2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
29 struct bfd_link_info
*info
;
30 struct bfd_elf_version_tree
*verdefs
;
33 static bfd_boolean is_global_data_symbol_definition
34 PARAMS ((bfd
*, Elf_Internal_Sym
*));
35 static bfd_boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd
*, carsym
*));
37 static bfd_boolean elf_link_add_object_symbols
38 PARAMS ((bfd
*, struct bfd_link_info
*));
39 static bfd_boolean elf_link_add_archive_symbols
40 PARAMS ((bfd
*, struct bfd_link_info
*));
41 static bfd_boolean elf_merge_symbol
42 PARAMS ((bfd
*, struct bfd_link_info
*, const char *,
43 Elf_Internal_Sym
*, asection
**, bfd_vma
*,
44 struct elf_link_hash_entry
**, bfd_boolean
*, bfd_boolean
*,
45 bfd_boolean
*, bfd_boolean
));
46 static bfd_boolean elf_add_default_symbol
47 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
48 const char *, Elf_Internal_Sym
*, asection
**, bfd_vma
*,
49 bfd_boolean
*, bfd_boolean
, bfd_boolean
));
50 static bfd_boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry
*, PTR
));
52 static bfd_boolean elf_finalize_dynstr
53 PARAMS ((bfd
*, struct bfd_link_info
*));
54 static bfd_boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry
*, struct elf_info_failed
*));
56 static bfd_boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry
*, PTR
));
58 static bfd_boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry
*, PTR
));
60 static bfd_boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry
*, PTR
));
62 static bfd_boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry
*, PTR
));
64 static bfd_boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd
*, Elf_Internal_Shdr
*, PTR
, Elf_Internal_Rela
*));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info
*));
68 static bfd_boolean elf_link_output_relocs
69 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*));
70 static bfd_boolean elf_link_size_reloc_section
71 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd
*, Elf_Internal_Shdr
*, unsigned int,
74 struct elf_link_hash_entry
**));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd
*, struct bfd_link_info
*, asection
**));
81 static bfd_boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection
*));
84 /* Given an ELF BFD, add symbols to the global hash table as
88 elf_bfd_link_add_symbols (abfd
, info
)
90 struct bfd_link_info
*info
;
92 switch (bfd_get_format (abfd
))
95 return elf_link_add_object_symbols (abfd
, info
);
97 return elf_link_add_archive_symbols (abfd
, info
);
99 bfd_set_error (bfd_error_wrong_format
);
104 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
106 is_global_data_symbol_definition (abfd
, sym
)
107 bfd
* abfd ATTRIBUTE_UNUSED
;
108 Elf_Internal_Sym
* sym
;
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
112 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
119 /* If the section is undefined, then so is the symbol. */
120 if (sym
->st_shndx
== SHN_UNDEF
)
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym
->st_shndx
== SHN_COMMON
)
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
131 /* FIXME - this function is not coded yet:
133 return _bfd_is_global_symbol_definition (abfd, sym);
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
147 elf_link_is_defined_archive_symbol (abfd
, symdef
)
151 Elf_Internal_Shdr
* hdr
;
152 bfd_size_type symcount
;
153 bfd_size_type extsymcount
;
154 bfd_size_type extsymoff
;
155 Elf_Internal_Sym
*isymbuf
;
156 Elf_Internal_Sym
*isym
;
157 Elf_Internal_Sym
*isymend
;
160 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
161 if (abfd
== (bfd
*) NULL
)
164 if (! bfd_check_format (abfd
, bfd_object
))
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd
->archive_pass
)
174 /* Select the appropriate symbol table. */
175 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
176 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
178 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
180 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd
))
186 extsymcount
= symcount
;
191 extsymcount
= symcount
- hdr
->sh_info
;
192 extsymoff
= hdr
->sh_info
;
195 if (extsymcount
== 0)
198 /* Read in the symbol table. */
199 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
204 /* Scan the symbol table looking for SYMDEF. */
206 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
210 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
212 if (name
== (const char *) NULL
)
215 if (strcmp (name
, symdef
->name
) == 0)
217 result
= is_global_data_symbol_definition (abfd
, isym
);
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
253 elf_link_add_archive_symbols (abfd
, info
)
255 struct bfd_link_info
*info
;
258 bfd_boolean
*defined
= NULL
;
259 bfd_boolean
*included
= NULL
;
264 if (! bfd_has_map (abfd
))
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
269 bfd_set_error (bfd_error_no_armap
);
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c
= bfd_ardata (abfd
)->symdef_count
;
280 amt
*= sizeof (bfd_boolean
);
281 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
282 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
283 if (defined
== (bfd_boolean
*) NULL
|| included
== (bfd_boolean
*) NULL
)
286 symdefs
= bfd_ardata (abfd
)->symdefs
;
299 symdefend
= symdef
+ c
;
300 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
302 struct elf_link_hash_entry
*h
;
304 struct bfd_link_hash_entry
*undefs_tail
;
307 if (defined
[i
] || included
[i
])
309 if (symdef
->file_offset
== last
)
315 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
316 FALSE
, FALSE
, FALSE
);
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
329 p
= strchr (symdef
->name
, ELF_VER_CHR
);
330 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
333 /* First check with only one `@'. */
334 len
= strlen (symdef
->name
);
335 copy
= bfd_alloc (abfd
, (bfd_size_type
) len
);
338 first
= p
- symdef
->name
+ 1;
339 memcpy (copy
, symdef
->name
, first
);
340 memcpy (copy
+ first
, symdef
->name
+ first
+ 1, len
- first
);
342 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
343 FALSE
, FALSE
, FALSE
);
347 /* We also need to check references to the symbol
348 without the version. */
350 copy
[first
- 1] = '\0';
351 h
= elf_link_hash_lookup (elf_hash_table (info
),
352 copy
, FALSE
, FALSE
, FALSE
);
355 bfd_release (abfd
, copy
);
361 if (h
->root
.type
== bfd_link_hash_common
)
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
375 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
378 else if (h
->root
.type
!= bfd_link_hash_undefined
)
380 if (h
->root
.type
!= bfd_link_hash_undefweak
)
385 /* We need to include this archive member. */
386 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
387 if (element
== (bfd
*) NULL
)
390 if (! bfd_check_format (element
, bfd_object
))
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element
->archive_pass
!= 0)
398 bfd_set_error (bfd_error_bad_value
);
401 element
->archive_pass
= 1;
403 undefs_tail
= info
->hash
->undefs_tail
;
405 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
408 if (! elf_link_add_object_symbols (element
, info
))
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail
!= info
->hash
->undefs_tail
)
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
426 included
[mark
] = TRUE
;
431 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last
= symdef
->file_offset
;
446 if (defined
!= (bfd_boolean
*) NULL
)
448 if (included
!= (bfd_boolean
*) NULL
)
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
466 elf_merge_symbol (abfd
, info
, name
, sym
, psec
, pvalue
, sym_hash
,
467 override
, type_change_ok
, size_change_ok
, dt_needed
)
469 struct bfd_link_info
*info
;
471 Elf_Internal_Sym
*sym
;
474 struct elf_link_hash_entry
**sym_hash
;
475 bfd_boolean
*override
;
476 bfd_boolean
*type_change_ok
;
477 bfd_boolean
*size_change_ok
;
478 bfd_boolean dt_needed
;
481 struct elf_link_hash_entry
*h
;
484 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
489 bind
= ELF_ST_BIND (sym
->st_info
);
491 if (! bfd_is_und_section (sec
))
492 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
494 h
= ((struct elf_link_hash_entry
*)
495 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info
->hash
->creator
!= abfd
->xvec
)
505 /* For merging, we only care about real symbols. */
507 while (h
->root
.type
== bfd_link_hash_indirect
508 || h
->root
.type
== bfd_link_hash_warning
)
509 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
515 if (h
->root
.type
== bfd_link_hash_new
)
517 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
521 /* OLDBFD is a BFD associated with the existing symbol. */
523 switch (h
->root
.type
)
529 case bfd_link_hash_undefined
:
530 case bfd_link_hash_undefweak
:
531 oldbfd
= h
->root
.u
.undef
.abfd
;
534 case bfd_link_hash_defined
:
535 case bfd_link_hash_defweak
:
536 oldbfd
= h
->root
.u
.def
.section
->owner
;
539 case bfd_link_hash_common
:
540 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
551 && ((abfd
->flags
& DYNAMIC
) == 0
552 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0))
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
558 if ((abfd
->flags
& DYNAMIC
) != 0)
564 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h
->root
.type
)
577 case bfd_link_hash_defined
:
578 case bfd_link_hash_defweak
:
579 hsec
= h
->root
.u
.def
.section
;
582 case bfd_link_hash_common
:
583 hsec
= h
->root
.u
.c
.p
->section
;
590 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
596 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
601 if (h
->root
.type
== bfd_link_hash_undefined
602 || h
->root
.type
== bfd_link_hash_undefweak
603 || h
->root
.type
== bfd_link_hash_common
)
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
633 && (sec
->flags
& SEC_ALLOC
) != 0
634 && (sec
->flags
& SEC_LOAD
) == 0
637 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
640 newdyncommon
= FALSE
;
644 && h
->root
.type
== bfd_link_hash_defined
645 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
646 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
647 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
649 && h
->type
!= STT_FUNC
)
652 olddyncommon
= FALSE
;
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
659 if ((! dt_needed
&& h
->root
.type
== bfd_link_hash_defweak
)
660 || h
->root
.type
== bfd_link_hash_undefweak
662 *type_change_ok
= TRUE
;
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
668 || h
->root
.type
== bfd_link_hash_undefined
)
669 *size_change_ok
= TRUE
;
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
677 && sym
->st_size
!= h
->size
)
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
685 if (! ((*info
->callbacks
->multiple_common
)
686 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
687 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
690 if (sym
->st_size
> h
->size
)
691 h
->size
= sym
->st_size
;
693 *size_change_ok
= TRUE
;
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
718 || (h
->root
.type
== bfd_link_hash_common
720 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)))
721 && (h
->root
.type
!= bfd_link_hash_defweak
723 || bind
== STB_WEAK
))
727 newdyncommon
= FALSE
;
729 *psec
= sec
= bfd_und_section_ptr
;
730 *size_change_ok
= TRUE
;
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
738 if (h
->root
.type
== bfd_link_hash_common
)
739 *type_change_ok
= TRUE
;
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
749 && h
->root
.type
== bfd_link_hash_common
)
753 newdyncommon
= FALSE
;
754 *pvalue
= sym
->st_size
;
755 *psec
= sec
= bfd_com_section_ptr
;
756 *size_change_ok
= TRUE
;
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
774 || (bfd_is_com_section (sec
)
775 && (h
->root
.type
== bfd_link_hash_defweak
776 || h
->type
== STT_FUNC
)))
779 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
781 || h
->root
.type
== bfd_link_hash_defweak
))
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
787 h
->root
.type
= bfd_link_hash_undefined
;
788 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
789 *size_change_ok
= TRUE
;
792 olddyncommon
= FALSE
;
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
797 if (bfd_is_com_section (sec
))
798 *type_change_ok
= TRUE
;
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
804 h
->verinfo
.vertree
= NULL
;
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
822 && bfd_is_com_section (sec
)
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
828 if (! ((*info
->callbacks
->multiple_common
)
829 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
830 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
836 if (h
->size
> *pvalue
)
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
844 olddyncommon
= FALSE
;
846 h
->root
.type
= bfd_link_hash_undefined
;
847 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
849 *size_change_ok
= TRUE
;
850 *type_change_ok
= TRUE
;
852 h
->verinfo
.vertree
= NULL
;
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
862 && h
->root
.type
== bfd_link_hash_defweak
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
870 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
871 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
872 else if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
873 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
874 h
->elf_link_hash_flags
&= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC
);
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
891 && h
->root
.type
!= bfd_link_hash_defweak
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
907 elf_add_default_symbol (abfd
, info
, h
, name
, sym
, psec
, value
,
908 dynsym
, override
, dt_needed
)
910 struct bfd_link_info
*info
;
911 struct elf_link_hash_entry
*h
;
913 Elf_Internal_Sym
*sym
;
917 bfd_boolean override
;
918 bfd_boolean dt_needed
;
920 bfd_boolean type_change_ok
;
921 bfd_boolean size_change_ok
;
923 struct elf_link_hash_entry
*hi
;
924 struct bfd_link_hash_entry
*bh
;
925 struct elf_backend_data
*bed
;
929 size_t len
, shortlen
;
932 /* If this symbol has a version, and it is the default version, we
933 create an indirect symbol from the default name to the fully
934 decorated name. This will cause external references which do not
935 specify a version to be bound to this version of the symbol. */
936 p
= strchr (name
, ELF_VER_CHR
);
937 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
942 /* We are overridden by an old defition. We need to check if we
943 need to create the indirect symbol from the default name. */
944 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
946 BFD_ASSERT (hi
!= NULL
);
949 while (hi
->root
.type
== bfd_link_hash_indirect
950 || hi
->root
.type
== bfd_link_hash_warning
)
952 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
958 bed
= get_elf_backend_data (abfd
);
959 collect
= bed
->collect
;
960 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
963 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
964 if (shortname
== NULL
)
966 memcpy (shortname
, name
, shortlen
);
967 shortname
[shortlen
] = '\0';
969 /* We are going to create a new symbol. Merge it with any existing
970 symbol with this name. For the purposes of the merge, act as
971 though we were defining the symbol we just defined, although we
972 actually going to define an indirect symbol. */
973 type_change_ok
= FALSE
;
974 size_change_ok
= FALSE
;
976 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
977 &hi
, &override
, &type_change_ok
,
978 &size_change_ok
, dt_needed
))
984 if (! (_bfd_generic_link_add_one_symbol
985 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
986 (bfd_vma
) 0, name
, FALSE
, collect
, &bh
)))
988 hi
= (struct elf_link_hash_entry
*) bh
;
992 /* In this case the symbol named SHORTNAME is overriding the
993 indirect symbol we want to add. We were planning on making
994 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
995 is the name without a version. NAME is the fully versioned
996 name, and it is the default version.
998 Overriding means that we already saw a definition for the
999 symbol SHORTNAME in a regular object, and it is overriding
1000 the symbol defined in the dynamic object.
1002 When this happens, we actually want to change NAME, the
1003 symbol we just added, to refer to SHORTNAME. This will cause
1004 references to NAME in the shared object to become references
1005 to SHORTNAME in the regular object. This is what we expect
1006 when we override a function in a shared object: that the
1007 references in the shared object will be mapped to the
1008 definition in the regular object. */
1010 while (hi
->root
.type
== bfd_link_hash_indirect
1011 || hi
->root
.type
== bfd_link_hash_warning
)
1012 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1014 h
->root
.type
= bfd_link_hash_indirect
;
1015 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1016 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1018 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1019 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1020 if (hi
->elf_link_hash_flags
1021 & (ELF_LINK_HASH_REF_REGULAR
1022 | ELF_LINK_HASH_DEF_REGULAR
))
1024 if (! _bfd_elf_link_record_dynamic_symbol (info
, hi
))
1029 /* Now set HI to H, so that the following code will set the
1030 other fields correctly. */
1034 /* If there is a duplicate definition somewhere, then HI may not
1035 point to an indirect symbol. We will have reported an error to
1036 the user in that case. */
1038 if (hi
->root
.type
== bfd_link_hash_indirect
)
1040 struct elf_link_hash_entry
*ht
;
1042 /* If the symbol became indirect, then we assume that we have
1043 not seen a definition before. */
1044 BFD_ASSERT ((hi
->elf_link_hash_flags
1045 & (ELF_LINK_HASH_DEF_DYNAMIC
1046 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1048 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1049 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, ht
, hi
);
1051 /* See if the new flags lead us to realize that the symbol must
1058 || ((hi
->elf_link_hash_flags
1059 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1064 if ((hi
->elf_link_hash_flags
1065 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1071 /* We also need to define an indirection from the nondefault version
1074 len
= strlen (name
);
1075 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1076 if (shortname
== NULL
)
1078 memcpy (shortname
, name
, shortlen
);
1079 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1081 /* Once again, merge with any existing symbol. */
1082 type_change_ok
= FALSE
;
1083 size_change_ok
= FALSE
;
1085 if (! elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1086 &hi
, &override
, &type_change_ok
,
1087 &size_change_ok
, dt_needed
))
1092 /* Here SHORTNAME is a versioned name, so we don't expect to see
1093 the type of override we do in the case above unless it is
1094 overridden by a versioned definiton. */
1095 if (hi
->root
.type
!= bfd_link_hash_defined
1096 && hi
->root
.type
!= bfd_link_hash_defweak
)
1097 (*_bfd_error_handler
)
1098 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1099 bfd_archive_filename (abfd
), shortname
);
1104 if (! (_bfd_generic_link_add_one_symbol
1105 (info
, abfd
, shortname
, BSF_INDIRECT
,
1106 bfd_ind_section_ptr
, (bfd_vma
) 0, name
, FALSE
, collect
, &bh
)))
1108 hi
= (struct elf_link_hash_entry
*) bh
;
1110 /* If there is a duplicate definition somewhere, then HI may not
1111 point to an indirect symbol. We will have reported an error
1112 to the user in that case. */
1114 if (hi
->root
.type
== bfd_link_hash_indirect
)
1116 /* If the symbol became indirect, then we assume that we have
1117 not seen a definition before. */
1118 BFD_ASSERT ((hi
->elf_link_hash_flags
1119 & (ELF_LINK_HASH_DEF_DYNAMIC
1120 | ELF_LINK_HASH_DEF_REGULAR
)) == 0);
1122 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, h
, hi
);
1124 /* See if the new flags lead us to realize that the symbol
1131 || ((hi
->elf_link_hash_flags
1132 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1137 if ((hi
->elf_link_hash_flags
1138 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1148 /* Add symbols from an ELF object file to the linker hash table. */
1151 elf_link_add_object_symbols (abfd
, info
)
1153 struct bfd_link_info
*info
;
1155 bfd_boolean (*add_symbol_hook
)
1156 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
1157 const char **, flagword
*, asection
**, bfd_vma
*));
1158 bfd_boolean (*check_relocs
)
1159 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
1160 const Elf_Internal_Rela
*));
1161 bfd_boolean collect
;
1162 Elf_Internal_Shdr
*hdr
;
1163 bfd_size_type symcount
;
1164 bfd_size_type extsymcount
;
1165 bfd_size_type extsymoff
;
1166 struct elf_link_hash_entry
**sym_hash
;
1167 bfd_boolean dynamic
;
1168 Elf_External_Versym
*extversym
= NULL
;
1169 Elf_External_Versym
*ever
;
1170 struct elf_link_hash_entry
*weaks
;
1171 Elf_Internal_Sym
*isymbuf
= NULL
;
1172 Elf_Internal_Sym
*isym
;
1173 Elf_Internal_Sym
*isymend
;
1174 struct elf_backend_data
*bed
;
1175 bfd_boolean dt_needed
;
1176 struct elf_link_hash_table
* hash_table
;
1179 hash_table
= elf_hash_table (info
);
1181 bed
= get_elf_backend_data (abfd
);
1182 add_symbol_hook
= bed
->elf_add_symbol_hook
;
1183 collect
= bed
->collect
;
1185 if ((abfd
->flags
& DYNAMIC
) == 0)
1191 /* You can't use -r against a dynamic object. Also, there's no
1192 hope of using a dynamic object which does not exactly match
1193 the format of the output file. */
1194 if (info
->relocateable
|| info
->hash
->creator
!= abfd
->xvec
)
1196 bfd_set_error (bfd_error_invalid_operation
);
1201 /* As a GNU extension, any input sections which are named
1202 .gnu.warning.SYMBOL are treated as warning symbols for the given
1203 symbol. This differs from .gnu.warning sections, which generate
1204 warnings when they are included in an output file. */
1209 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1213 name
= bfd_get_section_name (abfd
, s
);
1214 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1219 name
+= sizeof ".gnu.warning." - 1;
1221 /* If this is a shared object, then look up the symbol
1222 in the hash table. If it is there, and it is already
1223 been defined, then we will not be using the entry
1224 from this shared object, so we don't need to warn.
1225 FIXME: If we see the definition in a regular object
1226 later on, we will warn, but we shouldn't. The only
1227 fix is to keep track of what warnings we are supposed
1228 to emit, and then handle them all at the end of the
1230 if (dynamic
&& abfd
->xvec
== info
->hash
->creator
)
1232 struct elf_link_hash_entry
*h
;
1234 h
= elf_link_hash_lookup (hash_table
, name
,
1235 FALSE
, FALSE
, TRUE
);
1237 /* FIXME: What about bfd_link_hash_common? */
1239 && (h
->root
.type
== bfd_link_hash_defined
1240 || h
->root
.type
== bfd_link_hash_defweak
))
1242 /* We don't want to issue this warning. Clobber
1243 the section size so that the warning does not
1244 get copied into the output file. */
1250 sz
= bfd_section_size (abfd
, s
);
1251 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
1255 if (! bfd_get_section_contents (abfd
, s
, msg
, (file_ptr
) 0, sz
))
1260 if (! (_bfd_generic_link_add_one_symbol
1261 (info
, abfd
, name
, BSF_WARNING
, s
, (bfd_vma
) 0, msg
,
1262 FALSE
, collect
, (struct bfd_link_hash_entry
**) NULL
)))
1265 if (! info
->relocateable
)
1267 /* Clobber the section size so that the warning does
1268 not get copied into the output file. */
1278 /* If we are creating a shared library, create all the dynamic
1279 sections immediately. We need to attach them to something,
1280 so we attach them to this BFD, provided it is the right
1281 format. FIXME: If there are no input BFD's of the same
1282 format as the output, we can't make a shared library. */
1284 && is_elf_hash_table (info
)
1285 && ! hash_table
->dynamic_sections_created
1286 && abfd
->xvec
== info
->hash
->creator
)
1288 if (! elf_link_create_dynamic_sections (abfd
, info
))
1292 else if (! is_elf_hash_table (info
))
1297 bfd_boolean add_needed
;
1299 bfd_size_type oldsize
;
1300 bfd_size_type strindex
;
1301 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
1303 /* ld --just-symbols and dynamic objects don't mix very well.
1304 Test for --just-symbols by looking at info set up by
1305 _bfd_elf_link_just_syms. */
1306 if ((s
= abfd
->sections
) != NULL
1307 && elf_section_data (s
)->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
1310 /* Find the name to use in a DT_NEEDED entry that refers to this
1311 object. If the object has a DT_SONAME entry, we use it.
