* subsegs.c (section_symbol): Use the symbol, not the section, name.
[binutils.git] / bfd / elflink.h
blob39deca0c2f2bd27764d21d69b0ed437a5b646bca
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
28 bfd_boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
33 static bfd_boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static bfd_boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static bfd_boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static bfd_boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static bfd_boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, bfd_boolean *, bfd_boolean *,
45 bfd_boolean *, bfd_boolean));
46 static bfd_boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 bfd_boolean *, bfd_boolean, bfd_boolean));
50 static bfd_boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static bfd_boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static bfd_boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static bfd_boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static bfd_boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static bfd_boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static bfd_boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static bfd_boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static bfd_boolean elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static bfd_boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static bfd_boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
87 bfd_boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
92 switch (bfd_get_format (abfd))
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return FALSE;
104 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
105 static bfd_boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return FALSE;
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return FALSE;
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return FALSE;
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return FALSE;
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
133 return _bfd_is_global_symbol_definition (abfd, sym);
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return FALSE;
140 return TRUE;
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static bfd_boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
151 Elf_Internal_Shdr * hdr;
152 bfd_size_type symcount;
153 bfd_size_type extsymcount;
154 bfd_size_type extsymoff;
155 Elf_Internal_Sym *isymbuf;
156 Elf_Internal_Sym *isym;
157 Elf_Internal_Sym *isymend;
158 bfd_boolean result;
160 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
161 if (abfd == (bfd *) NULL)
162 return FALSE;
164 if (! bfd_check_format (abfd, bfd_object))
165 return FALSE;
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd->archive_pass)
172 return FALSE;
174 /* Select the appropriate symbol table. */
175 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
176 hdr = &elf_tdata (abfd)->symtab_hdr;
177 else
178 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
180 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd))
186 extsymcount = symcount;
187 extsymoff = 0;
189 else
191 extsymcount = symcount - hdr->sh_info;
192 extsymoff = hdr->sh_info;
195 if (extsymcount == 0)
196 return FALSE;
198 /* Read in the symbol table. */
199 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
200 NULL, NULL, NULL);
201 if (isymbuf == NULL)
202 return FALSE;
204 /* Scan the symbol table looking for SYMDEF. */
205 result = FALSE;
206 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
208 const char *name;
210 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
211 isym->st_name);
212 if (name == (const char *) NULL)
213 break;
215 if (strcmp (name, symdef->name) == 0)
217 result = is_global_data_symbol_definition (abfd, isym);
218 break;
222 free (isymbuf);
224 return result;
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
247 object file.
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
252 static bfd_boolean
253 elf_link_add_archive_symbols (abfd, info)
254 bfd *abfd;
255 struct bfd_link_info *info;
257 symindex c;
258 bfd_boolean *defined = NULL;
259 bfd_boolean *included = NULL;
260 carsym *symdefs;
261 bfd_boolean loop;
262 bfd_size_type amt;
264 if (! bfd_has_map (abfd))
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
268 return TRUE;
269 bfd_set_error (bfd_error_no_armap);
270 return FALSE;
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c = bfd_ardata (abfd)->symdef_count;
277 if (c == 0)
278 return TRUE;
279 amt = c;
280 amt *= sizeof (bfd_boolean);
281 defined = (bfd_boolean *) bfd_zmalloc (amt);
282 included = (bfd_boolean *) bfd_zmalloc (amt);
283 if (defined == (bfd_boolean *) NULL || included == (bfd_boolean *) NULL)
284 goto error_return;
286 symdefs = bfd_ardata (abfd)->symdefs;
290 file_ptr last;
291 symindex i;
292 carsym *symdef;
293 carsym *symdefend;
295 loop = FALSE;
296 last = -1;
298 symdef = symdefs;
299 symdefend = symdef + c;
300 for (i = 0; symdef < symdefend; symdef++, i++)
302 struct elf_link_hash_entry *h;
303 bfd *element;
304 struct bfd_link_hash_entry *undefs_tail;
305 symindex mark;
307 if (defined[i] || included[i])
308 continue;
309 if (symdef->file_offset == last)
311 included[i] = TRUE;
312 continue;
315 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
316 FALSE, FALSE, FALSE);
318 if (h == NULL)
320 char *p, *copy;
321 size_t len, first;
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
329 p = strchr (symdef->name, ELF_VER_CHR);
330 if (p == NULL || p[1] != ELF_VER_CHR)
331 continue;
333 /* First check with only one `@'. */
334 len = strlen (symdef->name);
335 copy = bfd_alloc (abfd, (bfd_size_type) len);
336 if (copy == NULL)
337 goto error_return;
338 first = p - symdef->name + 1;
339 memcpy (copy, symdef->name, first);
340 memcpy (copy + first, symdef->name + first + 1, len - first);
342 h = elf_link_hash_lookup (elf_hash_table (info), copy,
343 FALSE, FALSE, FALSE);
345 if (h == NULL)
347 /* We also need to check references to the symbol
348 without the version. */
350 copy[first - 1] = '\0';
351 h = elf_link_hash_lookup (elf_hash_table (info),
352 copy, FALSE, FALSE, FALSE);
355 bfd_release (abfd, copy);
358 if (h == NULL)
359 continue;
361 if (h->root.type == bfd_link_hash_common)
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
367 declaration of it.
