstr
= elf_hash_table (info
)->dynstr
;
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
675 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
676 if (dynstr_index
== (unsigned long) -1)
678 entry
->isym
.st_name
= dynstr_index
;
680 eht
= elf_hash_table (info
);
682 entry
->next
= eht
->dynlocal
;
683 eht
->dynlocal
= entry
;
684 entry
->input_bfd
= input_bfd
;
685 entry
->input_indx
= input_indx
;
688 /* Whatever binding the symbol had before, it's now local. */
690 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
692 /* The dynindx will be set at the end of size_dynamic_sections. */
697 /* Return the dynindex of a local dynamic symbol. */
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
704 struct elf_link_local_dynamic_entry
*e
;
706 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
707 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
720 size_t *count
= data
;
722 if (h
->root
.type
== bfd_link_hash_warning
)
723 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
728 if (h
->dynindx
!= -1)
729 h
->dynindx
= ++(*count
);
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
742 size_t *count
= data
;
744 if (h
->root
.type
== bfd_link_hash_warning
)
745 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
747 if (!h
->forced_local
)
750 if (h
->dynindx
!= -1)
751 h
->dynindx
= ++(*count
);
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
759 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
760 struct bfd_link_info
*info
,
763 struct elf_link_hash_table
*htab
;
765 switch (elf_section_data (p
)->this_hdr
.sh_type
)
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
772 htab
= elf_hash_table (info
);
773 if (p
== htab
->tls_sec
)
776 if (htab
->text_index_section
!= NULL
)
777 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
779 if (strcmp (p
->name
, ".got") == 0
780 || strcmp (p
->name
, ".got.plt") == 0
781 || strcmp (p
->name
, ".plt") == 0)
785 if (htab
->dynobj
!= NULL
786 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
787 && (ip
->flags
& SEC_LINKER_CREATED
)
788 && ip
->output_section
== p
)
793 /* There shouldn't be section relative relocations
794 against any other section. */
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
807 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
808 struct bfd_link_info
*info
,
809 unsigned long *section_sym_count
)
811 unsigned long dynsymcount
= 0;
813 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
815 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
817 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
818 if ((p
->flags
& SEC_EXCLUDE
) == 0
819 && (p
->flags
& SEC_ALLOC
) != 0
820 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
821 elf_section_data (p
)->dynindx
= ++dynsymcount
;
823 elf_section_data (p
)->dynindx
= 0;
825 *section_sym_count
= dynsymcount
;
827 elf_link_hash_traverse (elf_hash_table (info
),
828 elf_link_renumber_local_hash_table_dynsyms
,
831 if (elf_hash_table (info
)->dynlocal
)
833 struct elf_link_local_dynamic_entry
*p
;
834 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
835 p
->dynindx
= ++dynsymcount
;
838 elf_link_hash_traverse (elf_hash_table (info
),
839 elf_link_renumber_hash_table_dynsyms
,
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount
!= 0)
848 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
852 /* Merge st_other field. */
855 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
856 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
859 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed
->elf_backend_merge_symbol_attribute
)
865 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
873 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
874 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
875 isym
->st_other
= (STV_HIDDEN
876 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
878 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
880 unsigned char hvis
, symvis
, other
, nvis
;
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
886 /* Combine visibilities, using the most constraining one. */
887 hvis
= ELF_ST_VISIBILITY (h
->other
);
888 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
894 nvis
= hvis
< symvis
? hvis
: symvis
;
896 h
->other
= other
| nvis
;
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
913 _bfd_elf_merge_symbol (bfd
*abfd
,
914 struct bfd_link_info
*info
,
916 Elf_Internal_Sym
*sym
,
919 unsigned int *pold_alignment
,
920 struct elf_link_hash_entry
**sym_hash
,
922 bfd_boolean
*override
,
923 bfd_boolean
*type_change_ok
,
924 bfd_boolean
*size_change_ok
)
926 asection
*sec
, *oldsec
;
927 struct elf_link_hash_entry
*h
;
928 struct elf_link_hash_entry
*flip
;
931 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
932 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
933 const struct elf_backend_data
*bed
;
939 bind
= ELF_ST_BIND (sym
->st_info
);
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
944 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
950 if (! bfd_is_und_section (sec
))
951 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
953 h
= ((struct elf_link_hash_entry
*)
954 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
959 bed
= get_elf_backend_data (abfd
);
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
966 /* For merging, we only care about real symbols. */
968 while (h
->root
.type
== bfd_link_hash_indirect
969 || h
->root
.type
== bfd_link_hash_warning
)
970 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
975 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
981 if (h
->root
.type
== bfd_link_hash_new
)
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 switch (h
->root
.type
)
997 case bfd_link_hash_undefined
:
998 case bfd_link_hash_undefweak
:
999 oldbfd
= h
->root
.u
.undef
.abfd
;
1003 case bfd_link_hash_defined
:
1004 case bfd_link_hash_defweak
:
1005 oldbfd
= h
->root
.u
.def
.section
->owner
;
1006 oldsec
= h
->root
.u
.def
.section
;
1009 case bfd_link_hash_common
:
1010 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1011 oldsec
= h
->root
.u
.c
.p
->section
;
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1022 && ((abfd
->flags
& DYNAMIC
) == 0
1023 || !h
->def_regular
))
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1029 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1033 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1034 else if (oldsec
!= NULL
)
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1044 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1046 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1047 && h
->root
.type
!= bfd_link_hash_undefweak
1048 && h
->root
.type
!= bfd_link_hash_common
);
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1053 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1054 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1056 oldfunc
= (h
->type
!= STT_NOTYPE
1057 && bed
->is_function_type (h
->type
));
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment
== NULL
1065 && !info
->export_dynamic
1070 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1071 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1072 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1073 && h
->type
!= STT_NOTYPE
1074 && !(newfunc
&& oldfunc
))
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1082 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1083 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1087 bfd_boolean ntdef
, tdef
;
1088 asection
*ntsec
, *tsec
;
1090 if (h
->type
== STT_TLS
)
1110 (*_bfd_error_handler
)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1113 else if (!tdef
&& !ntdef
)
1114 (*_bfd_error_handler
)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd
, ntbfd
, h
->root
.root
.string
);
1118 (*_bfd_error_handler
)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1122 (*_bfd_error_handler
)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1126 bfd_set_error (bfd_error_bad_value
);
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn
&& !h
->dynamic_def
)
1135 if (!bfd_is_und_section (sec
))
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h
->ref_dynamic
)
1144 if (bind
== STB_WEAK
)
1145 h
->dynamic_weak
= 1;
1147 else if (bind
!= STB_WEAK
)
1148 h
->dynamic_weak
= 0;
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1155 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1156 && !bfd_is_und_section (sec
))
1159 /* Make sure this symbol is dynamic. */
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1166 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1171 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1185 const struct elf_backend_data
*bed
1186 = get_elf_backend_data (abfd
);
1187 struct elf_link_hash_entry
*vh
= *sym_hash
;
1188 vh
->root
.type
= h
->root
.type
;
1189 h
->root
.type
= bfd_link_hash_indirect
;
1190 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1195 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1196 vh
->dynamic_def
= 1;
1197 vh
->ref_dynamic
= 1;
1201 h
->root
.type
= vh
->root
.type
;
1202 vh
->ref_dynamic
= 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1214 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1215 && bfd_is_und_section (sec
))
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1223 h
->root
.type
= bfd_link_hash_undefined
;
1224 h
->root
.u
.undef
.abfd
= abfd
;
1228 h
->root
.type
= bfd_link_hash_new
;
1229 h
->root
.u
.undef
.abfd
= NULL
;
1238 /* FIXME: Should we check type and size for protected symbol? */
1244 /* Differentiate strong and weak symbols. */
1245 newweak
= bind
== STB_WEAK
;
1246 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1247 || h
->root
.type
== bfd_link_hash_undefweak
);
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1260 if (newdef
&& !newdyn
&& olddyn
)
1262 if (olddef
&& newdyn
)
1265 /* Allow changes between different types of function symbol. */
1266 if (newfunc
&& oldfunc
)
1267 *type_change_ok
= TRUE
;
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1276 && h
->root
.type
== bfd_link_hash_undefined
))
1277 *type_change_ok
= TRUE
;
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1283 || h
->root
.type
== bfd_link_hash_undefined
)
1284 *size_change_ok
= TRUE
;
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1312 && (sec
->flags
& SEC_ALLOC
) != 0
1313 && (sec
->flags
& SEC_LOAD
) == 0
1316 newdyncommon
= TRUE
;
1318 newdyncommon
= FALSE
;
1322 && h
->root
.type
== bfd_link_hash_defined
1324 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1325 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1328 olddyncommon
= TRUE
;
1330 olddyncommon
= FALSE
;
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed
->merge_symbol
1335 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1336 pold_alignment
, skip
, override
,
1337 type_change_ok
, size_change_ok
,
1338 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1340 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1350 && sym
->st_size
!= h
->size
)
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1358 if (! ((*info
->callbacks
->multiple_common
)
1359 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1360 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1363 if (sym
->st_size
> h
->size
)
1364 h
->size
= sym
->st_size
;
1366 *size_change_ok
= TRUE
;
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1386 || (h
->root
.type
== bfd_link_hash_common
1387 && (newweak
|| newfunc
))))
1391 newdyncommon
= FALSE
;
1393 *psec
= sec
= bfd_und_section_ptr
;
1394 *size_change_ok
= TRUE
;
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1402 if (h
->root
.type
== bfd_link_hash_common
)
1403 *type_change_ok
= TRUE
;
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1413 && h
->root
.type
== bfd_link_hash_common
)
1417 newdyncommon
= FALSE
;
1418 *pvalue
= sym
->st_size
;
1419 *psec
= sec
= bed
->common_section (oldsec
);
1420 *size_change_ok
= TRUE
;
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef
&& olddef
&& newweak
)
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1431 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1432 if (h
->dynindx
!= -1)
1433 switch (ELF_ST_VISIBILITY (h
->other
))
1437 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1455 || (bfd_is_com_section (sec
)
1456 && (oldweak
|| oldfunc
)))
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1465 h
->root
.type
= bfd_link_hash_undefined
;
1466 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1467 *size_change_ok
= TRUE
;
1470 olddyncommon
= FALSE
;
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1475 if (bfd_is_com_section (sec
))
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1483 h
->type
= STT_NOTYPE
;
1485 *type_change_ok
= TRUE
;
1488 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h
->verinfo
.vertree
= NULL
;
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1504 && bfd_is_com_section (sec
)
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info
->callbacks
->multiple_common
)
1511 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1512 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1518 if (h
->size
> *pvalue
)
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment
);
1524 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1527 olddyncommon
= FALSE
;
1529 h
->root
.type
= bfd_link_hash_undefined
;
1530 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1532 *size_change_ok
= TRUE
;
1533 *type_change_ok
= TRUE
;
1535 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1538 h
->verinfo
.vertree
= NULL
;
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1547 flip
->root
.type
= h
->root
.type
;
1548 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1549 h
->root
.type
= bfd_link_hash_indirect
;
1550 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1551 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1555 flip
->ref_dynamic
= 1;
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1568 _bfd_elf_add_default_symbol (bfd
*abfd
,
1569 struct bfd_link_info
*info
,
1570 struct elf_link_hash_entry
*h
,
1572 Elf_Internal_Sym
*sym
,
1575 bfd_boolean
*dynsym
,
1576 bfd_boolean override
)
1578 bfd_boolean type_change_ok
;
1579 bfd_boolean size_change_ok
;
1582 struct elf_link_hash_entry
*hi
;
1583 struct bfd_link_hash_entry
*bh
;
1584 const struct elf_backend_data
*bed
;
1585 bfd_boolean collect
;
1586 bfd_boolean dynamic
;
1588 size_t len
, shortlen
;
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p
= strchr (name
, ELF_VER_CHR
);
1596 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1605 BFD_ASSERT (hi
!= NULL
);
1608 while (hi
->root
.type
== bfd_link_hash_indirect
1609 || hi
->root
.type
== bfd_link_hash_warning
)
1611 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1617 bed
= get_elf_backend_data (abfd
);
1618 collect
= bed
->collect
;
1619 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1621 shortlen
= p
- name
;
1622 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1623 if (shortname
== NULL
)
1625 memcpy (shortname
, name
, shortlen
);
1626 shortname
[shortlen
] = '\0';
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok
= FALSE
;
1633 size_change_ok
= FALSE
;
1635 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1636 NULL
, &hi
, &skip
, &override
,
1637 &type_change_ok
, &size_change_ok
))
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1648 0, name
, FALSE
, collect
, &bh
)))
1650 hi
= (struct elf_link_hash_entry
*) bh
;
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1672 while (hi
->root
.type
== bfd_link_hash_indirect
1673 || hi
->root
.type
== bfd_link_hash_warning
)
1674 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1676 h
->root
.type
= bfd_link_hash_indirect
;
1677 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1681 hi
->ref_dynamic
= 1;
1685 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1695 /* Check if HI is a warning symbol. */
1696 if (hi
->root
.type
== bfd_link_hash_warning
)
1697 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1703 if (hi
->root
.type
== bfd_link_hash_indirect
)
1705 struct elf_link_hash_entry
*ht
;
1707 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1708 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1710 /* See if the new flags lead us to realize that the symbol must
1722 if (hi
->ref_regular
)
1728 /* We also need to define an indirection from the nondefault version
1732 len
= strlen (name
);
1733 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1734 if (shortname
== NULL
)
1736 memcpy (shortname
, name
, shortlen
);
1737 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok
= FALSE
;
1741 size_change_ok
= FALSE
;
1743 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1744 NULL
, &hi
, &skip
, &override
,
1745 &type_change_ok
, &size_change_ok
))
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi
->root
.type
!= bfd_link_hash_defined
1757 && hi
->root
.type
!= bfd_link_hash_defweak
)
1758 (*_bfd_error_handler
)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info
, abfd
, shortname
, BSF_INDIRECT
,
1767 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1769 hi
= (struct elf_link_hash_entry
*) bh
;
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1775 if (hi
->root
.type
== bfd_link_hash_indirect
)
1777 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1779 /* See if the new flags lead us to realize that the symbol
1791 if (hi
->ref_regular
)
1801 /* This routine is used to export all defined symbols into the dynamic
1802 symbol table. It is called via elf_link_hash_traverse. */
1805 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1807 struct elf_info_failed
*eif
= data
;
1809 /* Ignore this if we won't export it. */
1810 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1813 /* Ignore indirect symbols. These are added by the versioning code. */
1814 if (h
->root
.type
== bfd_link_hash_indirect
)
1817 if (h
->root
.type
== bfd_link_hash_warning
)
1818 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1820 if (h
->dynindx
== -1
1826 if (eif
->verdefs
== NULL
1827 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1830 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1841 /* Look through the symbols which are defined in other shared
1842 libraries and referenced here. Update the list of version
1843 dependencies. This will be put into the .gnu.version_r section.
1844 This function is called via elf_link_hash_traverse. */
1847 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1850 struct elf_find_verdep_info
*rinfo
= data
;
1851 Elf_Internal_Verneed
*t
;
1852 Elf_Internal_Vernaux
*a
;
1855 if (h
->root
.type
== bfd_link_hash_warning
)
1856 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1858 /* We only care about symbols defined in shared objects with version
1863 || h
->verinfo
.verdef
== NULL
)
1866 /* See if we already know about this version. */
1867 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1871 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1874 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1875 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1881 /* This is a new version. Add it to tree we are building. */
1886 t
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1889 rinfo
->failed
= TRUE
;
1893 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1894 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1895 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1899 a
= bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1902 rinfo
->failed
= TRUE
;
1906 /* Note that we are copying a string pointer here, and testing it
1907 above. If bfd_elf_string_from_elf_section is ever changed to
1908 discard the string data when low in memory, this will have to be
1910 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1912 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1913 a
->vna_nextptr
= t
->vn_auxptr
;
1915 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1918 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1925 /* Figure out appropriate versions for all the symbols. We may not
1926 have the version number script until we have read all of the input
1927 files, so until that point we don't know which symbols should be
1928 local. This function is called via elf_link_hash_traverse. */
1931 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1933 struct elf_info_failed
*sinfo
;
1934 struct bfd_link_info
*info
;
1935 const struct elf_backend_data
*bed
;
1936 struct elf_info_failed eif
;
1943 if (h
->root
.type
== bfd_link_hash_warning
)
1944 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1946 /* Fix the symbol flags. */
1949 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1952 sinfo
->failed
= TRUE
;
1956 /* We only need version numbers for symbols defined in regular
1958 if (!h
->def_regular
)
1961 bed
= get_elf_backend_data (info
->output_bfd
);
1962 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1963 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1965 struct bfd_elf_version_tree
*t
;
1970 /* There are two consecutive ELF_VER_CHR characters if this is
1971 not a hidden symbol. */
1973 if (*p
== ELF_VER_CHR
)
1979 /* If there is no version string, we can just return out. */
1987 /* Look for the version. If we find it, it is no longer weak. */
1988 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1990 if (strcmp (t
->name
, p
) == 0)
1994 struct bfd_elf_version_expr
*d
;
1996 len
= p
- h
->root
.root
.string
;
1997 alc
= bfd_malloc (len
);
2000 sinfo
->failed
= TRUE
;
2003 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2004 alc
[len
- 1] = '\0';
2005 if (alc
[len
- 2] == ELF_VER_CHR
)
2006 alc
[len
- 2] = '\0';
2008 h
->verinfo
.vertree
= t
;
2012 if (t
->globals
.list
!= NULL
)
2013 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2015 /* See if there is anything to force this symbol to
2017 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2019 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2022 && ! info
->export_dynamic
)
2023 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2031 /* If we are building an application, we need to create a
2032 version node for this version. */
2033 if (t
== NULL
&& info
->executable
)
2035 struct bfd_elf_version_tree
**pp
;
2038 /* If we aren't going to export this symbol, we don't need
2039 to worry about it. */
2040 if (h
->dynindx
== -1)
2044 t
= bfd_zalloc (info
->output_bfd
, amt
);
2047 sinfo
->failed
= TRUE
;
2052 t
->name_indx
= (unsigned int) -1;
2056 /* Don't count anonymous version tag. */
2057 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2059 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2061 t
->vernum
= version_index
;
2065 h
->verinfo
.vertree
= t
;
2069 /* We could not find the version for a symbol when
2070 generating a shared archive. Return an error. */
2071 (*_bfd_error_handler
)
2072 (_("%B: version node not found for symbol %s"),
2073 info
->output_bfd
, h
->root
.root
.string
);
2074 bfd_set_error (bfd_error_bad_value
);
2075 sinfo
->failed
= TRUE
;
2083 /* If we don't have a version for this symbol, see if we can find
2085 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2089 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2090 h
->root
.root
.string
, &hide
);
2091 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2092 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2098 /* Read and swap the relocs from the section indicated by SHDR. This
2099 may be either a REL or a RELA section. The relocations are
2100 translated into RELA relocations and stored in INTERNAL_RELOCS,
2101 which should have already been allocated to contain enough space.
2102 The EXTERNAL_RELOCS are a buffer where the external form of the
2103 relocations should be stored.
2105 Returns FALSE if something goes wrong. */
2108 elf_link_read_relocs_from_section (bfd
*abfd
,
2110 Elf_Internal_Shdr
*shdr
,
2111 void *external_relocs
,
2112 Elf_Internal_Rela
*internal_relocs
)
2114 const struct elf_backend_data
*bed
;
2115 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2116 const bfd_byte
*erela
;
2117 const bfd_byte
*erelaend
;
2118 Elf_Internal_Rela
*irela
;
2119 Elf_Internal_Shdr
*symtab_hdr
;
2122 /* Position ourselves at the start of the section. */
2123 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2126 /* Read the relocations. */
2127 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2130 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2131 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2133 bed
= get_elf_backend_data (abfd
);
2135 /* Convert the external relocations to the internal format. */
2136 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2137 swap_in
= bed
->s
->swap_reloc_in
;
2138 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2139 swap_in
= bed
->s
->swap_reloca_in
;
2142 bfd_set_error (bfd_error_wrong_format
);
2146 erela
= external_relocs
;
2147 erelaend
= erela
+ shdr
->sh_size
;
2148 irela
= internal_relocs
;
2149 while (erela
< erelaend
)
2153 (*swap_in
) (abfd
, erela
, irela
);
2154 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2155 if (bed
->s
->arch_size
== 64)
2159 if ((size_t) r_symndx
>= nsyms
)
2161 (*_bfd_error_handler
)
2162 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2163 " for offset 0x%lx in section `%A'"),
2165 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2166 bfd_set_error (bfd_error_bad_value
);
2170 else if (r_symndx
!= 0)
2172 (*_bfd_error_handler
)
2173 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2174 " when the object file has no symbol table"),
2176 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2177 bfd_set_error (bfd_error_bad_value
);
2180 irela
+= bed
->s
->int_rels_per_ext_rel
;
2181 erela
+= shdr
->sh_entsize
;
2187 /* Read and swap the relocs for a section O. They may have been
2188 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2189 not NULL, they are used as buffers to read into. They are known to
2190 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2191 the return value is allocated using either malloc or bfd_alloc,
2192 according to the KEEP_MEMORY argument. If O has two relocation
2193 sections (both REL and RELA relocations), then the REL_HDR
2194 relocations will appear first in INTERNAL_RELOCS, followed by the
2195 REL_HDR2 relocations. */
2198 _bfd_elf_link_read_relocs (bfd
*abfd
,
2200 void *external_relocs
,
2201 Elf_Internal_Rela
*internal_relocs
,
2202 bfd_boolean keep_memory
)
2204 Elf_Internal_Shdr
*rel_hdr
;
2205 void *alloc1
= NULL
;
2206 Elf_Internal_Rela
*alloc2
= NULL
;
2207 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2209 if (elf_section_data (o
)->relocs
!= NULL
)
2210 return elf_section_data (o
)->relocs
;
2212 if (o
->reloc_count
== 0)
2215 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2217 if (internal_relocs
== NULL
)
2221 size
= o
->reloc_count
;
2222 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2224 internal_relocs
= alloc2
= bfd_alloc (abfd
, size
);
2226 internal_relocs
= alloc2
= bfd_malloc (size
);
2227 if (internal_relocs
== NULL
)
2231 if (external_relocs
== NULL
)
2233 bfd_size_type size
= rel_hdr
->sh_size
;
2235 if (elf_section_data (o
)->rel_hdr2
)
2236 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2237 alloc1
= bfd_malloc (size
);
2240 external_relocs
= alloc1
;
2243 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2247 if (elf_section_data (o
)->rel_hdr2
2248 && (!elf_link_read_relocs_from_section
2250 elf_section_data (o
)->rel_hdr2
,
2251 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2252 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2253 * bed
->s
->int_rels_per_ext_rel
))))
2256 /* Cache the results for next time, if we can. */
2258 elf_section_data (o
)->relocs
= internal_relocs
;
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2266 return internal_relocs
;
2274 bfd_release (abfd
, alloc2
);
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2285 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2286 Elf_Internal_Shdr
*rel_hdr
,
2289 bfd_size_type reloc_count
;
2290 bfd_size_type num_rel_hashes
;
2292 /* Figure out how many relocations there will be. */
2293 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2294 reloc_count
= elf_section_data (o
)->rel_count
;
2296 reloc_count
= elf_section_data (o
)->rel_count2
;
2298 num_rel_hashes
= o
->reloc_count
;
2299 if (num_rel_hashes
< reloc_count
)
2300 num_rel_hashes
= reloc_count
;
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2310 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2313 /* We only allocate one set of hash entries, so we only do it the
2314 first time we are called. */
2315 if (elf_section_data (o
)->rel_hashes
== NULL
2318 struct elf_link_hash_entry
**p
;
2320 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2324 elf_section_data (o
)->rel_hashes
= p
;
2330 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2331 originated from the section given by INPUT_REL_HDR) to the
2335 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2336 asection
*input_section
,
2337 Elf_Internal_Shdr
*input_rel_hdr
,
2338 Elf_Internal_Rela
*internal_relocs
,
2339 struct elf_link_hash_entry
**rel_hash
2342 Elf_Internal_Rela
*irela
;
2343 Elf_Internal_Rela
*irelaend
;
2345 Elf_Internal_Shdr
*output_rel_hdr
;
2346 asection
*output_section
;
2347 unsigned int *rel_countp
= NULL
;
2348 const struct elf_backend_data
*bed
;
2349 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2351 output_section
= input_section
->output_section
;
2352 output_rel_hdr
= NULL
;
2354 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2355 == input_rel_hdr
->sh_entsize
)
2357 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2358 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2360 else if (elf_section_data (output_section
)->rel_hdr2
2361 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2362 == input_rel_hdr
->sh_entsize
))
2364 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2365 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2369 (*_bfd_error_handler
)
2370 (_("%B: relocation size mismatch in %B section %A"),
2371 output_bfd
, input_section
->owner
, input_section
);
2372 bfd_set_error (bfd_error_wrong_format
);
2376 bed
= get_elf_backend_data (output_bfd
);
2377 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2378 swap_out
= bed
->s
->swap_reloc_out
;
2379 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2380 swap_out
= bed
->s
->swap_reloca_out
;
2384 erel
= output_rel_hdr
->contents
;
2385 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2386 irela
= internal_relocs
;
2387 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2388 * bed
->s
->int_rels_per_ext_rel
);
2389 while (irela
< irelaend
)
2391 (*swap_out
) (output_bfd
, irela
, erel
);
2392 irela
+= bed
->s
->int_rels_per_ext_rel
;
2393 erel
+= input_rel_hdr
->sh_entsize
;
2396 /* Bump the counter, so that we know where to add the next set of
2398 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2403 /* Make weak undefined symbols in PIE dynamic. */
2406 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2407 struct elf_link_hash_entry
*h
)
2411 && h
->root
.type
== bfd_link_hash_undefweak
)
2412 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2417 /* Fix up the flags for a symbol. This handles various cases which
2418 can only be fixed after all the input files are seen. This is
2419 currently called by both adjust_dynamic_symbol and
2420 assign_sym_version, which is unnecessary but perhaps more robust in
2421 the face of future changes. */
2424 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2425 struct elf_info_failed
*eif
)
2427 const struct elf_backend_data
*bed
;
2429 /* If this symbol was mentioned in a non-ELF file, try to set
2430 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2431 permit a non-ELF file to correctly refer to a symbol defined in
2432 an ELF dynamic object. */
2435 while (h
->root
.type
== bfd_link_hash_indirect
)
2436 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2438 if (h
->root
.type
!= bfd_link_hash_defined
2439 && h
->root
.type
!= bfd_link_hash_defweak
)
2442 h
->ref_regular_nonweak
= 1;
2446 if (h
->root
.u
.def
.section
->owner
!= NULL
2447 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2448 == bfd_target_elf_flavour
))
2451 h
->ref_regular_nonweak
= 1;
2457 if (h
->dynindx
== -1
2461 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2470 /* Unfortunately, NON_ELF is only correct if the symbol
2471 was first seen in a non-ELF file. Fortunately, if the symbol
2472 was first seen in an ELF file, we're probably OK unless the
2473 symbol was defined in a non-ELF file. Catch that case here.
2474 FIXME: We're still in trouble if the symbol was first seen in
2475 a dynamic object, and then later in a non-ELF regular object. */
2476 if ((h
->root
.type
== bfd_link_hash_defined
2477 || h
->root
.type
== bfd_link_hash_defweak
)
2479 && (h
->root
.u
.def
.section
->owner
!= NULL
2480 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2481 != bfd_target_elf_flavour
)
2482 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2483 && !h
->def_dynamic
)))
2487 /* Backend specific symbol fixup. */
2488 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2489 if (bed
->elf_backend_fixup_symbol
2490 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2493 /* If this is a final link, and the symbol was defined as a common
2494 symbol in a regular object file, and there was no definition in
2495 any dynamic object, then the linker will have allocated space for
2496 the symbol in a common section but the DEF_REGULAR
2497 flag will not have been set. */
2498 if (h
->root
.type
== bfd_link_hash_defined
2502 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2505 /* If -Bsymbolic was used (which means to bind references to global
2506 symbols to the definition within the shared object), and this
2507 symbol was defined in a regular object, then it actually doesn't
2508 need a PLT entry. Likewise, if the symbol has non-default
2509 visibility. If the symbol has hidden or internal visibility, we
2510 will force it local. */
2512 && eif
->info
->shared
2513 && is_elf_hash_table (eif
->info
->hash
)
2514 && (SYMBOLIC_BIND (eif
->info
, h
)
2515 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2518 bfd_boolean force_local
;
2520 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2521 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2522 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2525 /* If a weak undefined symbol has non-default visibility, we also
2526 hide it from the dynamic linker. */
2527 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2528 && h
->root
.type
== bfd_link_hash_undefweak
)
2529 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2531 /* If this is a weak defined symbol in a dynamic object, and we know
2532 the real definition in the dynamic object, copy interesting flags
2533 over to the real definition. */
2534 if (h
->u
.weakdef
!= NULL
)
2536 struct elf_link_hash_entry
*weakdef
;
2538 weakdef
= h
->u
.weakdef
;
2539 if (h
->root
.type
== bfd_link_hash_indirect
)
2540 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2542 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2543 || h
->root
.type
== bfd_link_hash_defweak
);
2544 BFD_ASSERT (weakdef
->def_dynamic
);
2546 /* If the real definition is defined by a regular object file,
2547 don't do anything special. See the longer description in
2548 _bfd_elf_adjust_dynamic_symbol, below. */
2549 if (weakdef
->def_regular
)
2550 h
->u
.weakdef
= NULL
;
2553 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2554 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2555 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2562 /* Make the backend pick a good value for a dynamic symbol. This is
2563 called via elf_link_hash_traverse, and also calls itself
2567 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2569 struct elf_info_failed
*eif
= data
;
2571 const struct elf_backend_data
*bed
;
2573 if (! is_elf_hash_table (eif
->info
->hash
))
2576 if (h
->root
.type
== bfd_link_hash_warning
)
2578 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2579 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2581 /* When warning symbols are created, they **replace** the "real"
2582 entry in the hash table, thus we never get to see the real
2583 symbol in a hash traversal. So look at it now. */
2584 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2587 /* Ignore indirect symbols. These are added by the versioning code. */
2588 if (h
->root
.type
== bfd_link_hash_indirect
)
2591 /* Fix the symbol flags. */
2592 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2595 /* If this symbol does not require a PLT entry, and it is not
2596 defined by a dynamic object, or is not referenced by a regular
2597 object, ignore it. We do have to handle a weak defined symbol,
2598 even if no regular object refers to it, if we decided to add it
2599 to the dynamic symbol table. FIXME: Do we normally need to worry
2600 about symbols which are defined by one dynamic object and
2601 referenced by another one? */
2606 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2608 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2612 /* If we've already adjusted this symbol, don't do it again. This
2613 can happen via a recursive call. */
2614 if (h
->dynamic_adjusted
)
2617 /* Don't look at this symbol again. Note that we must set this
2618 after checking the above conditions, because we may look at a
2619 symbol once, decide not to do anything, and then get called
2620 recursively later after REF_REGULAR is set below. */
2621 h
->dynamic_adjusted
= 1;
2623 /* If this is a weak definition, and we know a real definition, and
2624 the real symbol is not itself defined by a regular object file,
2625 then get a good value for the real definition. We handle the
2626 real symbol first, for the convenience of the backend routine.