1312 Otherwise, if the generic linker stuck something in
1313 elf_dt_name, we use that. Otherwise, we just use the file
1314 name. If the generic linker put a null string into
1315 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1316 there is a DT_SONAME entry. */
1318 name
= bfd_get_filename (abfd
);
1319 if (elf_dt_name (abfd
) != NULL
)
1321 name
= elf_dt_name (abfd
);
1324 if (elf_dt_soname (abfd
) != NULL
)
1330 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1333 Elf_External_Dyn
*dynbuf
= NULL
;
1334 Elf_External_Dyn
*extdyn
;
1335 Elf_External_Dyn
*extdynend
;
1337 unsigned long shlink
;
1339 dynbuf
= (Elf_External_Dyn
*) bfd_malloc (s
->_raw_size
);
1343 if (! bfd_get_section_contents (abfd
, s
, (PTR
) dynbuf
,
1344 (file_ptr
) 0, s
->_raw_size
))
1345 goto error_free_dyn
;
1347 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1349 goto error_free_dyn
;
1350 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1353 extdynend
= extdyn
+ s
->_raw_size
/ sizeof (Elf_External_Dyn
);
1354 for (; extdyn
< extdynend
; extdyn
++)
1356 Elf_Internal_Dyn dyn
;
1358 elf_swap_dyn_in (abfd
, extdyn
, &dyn
);
1359 if (dyn
.d_tag
== DT_SONAME
)
1361 unsigned int tagv
= dyn
.d_un
.d_val
;
1362 name
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1364 goto error_free_dyn
;
1366 if (dyn
.d_tag
== DT_NEEDED
)
1368 struct bfd_link_needed_list
*n
, **pn
;
1370 unsigned int tagv
= dyn
.d_un
.d_val
;
1372 amt
= sizeof (struct bfd_link_needed_list
);
1373 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1374 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1375 if (n
== NULL
|| fnm
== NULL
)
1376 goto error_free_dyn
;
1377 amt
= strlen (fnm
) + 1;
1378 anm
= bfd_alloc (abfd
, amt
);
1380 goto error_free_dyn
;
1381 memcpy (anm
, fnm
, (size_t) amt
);
1385 for (pn
= & hash_table
->needed
;
1391 if (dyn
.d_tag
== DT_RUNPATH
)
1393 struct bfd_link_needed_list
*n
, **pn
;
1395 unsigned int tagv
= dyn
.d_un
.d_val
;
1397 amt
= sizeof (struct bfd_link_needed_list
);
1398 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1399 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1400 if (n
== NULL
|| fnm
== NULL
)
1401 goto error_free_dyn
;
1402 amt
= strlen (fnm
) + 1;
1403 anm
= bfd_alloc (abfd
, amt
);
1405 goto error_free_dyn
;
1406 memcpy (anm
, fnm
, (size_t) amt
);
1410 for (pn
= & runpath
;
1416 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1417 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
1419 struct bfd_link_needed_list
*n
, **pn
;
1421 unsigned int tagv
= dyn
.d_un
.d_val
;
1423 amt
= sizeof (struct bfd_link_needed_list
);
1424 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
1425 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1426 if (n
== NULL
|| fnm
== NULL
)
1427 goto error_free_dyn
;
1428 amt
= strlen (fnm
) + 1;
1429 anm
= bfd_alloc (abfd
, amt
);
1436 memcpy (anm
, fnm
, (size_t) amt
);
1451 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
1452 frees all more recently bfd_alloc'd blocks as well. */
1458 struct bfd_link_needed_list
**pn
;
1459 for (pn
= & hash_table
->runpath
;
1466 /* We do not want to include any of the sections in a dynamic
1467 object in the output file. We hack by simply clobbering the
1468 list of sections in the BFD. This could be handled more
1469 cleanly by, say, a new section flag; the existing
1470 SEC_NEVER_LOAD flag is not the one we want, because that one
1471 still implies that the section takes up space in the output
1473 bfd_section_list_clear (abfd
);
1475 /* If this is the first dynamic object found in the link, create
1476 the special sections required for dynamic linking. */
1477 if (! hash_table
->dynamic_sections_created
)
1478 if (! elf_link_create_dynamic_sections (abfd
, info
))
1483 /* Add a DT_NEEDED entry for this dynamic object. */
1484 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
1485 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, name
, FALSE
);
1486 if (strindex
== (bfd_size_type
) -1)
1489 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
1492 Elf_External_Dyn
*dyncon
, *dynconend
;
1494 /* The hash table size did not change, which means that
1495 the dynamic object name was already entered. If we
1496 have already included this dynamic object in the
1497 link, just ignore it. There is no reason to include
1498 a particular dynamic object more than once. */
1499 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
1500 BFD_ASSERT (sdyn
!= NULL
);
1502 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
1503 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
1505 for (; dyncon
< dynconend
; dyncon
++)
1507 Elf_Internal_Dyn dyn
;
1509 elf_swap_dyn_in (hash_table
->dynobj
, dyncon
, & dyn
);
1510 if (dyn
.d_tag
== DT_NEEDED
1511 && dyn
.d_un
.d_val
== strindex
)
1513 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
1519 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
1523 /* Save the SONAME, if there is one, because sometimes the
1524 linker emulation code will need to know it. */
1526 name
= basename (bfd_get_filename (abfd
));
1527 elf_dt_name (abfd
) = name
;
1530 /* If this is a dynamic object, we always link against the .dynsym
1531 symbol table, not the .symtab symbol table. The dynamic linker
1532 will only see the .dynsym symbol table, so there is no reason to
1533 look at .symtab for a dynamic object. */
1535 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
1536 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1538 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1540 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
1542 /* The sh_info field of the symtab header tells us where the
1543 external symbols start. We don't care about the local symbols at
1545 if (elf_bad_symtab (abfd
))
1547 extsymcount
= symcount
;
1552 extsymcount
= symcount
- hdr
->sh_info
;
1553 extsymoff
= hdr
->sh_info
;
1557 if (extsymcount
!= 0)
1559 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
1561 if (isymbuf
== NULL
)
1564 /* We store a pointer to the hash table entry for each external
1566 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
1567 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
1568 if (sym_hash
== NULL
)
1569 goto error_free_sym
;
1570 elf_sym_hashes (abfd
) = sym_hash
;
1575 /* Read in any version definitions. */
1576 if (! _bfd_elf_slurp_version_tables (abfd
))
1577 goto error_free_sym
;
1579 /* Read in the symbol versions, but don't bother to convert them
1580 to internal format. */
1581 if (elf_dynversym (abfd
) != 0)
1583 Elf_Internal_Shdr
*versymhdr
;
1585 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
1586 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
1587 if (extversym
== NULL
)
1588 goto error_free_sym
;
1589 amt
= versymhdr
->sh_size
;
1590 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
1591 || bfd_bread ((PTR
) extversym
, amt
, abfd
) != amt
)
1592 goto error_free_vers
;
1598 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
1599 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
1601 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
1608 struct elf_link_hash_entry
*h
;
1609 bfd_boolean definition
;
1610 bfd_boolean size_change_ok
, type_change_ok
;
1611 bfd_boolean new_weakdef
;
1612 unsigned int old_alignment
;
1613 bfd_boolean override
;
1617 flags
= BSF_NO_FLAGS
;
1619 value
= isym
->st_value
;
1622 bind
= ELF_ST_BIND (isym
->st_info
);
1623 if (bind
== STB_LOCAL
)
1625 /* This should be impossible, since ELF requires that all
1626 global symbols follow all local symbols, and that sh_info
1627 point to the first global symbol. Unfortunatealy, Irix 5
1631 else if (bind
== STB_GLOBAL
)
1633 if (isym
->st_shndx
!= SHN_UNDEF
1634 && isym
->st_shndx
!= SHN_COMMON
)
1637 else if (bind
== STB_WEAK
)
1641 /* Leave it up to the processor backend. */
1644 if (isym
->st_shndx
== SHN_UNDEF
)
1645 sec
= bfd_und_section_ptr
;
1646 else if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
1648 sec
= section_from_elf_index (abfd
, isym
->st_shndx
);
1650 sec
= bfd_abs_section_ptr
;
1651 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
1654 else if (isym
->st_shndx
== SHN_ABS
)
1655 sec
= bfd_abs_section_ptr
;
1656 else if (isym
->st_shndx
== SHN_COMMON
)
1658 sec
= bfd_com_section_ptr
;
1659 /* What ELF calls the size we call the value. What ELF
1660 calls the value we call the alignment. */
1661 value
= isym
->st_size
;
1665 /* Leave it up to the processor backend. */
1668 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
1670 if (name
== (const char *) NULL
)
1671 goto error_free_vers
;
1673 if (isym
->st_shndx
== SHN_COMMON
1674 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
)
1676 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
1680 tcomm
= bfd_make_section (abfd
, ".tcommon");
1682 || !bfd_set_section_flags (abfd
, tcomm
, (SEC_ALLOC
1684 | SEC_LINKER_CREATED
1685 | SEC_THREAD_LOCAL
)))
1686 goto error_free_vers
;
1690 else if (add_symbol_hook
)
1692 if (! (*add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
, &sec
,
1694 goto error_free_vers
;
1696 /* The hook function sets the name to NULL if this symbol
1697 should be skipped for some reason. */
1698 if (name
== (const char *) NULL
)
1702 /* Sanity check that all possibilities were handled. */
1703 if (sec
== (asection
*) NULL
)
1705 bfd_set_error (bfd_error_bad_value
);
1706 goto error_free_vers
;
1709 if (bfd_is_und_section (sec
)
1710 || bfd_is_com_section (sec
))
1715 size_change_ok
= FALSE
;
1716 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
1718 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1720 Elf_Internal_Versym iver
;
1721 unsigned int vernum
= 0;
1725 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
1726 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
1728 /* If this is a hidden symbol, or if it is not version
1729 1, we append the version name to the symbol name.
1730 However, we do not modify a non-hidden absolute
1731 symbol, because it might be the version symbol
1732 itself. FIXME: What if it isn't? */
1733 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
1734 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
1737 size_t namelen
, verlen
, newlen
;
1740 if (isym
->st_shndx
!= SHN_UNDEF
)
1742 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
1744 (*_bfd_error_handler
)
1745 (_("%s: %s: invalid version %u (max %d)"),
1746 bfd_archive_filename (abfd
), name
, vernum
,
1747 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
1748 bfd_set_error (bfd_error_bad_value
);
1749 goto error_free_vers
;
1751 else if (vernum
> 1)
1753 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1759 /* We cannot simply test for the number of
1760 entries in the VERNEED section since the
1761 numbers for the needed versions do not start
1763 Elf_Internal_Verneed
*t
;
1766 for (t
= elf_tdata (abfd
)->verref
;
1770 Elf_Internal_Vernaux
*a
;
1772 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1774 if (a
->vna_other
== vernum
)
1776 verstr
= a
->vna_nodename
;
1785 (*_bfd_error_handler
)
1786 (_("%s: %s: invalid needed version %d"),
1787 bfd_archive_filename (abfd
), name
, vernum
);
1788 bfd_set_error (bfd_error_bad_value
);
1789 goto error_free_vers
;
1793 namelen
= strlen (name
);
1794 verlen
= strlen (verstr
);
1795 newlen
= namelen
+ verlen
+ 2;
1796 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1797 && isym
->st_shndx
!= SHN_UNDEF
)
1800 newname
= (char *) bfd_alloc (abfd
, (bfd_size_type
) newlen
);
1801 if (newname
== NULL
)
1802 goto error_free_vers
;
1803 memcpy (newname
, name
, namelen
);
1804 p
= newname
+ namelen
;
1806 /* If this is a defined non-hidden version symbol,
1807 we add another @ to the name. This indicates the
1808 default version of the symbol. */
1809 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
1810 && isym
->st_shndx
!= SHN_UNDEF
)
1812 memcpy (p
, verstr
, verlen
+ 1);
1818 if (! elf_merge_symbol (abfd
, info
, name
, isym
, &sec
, &value
,
1819 sym_hash
, &override
, &type_change_ok
,
1820 &size_change_ok
, dt_needed
))
1821 goto error_free_vers
;
1827 while (h
->root
.type
== bfd_link_hash_indirect
1828 || h
->root
.type
== bfd_link_hash_warning
)
1829 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1831 /* Remember the old alignment if this is a common symbol, so
1832 that we don't reduce the alignment later on. We can't
1833 check later, because _bfd_generic_link_add_one_symbol
1834 will set a default for the alignment which we want to
1836 if (h
->root
.type
== bfd_link_hash_common
)
1837 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1839 if (elf_tdata (abfd
)->verdef
!= NULL
1843 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
1846 if (! (_bfd_generic_link_add_one_symbol
1847 (info
, abfd
, name
, flags
, sec
, value
, (const char *) NULL
,
1848 FALSE
, collect
, (struct bfd_link_hash_entry
**) sym_hash
)))
1849 goto error_free_vers
;
1852 while (h
->root
.type
== bfd_link_hash_indirect
1853 || h
->root
.type
== bfd_link_hash_warning
)
1854 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1857 new_weakdef
= FALSE
;
1860 && (flags
& BSF_WEAK
) != 0
1861 && ELF_ST_TYPE (isym
->st_info
) != STT_FUNC
1862 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
1863 && h
->weakdef
== NULL
)
1865 /* Keep a list of all weak defined non function symbols from
1866 a dynamic object, using the weakdef field. Later in this
1867 function we will set the weakdef field to the correct
1868 value. We only put non-function symbols from dynamic
1869 objects on this list, because that happens to be the only
1870 time we need to know the normal symbol corresponding to a
1871 weak symbol, and the information is time consuming to
1872 figure out. If the weakdef field is not already NULL,
1873 then this symbol was already defined by some previous
1874 dynamic object, and we will be using that previous
1875 definition anyhow. */
1882 /* Set the alignment of a common symbol. */
1883 if (isym
->st_shndx
== SHN_COMMON
1884 && h
->root
.type
== bfd_link_hash_common
)
1888 align
= bfd_log2 (isym
->st_value
);
1889 if (align
> old_alignment
1890 /* Permit an alignment power of zero if an alignment of one
1891 is specified and no other alignments have been specified. */
1892 || (isym
->st_value
== 1 && old_alignment
== 0))
1893 h
->root
.u
.c
.p
->alignment_power
= align
;
1896 if (info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
1902 /* Remember the symbol size and type. */
1903 if (isym
->st_size
!= 0
1904 && (definition
|| h
->size
== 0))
1906 if (h
->size
!= 0 && h
->size
!= isym
->st_size
&& ! size_change_ok
)
1907 (*_bfd_error_handler
)
1908 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1909 name
, (unsigned long) h
->size
,
1910 (unsigned long) isym
->st_size
, bfd_archive_filename (abfd
));
1912 h
->size
= isym
->st_size
;
1915 /* If this is a common symbol, then we always want H->SIZE
1916 to be the size of the common symbol. The code just above
1917 won't fix the size if a common symbol becomes larger. We
1918 don't warn about a size change here, because that is
1919 covered by --warn-common. */
1920 if (h
->root
.type
== bfd_link_hash_common
)
1921 h
->size
= h
->root
.u
.c
.size
;
1923 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
1924 && (definition
|| h
->type
== STT_NOTYPE
))
1926 if (h
->type
!= STT_NOTYPE
1927 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
1928 && ! type_change_ok
)
1929 (*_bfd_error_handler
)
1930 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1931 name
, h
->type
, ELF_ST_TYPE (isym
->st_info
),
1932 bfd_archive_filename (abfd
));
1934 h
->type
= ELF_ST_TYPE (isym
->st_info
);
1937 /* If st_other has a processor-specific meaning, specific code
1938 might be needed here. */
1939 if (isym
->st_other
!= 0)
1941 unsigned char hvis
, symvis
, other
;
1943 /* Take the balance of OTHER from the definition. */
1944 other
= (definition
? isym
->st_other
: h
->other
);
1945 other
&= ~ ELF_ST_VISIBILITY (-1);
1947 /* Combine visibilities, using the most constraining one. */
1948 hvis
= ELF_ST_VISIBILITY (h
->other
);
1949 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
1951 h
->other
= other
| (hvis
> symvis
? hvis
: symvis
);
1954 /* Set a flag in the hash table entry indicating the type of
1955 reference or definition we just found. Keep a count of
1956 the number of dynamic symbols we find. A dynamic symbol
1957 is one which is referenced or defined by both a regular
1958 object and a shared object. */
1959 old_flags
= h
->elf_link_hash_flags
;
1965 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
1966 if (bind
!= STB_WEAK
)
1967 new_flag
|= ELF_LINK_HASH_REF_REGULAR_NONWEAK
;
1970 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
1972 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
1973 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
1979 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
1981 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
1982 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
1983 | ELF_LINK_HASH_REF_REGULAR
)) != 0
1984 || (h
->weakdef
!= NULL
1986 && h
->weakdef
->dynindx
!= -1))
1990 h
->elf_link_hash_flags
|= new_flag
;
1992 /* Check to see if we need to add an indirect symbol for
1993 the default name. */
1994 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
1995 if (! elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
1996 &sec
, &value
, &dynsym
,
1997 override
, dt_needed
))
1998 goto error_free_vers
;
2000 if (dynsym
&& h
->dynindx
== -1)
2002 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2003 goto error_free_vers
;
2004 if (h
->weakdef
!= NULL
2006 && h
->weakdef
->dynindx
== -1)
2008 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2009 goto error_free_vers
;
2012 else if (dynsym
&& h
->dynindx
!= -1)
2013 /* If the symbol already has a dynamic index, but
2014 visibility says it should not be visible, turn it into
2016 switch (ELF_ST_VISIBILITY (h
->other
))
2020 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2024 if (dt_needed
&& definition
2025 && (h
->elf_link_hash_flags
2026 & ELF_LINK_HASH_REF_REGULAR
) != 0)
2028 bfd_size_type oldsize
;
2029 bfd_size_type strindex
;
2031 if (! is_elf_hash_table (info
))
2032 goto error_free_vers
;
2034 /* The symbol from a DT_NEEDED object is referenced from
2035 the regular object to create a dynamic executable. We
2036 have to make sure there is a DT_NEEDED entry for it. */
2039 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
2040 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
,
2041 elf_dt_soname (abfd
), FALSE
);
2042 if (strindex
== (bfd_size_type
) -1)
2043 goto error_free_vers
;
2045 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
2048 Elf_External_Dyn
*dyncon
, *dynconend
;
2050 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
,
2052 BFD_ASSERT (sdyn
!= NULL
);
2054 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
2055 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
2057 for (; dyncon
< dynconend
; dyncon
++)
2059 Elf_Internal_Dyn dyn
;
2061 elf_swap_dyn_in (hash_table
->dynobj
,
2063 BFD_ASSERT (dyn
.d_tag
!= DT_NEEDED
||
2064 dyn
.d_un
.d_val
!= strindex
);
2068 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NEEDED
, strindex
))
2069 goto error_free_vers
;
2074 if (extversym
!= NULL
)
2080 if (isymbuf
!= NULL
)
2084 /* Now set the weakdefs field correctly for all the weak defined
2085 symbols we found. The only way to do this is to search all the
2086 symbols. Since we only need the information for non functions in
2087 dynamic objects, that's the only time we actually put anything on
2088 the list WEAKS. We need this information so that if a regular
2089 object refers to a symbol defined weakly in a dynamic object, the
2090 real symbol in the dynamic object is also put in the dynamic
2091 symbols; we also must arrange for both symbols to point to the
2092 same memory location. We could handle the general case of symbol
2093 aliasing, but a general symbol alias can only be generated in
2094 assembler code, handling it correctly would be very time
2095 consuming, and other ELF linkers don't handle general aliasing
2097 while (weaks
!= NULL
)
2099 struct elf_link_hash_entry
*hlook
;
2102 struct elf_link_hash_entry
**hpp
;
2103 struct elf_link_hash_entry
**hppend
;
2106 weaks
= hlook
->weakdef
;
2107 hlook
->weakdef
= NULL
;
2109 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
2110 || hlook
->root
.type
== bfd_link_hash_defweak
2111 || hlook
->root
.type
== bfd_link_hash_common
2112 || hlook
->root
.type
== bfd_link_hash_indirect
);
2113 slook
= hlook
->root
.u
.def
.section
;
2114 vlook
= hlook
->root
.u
.def
.value
;
2116 hpp
= elf_sym_hashes (abfd
);
2117 hppend
= hpp
+ extsymcount
;
2118 for (; hpp
< hppend
; hpp
++)
2120 struct elf_link_hash_entry
*h
;
2123 if (h
!= NULL
&& h
!= hlook
2124 && h
->root
.type
== bfd_link_hash_defined
2125 && h
->root
.u
.def
.section
== slook
2126 && h
->root
.u
.def
.value
== vlook
)
2130 /* If the weak definition is in the list of dynamic
2131 symbols, make sure the real definition is put there
2133 if (hlook
->dynindx
!= -1
2134 && h
->dynindx
== -1)
2136 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2140 /* If the real definition is in the list of dynamic
2141 symbols, make sure the weak definition is put there
2142 as well. If we don't do this, then the dynamic
2143 loader might not merge the entries for the real
2144 definition and the weak definition. */
2145 if (h
->dynindx
!= -1
2146 && hlook
->dynindx
== -1)
2148 if (! _bfd_elf_link_record_dynamic_symbol (info
, hlook
))
2156 /* If this object is the same format as the output object, and it is
2157 not a shared library, then let the backend look through the
2160 This is required to build global offset table entries and to
2161 arrange for dynamic relocs. It is not required for the
2162 particular common case of linking non PIC code, even when linking
2163 against shared libraries, but unfortunately there is no way of
2164 knowing whether an object file has been compiled PIC or not.
2165 Looking through the relocs is not particularly time consuming.
2166 The problem is that we must either (1) keep the relocs in memory,
2167 which causes the linker to require additional runtime memory or
2168 (2) read the relocs twice from the input file, which wastes time.
2169 This would be a good case for using mmap.
2171 I have no idea how to handle linking PIC code into a file of a
2172 different format. It probably can't be done. */
2173 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
2175 && abfd
->xvec
== info
->hash
->creator
2176 && check_relocs
!= NULL
)
2180 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2182 Elf_Internal_Rela
*internal_relocs
;
2185 if ((o
->flags
& SEC_RELOC
) == 0
2186 || o
->reloc_count
== 0
2187 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2188 && (o
->flags
& SEC_DEBUGGING
) != 0)
2189 || bfd_is_abs_section (o
->output_section
))
2192 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
2193 (abfd
, o
, (PTR
) NULL
,
2194 (Elf_Internal_Rela
*) NULL
,
2195 info
->keep_memory
));
2196 if (internal_relocs
== NULL
)
2199 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
2201 if (elf_section_data (o
)->relocs
!= internal_relocs
)
2202 free (internal_relocs
);
2209 /* If this is a non-traditional link, try to optimize the handling
2210 of the .stab/.stabstr sections. */
2212 && ! info
->traditional_format
2213 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
2214 && is_elf_hash_table (info
)
2215 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
2217 asection
*stab
, *stabstr
;
2219 stab
= bfd_get_section_by_name (abfd
, ".stab");
2221 && (stab
->flags
& SEC_MERGE
) == 0
2222 && !bfd_is_abs_section (stab
->output_section
))
2224 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
2226 if (stabstr
!= NULL
)
2228 struct bfd_elf_section_data
*secdata
;
2230 secdata
= elf_section_data (stab
);
2231 if (! _bfd_link_section_stabs (abfd
,
2232 & hash_table
->stab_info
,
2234 &secdata
->sec_info
))
2236 if (secdata
->sec_info
)
2237 secdata
->sec_info_type
= ELF_INFO_TYPE_STABS
;
2242 if (! info
->relocateable
&& ! dynamic
2243 && is_elf_hash_table (info
))
2247 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
2248 if ((s
->flags
& SEC_MERGE
) != 0
2249 && !bfd_is_abs_section (s
->output_section
))
2251 struct bfd_elf_section_data
*secdata
;
2253 secdata
= elf_section_data (s
);
2254 if (! _bfd_merge_section (abfd
,
2255 & hash_table
->merge_info
,
2256 s
, &secdata
->sec_info
))
2258 else if (secdata
->sec_info
)
2259 secdata
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
2263 if (is_elf_hash_table (info
))
2265 /* Add this bfd to the loaded list. */
2266 struct elf_link_loaded_list
*n
;
2268 n
= ((struct elf_link_loaded_list
*)
2269 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
)));
2273 n
->next
= hash_table
->loaded
;
2274 hash_table
->loaded
= n
;
2280 if (extversym
!= NULL
)
2283 if (isymbuf
!= NULL
)
2289 /* Create some sections which will be filled in with dynamic linking
2290 information. ABFD is an input file which requires dynamic sections
2291 to be created. The dynamic sections take up virtual memory space
2292 when the final executable is run, so we need to create them before
2293 addresses are assigned to the output sections. We work out the
2294 actual contents and size of these sections later. */
2297 elf_link_create_dynamic_sections (abfd
, info
)
2299 struct bfd_link_info
*info
;
2302 register asection
*s
;
2303 struct elf_link_hash_entry
*h
;
2304 struct bfd_link_hash_entry
*bh
;
2305 struct elf_backend_data
*bed
;
2307 if (! is_elf_hash_table (info
))
2310 if (elf_hash_table (info
)->dynamic_sections_created
)
2313 /* Make sure that all dynamic sections use the same input BFD. */
2314 if (elf_hash_table (info
)->dynobj
== NULL
)
2315 elf_hash_table (info
)->dynobj
= abfd
;
2317 abfd
= elf_hash_table (info
)->dynobj
;
2319 /* Note that we set the SEC_IN_MEMORY flag for all of these
2321 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
2322 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
2324 /* A dynamically linked executable has a .interp section, but a
2325 shared library does not. */
2328 s
= bfd_make_section (abfd
, ".interp");
2330 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2334 if (! info
->traditional_format
2335 && info
->hash
->creator
->flavour
== bfd_target_elf_flavour
)
2337 s
= bfd_make_section (abfd
, ".eh_frame_hdr");
2339 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2340 || ! bfd_set_section_alignment (abfd
, s
, 2))
2342 elf_hash_table (info
)->eh_info
.hdr_sec
= s
;
2345 /* Create sections to hold version informations. These are removed
2346 if they are not needed. */
2347 s
= bfd_make_section (abfd
, ".gnu.version_d");
2349 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2350 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2353 s
= bfd_make_section (abfd
, ".gnu.version");
2355 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2356 || ! bfd_set_section_alignment (abfd
, s
, 1))
2359 s
= bfd_make_section (abfd
, ".gnu.version_r");
2361 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2362 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2365 s
= bfd_make_section (abfd
, ".dynsym");
2367 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2368 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2371 s
= bfd_make_section (abfd
, ".dynstr");
2373 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
2376 /* Create a strtab to hold the dynamic symbol names. */
2377 if (elf_hash_table (info
)->dynstr
== NULL
)
2379 elf_hash_table (info
)->dynstr
= _bfd_elf_strtab_init ();
2380 if (elf_hash_table (info
)->dynstr
== NULL
)
2384 s
= bfd_make_section (abfd
, ".dynamic");
2386 || ! bfd_set_section_flags (abfd
, s
, flags
)
2387 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2390 /* The special symbol _DYNAMIC is always set to the start of the
2391 .dynamic section. This call occurs before we have processed the
2392 symbols for any dynamic object, so we don't have to worry about
2393 overriding a dynamic definition. We could set _DYNAMIC in a
2394 linker script, but we only want to define it if we are, in fact,
2395 creating a .dynamic section. We don't want to define it if there
2396 is no .dynamic section, since on some ELF platforms the start up
2397 code examines it to decide how to initialize the process. */
2399 if (! (_bfd_generic_link_add_one_symbol
2400 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, (bfd_vma
) 0,
2401 (const char *) 0, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
2403 h
= (struct elf_link_hash_entry
*) bh
;
2404 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2405 h
->type
= STT_OBJECT
;
2408 && ! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2411 bed
= get_elf_backend_data (abfd
);
2413 s
= bfd_make_section (abfd
, ".hash");
2415 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
2416 || ! bfd_set_section_alignment (abfd
, s
, LOG_FILE_ALIGN
))
2418 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
2420 /* Let the backend create the rest of the sections. This lets the
2421 backend set the right flags. The backend will normally create
2422 the .got and .plt sections. */
2423 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
2426 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
2431 /* Add an entry to the .dynamic table. */
2434 elf_add_dynamic_entry (info
, tag
, val
)
2435 struct bfd_link_info
*info
;
2439 Elf_Internal_Dyn dyn
;
2442 bfd_size_type newsize
;
2443 bfd_byte
*newcontents
;
2445 if (! is_elf_hash_table (info
))
2448 dynobj
= elf_hash_table (info
)->dynobj
;
2450 s
= bfd_get_section_by_name (dynobj
, ".dynamic");
2451 BFD_ASSERT (s
!= NULL
);
2453 newsize
= s
->_raw_size
+ sizeof (Elf_External_Dyn
);
2454 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
2455 if (newcontents
== NULL
)
2459 dyn
.d_un
.d_val
= val
;
2460 elf_swap_dyn_out (dynobj
, &dyn
,
2461 (Elf_External_Dyn
*) (newcontents
+ s
->_raw_size
));
2463 s
->_raw_size
= newsize
;
2464 s
->contents
= newcontents
;
2469 /* Read and swap the relocs from the section indicated by SHDR. This
2470 may be either a REL or a RELA section. The relocations are
2471 translated into RELA relocations and stored in INTERNAL_RELOCS,
2472 which should have already been allocated to contain enough space.