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
374 this is. */
375 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
376 continue;
378 else if (h->root.type != bfd_link_hash_undefined)
380 if (h->root.type != bfd_link_hash_undefweak)
381 defined[i] = TRUE;
382 continue;
385 /* We need to include this archive member. */
386 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
387 if (element == (bfd *) NULL)
388 goto error_return;
390 if (! bfd_check_format (element, bfd_object))
391 goto error_return;
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element->archive_pass != 0)
398 bfd_set_error (bfd_error_bad_value);
399 goto error_return;
401 element->archive_pass = 1;
403 undefs_tail = info->hash->undefs_tail;
405 if (! (*info->callbacks->add_archive_element) (info, element,
406 symdef->name))
407 goto error_return;
408 if (! elf_link_add_object_symbols (element, info))
409 goto error_return;
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail != info->hash->undefs_tail)
419 loop = TRUE;
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
423 mark = i;
426 included[mark] = TRUE;
427 if (mark == 0)
428 break;
429 --mark;
431 while (symdefs[mark].file_offset == symdef->file_offset);
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last = symdef->file_offset;
438 while (loop);
440 free (defined);
441 free (included);
443 return TRUE;
445 error_return:
446 if (defined != (bfd_boolean *) NULL)
447 free (defined);
448 if (included != (bfd_boolean *) NULL)
449 free (included);
450 return FALSE;
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
463 a shared object. */
465 static bfd_boolean
466 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
467 override, type_change_ok, size_change_ok, dt_needed)
468 bfd *abfd;
469 struct bfd_link_info *info;
470 const char *name;
471 Elf_Internal_Sym *sym;
472 asection **psec;
473 bfd_vma *pvalue;
474 struct elf_link_hash_entry **sym_hash;
475 bfd_boolean *override;
476 bfd_boolean *type_change_ok;
477 bfd_boolean *size_change_ok;
478 bfd_boolean dt_needed;
480 asection *sec;
481 struct elf_link_hash_entry *h;
482 int bind;
483 bfd *oldbfd;
484 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
486 *override = FALSE;
488 sec = *psec;
489 bind = ELF_ST_BIND (sym->st_info);
491 if (! bfd_is_und_section (sec))
492 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
493 else
494 h = ((struct elf_link_hash_entry *)
495 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
496 if (h == NULL)
497 return FALSE;
498 *sym_hash = h;
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info->hash->creator != abfd->xvec)
503 return TRUE;
505 /* For merging, we only care about real symbols. */
507 while (h->root.type == bfd_link_hash_indirect
508 || h->root.type == bfd_link_hash_warning)
509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
515 if (h->root.type == bfd_link_hash_new)
517 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
518 return TRUE;
521 /* OLDBFD is a BFD associated with the existing symbol. */
523 switch (h->root.type)
525 default:
526 oldbfd = NULL;
527 break;
529 case bfd_link_hash_undefined:
530 case bfd_link_hash_undefweak:
531 oldbfd = h->root.u.undef.abfd;
532 break;
534 case bfd_link_hash_defined:
535 case bfd_link_hash_defweak:
536 oldbfd = h->root.u.def.section->owner;
537 break;
539 case bfd_link_hash_common:
540 oldbfd = h->root.u.c.p->section->owner;
541 break;
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
550 if (abfd == oldbfd
551 && ((abfd->flags & DYNAMIC) == 0
552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
553 return TRUE;
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
558 if ((abfd->flags & DYNAMIC) != 0)
559 newdyn = TRUE;
560 else
561 newdyn = FALSE;
563 if (oldbfd != NULL)
564 olddyn = (oldbfd->flags & DYNAMIC) != 0;
565 else
567 asection *hsec;
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h->root.type)
573 default:
574 hsec = NULL;
575 break;
577 case bfd_link_hash_defined:
578 case bfd_link_hash_defweak:
579 hsec = h->root.u.def.section;
580 break;
582 case bfd_link_hash_common:
583 hsec = h->root.u.c.p->section;
584 break;
587 if (hsec == NULL)
588 olddyn = FALSE;
589 else
590 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
596 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
597 newdef = FALSE;
598 else
599 newdef = TRUE;
601 if (h->root.type == bfd_link_hash_undefined
602 || h->root.type == bfd_link_hash_undefweak
603 || h->root.type == bfd_link_hash_common)
604 olddef = FALSE;
605 else
606 olddef = TRUE;
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
619 libraries.
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
629 harmless. */
631 if (newdyn
632 && newdef
633 && (sec->flags & SEC_ALLOC) != 0
634 && (sec->flags & SEC_LOAD) == 0
635 && sym->st_size > 0
636 && bind != STB_WEAK
637 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
638 newdyncommon = TRUE;
639 else
640 newdyncommon = FALSE;
642 if (olddyn
643 && olddef
644 && h->root.type == bfd_link_hash_defined
645 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
646 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
647 && (h->root.u.def.section->flags & SEC_LOAD) == 0
648 && h->size > 0
649 && h->type != STT_FUNC)
650 olddyncommon = TRUE;
651 else
652 olddyncommon = FALSE;
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
659 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
660 || h->root.type == bfd_link_hash_undefweak
661 || bind == STB_WEAK)
662 *type_change_ok = TRUE;
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
667 if (*type_change_ok
668 || h->root.type == bfd_link_hash_undefined)
669 *size_change_ok = TRUE;
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
673 two. */
675 if (olddyncommon
676 && newdyncommon
677 && sym->st_size != h->size)
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
685 if (! ((*info->callbacks->multiple_common)
686 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
687 h->size, abfd, bfd_link_hash_common, sym->st_size)))
688 return FALSE;
690 if (sym->st_size > h->size)
691 h->size = sym->st_size;
693 *size_change_ok = TRUE;
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
701 bfd_und_section_ptr.
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
715 if (newdyn
716 && newdef
717 && (olddef
718 || (h->root.type == bfd_link_hash_common
719 && (bind == STB_WEAK
720 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
721 && (h->root.type != bfd_link_hash_defweak
722 || dt_needed
723 || bind == STB_WEAK))
725 *override = TRUE;
726 newdef = FALSE;
727 newdyncommon = FALSE;
729 *psec = sec = bfd_und_section_ptr;
730 *size_change_ok = TRUE;
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
738 if (h->root.type == bfd_link_hash_common)
739 *type_change_ok = TRUE;
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
746 the right thing. */
748 if (newdyncommon
749 && h->root.type == bfd_link_hash_common)
751 *override = TRUE;
752 newdef = FALSE;
753 newdyncommon = FALSE;
754 *pvalue = sym->st_size;
755 *psec = sec = bfd_com_section_ptr;
756 *size_change_ok = TRUE;
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
772 if (! newdyn
773 && (newdef
774 || (bfd_is_com_section (sec)
775 && (h->root.type == bfd_link_hash_defweak
776 || h->type == STT_FUNC)))
777 && olddyn
778 && olddef