2628 Note that there is a confusing case here. If the real definition
2629 is defined by a regular object file, we don't get the real symbol
2630 from the dynamic object, but we do get the weak symbol. If the
2631 processor backend uses a COPY reloc, then if some routine in the
2632 dynamic object changes the real symbol, we will not see that
2633 change in the corresponding weak symbol. This is the way other
2634 ELF linkers work as well, and seems to be a result of the shared
2637 I will clarify this issue. Most SVR4 shared libraries define the
2638 variable _timezone and define timezone as a weak synonym. The
2639 tzset call changes _timezone. If you write
2640 extern int timezone;
2642 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2643 you might expect that, since timezone is a synonym for _timezone,
2644 the same number will print both times. However, if the processor
2645 backend uses a COPY reloc, then actually timezone will be copied
2646 into your process image, and, since you define _timezone
2647 yourself, _timezone will not. Thus timezone and _timezone will
2648 wind up at different memory locations. The tzset call will set
2649 _timezone, leaving timezone unchanged. */
2651 if (h
->u
.weakdef
!= NULL
)
2653 /* If we get to this point, we know there is an implicit
2654 reference by a regular object file via the weak symbol H.
2655 FIXME: Is this really true? What if the traversal finds
2656 H->U.WEAKDEF before it finds H? */
2657 h
->u
.weakdef
->ref_regular
= 1;
2659 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2663 /* If a symbol has no type and no size and does not require a PLT
2664 entry, then we are probably about to do the wrong thing here: we
2665 are probably going to create a COPY reloc for an empty object.
2666 This case can arise when a shared object is built with assembly
2667 code, and the assembly code fails to set the symbol type. */
2669 && h
->type
== STT_NOTYPE
2671 (*_bfd_error_handler
)
2672 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2673 h
->root
.root
.string
);
2675 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2676 bed
= get_elf_backend_data (dynobj
);
2678 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2687 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2691 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2694 unsigned int power_of_two
;
2696 asection
*sec
= h
->root
.u
.def
.section
;
2698 /* The section aligment of definition is the maximum alignment
2699 requirement of symbols defined in the section. Since we don't
2700 know the symbol alignment requirement, we start with the
2701 maximum alignment and check low bits of the symbol address
2702 for the minimum alignment. */
2703 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2704 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2705 while ((h
->root
.u
.def
.value
& mask
) != 0)
2711 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2714 /* Adjust the section alignment if needed. */
2715 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2720 /* We make sure that the symbol will be aligned properly. */
2721 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2723 /* Define the symbol as being at this point in DYNBSS. */
2724 h
->root
.u
.def
.section
= dynbss
;
2725 h
->root
.u
.def
.value
= dynbss
->size
;
2727 /* Increment the size of DYNBSS to make room for the symbol. */
2728 dynbss
->size
+= h
->size
;
2733 /* Adjust all external symbols pointing into SEC_MERGE sections
2734 to reflect the object merging within the sections. */
2737 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2741 if (h
->root
.type
== bfd_link_hash_warning
)
2742 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2744 if ((h
->root
.type
== bfd_link_hash_defined
2745 || h
->root
.type
== bfd_link_hash_defweak
)
2746 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2747 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2749 bfd
*output_bfd
= data
;
2751 h
->root
.u
.def
.value
=
2752 _bfd_merged_section_offset (output_bfd
,
2753 &h
->root
.u
.def
.section
,
2754 elf_section_data (sec
)->sec_info
,
2755 h
->root
.u
.def
.value
);
2761 /* Returns false if the symbol referred to by H should be considered
2762 to resolve local to the current module, and true if it should be
2763 considered to bind dynamically. */
2766 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2767 struct bfd_link_info
*info
,
2768 bfd_boolean ignore_protected
)
2770 bfd_boolean binding_stays_local_p
;
2771 const struct elf_backend_data
*bed
;
2772 struct elf_link_hash_table
*hash_table
;
2777 while (h
->root
.type
== bfd_link_hash_indirect
2778 || h
->root
.type
== bfd_link_hash_warning
)
2779 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2781 /* If it was forced local, then clearly it's not dynamic. */
2782 if (h
->dynindx
== -1)
2784 if (h
->forced_local
)
2787 /* Identify the cases where name binding rules say that a
2788 visible symbol resolves locally. */
2789 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2791 switch (ELF_ST_VISIBILITY (h
->other
))
2798 hash_table
= elf_hash_table (info
);
2799 if (!is_elf_hash_table (hash_table
))
2802 bed
= get_elf_backend_data (hash_table
->dynobj
);
2804 /* Proper resolution for function pointer equality may require
2805 that these symbols perhaps be resolved dynamically, even though
2806 we should be resolving them to the current module. */
2807 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2808 binding_stays_local_p
= TRUE
;
2815 /* If it isn't defined locally, then clearly it's dynamic. */
2816 if (!h
->def_regular
)
2819 /* Otherwise, the symbol is dynamic if binding rules don't tell
2820 us that it remains local. */
2821 return !binding_stays_local_p
;
2824 /* Return true if the symbol referred to by H should be considered
2825 to resolve local to the current module, and false otherwise. Differs
2826 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2827 undefined symbols and weak symbols. */
2830 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2831 struct bfd_link_info
*info
,
2832 bfd_boolean local_protected
)
2834 const struct elf_backend_data
*bed
;
2835 struct elf_link_hash_table
*hash_table
;
2837 /* If it's a local sym, of course we resolve locally. */
2841 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2842 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2843 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2846 /* Common symbols that become definitions don't get the DEF_REGULAR
2847 flag set, so test it first, and don't bail out. */
2848 if (ELF_COMMON_DEF_P (h
))
2850 /* If we don't have a definition in a regular file, then we can't
2851 resolve locally. The sym is either undefined or dynamic. */
2852 else if (!h
->def_regular
)
2855 /* Forced local symbols resolve locally. */
2856 if (h
->forced_local
)
2859 /* As do non-dynamic symbols. */
2860 if (h
->dynindx
== -1)
2863 /* At this point, we know the symbol is defined and dynamic. In an
2864 executable it must resolve locally, likewise when building symbolic
2865 shared libraries. */
2866 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2869 /* Now deal with defined dynamic symbols in shared libraries. Ones
2870 with default visibility might not resolve locally. */
2871 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2874 hash_table
= elf_hash_table (info
);
2875 if (!is_elf_hash_table (hash_table
))
2878 bed
= get_elf_backend_data (hash_table
->dynobj
);
2880 /* STV_PROTECTED non-function symbols are local. */
2881 if (!bed
->is_function_type (h
->type
))
2884 /* Function pointer equality tests may require that STV_PROTECTED
2885 symbols be treated as dynamic symbols, even when we know that the
2886 dynamic linker will resolve them locally. */
2887 return local_protected
;
2890 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2891 aligned. Returns the first TLS output section. */
2893 struct bfd_section
*
2894 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2896 struct bfd_section
*sec
, *tls
;
2897 unsigned int align
= 0;
2899 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2900 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2904 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2905 if (sec
->alignment_power
> align
)
2906 align
= sec
->alignment_power
;
2908 elf_hash_table (info
)->tls_sec
= tls
;
2910 /* Ensure the alignment of the first section is the largest alignment,
2911 so that the tls segment starts aligned. */
2913 tls
->alignment_power
= align
;
2918 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2920 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2921 Elf_Internal_Sym
*sym
)
2923 const struct elf_backend_data
*bed
;
2925 /* Local symbols do not count, but target specific ones might. */
2926 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2927 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2930 bed
= get_elf_backend_data (abfd
);
2931 /* Function symbols do not count. */
2932 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2935 /* If the section is undefined, then so is the symbol. */
2936 if (sym
->st_shndx
== SHN_UNDEF
)
2939 /* If the symbol is defined in the common section, then
2940 it is a common definition and so does not count. */
2941 if (bed
->common_definition (sym
))
2944 /* If the symbol is in a target specific section then we
2945 must rely upon the backend to tell us what it is. */
2946 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2947 /* FIXME - this function is not coded yet:
2949 return _bfd_is_global_symbol_definition (abfd, sym);
2951 Instead for now assume that the definition is not global,
2952 Even if this is wrong, at least the linker will behave
2953 in the same way that it used to do. */
2959 /* Search the symbol table of the archive element of the archive ABFD
2960 whose archive map contains a mention of SYMDEF, and determine if
2961 the symbol is defined in this element. */
2963 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2965 Elf_Internal_Shdr
* hdr
;
2966 bfd_size_type symcount
;
2967 bfd_size_type extsymcount
;
2968 bfd_size_type extsymoff
;
2969 Elf_Internal_Sym
*isymbuf
;
2970 Elf_Internal_Sym
*isym
;
2971 Elf_Internal_Sym
*isymend
;
2974 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2978 if (! bfd_check_format (abfd
, bfd_object
))
2981 /* If we have already included the element containing this symbol in the
2982 link then we do not need to include it again. Just claim that any symbol
2983 it contains is not a definition, so that our caller will not decide to
2984 (re)include this element. */
2985 if (abfd
->archive_pass
)
2988 /* Select the appropriate symbol table. */
2989 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2990 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2992 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2994 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2996 /* The sh_info field of the symtab header tells us where the
2997 external symbols start. We don't care about the local symbols. */
2998 if (elf_bad_symtab (abfd
))
3000 extsymcount
= symcount
;
3005 extsymcount
= symcount
- hdr
->sh_info
;
3006 extsymoff
= hdr
->sh_info
;
3009 if (extsymcount
== 0)
3012 /* Read in the symbol table. */
3013 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3015 if (isymbuf
== NULL
)
3018 /* Scan the symbol table looking for SYMDEF. */
3020 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3024 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3029 if (strcmp (name
, symdef
->name
) == 0)
3031 result
= is_global_data_symbol_definition (abfd
, isym
);
3041 /* Add an entry to the .dynamic table. */
3044 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3048 struct elf_link_hash_table
*hash_table
;
3049 const struct elf_backend_data
*bed
;
3051 bfd_size_type newsize
;
3052 bfd_byte
*newcontents
;
3053 Elf_Internal_Dyn dyn
;
3055 hash_table
= elf_hash_table (info
);
3056 if (! is_elf_hash_table (hash_table
))
3059 bed
= get_elf_backend_data (hash_table
->dynobj
);
3060 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3061 BFD_ASSERT (s
!= NULL
);
3063 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3064 newcontents
= bfd_realloc (s
->contents
, newsize
);
3065 if (newcontents
== NULL
)
3069 dyn
.d_un
.d_val
= val
;
3070 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3073 s
->contents
= newcontents
;
3078 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3079 otherwise just check whether one already exists. Returns -1 on error,
3080 1 if a DT_NEEDED tag already exists, and 0 on success. */
3083 elf_add_dt_needed_tag (bfd
*abfd
,
3084 struct bfd_link_info
*info
,
3088 struct elf_link_hash_table
*hash_table
;
3089 bfd_size_type oldsize
;
3090 bfd_size_type strindex
;
3092 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3095 hash_table
= elf_hash_table (info
);
3096 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3097 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3098 if (strindex
== (bfd_size_type
) -1)
3101 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3104 const struct elf_backend_data
*bed
;
3107 bed
= get_elf_backend_data (hash_table
->dynobj
);
3108 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3110 for (extdyn
= sdyn
->contents
;
3111 extdyn
< sdyn
->contents
+ sdyn
->size
;
3112 extdyn
+= bed
->s
->sizeof_dyn
)
3114 Elf_Internal_Dyn dyn
;
3116 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3117 if (dyn
.d_tag
== DT_NEEDED
3118 && dyn
.d_un
.d_val
== strindex
)
3120 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3128 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3131 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3135 /* We were just checking for existence of the tag. */
3136 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3142 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3144 for (; needed
!= NULL
; needed
= needed
->next
)
3145 if (strcmp (soname
, needed
->name
) == 0)
3151 /* Sort symbol by value and section. */
3153 elf_sort_symbol (const void *arg1
, const void *arg2
)
3155 const struct elf_link_hash_entry
*h1
;
3156 const struct elf_link_hash_entry
*h2
;
3157 bfd_signed_vma vdiff
;
3159 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3160 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3161 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3163 return vdiff
> 0 ? 1 : -1;
3166 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3168 return sdiff
> 0 ? 1 : -1;
3173 /* This function is used to adjust offsets into .dynstr for
3174 dynamic symbols. This is called via elf_link_hash_traverse. */
3177 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3179 struct elf_strtab_hash
*dynstr
= data
;
3181 if (h
->root
.type
== bfd_link_hash_warning
)
3182 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3184 if (h
->dynindx
!= -1)
3185 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3189 /* Assign string offsets in .dynstr, update all structures referencing
3193 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3195 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3196 struct elf_link_local_dynamic_entry
*entry
;
3197 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3198 bfd
*dynobj
= hash_table
->dynobj
;
3201 const struct elf_backend_data
*bed
;
3204 _bfd_elf_strtab_finalize (dynstr
);
3205 size
= _bfd_elf_strtab_size (dynstr
);
3207 bed
= get_elf_backend_data (dynobj
);
3208 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3209 BFD_ASSERT (sdyn
!= NULL
);
3211 /* Update all .dynamic entries referencing .dynstr strings. */
3212 for (extdyn
= sdyn
->contents
;
3213 extdyn
< sdyn
->contents
+ sdyn
->size
;
3214 extdyn
+= bed
->s
->sizeof_dyn
)
3216 Elf_Internal_Dyn dyn
;
3218 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3222 dyn
.d_un
.d_val
= size
;
3230 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3235 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3238 /* Now update local dynamic symbols. */
3239 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3240 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3241 entry
->isym
.st_name
);
3243 /* And the rest of dynamic symbols. */
3244 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3246 /* Adjust version definitions. */
3247 if (elf_tdata (output_bfd
)->cverdefs
)
3252 Elf_Internal_Verdef def
;
3253 Elf_Internal_Verdaux defaux
;
3255 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3259 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3261 p
+= sizeof (Elf_External_Verdef
);
3262 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3264 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3266 _bfd_elf_swap_verdaux_in (output_bfd
,
3267 (Elf_External_Verdaux
*) p
, &defaux
);
3268 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3270 _bfd_elf_swap_verdaux_out (output_bfd
,
3271 &defaux
, (Elf_External_Verdaux
*) p
);
3272 p
+= sizeof (Elf_External_Verdaux
);
3275 while (def
.vd_next
);
3278 /* Adjust version references. */
3279 if (elf_tdata (output_bfd
)->verref
)
3284 Elf_Internal_Verneed need
;
3285 Elf_Internal_Vernaux needaux
;
3287 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3291 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3293 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3294 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3295 (Elf_External_Verneed
*) p
);
3296 p
+= sizeof (Elf_External_Verneed
);
3297 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3299 _bfd_elf_swap_vernaux_in (output_bfd
,
3300 (Elf_External_Vernaux
*) p
, &needaux
);
3301 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3303 _bfd_elf_swap_vernaux_out (output_bfd
,
3305 (Elf_External_Vernaux
*) p
);
3306 p
+= sizeof (Elf_External_Vernaux
);
3309 while (need
.vn_next
);
3315 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3316 The default is to only match when the INPUT and OUTPUT are exactly
3320 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3321 const bfd_target
*output
)
3323 return input
== output
;
3326 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3327 This version is used when different targets for the same architecture
3328 are virtually identical. */
3331 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3332 const bfd_target
*output
)
3334 const struct elf_backend_data
*obed
, *ibed
;
3336 if (input
== output
)
3339 ibed
= xvec_get_elf_backend_data (input
);
3340 obed
= xvec_get_elf_backend_data (output
);
3342 if (ibed
->arch
!= obed
->arch
)
3345 /* If both backends are using this function, deem them compatible. */
3346 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3349 /* Add symbols from an ELF object file to the linker hash table. */
3352 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3354 Elf_Internal_Ehdr
*ehdr
;
3355 Elf_Internal_Shdr
*hdr
;
3356 bfd_size_type symcount
;
3357 bfd_size_type extsymcount
;
3358 bfd_size_type extsymoff
;
3359 struct elf_link_hash_entry
**sym_hash
;
3360 bfd_boolean dynamic
;
3361 Elf_External_Versym
*extversym
= NULL
;
3362 Elf_External_Versym
*ever
;
3363 struct elf_link_hash_entry
*weaks
;
3364 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3365 bfd_size_type nondeflt_vers_cnt
= 0;
3366 Elf_Internal_Sym
*isymbuf
= NULL
;
3367 Elf_Internal_Sym
*isym
;
3368 Elf_Internal_Sym
*isymend
;
3369 const struct elf_backend_data
*bed
;
3370 bfd_boolean add_needed
;
3371 struct elf_link_hash_table
*htab
;
3373 void *alloc_mark
= NULL
;
3374 struct bfd_hash_entry
**old_table
= NULL
;
3375 unsigned int old_size
= 0;
3376 unsigned int old_count
= 0;
3377 void *old_tab
= NULL
;
3380 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3381 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3382 long old_dynsymcount
= 0;
3384 size_t hashsize
= 0;
3386 htab
= elf_hash_table (info
);
3387 bed
= get_elf_backend_data (abfd
);
3389 if ((abfd
->flags
& DYNAMIC
) == 0)
3395 /* You can't use -r against a dynamic object. Also, there's no
3396 hope of using a dynamic object which does not exactly match
3397 the format of the output file. */
3398 if (info
->relocatable
3399 || !is_elf_hash_table (htab
)
3400 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3402 if (info
->relocatable
)
3403 bfd_set_error (bfd_error_invalid_operation
);
3405 bfd_set_error (bfd_error_wrong_format
);
3410 ehdr
= elf_elfheader (abfd
);
3411 if (info
->warn_alternate_em
3412 && bed
->elf_machine_code
!= ehdr
->e_machine
3413 && ((bed
->elf_machine_alt1
!= 0
3414 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3415 || (bed
->elf_machine_alt2
!= 0
3416 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3417 info
->callbacks
->einfo
3418 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3419 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3421 /* As a GNU extension, any input sections which are named
3422 .gnu.warning.SYMBOL are treated as warning symbols for the given
3423 symbol. This differs from .gnu.warning sections, which generate
3424 warnings when they are included in an output file. */
3425 if (info
->executable
)
3429 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3433 name
= bfd_get_section_name (abfd
, s
);
3434 if (CONST_STRNEQ (name
, ".gnu.warning."))
3439 name
+= sizeof ".gnu.warning." - 1;
3441 /* If this is a shared object, then look up the symbol
3442 in the hash table. If it is there, and it is already
3443 been defined, then we will not be using the entry
3444 from this shared object, so we don't need to warn.
3445 FIXME: If we see the definition in a regular object
3446 later on, we will warn, but we shouldn't. The only
3447 fix is to keep track of what warnings we are supposed
3448 to emit, and then handle them all at the end of the
3452 struct elf_link_hash_entry
*h
;
3454 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3456 /* FIXME: What about bfd_link_hash_common? */
3458 && (h
->root
.type
== bfd_link_hash_defined
3459 || h
->root
.type
== bfd_link_hash_defweak
))
3461 /* We don't want to issue this warning. Clobber
3462 the section size so that the warning does not
3463 get copied into the output file. */
3470 msg
= bfd_alloc (abfd
, sz
+ 1);
3474 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3479 if (! (_bfd_generic_link_add_one_symbol
3480 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3481 FALSE
, bed
->collect
, NULL
)))
3484 if (! info
->relocatable
)
3486 /* Clobber the section size so that the warning does
3487 not get copied into the output file. */
3490 /* Also set SEC_EXCLUDE, so that symbols defined in
3491 the warning section don't get copied to the output. */
3492 s
->flags
|= SEC_EXCLUDE
;
3501 /* If we are creating a shared library, create all the dynamic
3502 sections immediately. We need to attach them to something,
3503 so we attach them to this BFD, provided it is the right
3504 format. FIXME: If there are no input BFD's of the same
3505 format as the output, we can't make a shared library. */
3507 && is_elf_hash_table (htab
)
3508 && info
->output_bfd
->xvec
== abfd
->xvec
3509 && !htab
->dynamic_sections_created
)
3511 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3515 else if (!is_elf_hash_table (htab
))
3520 const char *soname
= NULL
;
3521 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3524 /* ld --just-symbols and dynamic objects don't mix very well.
3525 ld shouldn't allow it. */
3526 if ((s
= abfd
->sections
) != NULL
3527 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3530 /* If this dynamic lib was specified on the command line with
3531 --as-needed in effect, then we don't want to add a DT_NEEDED
3532 tag unless the lib is actually used. Similary for libs brought
3533 in by another lib's DT_NEEDED. When --no-add-needed is used
3534 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3535 any dynamic library in DT_NEEDED tags in the dynamic lib at
3537 add_needed
= (elf_dyn_lib_class (abfd
)
3538 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3539 | DYN_NO_NEEDED
)) == 0;
3541 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3546 unsigned int elfsec
;
3547 unsigned long shlink
;
3549 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3550 goto error_free_dyn
;
3552 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3553 if (elfsec
== SHN_BAD
)
3554 goto error_free_dyn
;
3555 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3557 for (extdyn
= dynbuf
;
3558 extdyn
< dynbuf
+ s
->size
;
3559 extdyn
+= bed
->s
->sizeof_dyn
)
3561 Elf_Internal_Dyn dyn
;
3563 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3564 if (dyn
.d_tag
== DT_SONAME
)
3566 unsigned int tagv
= dyn
.d_un
.d_val
;
3567 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3569 goto error_free_dyn
;
3571 if (dyn
.d_tag
== DT_NEEDED
)
3573 struct bfd_link_needed_list
*n
, **pn
;
3575 unsigned int tagv
= dyn
.d_un
.d_val
;
3577 amt
= sizeof (struct bfd_link_needed_list
);
3578 n
= bfd_alloc (abfd
, amt
);
3579 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3580 if (n
== NULL
|| fnm
== NULL
)
3581 goto error_free_dyn
;
3582 amt
= strlen (fnm
) + 1;
3583 anm
= bfd_alloc (abfd
, amt
);
3585 goto error_free_dyn
;
3586 memcpy (anm
, fnm
, amt
);
3590 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3594 if (dyn
.d_tag
== DT_RUNPATH
)
3596 struct bfd_link_needed_list
*n
, **pn
;
3598 unsigned int tagv
= dyn
.d_un
.d_val
;
3600 amt
= sizeof (struct bfd_link_needed_list
);
3601 n
= bfd_alloc (abfd
, amt
);
3602 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3603 if (n
== NULL
|| fnm
== NULL
)
3604 goto error_free_dyn
;
3605 amt
= strlen (fnm
) + 1;
3606 anm
= bfd_alloc (abfd
, amt
);
3608 goto error_free_dyn
;
3609 memcpy (anm
, fnm
, amt
);
3613 for (pn
= & runpath
;
3619 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3620 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3622 struct bfd_link_needed_list
*n
, **pn
;
3624 unsigned int tagv
= dyn
.d_un
.d_val
;
3626 amt
= sizeof (struct bfd_link_needed_list
);
3627 n
= bfd_alloc (abfd
, amt
);
3628 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3629 if (n
== NULL
|| fnm
== NULL
)
3630 goto error_free_dyn
;
3631 amt
= strlen (fnm
) + 1;
3632 anm
= bfd_alloc (abfd
, amt
);
3639 memcpy (anm
, fnm
, amt
);
3654 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3655 frees all more recently bfd_alloc'd blocks as well. */
3661 struct bfd_link_needed_list
**pn
;
3662 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3667 /* We do not want to include any of the sections in a dynamic
3668 object in the output file. We hack by simply clobbering the
3669 list of sections in the BFD. This could be handled more
3670 cleanly by, say, a new section flag; the existing
3671 SEC_NEVER_LOAD flag is not the one we want, because that one
3672 still implies that the section takes up space in the output
3674 bfd_section_list_clear (abfd
);
3676 /* Find the name to use in a DT_NEEDED entry that refers to this
3677 object. If the object has a DT_SONAME entry, we use it.
3678 Otherwise, if the generic linker stuck something in
3679 elf_dt_name, we use that. Otherwise, we just use the file
3681 if (soname
== NULL
|| *soname
== '\0')
3683 soname
= elf_dt_name (abfd
);
3684 if (soname
== NULL
|| *soname
== '\0')
3685 soname
= bfd_get_filename (abfd
);
3688 /* Save the SONAME because sometimes the linker emulation code
3689 will need to know it. */
3690 elf_dt_name (abfd
) = soname
;
3692 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3696 /* If we have already included this dynamic object in the
3697 link, just ignore it. There is no reason to include a
3698 particular dynamic object more than once. */
3703 /* If this is a dynamic object, we always link against the .dynsym
3704 symbol table, not the .symtab symbol table. The dynamic linker
3705 will only see the .dynsym symbol table, so there is no reason to
3706 look at .symtab for a dynamic object. */
3708 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3709 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3711 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3713 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3715 /* The sh_info field of the symtab header tells us where the
3716 external symbols start. We don't care about the local symbols at
3718 if (elf_bad_symtab (abfd
))
3720 extsymcount
= symcount
;
3725 extsymcount
= symcount
- hdr
->sh_info
;
3726 extsymoff
= hdr
->sh_info
;
3730 if (extsymcount
!= 0)
3732 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3734 if (isymbuf
== NULL
)
3737 /* We store a pointer to the hash table entry for each external
3739 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3740 sym_hash
= bfd_alloc (abfd
, amt
);
3741 if (sym_hash
== NULL
)
3742 goto error_free_sym
;
3743 elf_sym_hashes (abfd
) = sym_hash
;
3748 /* Read in any version definitions. */
3749 if (!_bfd_elf_slurp_version_tables (abfd
,
3750 info
->default_imported_symver
))
3751 goto error_free_sym
;
3753 /* Read in the symbol versions, but don't bother to convert them
3754 to internal format. */
3755 if (elf_dynversym (abfd
) != 0)
3757 Elf_Internal_Shdr
*versymhdr
;
3759 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3760 extversym
= bfd_malloc (versymhdr
->sh_size
);
3761 if (extversym
== NULL
)
3762 goto error_free_sym
;
3763 amt
= versymhdr
->sh_size
;
3764 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3765 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3766 goto error_free_vers
;
3770 /* If we are loading an as-needed shared lib, save the symbol table
3771 state before we start adding symbols. If the lib turns out
3772 to be unneeded, restore the state. */
3773 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3778 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3780 struct bfd_hash_entry
*p
;
3781 struct elf_link_hash_entry
*h
;
3783 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3785 h
= (struct elf_link_hash_entry
*) p
;
3786 entsize
+= htab
->root
.table
.entsize
;
3787 if (h
->root
.type
== bfd_link_hash_warning
)
3788 entsize
+= htab
->root
.table
.entsize
;
3792 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3793 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3794 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3795 if (old_tab
== NULL
)
3796 goto error_free_vers
;
3798 /* Remember the current objalloc pointer, so that all mem for
3799 symbols added can later be reclaimed. */
3800 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3801 if (alloc_mark
== NULL
)
3802 goto error_free_vers
;
3804 /* Make a special call to the linker "notice" function to
3805 tell it that we are about to handle an as-needed lib. */
3806 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3808 goto error_free_vers
;
3810 /* Clone the symbol table and sym hashes. Remember some
3811 pointers into the symbol table, and dynamic symbol count. */
3812 old_hash
= (char *) old_tab
+ tabsize
;
3813 old_ent
= (char *) old_hash
+ hashsize
;
3814 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3815 memcpy (old_hash
, sym_hash
, hashsize
);
3816 old_undefs
= htab
->root
.undefs
;
3817 old_undefs_tail
= htab
->root
.undefs_tail
;
3818 old_table
= htab
->root
.table
.table
;
3819 old_size
= htab
->root
.table
.size
;
3820 old_count
= htab
->root
.table
.count
;
3821 old_dynsymcount
= htab
->dynsymcount
;
3823 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3825 struct bfd_hash_entry
*p
;
3826 struct elf_link_hash_entry
*h
;
3828 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3830 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3831 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3832 h
= (struct elf_link_hash_entry
*) p
;
3833 if (h
->root
.type
== bfd_link_hash_warning
)
3835 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3836 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3843 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3844 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3846 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3850 asection
*sec
, *new_sec
;
3853 struct elf_link_hash_entry
*h
;
3854 bfd_boolean definition
;
3855 bfd_boolean size_change_ok
;
3856 bfd_boolean type_change_ok
;
3857 bfd_boolean new_weakdef
;
3858 bfd_boolean override
;
3860 unsigned int old_alignment
;
3865 flags
= BSF_NO_FLAGS
;
3867 value
= isym
->st_value
;
3869 common
= bed
->common_definition (isym
);
3871 bind
= ELF_ST_BIND (isym
->st_info
);
3872 if (bind
== STB_LOCAL
)
3874 /* This should be impossible, since ELF requires that all
3875 global symbols follow all local symbols, and that sh_info
3876 point to the first global symbol. Unfortunately, Irix 5
3880 else if (bind
== STB_GLOBAL
)
3882 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3885 else if (bind
== STB_WEAK
)
3889 /* Leave it up to the processor backend. */
3892 if (isym
->st_shndx
== SHN_UNDEF
)
3893 sec
= bfd_und_section_ptr
;
3894 else if (isym
->st_shndx
== SHN_ABS
)
3895 sec
= bfd_abs_section_ptr
;
3896 else if (isym
->st_shndx
== SHN_COMMON
)
3898 sec
= bfd_com_section_ptr
;
3899 /* What ELF calls the size we call the value. What ELF
3900 calls the value we call the alignment. */
3901 value
= isym
->st_size
;
3905 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3907 sec
= bfd_abs_section_ptr
;
3908 else if (sec
->kept_section
)
3910 /* Symbols from discarded section are undefined. We keep
3912 sec
= bfd_und_section_ptr
;
3913 isym
->st_shndx
= SHN_UNDEF
;
3915 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3919 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3922 goto error_free_vers
;
3924 if (isym
->st_shndx
== SHN_COMMON
3925 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3926 && !info
->relocatable
)
3928 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3932 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3935 | SEC_LINKER_CREATED
3936 | SEC_THREAD_LOCAL
));
3938 goto error_free_vers
;
3942 else if (bed
->elf_add_symbol_hook
)
3944 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3946 goto error_free_vers
;
3948 /* The hook function sets the name to NULL if this symbol
3949 should be skipped for some reason. */
3954 /* Sanity check that all possibilities were handled. */
3957 bfd_set_error (bfd_error_bad_value
);
3958 goto error_free_vers
;
3961 if (bfd_is_und_section (sec
)
3962 || bfd_is_com_section (sec
))
3967 size_change_ok
= FALSE
;
3968 type_change_ok
= bed
->type_change_ok
;
3973 if (is_elf_hash_table (htab
))
3975 Elf_Internal_Versym iver
;
3976 unsigned int vernum
= 0;
3981 if (info
->default_imported_symver
)
3982 /* Use the default symbol version created earlier. */
3983 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
3988 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
3990 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
3992 /* If this is a hidden symbol, or if it is not version
3993 1, we append the version name to the symbol name.