2473 The EXTERNAL_RELOCS are a buffer where the external form of the
2474 relocations should be stored.
2476 Returns FALSE if something goes wrong. */
2479 elf_link_read_relocs_from_section (abfd
, shdr
, external_relocs
,
2482 Elf_Internal_Shdr
*shdr
;
2483 PTR external_relocs
;
2484 Elf_Internal_Rela
*internal_relocs
;
2486 struct elf_backend_data
*bed
;
2487 void (*swap_in
) PARAMS ((bfd
*, const bfd_byte
*, Elf_Internal_Rela
*));
2488 const bfd_byte
*erela
;
2489 const bfd_byte
*erelaend
;
2490 Elf_Internal_Rela
*irela
;
2492 /* If there aren't any relocations, that's OK. */
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2504 bed
= get_elf_backend_data (abfd
);
2506 /* Convert the external relocations to the internal format. */
2507 if (shdr
->sh_entsize
== sizeof (Elf_External_Rel
))
2508 swap_in
= bed
->s
->swap_reloc_in
;
2509 else if (shdr
->sh_entsize
== sizeof (Elf_External_Rela
))
2510 swap_in
= bed
->s
->swap_reloca_in
;
2514 erela
= external_relocs
;
2515 erelaend
= erela
+ NUM_SHDR_ENTRIES (shdr
) * shdr
->sh_entsize
;
2516 irela
= internal_relocs
;
2517 while (erela
< erelaend
)
2519 (*swap_in
) (abfd
, erela
, irela
);
2520 irela
+= bed
->s
->int_rels_per_ext_rel
;
2521 erela
+= shdr
->sh_entsize
;
2527 /* Read and swap the relocs for a section O. They may have been
2528 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2529 not NULL, they are used as buffers to read into. They are known to
2530 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2531 the return value is allocated using either malloc or bfd_alloc,
2532 according to the KEEP_MEMORY argument. If O has two relocation
2533 sections (both REL and RELA relocations), then the REL_HDR
2534 relocations will appear first in INTERNAL_RELOCS, followed by the
2535 REL_HDR2 relocations. */
2538 NAME(_bfd_elf
,link_read_relocs
) (abfd
, o
, external_relocs
, internal_relocs
,
2542 PTR external_relocs
;
2543 Elf_Internal_Rela
*internal_relocs
;
2544 bfd_boolean keep_memory
;
2546 Elf_Internal_Shdr
*rel_hdr
;
2548 Elf_Internal_Rela
*alloc2
= NULL
;
2549 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2551 if (elf_section_data (o
)->relocs
!= NULL
)
2552 return elf_section_data (o
)->relocs
;
2554 if (o
->reloc_count
== 0)
2557 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2559 if (internal_relocs
== NULL
)
2563 size
= o
->reloc_count
;
2564 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2566 internal_relocs
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2568 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2569 if (internal_relocs
== NULL
)
2573 if (external_relocs
== NULL
)
2575 bfd_size_type size
= rel_hdr
->sh_size
;
2577 if (elf_section_data (o
)->rel_hdr2
)
2578 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2579 alloc1
= (PTR
) bfd_malloc (size
);
2582 external_relocs
= alloc1
;
2585 if (!elf_link_read_relocs_from_section (abfd
, rel_hdr
,
2589 if (!elf_link_read_relocs_from_section
2591 elf_section_data (o
)->rel_hdr2
,
2592 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2593 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2594 * bed
->s
->int_rels_per_ext_rel
)))
2597 /* Cache the results for next time, if we can. */
2599 elf_section_data (o
)->relocs
= internal_relocs
;
2604 /* Don't free alloc2, since if it was allocated we are passing it
2605 back (under the name of internal_relocs). */
2607 return internal_relocs
;
2617 /* Record an assignment to a symbol made by a linker script. We need
2618 this in case some dynamic object refers to this symbol. */
2621 NAME(bfd_elf
,record_link_assignment
) (output_bfd
, info
, name
, provide
)
2622 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2623 struct bfd_link_info
*info
;
2625 bfd_boolean provide
;
2627 struct elf_link_hash_entry
*h
;
2629 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2632 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, TRUE
, FALSE
);
2636 if (h
->root
.type
== bfd_link_hash_new
)
2637 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
2639 /* If this symbol is being provided by the linker script, and it is
2640 currently defined by a dynamic object, but not by a regular
2641 object, then mark it as undefined so that the generic linker will
2642 force the correct value. */
2644 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2645 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2646 h
->root
.type
= bfd_link_hash_undefined
;
2648 /* If this symbol is not being provided by the linker script, and it is
2649 currently defined by a dynamic object, but not by a regular object,
2650 then clear out any version information because the symbol will not be
2651 associated with the dynamic object any more. */
2653 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2654 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2655 h
->verinfo
.verdef
= NULL
;
2657 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2659 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
2660 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
2662 && h
->dynindx
== -1)
2664 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
2667 /* If this is a weak defined symbol, and we know a corresponding
2668 real symbol from the same dynamic object, make sure the real
2669 symbol is also made into a dynamic symbol. */
2670 if (h
->weakdef
!= NULL
2671 && h
->weakdef
->dynindx
== -1)
2673 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
2681 /* This structure is used to pass information to
2682 elf_link_assign_sym_version. */
2684 struct elf_assign_sym_version_info
2688 /* General link information. */
2689 struct bfd_link_info
*info
;
2691 struct bfd_elf_version_tree
*verdefs
;
2692 /* Whether we had a failure. */
2696 /* This structure is used to pass information to
2697 elf_link_find_version_dependencies. */
2699 struct elf_find_verdep_info
2703 /* General link information. */
2704 struct bfd_link_info
*info
;
2705 /* The number of dependencies. */
2707 /* Whether we had a failure. */
2711 /* Array used to determine the number of hash table buckets to use
2712 based on the number of symbols there are. If there are fewer than
2713 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2714 fewer than 37 we use 17 buckets, and so forth. We never use more
2715 than 32771 buckets. */
2717 static const size_t elf_buckets
[] =
2719 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2723 /* Compute bucket count for hashing table. We do not use a static set
2724 of possible tables sizes anymore. Instead we determine for all
2725 possible reasonable sizes of the table the outcome (i.e., the
2726 number of collisions etc) and choose the best solution. The
2727 weighting functions are not too simple to allow the table to grow
2728 without bounds. Instead one of the weighting factors is the size.
2729 Therefore the result is always a good payoff between few collisions
2730 (= short chain lengths) and table size. */
2732 compute_bucket_count (info
)
2733 struct bfd_link_info
*info
;
2735 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
2736 size_t best_size
= 0;
2737 unsigned long int *hashcodes
;
2738 unsigned long int *hashcodesp
;
2739 unsigned long int i
;
2742 /* Compute the hash values for all exported symbols. At the same
2743 time store the values in an array so that we could use them for
2746 amt
*= sizeof (unsigned long int);
2747 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
2748 if (hashcodes
== NULL
)
2750 hashcodesp
= hashcodes
;
2752 /* Put all hash values in HASHCODES. */
2753 elf_link_hash_traverse (elf_hash_table (info
),
2754 elf_collect_hash_codes
, &hashcodesp
);
2756 /* We have a problem here. The following code to optimize the table
2757 size requires an integer type with more the 32 bits. If
2758 BFD_HOST_U_64_BIT is set we know about such a type. */
2759 #ifdef BFD_HOST_U_64_BIT
2762 unsigned long int nsyms
= hashcodesp
- hashcodes
;
2765 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
2766 unsigned long int *counts
;
2768 /* Possible optimization parameters: if we have NSYMS symbols we say
2769 that the hashing table must at least have NSYMS/4 and at most
2771 minsize
= nsyms
/ 4;
2774 best_size
= maxsize
= nsyms
* 2;
2776 /* Create array where we count the collisions in. We must use bfd_malloc
2777 since the size could be large. */
2779 amt
*= sizeof (unsigned long int);
2780 counts
= (unsigned long int *) bfd_malloc (amt
);
2787 /* Compute the "optimal" size for the hash table. The criteria is a
2788 minimal chain length. The minor criteria is (of course) the size
2790 for (i
= minsize
; i
< maxsize
; ++i
)
2792 /* Walk through the array of hashcodes and count the collisions. */
2793 BFD_HOST_U_64_BIT max
;
2794 unsigned long int j
;
2795 unsigned long int fact
;
2797 memset (counts
, '\0', i
* sizeof (unsigned long int));
2799 /* Determine how often each hash bucket is used. */
2800 for (j
= 0; j
< nsyms
; ++j
)
2801 ++counts
[hashcodes
[j
] % i
];
2803 /* For the weight function we need some information about the
2804 pagesize on the target. This is information need not be 100%
2805 accurate. Since this information is not available (so far) we
2806 define it here to a reasonable default value. If it is crucial
2807 to have a better value some day simply define this value. */
2808 # ifndef BFD_TARGET_PAGESIZE
2809 # define BFD_TARGET_PAGESIZE (4096)
2812 /* We in any case need 2 + NSYMS entries for the size values and
2814 max
= (2 + nsyms
) * (ARCH_SIZE
/ 8);
2817 /* Variant 1: optimize for short chains. We add the squares
2818 of all the chain lengths (which favous many small chain
2819 over a few long chains). */
2820 for (j
= 0; j
< i
; ++j
)
2821 max
+= counts
[j
] * counts
[j
];
2823 /* This adds penalties for the overall size of the table. */
2824 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2827 /* Variant 2: Optimize a lot more for small table. Here we
2828 also add squares of the size but we also add penalties for
2829 empty slots (the +1 term). */
2830 for (j
= 0; j
< i
; ++j
)
2831 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
2833 /* The overall size of the table is considered, but not as
2834 strong as in variant 1, where it is squared. */
2835 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (ARCH_SIZE
/ 8)) + 1;
2839 /* Compare with current best results. */
2840 if (max
< best_chlen
)
2850 #endif /* defined (BFD_HOST_U_64_BIT) */
2852 /* This is the fallback solution if no 64bit type is available or if we
2853 are not supposed to spend much time on optimizations. We select the
2854 bucket count using a fixed set of numbers. */
2855 for (i
= 0; elf_buckets
[i
] != 0; i
++)
2857 best_size
= elf_buckets
[i
];
2858 if (dynsymcount
< elf_buckets
[i
+ 1])
2863 /* Free the arrays we needed. */
2869 /* Set up the sizes and contents of the ELF dynamic sections. This is
2870 called by the ELF linker emulation before_allocation routine. We
2871 must set the sizes of the sections before the linker sets the
2872 addresses of the various sections. */
2875 NAME(bfd_elf
,size_dynamic_sections
) (output_bfd
, soname
, rpath
,
2877 auxiliary_filters
, info
, sinterpptr
,
2882 const char *filter_shlib
;
2883 const char * const *auxiliary_filters
;
2884 struct bfd_link_info
*info
;
2885 asection
**sinterpptr
;
2886 struct bfd_elf_version_tree
*verdefs
;
2888 bfd_size_type soname_indx
;
2890 struct elf_backend_data
*bed
;
2891 struct elf_assign_sym_version_info asvinfo
;
2895 soname_indx
= (bfd_size_type
) -1;
2897 if (info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
)
2900 if (! is_elf_hash_table (info
))
2903 /* Any syms created from now on start with -1 in
2904 got.refcount/offset and plt.refcount/offset. */
2905 elf_hash_table (info
)->init_refcount
= -1;
2907 /* The backend may have to create some sections regardless of whether
2908 we're dynamic or not. */
2909 bed
= get_elf_backend_data (output_bfd
);
2910 if (bed
->elf_backend_always_size_sections
2911 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
2914 dynobj
= elf_hash_table (info
)->dynobj
;
2916 /* If there were no dynamic objects in the link, there is nothing to
2921 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
2924 if (elf_hash_table (info
)->dynamic_sections_created
)
2926 struct elf_info_failed eif
;
2927 struct elf_link_hash_entry
*h
;
2929 struct bfd_elf_version_tree
*t
;
2930 struct bfd_elf_version_expr
*d
;
2931 bfd_boolean all_defined
;
2933 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
2934 BFD_ASSERT (*sinterpptr
!= NULL
|| info
->shared
);
2938 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
2940 if (soname_indx
== (bfd_size_type
) -1
2941 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SONAME
,
2948 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMBOLIC
,
2951 info
->flags
|= DF_SYMBOLIC
;
2958 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
2960 if (info
->new_dtags
)
2961 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
2962 if (indx
== (bfd_size_type
) -1
2963 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RPATH
, indx
)
2965 && ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_RUNPATH
,
2970 if (filter_shlib
!= NULL
)
2974 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
2975 filter_shlib
, TRUE
);
2976 if (indx
== (bfd_size_type
) -1
2977 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FILTER
, indx
))
2981 if (auxiliary_filters
!= NULL
)
2983 const char * const *p
;
2985 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
2989 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
2991 if (indx
== (bfd_size_type
) -1
2992 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_AUXILIARY
,
2999 eif
.verdefs
= verdefs
;
3002 /* If we are supposed to export all symbols into the dynamic symbol
3003 table (this is not the normal case), then do so. */
3004 if (info
->export_dynamic
)
3006 elf_link_hash_traverse (elf_hash_table (info
), elf_export_symbol
,
3012 /* Make all global versions with definiton. */
3013 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3014 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3015 if (!d
->symver
&& strchr (d
->pattern
, '*') == NULL
)
3017 const char *verstr
, *name
;
3018 size_t namelen
, verlen
, newlen
;
3020 struct elf_link_hash_entry
*newh
;
3023 namelen
= strlen (name
);
3025 verlen
= strlen (verstr
);
3026 newlen
= namelen
+ verlen
+ 3;
3028 newname
= (char *) bfd_malloc ((bfd_size_type
) newlen
);
3029 if (newname
== NULL
)
3031 memcpy (newname
, name
, namelen
);
3033 /* Check the hidden versioned definition. */
3034 p
= newname
+ namelen
;
3036 memcpy (p
, verstr
, verlen
+ 1);
3037 newh
= elf_link_hash_lookup (elf_hash_table (info
),
3038 newname
, FALSE
, FALSE
,
3041 || (newh
->root
.type
!= bfd_link_hash_defined
3042 && newh
->root
.type
!= bfd_link_hash_defweak
))
3044 /* Check the default versioned definition. */
3046 memcpy (p
, verstr
, verlen
+ 1);
3047 newh
= elf_link_hash_lookup (elf_hash_table (info
),
3048 newname
, FALSE
, FALSE
,
3053 /* Mark this version if there is a definition and it is
3054 not defined in a shared object. */
3056 && ((newh
->elf_link_hash_flags
3057 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)
3058 && (newh
->root
.type
== bfd_link_hash_defined
3059 || newh
->root
.type
== bfd_link_hash_defweak
))
3063 /* Attach all the symbols to their version information. */
3064 asvinfo
.output_bfd
= output_bfd
;
3065 asvinfo
.info
= info
;
3066 asvinfo
.verdefs
= verdefs
;
3067 asvinfo
.failed
= FALSE
;
3069 elf_link_hash_traverse (elf_hash_table (info
),
3070 elf_link_assign_sym_version
,
3075 if (!info
->allow_undefined_version
)
3077 /* Check if all global versions have a definiton. */
3079 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3080 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
3081 if (!d
->symver
&& !d
->script
3082 && strchr (d
->pattern
, '*') == NULL
)
3084 (*_bfd_error_handler
)
3085 (_("%s: undefined version: %s"),
3086 d
->pattern
, t
->name
);
3087 all_defined
= FALSE
;
3092 bfd_set_error (bfd_error_bad_value
);
3097 /* Find all symbols which were defined in a dynamic object and make
3098 the backend pick a reasonable value for them. */
3099 elf_link_hash_traverse (elf_hash_table (info
),
3100 elf_adjust_dynamic_symbol
,
3105 /* Add some entries to the .dynamic section. We fill in some of the
3106 values later, in elf_bfd_final_link, but we must add the entries
3107 now so that we know the final size of the .dynamic section. */
3109 /* If there are initialization and/or finalization functions to
3110 call then add the corresponding DT_INIT/DT_FINI entries. */
3111 h
= (info
->init_function
3112 ? elf_link_hash_lookup (elf_hash_table (info
),
3113 info
->init_function
, FALSE
,
3117 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3118 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3120 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT
, (bfd_vma
) 0))
3123 h
= (info
->fini_function
3124 ? elf_link_hash_lookup (elf_hash_table (info
),
3125 info
->fini_function
, FALSE
,
3129 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
3130 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
3132 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI
, (bfd_vma
) 0))
3136 if (bfd_get_section_by_name (output_bfd
, ".preinit_array") != NULL
)
3138 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3144 for (sub
= info
->input_bfds
; sub
!= NULL
;
3145 sub
= sub
->link_next
)
3146 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
3147 if (elf_section_data (o
)->this_hdr
.sh_type
3148 == SHT_PREINIT_ARRAY
)
3150 (*_bfd_error_handler
)
3151 (_("%s: .preinit_array section is not allowed in DSO"),
3152 bfd_archive_filename (sub
));
3156 bfd_set_error (bfd_error_nonrepresentable_section
);
3160 if (!elf_add_dynamic_entry (info
, (bfd_vma
) DT_PREINIT_ARRAY
,
3162 || !elf_add_dynamic_entry (info
, (bfd_vma
) DT_PREINIT_ARRAYSZ
,
3166 if (bfd_get_section_by_name (output_bfd
, ".init_array") != NULL
)
3168 if (!elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT_ARRAY
,
3170 || !elf_add_dynamic_entry (info
, (bfd_vma
) DT_INIT_ARRAYSZ
,
3174 if (bfd_get_section_by_name (output_bfd
, ".fini_array") != NULL
)
3176 if (!elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI_ARRAY
,
3178 || !elf_add_dynamic_entry (info
, (bfd_vma
) DT_FINI_ARRAYSZ
,
3183 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
3184 /* If .dynstr is excluded from the link, we don't want any of
3185 these tags. Strictly, we should be checking each section
3186 individually; This quick check covers for the case where
3187 someone does a /DISCARD/ : { *(*) }. */
3188 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
3190 bfd_size_type strsize
;
3192 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3193 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_HASH
, (bfd_vma
) 0)
3194 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRTAB
, (bfd_vma
) 0)
3195 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMTAB
, (bfd_vma
) 0)
3196 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_STRSZ
, strsize
)
3197 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_SYMENT
,
3198 (bfd_vma
) sizeof (Elf_External_Sym
)))
3203 /* The backend must work out the sizes of all the other dynamic
3205 if (bed
->elf_backend_size_dynamic_sections
3206 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
3209 if (elf_hash_table (info
)->dynamic_sections_created
)
3211 bfd_size_type dynsymcount
;
3213 size_t bucketcount
= 0;
3214 size_t hash_entry_size
;
3215 unsigned int dtagcount
;
3217 /* Set up the version definition section. */
3218 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3219 BFD_ASSERT (s
!= NULL
);
3221 /* We may have created additional version definitions if we are
3222 just linking a regular application. */
3223 verdefs
= asvinfo
.verdefs
;
3225 /* Skip anonymous version tag. */
3226 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
3227 verdefs
= verdefs
->next
;
3229 if (verdefs
== NULL
)
3230 _bfd_strip_section_from_output (info
, s
);
3235 struct bfd_elf_version_tree
*t
;
3237 Elf_Internal_Verdef def
;
3238 Elf_Internal_Verdaux defaux
;
3243 /* Make space for the base version. */
3244 size
+= sizeof (Elf_External_Verdef
);
3245 size
+= sizeof (Elf_External_Verdaux
);
3248 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3250 struct bfd_elf_version_deps
*n
;
3252 size
+= sizeof (Elf_External_Verdef
);
3253 size
+= sizeof (Elf_External_Verdaux
);
3256 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3257 size
+= sizeof (Elf_External_Verdaux
);
3260 s
->_raw_size
= size
;
3261 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3262 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3265 /* Fill in the version definition section. */
3269 def
.vd_version
= VER_DEF_CURRENT
;
3270 def
.vd_flags
= VER_FLG_BASE
;
3273 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3274 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3275 + sizeof (Elf_External_Verdaux
));
3277 if (soname_indx
!= (bfd_size_type
) -1)
3279 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3281 def
.vd_hash
= bfd_elf_hash (soname
);
3282 defaux
.vda_name
= soname_indx
;
3289 name
= basename (output_bfd
->filename
);
3290 def
.vd_hash
= bfd_elf_hash (name
);
3291 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3293 if (indx
== (bfd_size_type
) -1)
3295 defaux
.vda_name
= indx
;
3297 defaux
.vda_next
= 0;
3299 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3300 (Elf_External_Verdef
*) p
);
3301 p
+= sizeof (Elf_External_Verdef
);
3302 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3303 (Elf_External_Verdaux
*) p
);
3304 p
+= sizeof (Elf_External_Verdaux
);
3306 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3309 struct bfd_elf_version_deps
*n
;
3310 struct elf_link_hash_entry
*h
;
3311 struct bfd_link_hash_entry
*bh
;
3314 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3317 /* Add a symbol representing this version. */
3319 if (! (_bfd_generic_link_add_one_symbol
3320 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
3321 (bfd_vma
) 0, (const char *) NULL
, FALSE
,
3322 get_elf_backend_data (dynobj
)->collect
, &bh
)))
3324 h
= (struct elf_link_hash_entry
*) bh
;
3325 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
3326 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3327 h
->type
= STT_OBJECT
;
3328 h
->verinfo
.vertree
= t
;
3330 if (! _bfd_elf_link_record_dynamic_symbol (info
, h
))
3333 def
.vd_version
= VER_DEF_CURRENT
;
3335 if (t
->globals
== NULL
&& t
->locals
== NULL
&& ! t
->used
)
3336 def
.vd_flags
|= VER_FLG_WEAK
;
3337 def
.vd_ndx
= t
->vernum
+ 1;
3338 def
.vd_cnt
= cdeps
+ 1;
3339 def
.vd_hash
= bfd_elf_hash (t
->name
);
3340 def
.vd_aux
= sizeof (Elf_External_Verdef
);
3341 if (t
->next
!= NULL
)
3342 def
.vd_next
= (sizeof (Elf_External_Verdef
)
3343 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
3347 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
3348 (Elf_External_Verdef
*) p
);
3349 p
+= sizeof (Elf_External_Verdef
);
3351 defaux
.vda_name
= h
->dynstr_index
;
3352 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3354 if (t
->deps
== NULL
)
3355 defaux
.vda_next
= 0;
3357 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3358 t
->name_indx
= defaux
.vda_name
;
3360 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3361 (Elf_External_Verdaux
*) p
);
3362 p
+= sizeof (Elf_External_Verdaux
);
3364 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
3366 if (n
->version_needed
== NULL
)
3368 /* This can happen if there was an error in the
3370 defaux
.vda_name
= 0;
3374 defaux
.vda_name
= n
->version_needed
->name_indx
;
3375 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
3378 if (n
->next
== NULL
)
3379 defaux
.vda_next
= 0;
3381 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
3383 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
3384 (Elf_External_Verdaux
*) p
);
3385 p
+= sizeof (Elf_External_Verdaux
);
3389 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEF
, (bfd_vma
) 0)
3390 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERDEFNUM
,
3394 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
3397 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
3399 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS
, info
->flags
))
3406 info
->flags_1
&= ~ (DF_1_INITFIRST
3409 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_FLAGS_1
,
3414 /* Work out the size of the version reference section. */
3416 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3417 BFD_ASSERT (s
!= NULL
);
3419 struct elf_find_verdep_info sinfo
;
3421 sinfo
.output_bfd
= output_bfd
;
3423 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
3424 if (sinfo
.vers
== 0)
3426 sinfo
.failed
= FALSE
;
3428 elf_link_hash_traverse (elf_hash_table (info
),
3429 elf_link_find_version_dependencies
,
3432 if (elf_tdata (output_bfd
)->verref
== NULL
)
3433 _bfd_strip_section_from_output (info
, s
);
3436 Elf_Internal_Verneed
*t
;
3441 /* Build the version definition section. */
3444 for (t
= elf_tdata (output_bfd
)->verref
;
3448 Elf_Internal_Vernaux
*a
;
3450 size
+= sizeof (Elf_External_Verneed
);
3452 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3453 size
+= sizeof (Elf_External_Vernaux
);
3456 s
->_raw_size
= size
;
3457 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3458 if (s
->contents
== NULL
)
3462 for (t
= elf_tdata (output_bfd
)->verref
;
3467 Elf_Internal_Vernaux
*a
;
3471 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3474 t
->vn_version
= VER_NEED_CURRENT
;
3476 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3477 elf_dt_name (t
->vn_bfd
) != NULL
3478 ? elf_dt_name (t
->vn_bfd
)
3479 : basename (t
->vn_bfd
->filename
),
3481 if (indx
== (bfd_size_type
) -1)
3484 t
->vn_aux
= sizeof (Elf_External_Verneed
);
3485 if (t
->vn_nextref
== NULL
)
3488 t
->vn_next
= (sizeof (Elf_External_Verneed
)
3489 + caux
* sizeof (Elf_External_Vernaux
));
3491 _bfd_elf_swap_verneed_out (output_bfd
, t
,
3492 (Elf_External_Verneed
*) p
);
3493 p
+= sizeof (Elf_External_Verneed
);
3495 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3497 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
3498 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
3499 a
->vna_nodename
, FALSE
);
3500 if (indx
== (bfd_size_type
) -1)
3503 if (a
->vna_nextptr
== NULL
)
3506 a
->vna_next
= sizeof (Elf_External_Vernaux
);
3508 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
3509 (Elf_External_Vernaux
*) p
);
3510 p
+= sizeof (Elf_External_Vernaux
);
3514 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEED
,
3516 || ! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERNEEDNUM
,
3520 elf_tdata (output_bfd
)->cverrefs
= crefs
;
3524 /* Assign dynsym indicies. In a shared library we generate a
3525 section symbol for each output section, which come first.