779 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
780 && (bind != STB_WEAK
781 || h->root.type == bfd_link_hash_defweak))
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
785 new definition. */
787 h->root.type = bfd_link_hash_undefined;
788 h->root.u.undef.abfd = h->root.u.def.section->owner;
789 *size_change_ok = TRUE;
791 olddef = FALSE;
792 olddyncommon = FALSE;
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
797 if (bfd_is_com_section (sec))
798 *type_change_ok = TRUE;
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
804 h->verinfo.vertree = NULL;
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
812 *sym_hash = h;
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
821 if (! newdyn
822 && bfd_is_com_section (sec)
823 && olddyncommon)
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
827 or the alignment. */
828 if (! ((*info->callbacks->multiple_common)
829 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
830 h->size, abfd, bfd_link_hash_common, sym->st_size)))
831 return FALSE;
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
836 if (h->size > *pvalue)
837 *pvalue = h->size;
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
843 olddef = FALSE;
844 olddyncommon = FALSE;
846 h->root.type = bfd_link_hash_undefined;
847 h->root.u.undef.abfd = h->root.u.def.section->owner;
849 *size_change_ok = TRUE;
850 *type_change_ok = TRUE;
852 h->verinfo.vertree = NULL;
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
860 if (olddef
861 && ! dt_needed
862 && h->root.type == bfd_link_hash_defweak
863 && newdef
864 && newdyn
865 && bind != STB_WEAK)
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
869 definition. */
870 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
871 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
872 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
874 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC);
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
881 *sym_hash = h;
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
888 as a definition. */
889 if (olddef
890 && olddyn
891 && h->root.type != bfd_link_hash_defweak
892 && newdef
893 && ! newdyn
894 && bind == STB_WEAK)
895 *override = TRUE;
897 return TRUE;
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
906 static bfd_boolean
907 elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
908 dynsym, override, dt_needed)
909 bfd *abfd;
910 struct bfd_link_info *info;
911 struct elf_link_hash_entry *h;
912 const char *name;
913 Elf_Internal_Sym *sym;
914 asection **psec;
915 bfd_vma *value;
916 bfd_boolean *dynsym;
917 bfd_boolean override;
918 bfd_boolean dt_needed;
920 bfd_boolean type_change_ok;
921 bfd_boolean size_change_ok;
922 char *shortname;
923 struct elf_link_hash_entry *hi;
924 struct bfd_link_hash_entry *bh;
925 struct elf_backend_data *bed;
926 bfd_boolean collect;
927 bfd_boolean dynamic;
928 char *p;
929 size_t len, shortlen;
930 asection *sec;
932 /* If this symbol has a version, and it is the default version, we
933 create an indirect symbol from the default name to the fully
934 decorated name. This will cause external references which do not
935 specify a version to be bound to this version of the symbol. */
936 p = strchr (name, ELF_VER_CHR);
937 if (p == NULL || p[1] != ELF_VER_CHR)
938 return TRUE;
940 if (override)
942 /* We are overridden by an old defition. We need to check if we
943 need to create the indirect symbol from the default name. */
944 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
945 FALSE, FALSE);
946 BFD_ASSERT (hi != NULL);
947 if (hi == h)
948 return TRUE;
949 while (hi->root.type == bfd_link_hash_indirect
950 || hi->root.type == bfd_link_hash_warning)
952 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
953 if (hi == h)
954 return TRUE;
958 bed = get_elf_backend_data (abfd);
959 collect = bed->collect;
960 dynamic = (abfd->flags & DYNAMIC) != 0;
962 shortlen = p - name;
963 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
964 if (shortname == NULL)
965 return FALSE;
966 memcpy (shortname, name, shortlen);
967 shortname[shortlen] = '\0';
969 /* We are going to create a new symbol. Merge it with any existing
970 symbol with this name. For the purposes of the merge, act as
971 though we were defining the symbol we just defined, although we
972 actually going to define an indirect symbol. */
973 type_change_ok = FALSE;
974 size_change_ok = FALSE;
975 sec = *psec;
976 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
977 &hi, &override, &type_change_ok,
978 &size_change_ok, dt_needed))
979 return FALSE;
981 if (! override)
983 bh = &hi->root;
984 if (! (_bfd_generic_link_add_one_symbol
985 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
986 (bfd_vma) 0, name, FALSE, collect, &bh)))
987 return FALSE;
988 hi = (struct elf_link_hash_entry *) bh;
990 else
992 /* In this case the symbol named SHORTNAME is overriding the
993 indirect symbol we want to add. We were planning on making
994 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
995 is the name without a version. NAME is the fully versioned
996 name, and it is the default version.
998 Overriding means that we already saw a definition for the
999 symbol SHORTNAME in a regular object, and it is overriding
1000 the symbol defined in the dynamic object.
1002 When this happens, we actually want to change NAME, the
1003 symbol we just added, to refer to SHORTNAME. This will cause
1004 references to NAME in the shared object to become references
1005 to SHORTNAME in the regular object. This is what we expect
1006 when we override a function in a shared object: that the
1007 references in the shared object will be mapped to the
1008 definition in the regular object. */
1010 while (hi->root.type == bfd_link_hash_indirect
1011 || hi->root.type == bfd_link_hash_warning)
1012 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1014 h->root.type = bfd_link_hash_indirect;
1015 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1016 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1018 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1019 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1020 if (hi->elf_link_hash_flags
1021 & (ELF_LINK_HASH_REF_REGULAR
1022 | ELF_LINK_HASH_DEF_REGULAR))
1024 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1025 return FALSE;
1029 /* Now set HI to H, so that the following code will set the
1030 other fields correctly. */
1031 hi = h;
1034 /* If there is a duplicate definition somewhere, then HI may not
1035 point to an indirect symbol. We will have reported an error to
1036 the user in that case. */
1038 if (hi->root.type == bfd_link_hash_indirect)
1040 struct elf_link_hash_entry *ht;
1042 /* If the symbol became indirect, then we assume that we have
1043 not seen a definition before. */
1044 BFD_ASSERT ((hi->elf_link_hash_flags
1045 & (ELF_LINK_HASH_DEF_DYNAMIC
1046 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1048 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1049 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1051 /* See if the new flags lead us to realize that the symbol must
1052 be dynamic. */
1053 if (! *dynsym)
1055 if (! dynamic)
1057 if (info->shared
1058 || ((hi->elf_link_hash_flags
1059 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1060 *dynsym = TRUE;