3994 However, we do not modify a non-hidden absolute symbol
3995 if it is not a function, because it might be the version
3996 symbol itself. FIXME: What if it isn't? */
3997 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
3999 && (!bfd_is_abs_section (sec
)
4000 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4003 size_t namelen
, verlen
, newlen
;
4006 if (isym
->st_shndx
!= SHN_UNDEF
)
4008 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4010 else if (vernum
> 1)
4012 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4018 (*_bfd_error_handler
)
4019 (_("%B: %s: invalid version %u (max %d)"),
4021 elf_tdata (abfd
)->cverdefs
);
4022 bfd_set_error (bfd_error_bad_value
);
4023 goto error_free_vers
;
4028 /* We cannot simply test for the number of
4029 entries in the VERNEED section since the
4030 numbers for the needed versions do not start
4032 Elf_Internal_Verneed
*t
;
4035 for (t
= elf_tdata (abfd
)->verref
;
4039 Elf_Internal_Vernaux
*a
;
4041 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4043 if (a
->vna_other
== vernum
)
4045 verstr
= a
->vna_nodename
;
4054 (*_bfd_error_handler
)
4055 (_("%B: %s: invalid needed version %d"),
4056 abfd
, name
, vernum
);
4057 bfd_set_error (bfd_error_bad_value
);
4058 goto error_free_vers
;
4062 namelen
= strlen (name
);
4063 verlen
= strlen (verstr
);
4064 newlen
= namelen
+ verlen
+ 2;
4065 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4066 && isym
->st_shndx
!= SHN_UNDEF
)
4069 newname
= bfd_hash_allocate (&htab
->root
.table
, newlen
);
4070 if (newname
== NULL
)
4071 goto error_free_vers
;
4072 memcpy (newname
, name
, namelen
);
4073 p
= newname
+ namelen
;
4075 /* If this is a defined non-hidden version symbol,
4076 we add another @ to the name. This indicates the
4077 default version of the symbol. */
4078 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4079 && isym
->st_shndx
!= SHN_UNDEF
)
4081 memcpy (p
, verstr
, verlen
+ 1);
4086 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4087 &value
, &old_alignment
,
4088 sym_hash
, &skip
, &override
,
4089 &type_change_ok
, &size_change_ok
))
4090 goto error_free_vers
;
4099 while (h
->root
.type
== bfd_link_hash_indirect
4100 || h
->root
.type
== bfd_link_hash_warning
)
4101 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4103 /* Remember the old alignment if this is a common symbol, so
4104 that we don't reduce the alignment later on. We can't
4105 check later, because _bfd_generic_link_add_one_symbol
4106 will set a default for the alignment which we want to
4107 override. We also remember the old bfd where the existing
4108 definition comes from. */
4109 switch (h
->root
.type
)
4114 case bfd_link_hash_defined
:
4115 case bfd_link_hash_defweak
:
4116 old_bfd
= h
->root
.u
.def
.section
->owner
;
4119 case bfd_link_hash_common
:
4120 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4121 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4125 if (elf_tdata (abfd
)->verdef
!= NULL
4129 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4132 if (! (_bfd_generic_link_add_one_symbol
4133 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4134 (struct bfd_link_hash_entry
**) sym_hash
)))
4135 goto error_free_vers
;
4138 while (h
->root
.type
== bfd_link_hash_indirect
4139 || h
->root
.type
== bfd_link_hash_warning
)
4140 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4143 new_weakdef
= FALSE
;
4146 && (flags
& BSF_WEAK
) != 0
4147 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4148 && is_elf_hash_table (htab
)
4149 && h
->u
.weakdef
== NULL
)
4151 /* Keep a list of all weak defined non function symbols from
4152 a dynamic object, using the weakdef field. Later in this
4153 function we will set the weakdef field to the correct
4154 value. We only put non-function symbols from dynamic
4155 objects on this list, because that happens to be the only
4156 time we need to know the normal symbol corresponding to a
4157 weak symbol, and the information is time consuming to
4158 figure out. If the weakdef field is not already NULL,
4159 then this symbol was already defined by some previous
4160 dynamic object, and we will be using that previous
4161 definition anyhow. */
4163 h
->u
.weakdef
= weaks
;
4168 /* Set the alignment of a common symbol. */
4169 if ((common
|| bfd_is_com_section (sec
))
4170 && h
->root
.type
== bfd_link_hash_common
)
4175 align
= bfd_log2 (isym
->st_value
);
4178 /* The new symbol is a common symbol in a shared object.
4179 We need to get the alignment from the section. */
4180 align
= new_sec
->alignment_power
;
4182 if (align
> old_alignment
4183 /* Permit an alignment power of zero if an alignment of one
4184 is specified and no other alignments have been specified. */
4185 || (isym
->st_value
== 1 && old_alignment
== 0))
4186 h
->root
.u
.c
.p
->alignment_power
= align
;
4188 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4191 if (is_elf_hash_table (htab
))
4195 /* Check the alignment when a common symbol is involved. This
4196 can change when a common symbol is overridden by a normal
4197 definition or a common symbol is ignored due to the old
4198 normal definition. We need to make sure the maximum
4199 alignment is maintained. */
4200 if ((old_alignment
|| common
)
4201 && h
->root
.type
!= bfd_link_hash_common
)
4203 unsigned int common_align
;
4204 unsigned int normal_align
;
4205 unsigned int symbol_align
;
4209 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4210 if (h
->root
.u
.def
.section
->owner
!= NULL
4211 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4213 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4214 if (normal_align
> symbol_align
)
4215 normal_align
= symbol_align
;
4218 normal_align
= symbol_align
;
4222 common_align
= old_alignment
;
4223 common_bfd
= old_bfd
;
4228 common_align
= bfd_log2 (isym
->st_value
);
4230 normal_bfd
= old_bfd
;
4233 if (normal_align
< common_align
)
4235 /* PR binutils/2735 */
4236 if (normal_bfd
== NULL
)
4237 (*_bfd_error_handler
)
4238 (_("Warning: alignment %u of common symbol `%s' in %B"
4239 " is greater than the alignment (%u) of its section %A"),
4240 common_bfd
, h
->root
.u
.def
.section
,
4241 1 << common_align
, name
, 1 << normal_align
);
4243 (*_bfd_error_handler
)
4244 (_("Warning: alignment %u of symbol `%s' in %B"
4245 " is smaller than %u in %B"),
4246 normal_bfd
, common_bfd
,
4247 1 << normal_align
, name
, 1 << common_align
);
4251 /* Remember the symbol size if it isn't undefined. */
4252 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4253 && (definition
|| h
->size
== 0))
4256 && h
->size
!= isym
->st_size
4257 && ! size_change_ok
)
4258 (*_bfd_error_handler
)
4259 (_("Warning: size of symbol `%s' changed"
4260 " from %lu in %B to %lu in %B"),
4262 name
, (unsigned long) h
->size
,
4263 (unsigned long) isym
->st_size
);
4265 h
->size
= isym
->st_size
;
4268 /* If this is a common symbol, then we always want H->SIZE
4269 to be the size of the common symbol. The code just above
4270 won't fix the size if a common symbol becomes larger. We
4271 don't warn about a size change here, because that is
4272 covered by --warn-common. Allow changed between different
4274 if (h
->root
.type
== bfd_link_hash_common
)
4275 h
->size
= h
->root
.u
.c
.size
;
4277 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4278 && (definition
|| h
->type
== STT_NOTYPE
))
4280 if (h
->type
!= STT_NOTYPE
4281 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
4282 && ! type_change_ok
)
4283 (*_bfd_error_handler
)
4284 (_("Warning: type of symbol `%s' changed"
4285 " from %d to %d in %B"),
4286 abfd
, name
, h
->type
, ELF_ST_TYPE (isym
->st_info
));
4288 h
->type
= ELF_ST_TYPE (isym
->st_info
);
4291 /* STT_GNU_IFUNC symbol must go through PLT. */
4292 if (h
->type
== STT_GNU_IFUNC
)
4295 /* Merge st_other field. */
4296 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4298 /* Set a flag in the hash table entry indicating the type of
4299 reference or definition we just found. Keep a count of
4300 the number of dynamic symbols we find. A dynamic symbol
4301 is one which is referenced or defined by both a regular
4302 object and a shared object. */
4309 if (bind
!= STB_WEAK
)
4310 h
->ref_regular_nonweak
= 1;
4322 if (! info
->executable
4335 || (h
->u
.weakdef
!= NULL
4337 && h
->u
.weakdef
->dynindx
!= -1))
4341 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4343 /* We don't want to make debug symbol dynamic. */
4344 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4348 /* Check to see if we need to add an indirect symbol for
4349 the default name. */
4350 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4351 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4352 &sec
, &value
, &dynsym
,
4354 goto error_free_vers
;
4356 if (definition
&& !dynamic
)
4358 char *p
= strchr (name
, ELF_VER_CHR
);
4359 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4361 /* Queue non-default versions so that .symver x, x@FOO
4362 aliases can be checked. */
4365 amt
= ((isymend
- isym
+ 1)
4366 * sizeof (struct elf_link_hash_entry
*));
4367 nondeflt_vers
= bfd_malloc (amt
);
4369 goto error_free_vers
;
4371 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4375 if (dynsym
&& h
->dynindx
== -1)
4377 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4378 goto error_free_vers
;
4379 if (h
->u
.weakdef
!= NULL
4381 && h
->u
.weakdef
->dynindx
== -1)
4383 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4384 goto error_free_vers
;
4387 else if (dynsym
&& h
->dynindx
!= -1)
4388 /* If the symbol already has a dynamic index, but
4389 visibility says it should not be visible, turn it into
4391 switch (ELF_ST_VISIBILITY (h
->other
))
4395 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4405 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4406 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4409 const char *soname
= elf_dt_name (abfd
);
4411 /* A symbol from a library loaded via DT_NEEDED of some
4412 other library is referenced by a regular object.
4413 Add a DT_NEEDED entry for it. Issue an error if
4414 --no-add-needed is used. */
4415 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4417 (*_bfd_error_handler
)
4418 (_("%s: invalid DSO for symbol `%s' definition"),
4420 bfd_set_error (bfd_error_bad_value
);
4421 goto error_free_vers
;
4424 elf_dyn_lib_class (abfd
) &= ~DYN_AS_NEEDED
;
4427 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4429 goto error_free_vers
;
4431 BFD_ASSERT (ret
== 0);
4436 if (extversym
!= NULL
)
4442 if (isymbuf
!= NULL
)
4448 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4452 /* Restore the symbol table. */
4453 if (bed
->as_needed_cleanup
)
4454 (*bed
->as_needed_cleanup
) (abfd
, info
);
4455 old_hash
= (char *) old_tab
+ tabsize
;
4456 old_ent
= (char *) old_hash
+ hashsize
;
4457 sym_hash
= elf_sym_hashes (abfd
);
4458 htab
->root
.table
.table
= old_table
;
4459 htab
->root
.table
.size
= old_size
;
4460 htab
->root
.table
.count
= old_count
;
4461 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4462 memcpy (sym_hash
, old_hash
, hashsize
);
4463 htab
->root
.undefs
= old_undefs
;
4464 htab
->root
.undefs_tail
= old_undefs_tail
;
4465 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4467 struct bfd_hash_entry
*p
;
4468 struct elf_link_hash_entry
*h
;
4470 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4472 h
= (struct elf_link_hash_entry
*) p
;
4473 if (h
->root
.type
== bfd_link_hash_warning
)
4474 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4475 if (h
->dynindx
>= old_dynsymcount
)
4476 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4478 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4479 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4480 h
= (struct elf_link_hash_entry
*) p
;
4481 if (h
->root
.type
== bfd_link_hash_warning
)
4483 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4484 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4489 /* Make a special call to the linker "notice" function to
4490 tell it that symbols added for crefs may need to be removed. */
4491 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4493 goto error_free_vers
;
4496 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4498 if (nondeflt_vers
!= NULL
)
4499 free (nondeflt_vers
);
4503 if (old_tab
!= NULL
)
4505 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4507 goto error_free_vers
;
4512 /* Now that all the symbols from this input file are created, handle
4513 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4514 if (nondeflt_vers
!= NULL
)
4516 bfd_size_type cnt
, symidx
;
4518 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4520 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4521 char *shortname
, *p
;
4523 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4525 || (h
->root
.type
!= bfd_link_hash_defined
4526 && h
->root
.type
!= bfd_link_hash_defweak
))
4529 amt
= p
- h
->root
.root
.string
;
4530 shortname
= bfd_malloc (amt
+ 1);
4532 goto error_free_vers
;
4533 memcpy (shortname
, h
->root
.root
.string
, amt
);
4534 shortname
[amt
] = '\0';
4536 hi
= (struct elf_link_hash_entry
*)
4537 bfd_link_hash_lookup (&htab
->root
, shortname
,
4538 FALSE
, FALSE
, FALSE
);
4540 && hi
->root
.type
== h
->root
.type
4541 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4542 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4544 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4545 hi
->root
.type
= bfd_link_hash_indirect
;
4546 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4547 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4548 sym_hash
= elf_sym_hashes (abfd
);
4550 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4551 if (sym_hash
[symidx
] == hi
)
4553 sym_hash
[symidx
] = h
;
4559 free (nondeflt_vers
);
4560 nondeflt_vers
= NULL
;
4563 /* Now set the weakdefs field correctly for all the weak defined
4564 symbols we found. The only way to do this is to search all the
4565 symbols. Since we only need the information for non functions in
4566 dynamic objects, that's the only time we actually put anything on
4567 the list WEAKS. We need this information so that if a regular
4568 object refers to a symbol defined weakly in a dynamic object, the
4569 real symbol in the dynamic object is also put in the dynamic
4570 symbols; we also must arrange for both symbols to point to the
4571 same memory location. We could handle the general case of symbol
4572 aliasing, but a general symbol alias can only be generated in
4573 assembler code, handling it correctly would be very time
4574 consuming, and other ELF linkers don't handle general aliasing
4578 struct elf_link_hash_entry
**hpp
;
4579 struct elf_link_hash_entry
**hppend
;
4580 struct elf_link_hash_entry
**sorted_sym_hash
;
4581 struct elf_link_hash_entry
*h
;
4584 /* Since we have to search the whole symbol list for each weak
4585 defined symbol, search time for N weak defined symbols will be
4586 O(N^2). Binary search will cut it down to O(NlogN). */
4587 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4588 sorted_sym_hash
= bfd_malloc (amt
);
4589 if (sorted_sym_hash
== NULL
)
4591 sym_hash
= sorted_sym_hash
;
4592 hpp
= elf_sym_hashes (abfd
);
4593 hppend
= hpp
+ extsymcount
;
4595 for (; hpp
< hppend
; hpp
++)
4599 && h
->root
.type
== bfd_link_hash_defined
4600 && !bed
->is_function_type (h
->type
))
4608 qsort (sorted_sym_hash
, sym_count
,
4609 sizeof (struct elf_link_hash_entry
*),
4612 while (weaks
!= NULL
)
4614 struct elf_link_hash_entry
*hlook
;
4621 weaks
= hlook
->u
.weakdef
;
4622 hlook
->u
.weakdef
= NULL
;
4624 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4625 || hlook
->root
.type
== bfd_link_hash_defweak
4626 || hlook
->root
.type
== bfd_link_hash_common
4627 || hlook
->root
.type
== bfd_link_hash_indirect
);
4628 slook
= hlook
->root
.u
.def
.section
;
4629 vlook
= hlook
->root
.u
.def
.value
;
4636 bfd_signed_vma vdiff
;
4638 h
= sorted_sym_hash
[idx
];
4639 vdiff
= vlook
- h
->root
.u
.def
.value
;
4646 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4659 /* We didn't find a value/section match. */
4663 for (i
= ilook
; i
< sym_count
; i
++)
4665 h
= sorted_sym_hash
[i
];
4667 /* Stop if value or section doesn't match. */
4668 if (h
->root
.u
.def
.value
!= vlook
4669 || h
->root
.u
.def
.section
!= slook
)
4671 else if (h
!= hlook
)
4673 hlook
->u
.weakdef
= h
;
4675 /* If the weak definition is in the list of dynamic
4676 symbols, make sure the real definition is put
4678 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4680 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4683 free (sorted_sym_hash
);
4688 /* If the real definition is in the list of dynamic
4689 symbols, make sure the weak definition is put
4690 there as well. If we don't do this, then the
4691 dynamic loader might not merge the entries for the
4692 real definition and the weak definition. */
4693 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4695 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4696 goto err_free_sym_hash
;
4703 free (sorted_sym_hash
);
4706 if (bed
->check_directives
4707 && !(*bed
->check_directives
) (abfd
, info
))
4710 /* If this object is the same format as the output object, and it is
4711 not a shared library, then let the backend look through the
4714 This is required to build global offset table entries and to
4715 arrange for dynamic relocs. It is not required for the
4716 particular common case of linking non PIC code, even when linking
4717 against shared libraries, but unfortunately there is no way of
4718 knowing whether an object file has been compiled PIC or not.
4719 Looking through the relocs is not particularly time consuming.
4720 The problem is that we must either (1) keep the relocs in memory,
4721 which causes the linker to require additional runtime memory or
4722 (2) read the relocs twice from the input file, which wastes time.
4723 This would be a good case for using mmap.
4725 I have no idea how to handle linking PIC code into a file of a
4726 different format. It probably can't be done. */
4728 && is_elf_hash_table (htab
)
4729 && bed
->check_relocs
!= NULL
4730 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4734 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4736 Elf_Internal_Rela
*internal_relocs
;
4739 if ((o
->flags
& SEC_RELOC
) == 0
4740 || o
->reloc_count
== 0
4741 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4742 && (o
->flags
& SEC_DEBUGGING
) != 0)
4743 || bfd_is_abs_section (o
->output_section
))
4746 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4748 if (internal_relocs
== NULL
)
4751 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4753 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4754 free (internal_relocs
);
4761 /* If this is a non-traditional link, try to optimize the handling
4762 of the .stab/.stabstr sections. */
4764 && ! info
->traditional_format
4765 && is_elf_hash_table (htab
)
4766 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4770 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4771 if (stabstr
!= NULL
)
4773 bfd_size_type string_offset
= 0;
4776 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4777 if (CONST_STRNEQ (stab
->name
, ".stab")
4778 && (!stab
->name
[5] ||
4779 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4780 && (stab
->flags
& SEC_MERGE
) == 0
4781 && !bfd_is_abs_section (stab
->output_section
))
4783 struct bfd_elf_section_data
*secdata
;
4785 secdata
= elf_section_data (stab
);
4786 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4787 stabstr
, &secdata
->sec_info
,
4790 if (secdata
->sec_info
)
4791 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4796 if (is_elf_hash_table (htab
) && add_needed
)
4798 /* Add this bfd to the loaded list. */
4799 struct elf_link_loaded_list
*n
;
4801 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4805 n
->next
= htab
->loaded
;
4812 if (old_tab
!= NULL
)
4814 if (nondeflt_vers
!= NULL
)
4815 free (nondeflt_vers
);
4816 if (extversym
!= NULL
)
4819 if (isymbuf
!= NULL
)
4825 /* Return the linker hash table entry of a symbol that might be
4826 satisfied by an archive symbol. Return -1 on error. */
4828 struct elf_link_hash_entry
*
4829 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4830 struct bfd_link_info
*info
,
4833 struct elf_link_hash_entry
*h
;
4837 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4841 /* If this is a default version (the name contains @@), look up the
4842 symbol again with only one `@' as well as without the version.
4843 The effect is that references to the symbol with and without the
4844 version will be matched by the default symbol in the archive. */
4846 p
= strchr (name
, ELF_VER_CHR
);
4847 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4850 /* First check with only one `@'. */
4851 len
= strlen (name
);
4852 copy
= bfd_alloc (abfd
, len
);
4854 return (struct elf_link_hash_entry
*) 0 - 1;
4856 first
= p
- name
+ 1;
4857 memcpy (copy
, name
, first
);
4858 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4860 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4863 /* We also need to check references to the symbol without the
4865 copy
[first
- 1] = '\0';
4866 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4867 FALSE
, FALSE
, FALSE
);
4870 bfd_release (abfd
, copy
);
4874 /* Add symbols from an ELF archive file to the linker hash table. We
4875 don't use _bfd_generic_link_add_archive_symbols because of a
4876 problem which arises on UnixWare. The UnixWare libc.so is an
4877 archive which includes an entry libc.so.1 which defines a bunch of
4878 symbols. The libc.so archive also includes a number of other
4879 object files, which also define symbols, some of which are the same
4880 as those defined in libc.so.1. Correct linking requires that we
4881 consider each object file in turn, and include it if it defines any
4882 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4883 this; it looks through the list of undefined symbols, and includes
4884 any object file which defines them. When this algorithm is used on
4885 UnixWare, it winds up pulling in libc.so.1 early and defining a
4886 bunch of symbols. This means that some of the other objects in the
4887 archive are not included in the link, which is incorrect since they
4888 precede libc.so.1 in the archive.
4890 Fortunately, ELF archive handling is simpler than that done by
4891 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4892 oddities. In ELF, if we find a symbol in the archive map, and the
4893 symbol is currently undefined, we know that we must pull in that
4896 Unfortunately, we do have to make multiple passes over the symbol
4897 table until nothing further is resolved. */
4900 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4903 bfd_boolean
*defined
= NULL
;
4904 bfd_boolean
*included
= NULL
;
4908 const struct elf_backend_data
*bed
;
4909 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4910 (bfd
*, struct bfd_link_info
*, const char *);
4912 if (! bfd_has_map (abfd
))
4914 /* An empty archive is a special case. */
4915 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4917 bfd_set_error (bfd_error_no_armap
);
4921 /* Keep track of all symbols we know to be already defined, and all
4922 files we know to be already included. This is to speed up the
4923 second and subsequent passes. */
4924 c
= bfd_ardata (abfd
)->symdef_count
;
4928 amt
*= sizeof (bfd_boolean
);
4929 defined
= bfd_zmalloc (amt
);
4930 included
= bfd_zmalloc (amt
);
4931 if (defined
== NULL
|| included
== NULL
)
4934 symdefs
= bfd_ardata (abfd
)->symdefs
;
4935 bed
= get_elf_backend_data (abfd
);
4936 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4949 symdefend
= symdef
+ c
;
4950 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4952 struct elf_link_hash_entry
*h
;
4954 struct bfd_link_hash_entry
*undefs_tail
;
4957 if (defined
[i
] || included
[i
])
4959 if (symdef
->file_offset
== last
)
4965 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
4966 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
4972 if (h
->root
.type
== bfd_link_hash_common
)
4974 /* We currently have a common symbol. The archive map contains
4975 a reference to this symbol, so we may want to include it. We
4976 only want to include it however, if this archive element
4977 contains a definition of the symbol, not just another common
4980 Unfortunately some archivers (including GNU ar) will put
4981 declarations of common symbols into their archive maps, as
4982 well as real definitions, so we cannot just go by the archive
4983 map alone. Instead we must read in the element's symbol
4984 table and check that to see what kind of symbol definition
4986 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
4989 else if (h
->root
.type
!= bfd_link_hash_undefined
)
4991 if (h
->root
.type
!= bfd_link_hash_undefweak
)
4996 /* We need to include this archive member. */
4997 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
4998 if (element
== NULL
)
5001 if (! bfd_check_format (element
, bfd_object
))
5004 /* Doublecheck that we have not included this object
5005 already--it should be impossible, but there may be
5006 something wrong with the archive. */
5007 if (element
->archive_pass
!= 0)
5009 bfd_set_error (bfd_error_bad_value
);
5012 element
->archive_pass
= 1;
5014 undefs_tail
= info
->hash
->undefs_tail
;
5016 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5019 if (! bfd_link_add_symbols (element
, info
))
5022 /* If there are any new undefined symbols, we need to make
5023 another pass through the archive in order to see whether
5024 they can be defined. FIXME: This isn't perfect, because
5025 common symbols wind up on undefs_tail and because an
5026 undefined symbol which is defined later on in this pass
5027 does not require another pass. This isn't a bug, but it
5028 does make the code less efficient than it could be. */
5029 if (undefs_tail
!= info
->hash
->undefs_tail
)
5032 /* Look backward to mark all symbols from this object file
5033 which we have already seen in this pass. */
5037 included
[mark
] = TRUE
;
5042 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5044 /* We mark subsequent symbols from this object file as we go
5045 on through the loop. */
5046 last
= symdef
->file_offset
;
5057 if (defined
!= NULL
)
5059 if (included
!= NULL
)
5064 /* Given an ELF BFD, add symbols to the global hash table as
5068 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5070 switch (bfd_get_format (abfd
))
5073 return elf_link_add_object_symbols (abfd
, info
);
5075 return elf_link_add_archive_symbols (abfd
, info
);
5077 bfd_set_error (bfd_error_wrong_format
);
5082 struct hash_codes_info
5084 unsigned long *hashcodes
;
5088 /* This function will be called though elf_link_hash_traverse to store
5089 all hash value of the exported symbols in an array. */
5092 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5094 struct hash_codes_info
*inf
= data
;
5100 if (h
->root
.type
== bfd_link_hash_warning
)
5101 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5103 /* Ignore indirect symbols. These are added by the versioning code. */
5104 if (h
->dynindx
== -1)
5107 name
= h
->root
.root
.string
;
5108 p
= strchr (name
, ELF_VER_CHR
);
5111 alc
= bfd_malloc (p
- name
+ 1);
5117 memcpy (alc
, name
, p
- name
);
5118 alc
[p
- name
] = '\0';
5122 /* Compute the hash value. */
5123 ha
= bfd_elf_hash (name
);
5125 /* Store the found hash value in the array given as the argument. */
5126 *(inf
->hashcodes
)++ = ha
;
5128 /* And store it in the struct so that we can put it in the hash table
5130 h
->u
.elf_hash_value
= ha
;
5138 struct collect_gnu_hash_codes
5141 const struct elf_backend_data
*bed
;
5142 unsigned long int nsyms
;
5143 unsigned long int maskbits
;
5144 unsigned long int *hashcodes
;
5145 unsigned long int *hashval
;
5146 unsigned long int *indx
;
5147 unsigned long int *counts
;
5150 long int min_dynindx
;
5151 unsigned long int bucketcount
;
5152 unsigned long int symindx
;
5153 long int local_indx
;
5154 long int shift1
, shift2
;
5155 unsigned long int mask
;
5159 /* This function will be called though elf_link_hash_traverse to store
5160 all hash value of the exported symbols in an array. */
5163 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5165 struct collect_gnu_hash_codes
*s
= data
;
5171 if (h
->root
.type
== bfd_link_hash_warning
)
5172 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5174 /* Ignore indirect symbols. These are added by the versioning code. */
5175 if (h
->dynindx
== -1)
5178 /* Ignore also local symbols and undefined symbols. */
5179 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5182 name
= h
->root
.root
.string
;
5183 p
= strchr (name
, ELF_VER_CHR
);
5186 alc
= bfd_malloc (p
- name
+ 1);
5192 memcpy (alc
, name
, p
- name
);
5193 alc
[p
- name
] = '\0';
5197 /* Compute the hash value. */
5198 ha
= bfd_elf_gnu_hash (name
);
5200 /* Store the found hash value in the array for compute_bucket_count,
5201 and also for .dynsym reordering purposes. */
5202 s
->hashcodes
[s
->nsyms
] = ha
;
5203 s
->hashval
[h
->dynindx
] = ha
;
5205 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5206 s
->min_dynindx
= h
->dynindx
;
5214 /* This function will be called though elf_link_hash_traverse to do
5215 final dynaminc symbol renumbering. */
5218 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5220 struct collect_gnu_hash_codes
*s
= data
;
5221 unsigned long int bucket
;
5222 unsigned long int val
;
5224 if (h
->root
.type
== bfd_link_hash_warning
)
5225 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5227 /* Ignore indirect symbols. */
5228 if (h
->dynindx
== -1)
5231 /* Ignore also local symbols and undefined symbols. */
5232 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5234 if (h
->dynindx
>= s
->min_dynindx
)
5235 h
->dynindx
= s
->local_indx
++;
5239 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5240 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5241 & ((s
->maskbits
>> s
->shift1
) - 1);
5242 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5244 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5245 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5246 if (s
->counts
[bucket
] == 1)
5247 /* Last element terminates the chain. */
5249 bfd_put_32 (s
->output_bfd
, val
,
5250 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5251 --s
->counts
[bucket
];
5252 h
->dynindx
= s
->indx
[bucket
]++;
5256 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5259 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5261 return !(h
->forced_local
5262 || h
->root
.type
== bfd_link_hash_undefined
5263 || h
->root
.type
== bfd_link_hash_undefweak
5264 || ((h
->root
.type
== bfd_link_hash_defined
5265 || h
->root
.type
== bfd_link_hash_defweak
)
5266 && h
->root
.u
.def
.section
->output_section
== NULL
));
5269 /* Array used to determine the number of hash table buckets to use
5270 based on the number of symbols there are. If there are fewer than
5271 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5272 fewer than 37 we use 17 buckets, and so forth. We never use more
5273 than 32771 buckets. */
5275 static const size_t elf_buckets
[] =
5277 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5281 /* Compute bucket count for hashing table. We do not use a static set
5282 of possible tables sizes anymore. Instead we determine for all
5283 possible reasonable sizes of the table the outcome (i.e., the
5284 number of collisions etc) and choose the best solution. The
5285 weighting functions are not too simple to allow the table to grow
5286 without bounds. Instead one of the weighting factors is the size.