3526 Next come all of the back-end allocated local dynamic syms,
3527 followed by the rest of the global symbols. */
3529 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3531 /* Work out the size of the symbol version section. */
3532 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
3533 BFD_ASSERT (s
!= NULL
);
3534 if (dynsymcount
== 0
3535 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
3537 _bfd_strip_section_from_output (info
, s
);
3538 /* The DYNSYMCOUNT might have changed if we were going to
3539 output a dynamic symbol table entry for S. */
3540 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
3544 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
3545 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3546 if (s
->contents
== NULL
)
3549 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_VERSYM
, (bfd_vma
) 0))
3553 /* Set the size of the .dynsym and .hash sections. We counted
3554 the number of dynamic symbols in elf_link_add_object_symbols.
3555 We will build the contents of .dynsym and .hash when we build
3556 the final symbol table, because until then we do not know the
3557 correct value to give the symbols. We built the .dynstr
3558 section as we went along in elf_link_add_object_symbols. */
3559 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
3560 BFD_ASSERT (s
!= NULL
);
3561 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Sym
);
3562 s
->contents
= (bfd_byte
*) bfd_alloc (output_bfd
, s
->_raw_size
);
3563 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
3566 if (dynsymcount
!= 0)
3568 Elf_Internal_Sym isym
;
3570 /* The first entry in .dynsym is a dummy symbol. */
3577 elf_swap_symbol_out (output_bfd
, &isym
, (PTR
) s
->contents
, (PTR
) 0);
3580 /* Compute the size of the hashing table. As a side effect this
3581 computes the hash values for all the names we export. */
3582 bucketcount
= compute_bucket_count (info
);
3584 s
= bfd_get_section_by_name (dynobj
, ".hash");
3585 BFD_ASSERT (s
!= NULL
);
3586 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
3587 s
->_raw_size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
3588 s
->contents
= (bfd_byte
*) bfd_zalloc (output_bfd
, s
->_raw_size
);
3589 if (s
->contents
== NULL
)
3592 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) bucketcount
,
3594 bfd_put (8 * hash_entry_size
, output_bfd
, (bfd_vma
) dynsymcount
,
3595 s
->contents
+ hash_entry_size
);
3597 elf_hash_table (info
)->bucketcount
= bucketcount
;
3599 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
3600 BFD_ASSERT (s
!= NULL
);
3602 elf_finalize_dynstr (output_bfd
, info
);
3604 s
->_raw_size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
3606 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
3607 if (! elf_add_dynamic_entry (info
, (bfd_vma
) DT_NULL
, (bfd_vma
) 0))
3614 /* This function is used to adjust offsets into .dynstr for
3615 dynamic symbols. This is called via elf_link_hash_traverse. */
3617 static bfd_boolean elf_adjust_dynstr_offsets
3618 PARAMS ((struct elf_link_hash_entry
*, PTR
));
3621 elf_adjust_dynstr_offsets (h
, data
)
3622 struct elf_link_hash_entry
*h
;
3625 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3627 if (h
->root
.type
== bfd_link_hash_warning
)
3628 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3630 if (h
->dynindx
!= -1)
3631 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3635 /* Assign string offsets in .dynstr, update all structures referencing
3639 elf_finalize_dynstr (output_bfd
, info
)
3641 struct bfd_link_info
*info
;
3643 struct elf_link_local_dynamic_entry
*entry
;
3644 struct elf_strtab_hash
*dynstr
= elf_hash_table (info
)->dynstr
;
3645 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
3648 Elf_External_Dyn
*dyncon
, *dynconend
;
3650 _bfd_elf_strtab_finalize (dynstr
);
3651 size
= _bfd_elf_strtab_size (dynstr
);
3653 /* Update all .dynamic entries referencing .dynstr strings. */
3654 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3655 BFD_ASSERT (sdyn
!= NULL
);
3657 dyncon
= (Elf_External_Dyn
*) sdyn
->contents
;
3658 dynconend
= (Elf_External_Dyn
*) (sdyn
->contents
+
3660 for (; dyncon
< dynconend
; dyncon
++)
3662 Elf_Internal_Dyn dyn
;
3664 elf_swap_dyn_in (dynobj
, dyncon
, & dyn
);
3668 dyn
.d_un
.d_val
= size
;
3669 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3677 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3678 elf_swap_dyn_out (dynobj
, & dyn
, dyncon
);
3685 /* Now update local dynamic symbols. */
3686 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
3687 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3688 entry
->isym
.st_name
);
3690 /* And the rest of dynamic symbols. */
3691 elf_link_hash_traverse (elf_hash_table (info
),
3692 elf_adjust_dynstr_offsets
, dynstr
);
3694 /* Adjust version definitions. */
3695 if (elf_tdata (output_bfd
)->cverdefs
)
3700 Elf_Internal_Verdef def
;
3701 Elf_Internal_Verdaux defaux
;
3703 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3704 p
= (bfd_byte
*) s
->contents
;
3707 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3709 p
+= sizeof (Elf_External_Verdef
);
3710 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3712 _bfd_elf_swap_verdaux_in (output_bfd
,
3713 (Elf_External_Verdaux
*) p
, &defaux
);
3714 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3716 _bfd_elf_swap_verdaux_out (output_bfd
,
3717 &defaux
, (Elf_External_Verdaux
*) p
);
3718 p
+= sizeof (Elf_External_Verdaux
);
3721 while (def
.vd_next
);
3724 /* Adjust version references. */
3725 if (elf_tdata (output_bfd
)->verref
)
3730 Elf_Internal_Verneed need
;
3731 Elf_Internal_Vernaux needaux
;
3733 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3734 p
= (bfd_byte
*) s
->contents
;
3737 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3739 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3740 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3741 (Elf_External_Verneed
*) p
);
3742 p
+= sizeof (Elf_External_Verneed
);
3743 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3745 _bfd_elf_swap_vernaux_in (output_bfd
,
3746 (Elf_External_Vernaux
*) p
, &needaux
);
3747 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3749 _bfd_elf_swap_vernaux_out (output_bfd
,
3751 (Elf_External_Vernaux
*) p
);
3752 p
+= sizeof (Elf_External_Vernaux
);
3755 while (need
.vn_next
);
3761 /* Fix up the flags for a symbol. This handles various cases which
3762 can only be fixed after all the input files are seen. This is
3763 currently called by both adjust_dynamic_symbol and
3764 assign_sym_version, which is unnecessary but perhaps more robust in
3765 the face of future changes. */
3768 elf_fix_symbol_flags (h
, eif
)
3769 struct elf_link_hash_entry
*h
;
3770 struct elf_info_failed
*eif
;
3772 /* If this symbol was mentioned in a non-ELF file, try to set
3773 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3774 permit a non-ELF file to correctly refer to a symbol defined in
3775 an ELF dynamic object. */
3776 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
3778 while (h
->root
.type
== bfd_link_hash_indirect
)
3779 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3781 if (h
->root
.type
!= bfd_link_hash_defined
3782 && h
->root
.type
!= bfd_link_hash_defweak
)
3783 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3784 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3787 if (h
->root
.u
.def
.section
->owner
!= NULL
3788 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3789 == bfd_target_elf_flavour
))
3790 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
3791 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
3793 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3796 if (h
->dynindx
== -1
3797 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3798 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
3800 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3809 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3810 was first seen in a non-ELF file. Fortunately, if the symbol
3811 was first seen in an ELF file, we're probably OK unless the
3812 symbol was defined in a non-ELF file. Catch that case here.
3813 FIXME: We're still in trouble if the symbol was first seen in
3814 a dynamic object, and then later in a non-ELF regular object. */
3815 if ((h
->root
.type
== bfd_link_hash_defined
3816 || h
->root
.type
== bfd_link_hash_defweak
)
3817 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3818 && (h
->root
.u
.def
.section
->owner
!= NULL
3819 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
3820 != bfd_target_elf_flavour
)
3821 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
3822 && (h
->elf_link_hash_flags
3823 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
3824 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3827 /* If this is a final link, and the symbol was defined as a common
3828 symbol in a regular object file, and there was no definition in
3829 any dynamic object, then the linker will have allocated space for
3830 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3831 flag will not have been set. */
3832 if (h
->root
.type
== bfd_link_hash_defined
3833 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3834 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
3835 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3836 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3837 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3839 /* If -Bsymbolic was used (which means to bind references to global
3840 symbols to the definition within the shared object), and this
3841 symbol was defined in a regular object, then it actually doesn't
3842 need a PLT entry, and we can accomplish that by forcing it local.
3843 Likewise, if the symbol has hidden or internal visibility.
3844 FIXME: It might be that we also do not need a PLT for other
3845 non-hidden visibilities, but we would have to tell that to the
3846 backend specifically; we can't just clear PLT-related data here. */
3847 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
3848 && eif
->info
->shared
3849 && is_elf_hash_table (eif
->info
)
3850 && (eif
->info
->symbolic
3851 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3852 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
3853 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3855 struct elf_backend_data
*bed
;
3856 bfd_boolean force_local
;
3858 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3860 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
3861 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
3862 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
3865 /* If this is a weak defined symbol in a dynamic object, and we know
3866 the real definition in the dynamic object, copy interesting flags
3867 over to the real definition. */
3868 if (h
->weakdef
!= NULL
)
3870 struct elf_link_hash_entry
*weakdef
;
3872 weakdef
= h
->weakdef
;
3873 if (h
->root
.type
== bfd_link_hash_indirect
)
3874 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3876 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
3877 || h
->root
.type
== bfd_link_hash_defweak
);
3878 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
3879 || weakdef
->root
.type
== bfd_link_hash_defweak
);
3880 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
3882 /* If the real definition is defined by a regular object file,
3883 don't do anything special. See the longer description in
3884 elf_adjust_dynamic_symbol, below. */
3885 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
3889 struct elf_backend_data
*bed
;
3891 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
3892 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, weakdef
, h
);
3899 /* Make the backend pick a good value for a dynamic symbol. This is
3900 called via elf_link_hash_traverse, and also calls itself
3904 elf_adjust_dynamic_symbol (h
, data
)
3905 struct elf_link_hash_entry
*h
;
3908 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
3910 struct elf_backend_data
*bed
;
3912 if (h
->root
.type
== bfd_link_hash_warning
)
3914 h
->plt
.offset
= (bfd_vma
) -1;
3915 h
->got
.offset
= (bfd_vma
) -1;
3917 /* When warning symbols are created, they **replace** the "real"
3918 entry in the hash table, thus we never get to see the real
3919 symbol in a hash traversal. So look at it now. */
3920 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3923 /* Ignore indirect symbols. These are added by the versioning code. */
3924 if (h
->root
.type
== bfd_link_hash_indirect
)
3927 if (! is_elf_hash_table (eif
->info
))
3930 /* Fix the symbol flags. */
3931 if (! elf_fix_symbol_flags (h
, eif
))
3934 /* If this symbol does not require a PLT entry, and it is not
3935 defined by a dynamic object, or is not referenced by a regular
3936 object, ignore it. We do have to handle a weak defined symbol,
3937 even if no regular object refers to it, if we decided to add it
3938 to the dynamic symbol table. FIXME: Do we normally need to worry
3939 about symbols which are defined by one dynamic object and
3940 referenced by another one? */
3941 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
3942 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
3943 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
3944 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
3945 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
3947 h
->plt
.offset
= (bfd_vma
) -1;
3951 /* If we've already adjusted this symbol, don't do it again. This
3952 can happen via a recursive call. */
3953 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
3956 /* Don't look at this symbol again. Note that we must set this
3957 after checking the above conditions, because we may look at a
3958 symbol once, decide not to do anything, and then get called
3959 recursively later after REF_REGULAR is set below. */
3960 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
3962 /* If this is a weak definition, and we know a real definition, and
3963 the real symbol is not itself defined by a regular object file,
3964 then get a good value for the real definition. We handle the
3965 real symbol first, for the convenience of the backend routine.
3967 Note that there is a confusing case here. If the real definition
3968 is defined by a regular object file, we don't get the real symbol
3969 from the dynamic object, but we do get the weak symbol. If the
3970 processor backend uses a COPY reloc, then if some routine in the
3971 dynamic object changes the real symbol, we will not see that
3972 change in the corresponding weak symbol. This is the way other
3973 ELF linkers work as well, and seems to be a result of the shared
3976 I will clarify this issue. Most SVR4 shared libraries define the
3977 variable _timezone and define timezone as a weak synonym. The
3978 tzset call changes _timezone. If you write
3979 extern int timezone;
3981 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3982 you might expect that, since timezone is a synonym for _timezone,
3983 the same number will print both times. However, if the processor
3984 backend uses a COPY reloc, then actually timezone will be copied
3985 into your process image, and, since you define _timezone
3986 yourself, _timezone will not. Thus timezone and _timezone will
3987 wind up at different memory locations. The tzset call will set
3988 _timezone, leaving timezone unchanged. */
3990 if (h
->weakdef
!= NULL
)
3992 /* If we get to this point, we know there is an implicit
3993 reference by a regular object file via the weak symbol H.
3994 FIXME: Is this really true? What if the traversal finds
3995 H->WEAKDEF before it finds H? */
3996 h
->weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
3998 if (! elf_adjust_dynamic_symbol (h
->weakdef
, (PTR
) eif
))
4002 /* If a symbol has no type and no size and does not require a PLT
4003 entry, then we are probably about to do the wrong thing here: we
4004 are probably going to create a COPY reloc for an empty object.
4005 This case can arise when a shared object is built with assembly
4006 code, and the assembly code fails to set the symbol type. */
4008 && h
->type
== STT_NOTYPE
4009 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
4010 (*_bfd_error_handler
)
4011 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4012 h
->root
.root
.string
);
4014 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
4015 bed
= get_elf_backend_data (dynobj
);
4016 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
4025 /* This routine is used to export all defined symbols into the dynamic
4026 symbol table. It is called via elf_link_hash_traverse. */
4029 elf_export_symbol (h
, data
)
4030 struct elf_link_hash_entry
*h
;
4033 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
4035 /* Ignore indirect symbols. These are added by the versioning code. */
4036 if (h
->root
.type
== bfd_link_hash_indirect
)
4039 if (h
->root
.type
== bfd_link_hash_warning
)
4040 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4042 if (h
->dynindx
== -1
4043 && (h
->elf_link_hash_flags
4044 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
4046 struct bfd_elf_version_tree
*t
;
4047 struct bfd_elf_version_expr
*d
;
4049 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
4051 if (t
->globals
!= NULL
)
4053 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4055 if ((*d
->match
) (d
, h
->root
.root
.string
))
4060 if (t
->locals
!= NULL
)
4062 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4064 if ((*d
->match
) (d
, h
->root
.root
.string
))
4073 if (! _bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
4084 /* Look through the symbols which are defined in other shared
4085 libraries and referenced here. Update the list of version
4086 dependencies. This will be put into the .gnu.version_r section.
4087 This function is called via elf_link_hash_traverse. */
4090 elf_link_find_version_dependencies (h
, data
)
4091 struct elf_link_hash_entry
*h
;
4094 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
4095 Elf_Internal_Verneed
*t
;
4096 Elf_Internal_Vernaux
*a
;
4099 if (h
->root
.type
== bfd_link_hash_warning
)
4100 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4102 /* We only care about symbols defined in shared objects with version
4104 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
4105 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
4107 || h
->verinfo
.verdef
== NULL
)
4110 /* See if we already know about this version. */
4111 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
4113 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
4116 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4117 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
4123 /* This is a new version. Add it to tree we are building. */
4128 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4131 rinfo
->failed
= TRUE
;
4135 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
4136 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
4137 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
4141 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->output_bfd
, amt
);
4143 /* Note that we are copying a string pointer here, and testing it
4144 above. If bfd_elf_string_from_elf_section is ever changed to
4145 discard the string data when low in memory, this will have to be
4147 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
4149 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
4150 a
->vna_nextptr
= t
->vn_auxptr
;
4152 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
4155 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
4162 /* Figure out appropriate versions for all the symbols. We may not
4163 have the version number script until we have read all of the input
4164 files, so until that point we don't know which symbols should be
4165 local. This function is called via elf_link_hash_traverse. */
4168 elf_link_assign_sym_version (h
, data
)
4169 struct elf_link_hash_entry
*h
;
4172 struct elf_assign_sym_version_info
*sinfo
;
4173 struct bfd_link_info
*info
;
4174 struct elf_backend_data
*bed
;
4175 struct elf_info_failed eif
;
4179 sinfo
= (struct elf_assign_sym_version_info
*) data
;
4182 if (h
->root
.type
== bfd_link_hash_warning
)
4183 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4185 /* Fix the symbol flags. */
4188 if (! elf_fix_symbol_flags (h
, &eif
))
4191 sinfo
->failed
= TRUE
;
4195 /* We only need version numbers for symbols defined in regular
4197 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4200 bed
= get_elf_backend_data (sinfo
->output_bfd
);
4201 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4202 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
4204 struct bfd_elf_version_tree
*t
;
4209 /* There are two consecutive ELF_VER_CHR characters if this is
4210 not a hidden symbol. */
4212 if (*p
== ELF_VER_CHR
)
4218 /* If there is no version string, we can just return out. */
4222 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4226 /* Look for the version. If we find it, it is no longer weak. */
4227 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4229 if (strcmp (t
->name
, p
) == 0)
4233 struct bfd_elf_version_expr
*d
;
4235 len
= p
- h
->root
.root
.string
;
4236 alc
= bfd_malloc ((bfd_size_type
) len
);
4239 memcpy (alc
, h
->root
.root
.string
, len
- 1);
4240 alc
[len
- 1] = '\0';
4241 if (alc
[len
- 2] == ELF_VER_CHR
)
4242 alc
[len
- 2] = '\0';
4244 h
->verinfo
.vertree
= t
;
4248 if (t
->globals
!= NULL
)
4250 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4251 if ((*d
->match
) (d
, alc
))
4255 /* See if there is anything to force this symbol to
4257 if (d
== NULL
&& t
->locals
!= NULL
)
4259 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4261 if ((*d
->match
) (d
, alc
))
4263 if (h
->dynindx
!= -1
4265 && ! info
->export_dynamic
)
4267 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4280 /* If we are building an application, we need to create a
4281 version node for this version. */
4282 if (t
== NULL
&& ! info
->shared
)
4284 struct bfd_elf_version_tree
**pp
;
4287 /* If we aren't going to export this symbol, we don't need
4288 to worry about it. */
4289 if (h
->dynindx
== -1)
4293 t
= ((struct bfd_elf_version_tree
*)
4294 bfd_alloc (sinfo
->output_bfd
, amt
));
4297 sinfo
->failed
= TRUE
;
4306 t
->name_indx
= (unsigned int) -1;
4310 /* Don't count anonymous version tag. */
4311 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
4313 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
4315 t
->vernum
= version_index
;
4319 h
->verinfo
.vertree
= t
;
4323 /* We could not find the version for a symbol when
4324 generating a shared archive. Return an error. */
4325 (*_bfd_error_handler
)
4326 (_("%s: undefined versioned symbol name %s"),
4327 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
4328 bfd_set_error (bfd_error_bad_value
);
4329 sinfo
->failed
= TRUE
;
4334 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
4337 /* If we don't have a version for this symbol, see if we can find
4339 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
4341 struct bfd_elf_version_tree
*t
;
4342 struct bfd_elf_version_tree
*local_ver
;
4343 struct bfd_elf_version_expr
*d
;
4345 /* See if can find what version this symbol is in. If the
4346 symbol is supposed to be local, then don't actually register
4349 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
4351 if (t
->globals
!= NULL
)
4353 bfd_boolean matched
;
4356 for (d
= t
->globals
; d
!= NULL
; d
= d
->next
)
4358 if ((*d
->match
) (d
, h
->root
.root
.string
))
4364 /* There is a version without definition. Make
4365 the symbol the default definition for this
4367 h
->verinfo
.vertree
= t
;
4378 /* There is no undefined version for this symbol. Hide the
4380 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4383 if (t
->locals
!= NULL
)
4385 for (d
= t
->locals
; d
!= NULL
; d
= d
->next
)
4387 /* If the match is "*", keep looking for a more
4388 explicit, perhaps even global, match. */
4389 if (d
->pattern
[0] == '*' && d
->pattern
[1] == '\0')
4391 else if ((*d
->match
) (d
, h
->root
.root
.string
))
4403 if (local_ver
!= NULL
)
4405 h
->verinfo
.vertree
= local_ver
;
4406 if (h
->dynindx
!= -1
4408 && ! info
->export_dynamic
)
4410 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4418 /* Final phase of ELF linker. */
4420 /* A structure we use to avoid passing large numbers of arguments. */
4422 struct elf_final_link_info
4424 /* General link information. */
4425 struct bfd_link_info
*info
;
4428 /* Symbol string table. */
4429 struct bfd_strtab_hash
*symstrtab
;
4430 /* .dynsym section. */
4431 asection
*dynsym_sec
;
4432 /* .hash section. */
4434 /* symbol version section (.gnu.version). */
4435 asection
*symver_sec
;
4436 /* first SHF_TLS section (if any). */
4437 asection
*first_tls_sec
;
4438 /* Buffer large enough to hold contents of any section. */
4440 /* Buffer large enough to hold external relocs of any section. */
4441 PTR external_relocs
;
4442 /* Buffer large enough to hold internal relocs of any section. */
4443 Elf_Internal_Rela
*internal_relocs
;
4444 /* Buffer large enough to hold external local symbols of any input
4446 Elf_External_Sym
*external_syms
;
4447 /* And a buffer for symbol section indices. */
4448 Elf_External_Sym_Shndx
*locsym_shndx
;
4449 /* Buffer large enough to hold internal local symbols of any input
4451 Elf_Internal_Sym
*internal_syms
;
4452 /* Array large enough to hold a symbol index for each local symbol
4453 of any input BFD. */
4455 /* Array large enough to hold a section pointer for each local
4456 symbol of any input BFD. */
4457 asection
**sections
;
4458 /* Buffer to hold swapped out symbols. */
4459 Elf_External_Sym
*symbuf
;
4460 /* And one for symbol section indices. */
4461 Elf_External_Sym_Shndx
*symshndxbuf
;
4462 /* Number of swapped out symbols in buffer. */
4463 size_t symbuf_count
;
4464 /* Number of symbols which fit in symbuf. */
4466 /* And same for symshndxbuf. */
4467 size_t shndxbuf_size
;
4470 static bfd_boolean elf_link_output_sym
4471 PARAMS ((struct elf_final_link_info
*, const char *,
4472 Elf_Internal_Sym
*, asection
*));