1062 else
1064 if ((hi->elf_link_hash_flags
1065 & ELF_LINK_HASH_REF_REGULAR) != 0)
1066 *dynsym = TRUE;
1071 /* We also need to define an indirection from the nondefault version
1072 of the symbol. */
1074 len = strlen (name);
1075 shortname = bfd_hash_allocate (&info->hash->table, len);
1076 if (shortname == NULL)
1077 return FALSE;
1078 memcpy (shortname, name, shortlen);
1079 memcpy (shortname + shortlen, p + 1, len - shortlen);
1081 /* Once again, merge with any existing symbol. */
1082 type_change_ok = FALSE;
1083 size_change_ok = FALSE;
1084 sec = *psec;
1085 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1086 &hi, &override, &type_change_ok,
1087 &size_change_ok, dt_needed))
1088 return FALSE;
1090 if (override)
1092 /* Here SHORTNAME is a versioned name, so we don't expect to see
1093 the type of override we do in the case above unless it is
1094 overridden by a versioned definiton. */
1095 if (hi->root.type != bfd_link_hash_defined
1096 && hi->root.type != bfd_link_hash_defweak)
1097 (*_bfd_error_handler)
1098 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1099 bfd_archive_filename (abfd), shortname);
1101 else
1103 bh = &hi->root;
1104 if (! (_bfd_generic_link_add_one_symbol
1105 (info, abfd, shortname, BSF_INDIRECT,
1106 bfd_ind_section_ptr, (bfd_vma) 0, name, FALSE, collect, &bh)))
1107 return FALSE;
1108 hi = (struct elf_link_hash_entry *) bh;
1110 /* If there is a duplicate definition somewhere, then HI may not
1111 point to an indirect symbol. We will have reported an error
1112 to the user in that case. */
1114 if (hi->root.type == bfd_link_hash_indirect)
1116 /* If the symbol became indirect, then we assume that we have
1117 not seen a definition before. */
1118 BFD_ASSERT ((hi->elf_link_hash_flags
1119 & (ELF_LINK_HASH_DEF_DYNAMIC
1120 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1122 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1124 /* See if the new flags lead us to realize that the symbol
1125 must be dynamic. */
1126 if (! *dynsym)
1128 if (! dynamic)
1130 if (info->shared
1131 || ((hi->elf_link_hash_flags
1132 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1133 *dynsym = TRUE;
1135 else
1137 if ((hi->elf_link_hash_flags
1138 & ELF_LINK_HASH_REF_REGULAR) != 0)
1139 *dynsym = TRUE;
1145 return TRUE;
1148 /* Add symbols from an ELF object file to the linker hash table. */
1150 static bfd_boolean
1151 elf_link_add_object_symbols (abfd, info)
1152 bfd *abfd;
1153 struct bfd_link_info *info;
1155 bfd_boolean (*add_symbol_hook)
1156 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
1157 const char **, flagword *, asection **, bfd_vma *));
1158 bfd_boolean (*check_relocs)
1159 PARAMS ((bfd *, struct bfd_link_info *, asection *,
1160 const Elf_Internal_Rela *));
1161 bfd_boolean collect;
1162 Elf_Internal_Shdr *hdr;
1163 bfd_size_type symcount;
1164 bfd_size_type extsymcount;
1165 bfd_size_type extsymoff;
1166 struct elf_link_hash_entry **sym_hash;
1167 bfd_boolean dynamic;
1168 Elf_External_Versym *extversym = NULL;
1169 Elf_External_Versym *ever;
1170 struct elf_link_hash_entry *weaks;
1171 Elf_Internal_Sym *isymbuf = NULL;
1172 Elf_Internal_Sym *isym;
1173 Elf_Internal_Sym *isymend;
1174 struct elf_backend_data *bed;
1175 bfd_boolean dt_needed;
1176 struct elf_link_hash_table * hash_table;
1177 bfd_size_type amt;
1179 hash_table = elf_hash_table (info);
1181 bed = get_elf_backend_data (abfd);
1182 add_symbol_hook = bed->elf_add_symbol_hook;
1183 collect = bed->collect;
1185 if ((abfd->flags & DYNAMIC) == 0)
1186 dynamic = FALSE;
1187 else
1189 dynamic = TRUE;
1191 /* You can't use -r against a dynamic object. Also, there's no
1192 hope of using a dynamic object which does not exactly match
1193 the format of the output file. */
1194 if (info->relocateable || info->hash->creator != abfd->xvec)
1196 bfd_set_error (bfd_error_invalid_operation);
1197 goto error_return;
1201 /* As a GNU extension, any input sections which are named
1202 .gnu.warning.SYMBOL are treated as warning symbols for the given
1203 symbol. This differs from .gnu.warning sections, which generate
1204 warnings when they are included in an output file. */
1205 if (! info->shared)
1207 asection *s;
1209 for (s = abfd->sections; s != NULL; s = s->next)
1211 const char *name;
1213 name = bfd_get_section_name (abfd, s);
1214 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1216 char *msg;
1217 bfd_size_type sz;
1219 name += sizeof ".gnu.warning." - 1;
1221 /* If this is a shared object, then look up the symbol
1222 in the hash table. If it is there, and it is already
1223 been defined, then we will not be using the entry
1224 from this shared object, so we don't need to warn.
1225 FIXME: If we see the definition in a regular object
1226 later on, we will warn, but we shouldn't. The only
1227 fix is to keep track of what warnings we are supposed
1228 to emit, and then handle them all at the end of the
1229 link. */
1230 if (dynamic && abfd->xvec == info->hash->creator)
1232 struct elf_link_hash_entry *h;
1234 h = elf_link_hash_lookup (hash_table, name,
1235 FALSE, FALSE, TRUE);
1237 /* FIXME: What about bfd_link_hash_common? */
1238 if (h != NULL
1239 && (h->root.type == bfd_link_hash_defined
1240 || h->root.type == bfd_link_hash_defweak))
1242 /* We don't want to issue this warning. Clobber
1243 the section size so that the warning does not
1244 get copied into the output file. */
1245 s->_raw_size = 0;
1246 continue;
1250 sz = bfd_section_size (abfd, s);
1251 msg = (char *) bfd_alloc (abfd, sz + 1);
1252 if (msg == NULL)
1253 goto error_return;
1255 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1256 goto error_return;
1258 msg[sz] = '\0';
1260 if (! (_bfd_generic_link_add_one_symbol
1261 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1262 FALSE, collect, (struct bfd_link_hash_entry **) NULL)))
1263 goto error_return;
1265 if (! info->relocateable)
1267 /* Clobber the section size so that the warning does
1268 not get copied into the output file. */
1269 s->_raw_size = 0;
1275 dt_needed = FALSE;
1276 if (! dynamic)
1278 /* If we are creating a shared library, create all the dynamic
1279 sections immediately. We need to attach them to something,
1280 so we attach them to this BFD, provided it is the right
1281 format. FIXME: If there are no input BFD's of the same
1282 format as the output, we can't make a shared library. */
1283 if (info->shared
1284 && is_elf_hash_table (info)
1285 && ! hash_table->dynamic_sections_created
1286 && abfd->xvec == info->hash->creator)
1288 if (! elf_link_create_dynamic_sections (abfd, info))
1289 goto error_return;
1292 else if (! is_elf_hash_table (info))
1293 goto error_return;
1294 else
1296 asection *s;
1297 bfd_boolean add_needed;
1298 const char *name;
1299 bfd_size_type oldsize;
1300 bfd_size_type strindex;
1301 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
1303 /* ld --just-symbols and dynamic objects don't mix very well.
1304 Test for --just-symbols by looking at info set up by
1305 _bfd_elf_link_just_syms. */
1306 if ((s = abfd->sections) != NULL
1307 && elf_section_data (s)->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
1308 goto error_return;
1310 /* Find the name to use in a DT_NEEDED entry that refers to this
1311 object. If the object has a DT_SONAME entry, we use it.