5287 Therefore the result is always a good payoff between few collisions
5288 (= short chain lengths) and table size. */
5290 compute_bucket_count (struct bfd_link_info
*info
,
5291 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5292 unsigned long int nsyms
,
5295 size_t best_size
= 0;
5296 unsigned long int i
;
5298 /* We have a problem here. The following code to optimize the table
5299 size requires an integer type with more the 32 bits. If
5300 BFD_HOST_U_64_BIT is set we know about such a type. */
5301 #ifdef BFD_HOST_U_64_BIT
5306 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5307 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5308 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5309 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5310 unsigned long int *counts
;
5313 /* Possible optimization parameters: if we have NSYMS symbols we say
5314 that the hashing table must at least have NSYMS/4 and at most
5316 minsize
= nsyms
/ 4;
5319 best_size
= maxsize
= nsyms
* 2;
5324 if ((best_size
& 31) == 0)
5328 /* Create array where we count the collisions in. We must use bfd_malloc
5329 since the size could be large. */
5331 amt
*= sizeof (unsigned long int);
5332 counts
= bfd_malloc (amt
);
5336 /* Compute the "optimal" size for the hash table. The criteria is a
5337 minimal chain length. The minor criteria is (of course) the size
5339 for (i
= minsize
; i
< maxsize
; ++i
)
5341 /* Walk through the array of hashcodes and count the collisions. */
5342 BFD_HOST_U_64_BIT max
;
5343 unsigned long int j
;
5344 unsigned long int fact
;
5346 if (gnu_hash
&& (i
& 31) == 0)
5349 memset (counts
, '\0', i
* sizeof (unsigned long int));
5351 /* Determine how often each hash bucket is used. */
5352 for (j
= 0; j
< nsyms
; ++j
)
5353 ++counts
[hashcodes
[j
] % i
];
5355 /* For the weight function we need some information about the
5356 pagesize on the target. This is information need not be 100%
5357 accurate. Since this information is not available (so far) we
5358 define it here to a reasonable default value. If it is crucial
5359 to have a better value some day simply define this value. */
5360 # ifndef BFD_TARGET_PAGESIZE
5361 # define BFD_TARGET_PAGESIZE (4096)
5364 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5366 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5369 /* Variant 1: optimize for short chains. We add the squares
5370 of all the chain lengths (which favors many small chain
5371 over a few long chains). */
5372 for (j
= 0; j
< i
; ++j
)
5373 max
+= counts
[j
] * counts
[j
];
5375 /* This adds penalties for the overall size of the table. */
5376 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5379 /* Variant 2: Optimize a lot more for small table. Here we
5380 also add squares of the size but we also add penalties for
5381 empty slots (the +1 term). */
5382 for (j
= 0; j
< i
; ++j
)
5383 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5385 /* The overall size of the table is considered, but not as
5386 strong as in variant 1, where it is squared. */
5387 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5391 /* Compare with current best results. */
5392 if (max
< best_chlen
)
5402 #endif /* defined (BFD_HOST_U_64_BIT) */
5404 /* This is the fallback solution if no 64bit type is available or if we
5405 are not supposed to spend much time on optimizations. We select the
5406 bucket count using a fixed set of numbers. */
5407 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5409 best_size
= elf_buckets
[i
];
5410 if (nsyms
< elf_buckets
[i
+ 1])
5413 if (gnu_hash
&& best_size
< 2)
5420 /* Set up the sizes and contents of the ELF dynamic sections. This is
5421 called by the ELF linker emulation before_allocation routine. We
5422 must set the sizes of the sections before the linker sets the
5423 addresses of the various sections. */
5426 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5429 const char *filter_shlib
,
5430 const char * const *auxiliary_filters
,
5431 struct bfd_link_info
*info
,
5432 asection
**sinterpptr
,
5433 struct bfd_elf_version_tree
*verdefs
)
5435 bfd_size_type soname_indx
;
5437 const struct elf_backend_data
*bed
;
5438 struct elf_info_failed asvinfo
;
5442 soname_indx
= (bfd_size_type
) -1;
5444 if (!is_elf_hash_table (info
->hash
))
5447 bed
= get_elf_backend_data (output_bfd
);
5448 if (info
->execstack
)
5449 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5450 else if (info
->noexecstack
)
5451 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5455 asection
*notesec
= NULL
;
5458 for (inputobj
= info
->input_bfds
;
5460 inputobj
= inputobj
->link_next
)
5464 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5466 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5469 if (s
->flags
& SEC_CODE
)
5473 else if (bed
->default_execstack
)
5478 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5479 if (exec
&& info
->relocatable
5480 && notesec
->output_section
!= bfd_abs_section_ptr
)
5481 notesec
->output_section
->flags
|= SEC_CODE
;
5485 /* Any syms created from now on start with -1 in
5486 got.refcount/offset and plt.refcount/offset. */
5487 elf_hash_table (info
)->init_got_refcount
5488 = elf_hash_table (info
)->init_got_offset
;
5489 elf_hash_table (info
)->init_plt_refcount
5490 = elf_hash_table (info
)->init_plt_offset
;
5492 /* The backend may have to create some sections regardless of whether
5493 we're dynamic or not. */
5494 if (bed
->elf_backend_always_size_sections
5495 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5498 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5501 dynobj
= elf_hash_table (info
)->dynobj
;
5503 /* If there were no dynamic objects in the link, there is nothing to
5508 if (elf_hash_table (info
)->dynamic_sections_created
)
5510 struct elf_info_failed eif
;
5511 struct elf_link_hash_entry
*h
;
5513 struct bfd_elf_version_tree
*t
;
5514 struct bfd_elf_version_expr
*d
;
5516 bfd_boolean all_defined
;
5518 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5519 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5523 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5525 if (soname_indx
== (bfd_size_type
) -1
5526 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5532 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5534 info
->flags
|= DF_SYMBOLIC
;
5541 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5543 if (indx
== (bfd_size_type
) -1
5544 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5547 if (info
->new_dtags
)
5549 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5550 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5555 if (filter_shlib
!= NULL
)
5559 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5560 filter_shlib
, TRUE
);
5561 if (indx
== (bfd_size_type
) -1
5562 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5566 if (auxiliary_filters
!= NULL
)
5568 const char * const *p
;
5570 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5574 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5576 if (indx
== (bfd_size_type
) -1
5577 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5583 eif
.verdefs
= verdefs
;
5586 /* If we are supposed to export all symbols into the dynamic symbol
5587 table (this is not the normal case), then do so. */
5588 if (info
->export_dynamic
5589 || (info
->executable
&& info
->dynamic
))
5591 elf_link_hash_traverse (elf_hash_table (info
),
5592 _bfd_elf_export_symbol
,
5598 /* Make all global versions with definition. */
5599 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5600 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5601 if (!d
->symver
&& d
->literal
)
5603 const char *verstr
, *name
;
5604 size_t namelen
, verlen
, newlen
;
5606 struct elf_link_hash_entry
*newh
;
5609 namelen
= strlen (name
);
5611 verlen
= strlen (verstr
);
5612 newlen
= namelen
+ verlen
+ 3;
5614 newname
= bfd_malloc (newlen
);
5615 if (newname
== NULL
)
5617 memcpy (newname
, name
, namelen
);
5619 /* Check the hidden versioned definition. */
5620 p
= newname
+ namelen
;
5622 memcpy (p
, verstr
, verlen
+ 1);
5623 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5624 newname
, FALSE
, FALSE
,
5627 || (newh
->root
.type
!= bfd_link_hash_defined
5628 && newh
->root
.type
!= bfd_link_hash_defweak
))
5630 /* Check the default versioned definition. */
5632 memcpy (p
, verstr
, verlen
+ 1);
5633 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5634 newname
, FALSE
, FALSE
,
5639 /* Mark this version if there is a definition and it is
5640 not defined in a shared object. */
5642 && !newh
->def_dynamic
5643 && (newh
->root
.type
== bfd_link_hash_defined
5644 || newh
->root
.type
== bfd_link_hash_defweak
))
5648 /* Attach all the symbols to their version information. */
5649 asvinfo
.info
= info
;
5650 asvinfo
.verdefs
= verdefs
;
5651 asvinfo
.failed
= FALSE
;
5653 elf_link_hash_traverse (elf_hash_table (info
),
5654 _bfd_elf_link_assign_sym_version
,
5659 if (!info
->allow_undefined_version
)
5661 /* Check if all global versions have a definition. */
5663 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5664 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5665 if (d
->literal
&& !d
->symver
&& !d
->script
)
5667 (*_bfd_error_handler
)
5668 (_("%s: undefined version: %s"),
5669 d
->pattern
, t
->name
);
5670 all_defined
= FALSE
;
5675 bfd_set_error (bfd_error_bad_value
);
5680 /* Find all symbols which were defined in a dynamic object and make
5681 the backend pick a reasonable value for them. */
5682 elf_link_hash_traverse (elf_hash_table (info
),
5683 _bfd_elf_adjust_dynamic_symbol
,
5688 /* Add some entries to the .dynamic section. We fill in some of the
5689 values later, in bfd_elf_final_link, but we must add the entries
5690 now so that we know the final size of the .dynamic section. */
5692 /* If there are initialization and/or finalization functions to
5693 call then add the corresponding DT_INIT/DT_FINI entries. */
5694 h
= (info
->init_function
5695 ? elf_link_hash_lookup (elf_hash_table (info
),
5696 info
->init_function
, FALSE
,
5703 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5706 h
= (info
->fini_function
5707 ? elf_link_hash_lookup (elf_hash_table (info
),
5708 info
->fini_function
, FALSE
,
5715 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5719 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5720 if (s
!= NULL
&& s
->linker_has_input
)
5722 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5723 if (! info
->executable
)
5728 for (sub
= info
->input_bfds
; sub
!= NULL
;
5729 sub
= sub
->link_next
)
5730 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5731 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5732 if (elf_section_data (o
)->this_hdr
.sh_type
5733 == SHT_PREINIT_ARRAY
)
5735 (*_bfd_error_handler
)
5736 (_("%B: .preinit_array section is not allowed in DSO"),
5741 bfd_set_error (bfd_error_nonrepresentable_section
);
5745 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5746 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5749 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5750 if (s
!= NULL
&& s
->linker_has_input
)
5752 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5753 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5756 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5757 if (s
!= NULL
&& s
->linker_has_input
)
5759 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5760 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5764 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5765 /* If .dynstr is excluded from the link, we don't want any of
5766 these tags. Strictly, we should be checking each section
5767 individually; This quick check covers for the case where
5768 someone does a /DISCARD/ : { *(*) }. */
5769 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5771 bfd_size_type strsize
;
5773 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5774 if ((info
->emit_hash
5775 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5776 || (info
->emit_gnu_hash
5777 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5778 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5779 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5780 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5781 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5782 bed
->s
->sizeof_sym
))
5787 /* The backend must work out the sizes of all the other dynamic
5789 if (bed
->elf_backend_size_dynamic_sections
5790 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5793 if (elf_hash_table (info
)->dynamic_sections_created
)
5795 unsigned long section_sym_count
;
5798 /* Set up the version definition section. */
5799 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5800 BFD_ASSERT (s
!= NULL
);
5802 /* We may have created additional version definitions if we are
5803 just linking a regular application. */
5804 verdefs
= asvinfo
.verdefs
;
5806 /* Skip anonymous version tag. */
5807 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5808 verdefs
= verdefs
->next
;
5810 if (verdefs
== NULL
&& !info
->create_default_symver
)
5811 s
->flags
|= SEC_EXCLUDE
;
5816 struct bfd_elf_version_tree
*t
;
5818 Elf_Internal_Verdef def
;
5819 Elf_Internal_Verdaux defaux
;
5820 struct bfd_link_hash_entry
*bh
;
5821 struct elf_link_hash_entry
*h
;
5827 /* Make space for the base version. */
5828 size
+= sizeof (Elf_External_Verdef
);
5829 size
+= sizeof (Elf_External_Verdaux
);
5832 /* Make space for the default version. */
5833 if (info
->create_default_symver
)
5835 size
+= sizeof (Elf_External_Verdef
);
5839 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5841 struct bfd_elf_version_deps
*n
;
5843 size
+= sizeof (Elf_External_Verdef
);
5844 size
+= sizeof (Elf_External_Verdaux
);
5847 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5848 size
+= sizeof (Elf_External_Verdaux
);
5852 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
5853 if (s
->contents
== NULL
&& s
->size
!= 0)
5856 /* Fill in the version definition section. */
5860 def
.vd_version
= VER_DEF_CURRENT
;
5861 def
.vd_flags
= VER_FLG_BASE
;
5864 if (info
->create_default_symver
)
5866 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5867 def
.vd_next
= sizeof (Elf_External_Verdef
);
5871 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5872 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5873 + sizeof (Elf_External_Verdaux
));
5876 if (soname_indx
!= (bfd_size_type
) -1)
5878 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5880 def
.vd_hash
= bfd_elf_hash (soname
);
5881 defaux
.vda_name
= soname_indx
;
5888 name
= lbasename (output_bfd
->filename
);
5889 def
.vd_hash
= bfd_elf_hash (name
);
5890 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5892 if (indx
== (bfd_size_type
) -1)
5894 defaux
.vda_name
= indx
;
5896 defaux
.vda_next
= 0;
5898 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5899 (Elf_External_Verdef
*) p
);
5900 p
+= sizeof (Elf_External_Verdef
);
5901 if (info
->create_default_symver
)
5903 /* Add a symbol representing this version. */
5905 if (! (_bfd_generic_link_add_one_symbol
5906 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5908 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5910 h
= (struct elf_link_hash_entry
*) bh
;
5913 h
->type
= STT_OBJECT
;
5914 h
->verinfo
.vertree
= NULL
;
5916 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5919 /* Create a duplicate of the base version with the same
5920 aux block, but different flags. */
5923 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5925 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5926 + sizeof (Elf_External_Verdaux
));
5929 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5930 (Elf_External_Verdef
*) p
);
5931 p
+= sizeof (Elf_External_Verdef
);
5933 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5934 (Elf_External_Verdaux
*) p
);
5935 p
+= sizeof (Elf_External_Verdaux
);
5937 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5940 struct bfd_elf_version_deps
*n
;
5943 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5946 /* Add a symbol representing this version. */
5948 if (! (_bfd_generic_link_add_one_symbol
5949 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5951 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5953 h
= (struct elf_link_hash_entry
*) bh
;
5956 h
->type
= STT_OBJECT
;
5957 h
->verinfo
.vertree
= t
;
5959 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5962 def
.vd_version
= VER_DEF_CURRENT
;
5964 if (t
->globals
.list
== NULL
5965 && t
->locals
.list
== NULL
5967 def
.vd_flags
|= VER_FLG_WEAK
;
5968 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
5969 def
.vd_cnt
= cdeps
+ 1;
5970 def
.vd_hash
= bfd_elf_hash (t
->name
);
5971 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5973 if (t
->next
!= NULL
)
5974 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5975 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
5977 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5978 (Elf_External_Verdef
*) p
);
5979 p
+= sizeof (Elf_External_Verdef
);
5981 defaux
.vda_name
= h
->dynstr_index
;
5982 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5984 defaux
.vda_next
= 0;
5985 if (t
->deps
!= NULL
)
5986 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5987 t
->name_indx
= defaux
.vda_name
;
5989 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5990 (Elf_External_Verdaux
*) p
);
5991 p
+= sizeof (Elf_External_Verdaux
);
5993 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5995 if (n
->version_needed
== NULL
)
5997 /* This can happen if there was an error in the
5999 defaux
.vda_name
= 0;
6003 defaux
.vda_name
= n
->version_needed
->name_indx
;
6004 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6007 if (n
->next
== NULL
)
6008 defaux
.vda_next
= 0;
6010 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6012 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6013 (Elf_External_Verdaux
*) p
);
6014 p
+= sizeof (Elf_External_Verdaux
);
6018 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6019 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6022 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6025 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6027 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6030 else if (info
->flags
& DF_BIND_NOW
)
6032 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6038 if (info
->executable
)
6039 info
->flags_1
&= ~ (DF_1_INITFIRST
6042 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6046 /* Work out the size of the version reference section. */
6048 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6049 BFD_ASSERT (s
!= NULL
);
6051 struct elf_find_verdep_info sinfo
;
6054 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6055 if (sinfo
.vers
== 0)
6057 sinfo
.failed
= FALSE
;
6059 elf_link_hash_traverse (elf_hash_table (info
),
6060 _bfd_elf_link_find_version_dependencies
,
6065 if (elf_tdata (output_bfd
)->verref
== NULL
)
6066 s
->flags
|= SEC_EXCLUDE
;
6069 Elf_Internal_Verneed
*t
;
6074 /* Build the version definition section. */
6077 for (t
= elf_tdata (output_bfd
)->verref
;
6081 Elf_Internal_Vernaux
*a
;
6083 size
+= sizeof (Elf_External_Verneed
);
6085 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6086 size
+= sizeof (Elf_External_Vernaux
);
6090 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6091 if (s
->contents
== NULL
)
6095 for (t
= elf_tdata (output_bfd
)->verref
;
6100 Elf_Internal_Vernaux
*a
;
6104 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6107 t
->vn_version
= VER_NEED_CURRENT
;
6109 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6110 elf_dt_name (t
->vn_bfd
) != NULL
6111 ? elf_dt_name (t
->vn_bfd
)
6112 : lbasename (t
->vn_bfd
->filename
),
6114 if (indx
== (bfd_size_type
) -1)
6117 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6118 if (t
->vn_nextref
== NULL
)
6121 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6122 + caux
* sizeof (Elf_External_Vernaux
));
6124 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6125 (Elf_External_Verneed
*) p
);
6126 p
+= sizeof (Elf_External_Verneed
);
6128 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6130 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6131 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6132 a
->vna_nodename
, FALSE
);
6133 if (indx
== (bfd_size_type
) -1)
6136 if (a
->vna_nextptr
== NULL
)
6139 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6141 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6142 (Elf_External_Vernaux
*) p
);
6143 p
+= sizeof (Elf_External_Vernaux
);
6147 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6148 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6151 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6155 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6156 && elf_tdata (output_bfd
)->cverdefs
== 0)
6157 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6158 §ion_sym_count
) == 0)
6160 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6161 s
->flags
|= SEC_EXCLUDE
;
6167 /* Find the first non-excluded output section. We'll use its
6168 section symbol for some emitted relocs. */
6170 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6174 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6175 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6176 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6178 elf_hash_table (info
)->text_index_section
= s
;
6183 /* Find two non-excluded output sections, one for code, one for data.
6184 We'll use their section symbols for some emitted relocs. */
6186 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6190 /* Data first, since setting text_index_section changes
6191 _bfd_elf_link_omit_section_dynsym. */
6192 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6193 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6194 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6196 elf_hash_table (info
)->data_index_section
= s
;
6200 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6201 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6202 == (SEC_ALLOC
| SEC_READONLY
))
6203 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6205 elf_hash_table (info
)->text_index_section
= s
;
6209 if (elf_hash_table (info
)->text_index_section
== NULL
)
6210 elf_hash_table (info
)->text_index_section
6211 = elf_hash_table (info
)->data_index_section
;
6215 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6217 const struct elf_backend_data
*bed
;
6219 if (!is_elf_hash_table (info
->hash
))
6222 bed
= get_elf_backend_data (output_bfd
);
6223 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6225 if (elf_hash_table (info
)->dynamic_sections_created
)
6229 bfd_size_type dynsymcount
;
6230 unsigned long section_sym_count
;
6231 unsigned int dtagcount
;
6233 dynobj
= elf_hash_table (info
)->dynobj
;
6235 /* Assign dynsym indicies. In a shared library we generate a
6236 section symbol for each output section, which come first.
6237 Next come all of the back-end allocated local dynamic syms,
6238 followed by the rest of the global symbols. */
6240 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6241 §ion_sym_count
);
6243 /* Work out the size of the symbol version section. */
6244 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6245 BFD_ASSERT (s
!= NULL
);
6246 if (dynsymcount
!= 0
6247 && (s
->flags
& SEC_EXCLUDE
) == 0)
6249 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6250 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6251 if (s
->contents
== NULL
)
6254 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6258 /* Set the size of the .dynsym and .hash sections. We counted
6259 the number of dynamic symbols in elf_link_add_object_symbols.
6260 We will build the contents of .dynsym and .hash when we build
6261 the final symbol table, because until then we do not know the
6262 correct value to give the symbols. We built the .dynstr
6263 section as we went along in elf_link_add_object_symbols. */
6264 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6265 BFD_ASSERT (s
!= NULL
);
6266 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6268 if (dynsymcount
!= 0)
6270 s
->contents
= bfd_alloc (output_bfd
, s
->size
);
6271 if (s
->contents
== NULL
)
6274 /* The first entry in .dynsym is a dummy symbol.
6275 Clear all the section syms, in case we don't output them all. */
6276 ++section_sym_count
;
6277 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6280 elf_hash_table (info
)->bucketcount
= 0;
6282 /* Compute the size of the hashing table. As a side effect this
6283 computes the hash values for all the names we export. */
6284 if (info
->emit_hash
)
6286 unsigned long int *hashcodes
;
6287 struct hash_codes_info hashinf
;
6289 unsigned long int nsyms
;
6291 size_t hash_entry_size
;
6293 /* Compute the hash values for all exported symbols. At the same
6294 time store the values in an array so that we could use them for
6296 amt
= dynsymcount
* sizeof (unsigned long int);
6297 hashcodes
= bfd_malloc (amt
);
6298 if (hashcodes
== NULL
)
6300 hashinf
.hashcodes
= hashcodes
;
6301 hashinf
.error
= FALSE
;
6303 /* Put all hash values in HASHCODES. */
6304 elf_link_hash_traverse (elf_hash_table (info
),
6305 elf_collect_hash_codes
, &hashinf
);
6312 nsyms
= hashinf
.hashcodes
- hashcodes
;
6314 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6317 if (bucketcount
== 0)
6320 elf_hash_table (info
)->bucketcount
= bucketcount
;
6322 s
= bfd_get_section_by_name (dynobj
, ".hash");
6323 BFD_ASSERT (s
!= NULL
);
6324 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6325 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6326 s
->contents
= bfd_zalloc (output_bfd
, s
->size
);
6327 if (s
->contents
== NULL
)
6330 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6331 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6332 s
->contents
+ hash_entry_size
);
6335 if (info
->emit_gnu_hash
)
6338 unsigned char *contents
;
6339 struct collect_gnu_hash_codes cinfo
;
6343 memset (&cinfo
, 0, sizeof (cinfo
));
6345 /* Compute the hash values for all exported symbols. At the same
6346 time store the values in an array so that we could use them for
6348 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6349 cinfo
.hashcodes
= bfd_malloc (amt
);
6350 if (cinfo
.hashcodes
== NULL
)
6353 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6354 cinfo
.min_dynindx
= -1;
6355 cinfo
.output_bfd
= output_bfd
;
6358 /* Put all hash values in HASHCODES. */
6359 elf_link_hash_traverse (elf_hash_table (info
),
6360 elf_collect_gnu_hash_codes
, &cinfo
);
6363 free (cinfo
.hashcodes
);
6368 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6370 if (bucketcount
== 0)
6372 free (cinfo
.hashcodes
);
6376 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6377 BFD_ASSERT (s
!= NULL
);
6379 if (cinfo
.nsyms
== 0)
6381 /* Empty .gnu.hash section is special. */
6382 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6383 free (cinfo
.hashcodes
);
6384 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6385 contents
= bfd_zalloc (output_bfd
, s
->size
);
6386 if (contents
== NULL
)
6388 s
->contents
= contents
;
6389 /* 1 empty bucket. */
6390 bfd_put_32 (output_bfd
, 1, contents
);
6391 /* SYMIDX above the special symbol 0. */
6392 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6393 /* Just one word for bitmask. */
6394 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6395 /* Only hash fn bloom filter. */
6396 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6397 /* No hashes are valid - empty bitmask. */
6398 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6399 /* No hashes in the only bucket. */
6400 bfd_put_32 (output_bfd
, 0,
6401 contents
+ 16 + bed
->s
->arch_size
/ 8);
6405 unsigned long int maskwords
, maskbitslog2
;
6406 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6408 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6409 if (maskbitslog2
< 3)
6411 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6412 maskbitslog2
= maskbitslog2
+ 3;
6414 maskbitslog2
= maskbitslog2
+ 2;
6415 if (bed
->s
->arch_size
== 64)
6417 if (maskbitslog2
== 5)
6423 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6424 cinfo
.shift2
= maskbitslog2
;
6425 cinfo
.maskbits
= 1 << maskbitslog2
;
6426 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6427 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6428 amt
+= maskwords
* sizeof (bfd_vma
);
6429 cinfo
.bitmask
= bfd_malloc (amt
);
6430 if (cinfo
.bitmask
== NULL
)
6432 free (cinfo
.hashcodes
);
6436 cinfo
.counts
= (void *) (cinfo
.bitmask
+ maskwords
);
6437 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6438 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6439 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6441 /* Determine how often each hash bucket is used. */
6442 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6443 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6444 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6446 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6447 if (cinfo
.counts
[i
] != 0)
6449 cinfo
.indx
[i
] = cnt
;
6450 cnt
+= cinfo
.counts
[i
];
6452 BFD_ASSERT (cnt
== dynsymcount
);
6453 cinfo
.bucketcount
= bucketcount
;
6454 cinfo
.local_indx
= cinfo
.min_dynindx
;
6456 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6457 s
->size
+= cinfo
.maskbits
/ 8;
6458 contents
= bfd_zalloc (output_bfd
, s
->size
);
6459 if (contents
== NULL
)
6461 free (cinfo
.bitmask
);
6462 free (cinfo
.hashcodes
);
6466 s
->contents
= contents
;
6467 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6468 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6469 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6470 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6471 contents
+= 16 + cinfo
.maskbits
/ 8;
6473 for (i
= 0; i
< bucketcount
; ++i
)
6475 if (cinfo
.counts
[i
] == 0)
6476 bfd_put_32 (output_bfd
, 0, contents
);
6478 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6482 cinfo
.contents
= contents
;
6484 /* Renumber dynamic symbols, populate .gnu.hash section. */
6485 elf_link_hash_traverse (elf_hash_table (info
),
6486 elf_renumber_gnu_hash_syms
, &cinfo
);
6488 contents
= s
->contents
+ 16;
6489 for (i
= 0; i
< maskwords
; ++i
)
6491 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6493 contents
+= bed
->s
->arch_size
/ 8;
6496 free (cinfo
.bitmask
);
6497 free (cinfo
.hashcodes
);
6501 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6502 BFD_ASSERT (s
!= NULL
);
6504 elf_finalize_dynstr (output_bfd
, info
);
6506 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6508 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6509 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6516 /* Indicate that we are only retrieving symbol values from this
6520 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6522 if (is_elf_hash_table (info
->hash
))
6523 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6524 _bfd_generic_link_just_syms (sec
, info
);
6527 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6530 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6533 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6534 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6537 /* Finish SHF_MERGE section merging. */
6540 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6545 if (!is_elf_hash_table (info
->hash
))
6548 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6549 if ((ibfd
->flags
& DYNAMIC
) == 0)
6550 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6551 if ((sec
->flags
& SEC_MERGE
) != 0
6552 && !bfd_is_abs_section (sec
->output_section
))
6554 struct bfd_elf_section_data
*secdata
;
6556 secdata
= elf_section_data (sec
);
6557 if (! _bfd_add_merge_section (abfd
,
6558 &elf_hash_table (info
)->merge_info
,
6559 sec
, &secdata
->sec_info
))
6561 else if (secdata
->sec_info
)
6562 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6565 if (elf_hash_table (info
)->merge_info
!= NULL
)
6566 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6567 merge_sections_remove_hook
);
6571 /* Create an entry in an ELF linker hash table. */
6573 struct bfd_hash_entry
*
6574 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6575 struct bfd_hash_table
*table
,
6578 /* Allocate the structure if it has not already been allocated by a
6582 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6587 /* Call the allocation method of the superclass. */
6588 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6591 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6592 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6594 /* Set local fields. */
6597 ret
->got
= htab
->init_got_refcount
;
6598 ret
->plt
= htab
->init_plt_refcount
;
6599 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6600 - offsetof (struct elf_link_hash_entry
, size
)));
6601 /* Assume that we have been called by a non-ELF symbol reader.
6602 This flag is then reset by the code which reads an ELF input
6603 file. This ensures that a symbol created by a non-ELF symbol
6604 reader will have the flag set correctly. */
6611 /* Copy data from an indirect symbol to its direct symbol, hiding the
6612 old indirect symbol. Also used for copying flags to a weakdef. */
6615 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6616 struct elf_link_hash_entry
*dir
,
6617 struct elf_link_hash_entry
*ind
)
6619 struct elf_link_hash_table
*htab
;
6621 /* Copy down any references that we may have already seen to the
6622 symbol which just became indirect. */
6624 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6625 dir
->ref_regular
|= ind
->ref_regular
;
6626 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6627 dir
->non_got_ref
|= ind
->non_got_ref
;
6628 dir
->needs_plt
|= ind
->needs_plt
;
6629 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6631 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6634 /* Copy over the global and procedure linkage table refcount entries.