4473 static bfd_boolean elf_link_flush_output_syms
4474 PARAMS ((struct elf_final_link_info
*));
4475 static bfd_boolean elf_link_output_extsym
4476 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4477 static bfd_boolean elf_link_sec_merge_syms
4478 PARAMS ((struct elf_link_hash_entry
*, PTR
));
4479 static bfd_boolean elf_link_check_versioned_symbol
4480 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
4481 static bfd_boolean elf_link_input_bfd
4482 PARAMS ((struct elf_final_link_info
*, bfd
*));
4483 static bfd_boolean elf_reloc_link_order
4484 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
4485 struct bfd_link_order
*));
4487 /* This struct is used to pass information to elf_link_output_extsym. */
4489 struct elf_outext_info
4492 bfd_boolean localsyms
;
4493 struct elf_final_link_info
*finfo
;
4496 /* Compute the size of, and allocate space for, REL_HDR which is the
4497 section header for a section containing relocations for O. */
4500 elf_link_size_reloc_section (abfd
, rel_hdr
, o
)
4502 Elf_Internal_Shdr
*rel_hdr
;
4505 bfd_size_type reloc_count
;
4506 bfd_size_type num_rel_hashes
;
4508 /* Figure out how many relocations there will be. */
4509 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
4510 reloc_count
= elf_section_data (o
)->rel_count
;
4512 reloc_count
= elf_section_data (o
)->rel_count2
;
4514 num_rel_hashes
= o
->reloc_count
;
4515 if (num_rel_hashes
< reloc_count
)
4516 num_rel_hashes
= reloc_count
;
4518 /* That allows us to calculate the size of the section. */
4519 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
4521 /* The contents field must last into write_object_contents, so we
4522 allocate it with bfd_alloc rather than malloc. Also since we
4523 cannot be sure that the contents will actually be filled in,
4524 we zero the allocated space. */
4525 rel_hdr
->contents
= (PTR
) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
4526 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
4529 /* We only allocate one set of hash entries, so we only do it the
4530 first time we are called. */
4531 if (elf_section_data (o
)->rel_hashes
== NULL
4534 struct elf_link_hash_entry
**p
;
4536 p
= ((struct elf_link_hash_entry
**)
4537 bfd_zmalloc (num_rel_hashes
4538 * sizeof (struct elf_link_hash_entry
*)));
4542 elf_section_data (o
)->rel_hashes
= p
;
4548 /* When performing a relocateable link, the input relocations are
4549 preserved. But, if they reference global symbols, the indices
4550 referenced must be updated. Update all the relocations in
4551 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4554 elf_link_adjust_relocs (abfd
, rel_hdr
, count
, rel_hash
)
4556 Elf_Internal_Shdr
*rel_hdr
;
4558 struct elf_link_hash_entry
**rel_hash
;
4561 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4563 void (*swap_in
) PARAMS ((bfd
*, const bfd_byte
*, Elf_Internal_Rela
*));
4564 void (*swap_out
) PARAMS ((bfd
*, const Elf_Internal_Rela
*, bfd_byte
*));
4566 if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
4568 swap_in
= bed
->s
->swap_reloc_in
;
4569 swap_out
= bed
->s
->swap_reloc_out
;
4571 else if (rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
))
4573 swap_in
= bed
->s
->swap_reloca_in
;
4574 swap_out
= bed
->s
->swap_reloca_out
;
4579 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
4582 erela
= rel_hdr
->contents
;
4583 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
4585 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
4588 if (*rel_hash
== NULL
)
4591 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
4593 (*swap_in
) (abfd
, erela
, irela
);
4594 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
4595 irela
[j
].r_info
= ELF_R_INFO ((*rel_hash
)->indx
,
4596 ELF_R_TYPE (irela
[j
].r_info
));
4597 (*swap_out
) (abfd
, irela
, erela
);
4601 struct elf_link_sort_rela
4604 enum elf_reloc_type_class type
;
4605 /* We use this as an array of size int_rels_per_ext_rel. */
4606 Elf_Internal_Rela rela
[1];
4610 elf_link_sort_cmp1 (A
, B
)
4614 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4615 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4616 int relativea
, relativeb
;
4618 relativea
= a
->type
== reloc_class_relative
;
4619 relativeb
= b
->type
== reloc_class_relative
;
4621 if (relativea
< relativeb
)
4623 if (relativea
> relativeb
)
4625 if (ELF_R_SYM (a
->rela
->r_info
) < ELF_R_SYM (b
->rela
->r_info
))
4627 if (ELF_R_SYM (a
->rela
->r_info
) > ELF_R_SYM (b
->rela
->r_info
))
4629 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
4631 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
4637 elf_link_sort_cmp2 (A
, B
)
4641 struct elf_link_sort_rela
*a
= (struct elf_link_sort_rela
*) A
;
4642 struct elf_link_sort_rela
*b
= (struct elf_link_sort_rela
*) B
;
4645 if (a
->offset
< b
->offset
)
4647 if (a
->offset
> b
->offset
)
4649 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
4650 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
4655 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
4657 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
4663 elf_link_sort_relocs (abfd
, info
, psec
)
4665 struct bfd_link_info
*info
;
4668 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
4669 asection
*reldyn
, *o
;
4670 bfd_size_type count
, size
;
4671 size_t i
, ret
, sort_elt
, ext_size
;
4672 bfd_byte
*sort
, *s_non_relative
, *p
;
4673 struct elf_link_sort_rela
*sq
;
4674 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4675 int i2e
= bed
->s
->int_rels_per_ext_rel
;
4676 void (*swap_in
) PARAMS ((bfd
*, const bfd_byte
*, Elf_Internal_Rela
*));
4677 void (*swap_out
) PARAMS ((bfd
*, const Elf_Internal_Rela
*, bfd_byte
*));
4679 reldyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
4680 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4682 reldyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
4683 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
4685 ext_size
= sizeof (Elf_External_Rel
);
4686 swap_in
= bed
->s
->swap_reloc_in
;
4687 swap_out
= bed
->s
->swap_reloc_out
;
4691 ext_size
= sizeof (Elf_External_Rela
);
4692 swap_in
= bed
->s
->swap_reloca_in
;
4693 swap_out
= bed
->s
->swap_reloca_out
;
4695 count
= reldyn
->_raw_size
/ ext_size
;
4698 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4699 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4700 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4701 && o
->output_section
== reldyn
)
4702 size
+= o
->_raw_size
;
4704 if (size
!= reldyn
->_raw_size
)
4707 sort_elt
= (sizeof (struct elf_link_sort_rela
)
4708 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
4709 sort
= bfd_zmalloc (sort_elt
* count
);
4712 (*info
->callbacks
->warning
)
4713 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0,
4718 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4719 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4720 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4721 && o
->output_section
== reldyn
)
4723 bfd_byte
*erel
, *erelend
;
4726 erelend
= o
->contents
+ o
->_raw_size
;
4727 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
4728 while (erel
< erelend
)
4730 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
4731 (*swap_in
) (abfd
, erel
, s
->rela
);
4732 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
4738 qsort (sort
, (size_t) count
, sort_elt
, elf_link_sort_cmp1
);
4740 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
4742 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
4743 if (s
->type
!= reloc_class_relative
)
4749 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
4750 for (; i
< count
; i
++, p
+= sort_elt
)
4752 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
4753 if (ELF_R_SYM (sp
->rela
->r_info
) != ELF_R_SYM (sq
->rela
->r_info
))
4755 sp
->offset
= sq
->rela
->r_offset
;
4758 qsort (s_non_relative
, (size_t) count
- ret
, sort_elt
, elf_link_sort_cmp2
);
4760 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
4761 if ((o
->flags
& (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
))
4762 == (SEC_HAS_CONTENTS
|SEC_LINKER_CREATED
)
4763 && o
->output_section
== reldyn
)
4765 bfd_byte
*erel
, *erelend
;
4768 erelend
= o
->contents
+ o
->_raw_size
;
4769 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
4770 while (erel
< erelend
)
4772 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
4773 (*swap_out
) (abfd
, s
->rela
, erel
);
4783 /* Do the final step of an ELF link. */
4786 elf_bfd_final_link (abfd
, info
)
4788 struct bfd_link_info
*info
;
4790 bfd_boolean dynamic
;
4791 bfd_boolean emit_relocs
;
4793 struct elf_final_link_info finfo
;
4794 register asection
*o
;
4795 register struct bfd_link_order
*p
;
4797 bfd_size_type max_contents_size
;
4798 bfd_size_type max_external_reloc_size
;
4799 bfd_size_type max_internal_reloc_count
;
4800 bfd_size_type max_sym_count
;
4801 bfd_size_type max_sym_shndx_count
;
4803 Elf_Internal_Sym elfsym
;
4805 Elf_Internal_Shdr
*symtab_hdr
;
4806 Elf_Internal_Shdr
*symtab_shndx_hdr
;
4807 Elf_Internal_Shdr
*symstrtab_hdr
;
4808 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4809 struct elf_outext_info eoinfo
;
4811 size_t relativecount
= 0;
4812 asection
*reldyn
= 0;
4815 if (! is_elf_hash_table (info
))
4819 abfd
->flags
|= DYNAMIC
;
4821 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
4822 dynobj
= elf_hash_table (info
)->dynobj
;
4824 emit_relocs
= (info
->relocateable
4825 || info
->emitrelocations
4826 || bed
->elf_backend_emit_relocs
);
4829 finfo
.output_bfd
= abfd
;
4830 finfo
.symstrtab
= elf_stringtab_init ();
4831 if (finfo
.symstrtab
== NULL
)
4836 finfo
.dynsym_sec
= NULL
;
4837 finfo
.hash_sec
= NULL
;
4838 finfo
.symver_sec
= NULL
;
4842 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
4843 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
4844 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
4845 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
4846 /* Note that it is OK if symver_sec is NULL. */
4849 finfo
.contents
= NULL
;
4850 finfo
.external_relocs
= NULL
;
4851 finfo
.internal_relocs
= NULL
;
4852 finfo
.external_syms
= NULL
;
4853 finfo
.locsym_shndx
= NULL
;
4854 finfo
.internal_syms
= NULL
;
4855 finfo
.indices
= NULL
;
4856 finfo
.sections
= NULL
;
4857 finfo
.symbuf
= NULL
;
4858 finfo
.symshndxbuf
= NULL
;
4859 finfo
.symbuf_count
= 0;
4860 finfo
.shndxbuf_size
= 0;
4861 finfo
.first_tls_sec
= NULL
;
4862 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4863 if ((o
->flags
& SEC_THREAD_LOCAL
) != 0
4864 && (o
->flags
& SEC_LOAD
) != 0)
4866 finfo
.first_tls_sec
= o
;
4870 /* Count up the number of relocations we will output for each output
4871 section, so that we know the sizes of the reloc sections. We
4872 also figure out some maximum sizes. */
4873 max_contents_size
= 0;
4874 max_external_reloc_size
= 0;
4875 max_internal_reloc_count
= 0;
4877 max_sym_shndx_count
= 0;
4879 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4883 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
4885 if (p
->type
== bfd_section_reloc_link_order
4886 || p
->type
== bfd_symbol_reloc_link_order
)
4888 else if (p
->type
== bfd_indirect_link_order
)
4892 sec
= p
->u
.indirect
.section
;
4894 /* Mark all sections which are to be included in the
4895 link. This will normally be every section. We need
4896 to do this so that we can identify any sections which
4897 the linker has decided to not include. */
4898 sec
->linker_mark
= TRUE
;
4900 if (sec
->flags
& SEC_MERGE
)
4903 if (info
->relocateable
|| info
->emitrelocations
)
4904 o
->reloc_count
+= sec
->reloc_count
;
4905 else if (bed
->elf_backend_count_relocs
)
4907 Elf_Internal_Rela
* relocs
;
4909 relocs
= (NAME(_bfd_elf
,link_read_relocs
)
4910 (abfd
, sec
, (PTR
) NULL
,
4911 (Elf_Internal_Rela
*) NULL
, info
->keep_memory
));
4914 += (*bed
->elf_backend_count_relocs
) (sec
, relocs
);
4916 if (elf_section_data (o
)->relocs
!= relocs
)
4920 if (sec
->_raw_size
> max_contents_size
)
4921 max_contents_size
= sec
->_raw_size
;
4922 if (sec
->_cooked_size
> max_contents_size
)
4923 max_contents_size
= sec
->_cooked_size
;
4925 /* We are interested in just local symbols, not all
4927 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
4928 && (sec
->owner
->flags
& DYNAMIC
) == 0)
4932 if (elf_bad_symtab (sec
->owner
))
4933 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
4934 / sizeof (Elf_External_Sym
));
4936 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
4938 if (sym_count
> max_sym_count
)
4939 max_sym_count
= sym_count
;
4941 if (sym_count
> max_sym_shndx_count
4942 && elf_symtab_shndx (sec
->owner
) != 0)
4943 max_sym_shndx_count
= sym_count
;
4945 if ((sec
->flags
& SEC_RELOC
) != 0)
4949 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
4950 if (ext_size
> max_external_reloc_size
)
4951 max_external_reloc_size
= ext_size
;
4952 if (sec
->reloc_count
> max_internal_reloc_count
)
4953 max_internal_reloc_count
= sec
->reloc_count
;
4959 if (o
->reloc_count
> 0)
4960 o
->flags
|= SEC_RELOC
;
4963 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4964 set it (this is probably a bug) and if it is set
4965 assign_section_numbers will create a reloc section. */
4966 o
->flags
&=~ SEC_RELOC
;
4969 /* If the SEC_ALLOC flag is not set, force the section VMA to
4970 zero. This is done in elf_fake_sections as well, but forcing
4971 the VMA to 0 here will ensure that relocs against these
4972 sections are handled correctly. */
4973 if ((o
->flags
& SEC_ALLOC
) == 0
4974 && ! o
->user_set_vma
)
4978 if (! info
->relocateable
&& merged
)
4979 elf_link_hash_traverse (elf_hash_table (info
),
4980 elf_link_sec_merge_syms
, (PTR
) abfd
);
4982 /* Figure out the file positions for everything but the symbol table
4983 and the relocs. We set symcount to force assign_section_numbers
4984 to create a symbol table. */
4985 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
4986 BFD_ASSERT (! abfd
->output_has_begun
);
4987 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
4990 /* Figure out how many relocations we will have in each section.
4991 Just using RELOC_COUNT isn't good enough since that doesn't
4992 maintain a separate value for REL vs. RELA relocations. */
4994 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
4995 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
4997 asection
*output_section
;
4999 if (! o
->linker_mark
)
5001 /* This section was omitted from the link. */
5005 output_section
= o
->output_section
;
5007 if (output_section
!= NULL
5008 && (o
->flags
& SEC_RELOC
) != 0)
5010 struct bfd_elf_section_data
*esdi
5011 = elf_section_data (o
);
5012 struct bfd_elf_section_data
*esdo
5013 = elf_section_data (output_section
);
5014 unsigned int *rel_count
;
5015 unsigned int *rel_count2
;
5016 bfd_size_type entsize
;
5017 bfd_size_type entsize2
;
5019 /* We must be careful to add the relocations from the
5020 input section to the right output count. */
5021 entsize
= esdi
->rel_hdr
.sh_entsize
;
5022 entsize2
= esdi
->rel_hdr2
? esdi
->rel_hdr2
->sh_entsize
: 0;
5023 BFD_ASSERT ((entsize
== sizeof (Elf_External_Rel
)
5024 || entsize
== sizeof (Elf_External_Rela
))
5025 && entsize2
!= entsize
5027 || entsize2
== sizeof (Elf_External_Rel
)
5028 || entsize2
== sizeof (Elf_External_Rela
)));
5029 if (entsize
== esdo
->rel_hdr
.sh_entsize
)
5031 rel_count
= &esdo
->rel_count
;
5032 rel_count2
= &esdo
->rel_count2
;
5036 rel_count
= &esdo
->rel_count2
;
5037 rel_count2
= &esdo
->rel_count
;
5040 *rel_count
+= NUM_SHDR_ENTRIES (& esdi
->rel_hdr
);
5042 *rel_count2
+= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
5043 output_section
->flags
|= SEC_RELOC
;
5047 /* That created the reloc sections. Set their sizes, and assign
5048 them file positions, and allocate some buffers. */
5049 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5051 if ((o
->flags
& SEC_RELOC
) != 0)
5053 if (!elf_link_size_reloc_section (abfd
,
5054 &elf_section_data (o
)->rel_hdr
,
5058 if (elf_section_data (o
)->rel_hdr2
5059 && !elf_link_size_reloc_section (abfd
,
5060 elf_section_data (o
)->rel_hdr2
,
5065 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5066 to count upwards while actually outputting the relocations. */
5067 elf_section_data (o
)->rel_count
= 0;
5068 elf_section_data (o
)->rel_count2
= 0;
5071 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5073 /* We have now assigned file positions for all the sections except
5074 .symtab and .strtab. We start the .symtab section at the current
5075 file position, and write directly to it. We build the .strtab
5076 section in memory. */
5077 bfd_get_symcount (abfd
) = 0;
5078 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5079 /* sh_name is set in prep_headers. */
5080 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5081 /* sh_flags, sh_addr and sh_size all start off zero. */
5082 symtab_hdr
->sh_entsize
= sizeof (Elf_External_Sym
);
5083 /* sh_link is set in assign_section_numbers. */
5084 /* sh_info is set below. */
5085 /* sh_offset is set just below. */
5086 symtab_hdr
->sh_addralign
= bed
->s
->file_align
;
5088 off
= elf_tdata (abfd
)->next_file_pos
;
5089 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
5091 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5092 incorrect. We do not yet know the size of the .symtab section.
5093 We correct next_file_pos below, after we do know the size. */
5095 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5096 continuously seeking to the right position in the file. */
5097 if (! info
->keep_memory
|| max_sym_count
< 20)
5098 finfo
.symbuf_size
= 20;
5100 finfo
.symbuf_size
= max_sym_count
;
5101 amt
= finfo
.symbuf_size
;
5102 amt
*= sizeof (Elf_External_Sym
);
5103 finfo
.symbuf
= (Elf_External_Sym
*) bfd_malloc (amt
);
5104 if (finfo
.symbuf
== NULL
)
5106 if (elf_numsections (abfd
) > SHN_LORESERVE
)
5108 /* Wild guess at number of output symbols. realloc'd as needed. */
5109 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
5110 finfo
.shndxbuf_size
= amt
;
5111 amt
*= sizeof (Elf_External_Sym_Shndx
);
5112 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
5113 if (finfo
.symshndxbuf
== NULL
)
5117 /* Start writing out the symbol table. The first symbol is always a
5119 if (info
->strip
!= strip_all
5122 elfsym
.st_value
= 0;
5125 elfsym
.st_other
= 0;
5126 elfsym
.st_shndx
= SHN_UNDEF
;
5127 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5128 &elfsym
, bfd_und_section_ptr
))
5133 /* Some standard ELF linkers do this, but we don't because it causes
5134 bootstrap comparison failures. */
5135 /* Output a file symbol for the output file as the second symbol.
5136 We output this even if we are discarding local symbols, although
5137 I'm not sure if this is correct. */
5138 elfsym
.st_value
= 0;
5140 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5141 elfsym
.st_other
= 0;
5142 elfsym
.st_shndx
= SHN_ABS
;
5143 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
5144 &elfsym
, bfd_abs_section_ptr
))
5148 /* Output a symbol for each section. We output these even if we are
5149 discarding local symbols, since they are used for relocs. These
5150 symbols have no names. We store the index of each one in the
5151 index field of the section, so that we can find it again when
5152 outputting relocs. */
5153 if (info
->strip
!= strip_all
5157 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5158 elfsym
.st_other
= 0;
5159 for (i
= 1; i
< elf_numsections (abfd
); i
++)
5161 o
= section_from_elf_index (abfd
, i
);
5163 o
->target_index
= bfd_get_symcount (abfd
);
5164 elfsym
.st_shndx
= i
;
5165 if (info
->relocateable
|| o
== NULL
)
5166 elfsym
.st_value
= 0;
5168 elfsym
.st_value
= o
->vma
;
5169 if (! elf_link_output_sym (&finfo
, (const char *) NULL
,
5172 if (i
== SHN_LORESERVE
- 1)
5173 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5177 /* Allocate some memory to hold information read in from the input
5179 if (max_contents_size
!= 0)
5181 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
5182 if (finfo
.contents
== NULL
)
5186 if (max_external_reloc_size
!= 0)
5188 finfo
.external_relocs
= (PTR
) bfd_malloc (max_external_reloc_size
);
5189 if (finfo
.external_relocs
== NULL
)
5193 if (max_internal_reloc_count
!= 0)
5195 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5196 amt
*= sizeof (Elf_Internal_Rela
);
5197 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
5198 if (finfo
.internal_relocs
== NULL
)
5202 if (max_sym_count
!= 0)
5204 amt
= max_sym_count
* sizeof (Elf_External_Sym
);
5205 finfo
.external_syms
= (Elf_External_Sym
*) bfd_malloc (amt
);
5206 if (finfo
.external_syms
== NULL
)
5209 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
5210 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
5211 if (finfo
.internal_syms
== NULL
)
5214 amt
= max_sym_count
* sizeof (long);
5215 finfo
.indices
= (long *) bfd_malloc (amt
);
5216 if (finfo
.indices
== NULL
)
5219 amt
= max_sym_count
* sizeof (asection
*);
5220 finfo
.sections
= (asection
**) bfd_malloc (amt
);
5221 if (finfo
.sections
== NULL
)
5225 if (max_sym_shndx_count
!= 0)
5227 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
5228 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
5229 if (finfo
.locsym_shndx
== NULL
)
5233 if (finfo
.first_tls_sec
)
5235 unsigned int align
= 0;
5236 bfd_vma base
= finfo
.first_tls_sec
->vma
, end
= 0;
5239 for (sec
= finfo
.first_tls_sec
;
5240 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
5243 bfd_vma size
= sec
->_raw_size
;
5245 if (bfd_get_section_alignment (abfd
, sec
) > align
)
5246 align
= bfd_get_section_alignment (abfd
, sec
);
5247 if (sec
->_raw_size
== 0 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
5249 struct bfd_link_order
*o
;
5252 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
5253 if (size
< o
->offset
+ o
->size
)
5254 size
= o
->offset
+ o
->size
;
5256 end
= sec
->vma
+ size
;
5258 elf_hash_table (info
)->tls_segment
5259 = bfd_zalloc (abfd
, sizeof (struct elf_link_tls_segment
));
5260 if (elf_hash_table (info
)->tls_segment
== NULL
)
5262 elf_hash_table (info
)->tls_segment
->start
= base
;
5263 elf_hash_table (info
)->tls_segment
->size
= end
- base
;
5264 elf_hash_table (info
)->tls_segment
->align
= align
;
5267 /* Since ELF permits relocations to be against local symbols, we
5268 must have the local symbols available when we do the relocations.
5269 Since we would rather only read the local symbols once, and we
5270 would rather not keep them in memory, we handle all the
5271 relocations for a single input file at the same time.
5273 Unfortunately, there is no way to know the total number of local
5274 symbols until we have seen all of them, and the local symbol
5275 indices precede the global symbol indices. This means that when
5276 we are generating relocateable output, and we see a reloc against
5277 a global symbol, we can not know the symbol index until we have
5278 finished examining all the local symbols to see which ones we are
5279 going to output. To deal with this, we keep the relocations in
5280 memory, and don't output them until the end of the link. This is
5281 an unfortunate waste of memory, but I don't see a good way around
5282 it. Fortunately, it only happens when performing a relocateable
5283 link, which is not the common case. FIXME: If keep_memory is set
5284 we could write the relocs out and then read them again; I don't
5285 know how bad the memory loss will be. */
5287 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
5288 sub
->output_has_begun
= FALSE
;
5289 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5291 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
5293 if (p
->type
== bfd_indirect_link_order
5294 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
5295 == bfd_target_elf_flavour
)
5296 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
5298 if (! sub
->output_has_begun
)
5300 if (! elf_link_input_bfd (&finfo
, sub
))
5302 sub
->output_has_begun
= TRUE
;
5305 else if (p
->type
== bfd_section_reloc_link_order
5306 || p
->type
== bfd_symbol_reloc_link_order
)
5308 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
5313 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
5319 /* Output any global symbols that got converted to local in a
5320 version script or due to symbol visibility. We do this in a
5321 separate step since ELF requires all local symbols to appear
5322 prior to any global symbols. FIXME: We should only do this if
5323 some global symbols were, in fact, converted to become local.
5324 FIXME: Will this work correctly with the Irix 5 linker? */
5325 eoinfo
.failed
= FALSE
;
5326 eoinfo
.finfo
= &finfo
;
5327 eoinfo
.localsyms
= TRUE
;
5328 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5333 /* That wrote out all the local symbols. Finish up the symbol table
5334 with the global symbols. Even if we want to strip everything we
5335 can, we still need to deal with those global symbols that got
5336 converted to local in a version script. */
5338 /* The sh_info field records the index of the first non local symbol. */
5339 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
5342 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
5344 Elf_Internal_Sym sym
;
5345 Elf_External_Sym
*dynsym
=
5346 (Elf_External_Sym
*) finfo
.dynsym_sec
->contents
;
5347 long last_local
= 0;
5349 /* Write out the section symbols for the output sections. */
5356 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5359 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5362 Elf_External_Sym
*dest
;
5364 indx
= elf_section_data (s
)->this_idx
;
5365 BFD_ASSERT (indx
> 0);
5366 sym
.st_shndx
= indx
;
5367 sym
.st_value
= s
->vma
;
5368 dest
= dynsym
+ elf_section_data (s
)->dynindx
;
5369 elf_swap_symbol_out (abfd
, &sym
, (PTR
) dest
, (PTR
) 0);
5372 last_local
= bfd_count_sections (abfd
);
5375 /* Write out the local dynsyms. */
5376 if (elf_hash_table (info
)->dynlocal
)
5378 struct elf_link_local_dynamic_entry
*e
;
5379 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
5382 Elf_External_Sym
*dest
;
5384 sym
.st_size
= e
->isym
.st_size
;
5385 sym
.st_other
= e
->isym
.st_other
;
5387 /* Copy the internal symbol as is.