1312 Otherwise, if the generic linker stuck something in
1313 elf_dt_name, we use that. Otherwise, we just use the file
1314 name. If the generic linker put a null string into
1315 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1316 there is a DT_SONAME entry. */
1317 add_needed = TRUE;
1318 name = bfd_get_filename (abfd);
1319 if (elf_dt_name (abfd) != NULL)
1321 name = elf_dt_name (abfd);
1322 if (*name == '\0')
1324 if (elf_dt_soname (abfd) != NULL)
1325 dt_needed = TRUE;
1327 add_needed = FALSE;
1330 s = bfd_get_section_by_name (abfd, ".dynamic");
1331 if (s != NULL)
1333 Elf_External_Dyn *dynbuf = NULL;
1334 Elf_External_Dyn *extdyn;
1335 Elf_External_Dyn *extdynend;
1336 int elfsec;
1337 unsigned long shlink;
1339 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1340 if (dynbuf == NULL)
1341 goto error_return;
1343 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1344 (file_ptr) 0, s->_raw_size))
1345 goto error_free_dyn;
1347 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1348 if (elfsec == -1)
1349 goto error_free_dyn;
1350 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1352 extdyn = dynbuf;
1353 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1354 for (; extdyn < extdynend; extdyn++)
1356 Elf_Internal_Dyn dyn;
1358 elf_swap_dyn_in (abfd, extdyn, &dyn);
1359 if (dyn.d_tag == DT_SONAME)
1361 unsigned int tagv = dyn.d_un.d_val;
1362 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1363 if (name == NULL)
1364 goto error_free_dyn;
1366 if (dyn.d_tag == DT_NEEDED)
1368 struct bfd_link_needed_list *n, **pn;
1369 char *fnm, *anm;
1370 unsigned int tagv = dyn.d_un.d_val;
1372 amt = sizeof (struct bfd_link_needed_list);
1373 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1374 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1375 if (n == NULL || fnm == NULL)
1376 goto error_free_dyn;
1377 amt = strlen (fnm) + 1;
1378 anm = bfd_alloc (abfd, amt);
1379 if (anm == NULL)
1380 goto error_free_dyn;
1381 memcpy (anm, fnm, (size_t) amt);
1382 n->name = anm;
1383 n->by = abfd;
1384 n->next = NULL;
1385 for (pn = & hash_table->needed;
1386 *pn != NULL;
1387 pn = &(*pn)->next)
1389 *pn = n;
1391 if (dyn.d_tag == DT_RUNPATH)
1393 struct bfd_link_needed_list *n, **pn;
1394 char *fnm, *anm;
1395 unsigned int tagv = dyn.d_un.d_val;
1397 amt = sizeof (struct bfd_link_needed_list);
1398 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1399 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1400 if (n == NULL || fnm == NULL)
1401 goto error_free_dyn;
1402 amt = strlen (fnm) + 1;
1403 anm = bfd_alloc (abfd, amt);
1404 if (anm == NULL)
1405 goto error_free_dyn;
1406 memcpy (anm, fnm, (size_t) amt);
1407 n->name = anm;
1408 n->by = abfd;
1409 n->next = NULL;
1410 for (pn = & runpath;
1411 *pn != NULL;
1412 pn = &(*pn)->next)
1414 *pn = n;
1416 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1417 if (!runpath && dyn.d_tag == DT_RPATH)
1419 struct bfd_link_needed_list *n, **pn;
1420 char *fnm, *anm;
1421 unsigned int tagv = dyn.d_un.d_val;
1423 amt = sizeof (struct bfd_link_needed_list);
1424 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1425 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1426 if (n == NULL || fnm == NULL)
1427 goto error_free_dyn;
1428 amt = strlen (fnm) + 1;
1429 anm = bfd_alloc (abfd, amt);
1430 if (anm == NULL)
1432 error_free_dyn:
1433 free (dynbuf);
1434 goto error_return;
1436 memcpy (anm, fnm, (size_t) amt);
1437 n->name = anm;
1438 n->by = abfd;
1439 n->next = NULL;
1440 for (pn = & rpath;
1441 *pn != NULL;
1442 pn = &(*pn)->next)
1444 *pn = n;
1448 free (dynbuf);
1451 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
1452 frees all more recently bfd_alloc'd blocks as well. */
1453 if (runpath)
1454 rpath = runpath;
1456 if (rpath)
1458 struct bfd_link_needed_list **pn;
1459 for (pn = & hash_table->runpath;
1460 *pn != NULL;
1461 pn = &(*pn)->next)
1463 *pn = rpath;
1466 /* We do not want to include any of the sections in a dynamic
1467 object in the output file. We hack by simply clobbering the
1468 list of sections in the BFD. This could be handled more
1469 cleanly by, say, a new section flag; the existing
1470 SEC_NEVER_LOAD flag is not the one we want, because that one
1471 still implies that the section takes up space in the output
1472 file. */
1473 bfd_section_list_clear (abfd);
1475 /* If this is the first dynamic object found in the link, create
1476 the special sections required for dynamic linking. */
1477 if (! hash_table->dynamic_sections_created)
1478 if (! elf_link_create_dynamic_sections (abfd, info))
1479 goto error_return;
1481 if (add_needed)
1483 /* Add a DT_NEEDED entry for this dynamic object. */
1484 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1485 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, FALSE);
1486 if (strindex == (bfd_size_type) -1)
1487 goto error_return;
1489 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1491 asection *sdyn;
1492 Elf_External_Dyn *dyncon, *dynconend;
1494 /* The hash table size did not change, which means that
1495 the dynamic object name was already entered. If we
1496 have already included this dynamic object in the
1497 link, just ignore it. There is no reason to include
1498 a particular dynamic object more than once. */
1499 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1500 BFD_ASSERT (sdyn != NULL);
1502 dyncon = (Elf_External_Dyn *) sdyn->contents;
1503 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1504 sdyn->_raw_size);
1505 for (; dyncon < dynconend; dyncon++)
1507 Elf_Internal_Dyn dyn;
1509 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1510 if (dyn.d_tag == DT_NEEDED
1511 && dyn.d_un.d_val == strindex)
1513 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1514 return TRUE;
1519 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1520 goto error_return;
1523 /* Save the SONAME, if there is one, because sometimes the
1524 linker emulation code will need to know it. */
1525 if (*name == '\0')
1526 name = basename (bfd_get_filename (abfd));
1527 elf_dt_name (abfd) = name;
1530 /* If this is a dynamic object, we always link against the .dynsym
1531 symbol table, not the .symtab symbol table. The dynamic linker
1532 will only see the .dynsym symbol table, so there is no reason to
1533 look at .symtab for a dynamic object. */
1535 if (! dynamic || elf_dynsymtab (abfd) == 0)
1536 hdr = &elf_tdata (abfd)->symtab_hdr;
1537 else
1538 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1540 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1542 /* The sh_info field of the symtab header tells us where the
1543 external symbols start. We don't care about the local symbols at
1544 this point. */
1545 if (elf_bad_symtab (abfd))
1547 extsymcount = symcount;
1548 extsymoff = 0;
1550 else
1552 extsymcount = symcount - hdr->sh_info;
1553 extsymoff = hdr->sh_info;
1556 sym_hash = NULL;
1557 if (extsymcount != 0)
1559 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
1560 NULL, NULL, NULL);
1561 if (isymbuf == NULL)
1562 goto error_return;
1564 /* We store a pointer to the hash table entry for each external
1565 symbol. */