6635 These may have been already set up by a check_relocs routine. */
6636 htab
= elf_hash_table (info
);
6637 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6639 if (dir
->got
.refcount
< 0)
6640 dir
->got
.refcount
= 0;
6641 dir
->got
.refcount
+= ind
->got
.refcount
;
6642 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6645 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6647 if (dir
->plt
.refcount
< 0)
6648 dir
->plt
.refcount
= 0;
6649 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6650 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6653 if (ind
->dynindx
!= -1)
6655 if (dir
->dynindx
!= -1)
6656 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6657 dir
->dynindx
= ind
->dynindx
;
6658 dir
->dynstr_index
= ind
->dynstr_index
;
6660 ind
->dynstr_index
= 0;
6665 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6666 struct elf_link_hash_entry
*h
,
6667 bfd_boolean force_local
)
6669 /* STT_GNU_IFUNC symbol must go through PLT. */
6670 if (h
->type
!= STT_GNU_IFUNC
)
6672 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6677 h
->forced_local
= 1;
6678 if (h
->dynindx
!= -1)
6681 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6687 /* Initialize an ELF linker hash table. */
6690 _bfd_elf_link_hash_table_init
6691 (struct elf_link_hash_table
*table
,
6693 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6694 struct bfd_hash_table
*,
6696 unsigned int entsize
)
6699 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6701 memset (table
, 0, sizeof * table
);
6702 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6703 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6704 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6705 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6706 /* The first dynamic symbol is a dummy. */
6707 table
->dynsymcount
= 1;
6709 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6710 table
->root
.type
= bfd_link_elf_hash_table
;
6715 /* Create an ELF linker hash table. */
6717 struct bfd_link_hash_table
*
6718 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6720 struct elf_link_hash_table
*ret
;
6721 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6723 ret
= bfd_malloc (amt
);
6727 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6728 sizeof (struct elf_link_hash_entry
)))
6737 /* This is a hook for the ELF emulation code in the generic linker to
6738 tell the backend linker what file name to use for the DT_NEEDED
6739 entry for a dynamic object. */
6742 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6744 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6745 && bfd_get_format (abfd
) == bfd_object
)
6746 elf_dt_name (abfd
) = name
;
6750 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6753 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6754 && bfd_get_format (abfd
) == bfd_object
)
6755 lib_class
= elf_dyn_lib_class (abfd
);
6762 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6764 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6765 && bfd_get_format (abfd
) == bfd_object
)
6766 elf_dyn_lib_class (abfd
) = lib_class
;
6769 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6770 the linker ELF emulation code. */
6772 struct bfd_link_needed_list
*
6773 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6774 struct bfd_link_info
*info
)
6776 if (! is_elf_hash_table (info
->hash
))
6778 return elf_hash_table (info
)->needed
;
6781 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6782 hook for the linker ELF emulation code. */
6784 struct bfd_link_needed_list
*
6785 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6786 struct bfd_link_info
*info
)
6788 if (! is_elf_hash_table (info
->hash
))
6790 return elf_hash_table (info
)->runpath
;
6793 /* Get the name actually used for a dynamic object for a link. This
6794 is the SONAME entry if there is one. Otherwise, it is the string
6795 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6798 bfd_elf_get_dt_soname (bfd
*abfd
)
6800 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6801 && bfd_get_format (abfd
) == bfd_object
)
6802 return elf_dt_name (abfd
);
6806 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6807 the ELF linker emulation code. */
6810 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6811 struct bfd_link_needed_list
**pneeded
)
6814 bfd_byte
*dynbuf
= NULL
;
6815 unsigned int elfsec
;
6816 unsigned long shlink
;
6817 bfd_byte
*extdyn
, *extdynend
;
6819 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6823 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6824 || bfd_get_format (abfd
) != bfd_object
)
6827 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6828 if (s
== NULL
|| s
->size
== 0)
6831 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6834 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6835 if (elfsec
== SHN_BAD
)
6838 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6840 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6841 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6844 extdynend
= extdyn
+ s
->size
;
6845 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6847 Elf_Internal_Dyn dyn
;
6849 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6851 if (dyn
.d_tag
== DT_NULL
)
6854 if (dyn
.d_tag
== DT_NEEDED
)
6857 struct bfd_link_needed_list
*l
;
6858 unsigned int tagv
= dyn
.d_un
.d_val
;
6861 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6866 l
= bfd_alloc (abfd
, amt
);
6887 struct elf_symbuf_symbol
6889 unsigned long st_name
; /* Symbol name, index in string tbl */
6890 unsigned char st_info
; /* Type and binding attributes */
6891 unsigned char st_other
; /* Visibilty, and target specific */
6894 struct elf_symbuf_head
6896 struct elf_symbuf_symbol
*ssym
;
6897 bfd_size_type count
;
6898 unsigned int st_shndx
;
6905 Elf_Internal_Sym
*isym
;
6906 struct elf_symbuf_symbol
*ssym
;
6911 /* Sort references to symbols by ascending section number. */
6914 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6916 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6917 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6919 return s1
->st_shndx
- s2
->st_shndx
;
6923 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6925 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
6926 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
6927 return strcmp (s1
->name
, s2
->name
);
6930 static struct elf_symbuf_head
*
6931 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
6933 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
6934 struct elf_symbuf_symbol
*ssym
;
6935 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
6936 bfd_size_type i
, shndx_count
, total_size
;
6938 indbuf
= bfd_malloc2 (symcount
, sizeof (*indbuf
));
6942 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
6943 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
6944 *ind
++ = &isymbuf
[i
];
6947 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
6948 elf_sort_elf_symbol
);
6951 if (indbufend
> indbuf
)
6952 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
6953 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
6956 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
6957 + (indbufend
- indbuf
) * sizeof (*ssym
));
6958 ssymbuf
= bfd_malloc (total_size
);
6959 if (ssymbuf
== NULL
)
6965 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
6966 ssymbuf
->ssym
= NULL
;
6967 ssymbuf
->count
= shndx_count
;
6968 ssymbuf
->st_shndx
= 0;
6969 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
6971 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
6974 ssymhead
->ssym
= ssym
;
6975 ssymhead
->count
= 0;
6976 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
6978 ssym
->st_name
= (*ind
)->st_name
;
6979 ssym
->st_info
= (*ind
)->st_info
;
6980 ssym
->st_other
= (*ind
)->st_other
;
6983 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
6984 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
6991 /* Check if 2 sections define the same set of local and global
6995 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
6996 struct bfd_link_info
*info
)
6999 const struct elf_backend_data
*bed1
, *bed2
;
7000 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7001 bfd_size_type symcount1
, symcount2
;
7002 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7003 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7004 Elf_Internal_Sym
*isym
, *isymend
;
7005 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7006 bfd_size_type count1
, count2
, i
;
7007 unsigned int shndx1
, shndx2
;
7013 /* Both sections have to be in ELF. */
7014 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7015 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7018 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7021 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7022 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7023 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7026 bed1
= get_elf_backend_data (bfd1
);
7027 bed2
= get_elf_backend_data (bfd2
);
7028 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7029 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7030 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7031 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7033 if (symcount1
== 0 || symcount2
== 0)
7039 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
7040 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
7042 if (ssymbuf1
== NULL
)
7044 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7046 if (isymbuf1
== NULL
)
7049 if (!info
->reduce_memory_overheads
)
7050 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7051 = elf_create_symbuf (symcount1
, isymbuf1
);
7054 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7056 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7058 if (isymbuf2
== NULL
)
7061 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7062 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7063 = elf_create_symbuf (symcount2
, isymbuf2
);
7066 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7068 /* Optimized faster version. */
7069 bfd_size_type lo
, hi
, mid
;
7070 struct elf_symbol
*symp
;
7071 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7074 hi
= ssymbuf1
->count
;
7079 mid
= (lo
+ hi
) / 2;
7080 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7082 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7086 count1
= ssymbuf1
[mid
].count
;
7093 hi
= ssymbuf2
->count
;
7098 mid
= (lo
+ hi
) / 2;
7099 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7101 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7105 count2
= ssymbuf2
[mid
].count
;
7111 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7114 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7115 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
7116 if (symtable1
== NULL
|| symtable2
== NULL
)
7120 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7121 ssym
< ssymend
; ssym
++, symp
++)
7123 symp
->u
.ssym
= ssym
;
7124 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7130 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7131 ssym
< ssymend
; ssym
++, symp
++)
7133 symp
->u
.ssym
= ssym
;
7134 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7139 /* Sort symbol by name. */
7140 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7141 elf_sym_name_compare
);
7142 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7143 elf_sym_name_compare
);
7145 for (i
= 0; i
< count1
; i
++)
7146 /* Two symbols must have the same binding, type and name. */
7147 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7148 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7149 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7156 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7157 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7158 if (symtable1
== NULL
|| symtable2
== NULL
)
7161 /* Count definitions in the section. */
7163 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7164 if (isym
->st_shndx
== shndx1
)
7165 symtable1
[count1
++].u
.isym
= isym
;
7168 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7169 if (isym
->st_shndx
== shndx2
)
7170 symtable2
[count2
++].u
.isym
= isym
;
7172 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7175 for (i
= 0; i
< count1
; i
++)
7177 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7178 symtable1
[i
].u
.isym
->st_name
);
7180 for (i
= 0; i
< count2
; i
++)
7182 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7183 symtable2
[i
].u
.isym
->st_name
);
7185 /* Sort symbol by name. */
7186 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7187 elf_sym_name_compare
);
7188 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7189 elf_sym_name_compare
);
7191 for (i
= 0; i
< count1
; i
++)
7192 /* Two symbols must have the same binding, type and name. */
7193 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7194 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7195 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7213 /* Return TRUE if 2 section types are compatible. */
7216 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7217 bfd
*bbfd
, const asection
*bsec
)
7221 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7222 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7225 return elf_section_type (asec
) == elf_section_type (bsec
);
7228 /* Final phase of ELF linker. */
7230 /* A structure we use to avoid passing large numbers of arguments. */
7232 struct elf_final_link_info
7234 /* General link information. */
7235 struct bfd_link_info
*info
;
7238 /* Symbol string table. */
7239 struct bfd_strtab_hash
*symstrtab
;
7240 /* .dynsym section. */
7241 asection
*dynsym_sec
;
7242 /* .hash section. */
7244 /* symbol version section (.gnu.version). */
7245 asection
*symver_sec
;
7246 /* Buffer large enough to hold contents of any section. */
7248 /* Buffer large enough to hold external relocs of any section. */
7249 void *external_relocs
;
7250 /* Buffer large enough to hold internal relocs of any section. */
7251 Elf_Internal_Rela
*internal_relocs
;
7252 /* Buffer large enough to hold external local symbols of any input
7254 bfd_byte
*external_syms
;
7255 /* And a buffer for symbol section indices. */
7256 Elf_External_Sym_Shndx
*locsym_shndx
;
7257 /* Buffer large enough to hold internal local symbols of any input
7259 Elf_Internal_Sym
*internal_syms
;
7260 /* Array large enough to hold a symbol index for each local symbol
7261 of any input BFD. */
7263 /* Array large enough to hold a section pointer for each local
7264 symbol of any input BFD. */
7265 asection
**sections
;
7266 /* Buffer to hold swapped out symbols. */
7268 /* And one for symbol section indices. */
7269 Elf_External_Sym_Shndx
*symshndxbuf
;
7270 /* Number of swapped out symbols in buffer. */
7271 size_t symbuf_count
;
7272 /* Number of symbols which fit in symbuf. */
7274 /* And same for symshndxbuf. */
7275 size_t shndxbuf_size
;
7278 /* This struct is used to pass information to elf_link_output_extsym. */
7280 struct elf_outext_info
7283 bfd_boolean localsyms
;
7284 struct elf_final_link_info
*finfo
;
7288 /* Support for evaluating a complex relocation.
7290 Complex relocations are generalized, self-describing relocations. The
7291 implementation of them consists of two parts: complex symbols, and the
7292 relocations themselves.
7294 The relocations are use a reserved elf-wide relocation type code (R_RELC
7295 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7296 information (start bit, end bit, word width, etc) into the addend. This
7297 information is extracted from CGEN-generated operand tables within gas.
7299 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7300 internal) representing prefix-notation expressions, including but not
7301 limited to those sorts of expressions normally encoded as addends in the
7302 addend field. The symbol mangling format is:
7305 | <unary-operator> ':' <node>
7306 | <binary-operator> ':' <node> ':' <node>
7309 <literal> := 's' <digits=N> ':' <N character symbol name>
7310 | 'S' <digits=N> ':' <N character section name>
7314 <binary-operator> := as in C
7315 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7318 set_symbol_value (bfd
*bfd_with_globals
,
7319 Elf_Internal_Sym
*isymbuf
,
7324 struct elf_link_hash_entry
**sym_hashes
;
7325 struct elf_link_hash_entry
*h
;
7326 size_t extsymoff
= locsymcount
;
7328 if (symidx
< locsymcount
)
7330 Elf_Internal_Sym
*sym
;
7332 sym
= isymbuf
+ symidx
;
7333 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7335 /* It is a local symbol: move it to the
7336 "absolute" section and give it a value. */
7337 sym
->st_shndx
= SHN_ABS
;
7338 sym
->st_value
= val
;
7341 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7345 /* It is a global symbol: set its link type
7346 to "defined" and give it a value. */
7348 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7349 h
= sym_hashes
[symidx
- extsymoff
];
7350 while (h
->root
.type
== bfd_link_hash_indirect
7351 || h
->root
.type
== bfd_link_hash_warning
)
7352 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7353 h
->root
.type
= bfd_link_hash_defined
;
7354 h
->root
.u
.def
.value
= val
;
7355 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7359 resolve_symbol (const char *name
,
7361 struct elf_final_link_info
*finfo
,
7363 Elf_Internal_Sym
*isymbuf
,
7366 Elf_Internal_Sym
*sym
;
7367 struct bfd_link_hash_entry
*global_entry
;
7368 const char *candidate
= NULL
;
7369 Elf_Internal_Shdr
*symtab_hdr
;
7372 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7374 for (i
= 0; i
< locsymcount
; ++ i
)
7378 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7381 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7382 symtab_hdr
->sh_link
,
7385 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7386 name
, candidate
, (unsigned long) sym
->st_value
);
7388 if (candidate
&& strcmp (candidate
, name
) == 0)
7390 asection
*sec
= finfo
->sections
[i
];
7392 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7393 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7395 printf ("Found symbol with value %8.8lx\n",
7396 (unsigned long) *result
);
7402 /* Hmm, haven't found it yet. perhaps it is a global. */
7403 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7404 FALSE
, FALSE
, TRUE
);
7408 if (global_entry
->type
== bfd_link_hash_defined
7409 || global_entry
->type
== bfd_link_hash_defweak
)
7411 *result
= (global_entry
->u
.def
.value
7412 + global_entry
->u
.def
.section
->output_section
->vma
7413 + global_entry
->u
.def
.section
->output_offset
);
7415 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7416 global_entry
->root
.string
, (unsigned long) *result
);
7425 resolve_section (const char *name
,
7432 for (curr
= sections
; curr
; curr
= curr
->next
)
7433 if (strcmp (curr
->name
, name
) == 0)
7435 *result
= curr
->vma
;
7439 /* Hmm. still haven't found it. try pseudo-section names. */
7440 for (curr
= sections
; curr
; curr
= curr
->next
)
7442 len
= strlen (curr
->name
);
7443 if (len
> strlen (name
))
7446 if (strncmp (curr
->name
, name
, len
) == 0)
7448 if (strncmp (".end", name
+ len
, 4) == 0)
7450 *result
= curr
->vma
+ curr
->size
;
7454 /* Insert more pseudo-section names here, if you like. */
7462 undefined_reference (const char *reftype
, const char *name
)
7464 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7469 eval_symbol (bfd_vma
*result
,
7472 struct elf_final_link_info
*finfo
,
7474 Elf_Internal_Sym
*isymbuf
,
7483 const char *sym
= *symp
;
7485 bfd_boolean symbol_is_section
= FALSE
;
7490 if (len
< 1 || len
> sizeof (symbuf
))
7492 bfd_set_error (bfd_error_invalid_operation
);
7505 *result
= strtoul (sym
, (char **) symp
, 16);
7509 symbol_is_section
= TRUE
;
7512 symlen
= strtol (sym
, (char **) symp
, 10);
7513 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7515 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7517 bfd_set_error (bfd_error_invalid_operation
);
7521 memcpy (symbuf
, sym
, symlen
);
7522 symbuf
[symlen
] = '\0';
7523 *symp
= sym
+ symlen
;
7525 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7526 the symbol as a section, or vice-versa. so we're pretty liberal in our
7527 interpretation here; section means "try section first", not "must be a
7528 section", and likewise with symbol. */
7530 if (symbol_is_section
)
7532 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7533 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7534 isymbuf
, locsymcount
))
7536 undefined_reference ("section", symbuf
);
7542 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7543 isymbuf
, locsymcount
)
7544 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7547 undefined_reference ("symbol", symbuf
);
7554 /* All that remains are operators. */
7556 #define UNARY_OP(op) \
7557 if (strncmp (sym, #op, strlen (#op)) == 0) \
7559 sym += strlen (#op); \
7563 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7564 isymbuf, locsymcount, signed_p)) \
7567 *result = op ((bfd_signed_vma) a); \
7573 #define BINARY_OP(op) \
7574 if (strncmp (sym, #op, strlen (#op)) == 0) \
7576 sym += strlen (#op); \
7580 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7581 isymbuf, locsymcount, signed_p)) \
7584 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7585 isymbuf, locsymcount, signed_p)) \
7588 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7618 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7619 bfd_set_error (bfd_error_invalid_operation
);
7625 put_value (bfd_vma size
,
7626 unsigned long chunksz
,
7631 location
+= (size
- chunksz
);
7633 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7641 bfd_put_8 (input_bfd
, x
, location
);
7644 bfd_put_16 (input_bfd
, x
, location
);
7647 bfd_put_32 (input_bfd
, x
, location
);
7651 bfd_put_64 (input_bfd
, x
, location
);
7661 get_value (bfd_vma size
,
7662 unsigned long chunksz
,
7668 for (; size
; size
-= chunksz
, location
+= chunksz
)
7676 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7679 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7682 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7686 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7697 decode_complex_addend (unsigned long *start
, /* in bits */
7698 unsigned long *oplen
, /* in bits */
7699 unsigned long *len
, /* in bits */
7700 unsigned long *wordsz
, /* in bytes */
7701 unsigned long *chunksz
, /* in bytes */
7702 unsigned long *lsb0_p
,
7703 unsigned long *signed_p
,
7704 unsigned long *trunc_p
,
7705 unsigned long encoded
)
7707 * start
= encoded
& 0x3F;
7708 * len
= (encoded
>> 6) & 0x3F;
7709 * oplen
= (encoded
>> 12) & 0x3F;
7710 * wordsz
= (encoded
>> 18) & 0xF;
7711 * chunksz
= (encoded
>> 22) & 0xF;
7712 * lsb0_p
= (encoded
>> 27) & 1;
7713 * signed_p
= (encoded
>> 28) & 1;
7714 * trunc_p
= (encoded
>> 29) & 1;
7717 bfd_reloc_status_type
7718 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7719 asection
*input_section ATTRIBUTE_UNUSED
,
7721 Elf_Internal_Rela
*rel
,
7724 bfd_vma shift
, x
, mask
;
7725 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7726 bfd_reloc_status_type r
;
7728 /* Perform this reloc, since it is complex.
7729 (this is not to say that it necessarily refers to a complex
7730 symbol; merely that it is a self-describing CGEN based reloc.
7731 i.e. the addend has the complete reloc information (bit start, end,
7732 word size, etc) encoded within it.). */
7734 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7735 &chunksz
, &lsb0_p
, &signed_p
,
7736 &trunc_p
, rel
->r_addend
);
7738 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7741 shift
= (start
+ 1) - len
;
7743 shift
= (8 * wordsz
) - (start
+ len
);
7745 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7748 printf ("Doing complex reloc: "
7749 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7750 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7751 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7752 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7753 oplen
, x
, mask
, relocation
);
7758 /* Now do an overflow check. */
7759 r
= bfd_check_overflow ((signed_p
7760 ? complain_overflow_signed
7761 : complain_overflow_unsigned
),
7762 len
, 0, (8 * wordsz
),
7766 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7769 printf (" relocation: %8.8lx\n"
7770 " shifted mask: %8.8lx\n"
7771 " shifted/masked reloc: %8.8lx\n"
7772 " result: %8.8lx\n",
7773 relocation
, (mask
<< shift
),
7774 ((relocation
& mask
) << shift
), x
);
7776 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7780 /* When performing a relocatable link, the input relocations are
7781 preserved. But, if they reference global symbols, the indices
7782 referenced must be updated. Update all the relocations in
7783 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7786 elf_link_adjust_relocs (bfd
*abfd
,
7787 Elf_Internal_Shdr
*rel_hdr
,
7789 struct elf_link_hash_entry
**rel_hash
)
7792 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7794 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7795 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7796 bfd_vma r_type_mask
;
7799 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7801 swap_in
= bed
->s
->swap_reloc_in
;
7802 swap_out
= bed
->s
->swap_reloc_out
;
7804 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7806 swap_in
= bed
->s
->swap_reloca_in
;
7807 swap_out
= bed
->s
->swap_reloca_out
;
7812 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7815 if (bed
->s
->arch_size
== 32)
7822 r_type_mask
= 0xffffffff;
7826 erela
= rel_hdr
->contents
;
7827 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7829 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7832 if (*rel_hash
== NULL
)
7835 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7837 (*swap_in
) (abfd
, erela
, irela
);
7838 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7839 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7840 | (irela
[j
].r_info
& r_type_mask
));
7841 (*swap_out
) (abfd
, irela
, erela
);
7845 struct elf_link_sort_rela
7851 enum elf_reloc_type_class type
;
7852 /* We use this as an array of size int_rels_per_ext_rel. */
7853 Elf_Internal_Rela rela
[1];
7857 elf_link_sort_cmp1 (const void *A
, const void *B
)
7859 const struct elf_link_sort_rela
*a
= A
;
7860 const struct elf_link_sort_rela
*b
= B
;
7861 int relativea
, relativeb
;
7863 relativea
= a
->type
== reloc_class_relative
;
7864 relativeb
= b
->type
== reloc_class_relative
;
7866 if (relativea
< relativeb
)
7868 if (relativea
> relativeb
)
7870 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7872 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7874 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7876 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7882 elf_link_sort_cmp2 (const void *A
, const void *B
)
7884 const struct elf_link_sort_rela
*a
= A
;
7885 const struct elf_link_sort_rela
*b
= B
;
7888 if (a
->u
.offset
< b
->u
.offset
)
7890 if (a
->u
.offset
> b
->u
.offset
)
7892 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7893 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7898 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7900 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7906 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7908 asection
*dynamic_relocs
;
7911 bfd_size_type count
, size
;
7912 size_t i
, ret
, sort_elt
, ext_size
;
7913 bfd_byte
*sort
, *s_non_relative
, *p
;
7914 struct elf_link_sort_rela
*sq
;
7915 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7916 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7917 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7918 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7919 struct bfd_link_order
*lo
;
7921 bfd_boolean use_rela
;
7923 /* Find a dynamic reloc section. */
7924 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
7925 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
7926 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
7927 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7929 bfd_boolean use_rela_initialised
= FALSE
;
7931 /* This is just here to stop gcc from complaining.
7932 It's initialization checking code is not perfect. */
7935 /* Both sections are present. Examine the sizes
7936 of the indirect sections to help us choose. */
7937 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7938 if (lo
->type
== bfd_indirect_link_order
)
7940 asection
*o
= lo
->u
.indirect
.section
;
7942 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7944 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7945 /* Section size is divisible by both rel and rela sizes.
7946 It is of no help to us. */
7950 /* Section size is only divisible by rela. */
7951 if (use_rela_initialised
&& (use_rela
== FALSE
))
7954 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7955 bfd_set_error (bfd_error_invalid_operation
);
7961 use_rela_initialised
= TRUE
;
7965 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7967 /* Section size is only divisible by rel. */
7968 if (use_rela_initialised
&& (use_rela
== TRUE
))
7971 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7972 bfd_set_error (bfd_error_invalid_operation
);
7978 use_rela_initialised
= TRUE
;
7983 /* The section size is not divisible by either - something is wrong. */
7985 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
7986 bfd_set_error (bfd_error_invalid_operation
);
7991 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7992 if (lo
->type
== bfd_indirect_link_order
)
7994 asection
*o
= lo
->u
.indirect
.section
;
7996 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7998 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7999 /* Section size is divisible by both rel and rela sizes.
8000 It is of no help to us. */
8004 /* Section size is only divisible by rela. */
8005 if (use_rela_initialised
&& (use_rela
== FALSE
))
8008 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8009 bfd_set_error (bfd_error_invalid_operation
);
8015 use_rela_initialised
= TRUE
;
8019 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8021 /* Section size is only divisible by rel. */
8022 if (use_rela_initialised
&& (use_rela
== TRUE
))
8025 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8026 bfd_set_error (bfd_error_invalid_operation
);
8032 use_rela_initialised
= TRUE
;
8037 /* The section size is not divisible by either - something is wrong. */
8039 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8040 bfd_set_error (bfd_error_invalid_operation
);
8045 if (! use_rela_initialised
)
8049 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8051 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8058 dynamic_relocs
= rela_dyn
;
8059 ext_size
= bed
->s
->sizeof_rela
;
8060 swap_in
= bed
->s
->swap_reloca_in
;
8061 swap_out
= bed
->s
->swap_reloca_out
;
8065 dynamic_relocs
= rel_dyn
;
8066 ext_size
= bed
->s
->sizeof_rel
;
8067 swap_in
= bed
->s
->swap_reloc_in
;
8068 swap_out
= bed
->s
->swap_reloc_out
;
8072 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8073 if (lo
->type
== bfd_indirect_link_order
)
8074 size
+= lo
->u
.indirect
.section
->size
;
8076 if (size
!= dynamic_relocs
->size
)
8079 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8080 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8082 count
= dynamic_relocs
->size
/ ext_size
;
8083 sort
= bfd_zmalloc (sort_elt
* count
);
8087 (*info
->callbacks
->warning
)
8088 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8092 if (bed
->s
->arch_size
== 32)
8093 r_sym_mask
= ~(bfd_vma
) 0xff;
8095 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8097 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8098 if (lo
->type
== bfd_indirect_link_order
)
8100 bfd_byte
*erel
, *erelend
;
8101 asection
*o
= lo
->u
.indirect
.section
;
8103 if (o
->contents
== NULL
&& o
->size
!= 0)
8105 /* This is a reloc section that is being handled as a normal
8106 section. See bfd_section_from_shdr. We can't combine
8107 relocs in this case. */
8112 erelend
= o
->contents
+ o
->size
;
8113 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8115 while (erel
< erelend
)
8117 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8119 (*swap_in
) (abfd
, erel
, s
->rela
);
8120 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8121 s
->u
.sym_mask
= r_sym_mask
;
8127 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8129 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8131 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8132 if (s
->type
!= reloc_class_relative
)
8138 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8139 for (; i
< count
; i
++, p
+= sort_elt
)
8141 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8142 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8144 sp
->u
.offset
= sq
->rela
->r_offset
;
8147 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8149 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8150 if (lo
->type
== bfd_indirect_link_order
)
8152 bfd_byte
*erel
, *erelend
;
8153 asection
*o
= lo
->u
.indirect
.section
;
8156 erelend
= o
->contents
+ o
->size
;
8157 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8158 while (erel
< erelend
)
8160 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8161 (*swap_out
) (abfd
, s
->rela
, erel
);
8168 *psec
= dynamic_relocs
;
8172 /* Flush the output symbols to the file. */
8175 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8176 const struct elf_backend_data
*bed
)
8178 if (finfo
->symbuf_count
> 0)
8180 Elf_Internal_Shdr
*hdr
;
8184 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8185 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8186 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8187 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8188 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8191 hdr
->sh_size
+= amt
;
8192 finfo
->symbuf_count
= 0;
8198 /* Add a symbol to the output symbol table. */
8201 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8203 Elf_Internal_Sym
*elfsym
,
8204 asection
*input_sec
,
8205 struct elf_link_hash_entry
*h
)
8208 Elf_External_Sym_Shndx
*destshndx
;
8209 int (*output_symbol_hook
)
8210 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8211 struct elf_link_hash_entry
*);
8212 const struct elf_backend_data
*bed
;
8214 bed
= get_elf_backend_data (finfo
->output_bfd
);
8215 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8216 if (output_symbol_hook
!= NULL
)
8218 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8223 if (name
== NULL
|| *name
== '\0')
8224 elfsym
->st_name
= 0;
8225 else if (input_sec
->flags
& SEC_EXCLUDE
)
8226 elfsym
->st_name
= 0;
8229 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8231 if (elfsym
->st_name
== (unsigned long) -1)
8235 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8237 if (! elf_link_flush_output_syms (finfo
, bed
))
8241 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8242 destshndx
= finfo
->symshndxbuf
;
8243 if (destshndx
!= NULL
)
8245 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8249 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8250 destshndx
= bfd_realloc (destshndx
, amt
* 2);
8251 if (destshndx
== NULL
)
8253 finfo
->symshndxbuf
= destshndx
;
8254 memset ((char *) destshndx
+ amt
, 0, amt
);
8255 finfo
->shndxbuf_size
*= 2;
8257 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8260 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8261 finfo
->symbuf_count
+= 1;
8262 bfd_get_symcount (finfo
->output_bfd
) += 1;
8267 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8270 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8272 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8273 && sym
->st_shndx
< SHN_LORESERVE
)
8275 /* The gABI doesn't support dynamic symbols in output sections
8277 (*_bfd_error_handler
)
8278 (_("%B: Too many sections: %d (>= %d)"),
8279 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8280 bfd_set_error (bfd_error_nonrepresentable_section
);
8286 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8287 allowing an unsatisfied unversioned symbol in the DSO to match a
8288 versioned symbol that would normally require an explicit version.