5388 Note that we saved a word of storage and overwrote
5389 the original st_name with the dynstr_index. */
5392 if (e
->isym
.st_shndx
!= SHN_UNDEF
5393 && (e
->isym
.st_shndx
< SHN_LORESERVE
5394 || e
->isym
.st_shndx
> SHN_HIRESERVE
))
5396 s
= bfd_section_from_elf_index (e
->input_bfd
,
5400 elf_section_data (s
->output_section
)->this_idx
;
5401 sym
.st_value
= (s
->output_section
->vma
5403 + e
->isym
.st_value
);
5406 if (last_local
< e
->dynindx
)
5407 last_local
= e
->dynindx
;
5409 dest
= dynsym
+ e
->dynindx
;
5410 elf_swap_symbol_out (abfd
, &sym
, (PTR
) dest
, (PTR
) 0);
5414 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
5418 /* We get the global symbols from the hash table. */
5419 eoinfo
.failed
= FALSE
;
5420 eoinfo
.localsyms
= FALSE
;
5421 eoinfo
.finfo
= &finfo
;
5422 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
5427 /* If backend needs to output some symbols not present in the hash
5428 table, do it now. */
5429 if (bed
->elf_backend_output_arch_syms
)
5431 typedef bfd_boolean (*out_sym_func
)
5432 PARAMS ((PTR
, const char *, Elf_Internal_Sym
*, asection
*));
5434 if (! ((*bed
->elf_backend_output_arch_syms
)
5435 (abfd
, info
, (PTR
) &finfo
, (out_sym_func
) elf_link_output_sym
)))
5439 /* Flush all symbols to the file. */
5440 if (! elf_link_flush_output_syms (&finfo
))
5443 /* Now we know the size of the symtab section. */
5444 off
+= symtab_hdr
->sh_size
;
5446 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5447 if (symtab_shndx_hdr
->sh_name
!= 0)
5449 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5450 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5451 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5452 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
5453 symtab_shndx_hdr
->sh_size
= amt
;
5455 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
5458 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
5459 || (bfd_bwrite ((PTR
) finfo
.symshndxbuf
, amt
, abfd
) != amt
))
5464 /* Finish up and write out the symbol string table (.strtab)
5466 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5467 /* sh_name was set in prep_headers. */
5468 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5469 symstrtab_hdr
->sh_flags
= 0;
5470 symstrtab_hdr
->sh_addr
= 0;
5471 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
5472 symstrtab_hdr
->sh_entsize
= 0;
5473 symstrtab_hdr
->sh_link
= 0;
5474 symstrtab_hdr
->sh_info
= 0;
5475 /* sh_offset is set just below. */
5476 symstrtab_hdr
->sh_addralign
= 1;
5478 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
5479 elf_tdata (abfd
)->next_file_pos
= off
;
5481 if (bfd_get_symcount (abfd
) > 0)
5483 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
5484 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
5488 /* Adjust the relocs to have the correct symbol indices. */
5489 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5491 if ((o
->flags
& SEC_RELOC
) == 0)
5494 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
5495 elf_section_data (o
)->rel_count
,
5496 elf_section_data (o
)->rel_hashes
);
5497 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
5498 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
5499 elf_section_data (o
)->rel_count2
,
5500 (elf_section_data (o
)->rel_hashes
5501 + elf_section_data (o
)->rel_count
));
5503 /* Set the reloc_count field to 0 to prevent write_relocs from
5504 trying to swap the relocs out itself. */
5508 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
5509 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
5511 /* If we are linking against a dynamic object, or generating a
5512 shared library, finish up the dynamic linking information. */
5515 Elf_External_Dyn
*dyncon
, *dynconend
;
5517 /* Fix up .dynamic entries. */
5518 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
5519 BFD_ASSERT (o
!= NULL
);
5521 dyncon
= (Elf_External_Dyn
*) o
->contents
;
5522 dynconend
= (Elf_External_Dyn
*) (o
->contents
+ o
->_raw_size
);
5523 for (; dyncon
< dynconend
; dyncon
++)
5525 Elf_Internal_Dyn dyn
;
5529 elf_swap_dyn_in (dynobj
, dyncon
, &dyn
);
5536 if (relativecount
> 0 && dyncon
+ 1 < dynconend
)
5538 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
5540 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
5541 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
5544 if (dyn
.d_tag
!= DT_NULL
)
5546 dyn
.d_un
.d_val
= relativecount
;
5547 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5553 name
= info
->init_function
;
5556 name
= info
->fini_function
;
5559 struct elf_link_hash_entry
*h
;
5561 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
5562 FALSE
, FALSE
, TRUE
);
5564 && (h
->root
.type
== bfd_link_hash_defined
5565 || h
->root
.type
== bfd_link_hash_defweak
))
5567 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
5568 o
= h
->root
.u
.def
.section
;
5569 if (o
->output_section
!= NULL
)
5570 dyn
.d_un
.d_val
+= (o
->output_section
->vma
5571 + o
->output_offset
);
5574 /* The symbol is imported from another shared
5575 library and does not apply to this one. */
5579 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5584 case DT_PREINIT_ARRAYSZ
:
5585 name
= ".preinit_array";
5587 case DT_INIT_ARRAYSZ
:
5588 name
= ".init_array";
5590 case DT_FINI_ARRAYSZ
:
5591 name
= ".fini_array";
5593 o
= bfd_get_section_by_name (abfd
, name
);
5596 (*_bfd_error_handler
)
5597 (_("%s: could not find output section %s"),
5598 bfd_get_filename (abfd
), name
);
5601 if (o
->_raw_size
== 0)
5602 (*_bfd_error_handler
)
5603 (_("warning: %s section has zero size"), name
);
5604 dyn
.d_un
.d_val
= o
->_raw_size
;
5605 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5608 case DT_PREINIT_ARRAY
:
5609 name
= ".preinit_array";
5612 name
= ".init_array";
5615 name
= ".fini_array";
5628 name
= ".gnu.version_d";
5631 name
= ".gnu.version_r";
5634 name
= ".gnu.version";
5636 o
= bfd_get_section_by_name (abfd
, name
);
5639 (*_bfd_error_handler
)
5640 (_("%s: could not find output section %s"),
5641 bfd_get_filename (abfd
), name
);
5644 dyn
.d_un
.d_ptr
= o
->vma
;
5645 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5652 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
5657 for (i
= 1; i
< elf_numsections (abfd
); i
++)
5659 Elf_Internal_Shdr
*hdr
;
5661 hdr
= elf_elfsections (abfd
)[i
];
5662 if (hdr
->sh_type
== type
5663 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
5665 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
5666 dyn
.d_un
.d_val
+= hdr
->sh_size
;
5669 if (dyn
.d_un
.d_val
== 0
5670 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
5671 dyn
.d_un
.d_val
= hdr
->sh_addr
;
5675 elf_swap_dyn_out (dynobj
, &dyn
, dyncon
);
5681 /* If we have created any dynamic sections, then output them. */
5684 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
5687 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
5689 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
5690 || o
->_raw_size
== 0
5691 || o
->output_section
== bfd_abs_section_ptr
)
5693 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
5695 /* At this point, we are only interested in sections
5696 created by elf_link_create_dynamic_sections. */
5699 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
5701 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
5703 if (! bfd_set_section_contents (abfd
, o
->output_section
,
5705 (file_ptr
) o
->output_offset
,
5711 /* The contents of the .dynstr section are actually in a
5713 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
5714 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
5715 || ! _bfd_elf_strtab_emit (abfd
,
5716 elf_hash_table (info
)->dynstr
))
5722 if (info
->relocateable
)
5724 bfd_boolean failed
= FALSE
;
5726 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
5731 /* If we have optimized stabs strings, output them. */
5732 if (elf_hash_table (info
)->stab_info
!= NULL
)
5734 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
5738 if (info
->eh_frame_hdr
)
5740 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
5744 if (finfo
.symstrtab
!= NULL
)
5745 _bfd_stringtab_free (finfo
.symstrtab
);
5746 if (finfo
.contents
!= NULL
)
5747 free (finfo
.contents
);
5748 if (finfo
.external_relocs
!= NULL
)
5749 free (finfo
.external_relocs
);
5750 if (finfo
.internal_relocs
!= NULL
)
5751 free (finfo
.internal_relocs
);
5752 if (finfo
.external_syms
!= NULL
)
5753 free (finfo
.external_syms
);
5754 if (finfo
.locsym_shndx
!= NULL
)
5755 free (finfo
.locsym_shndx
);
5756 if (finfo
.internal_syms
!= NULL
)
5757 free (finfo
.internal_syms
);
5758 if (finfo
.indices
!= NULL
)
5759 free (finfo
.indices
);
5760 if (finfo
.sections
!= NULL
)
5761 free (finfo
.sections
);
5762 if (finfo
.symbuf
!= NULL
)
5763 free (finfo
.symbuf
);
5764 if (finfo
.symshndxbuf
!= NULL
)
5765 free (finfo
.symshndxbuf
);
5766 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5768 if ((o
->flags
& SEC_RELOC
) != 0
5769 && elf_section_data (o
)->rel_hashes
!= NULL
)
5770 free (elf_section_data (o
)->rel_hashes
);
5773 elf_tdata (abfd
)->linker
= TRUE
;
5778 if (finfo
.symstrtab
!= NULL
)
5779 _bfd_stringtab_free (finfo
.symstrtab
);
5780 if (finfo
.contents
!= NULL
)
5781 free (finfo
.contents
);
5782 if (finfo
.external_relocs
!= NULL
)
5783 free (finfo
.external_relocs
);
5784 if (finfo
.internal_relocs
!= NULL
)
5785 free (finfo
.internal_relocs
);
5786 if (finfo
.external_syms
!= NULL
)
5787 free (finfo
.external_syms
);
5788 if (finfo
.locsym_shndx
!= NULL
)
5789 free (finfo
.locsym_shndx
);
5790 if (finfo
.internal_syms
!= NULL
)
5791 free (finfo
.internal_syms
);
5792 if (finfo
.indices
!= NULL
)
5793 free (finfo
.indices
);
5794 if (finfo
.sections
!= NULL
)
5795 free (finfo
.sections
);
5796 if (finfo
.symbuf
!= NULL
)
5797 free (finfo
.symbuf
);
5798 if (finfo
.symshndxbuf
!= NULL
)
5799 free (finfo
.symshndxbuf
);
5800 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5802 if ((o
->flags
& SEC_RELOC
) != 0
5803 && elf_section_data (o
)->rel_hashes
!= NULL
)
5804 free (elf_section_data (o
)->rel_hashes
);
5810 /* Add a symbol to the output symbol table. */
5813 elf_link_output_sym (finfo
, name
, elfsym
, input_sec
)
5814 struct elf_final_link_info
*finfo
;
5816 Elf_Internal_Sym
*elfsym
;
5817 asection
*input_sec
;
5819 Elf_External_Sym
*dest
;
5820 Elf_External_Sym_Shndx
*destshndx
;
5821 bfd_boolean (*output_symbol_hook
)
5822 PARAMS ((bfd
*, struct bfd_link_info
*info
, const char *,
5823 Elf_Internal_Sym
*, asection
*));
5825 output_symbol_hook
= get_elf_backend_data (finfo
->output_bfd
)->
5826 elf_backend_link_output_symbol_hook
;
5827 if (output_symbol_hook
!= NULL
)
5829 if (! ((*output_symbol_hook
)
5830 (finfo
->output_bfd
, finfo
->info
, name
, elfsym
, input_sec
)))
5834 if (name
== (const char *) NULL
|| *name
== '\0')
5835 elfsym
->st_name
= 0;
5836 else if (input_sec
->flags
& SEC_EXCLUDE
)
5837 elfsym
->st_name
= 0;
5840 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
5842 if (elfsym
->st_name
== (unsigned long) -1)
5846 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
5848 if (! elf_link_flush_output_syms (finfo
))
5852 dest
= finfo
->symbuf
+ finfo
->symbuf_count
;
5853 destshndx
= finfo
->symshndxbuf
;
5854 if (destshndx
!= NULL
)
5856 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
5860 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
5861 finfo
->symshndxbuf
= destshndx
= bfd_realloc (destshndx
, amt
* 2);
5862 if (destshndx
== NULL
)
5864 memset ((char *) destshndx
+ amt
, 0, amt
);
5865 finfo
->shndxbuf_size
*= 2;
5867 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
5870 elf_swap_symbol_out (finfo
->output_bfd
, elfsym
, (PTR
) dest
, (PTR
) destshndx
);
5871 finfo
->symbuf_count
+= 1;
5872 bfd_get_symcount (finfo
->output_bfd
) += 1;
5877 /* Flush the output symbols to the file. */
5880 elf_link_flush_output_syms (finfo
)
5881 struct elf_final_link_info
*finfo
;
5883 if (finfo
->symbuf_count
> 0)
5885 Elf_Internal_Shdr
*hdr
;
5889 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
5890 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
5891 amt
= finfo
->symbuf_count
* sizeof (Elf_External_Sym
);
5892 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5893 || bfd_bwrite ((PTR
) finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
5896 hdr
->sh_size
+= amt
;
5897 finfo
->symbuf_count
= 0;
5903 /* Adjust all external symbols pointing into SEC_MERGE sections
5904 to reflect the object merging within the sections. */
5907 elf_link_sec_merge_syms (h
, data
)
5908 struct elf_link_hash_entry
*h
;
5913 if (h
->root
.type
== bfd_link_hash_warning
)
5914 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5916 if ((h
->root
.type
== bfd_link_hash_defined
5917 || h
->root
.type
== bfd_link_hash_defweak
)
5918 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
5919 && elf_section_data (sec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
)
5921 bfd
*output_bfd
= (bfd
*) data
;
5923 h
->root
.u
.def
.value
=
5924 _bfd_merged_section_offset (output_bfd
,
5925 &h
->root
.u
.def
.section
,
5926 elf_section_data (sec
)->sec_info
,
5927 h
->root
.u
.def
.value
, (bfd_vma
) 0);
5933 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5934 allowing an unsatisfied unversioned symbol in the DSO to match a
5935 versioned symbol that would normally require an explicit version. */
5938 elf_link_check_versioned_symbol (info
, h
)
5939 struct bfd_link_info
*info
;
5940 struct elf_link_hash_entry
*h
;
5942 bfd
*undef_bfd
= h
->root
.u
.undef
.abfd
;
5943 struct elf_link_loaded_list
*loaded
;
5945 if ((undef_bfd
->flags
& DYNAMIC
) == 0
5946 || info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
5947 || elf_dt_soname (h
->root
.u
.undef
.abfd
) == NULL
)
5950 for (loaded
= elf_hash_table (info
)->loaded
;
5952 loaded
= loaded
->next
)
5955 Elf_Internal_Shdr
*hdr
;
5956 bfd_size_type symcount
;
5957 bfd_size_type extsymcount
;
5958 bfd_size_type extsymoff
;
5959 Elf_Internal_Shdr
*versymhdr
;
5960 Elf_Internal_Sym
*isym
;
5961 Elf_Internal_Sym
*isymend
;
5962 Elf_Internal_Sym
*isymbuf
;
5963 Elf_External_Versym
*ever
;
5964 Elf_External_Versym
*extversym
;
5966 input
= loaded
->abfd
;
5968 /* We check each DSO for a possible hidden versioned definition. */
5969 if (input
== undef_bfd
5970 || (input
->flags
& DYNAMIC
) == 0
5971 || elf_dynversym (input
) == 0)
5974 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
5976 symcount
= hdr
->sh_size
/ sizeof (Elf_External_Sym
);
5977 if (elf_bad_symtab (input
))
5979 extsymcount
= symcount
;
5984 extsymcount
= symcount
- hdr
->sh_info
;
5985 extsymoff
= hdr
->sh_info
;
5988 if (extsymcount
== 0)
5991 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
5993 if (isymbuf
== NULL
)
5996 /* Read in any version definitions. */
5997 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
5998 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
5999 if (extversym
== NULL
)
6002 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
6003 || (bfd_bread ((PTR
) extversym
, versymhdr
->sh_size
, input
)
6004 != versymhdr
->sh_size
))
6012 ever
= extversym
+ extsymoff
;
6013 isymend
= isymbuf
+ extsymcount
;
6014 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
6017 Elf_Internal_Versym iver
;
6019 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
6020 || isym
->st_shndx
== SHN_UNDEF
)
6023 name
= bfd_elf_string_from_elf_section (input
,
6026 if (strcmp (name
, h
->root
.root
.string
) != 0)
6029 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
6031 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
6033 /* If we have a non-hidden versioned sym, then it should
6034 have provided a definition for the undefined sym. */
6038 if ((iver
.vs_vers
& VERSYM_VERSION
) == 2)
6040 /* This is the oldest (default) sym. We can use it. */
6054 /* Add an external symbol to the symbol table. This is called from
6055 the hash table traversal routine. When generating a shared object,
6056 we go through the symbol table twice. The first time we output
6057 anything that might have been forced to local scope in a version
6058 script. The second time we output the symbols that are still
6062 elf_link_output_extsym (h
, data
)
6063 struct elf_link_hash_entry
*h
;
6066 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
6067 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
6069 Elf_Internal_Sym sym
;
6070 asection
*input_sec
;
6072 if (h
->root
.type
== bfd_link_hash_warning
)
6074 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6075 if (h
->root
.type
== bfd_link_hash_new
)
6079 /* Decide whether to output this symbol in this pass. */
6080 if (eoinfo
->localsyms
)
6082 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6087 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6091 /* If we are not creating a shared library, and this symbol is
6092 referenced by a shared library but is not defined anywhere, then
6093 warn that it is undefined. If we do not do this, the runtime
6094 linker will complain that the symbol is undefined when the
6095 program is run. We don't have to worry about symbols that are
6096 referenced by regular files, because we will already have issued
6097 warnings for them. */
6098 if (! finfo
->info
->relocateable
6099 && ! finfo
->info
->allow_shlib_undefined
6100 && ! finfo
->info
->shared
6101 && h
->root
.type
== bfd_link_hash_undefined
6102 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
6103 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
6104 && ! elf_link_check_versioned_symbol (finfo
->info
, h
))
6106 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6107 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
6108 (asection
*) NULL
, (bfd_vma
) 0, TRUE
)))
6110 eoinfo
->failed
= TRUE
;
6115 /* We don't want to output symbols that have never been mentioned by
6116 a regular file, or that we have been told to strip. However, if
6117 h->indx is set to -2, the symbol is used by a reloc and we must
6121 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
6122 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
6123 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
6124 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
6126 else if (finfo
->info
->strip
== strip_all
6127 || (finfo
->info
->strip
== strip_some
6128 && bfd_hash_lookup (finfo
->info
->keep_hash
,
6129 h
->root
.root
.string
,
6130 FALSE
, FALSE
) == NULL
))
6135 /* If we're stripping it, and it's not a dynamic symbol, there's
6136 nothing else to do unless it is a forced local symbol. */
6139 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6143 sym
.st_size
= h
->size
;
6144 sym
.st_other
= h
->other
;
6145 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6146 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
6147 else if (h
->root
.type
== bfd_link_hash_undefweak
6148 || h
->root
.type
== bfd_link_hash_defweak
)
6149 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
6151 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
6153 switch (h
->root
.type
)
6156 case bfd_link_hash_new
:
6157 case bfd_link_hash_warning
:
6161 case bfd_link_hash_undefined
:
6162 case bfd_link_hash_undefweak
:
6163 input_sec
= bfd_und_section_ptr
;
6164 sym
.st_shndx
= SHN_UNDEF
;
6167 case bfd_link_hash_defined
:
6168 case bfd_link_hash_defweak
:
6170 input_sec
= h
->root
.u
.def
.section
;
6171 if (input_sec
->output_section
!= NULL
)
6174 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
6175 input_sec
->output_section
);
6176 if (sym
.st_shndx
== SHN_BAD
)
6178 (*_bfd_error_handler
)
6179 (_("%s: could not find output section %s for input section %s"),
6180 bfd_get_filename (finfo
->output_bfd
),
6181 input_sec
->output_section
->name
,
6183 eoinfo
->failed
= TRUE
;
6187 /* ELF symbols in relocateable files are section relative,
6188 but in nonrelocateable files they are virtual
6190 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
6191 if (! finfo
->info
->relocateable
)
6193 sym
.st_value
+= input_sec
->output_section
->vma
;
6194 if (h
->type
== STT_TLS
)
6196 /* STT_TLS symbols are relative to PT_TLS segment
6198 BFD_ASSERT (finfo
->first_tls_sec
!= NULL
);
6199 sym
.st_value
-= finfo
->first_tls_sec
->vma
;
6205 BFD_ASSERT (input_sec
->owner
== NULL
6206 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
6207 sym
.st_shndx
= SHN_UNDEF
;
6208 input_sec
= bfd_und_section_ptr
;
6213 case bfd_link_hash_common
:
6214 input_sec
= h
->root
.u
.c
.p
->section
;
6215 sym
.st_shndx
= SHN_COMMON
;
6216 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
6219 case bfd_link_hash_indirect
:
6220 /* These symbols are created by symbol versioning. They point
6221 to the decorated version of the name. For example, if the
6222 symbol foo@@GNU_1.2 is the default, which should be used when
6223 foo is used with no version, then we add an indirect symbol
6224 foo which points to foo@@GNU_1.2. We ignore these symbols,
6225 since the indirected symbol is already in the hash table. */
6229 /* Give the processor backend a chance to tweak the symbol value,
6230 and also to finish up anything that needs to be done for this
6231 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6232 forced local syms when non-shared is due to a historical quirk. */
6233 if ((h
->dynindx
!= -1
6234 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6235 && (finfo
->info
->shared
6236 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6237 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6239 struct elf_backend_data
*bed
;
6241 bed
= get_elf_backend_data (finfo
->output_bfd
);
6242 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
6243 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
6245 eoinfo
->failed
= TRUE
;
6250 /* If we are marking the symbol as undefined, and there are no
6251 non-weak references to this symbol from a regular object, then
6252 mark the symbol as weak undefined; if there are non-weak
6253 references, mark the symbol as strong. We can't do this earlier,
6254 because it might not be marked as undefined until the
6255 finish_dynamic_symbol routine gets through with it. */
6256 if (sym
.st_shndx
== SHN_UNDEF
6257 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
6258 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
6259 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
6263 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
) != 0)
6264 bindtype
= STB_GLOBAL
;
6266 bindtype
= STB_WEAK
;
6267 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
6270 /* If a symbol is not defined locally, we clear the visibility field. */
6271 if (! finfo
->info
->relocateable
6272 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6273 sym
.st_other
&= ~ ELF_ST_VISIBILITY (-1);
6275 /* If this symbol should be put in the .dynsym section, then put it
6276 there now. We already know the symbol index. We also fill in
6277 the entry in the .hash section. */
6278 if (h
->dynindx
!= -1
6279 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6283 size_t hash_entry_size
;
6284 bfd_byte
*bucketpos
;
6286 Elf_External_Sym
*esym
;
6288 sym
.st_name
= h
->dynstr_index
;
6289 esym
= (Elf_External_Sym
*) finfo
->dynsym_sec
->contents
+ h
->dynindx
;
6290 elf_swap_symbol_out (finfo
->output_bfd
, &sym
, (PTR
) esym
, (PTR
) 0);
6292 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
6293 bucket
= h
->elf_hash_value
% bucketcount
;
6295 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
6296 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
6297 + (bucket
+ 2) * hash_entry_size
);
6298 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
6299 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, (bfd_vma
) h
->dynindx
,
6301 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
6302 ((bfd_byte
*) finfo
->hash_sec
->contents
6303 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
6305 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
6307 Elf_Internal_Versym iversym
;
6308 Elf_External_Versym
*eversym
;
6310 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6312 if (h
->verinfo
.verdef
== NULL
)
6313 iversym
.vs_vers
= 0;
6315 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
6319 if (h
->verinfo
.vertree
== NULL
)
6320 iversym
.vs_vers
= 1;
6322 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
6325 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
6326 iversym
.vs_vers
|= VERSYM_HIDDEN
;
6328 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
6329 eversym
+= h
->dynindx
;
6330 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
6334 /* If we're stripping it, then it was just a dynamic symbol, and
6335 there's nothing else to do. */
6336 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
6339 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
6341 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
))
6343 eoinfo
->failed
= TRUE
;
6350 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6351 originated from the section given by INPUT_REL_HDR) to the
6355 elf_link_output_relocs (output_bfd
, input_section
, input_rel_hdr
,
6358 asection
*input_section
;
6359 Elf_Internal_Shdr
*input_rel_hdr
;
6360 Elf_Internal_Rela
*internal_relocs
;
6362 Elf_Internal_Rela
*irela
;
6363 Elf_Internal_Rela
*irelaend
;
6365 Elf_Internal_Shdr
*output_rel_hdr
;
6366 asection
*output_section
;
6367 unsigned int *rel_countp
= NULL
;
6368 struct elf_backend_data
*bed
;
6369 void (*swap_out
) PARAMS ((bfd
*, const Elf_Internal_Rela
*, bfd_byte
*));
6371 output_section
= input_section
->output_section
;
6372 output_rel_hdr
= NULL
;
6374 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
6375 == input_rel_hdr
->sh_entsize
)
6377 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
6378 rel_countp
= &elf_section_data (output_section
)->rel_count
;
6380 else if (elf_section_data (output_section
)->rel_hdr2
6381 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
6382 == input_rel_hdr
->sh_entsize
))
6384 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
6385 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
6389 (*_bfd_error_handler
)
6390 (_("%s: relocation size mismatch in %s section %s"),
6391 bfd_get_filename (output_bfd
),
6392 bfd_archive_filename (input_section
->owner
),
6393 input_section
->name
);
6394 bfd_set_error (bfd_error_wrong_object_format
);
6398 bed
= get_elf_backend_data (output_bfd
);
6399 if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rel
))
6400 swap_out
= bed
->s
->swap_reloc_out
;
6401 else if (input_rel_hdr
->sh_entsize
== sizeof (Elf_External_Rela
))
6402 swap_out
= bed
->s
->swap_reloca_out
;
6406 erel
= output_rel_hdr
->contents
;
6407 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
6408 irela
= internal_relocs
;
6409 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
6410 * bed
->s
->int_rels_per_ext_rel
);
6411 while (irela
< irelaend
)
6413 (*swap_out
) (output_bfd
, irela
, erel
);
6414 irela
+= bed
->s
->int_rels_per_ext_rel
;
6415 erel
+= input_rel_hdr
->sh_entsize
;
6418 /* Bump the counter, so that we know where to add the next set of
6420 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
6425 /* Link an input file into the linker output file. This function
6426 handles all the sections and relocations of the input file at once.