1566 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1567 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1568 if (sym_hash == NULL)
1569 goto error_free_sym;
1570 elf_sym_hashes (abfd) = sym_hash;
1573 if (dynamic)
1575 /* Read in any version definitions. */
1576 if (! _bfd_elf_slurp_version_tables (abfd))
1577 goto error_free_sym;
1579 /* Read in the symbol versions, but don't bother to convert them
1580 to internal format. */
1581 if (elf_dynversym (abfd) != 0)
1583 Elf_Internal_Shdr *versymhdr;
1585 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1586 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1587 if (extversym == NULL)
1588 goto error_free_sym;
1589 amt = versymhdr->sh_size;
1590 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1591 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1592 goto error_free_vers;
1596 weaks = NULL;
1598 ever = extversym != NULL ? extversym + extsymoff : NULL;
1599 for (isym = isymbuf, isymend = isymbuf + extsymcount;
1600 isym < isymend;
1601 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1603 int bind;
1604 bfd_vma value;
1605 asection *sec;
1606 flagword flags;
1607 const char *name;
1608 struct elf_link_hash_entry *h;
1609 bfd_boolean definition;
1610 bfd_boolean size_change_ok, type_change_ok;
1611 bfd_boolean new_weakdef;
1612 unsigned int old_alignment;
1613 bfd_boolean override;
1615 override = FALSE;
1617 flags = BSF_NO_FLAGS;
1618 sec = NULL;
1619 value = isym->st_value;
1620 *sym_hash = NULL;
1622 bind = ELF_ST_BIND (isym->st_info);
1623 if (bind == STB_LOCAL)
1625 /* This should be impossible, since ELF requires that all
1626 global symbols follow all local symbols, and that sh_info
1627 point to the first global symbol. Unfortunatealy, Irix 5
1628 screws this up. */
1629 continue;
1631 else if (bind == STB_GLOBAL)
1633 if (isym->st_shndx != SHN_UNDEF
1634 && isym->st_shndx != SHN_COMMON)
1635 flags = BSF_GLOBAL;
1637 else if (bind == STB_WEAK)
1638 flags = BSF_WEAK;
1639 else
1641 /* Leave it up to the processor backend. */
1644 if (isym->st_shndx == SHN_UNDEF)
1645 sec = bfd_und_section_ptr;
1646 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
1648 sec = section_from_elf_index (abfd, isym->st_shndx);
1649 if (sec == NULL)
1650 sec = bfd_abs_section_ptr;
1651 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1652 value -= sec->vma;
1654 else if (isym->st_shndx == SHN_ABS)
1655 sec = bfd_abs_section_ptr;
1656 else if (isym->st_shndx == SHN_COMMON)
1658 sec = bfd_com_section_ptr;
1659 /* What ELF calls the size we call the value. What ELF
1660 calls the value we call the alignment. */
1661 value = isym->st_size;
1663 else
1665 /* Leave it up to the processor backend. */
1668 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
1669 isym->st_name);
1670 if (name == (const char *) NULL)
1671 goto error_free_vers;
1673 if (isym->st_shndx == SHN_COMMON
1674 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
1676 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
1678 if (tcomm == NULL)
1680 tcomm = bfd_make_section (abfd, ".tcommon");
1681 if (tcomm == NULL
1682 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
1683 | SEC_IS_COMMON
1684 | SEC_LINKER_CREATED
1685 | SEC_THREAD_LOCAL)))
1686 goto error_free_vers;
1688 sec = tcomm;
1690 else if (add_symbol_hook)
1692 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
1693 &value))
1694 goto error_free_vers;
1696 /* The hook function sets the name to NULL if this symbol
1697 should be skipped for some reason. */
1698 if (name == (const char *) NULL)
1699 continue;
1702 /* Sanity check that all possibilities were handled. */
1703 if (sec == (asection *) NULL)
1705 bfd_set_error (bfd_error_bad_value);
1706 goto error_free_vers;
1709 if (bfd_is_und_section (sec)
1710 || bfd_is_com_section (sec))
1711 definition = FALSE;
1712 else
1713 definition = TRUE;
1715 size_change_ok = FALSE;
1716 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1717 old_alignment = 0;
1718 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1720 Elf_Internal_Versym iver;
1721 unsigned int vernum = 0;
1723 if (ever != NULL)
1725 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1726 vernum = iver.vs_vers & VERSYM_VERSION;
1728 /* If this is a hidden symbol, or if it is not version
1729 1, we append the version name to the symbol name.
1730 However, we do not modify a non-hidden absolute
1731 symbol, because it might be the version symbol
1732 itself. FIXME: What if it isn't? */
1733 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1734 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1736 const char *verstr;
1737 size_t namelen, verlen, newlen;
1738 char *newname, *p;
1740 if (isym->st_shndx != SHN_UNDEF)
1742 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1744 (*_bfd_error_handler)
1745 (_("%s: %s: invalid version %u (max %d)"),
1746 bfd_archive_filename (abfd), name, vernum,
1747 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1748 bfd_set_error (bfd_error_bad_value);
1749 goto error_free_vers;
1751 else if (vernum > 1)
1752 verstr =
1753 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1754 else
1755 verstr = "";
1757 else
1759 /* We cannot simply test for the number of
1760 entries in the VERNEED section since the
1761 numbers for the needed versions do not start
1762 at 0. */
1763 Elf_Internal_Verneed *t;
1765 verstr = NULL;
1766 for (t = elf_tdata (abfd)->verref;
1767 t != NULL;
1768 t = t->vn_nextref)
1770 Elf_Internal_Vernaux *a;
1772 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1774 if (a->vna_other == vernum)
1776 verstr = a->vna_nodename;
1777 break;
1780 if (a != NULL)
1781 break;
1783 if (verstr == NULL)
1785 (*_bfd_error_handler)
1786 (_("%s: %s: invalid needed version %d"),
1787 bfd_archive_filename (abfd), name, vernum);
1788 bfd_set_error (bfd_error_bad_value);
1789 goto error_free_vers;
1793 namelen = strlen (name);
1794 verlen = strlen (verstr);
1795 newlen = namelen + verlen + 2;
1796 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1797 && isym->st_shndx != SHN_UNDEF)
1798 ++newlen;
1800 newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
1801 if (newname == NULL)
1802 goto error_free_vers;
1803 memcpy (newname, name, namelen);
1804 p = newname + namelen;
1805 *p++ = ELF_VER_CHR;
1806 /* If this is a defined non-hidden version symbol,
1807 we add another @ to the name. This indicates the
1808 default version of the symbol. */
1809 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1810 && isym->st_shndx != SHN_UNDEF)
1811 *p++ = ELF_VER_CHR;
1812 memcpy (p, verstr, verlen + 1);
1814 name = newname;
1818 if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
1819 sym_hash, &override, &type_change_ok,
1820 &size_change_ok, dt_needed))
1821 goto error_free_vers;
1823 if (override)
1824 definition = FALSE;
1826 h = *sym_hash;
1827 while (h->root.type == bfd_link_hash_indirect
1828 || h->root.type == bfd_link_hash_warning)
1829 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1831 /* Remember the old alignment if this is a common symbol, so
1832 that we don't reduce the alignment later on. We can't
1833 check later, because _bfd_generic_link_add_one_symbol
1834 will set a default for the alignment which we want to
1835 override. */