8289 We also handle the case that a DSO references a hidden symbol
8290 which may be satisfied by a versioned symbol in another DSO. */
8293 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8294 const struct elf_backend_data
*bed
,
8295 struct elf_link_hash_entry
*h
)
8298 struct elf_link_loaded_list
*loaded
;
8300 if (!is_elf_hash_table (info
->hash
))
8303 switch (h
->root
.type
)
8309 case bfd_link_hash_undefined
:
8310 case bfd_link_hash_undefweak
:
8311 abfd
= h
->root
.u
.undef
.abfd
;
8312 if ((abfd
->flags
& DYNAMIC
) == 0
8313 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8317 case bfd_link_hash_defined
:
8318 case bfd_link_hash_defweak
:
8319 abfd
= h
->root
.u
.def
.section
->owner
;
8322 case bfd_link_hash_common
:
8323 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8326 BFD_ASSERT (abfd
!= NULL
);
8328 for (loaded
= elf_hash_table (info
)->loaded
;
8330 loaded
= loaded
->next
)
8333 Elf_Internal_Shdr
*hdr
;
8334 bfd_size_type symcount
;
8335 bfd_size_type extsymcount
;
8336 bfd_size_type extsymoff
;
8337 Elf_Internal_Shdr
*versymhdr
;
8338 Elf_Internal_Sym
*isym
;
8339 Elf_Internal_Sym
*isymend
;
8340 Elf_Internal_Sym
*isymbuf
;
8341 Elf_External_Versym
*ever
;
8342 Elf_External_Versym
*extversym
;
8344 input
= loaded
->abfd
;
8346 /* We check each DSO for a possible hidden versioned definition. */
8348 || (input
->flags
& DYNAMIC
) == 0
8349 || elf_dynversym (input
) == 0)
8352 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8354 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8355 if (elf_bad_symtab (input
))
8357 extsymcount
= symcount
;
8362 extsymcount
= symcount
- hdr
->sh_info
;
8363 extsymoff
= hdr
->sh_info
;
8366 if (extsymcount
== 0)
8369 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8371 if (isymbuf
== NULL
)
8374 /* Read in any version definitions. */
8375 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8376 extversym
= bfd_malloc (versymhdr
->sh_size
);
8377 if (extversym
== NULL
)
8380 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8381 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8382 != versymhdr
->sh_size
))
8390 ever
= extversym
+ extsymoff
;
8391 isymend
= isymbuf
+ extsymcount
;
8392 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8395 Elf_Internal_Versym iver
;
8396 unsigned short version_index
;
8398 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8399 || isym
->st_shndx
== SHN_UNDEF
)
8402 name
= bfd_elf_string_from_elf_section (input
,
8405 if (strcmp (name
, h
->root
.root
.string
) != 0)
8408 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8410 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8412 /* If we have a non-hidden versioned sym, then it should
8413 have provided a definition for the undefined sym. */
8417 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8418 if (version_index
== 1 || version_index
== 2)
8420 /* This is the base or first version. We can use it. */
8434 /* Add an external symbol to the symbol table. This is called from
8435 the hash table traversal routine. When generating a shared object,
8436 we go through the symbol table twice. The first time we output
8437 anything that might have been forced to local scope in a version
8438 script. The second time we output the symbols that are still
8442 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8444 struct elf_outext_info
*eoinfo
= data
;
8445 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8447 Elf_Internal_Sym sym
;
8448 asection
*input_sec
;
8449 const struct elf_backend_data
*bed
;
8453 if (h
->root
.type
== bfd_link_hash_warning
)
8455 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8456 if (h
->root
.type
== bfd_link_hash_new
)
8460 /* Decide whether to output this symbol in this pass. */
8461 if (eoinfo
->localsyms
)
8463 if (!h
->forced_local
)
8468 if (h
->forced_local
)
8472 bed
= get_elf_backend_data (finfo
->output_bfd
);
8474 if (h
->root
.type
== bfd_link_hash_undefined
)
8476 /* If we have an undefined symbol reference here then it must have
8477 come from a shared library that is being linked in. (Undefined
8478 references in regular files have already been handled). */
8479 bfd_boolean ignore_undef
= FALSE
;
8481 /* Some symbols may be special in that the fact that they're
8482 undefined can be safely ignored - let backend determine that. */
8483 if (bed
->elf_backend_ignore_undef_symbol
)
8484 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8486 /* If we are reporting errors for this situation then do so now. */
8487 if (ignore_undef
== FALSE
8490 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8491 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8493 if (! (finfo
->info
->callbacks
->undefined_symbol
8494 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8495 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8497 eoinfo
->failed
= TRUE
;
8503 /* We should also warn if a forced local symbol is referenced from
8504 shared libraries. */
8505 if (! finfo
->info
->relocatable
8506 && (! finfo
->info
->shared
)
8511 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8513 (*_bfd_error_handler
)
8514 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8516 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8517 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8518 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8520 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8521 ? "hidden" : "local",
8522 h
->root
.root
.string
);
8523 eoinfo
->failed
= TRUE
;
8527 /* We don't want to output symbols that have never been mentioned by
8528 a regular file, or that we have been told to strip. However, if
8529 h->indx is set to -2, the symbol is used by a reloc and we must
8533 else if ((h
->def_dynamic
8535 || h
->root
.type
== bfd_link_hash_new
)
8539 else if (finfo
->info
->strip
== strip_all
)
8541 else if (finfo
->info
->strip
== strip_some
8542 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8543 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8545 else if (finfo
->info
->strip_discarded
8546 && (h
->root
.type
== bfd_link_hash_defined
8547 || h
->root
.type
== bfd_link_hash_defweak
)
8548 && elf_discarded_section (h
->root
.u
.def
.section
))
8553 /* If we're stripping it, and it's not a dynamic symbol, there's
8554 nothing else to do unless it is a forced local symbol. */
8557 && !h
->forced_local
)
8561 sym
.st_size
= h
->size
;
8562 sym
.st_other
= h
->other
;
8563 if (h
->forced_local
)
8564 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8565 else if (h
->root
.type
== bfd_link_hash_undefweak
8566 || h
->root
.type
== bfd_link_hash_defweak
)
8567 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8569 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8571 switch (h
->root
.type
)
8574 case bfd_link_hash_new
:
8575 case bfd_link_hash_warning
:
8579 case bfd_link_hash_undefined
:
8580 case bfd_link_hash_undefweak
:
8581 input_sec
= bfd_und_section_ptr
;
8582 sym
.st_shndx
= SHN_UNDEF
;
8585 case bfd_link_hash_defined
:
8586 case bfd_link_hash_defweak
:
8588 input_sec
= h
->root
.u
.def
.section
;
8589 if (input_sec
->output_section
!= NULL
)
8592 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8593 input_sec
->output_section
);
8594 if (sym
.st_shndx
== SHN_BAD
)
8596 (*_bfd_error_handler
)
8597 (_("%B: could not find output section %A for input section %A"),
8598 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8599 eoinfo
->failed
= TRUE
;
8603 /* ELF symbols in relocatable files are section relative,
8604 but in nonrelocatable files they are virtual
8606 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8607 if (! finfo
->info
->relocatable
)
8609 sym
.st_value
+= input_sec
->output_section
->vma
;
8610 if (h
->type
== STT_TLS
)
8612 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8613 if (tls_sec
!= NULL
)
8614 sym
.st_value
-= tls_sec
->vma
;
8617 /* The TLS section may have been garbage collected. */
8618 BFD_ASSERT (finfo
->info
->gc_sections
8619 && !input_sec
->gc_mark
);
8626 BFD_ASSERT (input_sec
->owner
== NULL
8627 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8628 sym
.st_shndx
= SHN_UNDEF
;
8629 input_sec
= bfd_und_section_ptr
;
8634 case bfd_link_hash_common
:
8635 input_sec
= h
->root
.u
.c
.p
->section
;
8636 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8637 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8640 case bfd_link_hash_indirect
:
8641 /* These symbols are created by symbol versioning. They point
8642 to the decorated version of the name. For example, if the
8643 symbol foo@@GNU_1.2 is the default, which should be used when
8644 foo is used with no version, then we add an indirect symbol
8645 foo which points to foo@@GNU_1.2. We ignore these symbols,
8646 since the indirected symbol is already in the hash table. */
8650 /* Give the processor backend a chance to tweak the symbol value,
8651 and also to finish up anything that needs to be done for this
8652 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8653 forced local syms when non-shared is due to a historical quirk.
8654 STT_GNU_IFUNC symbol must go through PLT. */
8655 if ((h
->type
== STT_GNU_IFUNC
8657 && !finfo
->info
->relocatable
)
8658 || ((h
->dynindx
!= -1
8660 && ((finfo
->info
->shared
8661 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8662 || h
->root
.type
!= bfd_link_hash_undefweak
))
8663 || !h
->forced_local
)
8664 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8666 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8667 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8669 eoinfo
->failed
= TRUE
;
8674 /* If we are marking the symbol as undefined, and there are no
8675 non-weak references to this symbol from a regular object, then
8676 mark the symbol as weak undefined; if there are non-weak
8677 references, mark the symbol as strong. We can't do this earlier,
8678 because it might not be marked as undefined until the
8679 finish_dynamic_symbol routine gets through with it. */
8680 if (sym
.st_shndx
== SHN_UNDEF
8682 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8683 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8687 if (h
->ref_regular_nonweak
)
8688 bindtype
= STB_GLOBAL
;
8690 bindtype
= STB_WEAK
;
8691 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
8694 /* If this is a symbol defined in a dynamic library, don't use the
8695 symbol size from the dynamic library. Relinking an executable
8696 against a new library may introduce gratuitous changes in the
8697 executable's symbols if we keep the size. */
8698 if (sym
.st_shndx
== SHN_UNDEF
8703 /* If a non-weak symbol with non-default visibility is not defined
8704 locally, it is a fatal error. */
8705 if (! finfo
->info
->relocatable
8706 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8707 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8708 && h
->root
.type
== bfd_link_hash_undefined
8711 (*_bfd_error_handler
)
8712 (_("%B: %s symbol `%s' isn't defined"),
8714 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8716 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8717 ? "internal" : "hidden",
8718 h
->root
.root
.string
);
8719 eoinfo
->failed
= TRUE
;
8723 /* If this symbol should be put in the .dynsym section, then put it
8724 there now. We already know the symbol index. We also fill in
8725 the entry in the .hash section. */
8726 if (h
->dynindx
!= -1
8727 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8731 sym
.st_name
= h
->dynstr_index
;
8732 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8733 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8735 eoinfo
->failed
= TRUE
;
8738 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8740 if (finfo
->hash_sec
!= NULL
)
8742 size_t hash_entry_size
;
8743 bfd_byte
*bucketpos
;
8748 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8749 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8752 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8753 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8754 + (bucket
+ 2) * hash_entry_size
);
8755 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8756 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8757 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8758 ((bfd_byte
*) finfo
->hash_sec
->contents
8759 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8762 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8764 Elf_Internal_Versym iversym
;
8765 Elf_External_Versym
*eversym
;
8767 if (!h
->def_regular
)
8769 if (h
->verinfo
.verdef
== NULL
)
8770 iversym
.vs_vers
= 0;
8772 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8776 if (h
->verinfo
.vertree
== NULL
)
8777 iversym
.vs_vers
= 1;
8779 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8780 if (finfo
->info
->create_default_symver
)
8785 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8787 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8788 eversym
+= h
->dynindx
;
8789 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8793 /* If we're stripping it, then it was just a dynamic symbol, and
8794 there's nothing else to do. */
8795 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8798 indx
= bfd_get_symcount (finfo
->output_bfd
);
8799 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8802 eoinfo
->failed
= TRUE
;
8807 else if (h
->indx
== -2)
8813 /* Return TRUE if special handling is done for relocs in SEC against
8814 symbols defined in discarded sections. */
8817 elf_section_ignore_discarded_relocs (asection
*sec
)
8819 const struct elf_backend_data
*bed
;
8821 switch (sec
->sec_info_type
)
8823 case ELF_INFO_TYPE_STABS
:
8824 case ELF_INFO_TYPE_EH_FRAME
:
8830 bed
= get_elf_backend_data (sec
->owner
);
8831 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8832 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8838 /* Return a mask saying how ld should treat relocations in SEC against
8839 symbols defined in discarded sections. If this function returns
8840 COMPLAIN set, ld will issue a warning message. If this function
8841 returns PRETEND set, and the discarded section was link-once and the
8842 same size as the kept link-once section, ld will pretend that the
8843 symbol was actually defined in the kept section. Otherwise ld will
8844 zero the reloc (at least that is the intent, but some cooperation by
8845 the target dependent code is needed, particularly for REL targets). */
8848 _bfd_elf_default_action_discarded (asection
*sec
)
8850 if (sec
->flags
& SEC_DEBUGGING
)
8853 if (strcmp (".eh_frame", sec
->name
) == 0)
8856 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8859 return COMPLAIN
| PRETEND
;
8862 /* Find a match between a section and a member of a section group. */
8865 match_group_member (asection
*sec
, asection
*group
,
8866 struct bfd_link_info
*info
)
8868 asection
*first
= elf_next_in_group (group
);
8869 asection
*s
= first
;
8873 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8876 s
= elf_next_in_group (s
);
8884 /* Check if the kept section of a discarded section SEC can be used
8885 to replace it. Return the replacement if it is OK. Otherwise return
8889 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8893 kept
= sec
->kept_section
;
8896 if ((kept
->flags
& SEC_GROUP
) != 0)
8897 kept
= match_group_member (sec
, kept
, info
);
8899 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8900 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8902 sec
->kept_section
= kept
;
8907 /* Link an input file into the linker output file. This function
8908 handles all the sections and relocations of the input file at once.
8909 This is so that we only have to read the local symbols once, and
8910 don't have to keep them in memory. */
8913 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
8915 int (*relocate_section
)
8916 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
8917 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
8919 Elf_Internal_Shdr
*symtab_hdr
;
8922 Elf_Internal_Sym
*isymbuf
;
8923 Elf_Internal_Sym
*isym
;
8924 Elf_Internal_Sym
*isymend
;
8926 asection
**ppsection
;
8928 const struct elf_backend_data
*bed
;
8929 struct elf_link_hash_entry
**sym_hashes
;
8931 output_bfd
= finfo
->output_bfd
;
8932 bed
= get_elf_backend_data (output_bfd
);
8933 relocate_section
= bed
->elf_backend_relocate_section
;
8935 /* If this is a dynamic object, we don't want to do anything here:
8936 we don't want the local symbols, and we don't want the section
8938 if ((input_bfd
->flags
& DYNAMIC
) != 0)
8941 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8942 if (elf_bad_symtab (input_bfd
))
8944 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8949 locsymcount
= symtab_hdr
->sh_info
;
8950 extsymoff
= symtab_hdr
->sh_info
;
8953 /* Read the local symbols. */
8954 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8955 if (isymbuf
== NULL
&& locsymcount
!= 0)
8957 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
8958 finfo
->internal_syms
,
8959 finfo
->external_syms
,
8960 finfo
->locsym_shndx
);
8961 if (isymbuf
== NULL
)
8965 /* Find local symbol sections and adjust values of symbols in
8966 SEC_MERGE sections. Write out those local symbols we know are
8967 going into the output file. */
8968 isymend
= isymbuf
+ locsymcount
;
8969 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
8971 isym
++, pindex
++, ppsection
++)
8975 Elf_Internal_Sym osym
;
8981 if (elf_bad_symtab (input_bfd
))
8983 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
8990 if (isym
->st_shndx
== SHN_UNDEF
)
8991 isec
= bfd_und_section_ptr
;
8992 else if (isym
->st_shndx
== SHN_ABS
)
8993 isec
= bfd_abs_section_ptr
;
8994 else if (isym
->st_shndx
== SHN_COMMON
)
8995 isec
= bfd_com_section_ptr
;
8998 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9001 /* Don't attempt to output symbols with st_shnx in the
9002 reserved range other than SHN_ABS and SHN_COMMON. */
9006 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9007 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9009 _bfd_merged_section_offset (output_bfd
, &isec
,
9010 elf_section_data (isec
)->sec_info
,
9016 /* Don't output the first, undefined, symbol. */
9017 if (ppsection
== finfo
->sections
)
9020 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9022 /* We never output section symbols. Instead, we use the
9023 section symbol of the corresponding section in the output
9028 /* If we are stripping all symbols, we don't want to output this
9030 if (finfo
->info
->strip
== strip_all
)
9033 /* If we are discarding all local symbols, we don't want to
9034 output this one. If we are generating a relocatable output
9035 file, then some of the local symbols may be required by
9036 relocs; we output them below as we discover that they are
9038 if (finfo
->info
->discard
== discard_all
)
9041 /* If this symbol is defined in a section which we are
9042 discarding, we don't need to keep it. */
9043 if (isym
->st_shndx
!= SHN_UNDEF
9044 && isym
->st_shndx
< SHN_LORESERVE
9045 && bfd_section_removed_from_list (output_bfd
,
9046 isec
->output_section
))
9049 /* Get the name of the symbol. */
9050 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9055 /* See if we are discarding symbols with this name. */
9056 if ((finfo
->info
->strip
== strip_some
9057 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9059 || (((finfo
->info
->discard
== discard_sec_merge
9060 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9061 || finfo
->info
->discard
== discard_l
)
9062 && bfd_is_local_label_name (input_bfd
, name
)))
9067 /* Adjust the section index for the output file. */
9068 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9069 isec
->output_section
);
9070 if (osym
.st_shndx
== SHN_BAD
)
9073 /* ELF symbols in relocatable files are section relative, but
9074 in executable files they are virtual addresses. Note that
9075 this code assumes that all ELF sections have an associated
9076 BFD section with a reasonable value for output_offset; below
9077 we assume that they also have a reasonable value for
9078 output_section. Any special sections must be set up to meet
9079 these requirements. */
9080 osym
.st_value
+= isec
->output_offset
;
9081 if (! finfo
->info
->relocatable
)
9083 osym
.st_value
+= isec
->output_section
->vma
;
9084 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9086 /* STT_TLS symbols are relative to PT_TLS segment base. */
9087 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9088 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9092 indx
= bfd_get_symcount (output_bfd
);
9093 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9100 /* Relocate the contents of each section. */
9101 sym_hashes
= elf_sym_hashes (input_bfd
);
9102 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9106 if (! o
->linker_mark
)
9108 /* This section was omitted from the link. */
9112 if (finfo
->info
->relocatable
9113 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9115 /* Deal with the group signature symbol. */
9116 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9117 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9118 asection
*osec
= o
->output_section
;
9120 if (symndx
>= locsymcount
9121 || (elf_bad_symtab (input_bfd
)
9122 && finfo
->sections
[symndx
] == NULL
))
9124 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9125 while (h
->root
.type
== bfd_link_hash_indirect
9126 || h
->root
.type
== bfd_link_hash_warning
)
9127 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9128 /* Arrange for symbol to be output. */
9130 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9132 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9134 /* We'll use the output section target_index. */
9135 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9136 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9140 if (finfo
->indices
[symndx
] == -1)
9142 /* Otherwise output the local symbol now. */
9143 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9144 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9149 name
= bfd_elf_string_from_elf_section (input_bfd
,
9150 symtab_hdr
->sh_link
,
9155 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9157 if (sym
.st_shndx
== SHN_BAD
)
9160 sym
.st_value
+= o
->output_offset
;
9162 indx
= bfd_get_symcount (output_bfd
);
9163 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9167 finfo
->indices
[symndx
] = indx
;
9171 elf_section_data (osec
)->this_hdr
.sh_info
9172 = finfo
->indices
[symndx
];
9176 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9177 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9180 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9182 /* Section was created by _bfd_elf_link_create_dynamic_sections
9187 /* Get the contents of the section. They have been cached by a
9188 relaxation routine. Note that o is a section in an input
9189 file, so the contents field will not have been set by any of
9190 the routines which work on output files. */
9191 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9192 contents
= elf_section_data (o
)->this_hdr
.contents
;
9195 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9197 contents
= finfo
->contents
;
9198 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9202 if ((o
->flags
& SEC_RELOC
) != 0)
9204 Elf_Internal_Rela
*internal_relocs
;
9205 Elf_Internal_Rela
*rel
, *relend
;
9206 bfd_vma r_type_mask
;
9208 int action_discarded
;
9211 /* Get the swapped relocs. */
9213 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9214 finfo
->internal_relocs
, FALSE
);
9215 if (internal_relocs
== NULL
9216 && o
->reloc_count
> 0)
9219 if (bed
->s
->arch_size
== 32)
9226 r_type_mask
= 0xffffffff;
9230 action_discarded
= -1;
9231 if (!elf_section_ignore_discarded_relocs (o
))
9232 action_discarded
= (*bed
->action_discarded
) (o
);
9234 /* Run through the relocs evaluating complex reloc symbols and
9235 looking for relocs against symbols from discarded sections
9236 or section symbols from removed link-once sections.
9237 Complain about relocs against discarded sections. Zero
9238 relocs against removed link-once sections. */
9240 rel
= internal_relocs
;
9241 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9242 for ( ; rel
< relend
; rel
++)
9244 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9245 unsigned int s_type
;
9246 asection
**ps
, *sec
;
9247 struct elf_link_hash_entry
*h
= NULL
;
9248 const char *sym_name
;
9250 if (r_symndx
== STN_UNDEF
)
9253 if (r_symndx
>= locsymcount
9254 || (elf_bad_symtab (input_bfd
)
9255 && finfo
->sections
[r_symndx
] == NULL
))
9257 h
= sym_hashes
[r_symndx
- extsymoff
];
9259 /* Badly formatted input files can contain relocs that
9260 reference non-existant symbols. Check here so that
9261 we do not seg fault. */
9266 sprintf_vma (buffer
, rel
->r_info
);
9267 (*_bfd_error_handler
)
9268 (_("error: %B contains a reloc (0x%s) for section %A "
9269 "that references a non-existent global symbol"),
9270 input_bfd
, o
, buffer
);
9271 bfd_set_error (bfd_error_bad_value
);
9275 while (h
->root
.type
== bfd_link_hash_indirect
9276 || h
->root
.type
== bfd_link_hash_warning
)
9277 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9282 if (h
->root
.type
== bfd_link_hash_defined
9283 || h
->root
.type
== bfd_link_hash_defweak
)
9284 ps
= &h
->root
.u
.def
.section
;
9286 sym_name
= h
->root
.root
.string
;
9290 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9292 s_type
= ELF_ST_TYPE (sym
->st_info
);
9293 ps
= &finfo
->sections
[r_symndx
];
9294 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9298 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9299 && !finfo
->info
->relocatable
)
9302 bfd_vma dot
= (rel
->r_offset
9303 + o
->output_offset
+ o
->output_section
->vma
);
9305 printf ("Encountered a complex symbol!");
9306 printf (" (input_bfd %s, section %s, reloc %ld\n",
9307 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9308 printf (" symbol: idx %8.8lx, name %s\n",
9309 r_symndx
, sym_name
);
9310 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9311 (unsigned long) rel
->r_info
,
9312 (unsigned long) rel
->r_offset
);
9314 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9315 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9318 /* Symbol evaluated OK. Update to absolute value. */
9319 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9324 if (action_discarded
!= -1 && ps
!= NULL
)
9326 /* Complain if the definition comes from a
9327 discarded section. */
9328 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9330 BFD_ASSERT (r_symndx
!= 0);
9331 if (action_discarded
& COMPLAIN
)
9332 (*finfo
->info
->callbacks
->einfo
)
9333 (_("%X`%s' referenced in section `%A' of %B: "
9334 "defined in discarded section `%A' of %B\n"),
9335 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9337 /* Try to do the best we can to support buggy old
9338 versions of gcc. Pretend that the symbol is
9339 really defined in the kept linkonce section.
9340 FIXME: This is quite broken. Modifying the
9341 symbol here means we will be changing all later
9342 uses of the symbol, not just in this section. */
9343 if (action_discarded
& PRETEND
)
9347 kept
= _bfd_elf_check_kept_section (sec
,
9359 /* Relocate the section by invoking a back end routine.
9361 The back end routine is responsible for adjusting the
9362 section contents as necessary, and (if using Rela relocs
9363 and generating a relocatable output file) adjusting the
9364 reloc addend as necessary.
9366 The back end routine does not have to worry about setting
9367 the reloc address or the reloc symbol index.
9369 The back end routine is given a pointer to the swapped in
9370 internal symbols, and can access the hash table entries
9371 for the external symbols via elf_sym_hashes (input_bfd).
9373 When generating relocatable output, the back end routine
9374 must handle STB_LOCAL/STT_SECTION symbols specially. The
9375 output symbol is going to be a section symbol
9376 corresponding to the output section, which will require
9377 the addend to be adjusted. */
9379 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9380 input_bfd
, o
, contents
,
9388 || finfo
->info
->relocatable
9389 || finfo
->info
->emitrelocations
)
9391 Elf_Internal_Rela
*irela
;
9392 Elf_Internal_Rela
*irelaend
;
9393 bfd_vma last_offset
;
9394 struct elf_link_hash_entry
**rel_hash
;
9395 struct elf_link_hash_entry
**rel_hash_list
;
9396 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9397 unsigned int next_erel
;
9398 bfd_boolean rela_normal
;
9400 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9401 rela_normal
= (bed
->rela_normal
9402 && (input_rel_hdr
->sh_entsize
9403 == bed
->s
->sizeof_rela
));
9405 /* Adjust the reloc addresses and symbol indices. */
9407 irela
= internal_relocs
;
9408 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9409 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9410 + elf_section_data (o
->output_section
)->rel_count
9411 + elf_section_data (o
->output_section
)->rel_count2
);
9412 rel_hash_list
= rel_hash
;
9413 last_offset
= o
->output_offset
;
9414 if (!finfo
->info
->relocatable
)
9415 last_offset
+= o
->output_section
->vma
;
9416 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9418 unsigned long r_symndx
;
9420 Elf_Internal_Sym sym
;
9422 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9428 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9431 if (irela
->r_offset
>= (bfd_vma
) -2)
9433 /* This is a reloc for a deleted entry or somesuch.