6427 This is so that we only have to read the local symbols once, and
6428 don't have to keep them in memory. */
6431 elf_link_input_bfd (finfo
, input_bfd
)
6432 struct elf_final_link_info
*finfo
;
6435 bfd_boolean (*relocate_section
)
6436 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
6437 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
6439 Elf_Internal_Shdr
*symtab_hdr
;
6442 Elf_Internal_Sym
*isymbuf
;
6443 Elf_Internal_Sym
*isym
;
6444 Elf_Internal_Sym
*isymend
;
6446 asection
**ppsection
;
6448 struct elf_backend_data
*bed
;
6449 bfd_boolean emit_relocs
;
6450 struct elf_link_hash_entry
**sym_hashes
;
6452 output_bfd
= finfo
->output_bfd
;
6453 bed
= get_elf_backend_data (output_bfd
);
6454 relocate_section
= bed
->elf_backend_relocate_section
;
6456 /* If this is a dynamic object, we don't want to do anything here:
6457 we don't want the local symbols, and we don't want the section
6459 if ((input_bfd
->flags
& DYNAMIC
) != 0)
6462 emit_relocs
= (finfo
->info
->relocateable
6463 || finfo
->info
->emitrelocations
6464 || bed
->elf_backend_emit_relocs
);
6466 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6467 if (elf_bad_symtab (input_bfd
))
6469 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
6474 locsymcount
= symtab_hdr
->sh_info
;
6475 extsymoff
= symtab_hdr
->sh_info
;
6478 /* Read the local symbols. */
6479 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6480 if (isymbuf
== NULL
&& locsymcount
!= 0)
6482 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6483 finfo
->internal_syms
,
6484 finfo
->external_syms
,
6485 finfo
->locsym_shndx
);
6486 if (isymbuf
== NULL
)
6490 /* Find local symbol sections and adjust values of symbols in
6491 SEC_MERGE sections. Write out those local symbols we know are
6492 going into the output file. */
6493 isymend
= isymbuf
+ locsymcount
;
6494 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
6496 isym
++, pindex
++, ppsection
++)
6500 Elf_Internal_Sym osym
;
6504 if (elf_bad_symtab (input_bfd
))
6506 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
6513 if (isym
->st_shndx
== SHN_UNDEF
)
6514 isec
= bfd_und_section_ptr
;
6515 else if (isym
->st_shndx
< SHN_LORESERVE
6516 || isym
->st_shndx
> SHN_HIRESERVE
)
6518 isec
= section_from_elf_index (input_bfd
, isym
->st_shndx
);
6520 && elf_section_data (isec
)->sec_info_type
== ELF_INFO_TYPE_MERGE
6521 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
6523 _bfd_merged_section_offset (output_bfd
, &isec
,
6524 elf_section_data (isec
)->sec_info
,
6525 isym
->st_value
, (bfd_vma
) 0);
6527 else if (isym
->st_shndx
== SHN_ABS
)
6528 isec
= bfd_abs_section_ptr
;
6529 else if (isym
->st_shndx
== SHN_COMMON
)
6530 isec
= bfd_com_section_ptr
;
6539 /* Don't output the first, undefined, symbol. */
6540 if (ppsection
== finfo
->sections
)
6543 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6545 /* We never output section symbols. Instead, we use the
6546 section symbol of the corresponding section in the output
6551 /* If we are stripping all symbols, we don't want to output this
6553 if (finfo
->info
->strip
== strip_all
)
6556 /* If we are discarding all local symbols, we don't want to
6557 output this one. If we are generating a relocateable output
6558 file, then some of the local symbols may be required by
6559 relocs; we output them below as we discover that they are
6561 if (finfo
->info
->discard
== discard_all
)
6564 /* If this symbol is defined in a section which we are
6565 discarding, we don't need to keep it, but note that
6566 linker_mark is only reliable for sections that have contents.
6567 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6568 as well as linker_mark. */
6569 if ((isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
6571 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
6572 || (! finfo
->info
->relocateable
6573 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
6576 /* Get the name of the symbol. */
6577 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
6582 /* See if we are discarding symbols with this name. */
6583 if ((finfo
->info
->strip
== strip_some
6584 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
6586 || (((finfo
->info
->discard
== discard_sec_merge
6587 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocateable
)
6588 || finfo
->info
->discard
== discard_l
)
6589 && bfd_is_local_label_name (input_bfd
, name
)))
6592 /* If we get here, we are going to output this symbol. */
6596 /* Adjust the section index for the output file. */
6597 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
6598 isec
->output_section
);
6599 if (osym
.st_shndx
== SHN_BAD
)
6602 *pindex
= bfd_get_symcount (output_bfd
);
6604 /* ELF symbols in relocateable files are section relative, but
6605 in executable files they are virtual addresses. Note that
6606 this code assumes that all ELF sections have an associated
6607 BFD section with a reasonable value for output_offset; below
6608 we assume that they also have a reasonable value for
6609 output_section. Any special sections must be set up to meet
6610 these requirements. */
6611 osym
.st_value
+= isec
->output_offset
;
6612 if (! finfo
->info
->relocateable
)
6614 osym
.st_value
+= isec
->output_section
->vma
;
6615 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
6617 /* STT_TLS symbols are relative to PT_TLS segment base. */
6618 BFD_ASSERT (finfo
->first_tls_sec
!= NULL
);
6619 osym
.st_value
-= finfo
->first_tls_sec
->vma
;
6623 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
))
6627 /* Relocate the contents of each section. */
6628 sym_hashes
= elf_sym_hashes (input_bfd
);
6629 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6633 if (! o
->linker_mark
)
6635 /* This section was omitted from the link. */
6639 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
6640 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
6643 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
6645 /* Section was created by elf_link_create_dynamic_sections
6650 /* Get the contents of the section. They have been cached by a
6651 relaxation routine. Note that o is a section in an input
6652 file, so the contents field will not have been set by any of
6653 the routines which work on output files. */
6654 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
6655 contents
= elf_section_data (o
)->this_hdr
.contents
;
6658 contents
= finfo
->contents
;
6659 if (! bfd_get_section_contents (input_bfd
, o
, contents
,
6660 (file_ptr
) 0, o
->_raw_size
))
6664 if ((o
->flags
& SEC_RELOC
) != 0)
6666 Elf_Internal_Rela
*internal_relocs
;
6668 /* Get the swapped relocs. */
6669 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
6670 (input_bfd
, o
, finfo
->external_relocs
,
6671 finfo
->internal_relocs
, FALSE
));
6672 if (internal_relocs
== NULL
6673 && o
->reloc_count
> 0)
6676 /* Run through the relocs looking for any against symbols
6677 from discarded sections and section symbols from
6678 removed link-once sections. Complain about relocs
6679 against discarded sections. Zero relocs against removed
6680 link-once sections. */
6681 if (!finfo
->info
->relocateable
6682 && !elf_section_ignore_discarded_relocs (o
))
6684 Elf_Internal_Rela
*rel
, *relend
;
6686 rel
= internal_relocs
;
6687 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6688 for ( ; rel
< relend
; rel
++)
6690 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
6692 if (r_symndx
>= locsymcount
6693 || (elf_bad_symtab (input_bfd
)
6694 && finfo
->sections
[r_symndx
] == NULL
))
6696 struct elf_link_hash_entry
*h
;
6698 h
= sym_hashes
[r_symndx
- extsymoff
];
6699 while (h
->root
.type
== bfd_link_hash_indirect
6700 || h
->root
.type
== bfd_link_hash_warning
)
6701 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6703 /* Complain if the definition comes from a
6704 discarded section. */
6705 if ((h
->root
.type
== bfd_link_hash_defined
6706 || h
->root
.type
== bfd_link_hash_defweak
)
6707 && elf_discarded_section (h
->root
.u
.def
.section
))
6709 if ((o
->flags
& SEC_DEBUGGING
) != 0)
6711 BFD_ASSERT (r_symndx
!= 0);
6712 memset (rel
, 0, sizeof (*rel
));
6716 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
6717 (finfo
->info
, h
->root
.root
.string
,
6718 input_bfd
, o
, rel
->r_offset
,
6726 asection
*sec
= finfo
->sections
[r_symndx
];
6728 if (sec
!= NULL
&& elf_discarded_section (sec
))
6730 if ((o
->flags
& SEC_DEBUGGING
) != 0
6731 || (sec
->flags
& SEC_LINK_ONCE
) != 0)
6733 BFD_ASSERT (r_symndx
!= 0);
6735 = ELF_R_INFO (0, ELF_R_TYPE (rel
->r_info
));
6742 = _("local symbols in discarded section %s");
6744 = strlen (sec
->name
) + strlen (msg
) - 1;
6745 char *buf
= (char *) bfd_malloc (amt
);
6748 sprintf (buf
, msg
, sec
->name
);
6750 buf
= (char *) sec
->name
;
6751 ok
= (*finfo
->info
->callbacks
6752 ->undefined_symbol
) (finfo
->info
, buf
,
6756 if (buf
!= sec
->name
)
6766 /* Relocate the section by invoking a back end routine.
6768 The back end routine is responsible for adjusting the
6769 section contents as necessary, and (if using Rela relocs
6770 and generating a relocateable output file) adjusting the
6771 reloc addend as necessary.
6773 The back end routine does not have to worry about setting
6774 the reloc address or the reloc symbol index.
6776 The back end routine is given a pointer to the swapped in
6777 internal symbols, and can access the hash table entries
6778 for the external symbols via elf_sym_hashes (input_bfd).
6780 When generating relocateable output, the back end routine
6781 must handle STB_LOCAL/STT_SECTION symbols specially. The
6782 output symbol is going to be a section symbol
6783 corresponding to the output section, which will require
6784 the addend to be adjusted. */
6786 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
6787 input_bfd
, o
, contents
,
6795 Elf_Internal_Rela
*irela
;
6796 Elf_Internal_Rela
*irelaend
;
6797 bfd_vma last_offset
;
6798 struct elf_link_hash_entry
**rel_hash
;
6799 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
6800 unsigned int next_erel
;
6801 bfd_boolean (*reloc_emitter
)
6802 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*,
6803 Elf_Internal_Rela
*));
6804 bfd_boolean rela_normal
;
6806 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
6807 rela_normal
= (bed
->rela_normal
6808 && (input_rel_hdr
->sh_entsize
6809 == sizeof (Elf_External_Rela
)));
6811 /* Adjust the reloc addresses and symbol indices. */
6813 irela
= internal_relocs
;
6814 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6815 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
6816 + elf_section_data (o
->output_section
)->rel_count
6817 + elf_section_data (o
->output_section
)->rel_count2
);
6818 last_offset
= o
->output_offset
;
6819 if (!finfo
->info
->relocateable
)
6820 last_offset
+= o
->output_section
->vma
;
6821 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
6823 unsigned long r_symndx
;
6825 Elf_Internal_Sym sym
;
6827 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
6833 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
6836 if (irela
->r_offset
>= (bfd_vma
) -2)
6838 /* This is a reloc for a deleted entry or somesuch.
6839 Turn it into an R_*_NONE reloc, at the same
6840 offset as the last reloc. elf_eh_frame.c and
6841 elf_bfd_discard_info rely on reloc offsets
6843 irela
->r_offset
= last_offset
;
6845 irela
->r_addend
= 0;
6849 irela
->r_offset
+= o
->output_offset
;
6851 /* Relocs in an executable have to be virtual addresses. */
6852 if (!finfo
->info
->relocateable
)
6853 irela
->r_offset
+= o
->output_section
->vma
;
6855 last_offset
= irela
->r_offset
;
6857 r_symndx
= ELF_R_SYM (irela
->r_info
);
6858 if (r_symndx
== STN_UNDEF
)
6861 if (r_symndx
>= locsymcount
6862 || (elf_bad_symtab (input_bfd
)
6863 && finfo
->sections
[r_symndx
] == NULL
))
6865 struct elf_link_hash_entry
*rh
;
6868 /* This is a reloc against a global symbol. We
6869 have not yet output all the local symbols, so
6870 we do not know the symbol index of any global
6871 symbol. We set the rel_hash entry for this
6872 reloc to point to the global hash table entry
6873 for this symbol. The symbol index is then
6874 set at the end of elf_bfd_final_link. */
6875 indx
= r_symndx
- extsymoff
;
6876 rh
= elf_sym_hashes (input_bfd
)[indx
];
6877 while (rh
->root
.type
== bfd_link_hash_indirect
6878 || rh
->root
.type
== bfd_link_hash_warning
)
6879 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
6881 /* Setting the index to -2 tells
6882 elf_link_output_extsym that this symbol is
6884 BFD_ASSERT (rh
->indx
< 0);
6892 /* This is a reloc against a local symbol. */
6895 sym
= isymbuf
[r_symndx
];
6896 sec
= finfo
->sections
[r_symndx
];
6897 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
6899 /* I suppose the backend ought to fill in the
6900 section of any STT_SECTION symbol against a
6901 processor specific section. If we have
6902 discarded a section, the output_section will
6903 be the absolute section. */
6904 if (bfd_is_abs_section (sec
)
6906 && bfd_is_abs_section (sec
->output_section
)))
6908 else if (sec
== NULL
|| sec
->owner
== NULL
)
6910 bfd_set_error (bfd_error_bad_value
);
6915 r_symndx
= sec
->output_section
->target_index
;
6916 BFD_ASSERT (r_symndx
!= 0);
6919 /* Adjust the addend according to where the
6920 section winds up in the output section. */
6922 irela
->r_addend
+= sec
->output_offset
;
6926 if (finfo
->indices
[r_symndx
] == -1)
6928 unsigned long shlink
;
6932 if (finfo
->info
->strip
== strip_all
)
6934 /* You can't do ld -r -s. */
6935 bfd_set_error (bfd_error_invalid_operation
);
6939 /* This symbol was skipped earlier, but
6940 since it is needed by a reloc, we
6941 must output it now. */
6942 shlink
= symtab_hdr
->sh_link
;
6943 name
= (bfd_elf_string_from_elf_section
6944 (input_bfd
, shlink
, sym
.st_name
));
6948 osec
= sec
->output_section
;
6950 _bfd_elf_section_from_bfd_section (output_bfd
,
6952 if (sym
.st_shndx
== SHN_BAD
)
6955 sym
.st_value
+= sec
->output_offset
;
6956 if (! finfo
->info
->relocateable
)
6958 sym
.st_value
+= osec
->vma
;
6959 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
6961 /* STT_TLS symbols are relative to PT_TLS
6963 BFD_ASSERT (finfo
->first_tls_sec
!= NULL
);
6964 sym
.st_value
-= finfo
->first_tls_sec
->vma
;
6968 finfo
->indices
[r_symndx
]
6969 = bfd_get_symcount (output_bfd
);
6971 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
))
6975 r_symndx
= finfo
->indices
[r_symndx
];
6978 irela
->r_info
= ELF_R_INFO (r_symndx
,
6979 ELF_R_TYPE (irela
->r_info
));
6982 /* Swap out the relocs. */
6983 if (bed
->elf_backend_emit_relocs
6984 && !(finfo
->info
->relocateable
6985 || finfo
->info
->emitrelocations
))
6986 reloc_emitter
= bed
->elf_backend_emit_relocs
;
6988 reloc_emitter
= elf_link_output_relocs
;
6990 if (input_rel_hdr
->sh_size
!= 0
6991 && ! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
,
6995 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
6996 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
6998 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
6999 * bed
->s
->int_rels_per_ext_rel
);
7000 if (! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr2
,
7007 /* Write out the modified section contents. */
7008 if (bed
->elf_backend_write_section
7009 && (*bed
->elf_backend_write_section
) (output_bfd
, o
, contents
))
7011 /* Section written out. */
7013 else switch (elf_section_data (o
)->sec_info_type
)
7015 case ELF_INFO_TYPE_STABS
:
7016 if (! (_bfd_write_section_stabs
7018 &elf_hash_table (finfo
->info
)->stab_info
,
7019 o
, &elf_section_data (o
)->sec_info
, contents
)))
7022 case ELF_INFO_TYPE_MERGE
:
7023 if (! _bfd_write_merged_section (output_bfd
, o
,
7024 elf_section_data (o
)->sec_info
))
7027 case ELF_INFO_TYPE_EH_FRAME
:
7029 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
7036 bfd_size_type sec_size
;
7038 sec_size
= (o
->_cooked_size
!= 0 ? o
->_cooked_size
: o
->_raw_size
);
7039 if (! (o
->flags
& SEC_EXCLUDE
)
7040 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
7042 (file_ptr
) o
->output_offset
,
7053 /* Generate a reloc when linking an ELF file. This is a reloc
7054 requested by the linker, and does come from any input file. This
7055 is used to build constructor and destructor tables when linking
7059 elf_reloc_link_order (output_bfd
, info
, output_section
, link_order
)
7061 struct bfd_link_info
*info
;
7062 asection
*output_section
;
7063 struct bfd_link_order
*link_order
;
7065 reloc_howto_type
*howto
;
7069 struct elf_link_hash_entry
**rel_hash_ptr
;
7070 Elf_Internal_Shdr
*rel_hdr
;
7071 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7072 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
7076 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
7079 bfd_set_error (bfd_error_bad_value
);
7083 addend
= link_order
->u
.reloc
.p
->addend
;
7085 /* Figure out the symbol index. */
7086 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
7087 + elf_section_data (output_section
)->rel_count
7088 + elf_section_data (output_section
)->rel_count2
);
7089 if (link_order
->type
== bfd_section_reloc_link_order
)
7091 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
7092 BFD_ASSERT (indx
!= 0);
7093 *rel_hash_ptr
= NULL
;
7097 struct elf_link_hash_entry
*h
;
7099 /* Treat a reloc against a defined symbol as though it were
7100 actually against the section. */
7101 h
= ((struct elf_link_hash_entry
*)
7102 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
7103 link_order
->u
.reloc
.p
->u
.name
,
7104 FALSE
, FALSE
, TRUE
));
7106 && (h
->root
.type
== bfd_link_hash_defined
7107 || h
->root
.type
== bfd_link_hash_defweak
))
7111 section
= h
->root
.u
.def
.section
;
7112 indx
= section
->output_section
->target_index
;
7113 *rel_hash_ptr
= NULL
;
7114 /* It seems that we ought to add the symbol value to the
7115 addend here, but in practice it has already been added
7116 because it was passed to constructor_callback. */
7117 addend
+= section
->output_section
->vma
+ section
->output_offset
;
7121 /* Setting the index to -2 tells elf_link_output_extsym that
7122 this symbol is used by a reloc. */
7129 if (! ((*info
->callbacks
->unattached_reloc
)
7130 (info
, link_order
->u
.reloc
.p
->u
.name
, (bfd
*) NULL
,
7131 (asection
*) NULL
, (bfd_vma
) 0)))
7137 /* If this is an inplace reloc, we must write the addend into the
7139 if (howto
->partial_inplace
&& addend
!= 0)
7142 bfd_reloc_status_type rstat
;
7145 const char *sym_name
;
7147 size
= bfd_get_reloc_size (howto
);
7148 buf
= (bfd_byte
*) bfd_zmalloc (size
);
7149 if (buf
== (bfd_byte
*) NULL
)
7151 rstat
= _bfd_relocate_contents (howto
, output_bfd
, (bfd_vma
) addend
, buf
);
7158 case bfd_reloc_outofrange
:
7161 case bfd_reloc_overflow
:
7162 if (link_order
->type
== bfd_section_reloc_link_order
)
7163 sym_name
= bfd_section_name (output_bfd
,
7164 link_order
->u
.reloc
.p
->u
.section
);
7166 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
7167 if (! ((*info
->callbacks
->reloc_overflow
)
7168 (info
, sym_name
, howto
->name
, addend
,
7169 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
7176 ok
= bfd_set_section_contents (output_bfd
, output_section
, (PTR
) buf
,
7177 (file_ptr
) link_order
->offset
, size
);
7183 /* The address of a reloc is relative to the section in a
7184 relocateable file, and is a virtual address in an executable
7186 offset
= link_order
->offset
;
7187 if (! info
->relocateable
)
7188 offset
+= output_section
->vma
;
7190 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7192 irel
[i
].r_offset
= offset
;
7194 irel
[i
].r_addend
= 0;
7196 irel
[0].r_info
= ELF_R_INFO (indx
, howto
->type
);
7198 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
7199 erel
= rel_hdr
->contents
;
7200 if (rel_hdr
->sh_type
== SHT_REL
)
7202 erel
+= (elf_section_data (output_section
)->rel_count
7203 * sizeof (Elf_External_Rel
));
7204 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
7208 irel
[0].r_addend
= addend
;
7209 erel
+= (elf_section_data (output_section
)->rel_count
7210 * sizeof (Elf_External_Rela
));
7211 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
7214 ++elf_section_data (output_section
)->rel_count
;
7219 /* Allocate a pointer to live in a linker created section. */
7222 elf_create_pointer_linker_section (abfd
, info
, lsect
, h
, rel
)
7224 struct bfd_link_info
*info
;
7225 elf_linker_section_t
*lsect
;
7226 struct elf_link_hash_entry
*h
;
7227 const Elf_Internal_Rela
*rel
;
7229 elf_linker_section_pointers_t
**ptr_linker_section_ptr
= NULL
;
7230 elf_linker_section_pointers_t
*linker_section_ptr
;
7231 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7234 BFD_ASSERT (lsect
!= NULL
);
7236 /* Is this a global symbol? */
7239 /* Has this symbol already been allocated? If so, our work is done. */
7240 if (_bfd_elf_find_pointer_linker_section (h
->linker_section_pointer
,
7245 ptr_linker_section_ptr
= &h
->linker_section_pointer
;
7246 /* Make sure this symbol is output as a dynamic symbol. */
7247 if (h
->dynindx
== -1)
7249 if (! elf_link_record_dynamic_symbol (info
, h
))
7253 if (lsect
->rel_section
)
7254 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
7258 /* Allocation of a pointer to a local symbol. */
7259 elf_linker_section_pointers_t
**ptr
= elf_local_ptr_offsets (abfd
);
7261 /* Allocate a table to hold the local symbols if first time. */
7264 unsigned int num_symbols
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
7265 register unsigned int i
;
7268 amt
*= sizeof (elf_linker_section_pointers_t
*);
7269 ptr
= (elf_linker_section_pointers_t
**) bfd_alloc (abfd
, amt
);
7274 elf_local_ptr_offsets (abfd
) = ptr
;
7275 for (i
= 0; i
< num_symbols
; i
++)
7276 ptr
[i
] = (elf_linker_section_pointers_t
*) 0;
7279 /* Has this symbol already been allocated? If so, our work is done. */
7280 if (_bfd_elf_find_pointer_linker_section (ptr
[r_symndx
],
7285 ptr_linker_section_ptr
= &ptr
[r_symndx
];
7289 /* If we are generating a shared object, we need to
7290 output a R_<xxx>_RELATIVE reloc so that the
7291 dynamic linker can adjust this GOT entry. */
7292 BFD_ASSERT (lsect
->rel_section
!= NULL
);
7293 lsect
->rel_section
->_raw_size
+= sizeof (Elf_External_Rela
);
7297 /* Allocate space for a pointer in the linker section, and allocate
7298 a new pointer record from internal memory. */
7299 BFD_ASSERT (ptr_linker_section_ptr
!= NULL
);
7300 amt
= sizeof (elf_linker_section_pointers_t
);
7301 linker_section_ptr
= (elf_linker_section_pointers_t
*) bfd_alloc (abfd
, amt
);
7303 if (!linker_section_ptr
)
7306 linker_section_ptr
->next
= *ptr_linker_section_ptr
;
7307 linker_section_ptr
->addend
= rel
->r_addend
;
7308 linker_section_ptr
->which
= lsect
->which
;
7309 linker_section_ptr
->written_address_p
= FALSE
;
7310 *ptr_linker_section_ptr
= linker_section_ptr
;
7313 if (lsect
->hole_size
&& lsect
->hole_offset
< lsect
->max_hole_offset
)
7315 linker_section_ptr
->offset
= (lsect
->section
->_raw_size
7316 - lsect
->hole_size
+ (ARCH_SIZE
/ 8));
7317 lsect
->hole_offset
+= ARCH_SIZE
/ 8;
7318 lsect
->sym_offset
+= ARCH_SIZE
/ 8;
7319 if (lsect
->sym_hash
)
7321 /* Bump up symbol value if needed. */
7322 lsect
->sym_hash
->root
.u
.def
.value
+= ARCH_SIZE
/ 8;
7324 fprintf (stderr
, "Bump up %s by %ld, current value = %ld\n",
7325 lsect
->sym_hash
->root
.root
.string
,
7326 (long) ARCH_SIZE
/ 8,
7327 (long) lsect
->sym_hash
->root
.u
.def
.value
);
7333 linker_section_ptr
->offset
= lsect
->section
->_raw_size
;
7335 lsect
->section
->_raw_size
+= ARCH_SIZE
/ 8;
7339 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7340 lsect
->name
, (long) linker_section_ptr
->offset
,
7341 (long) lsect
->section
->_raw_size
);
7348 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7351 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7354 /* Fill in the address for a pointer generated in a linker section. */
7357 elf_finish_pointer_linker_section (output_bfd
, input_bfd
, info
, lsect
, h
,
7358 relocation
, rel
, relative_reloc
)
7361 struct bfd_link_info
*info
;
7362 elf_linker_section_t
*lsect
;
7363 struct elf_link_hash_entry
*h
;