1836 if (h->root.type == bfd_link_hash_common)
1837 old_alignment = h->root.u.c.p->alignment_power;
1839 if (elf_tdata (abfd)->verdef != NULL
1840 && ! override
1841 && vernum > 1
1842 && definition)
1843 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1846 if (! (_bfd_generic_link_add_one_symbol
1847 (info, abfd, name, flags, sec, value, (const char *) NULL,
1848 FALSE, collect, (struct bfd_link_hash_entry **) sym_hash)))
1849 goto error_free_vers;
1851 h = *sym_hash;
1852 while (h->root.type == bfd_link_hash_indirect
1853 || h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855 *sym_hash = h;
1857 new_weakdef = FALSE;
1858 if (dynamic
1859 && definition
1860 && (flags & BSF_WEAK) != 0
1861 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
1862 && info->hash->creator->flavour == bfd_target_elf_flavour
1863 && h->weakdef == NULL)
1865 /* Keep a list of all weak defined non function symbols from
1866 a dynamic object, using the weakdef field. Later in this
1867 function we will set the weakdef field to the correct
1868 value. We only put non-function symbols from dynamic
1869 objects on this list, because that happens to be the only
1870 time we need to know the normal symbol corresponding to a
1871 weak symbol, and the information is time consuming to
1872 figure out. If the weakdef field is not already NULL,
1873 then this symbol was already defined by some previous
1874 dynamic object, and we will be using that previous
1875 definition anyhow. */
1877 h->weakdef = weaks;
1878 weaks = h;
1879 new_weakdef = TRUE;
1882 /* Set the alignment of a common symbol. */
1883 if (isym->st_shndx == SHN_COMMON
1884 && h->root.type == bfd_link_hash_common)
1886 unsigned int align;
1888 align = bfd_log2 (isym->st_value);
1889 if (align > old_alignment
1890 /* Permit an alignment power of zero if an alignment of one
1891 is specified and no other alignments have been specified. */
1892 || (isym->st_value == 1 && old_alignment == 0))
1893 h->root.u.c.p->alignment_power = align;
1896 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1898 int old_flags;
1899 bfd_boolean dynsym;
1900 int new_flag;
1902 /* Remember the symbol size and type. */
1903 if (isym->st_size != 0
1904 && (definition || h->size == 0))
1906 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
1907 (*_bfd_error_handler)
1908 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1909 name, (unsigned long) h->size,
1910 (unsigned long) isym->st_size, bfd_archive_filename (abfd));
1912 h->size = isym->st_size;
1915 /* If this is a common symbol, then we always want H->SIZE
1916 to be the size of the common symbol. The code just above
1917 won't fix the size if a common symbol becomes larger. We
1918 don't warn about a size change here, because that is
1919 covered by --warn-common. */
1920 if (h->root.type == bfd_link_hash_common)
1921 h->size = h->root.u.c.size;
1923 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
1924 && (definition || h->type == STT_NOTYPE))
1926 if (h->type != STT_NOTYPE
1927 && h->type != ELF_ST_TYPE (isym->st_info)
1928 && ! type_change_ok)
1929 (*_bfd_error_handler)
1930 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1931 name, h->type, ELF_ST_TYPE (isym->st_info),
1932 bfd_archive_filename (abfd));
1934 h->type = ELF_ST_TYPE (isym->st_info);
1937 /* If st_other has a processor-specific meaning, specific code
1938 might be needed here. */
1939 if (isym->st_other != 0)
1941 unsigned char hvis, symvis, other;
1943 /* Take the balance of OTHER from the definition. */
1944 other = (definition ? isym->st_other : h->other);
1945 other &= ~ ELF_ST_VISIBILITY (-1);
1947 /* Combine visibilities, using the most constraining one. */
1948 hvis = ELF_ST_VISIBILITY (h->other);
1949 symvis = ELF_ST_VISIBILITY (isym->st_other);
1951 h->other = other | (hvis > symvis ? hvis : symvis);
1954 /* Set a flag in the hash table entry indicating the type of
1955 reference or definition we just found. Keep a count of
1956 the number of dynamic symbols we find. A dynamic symbol
1957 is one which is referenced or defined by both a regular
1958 object and a shared object. */
1959 old_flags = h->elf_link_hash_flags;
1960 dynsym = FALSE;
1961 if (! dynamic)
1963 if (! definition)
1965 new_flag = ELF_LINK_HASH_REF_REGULAR;
1966 if (bind != STB_WEAK)
1967 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1969 else
1970 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1971 if (info->shared
1972 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1973 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1974 dynsym = TRUE;
1976 else
1978 if (! definition)
1979 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1980 else
1981 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1982 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1983 | ELF_LINK_HASH_REF_REGULAR)) != 0
1984 || (h->weakdef != NULL
1985 && ! new_weakdef
1986 && h->weakdef->dynindx != -1))
1987 dynsym = TRUE;
1990 h->elf_link_hash_flags |= new_flag;
1992 /* Check to see if we need to add an indirect symbol for
1993 the default name. */
1994 if (definition || h->root.type == bfd_link_hash_common)
1995 if (! elf_add_default_symbol (abfd, info, h, name, isym,
1996 &sec, &value, &dynsym,
1997 override, dt_needed))
1998 goto error_free_vers;
2000 if (dynsym && h->dynindx == -1)
2002 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2003 goto error_free_vers;
2004 if (h->weakdef != NULL
2005 && ! new_weakdef
2006 && h->weakdef->dynindx == -1)
2008 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2009 goto error_free_vers;
2012 else if (dynsym && h->dynindx != -1)
2013 /* If the symbol already has a dynamic index, but
2014 visibility says it should not be visible, turn it into
2015 a local symbol. */
2016 switch (ELF_ST_VISIBILITY (h->other))
2018 case STV_INTERNAL:
2019 case STV_HIDDEN:
2020 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2021 break;
2024 if (dt_needed && definition
2025 && (h->elf_link_hash_flags
2026 & ELF_LINK_HASH_REF_REGULAR) != 0)
2028 bfd_size_type oldsize;
2029 bfd_size_type strindex;
2031 if (! is_elf_hash_table (info))
2032 goto error_free_vers;
2034 /* The symbol from a DT_NEEDED object is referenced from
2035 the regular object to create a dynamic executable. We
2036 have to make sure there is a DT_NEEDED entry for it. */
2038 dt_needed = FALSE;
2039 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2040 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2041 elf_dt_soname (abfd), FALSE);
2042 if (strindex == (bfd_size_type) -1)
2043 goto error_free_vers;
2045 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2047 asection *sdyn;
2048 Elf_External_Dyn *dyncon, *dynconend;
2050 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2051 ".dynamic");
2052 BFD_ASSERT (sdyn != NULL);
2054 dyncon = (Elf_External_Dyn *) sdyn->contents;
2055 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2056 sdyn->_raw_size);
2057 for (; dyncon < dynconend; dyncon++)
2059 Elf_Internal_Dyn dyn;
2061 elf_swap_dyn_in (hash_table->dynobj,
2062 dyncon, &dyn);
2063 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2064 dyn.d_un.d_val != strindex);
2068 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2069 goto error_free_vers;