9434 Turn it into an R_*_NONE reloc, at the same
9435 offset as the last reloc. elf_eh_frame.c and
9436 bfd_elf_discard_info rely on reloc offsets
9438 irela
->r_offset
= last_offset
;
9440 irela
->r_addend
= 0;
9444 irela
->r_offset
+= o
->output_offset
;
9446 /* Relocs in an executable have to be virtual addresses. */
9447 if (!finfo
->info
->relocatable
)
9448 irela
->r_offset
+= o
->output_section
->vma
;
9450 last_offset
= irela
->r_offset
;
9452 r_symndx
= irela
->r_info
>> r_sym_shift
;
9453 if (r_symndx
== STN_UNDEF
)
9456 if (r_symndx
>= locsymcount
9457 || (elf_bad_symtab (input_bfd
)
9458 && finfo
->sections
[r_symndx
] == NULL
))
9460 struct elf_link_hash_entry
*rh
;
9463 /* This is a reloc against a global symbol. We
9464 have not yet output all the local symbols, so
9465 we do not know the symbol index of any global
9466 symbol. We set the rel_hash entry for this
9467 reloc to point to the global hash table entry
9468 for this symbol. The symbol index is then
9469 set at the end of bfd_elf_final_link. */
9470 indx
= r_symndx
- extsymoff
;
9471 rh
= elf_sym_hashes (input_bfd
)[indx
];
9472 while (rh
->root
.type
== bfd_link_hash_indirect
9473 || rh
->root
.type
== bfd_link_hash_warning
)
9474 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9476 /* Setting the index to -2 tells
9477 elf_link_output_extsym that this symbol is
9479 BFD_ASSERT (rh
->indx
< 0);
9487 /* This is a reloc against a local symbol. */
9490 sym
= isymbuf
[r_symndx
];
9491 sec
= finfo
->sections
[r_symndx
];
9492 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9494 /* I suppose the backend ought to fill in the
9495 section of any STT_SECTION symbol against a
9496 processor specific section. */
9498 if (bfd_is_abs_section (sec
))
9500 else if (sec
== NULL
|| sec
->owner
== NULL
)
9502 bfd_set_error (bfd_error_bad_value
);
9507 asection
*osec
= sec
->output_section
;
9509 /* If we have discarded a section, the output
9510 section will be the absolute section. In
9511 case of discarded SEC_MERGE sections, use
9512 the kept section. relocate_section should
9513 have already handled discarded linkonce
9515 if (bfd_is_abs_section (osec
)
9516 && sec
->kept_section
!= NULL
9517 && sec
->kept_section
->output_section
!= NULL
)
9519 osec
= sec
->kept_section
->output_section
;
9520 irela
->r_addend
-= osec
->vma
;
9523 if (!bfd_is_abs_section (osec
))
9525 r_symndx
= osec
->target_index
;
9528 struct elf_link_hash_table
*htab
;
9531 htab
= elf_hash_table (finfo
->info
);
9532 oi
= htab
->text_index_section
;
9533 if ((osec
->flags
& SEC_READONLY
) == 0
9534 && htab
->data_index_section
!= NULL
)
9535 oi
= htab
->data_index_section
;
9539 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9540 r_symndx
= oi
->target_index
;
9544 BFD_ASSERT (r_symndx
!= 0);
9548 /* Adjust the addend according to where the
9549 section winds up in the output section. */
9551 irela
->r_addend
+= sec
->output_offset
;
9555 if (finfo
->indices
[r_symndx
] == -1)
9557 unsigned long shlink
;
9562 if (finfo
->info
->strip
== strip_all
)
9564 /* You can't do ld -r -s. */
9565 bfd_set_error (bfd_error_invalid_operation
);
9569 /* This symbol was skipped earlier, but
9570 since it is needed by a reloc, we
9571 must output it now. */
9572 shlink
= symtab_hdr
->sh_link
;
9573 name
= (bfd_elf_string_from_elf_section
9574 (input_bfd
, shlink
, sym
.st_name
));
9578 osec
= sec
->output_section
;
9580 _bfd_elf_section_from_bfd_section (output_bfd
,
9582 if (sym
.st_shndx
== SHN_BAD
)
9585 sym
.st_value
+= sec
->output_offset
;
9586 if (! finfo
->info
->relocatable
)
9588 sym
.st_value
+= osec
->vma
;
9589 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9591 /* STT_TLS symbols are relative to PT_TLS
9593 BFD_ASSERT (elf_hash_table (finfo
->info
)
9595 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9600 indx
= bfd_get_symcount (output_bfd
);
9601 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9606 finfo
->indices
[r_symndx
] = indx
;
9611 r_symndx
= finfo
->indices
[r_symndx
];
9614 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9615 | (irela
->r_info
& r_type_mask
));
9618 /* Swap out the relocs. */
9619 if (input_rel_hdr
->sh_size
!= 0
9620 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9626 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9627 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9629 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9630 * bed
->s
->int_rels_per_ext_rel
);
9631 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9632 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9641 /* Write out the modified section contents. */
9642 if (bed
->elf_backend_write_section
9643 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9646 /* Section written out. */
9648 else switch (o
->sec_info_type
)
9650 case ELF_INFO_TYPE_STABS
:
9651 if (! (_bfd_write_section_stabs
9653 &elf_hash_table (finfo
->info
)->stab_info
,
9654 o
, &elf_section_data (o
)->sec_info
, contents
)))
9657 case ELF_INFO_TYPE_MERGE
:
9658 if (! _bfd_write_merged_section (output_bfd
, o
,
9659 elf_section_data (o
)->sec_info
))
9662 case ELF_INFO_TYPE_EH_FRAME
:
9664 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9671 if (! (o
->flags
& SEC_EXCLUDE
)
9672 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9673 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9675 (file_ptr
) o
->output_offset
,
9686 /* Generate a reloc when linking an ELF file. This is a reloc
9687 requested by the linker, and does not come from any input file. This
9688 is used to build constructor and destructor tables when linking
9692 elf_reloc_link_order (bfd
*output_bfd
,
9693 struct bfd_link_info
*info
,
9694 asection
*output_section
,
9695 struct bfd_link_order
*link_order
)
9697 reloc_howto_type
*howto
;
9701 struct elf_link_hash_entry
**rel_hash_ptr
;
9702 Elf_Internal_Shdr
*rel_hdr
;
9703 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9704 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9708 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9711 bfd_set_error (bfd_error_bad_value
);
9715 addend
= link_order
->u
.reloc
.p
->addend
;
9717 /* Figure out the symbol index. */
9718 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9719 + elf_section_data (output_section
)->rel_count
9720 + elf_section_data (output_section
)->rel_count2
);
9721 if (link_order
->type
== bfd_section_reloc_link_order
)
9723 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9724 BFD_ASSERT (indx
!= 0);
9725 *rel_hash_ptr
= NULL
;
9729 struct elf_link_hash_entry
*h
;
9731 /* Treat a reloc against a defined symbol as though it were
9732 actually against the section. */
9733 h
= ((struct elf_link_hash_entry
*)
9734 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9735 link_order
->u
.reloc
.p
->u
.name
,
9736 FALSE
, FALSE
, TRUE
));
9738 && (h
->root
.type
== bfd_link_hash_defined
9739 || h
->root
.type
== bfd_link_hash_defweak
))
9743 section
= h
->root
.u
.def
.section
;
9744 indx
= section
->output_section
->target_index
;
9745 *rel_hash_ptr
= NULL
;
9746 /* It seems that we ought to add the symbol value to the
9747 addend here, but in practice it has already been added
9748 because it was passed to constructor_callback. */
9749 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9753 /* Setting the index to -2 tells elf_link_output_extsym that
9754 this symbol is used by a reloc. */
9761 if (! ((*info
->callbacks
->unattached_reloc
)
9762 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9768 /* If this is an inplace reloc, we must write the addend into the
9770 if (howto
->partial_inplace
&& addend
!= 0)
9773 bfd_reloc_status_type rstat
;
9776 const char *sym_name
;
9778 size
= bfd_get_reloc_size (howto
);
9779 buf
= bfd_zmalloc (size
);
9782 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9789 case bfd_reloc_outofrange
:
9792 case bfd_reloc_overflow
:
9793 if (link_order
->type
== bfd_section_reloc_link_order
)
9794 sym_name
= bfd_section_name (output_bfd
,
9795 link_order
->u
.reloc
.p
->u
.section
);
9797 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9798 if (! ((*info
->callbacks
->reloc_overflow
)
9799 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9800 NULL
, (bfd_vma
) 0)))
9807 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9808 link_order
->offset
, size
);
9814 /* The address of a reloc is relative to the section in a
9815 relocatable file, and is a virtual address in an executable
9817 offset
= link_order
->offset
;
9818 if (! info
->relocatable
)
9819 offset
+= output_section
->vma
;
9821 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9823 irel
[i
].r_offset
= offset
;
9825 irel
[i
].r_addend
= 0;
9827 if (bed
->s
->arch_size
== 32)
9828 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9830 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9832 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9833 erel
= rel_hdr
->contents
;
9834 if (rel_hdr
->sh_type
== SHT_REL
)
9836 erel
+= (elf_section_data (output_section
)->rel_count
9837 * bed
->s
->sizeof_rel
);
9838 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9842 irel
[0].r_addend
= addend
;
9843 erel
+= (elf_section_data (output_section
)->rel_count
9844 * bed
->s
->sizeof_rela
);
9845 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9848 ++elf_section_data (output_section
)->rel_count
;
9854 /* Get the output vma of the section pointed to by the sh_link field. */
9857 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9859 Elf_Internal_Shdr
**elf_shdrp
;
9863 s
= p
->u
.indirect
.section
;
9864 elf_shdrp
= elf_elfsections (s
->owner
);
9865 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9866 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9868 The Intel C compiler generates SHT_IA_64_UNWIND with
9869 SHF_LINK_ORDER. But it doesn't set the sh_link or
9870 sh_info fields. Hence we could get the situation
9871 where elfsec is 0. */
9874 const struct elf_backend_data
*bed
9875 = get_elf_backend_data (s
->owner
);
9876 if (bed
->link_order_error_handler
)
9877 bed
->link_order_error_handler
9878 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9883 s
= elf_shdrp
[elfsec
]->bfd_section
;
9884 return s
->output_section
->vma
+ s
->output_offset
;
9889 /* Compare two sections based on the locations of the sections they are
9890 linked to. Used by elf_fixup_link_order. */
9893 compare_link_order (const void * a
, const void * b
)
9898 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9899 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
9906 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9907 order as their linked sections. Returns false if this could not be done
9908 because an output section includes both ordered and unordered
9909 sections. Ideally we'd do this in the linker proper. */
9912 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
9917 struct bfd_link_order
*p
;
9919 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9921 struct bfd_link_order
**sections
;
9922 asection
*s
, *other_sec
, *linkorder_sec
;
9926 linkorder_sec
= NULL
;
9929 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9931 if (p
->type
== bfd_indirect_link_order
)
9933 s
= p
->u
.indirect
.section
;
9935 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
9936 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
9937 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
9938 && elfsec
< elf_numsections (sub
)
9939 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
9940 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
9954 if (seen_other
&& seen_linkorder
)
9956 if (other_sec
&& linkorder_sec
)
9957 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9959 linkorder_sec
->owner
, other_sec
,
9962 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
9964 bfd_set_error (bfd_error_bad_value
);
9969 if (!seen_linkorder
)
9972 sections
= (struct bfd_link_order
**)
9973 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
9974 if (sections
== NULL
)
9978 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9980 sections
[seen_linkorder
++] = p
;
9982 /* Sort the input sections in the order of their linked section. */
9983 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
9984 compare_link_order
);
9986 /* Change the offsets of the sections. */
9988 for (n
= 0; n
< seen_linkorder
; n
++)
9990 s
= sections
[n
]->u
.indirect
.section
;
9991 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
9992 s
->output_offset
= offset
;
9993 sections
[n
]->offset
= offset
;
9994 offset
+= sections
[n
]->size
;
10002 /* Do the final step of an ELF link. */
10005 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10007 bfd_boolean dynamic
;
10008 bfd_boolean emit_relocs
;
10010 struct elf_final_link_info finfo
;
10011 register asection
*o
;
10012 register struct bfd_link_order
*p
;
10014 bfd_size_type max_contents_size
;
10015 bfd_size_type max_external_reloc_size
;
10016 bfd_size_type max_internal_reloc_count
;
10017 bfd_size_type max_sym_count
;
10018 bfd_size_type max_sym_shndx_count
;
10020 Elf_Internal_Sym elfsym
;
10022 Elf_Internal_Shdr
*symtab_hdr
;
10023 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10024 Elf_Internal_Shdr
*symstrtab_hdr
;
10025 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10026 struct elf_outext_info eoinfo
;
10027 bfd_boolean merged
;
10028 size_t relativecount
= 0;
10029 asection
*reldyn
= 0;
10031 asection
*attr_section
= NULL
;
10032 bfd_vma attr_size
= 0;
10033 const char *std_attrs_section
;
10035 if (! is_elf_hash_table (info
->hash
))
10039 abfd
->flags
|= DYNAMIC
;
10041 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10042 dynobj
= elf_hash_table (info
)->dynobj
;
10044 emit_relocs
= (info
->relocatable
10045 || info
->emitrelocations
);
10048 finfo
.output_bfd
= abfd
;
10049 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10050 if (finfo
.symstrtab
== NULL
)
10055 finfo
.dynsym_sec
= NULL
;
10056 finfo
.hash_sec
= NULL
;
10057 finfo
.symver_sec
= NULL
;
10061 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10062 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10063 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10064 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10065 /* Note that it is OK if symver_sec is NULL. */
10068 finfo
.contents
= NULL
;
10069 finfo
.external_relocs
= NULL
;
10070 finfo
.internal_relocs
= NULL
;
10071 finfo
.external_syms
= NULL
;
10072 finfo
.locsym_shndx
= NULL
;
10073 finfo
.internal_syms
= NULL
;
10074 finfo
.indices
= NULL
;
10075 finfo
.sections
= NULL
;
10076 finfo
.symbuf
= NULL
;
10077 finfo
.symshndxbuf
= NULL
;
10078 finfo
.symbuf_count
= 0;
10079 finfo
.shndxbuf_size
= 0;
10081 /* The object attributes have been merged. Remove the input
10082 sections from the link, and set the contents of the output
10084 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10085 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10087 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10088 || strcmp (o
->name
, ".gnu.attributes") == 0)
10090 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10092 asection
*input_section
;
10094 if (p
->type
!= bfd_indirect_link_order
)
10096 input_section
= p
->u
.indirect
.section
;
10097 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10098 elf_link_input_bfd ignores this section. */
10099 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10102 attr_size
= bfd_elf_obj_attr_size (abfd
);
10105 bfd_set_section_size (abfd
, o
, attr_size
);
10107 /* Skip this section later on. */
10108 o
->map_head
.link_order
= NULL
;
10111 o
->flags
|= SEC_EXCLUDE
;
10115 /* Count up the number of relocations we will output for each output
10116 section, so that we know the sizes of the reloc sections. We
10117 also figure out some maximum sizes. */
10118 max_contents_size
= 0;
10119 max_external_reloc_size
= 0;
10120 max_internal_reloc_count
= 0;
10122 max_sym_shndx_count
= 0;
10124 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10126 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10127 o
->reloc_count
= 0;
10129 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10131 unsigned int reloc_count
= 0;
10132 struct bfd_elf_section_data
*esdi
= NULL
;
10133 unsigned int *rel_count1
;
10135 if (p
->type
== bfd_section_reloc_link_order
10136 || p
->type
== bfd_symbol_reloc_link_order
)
10138 else if (p
->type
== bfd_indirect_link_order
)
10142 sec
= p
->u
.indirect
.section
;
10143 esdi
= elf_section_data (sec
);
10145 /* Mark all sections which are to be included in the
10146 link. This will normally be every section. We need
10147 to do this so that we can identify any sections which
10148 the linker has decided to not include. */
10149 sec
->linker_mark
= TRUE
;
10151 if (sec
->flags
& SEC_MERGE
)
10154 if (info
->relocatable
|| info
->emitrelocations
)
10155 reloc_count
= sec
->reloc_count
;
10156 else if (bed
->elf_backend_count_relocs
)
10157 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10159 if (sec
->rawsize
> max_contents_size
)
10160 max_contents_size
= sec
->rawsize
;
10161 if (sec
->size
> max_contents_size
)
10162 max_contents_size
= sec
->size
;
10164 /* We are interested in just local symbols, not all
10166 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10167 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10171 if (elf_bad_symtab (sec
->owner
))
10172 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10173 / bed
->s
->sizeof_sym
);
10175 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10177 if (sym_count
> max_sym_count
)
10178 max_sym_count
= sym_count
;
10180 if (sym_count
> max_sym_shndx_count
10181 && elf_symtab_shndx (sec
->owner
) != 0)
10182 max_sym_shndx_count
= sym_count
;
10184 if ((sec
->flags
& SEC_RELOC
) != 0)
10188 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10189 if (ext_size
> max_external_reloc_size
)
10190 max_external_reloc_size
= ext_size
;
10191 if (sec
->reloc_count
> max_internal_reloc_count
)
10192 max_internal_reloc_count
= sec
->reloc_count
;
10197 if (reloc_count
== 0)
10200 o
->reloc_count
+= reloc_count
;
10202 /* MIPS may have a mix of REL and RELA relocs on sections.
10203 To support this curious ABI we keep reloc counts in
10204 elf_section_data too. We must be careful to add the
10205 relocations from the input section to the right output
10206 count. FIXME: Get rid of one count. We have
10207 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10208 rel_count1
= &esdo
->rel_count
;
10211 bfd_boolean same_size
;
10212 bfd_size_type entsize1
;
10214 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10215 /* PR 9827: If the header size has not been set yet then
10216 assume that it will match the output section's reloc type. */
10218 entsize1
= o
->use_rela_p
? bed
->s
->sizeof_rela
: bed
->s
->sizeof_rel
;
10220 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10221 || entsize1
== bed
->s
->sizeof_rela
);
10222 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10225 rel_count1
= &esdo
->rel_count2
;
10227 if (esdi
->rel_hdr2
!= NULL
)
10229 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10230 unsigned int alt_count
;
10231 unsigned int *rel_count2
;
10233 BFD_ASSERT (entsize2
!= entsize1
10234 && (entsize2
== bed
->s
->sizeof_rel
10235 || entsize2
== bed
->s
->sizeof_rela
));
10237 rel_count2
= &esdo
->rel_count2
;
10239 rel_count2
= &esdo
->rel_count
;
10241 /* The following is probably too simplistic if the
10242 backend counts output relocs unusually. */
10243 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10244 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10245 *rel_count2
+= alt_count
;
10246 reloc_count
-= alt_count
;
10249 *rel_count1
+= reloc_count
;
10252 if (o
->reloc_count
> 0)
10253 o
->flags
|= SEC_RELOC
;
10256 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10257 set it (this is probably a bug) and if it is set
10258 assign_section_numbers will create a reloc section. */
10259 o
->flags
&=~ SEC_RELOC
;
10262 /* If the SEC_ALLOC flag is not set, force the section VMA to
10263 zero. This is done in elf_fake_sections as well, but forcing
10264 the VMA to 0 here will ensure that relocs against these
10265 sections are handled correctly. */
10266 if ((o
->flags
& SEC_ALLOC
) == 0
10267 && ! o
->user_set_vma
)
10271 if (! info
->relocatable
&& merged
)
10272 elf_link_hash_traverse (elf_hash_table (info
),
10273 _bfd_elf_link_sec_merge_syms
, abfd
);
10275 /* Figure out the file positions for everything but the symbol table
10276 and the relocs. We set symcount to force assign_section_numbers
10277 to create a symbol table. */
10278 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10279 BFD_ASSERT (! abfd
->output_has_begun
);
10280 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10283 /* Set sizes, and assign file positions for reloc sections. */
10284 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10286 if ((o
->flags
& SEC_RELOC
) != 0)
10288 if (!(_bfd_elf_link_size_reloc_section
10289 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10292 if (elf_section_data (o
)->rel_hdr2
10293 && !(_bfd_elf_link_size_reloc_section
10294 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10298 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10299 to count upwards while actually outputting the relocations. */
10300 elf_section_data (o
)->rel_count
= 0;
10301 elf_section_data (o
)->rel_count2
= 0;
10304 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10306 /* We have now assigned file positions for all the sections except
10307 .symtab and .strtab. We start the .symtab section at the current
10308 file position, and write directly to it. We build the .strtab
10309 section in memory. */
10310 bfd_get_symcount (abfd
) = 0;
10311 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10312 /* sh_name is set in prep_headers. */
10313 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10314 /* sh_flags, sh_addr and sh_size all start off zero. */
10315 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10316 /* sh_link is set in assign_section_numbers. */
10317 /* sh_info is set below. */
10318 /* sh_offset is set just below. */
10319 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10321 off
= elf_tdata (abfd
)->next_file_pos
;
10322 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10324 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10325 incorrect. We do not yet know the size of the .symtab section.
10326 We correct next_file_pos below, after we do know the size. */
10328 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10329 continuously seeking to the right position in the file. */
10330 if (! info
->keep_memory
|| max_sym_count
< 20)
10331 finfo
.symbuf_size
= 20;
10333 finfo
.symbuf_size
= max_sym_count
;
10334 amt
= finfo
.symbuf_size
;
10335 amt
*= bed
->s
->sizeof_sym
;
10336 finfo
.symbuf
= bfd_malloc (amt
);
10337 if (finfo
.symbuf
== NULL
)
10339 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10341 /* Wild guess at number of output symbols. realloc'd as needed. */
10342 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10343 finfo
.shndxbuf_size
= amt
;
10344 amt
*= sizeof (Elf_External_Sym_Shndx
);
10345 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
10346 if (finfo
.symshndxbuf
== NULL
)
10350 /* Start writing out the symbol table. The first symbol is always a
10352 if (info
->strip
!= strip_all
10355 elfsym
.st_value
= 0;
10356 elfsym
.st_size
= 0;
10357 elfsym
.st_info
= 0;
10358 elfsym
.st_other
= 0;
10359 elfsym
.st_shndx
= SHN_UNDEF
;
10360 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10365 /* Output a symbol for each section. We output these even if we are
10366 discarding local symbols, since they are used for relocs. These
10367 symbols have no names. We store the index of each one in the
10368 index field of the section, so that we can find it again when
10369 outputting relocs. */
10370 if (info
->strip
!= strip_all
10373 elfsym
.st_size
= 0;
10374 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10375 elfsym
.st_other
= 0;
10376 elfsym
.st_value
= 0;
10377 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10379 o
= bfd_section_from_elf_index (abfd
, i
);
10382 o
->target_index
= bfd_get_symcount (abfd
);
10383 elfsym
.st_shndx
= i
;
10384 if (!info
->relocatable
)
10385 elfsym
.st_value
= o
->vma
;
10386 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10392 /* Allocate some memory to hold information read in from the input
10394 if (max_contents_size
!= 0)
10396 finfo
.contents
= bfd_malloc (max_contents_size
);
10397 if (finfo
.contents
== NULL
)
10401 if (max_external_reloc_size
!= 0)
10403 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10404 if (finfo
.external_relocs
== NULL
)
10408 if (max_internal_reloc_count
!= 0)
10410 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10411 amt
*= sizeof (Elf_Internal_Rela
);
10412 finfo
.internal_relocs
= bfd_malloc (amt
);
10413 if (finfo
.internal_relocs
== NULL
)
10417 if (max_sym_count
!= 0)
10419 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10420 finfo
.external_syms
= bfd_malloc (amt
);
10421 if (finfo
.external_syms
== NULL
)
10424 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10425 finfo
.internal_syms
= bfd_malloc (amt
);
10426 if (finfo
.internal_syms
== NULL
)
10429 amt
= max_sym_count
* sizeof (long);
10430 finfo
.indices
= bfd_malloc (amt
);
10431 if (finfo
.indices
== NULL
)
10434 amt
= max_sym_count
* sizeof (asection
*);
10435 finfo
.sections
= bfd_malloc (amt
);
10436 if (finfo
.sections
== NULL
)
10440 if (max_sym_shndx_count
!= 0)
10442 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10443 finfo
.locsym_shndx
= bfd_malloc (amt
);
10444 if (finfo
.locsym_shndx
== NULL
)
10448 if (elf_hash_table (info
)->tls_sec
)
10450 bfd_vma base
, end
= 0;
10453 for (sec
= elf_hash_table (info
)->tls_sec
;
10454 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10457 bfd_size_type size
= sec
->size
;
10460 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10462 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10464 size
= o
->offset
+ o
->size
;
10466 end
= sec
->vma
+ size
;
10468 base
= elf_hash_table (info
)->tls_sec
->vma
;
10469 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10470 elf_hash_table (info
)->tls_size
= end
- base
;
10473 /* Reorder SHF_LINK_ORDER sections. */
10474 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10476 if (!elf_fixup_link_order (abfd
, o
))
10480 /* Since ELF permits relocations to be against local symbols, we
10481 must have the local symbols available when we do the relocations.
10482 Since we would rather only read the local symbols once, and we
10483 would rather not keep them in memory, we handle all the
10484 relocations for a single input file at the same time.
10486 Unfortunately, there is no way to know the total number of local
10487 symbols until we have seen all of them, and the local symbol
10488 indices precede the global symbol indices. This means that when
10489 we are generating relocatable output, and we see a reloc against
10490 a global symbol, we can not know the symbol index until we have
10491 finished examining all the local symbols to see which ones we are
10492 going to output. To deal with this, we keep the relocations in
10493 memory, and don't output them until the end of the link. This is
10494 an unfortunate waste of memory, but I don't see a good way around
10495 it. Fortunately, it only happens when performing a relocatable
10496 link, which is not the common case. FIXME: If keep_memory is set
10497 we could write the relocs out and then read them again; I don't
10498 know how bad the memory loss will be. */
10500 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10501 sub
->output_has_begun
= FALSE
;
10502 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10504 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10506 if (p
->type
== bfd_indirect_link_order
10507 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10508 == bfd_target_elf_flavour
)
10509 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10511 if (! sub
->output_has_begun
)
10513 if (! elf_link_input_bfd (&finfo
, sub
))
10515 sub
->output_has_begun
= TRUE
;
10518 else if (p
->type
== bfd_section_reloc_link_order
10519 || p
->type
== bfd_symbol_reloc_link_order
)
10521 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10526 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10532 /* Free symbol buffer if needed. */
10533 if (!info
->reduce_memory_overheads
)
10535 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10536 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10537 && elf_tdata (sub
)->symbuf
)
10539 free (elf_tdata (sub
)->symbuf
);
10540 elf_tdata (sub
)->symbuf
= NULL
;
10544 /* Output any global symbols that got converted to local in a
10545 version script or due to symbol visibility. We do this in a
10546 separate step since ELF requires all local symbols to appear
10547 prior to any global symbols. FIXME: We should only do this if
10548 some global symbols were, in fact, converted to become local.
10549 FIXME: Will this work correctly with the Irix 5 linker? */
10550 eoinfo
.failed
= FALSE
;
10551 eoinfo
.finfo
= &finfo
;
10552 eoinfo
.localsyms
= TRUE
;
10553 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10558 /* If backend needs to output some local symbols not present in the hash
10559 table, do it now. */
10560 if (bed
->elf_backend_output_arch_local_syms
)
10562 typedef int (*out_sym_func
)
10563 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10564 struct elf_link_hash_entry
*);
10566 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10567 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10571 /* That wrote out all the local symbols. Finish up the symbol table
10572 with the global symbols. Even if we want to strip everything we
10573 can, we still need to deal with those global symbols that got
10574 converted to local in a version script. */
10576 /* The sh_info field records the index of the first non local symbol. */
10577 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10580 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10582 Elf_Internal_Sym sym
;
10583 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10584 long last_local
= 0;
10586 /* Write out the section symbols for the output sections. */
10587 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10593 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10596 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10602 dynindx
= elf_section_data (s
)->dynindx
;
10605 indx
= elf_section_data (s
)->this_idx
;
10606 BFD_ASSERT (indx
> 0);
10607 sym
.st_shndx
= indx
;
10608 if (! check_dynsym (abfd
, &sym
))
10610 sym
.st_value
= s
->vma
;
10611 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10612 if (last_local
< dynindx
)
10613 last_local
= dynindx
;
10614 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10618 /* Write out the local dynsyms. */
10619 if (elf_hash_table (info
)->dynlocal
)
10621 struct elf_link_local_dynamic_entry
*e
;
10622 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10627 sym
.st_size
= e
->isym
.st_size
;
10628 sym
.st_other
= e
->isym
.st_other
;
10630 /* Copy the internal symbol as is.
10631 Note that we saved a word of storage and overwrote
10632 the original st_name with the dynstr_index. */
10635 s
= bfd_section_from_elf_index (e
->input_bfd
,
10640 elf_section_data (s
->output_section
)->this_idx
;
10641 if (! check_dynsym (abfd
, &sym
))
10643 sym
.st_value
= (s
->output_section
->vma
10645 + e
->isym
.st_value
);
10648 if (last_local
< e
->dynindx
)
10649 last_local
= e
->dynindx
;
10651 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10652 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10656 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10660 /* We get the global symbols from the hash table. */
10661 eoinfo
.failed
= FALSE
;
10662 eoinfo
.localsyms
= FALSE
;
10663 eoinfo
.finfo
= &finfo
;
10664 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10669 /* If backend needs to output some symbols not present in the hash
10670 table, do it now. */
10671 if (bed
->elf_backend_output_arch_syms
)
10673 typedef int (*out_sym_func
)
10674 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10675 struct elf_link_hash_entry
*);
10677 if (! ((*bed
->elf_backend_output_arch_syms
)
10678 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10682 /* Flush all symbols to the file. */
10683 if (! elf_link_flush_output_syms (&finfo
, bed
))
10686 /* Now we know the size of the symtab section. */
10687 off
+= symtab_hdr
->sh_size
;
10689 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10690 if (symtab_shndx_hdr
->sh_name
!= 0)
10692 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10693 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10694 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10695 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10696 symtab_shndx_hdr
->sh_size
= amt
;
10698 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10701 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10702 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10707 /* Finish up and write out the symbol string table (.strtab)
10709 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10710 /* sh_name was set in prep_headers. */
10711 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10712 symstrtab_hdr
->sh_flags
= 0;
10713 symstrtab_hdr
->sh_addr
= 0;
10714 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10715 symstrtab_hdr
->sh_entsize
= 0;
10716 symstrtab_hdr
->sh_link
= 0;
10717 symstrtab_hdr
->sh_info
= 0;
10718 /* sh_offset is set just below. */
10719 symstrtab_hdr
->sh_addralign
= 1;
10721 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10722 elf_tdata (abfd
)->next_file_pos
= off
;
10724 if (bfd_get_symcount (abfd
) > 0)
10726 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10727 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10731 /* Adjust the relocs to have the correct symbol indices. */
10732 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10734 if ((o
->flags
& SEC_RELOC
) == 0)
10737 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10738 elf_section_data (o
)->rel_count
,
10739 elf_section_data (o
)->rel_hashes
);
10740 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10741 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10742 elf_section_data (o
)->rel_count2
,
10743 (elf_section_data (o
)->rel_hashes
10744 + elf_section_data (o
)->rel_count
));
10746 /* Set the reloc_count field to 0 to prevent write_relocs from
10747 trying to swap the relocs out itself. */
10748 o
->reloc_count
= 0;
10751 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10752 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10754 /* If we are linking against a dynamic object, or generating a
10755 shared library, finish up the dynamic linking information. */
10758 bfd_byte
*dyncon
, *dynconend
;
10760 /* Fix up .dynamic entries. */
10761 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10762 BFD_ASSERT (o
!= NULL
);
10764 dyncon
= o
->contents
;
10765 dynconend
= o
->contents
+ o
->size
;
10766 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10768 Elf_Internal_Dyn dyn
;
10772 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10779 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10781 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10783 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10784 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10787 dyn
.d_un
.d_val
= relativecount
;
10794 name
= info
->init_function
;
10797 name
= info
->fini_function
;
10800 struct elf_link_hash_entry
*h
;
10802 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10803 FALSE
, FALSE
, TRUE
);
10805 && (h
->root
.type
== bfd_link_hash_defined
10806 || h
->root
.type
== bfd_link_hash_defweak
))
10808 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10809 o
= h
->root
.u
.def
.section
;
10810 if (o
->output_section
!= NULL
)
10811 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10812 + o
->output_offset
);
10815 /* The symbol is imported from another shared
10816 library and does not apply to this one. */
10817 dyn
.d_un
.d_ptr
= 0;
10824 case DT_PREINIT_ARRAYSZ
:
10825 name
= ".preinit_array";
10827 case DT_INIT_ARRAYSZ
:
10828 name
= ".init_array";
10830 case DT_FINI_ARRAYSZ
:
10831 name
= ".fini_array";
10833 o
= bfd_get_section_by_name (abfd
, name
);
10836 (*_bfd_error_handler
)
10837 (_("%B: could not find output section %s"), abfd
, name
);
10841 (*_bfd_error_handler
)
10842 (_("warning: %s section has zero size"), name
);
10843 dyn
.d_un
.d_val
= o
->size
;
10846 case DT_PREINIT_ARRAY
:
10847 name
= ".preinit_array";
10849 case DT_INIT_ARRAY
:
10850 name
= ".init_array";
10852 case DT_FINI_ARRAY
:
10853 name
= ".fini_array";
10860 name
= ".gnu.hash";
10869 name
= ".gnu.version_d";
10872 name
= ".gnu.version_r";
10875 name
= ".gnu.version";
10877 o
= bfd_get_section_by_name (abfd
, name
);
10880 (*_bfd_error_handler
)
10881 (_("%B: could not find output section %s"), abfd
, name
);
10884 dyn
.d_un
.d_ptr
= o
->vma
;
10891 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10895 dyn
.d_un
.d_val
= 0;
10896 dyn
.d_un
.d_ptr
= 0;
10897 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10899 Elf_Internal_Shdr
*hdr
;
10901 hdr
= elf_elfsections (abfd
)[i
];
10902 if (hdr
->sh_type
== type
10903 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
10905 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
10906 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10909 if (dyn
.d_un
.d_ptr
== 0
10910 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
10911 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
10917 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
10921 /* If we have created any dynamic sections, then output them. */
10922 if (dynobj
!= NULL
)
10924 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
10927 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10928 if (info
->warn_shared_textrel
&& info
->shared
)
10930 bfd_byte
*dyncon
, *dynconend
;
10932 /* Fix up .dynamic entries. */
10933 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10934 BFD_ASSERT (o
!= NULL
);
10936 dyncon
= o
->contents
;
10937 dynconend
= o
->contents
+ o
->size
;
10938 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10940 Elf_Internal_Dyn dyn
;
10942 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10944 if (dyn
.d_tag
== DT_TEXTREL
)
10946 info
->callbacks
->einfo
10947 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10953 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
10955 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10957 || o
->output_section
== bfd_abs_section_ptr
)
10959 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
10961 /* At this point, we are only interested in sections
10962 created by _bfd_elf_link_create_dynamic_sections. */
10965 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
10967 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
10969 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
10971 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
10973 if (! bfd_set_section_contents (abfd
, o
->output_section
,
10975 (file_ptr
) o
->output_offset
,
10981 /* The contents of the .dynstr section are actually in a
10983 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
10984 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
10985 || ! _bfd_elf_strtab_emit (abfd
,
10986 elf_hash_table (info
)->dynstr
))
10992 if (info
->relocatable
)
10994 bfd_boolean failed
= FALSE
;
10996 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11001 /* If we have optimized stabs strings, output them. */
11002 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11004 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11008 if (info