7365 const Elf_Internal_Rela
*rel
;
7368 elf_linker_section_pointers_t
*linker_section_ptr
;
7370 BFD_ASSERT (lsect
!= NULL
);
7374 /* Handle global symbol. */
7375 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7376 (h
->linker_section_pointer
,
7380 BFD_ASSERT (linker_section_ptr
!= NULL
);
7382 if (! elf_hash_table (info
)->dynamic_sections_created
7385 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
7387 /* This is actually a static link, or it is a
7388 -Bsymbolic link and the symbol is defined
7389 locally. We must initialize this entry in the
7392 When doing a dynamic link, we create a .rela.<xxx>
7393 relocation entry to initialize the value. This
7394 is done in the finish_dynamic_symbol routine. */
7395 if (!linker_section_ptr
->written_address_p
)
7397 linker_section_ptr
->written_address_p
= TRUE
;
7398 bfd_put_ptr (output_bfd
,
7399 relocation
+ linker_section_ptr
->addend
,
7400 (lsect
->section
->contents
7401 + linker_section_ptr
->offset
));
7407 /* Handle local symbol. */
7408 unsigned long r_symndx
= ELF_R_SYM (rel
->r_info
);
7409 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
) != NULL
);
7410 BFD_ASSERT (elf_local_ptr_offsets (input_bfd
)[r_symndx
] != NULL
);
7411 linker_section_ptr
= (_bfd_elf_find_pointer_linker_section
7412 (elf_local_ptr_offsets (input_bfd
)[r_symndx
],
7416 BFD_ASSERT (linker_section_ptr
!= NULL
);
7418 /* Write out pointer if it hasn't been rewritten out before. */
7419 if (!linker_section_ptr
->written_address_p
)
7421 linker_section_ptr
->written_address_p
= TRUE
;
7422 bfd_put_ptr (output_bfd
, relocation
+ linker_section_ptr
->addend
,
7423 lsect
->section
->contents
+ linker_section_ptr
->offset
);
7427 asection
*srel
= lsect
->rel_section
;
7428 Elf_Internal_Rela outrel
[MAX_INT_RELS_PER_EXT_REL
];
7430 struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
7433 /* We need to generate a relative reloc for the dynamic
7437 srel
= bfd_get_section_by_name (elf_hash_table (info
)->dynobj
,
7439 lsect
->rel_section
= srel
;
7442 BFD_ASSERT (srel
!= NULL
);
7444 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7446 outrel
[i
].r_offset
= (lsect
->section
->output_section
->vma
7447 + lsect
->section
->output_offset
7448 + linker_section_ptr
->offset
);
7449 outrel
[i
].r_info
= 0;
7450 outrel
[i
].r_addend
= 0;
7452 outrel
[0].r_info
= ELF_R_INFO (0, relative_reloc
);
7453 erel
= lsect
->section
->contents
;
7454 erel
+= (elf_section_data (lsect
->section
)->rel_count
++
7455 * sizeof (Elf_External_Rela
));
7456 elf_swap_reloca_out (output_bfd
, outrel
, erel
);
7461 relocation
= (lsect
->section
->output_offset
7462 + linker_section_ptr
->offset
7463 - lsect
->hole_offset
7464 - lsect
->sym_offset
);
7468 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7469 lsect
->name
, (long) relocation
, (long) relocation
);
7472 /* Subtract out the addend, because it will get added back in by the normal
7474 return relocation
- linker_section_ptr
->addend
;
7477 /* Garbage collect unused sections. */
7479 static bfd_boolean elf_gc_mark
7480 PARAMS ((struct bfd_link_info
*, asection
*,
7481 asection
* (*) (asection
*, struct bfd_link_info
*,
7482 Elf_Internal_Rela
*, struct elf_link_hash_entry
*,
7483 Elf_Internal_Sym
*)));
7485 static bfd_boolean elf_gc_sweep
7486 PARAMS ((struct bfd_link_info
*,
7487 bfd_boolean (*) (bfd
*, struct bfd_link_info
*, asection
*,
7488 const Elf_Internal_Rela
*)));
7490 static bfd_boolean elf_gc_sweep_symbol
7491 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7493 static bfd_boolean elf_gc_allocate_got_offsets
7494 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7496 static bfd_boolean elf_gc_propagate_vtable_entries_used
7497 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7499 static bfd_boolean elf_gc_smash_unused_vtentry_relocs
7500 PARAMS ((struct elf_link_hash_entry
*, PTR
));
7502 /* The mark phase of garbage collection. For a given section, mark
7503 it and any sections in this section's group, and all the sections
7504 which define symbols to which it refers. */
7506 typedef asection
* (*gc_mark_hook_fn
)
7507 PARAMS ((asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7508 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
7511 elf_gc_mark (info
, sec
, gc_mark_hook
)
7512 struct bfd_link_info
*info
;
7514 gc_mark_hook_fn gc_mark_hook
;
7517 asection
*group_sec
;
7521 /* Mark all the sections in the group. */
7522 group_sec
= elf_section_data (sec
)->next_in_group
;
7523 if (group_sec
&& !group_sec
->gc_mark
)
7524 if (!elf_gc_mark (info
, group_sec
, gc_mark_hook
))
7527 /* Look through the section relocs. */
7529 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
7531 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
7532 Elf_Internal_Shdr
*symtab_hdr
;
7533 struct elf_link_hash_entry
**sym_hashes
;
7536 bfd
*input_bfd
= sec
->owner
;
7537 struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
7538 Elf_Internal_Sym
*isym
= NULL
;
7540 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
7541 sym_hashes
= elf_sym_hashes (input_bfd
);
7543 /* Read the local symbols. */
7544 if (elf_bad_symtab (input_bfd
))
7546 nlocsyms
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
7550 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
7552 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
7553 if (isym
== NULL
&& nlocsyms
!= 0)
7555 isym
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, nlocsyms
, 0,
7561 /* Read the relocations. */
7562 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7563 (input_bfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
7564 info
->keep_memory
));
7565 if (relstart
== NULL
)
7570 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7572 for (rel
= relstart
; rel
< relend
; rel
++)
7574 unsigned long r_symndx
;
7576 struct elf_link_hash_entry
*h
;
7578 r_symndx
= ELF_R_SYM (rel
->r_info
);
7582 if (r_symndx
>= nlocsyms
7583 || ELF_ST_BIND (isym
[r_symndx
].st_info
) != STB_LOCAL
)
7585 h
= sym_hashes
[r_symndx
- extsymoff
];
7586 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, h
, NULL
);
7590 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, NULL
, &isym
[r_symndx
]);
7593 if (rsec
&& !rsec
->gc_mark
)
7595 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
7597 else if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
7606 if (elf_section_data (sec
)->relocs
!= relstart
)
7609 if (isym
!= NULL
&& symtab_hdr
->contents
!= (unsigned char *) isym
)
7611 if (! info
->keep_memory
)
7614 symtab_hdr
->contents
= (unsigned char *) isym
;
7621 /* The sweep phase of garbage collection. Remove all garbage sections. */
7623 typedef bfd_boolean (*gc_sweep_hook_fn
)
7624 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
7625 const Elf_Internal_Rela
*));
7628 elf_gc_sweep (info
, gc_sweep_hook
)
7629 struct bfd_link_info
*info
;
7630 gc_sweep_hook_fn gc_sweep_hook
;
7634 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7638 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7641 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7643 /* Keep special sections. Keep .debug sections. */
7644 if ((o
->flags
& SEC_LINKER_CREATED
)
7645 || (o
->flags
& SEC_DEBUGGING
))
7651 /* Skip sweeping sections already excluded. */
7652 if (o
->flags
& SEC_EXCLUDE
)
7655 /* Since this is early in the link process, it is simple
7656 to remove a section from the output. */
7657 o
->flags
|= SEC_EXCLUDE
;
7659 /* But we also have to update some of the relocation
7660 info we collected before. */
7662 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
7664 Elf_Internal_Rela
*internal_relocs
;
7667 internal_relocs
= (NAME(_bfd_elf
,link_read_relocs
)
7668 (o
->owner
, o
, NULL
, NULL
, info
->keep_memory
));
7669 if (internal_relocs
== NULL
)
7672 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
7674 if (elf_section_data (o
)->relocs
!= internal_relocs
)
7675 free (internal_relocs
);
7683 /* Remove the symbols that were in the swept sections from the dynamic
7684 symbol table. GCFIXME: Anyone know how to get them out of the
7685 static symbol table as well? */
7689 elf_link_hash_traverse (elf_hash_table (info
),
7690 elf_gc_sweep_symbol
,
7693 elf_hash_table (info
)->dynsymcount
= i
;
7699 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7702 elf_gc_sweep_symbol (h
, idxptr
)
7703 struct elf_link_hash_entry
*h
;
7706 int *idx
= (int *) idxptr
;
7708 if (h
->root
.type
== bfd_link_hash_warning
)
7709 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7711 if (h
->dynindx
!= -1
7712 && ((h
->root
.type
!= bfd_link_hash_defined
7713 && h
->root
.type
!= bfd_link_hash_defweak
)
7714 || h
->root
.u
.def
.section
->gc_mark
))
7715 h
->dynindx
= (*idx
)++;
7720 /* Propogate collected vtable information. This is called through
7721 elf_link_hash_traverse. */
7724 elf_gc_propagate_vtable_entries_used (h
, okp
)
7725 struct elf_link_hash_entry
*h
;
7728 if (h
->root
.type
== bfd_link_hash_warning
)
7729 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7731 /* Those that are not vtables. */
7732 if (h
->vtable_parent
== NULL
)
7735 /* Those vtables that do not have parents, we cannot merge. */
7736 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
7739 /* If we've already been done, exit. */
7740 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
7743 /* Make sure the parent's table is up to date. */
7744 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
7746 if (h
->vtable_entries_used
== NULL
)
7748 /* None of this table's entries were referenced. Re-use the
7750 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
7751 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
7756 bfd_boolean
*cu
, *pu
;
7758 /* Or the parent's entries into ours. */
7759 cu
= h
->vtable_entries_used
;
7761 pu
= h
->vtable_parent
->vtable_entries_used
;
7764 asection
*sec
= h
->root
.u
.def
.section
;
7765 struct elf_backend_data
*bed
= get_elf_backend_data (sec
->owner
);
7766 int file_align
= bed
->s
->file_align
;
7768 n
= h
->vtable_parent
->vtable_entries_size
/ file_align
;
7783 elf_gc_smash_unused_vtentry_relocs (h
, okp
)
7784 struct elf_link_hash_entry
*h
;
7788 bfd_vma hstart
, hend
;
7789 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
7790 struct elf_backend_data
*bed
;
7793 if (h
->root
.type
== bfd_link_hash_warning
)
7794 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7796 /* Take care of both those symbols that do not describe vtables as
7797 well as those that are not loaded. */
7798 if (h
->vtable_parent
== NULL
)
7801 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
7802 || h
->root
.type
== bfd_link_hash_defweak
);
7804 sec
= h
->root
.u
.def
.section
;
7805 hstart
= h
->root
.u
.def
.value
;
7806 hend
= hstart
+ h
->size
;
7808 relstart
= (NAME(_bfd_elf
,link_read_relocs
)
7809 (sec
->owner
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
, TRUE
));
7811 return *(bfd_boolean
*) okp
= FALSE
;
7812 bed
= get_elf_backend_data (sec
->owner
);
7813 file_align
= bed
->s
->file_align
;
7815 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7817 for (rel
= relstart
; rel
< relend
; ++rel
)
7818 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
7820 /* If the entry is in use, do nothing. */
7821 if (h
->vtable_entries_used
7822 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
7824 bfd_vma entry
= (rel
->r_offset
- hstart
) / file_align
;
7825 if (h
->vtable_entries_used
[entry
])
7828 /* Otherwise, kill it. */
7829 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
7835 /* Do mark and sweep of unused sections. */
7838 elf_gc_sections (abfd
, info
)
7840 struct bfd_link_info
*info
;
7842 bfd_boolean ok
= TRUE
;
7844 asection
* (*gc_mark_hook
)
7845 PARAMS ((asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
7846 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*));
7848 if (!get_elf_backend_data (abfd
)->can_gc_sections
7849 || info
->relocateable
|| info
->emitrelocations
7850 || elf_hash_table (info
)->dynamic_sections_created
)
7853 /* Apply transitive closure to the vtable entry usage info. */
7854 elf_link_hash_traverse (elf_hash_table (info
),
7855 elf_gc_propagate_vtable_entries_used
,
7860 /* Kill the vtable relocations that were not used. */
7861 elf_link_hash_traverse (elf_hash_table (info
),
7862 elf_gc_smash_unused_vtentry_relocs
,
7867 /* Grovel through relocs to find out who stays ... */
7869 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
7870 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7874 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
7877 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7879 if (o
->flags
& SEC_KEEP
)
7880 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
7885 /* ... and mark SEC_EXCLUDE for those that go. */
7886 if (!elf_gc_sweep (info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
7892 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7895 elf_gc_record_vtinherit (abfd
, sec
, h
, offset
)
7898 struct elf_link_hash_entry
*h
;
7901 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
7902 struct elf_link_hash_entry
**search
, *child
;
7903 bfd_size_type extsymcount
;
7905 /* The sh_info field of the symtab header tells us where the
7906 external symbols start. We don't care about the local symbols at
7908 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/sizeof (Elf_External_Sym
);
7909 if (!elf_bad_symtab (abfd
))
7910 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
7912 sym_hashes
= elf_sym_hashes (abfd
);
7913 sym_hashes_end
= sym_hashes
+ extsymcount
;
7915 /* Hunt down the child symbol, which is in this section at the same
7916 offset as the relocation. */
7917 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
7919 if ((child
= *search
) != NULL
7920 && (child
->root
.type
== bfd_link_hash_defined
7921 || child
->root
.type
== bfd_link_hash_defweak
)
7922 && child
->root
.u
.def
.section
== sec
7923 && child
->root
.u
.def
.value
== offset
)
7927 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
7928 bfd_archive_filename (abfd
), sec
->name
,
7929 (unsigned long) offset
);
7930 bfd_set_error (bfd_error_invalid_operation
);
7936 /* This *should* only be the absolute section. It could potentially
7937 be that someone has defined a non-global vtable though, which
7938 would be bad. It isn't worth paging in the local symbols to be
7939 sure though; that case should simply be handled by the assembler. */
7941 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
7944 child
->vtable_parent
= h
;
7949 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7952 elf_gc_record_vtentry (abfd
, sec
, h
, addend
)
7953 bfd
*abfd ATTRIBUTE_UNUSED
;
7954 asection
*sec ATTRIBUTE_UNUSED
;
7955 struct elf_link_hash_entry
*h
;
7958 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7959 int file_align
= bed
->s
->file_align
;
7961 if (addend
>= h
->vtable_entries_size
)
7964 bfd_boolean
*ptr
= h
->vtable_entries_used
;
7966 /* While the symbol is undefined, we have to be prepared to handle
7968 if (h
->root
.type
== bfd_link_hash_undefined
)
7975 /* Oops! We've got a reference past the defined end of
7976 the table. This is probably a bug -- shall we warn? */
7981 /* Allocate one extra entry for use as a "done" flag for the
7982 consolidation pass. */
7983 bytes
= (size
/ file_align
+ 1) * sizeof (bfd_boolean
);
7987 ptr
= bfd_realloc (ptr
- 1, (bfd_size_type
) bytes
);
7993 oldbytes
= ((h
->vtable_entries_size
/ file_align
+ 1)
7994 * sizeof (bfd_boolean
));
7995 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
7999 ptr
= bfd_zmalloc ((bfd_size_type
) bytes
);
8004 /* And arrange for that done flag to be at index -1. */
8005 h
->vtable_entries_used
= ptr
+ 1;
8006 h
->vtable_entries_size
= size
;
8009 h
->vtable_entries_used
[addend
/ file_align
] = TRUE
;
8014 /* And an accompanying bit to work out final got entry offsets once
8015 we're done. Should be called from final_link. */
8018 elf_gc_common_finalize_got_offsets (abfd
, info
)
8020 struct bfd_link_info
*info
;
8023 struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8026 /* The GOT offset is relative to the .got section, but the GOT header is
8027 put into the .got.plt section, if the backend uses it. */
8028 if (bed
->want_got_plt
)
8031 gotoff
= bed
->got_header_size
;
8033 /* Do the local .got entries first. */
8034 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
8036 bfd_signed_vma
*local_got
;
8037 bfd_size_type j
, locsymcount
;
8038 Elf_Internal_Shdr
*symtab_hdr
;
8040 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
8043 local_got
= elf_local_got_refcounts (i
);
8047 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
8048 if (elf_bad_symtab (i
))
8049 locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
8051 locsymcount
= symtab_hdr
->sh_info
;
8053 for (j
= 0; j
< locsymcount
; ++j
)
8055 if (local_got
[j
] > 0)
8057 local_got
[j
] = gotoff
;
8058 gotoff
+= ARCH_SIZE
/ 8;
8061 local_got
[j
] = (bfd_vma
) -1;
8065 /* Then the global .got entries. .plt refcounts are handled by
8066 adjust_dynamic_symbol */
8067 elf_link_hash_traverse (elf_hash_table (info
),
8068 elf_gc_allocate_got_offsets
,
8073 /* We need a special top-level link routine to convert got reference counts
8074 to real got offsets. */
8077 elf_gc_allocate_got_offsets (h
, offarg
)
8078 struct elf_link_hash_entry
*h
;
8081 bfd_vma
*off
= (bfd_vma
*) offarg
;
8083 if (h
->root
.type
== bfd_link_hash_warning
)
8084 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8086 if (h
->got
.refcount
> 0)
8088 h
->got
.offset
= off
[0];
8089 off
[0] += ARCH_SIZE
/ 8;
8092 h
->got
.offset
= (bfd_vma
) -1;
8097 /* Many folk need no more in the way of final link than this, once
8098 got entry reference counting is enabled. */
8101 elf_gc_common_final_link (abfd
, info
)
8103 struct bfd_link_info
*info
;
8105 if (!elf_gc_common_finalize_got_offsets (abfd
, info
))
8108 /* Invoke the regular ELF backend linker to do all the work. */
8109 return elf_bfd_final_link (abfd
, info
);
8112 /* This function will be called though elf_link_hash_traverse to store
8113 all hash value of the exported symbols in an array. */
8116 elf_collect_hash_codes (h
, data
)
8117 struct elf_link_hash_entry
*h
;
8120 unsigned long **valuep
= (unsigned long **) data
;
8126 if (h
->root
.type
== bfd_link_hash_warning
)
8127 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8129 /* Ignore indirect symbols. These are added by the versioning code. */
8130 if (h
->dynindx
== -1)
8133 name
= h
->root
.root
.string
;
8134 p
= strchr (name
, ELF_VER_CHR
);
8137 alc
= bfd_malloc ((bfd_size_type
) (p
- name
+ 1));
8138 memcpy (alc
, name
, (size_t) (p
- name
));
8139 alc
[p
- name
] = '\0';
8143 /* Compute the hash value. */
8144 ha
= bfd_elf_hash (name
);
8146 /* Store the found hash value in the array given as the argument. */
8149 /* And store it in the struct so that we can put it in the hash table
8151 h
->elf_hash_value
= ha
;
8160 elf_reloc_symbol_deleted_p (offset
, cookie
)
8164 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
8166 if (rcookie
->bad_symtab
)
8167 rcookie
->rel
= rcookie
->rels
;
8169 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
8171 unsigned long r_symndx
;
8173 if (! rcookie
->bad_symtab
)
8174 if (rcookie
->rel
->r_offset
> offset
)
8176 if (rcookie
->rel
->r_offset
!= offset
)
8179 r_symndx
= ELF_R_SYM (rcookie
->rel
->r_info
);
8180 if (r_symndx
== SHN_UNDEF
)
8183 if (r_symndx
>= rcookie
->locsymcount
8184 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
8186 struct elf_link_hash_entry
*h
;
8188 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
8190 while (h
->root
.type
== bfd_link_hash_indirect
8191 || h
->root
.type
== bfd_link_hash_warning
)
8192 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8194 if ((h
->root
.type
== bfd_link_hash_defined
8195 || h
->root
.type
== bfd_link_hash_defweak
)
8196 && elf_discarded_section (h
->root
.u
.def
.section
))
8203 /* It's not a relocation against a global symbol,
8204 but it could be a relocation against a local
8205 symbol for a discarded section. */
8207 Elf_Internal_Sym
*isym
;
8209 /* Need to: get the symbol; get the section. */
8210 isym
= &rcookie
->locsyms
[r_symndx
];
8211 if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
8213 isec
= section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
8214 if (isec
!= NULL
&& elf_discarded_section (isec
))
8223 /* Discard unneeded references to discarded sections.
8224 Returns TRUE if any section's size was changed. */
8225 /* This function assumes that the relocations are in sorted order,
8226 which is TRUE for all known assemblers. */
8229 elf_bfd_discard_info (output_bfd
, info
)
8231 struct bfd_link_info
*info
;
8233 struct elf_reloc_cookie cookie
;
8234 asection
*stab
, *eh
;
8235 Elf_Internal_Shdr
*symtab_hdr
;
8236 struct elf_backend_data
*bed
;
8239 bfd_boolean ret
= FALSE
;
8241 if (info
->traditional_format
8242 || info
->hash
->creator
->flavour
!= bfd_target_elf_flavour
8243 || ! is_elf_hash_table (info
))
8246 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
8248 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
8251 bed
= get_elf_backend_data (abfd
);
8253 if ((abfd
->flags
& DYNAMIC
) != 0)
8256 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
8258 && (eh
->_raw_size
== 0
8259 || bfd_is_abs_section (eh
->output_section
)))
8262 stab
= bfd_get_section_by_name (abfd
, ".stab");
8264 && (stab
->_raw_size
== 0
8265 || bfd_is_abs_section (stab
->output_section
)
8266 || elf_section_data (stab
)->sec_info_type
!= ELF_INFO_TYPE_STABS
))
8271 && bed
->elf_backend_discard_info
== NULL
)
8274 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8276 cookie
.sym_hashes
= elf_sym_hashes (abfd
);
8277 cookie
.bad_symtab
= elf_bad_symtab (abfd
);
8278 if (cookie
.bad_symtab
)
8280 cookie
.locsymcount
= symtab_hdr
->sh_size
/ sizeof (Elf_External_Sym
);
8281 cookie
.extsymoff
= 0;
8285 cookie
.locsymcount
= symtab_hdr
->sh_info
;
8286 cookie
.extsymoff
= symtab_hdr
->sh_info
;
8289 cookie
.locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8290 if (cookie
.locsyms
== NULL
&& cookie
.locsymcount
!= 0)
8292 cookie
.locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
8293 cookie
.locsymcount
, 0,
8295 if (cookie
.locsyms
== NULL
)
8302 count
= stab
->reloc_count
;
8304 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8305 (abfd
, stab
, (PTR
) NULL
, (Elf_Internal_Rela
*) NULL
,
8306 info
->keep_memory
));
8307 if (cookie
.rels
!= NULL
)
8309 cookie
.rel
= cookie
.rels
;
8310 cookie
.relend
= cookie
.rels
;
8311 cookie
.relend
+= count
* bed
->s
->int_rels_per_ext_rel
;
8312 if (_bfd_discard_section_stabs (abfd
, stab
,
8313 elf_section_data (stab
)->sec_info
,
8314 elf_reloc_symbol_deleted_p
,
8317 if (elf_section_data (stab
)->relocs
!= cookie
.rels
)
8325 count
= eh
->reloc_count
;
8327 cookie
.rels
= (NAME(_bfd_elf
,link_read_relocs
)
8328 (abfd
, eh
, (PTR
) NULL
, (Elf_Internal_Rela
*) NULL
,
8329 info
->keep_memory
));
8330 cookie
.rel
= cookie
.rels
;
8331 cookie
.relend
= cookie
.rels
;
8332 if (cookie
.rels
!= NULL
)
8333 cookie
.relend
+= count
* bed
->s
->int_rels_per_ext_rel
;
8335 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
8336 elf_reloc_symbol_deleted_p
,
8340 if (cookie
.rels
!= NULL
8341 && elf_section_data (eh
)->relocs
!= cookie
.rels
)
8345 if (bed
->elf_backend_discard_info
!= NULL
8346 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
8349 if (cookie
.locsyms
!= NULL
8350 && symtab_hdr
->contents
!= (unsigned char *) cookie
.locsyms
)
8352 if (! info
->keep_memory
)
8353 free (cookie
.locsyms
);
8355 symtab_hdr
->contents
= (unsigned char *) cookie
.locsyms
;
8359 if (info
->eh_frame_hdr
8360 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
8367 elf_section_ignore_discarded_relocs (sec
)
8370 struct elf_backend_data
*bed
;
8372 switch (elf_section_data (sec
)->sec_info_type
)
8374 case ELF_INFO_TYPE_STABS
:
8375 case ELF_INFO_TYPE_EH_FRAME
:
8381 bed
= get_elf_backend_data (sec
->owner
);
8382 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8383 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))