->eh_frame_hdr
)
11010 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11014 if (finfo
.symstrtab
!= NULL
)
11015 _bfd_stringtab_free (finfo
.symstrtab
);
11016 if (finfo
.contents
!= NULL
)
11017 free (finfo
.contents
);
11018 if (finfo
.external_relocs
!= NULL
)
11019 free (finfo
.external_relocs
);
11020 if (finfo
.internal_relocs
!= NULL
)
11021 free (finfo
.internal_relocs
);
11022 if (finfo
.external_syms
!= NULL
)
11023 free (finfo
.external_syms
);
11024 if (finfo
.locsym_shndx
!= NULL
)
11025 free (finfo
.locsym_shndx
);
11026 if (finfo
.internal_syms
!= NULL
)
11027 free (finfo
.internal_syms
);
11028 if (finfo
.indices
!= NULL
)
11029 free (finfo
.indices
);
11030 if (finfo
.sections
!= NULL
)
11031 free (finfo
.sections
);
11032 if (finfo
.symbuf
!= NULL
)
11033 free (finfo
.symbuf
);
11034 if (finfo
.symshndxbuf
!= NULL
)
11035 free (finfo
.symshndxbuf
);
11036 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11038 if ((o
->flags
& SEC_RELOC
) != 0
11039 && elf_section_data (o
)->rel_hashes
!= NULL
)
11040 free (elf_section_data (o
)->rel_hashes
);
11043 elf_tdata (abfd
)->linker
= TRUE
;
11047 bfd_byte
*contents
= bfd_malloc (attr_size
);
11048 if (contents
== NULL
)
11049 return FALSE
; /* Bail out and fail. */
11050 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11051 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11058 if (finfo
.symstrtab
!= NULL
)
11059 _bfd_stringtab_free (finfo
.symstrtab
);
11060 if (finfo
.contents
!= NULL
)
11061 free (finfo
.contents
);
11062 if (finfo
.external_relocs
!= NULL
)
11063 free (finfo
.external_relocs
);
11064 if (finfo
.internal_relocs
!= NULL
)
11065 free (finfo
.internal_relocs
);
11066 if (finfo
.external_syms
!= NULL
)
11067 free (finfo
.external_syms
);
11068 if (finfo
.locsym_shndx
!= NULL
)
11069 free (finfo
.locsym_shndx
);
11070 if (finfo
.internal_syms
!= NULL
)
11071 free (finfo
.internal_syms
);
11072 if (finfo
.indices
!= NULL
)
11073 free (finfo
.indices
);
11074 if (finfo
.sections
!= NULL
)
11075 free (finfo
.sections
);
11076 if (finfo
.symbuf
!= NULL
)
11077 free (finfo
.symbuf
);
11078 if (finfo
.symshndxbuf
!= NULL
)
11079 free (finfo
.symshndxbuf
);
11080 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11082 if ((o
->flags
& SEC_RELOC
) != 0
11083 && elf_section_data (o
)->rel_hashes
!= NULL
)
11084 free (elf_section_data (o
)->rel_hashes
);
11090 /* Initialize COOKIE for input bfd ABFD. */
11093 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11094 struct bfd_link_info
*info
, bfd
*abfd
)
11096 Elf_Internal_Shdr
*symtab_hdr
;
11097 const struct elf_backend_data
*bed
;
11099 bed
= get_elf_backend_data (abfd
);
11100 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11102 cookie
->abfd
= abfd
;
11103 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11104 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11105 if (cookie
->bad_symtab
)
11107 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11108 cookie
->extsymoff
= 0;
11112 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11113 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11116 if (bed
->s
->arch_size
== 32)
11117 cookie
->r_sym_shift
= 8;
11119 cookie
->r_sym_shift
= 32;
11121 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11122 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11124 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11125 cookie
->locsymcount
, 0,
11127 if (cookie
->locsyms
== NULL
)
11129 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11132 if (info
->keep_memory
)
11133 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11138 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11141 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11143 Elf_Internal_Shdr
*symtab_hdr
;
11145 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11146 if (cookie
->locsyms
!= NULL
11147 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11148 free (cookie
->locsyms
);
11151 /* Initialize the relocation information in COOKIE for input section SEC
11152 of input bfd ABFD. */
11155 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11156 struct bfd_link_info
*info
, bfd
*abfd
,
11159 const struct elf_backend_data
*bed
;
11161 if (sec
->reloc_count
== 0)
11163 cookie
->rels
= NULL
;
11164 cookie
->relend
= NULL
;
11168 bed
= get_elf_backend_data (abfd
);
11170 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11171 info
->keep_memory
);
11172 if (cookie
->rels
== NULL
)
11174 cookie
->rel
= cookie
->rels
;
11175 cookie
->relend
= (cookie
->rels
11176 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11178 cookie
->rel
= cookie
->rels
;
11182 /* Free the memory allocated by init_reloc_cookie_rels,
11186 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11189 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11190 free (cookie
->rels
);
11193 /* Initialize the whole of COOKIE for input section SEC. */
11196 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11197 struct bfd_link_info
*info
,
11200 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11202 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11207 fini_reloc_cookie (cookie
, sec
->owner
);
11212 /* Free the memory allocated by init_reloc_cookie_for_section,
11216 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11219 fini_reloc_cookie_rels (cookie
, sec
);
11220 fini_reloc_cookie (cookie
, sec
->owner
);
11223 /* Garbage collect unused sections. */
11225 /* Default gc_mark_hook. */
11228 _bfd_elf_gc_mark_hook (asection
*sec
,
11229 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11230 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11231 struct elf_link_hash_entry
*h
,
11232 Elf_Internal_Sym
*sym
)
11236 switch (h
->root
.type
)
11238 case bfd_link_hash_defined
:
11239 case bfd_link_hash_defweak
:
11240 return h
->root
.u
.def
.section
;
11242 case bfd_link_hash_common
:
11243 return h
->root
.u
.c
.p
->section
;
11250 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11255 /* COOKIE->rel describes a relocation against section SEC, which is
11256 a section we've decided to keep. Return the section that contains
11257 the relocation symbol, or NULL if no section contains it. */
11260 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11261 elf_gc_mark_hook_fn gc_mark_hook
,
11262 struct elf_reloc_cookie
*cookie
)
11264 unsigned long r_symndx
;
11265 struct elf_link_hash_entry
*h
;
11267 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11271 if (r_symndx
>= cookie
->locsymcount
11272 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11274 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11275 while (h
->root
.type
== bfd_link_hash_indirect
11276 || h
->root
.type
== bfd_link_hash_warning
)
11277 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11278 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11281 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11282 &cookie
->locsyms
[r_symndx
]);
11285 /* COOKIE->rel describes a relocation against section SEC, which is
11286 a section we've decided to keep. Mark the section that contains
11287 the relocation symbol. */
11290 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11292 elf_gc_mark_hook_fn gc_mark_hook
,
11293 struct elf_reloc_cookie
*cookie
)
11297 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11298 if (rsec
&& !rsec
->gc_mark
)
11300 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11302 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11308 /* The mark phase of garbage collection. For a given section, mark
11309 it and any sections in this section's group, and all the sections
11310 which define symbols to which it refers. */
11313 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11315 elf_gc_mark_hook_fn gc_mark_hook
)
11318 asection
*group_sec
, *eh_frame
;
11322 /* Mark all the sections in the group. */
11323 group_sec
= elf_section_data (sec
)->next_in_group
;
11324 if (group_sec
&& !group_sec
->gc_mark
)
11325 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11328 /* Look through the section relocs. */
11330 eh_frame
= elf_eh_frame_section (sec
->owner
);
11331 if ((sec
->flags
& SEC_RELOC
) != 0
11332 && sec
->reloc_count
> 0
11333 && sec
!= eh_frame
)
11335 struct elf_reloc_cookie cookie
;
11337 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11341 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11342 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11347 fini_reloc_cookie_for_section (&cookie
, sec
);
11351 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11353 struct elf_reloc_cookie cookie
;
11355 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11359 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11360 gc_mark_hook
, &cookie
))
11362 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11369 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11371 struct elf_gc_sweep_symbol_info
11373 struct bfd_link_info
*info
;
11374 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11379 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11381 if (h
->root
.type
== bfd_link_hash_warning
)
11382 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11384 if ((h
->root
.type
== bfd_link_hash_defined
11385 || h
->root
.type
== bfd_link_hash_defweak
)
11386 && !h
->root
.u
.def
.section
->gc_mark
11387 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11389 struct elf_gc_sweep_symbol_info
*inf
= data
;
11390 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11396 /* The sweep phase of garbage collection. Remove all garbage sections. */
11398 typedef bfd_boolean (*gc_sweep_hook_fn
)
11399 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11402 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11405 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11406 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11407 unsigned long section_sym_count
;
11408 struct elf_gc_sweep_symbol_info sweep_info
;
11410 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11414 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11417 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11419 /* When any section in a section group is kept, we keep all
11420 sections in the section group. If the first member of
11421 the section group is excluded, we will also exclude the
11423 if (o
->flags
& SEC_GROUP
)
11425 asection
*first
= elf_next_in_group (o
);
11426 o
->gc_mark
= first
->gc_mark
;
11428 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11429 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11431 /* Keep debug and special sections. */
11438 /* Skip sweeping sections already excluded. */
11439 if (o
->flags
& SEC_EXCLUDE
)
11442 /* Since this is early in the link process, it is simple
11443 to remove a section from the output. */
11444 o
->flags
|= SEC_EXCLUDE
;
11446 if (info
->print_gc_sections
&& o
->size
!= 0)
11447 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11449 /* But we also have to update some of the relocation
11450 info we collected before. */
11452 && (o
->flags
& SEC_RELOC
) != 0
11453 && o
->reloc_count
> 0
11454 && !bfd_is_abs_section (o
->output_section
))
11456 Elf_Internal_Rela
*internal_relocs
;
11460 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11461 info
->keep_memory
);
11462 if (internal_relocs
== NULL
)
11465 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11467 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11468 free (internal_relocs
);
11476 /* Remove the symbols that were in the swept sections from the dynamic
11477 symbol table. GCFIXME: Anyone know how to get them out of the
11478 static symbol table as well? */
11479 sweep_info
.info
= info
;
11480 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11481 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11484 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11488 /* Propagate collected vtable information. This is called through
11489 elf_link_hash_traverse. */
11492 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11494 if (h
->root
.type
== bfd_link_hash_warning
)
11495 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11497 /* Those that are not vtables. */
11498 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11501 /* Those vtables that do not have parents, we cannot merge. */
11502 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11505 /* If we've already been done, exit. */
11506 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11509 /* Make sure the parent's table is up to date. */
11510 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11512 if (h
->vtable
->used
== NULL
)
11514 /* None of this table's entries were referenced. Re-use the
11516 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11517 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11522 bfd_boolean
*cu
, *pu
;
11524 /* Or the parent's entries into ours. */
11525 cu
= h
->vtable
->used
;
11527 pu
= h
->vtable
->parent
->vtable
->used
;
11530 const struct elf_backend_data
*bed
;
11531 unsigned int log_file_align
;
11533 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11534 log_file_align
= bed
->s
->log_file_align
;
11535 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11550 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11553 bfd_vma hstart
, hend
;
11554 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11555 const struct elf_backend_data
*bed
;
11556 unsigned int log_file_align
;
11558 if (h
->root
.type
== bfd_link_hash_warning
)
11559 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11561 /* Take care of both those symbols that do not describe vtables as
11562 well as those that are not loaded. */
11563 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11566 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11567 || h
->root
.type
== bfd_link_hash_defweak
);
11569 sec
= h
->root
.u
.def
.section
;
11570 hstart
= h
->root
.u
.def
.value
;
11571 hend
= hstart
+ h
->size
;
11573 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11575 return *(bfd_boolean
*) okp
= FALSE
;
11576 bed
= get_elf_backend_data (sec
->owner
);
11577 log_file_align
= bed
->s
->log_file_align
;
11579 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11581 for (rel
= relstart
; rel
< relend
; ++rel
)
11582 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11584 /* If the entry is in use, do nothing. */
11585 if (h
->vtable
->used
11586 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11588 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11589 if (h
->vtable
->used
[entry
])
11592 /* Otherwise, kill it. */
11593 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11599 /* Mark sections containing dynamically referenced symbols. When
11600 building shared libraries, we must assume that any visible symbol is
11604 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11606 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11608 if (h
->root
.type
== bfd_link_hash_warning
)
11609 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11611 if ((h
->root
.type
== bfd_link_hash_defined
11612 || h
->root
.type
== bfd_link_hash_defweak
)
11614 || (!info
->executable
11616 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11617 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11618 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11623 /* Keep all sections containing symbols undefined on the command-line,
11624 and the section containing the entry symbol. */
11627 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11629 struct bfd_sym_chain
*sym
;
11631 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11633 struct elf_link_hash_entry
*h
;
11635 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11636 FALSE
, FALSE
, FALSE
);
11639 && (h
->root
.type
== bfd_link_hash_defined
11640 || h
->root
.type
== bfd_link_hash_defweak
)
11641 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11642 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11646 /* Do mark and sweep of unused sections. */
11649 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11651 bfd_boolean ok
= TRUE
;
11653 elf_gc_mark_hook_fn gc_mark_hook
;
11654 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11656 if (!bed
->can_gc_sections
11657 || !is_elf_hash_table (info
->hash
))
11659 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11663 bed
->gc_keep (info
);
11665 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11666 at the .eh_frame section if we can mark the FDEs individually. */
11667 _bfd_elf_begin_eh_frame_parsing (info
);
11668 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11671 struct elf_reloc_cookie cookie
;
11673 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11674 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11676 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11677 if (elf_section_data (sec
)->sec_info
)
11678 elf_eh_frame_section (sub
) = sec
;
11679 fini_reloc_cookie_for_section (&cookie
, sec
);
11682 _bfd_elf_end_eh_frame_parsing (info
);
11684 /* Apply transitive closure to the vtable entry usage info. */
11685 elf_link_hash_traverse (elf_hash_table (info
),
11686 elf_gc_propagate_vtable_entries_used
,
11691 /* Kill the vtable relocations that were not used. */
11692 elf_link_hash_traverse (elf_hash_table (info
),
11693 elf_gc_smash_unused_vtentry_relocs
,
11698 /* Mark dynamically referenced symbols. */
11699 if (elf_hash_table (info
)->dynamic_sections_created
)
11700 elf_link_hash_traverse (elf_hash_table (info
),
11701 bed
->gc_mark_dynamic_ref
,
11704 /* Grovel through relocs to find out who stays ... */
11705 gc_mark_hook
= bed
->gc_mark_hook
;
11706 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11710 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11713 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11714 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11715 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11719 /* Allow the backend to mark additional target specific sections. */
11720 if (bed
->gc_mark_extra_sections
)
11721 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11723 /* ... and mark SEC_EXCLUDE for those that go. */
11724 return elf_gc_sweep (abfd
, info
);
11727 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11730 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11732 struct elf_link_hash_entry
*h
,
11735 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11736 struct elf_link_hash_entry
**search
, *child
;
11737 bfd_size_type extsymcount
;
11738 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11740 /* The sh_info field of the symtab header tells us where the
11741 external symbols start. We don't care about the local symbols at
11743 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11744 if (!elf_bad_symtab (abfd
))
11745 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11747 sym_hashes
= elf_sym_hashes (abfd
);
11748 sym_hashes_end
= sym_hashes
+ extsymcount
;
11750 /* Hunt down the child symbol, which is in this section at the same
11751 offset as the relocation. */
11752 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11754 if ((child
= *search
) != NULL
11755 && (child
->root
.type
== bfd_link_hash_defined
11756 || child
->root
.type
== bfd_link_hash_defweak
)
11757 && child
->root
.u
.def
.section
== sec
11758 && child
->root
.u
.def
.value
== offset
)
11762 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11763 abfd
, sec
, (unsigned long) offset
);
11764 bfd_set_error (bfd_error_invalid_operation
);
11768 if (!child
->vtable
)
11770 child
->vtable
= bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11771 if (!child
->vtable
)
11776 /* This *should* only be the absolute section. It could potentially
11777 be that someone has defined a non-global vtable though, which
11778 would be bad. It isn't worth paging in the local symbols to be
11779 sure though; that case should simply be handled by the assembler. */
11781 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11784 child
->vtable
->parent
= h
;
11789 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11792 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11793 asection
*sec ATTRIBUTE_UNUSED
,
11794 struct elf_link_hash_entry
*h
,
11797 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11798 unsigned int log_file_align
= bed
->s
->log_file_align
;
11802 h
->vtable
= bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11807 if (addend
>= h
->vtable
->size
)
11809 size_t size
, bytes
, file_align
;
11810 bfd_boolean
*ptr
= h
->vtable
->used
;
11812 /* While the symbol is undefined, we have to be prepared to handle
11814 file_align
= 1 << log_file_align
;
11815 if (h
->root
.type
== bfd_link_hash_undefined
)
11816 size
= addend
+ file_align
;
11820 if (addend
>= size
)
11822 /* Oops! We've got a reference past the defined end of
11823 the table. This is probably a bug -- shall we warn? */
11824 size
= addend
+ file_align
;
11827 size
= (size
+ file_align
- 1) & -file_align
;
11829 /* Allocate one extra entry for use as a "done" flag for the
11830 consolidation pass. */
11831 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11835 ptr
= bfd_realloc (ptr
- 1, bytes
);
11841 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11842 * sizeof (bfd_boolean
));
11843 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11847 ptr
= bfd_zmalloc (bytes
);
11852 /* And arrange for that done flag to be at index -1. */
11853 h
->vtable
->used
= ptr
+ 1;
11854 h
->vtable
->size
= size
;
11857 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11862 struct alloc_got_off_arg
{
11864 struct bfd_link_info
*info
;
11867 /* We need a special top-level link routine to convert got reference counts
11868 to real got offsets. */
11871 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11873 struct alloc_got_off_arg
*gofarg
= arg
;
11874 bfd
*obfd
= gofarg
->info
->output_bfd
;
11875 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
11877 if (h
->root
.type
== bfd_link_hash_warning
)
11878 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11880 if (h
->got
.refcount
> 0)
11882 h
->got
.offset
= gofarg
->gotoff
;
11883 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
11886 h
->got
.offset
= (bfd_vma
) -1;
11891 /* And an accompanying bit to work out final got entry offsets once
11892 we're done. Should be called from final_link. */
11895 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11896 struct bfd_link_info
*info
)
11899 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11901 struct alloc_got_off_arg gofarg
;
11903 BFD_ASSERT (abfd
== info
->output_bfd
);
11905 if (! is_elf_hash_table (info
->hash
))
11908 /* The GOT offset is relative to the .got section, but the GOT header is
11909 put into the .got.plt section, if the backend uses it. */
11910 if (bed
->want_got_plt
)
11913 gotoff
= bed
->got_header_size
;
11915 /* Do the local .got entries first. */
11916 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11918 bfd_signed_vma
*local_got
;
11919 bfd_size_type j
, locsymcount
;
11920 Elf_Internal_Shdr
*symtab_hdr
;
11922 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
11925 local_got
= elf_local_got_refcounts (i
);
11929 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
11930 if (elf_bad_symtab (i
))
11931 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11933 locsymcount
= symtab_hdr
->sh_info
;
11935 for (j
= 0; j
< locsymcount
; ++j
)
11937 if (local_got
[j
] > 0)
11939 local_got
[j
] = gotoff
;
11940 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
11943 local_got
[j
] = (bfd_vma
) -1;
11947 /* Then the global .got entries. .plt refcounts are handled by
11948 adjust_dynamic_symbol */
11949 gofarg
.gotoff
= gotoff
;
11950 gofarg
.info
= info
;
11951 elf_link_hash_traverse (elf_hash_table (info
),
11952 elf_gc_allocate_got_offsets
,
11957 /* Many folk need no more in the way of final link than this, once
11958 got entry reference counting is enabled. */
11961 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11963 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
11966 /* Invoke the regular ELF backend linker to do all the work. */
11967 return bfd_elf_final_link (abfd
, info
);
11971 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
11973 struct elf_reloc_cookie
*rcookie
= cookie
;
11975 if (rcookie
->bad_symtab
)
11976 rcookie
->rel
= rcookie
->rels
;
11978 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
11980 unsigned long r_symndx
;
11982 if (! rcookie
->bad_symtab
)
11983 if (rcookie
->rel
->r_offset
> offset
)
11985 if (rcookie
->rel
->r_offset
!= offset
)
11988 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
11989 if (r_symndx
== SHN_UNDEF
)
11992 if (r_symndx
>= rcookie
->locsymcount
11993 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11995 struct elf_link_hash_entry
*h
;
11997 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
11999 while (h
->root
.type
== bfd_link_hash_indirect
12000 || h
->root
.type
== bfd_link_hash_warning
)
12001 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12003 if ((h
->root
.type
== bfd_link_hash_defined
12004 || h
->root
.type
== bfd_link_hash_defweak
)
12005 && elf_discarded_section (h
->root
.u
.def
.section
))
12012 /* It's not a relocation against a global symbol,
12013 but it could be a relocation against a local
12014 symbol for a discarded section. */
12016 Elf_Internal_Sym
*isym
;
12018 /* Need to: get the symbol; get the section. */
12019 isym
= &rcookie
->locsyms
[r_symndx
];
12020 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12021 if (isec
!= NULL
&& elf_discarded_section (isec
))
12029 /* Discard unneeded references to discarded sections.
12030 Returns TRUE if any section's size was changed. */
12031 /* This function assumes that the relocations are in sorted order,
12032 which is true for all known assemblers. */
12035 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12037 struct elf_reloc_cookie cookie
;
12038 asection
*stab
, *eh
;
12039 const struct elf_backend_data
*bed
;
12041 bfd_boolean ret
= FALSE
;
12043 if (info
->traditional_format
12044 || !is_elf_hash_table (info
->hash
))
12047 _bfd_elf_begin_eh_frame_parsing (info
);
12048 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12050 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12053 bed
= get_elf_backend_data (abfd
);
12055 if ((abfd
->flags
& DYNAMIC
) != 0)
12059 if (!info
->relocatable
)
12061 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12064 || bfd_is_abs_section (eh
->output_section
)))
12068 stab
= bfd_get_section_by_name (abfd
, ".stab");
12070 && (stab
->size
== 0
12071 || bfd_is_abs_section (stab
->output_section
)
12072 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12077 && bed
->elf_backend_discard_info
== NULL
)
12080 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12084 && stab
->reloc_count
> 0
12085 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12087 if (_bfd_discard_section_stabs (abfd
, stab
,
12088 elf_section_data (stab
)->sec_info
,
12089 bfd_elf_reloc_symbol_deleted_p
,
12092 fini_reloc_cookie_rels (&cookie
, stab
);
12096 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12098 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12099 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12100 bfd_elf_reloc_symbol_deleted_p
,
12103 fini_reloc_cookie_rels (&cookie
, eh
);
12106 if (bed
->elf_backend_discard_info
!= NULL
12107 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12110 fini_reloc_cookie (&cookie
, abfd
);
12112 _bfd_elf_end_eh_frame_parsing (info
);
12114 if (info
->eh_frame_hdr
12115 && !info
->relocatable
12116 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12122 /* For a SHT_GROUP section, return the group signature. For other
12123 sections, return the normal section name. */
12125 static const char *
12126 section_signature (asection
*sec
)
12128 if ((sec
->flags
& SEC_GROUP
) != 0
12129 && elf_next_in_group (sec
) != NULL
12130 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12131 return elf_group_name (elf_next_in_group (sec
));
12136 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12137 struct bfd_link_info
*info
)
12140 const char *name
, *p
;
12141 struct bfd_section_already_linked
*l
;
12142 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12144 if (sec
->output_section
== bfd_abs_section_ptr
)
12147 flags
= sec
->flags
;
12149 /* Return if it isn't a linkonce section. A comdat group section
12150 also has SEC_LINK_ONCE set. */
12151 if ((flags
& SEC_LINK_ONCE
) == 0)
12154 /* Don't put group member sections on our list of already linked
12155 sections. They are handled as a group via their group section. */
12156 if (elf_sec_group (sec
) != NULL
)
12159 /* FIXME: When doing a relocatable link, we may have trouble
12160 copying relocations in other sections that refer to local symbols
12161 in the section being discarded. Those relocations will have to
12162 be converted somehow; as of this writing I'm not sure that any of
12163 the backends handle that correctly.
12165 It is tempting to instead not discard link once sections when
12166 doing a relocatable link (technically, they should be discarded
12167 whenever we are building constructors). However, that fails,
12168 because the linker winds up combining all the link once sections
12169 into a single large link once section, which defeats the purpose
12170 of having link once sections in the first place.
12172 Also, not merging link once sections in a relocatable link
12173 causes trouble for MIPS ELF, which relies on link once semantics
12174 to handle the .reginfo section correctly. */
12176 name
= section_signature (sec
);
12178 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12179 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12184 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12186 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12188 /* We may have 2 different types of sections on the list: group
12189 sections and linkonce sections. Match like sections. */
12190 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12191 && strcmp (name
, section_signature (l
->sec
)) == 0
12192 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12194 /* The section has already been linked. See if we should
12195 issue a warning. */
12196 switch (flags
& SEC_LINK_DUPLICATES
)
12201 case SEC_LINK_DUPLICATES_DISCARD
:
12204 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12205 (*_bfd_error_handler
)
12206 (_("%B: ignoring duplicate section `%A'"),
12210 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12211 if (sec
->size
!= l
->sec
->size
)
12212 (*_bfd_error_handler
)
12213 (_("%B: duplicate section `%A' has different size"),
12217 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12218 if (sec
->size
!= l
->sec
->size
)
12219 (*_bfd_error_handler
)
12220 (_("%B: duplicate section `%A' has different size"),
12222 else if (sec
->size
!= 0)
12224 bfd_byte
*sec_contents
, *l_sec_contents
;
12226 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12227 (*_bfd_error_handler
)
12228 (_("%B: warning: could not read contents of section `%A'"),
12230 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12232 (*_bfd_error_handler
)
12233 (_("%B: warning: could not read contents of section `%A'"),
12234 l
->sec
->owner
, l
->sec
);
12235 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12236 (*_bfd_error_handler
)
12237 (_("%B: warning: duplicate section `%A' has different contents"),
12241 free (sec_contents
);
12242 if (l_sec_contents
)
12243 free (l_sec_contents
);
12248 /* Set the output_section field so that lang_add_section
12249 does not create a lang_input_section structure for this
12250 section. Since there might be a symbol in the section
12251 being discarded, we must retain a pointer to the section
12252 which we are really going to use. */
12253 sec
->output_section
= bfd_abs_section_ptr
;
12254 sec
->kept_section
= l
->sec
;
12256 if (flags
& SEC_GROUP
)
12258 asection
*first
= elf_next_in_group (sec
);
12259 asection
*s
= first
;
12263 s
->output_section
= bfd_abs_section_ptr
;
12264 /* Record which group discards it. */
12265 s
->kept_section
= l
->sec
;
12266 s
= elf_next_in_group (s
);
12267 /* These lists are circular. */
12277 /* A single member comdat group section may be discarded by a
12278 linkonce section and vice versa. */
12280 if ((flags
& SEC_GROUP
) != 0)
12282 asection
*first
= elf_next_in_group (sec
);
12284 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12285 /* Check this single member group against linkonce sections. */
12286 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12287 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12288 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12289 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12291 first
->output_section
= bfd_abs_section_ptr
;
12292 first
->kept_section
= l
->sec
;
12293 sec
->output_section
= bfd_abs_section_ptr
;
12298 /* Check this linkonce section against single member groups. */
12299 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12300 if (l
->sec
->flags
& SEC_GROUP
)
12302 asection
*first
= elf_next_in_group (l
->sec
);
12305 && elf_next_in_group (first
) == first
12306 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12308 sec
->output_section
= bfd_abs_section_ptr
;
12309 sec
->kept_section
= first
;
12314 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12315 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12316 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12317 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12318 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12319 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12320 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12321 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12322 The reverse order cannot happen as there is never a bfd with only the
12323 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12324 matter as here were are looking only for cross-bfd sections. */
12326 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12327 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12328 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12329 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12331 if (abfd
!= l
->sec
->owner
)
12332 sec
->output_section
= bfd_abs_section_ptr
;
12336 /* This is the first section with this name. Record it. */
12337 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12338 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12342 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12344 return sym
->st_shndx
== SHN_COMMON
;
12348 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12354 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12356 return bfd_com_section_ptr
;
12360 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12361 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12362 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12363 bfd
*ibfd ATTRIBUTE_UNUSED
,
12364 unsigned long symndx ATTRIBUTE_UNUSED
)
12366 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12367 return bed
->s
->arch_size
/ 8;
12370 /* Routines to support the creation of dynamic relocs. */
12372 /* Return true if NAME is a name of a relocation
12373 section associated with section S. */
12376 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12379 return CONST_STRNEQ (name
, ".rela")
12380 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12382 return CONST_STRNEQ (name
, ".rel")
12383 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12386 /* Returns the name of the dynamic reloc section associated with SEC. */
12388 static const char *
12389 get_dynamic_reloc_section_name (bfd
* abfd
,
12391 bfd_boolean is_rela
)
12394 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12395 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12397 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12401 if (! is_reloc_section (is_rela
, name
, sec
))
12403 static bfd_boolean complained
= FALSE
;
12407 (*_bfd_error_handler
)
12408 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12417 /* Returns the dynamic reloc section associated with SEC.
12418 If necessary compute the name of the dynamic reloc section based
12419 on SEC's name (looked up in ABFD's string table) and the setting
12423 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12425 bfd_boolean is_rela
)
12427 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12429 if (reloc_sec
== NULL
)
12431 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12435 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12437 if (reloc_sec
!= NULL
)
12438 elf_section_data (sec
)->sreloc
= reloc_sec
;
12445 /* Returns the dynamic reloc section associated with SEC. If the
12446 section does not exist it is created and attached to the DYNOBJ
12447 bfd and stored in the SRELOC field of SEC's elf_section_data
12450 ALIGNMENT is the alignment for the newly created section and
12451 IS_RELA defines whether the name should be .rela.<SEC's name>
12452 or .rel.<SEC's name>. The section name is looked up in the
12453 string table associated with ABFD. */
12456 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12458 unsigned int alignment
,
12460 bfd_boolean is_rela
)
12462 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12464 if (reloc_sec
== NULL
)
12466 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12471 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12473 if (reloc_sec
== NULL
)
12477 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12478 if ((sec
->flags
& SEC_ALLOC
) != 0)
12479 flags
|= SEC_ALLOC
| SEC_LOAD
;
12481 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12482 if (reloc_sec
!= NULL
)
12484 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12489 elf_section_data (sec
)->sreloc
= reloc_sec
;
12495 /* Create sections needed by STT_GNU_IFUNC symbol. */
12498 _bfd_elf_create_ifunc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
12500 flagword flags
, pltflags
;
12503 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12505 flags
= bed
->dynamic_sec_flags
;
12507 if (bed
->plt_not_loaded
)
12508 /* We do not clear SEC_ALLOC here because we still want the OS to
12509 allocate space for the section; it's just that there's nothing
12510 to read in from the object file. */
12511 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
12513 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
12514 if (bed
->plt_readonly
)
12515 pltflags
|= SEC_READONLY
;
12519 /* We need to create .rel[a].ifunc for shared objects. */
12520 const char *rel_sec
= (bed
->rela_plts_and_copies_p
12521 ? ".rela.ifunc" : ".rel.ifunc");
12523 /* This function should be called only once. */
12524 s
= bfd_get_section_by_name (abfd
, rel_sec
);
12528 s
= bfd_make_section_with_flags (abfd
, rel_sec
,
12529 flags
| SEC_READONLY
);
12531 || ! bfd_set_section_alignment (abfd
, s
,
12532 bed
->s
->log_file_align
))
12537 /* This function should be called only once. */
12538 s
= bfd_get_section_by_name (abfd
, ".iplt");
12542 /* We need to create .iplt, .rel[a].iplt, .igot and .igot.plt
12543 for static executables. */
12544 s
= bfd_make_section_with_flags (abfd
, ".iplt", pltflags
);
12546 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
12549 s
= bfd_make_section_with_flags (abfd
,
12550 (bed
->rela_plts_and_copies_p
12551 ? ".rela.iplt" : ".rel.iplt"),
12552 flags
| SEC_READONLY
);
12554 || ! bfd_set_section_alignment (abfd
, s
,
12555 bed
->s
->log_file_align
))
12558 switch (bed
->s
->arch_size
)
12569 bfd_set_error (bfd_error_bad_value
);
12573 /* We don't need the .igot section if we have the .igot.plt
12575 if (bed
->want_got_plt
)
12576 s
= bfd_make_section_with_flags (abfd
, ".igot.plt", flags
);
12578 s
= bfd_make_section_with_flags (abfd
, ".igot", flags
);
12580 || !bfd_set_section_alignment (abfd
, s
, ptralign
))