2074 if (extversym != NULL)
2076 free (extversym);
2077 extversym = NULL;
2080 if (isymbuf != NULL)
2081 free (isymbuf);
2082 isymbuf = NULL;
2084 /* Now set the weakdefs field correctly for all the weak defined
2085 symbols we found. The only way to do this is to search all the
2086 symbols. Since we only need the information for non functions in
2087 dynamic objects, that's the only time we actually put anything on
2088 the list WEAKS. We need this information so that if a regular
2089 object refers to a symbol defined weakly in a dynamic object, the
2090 real symbol in the dynamic object is also put in the dynamic
2091 symbols; we also must arrange for both symbols to point to the
2092 same memory location. We could handle the general case of symbol
2093 aliasing, but a general symbol alias can only be generated in
2094 assembler code, handling it correctly would be very time
2095 consuming, and other ELF linkers don't handle general aliasing
2096 either. */
2097 while (weaks != NULL)
2099 struct elf_link_hash_entry *hlook;
2100 asection *slook;
2101 bfd_vma vlook;
2102 struct elf_link_hash_entry **hpp;
2103 struct elf_link_hash_entry **hppend;
2105 hlook = weaks;
2106 weaks = hlook->weakdef;
2107 hlook->weakdef = NULL;
2109 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2110 || hlook->root.type == bfd_link_hash_defweak
2111 || hlook->root.type == bfd_link_hash_common
2112 || hlook->root.type == bfd_link_hash_indirect);
2113 slook = hlook->root.u.def.section;
2114 vlook = hlook->root.u.def.value;
2116 hpp = elf_sym_hashes (abfd);
2117 hppend = hpp + extsymcount;
2118 for (; hpp < hppend; hpp++)
2120 struct elf_link_hash_entry *h;
2122 h = *hpp;
2123 if (h != NULL && h != hlook
2124 && h->root.type == bfd_link_hash_defined
2125 && h->root.u.def.section == slook
2126 && h->root.u.def.value == vlook)
2128 hlook->weakdef = h;
2130 /* If the weak definition is in the list of dynamic
2131 symbols, make sure the real definition is put there
2132 as well. */
2133 if (hlook->dynindx != -1
2134 && h->dynindx == -1)
2136 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2137 goto error_return;
2140 /* If the real definition is in the list of dynamic
2141 symbols, make sure the weak definition is put there
2142 as well. If we don't do this, then the dynamic
2143 loader might not merge the entries for the real
2144 definition and the weak definition. */
2145 if (h->dynindx != -1
2146 && hlook->dynindx == -1)
2148 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2149 goto error_return;
2151 break;
2156 /* If this object is the same format as the output object, and it is
2157 not a shared library, then let the backend look through the
2158 relocs.
2160 This is required to build global offset table entries and to
2161 arrange for dynamic relocs. It is not required for the
2162 particular common case of linking non PIC code, even when linking
2163 against shared libraries, but unfortunately there is no way of
2164 knowing whether an object file has been compiled PIC or not.
2165 Looking through the relocs is not particularly time consuming.
2166 The problem is that we must either (1) keep the relocs in memory,
2167 which causes the linker to require additional runtime memory or
2168 (2) read the relocs twice from the input file, which wastes time.
2169 This would be a good case for using mmap.
2171 I have no idea how to handle linking PIC code into a file of a
2172 different format. It probably can't be done. */
2173 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2174 if (! dynamic
2175 && abfd->xvec == info->hash->creator
2176 && check_relocs != NULL)
2178 asection *o;
2180 for (o = abfd->sections; o != NULL; o = o->next)
2182 Elf_Internal_Rela *internal_relocs;
2183 bfd_boolean ok;
2185 if ((o->flags & SEC_RELOC) == 0
2186 || o->reloc_count == 0
2187 || ((info->strip == strip_all || info->strip == strip_debugger)
2188 && (o->flags & SEC_DEBUGGING) != 0)
2189 || bfd_is_abs_section (o->output_section))
2190 continue;
2192 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2193 (abfd, o, (PTR) NULL,
2194 (Elf_Internal_Rela *) NULL,
2195 info->keep_memory));
2196 if (internal_relocs == NULL)
2197 goto error_return;
2199 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2201 if (elf_section_data (o)->relocs != internal_relocs)
2202 free (internal_relocs);
2204 if (! ok)
2205 goto error_return;
2209 /* If this is a non-traditional link, try to optimize the handling
2210 of the .stab/.stabstr sections. */
2211 if (! dynamic
2212 && ! info->traditional_format
2213 && info->hash->creator->flavour == bfd_target_elf_flavour
2214 && is_elf_hash_table (info)
2215 && (info->strip != strip_all && info->strip != strip_debugger))
2217 asection *stab, *stabstr;
2219 stab = bfd_get_section_by_name (abfd, ".stab");
2220 if (stab != NULL
2221 && (stab->flags & SEC_MERGE) == 0
2222 && !bfd_is_abs_section (stab->output_section))
2224 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2226 if (stabstr != NULL)
2228 struct bfd_elf_section_data *secdata;
2230 secdata = elf_section_data (stab);
2231 if (! _bfd_link_section_stabs (abfd,
2232 & hash_table->stab_info,
2233 stab, stabstr,
2234 &secdata->sec_info))
2235 goto error_return;
2236 if (secdata->sec_info)
2237 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2242 if (! info->relocateable && ! dynamic
2243 && is_elf_hash_table (info))
2245 asection *s;
2247 for (s = abfd->sections; s != NULL; s = s->next)
2248 if ((s->flags & SEC_MERGE) != 0
2249 && !bfd_is_abs_section (s->output_section))
2251 struct bfd_elf_section_data *secdata;
2253 secdata = elf_section_data (s);
2254 if (! _bfd_merge_section (abfd,
2255 & hash_table->merge_info,
2256 s, &secdata->sec_info))
2257 goto error_return;
2258 else if (secdata->sec_info)
2259 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2263 if (is_elf_hash_table (info))
2265 /* Add this bfd to the loaded list. */
2266 struct elf_link_loaded_list *n;
2268 n = ((struct elf_link_loaded_list *)
2269 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
2270 if (n == NULL)
2271 goto error_return;
2272 n->abfd = abfd;
2273 n->next = hash_table->loaded;
2274 hash_table->loaded = n;
2277 return TRUE;
2279 error_free_vers:
2280 if (extversym != NULL)
2281 free (extversym);
2282 error_free_sym:
2283 if (isymbuf != NULL)
2284 free (isymbuf);
2285 error_return:
2286 return FALSE;
2289 /* Create some sections which will be filled in with dynamic linking
2290 information. ABFD is an input file which requires dynamic sections
2291 to be created. The dynamic sections take up virtual memory space
2292 when the final executable is run, so we need to create them before
2293 addresses are assigned to the output sections. We work out the
2294 actual contents and size of these sections later. */
2296 bfd_boolean
2297 elf_link_create_dynamic_sections (abfd, info)
2298 bfd *abfd;
2299 struct bfd_link_info *info;
2301 flagword flags;
2302 register asection *s;
2303 struct elf_link_hash_entry *h;
2304 struct bfd_link_hash_entry *bh;
2305 struct elf_backend_data *bed;
2307 if (! is_elf_hash_table (info))
2308 return FALSE;
2310 if (elf_hash_table (info)->dynamic_sections_created)
2311 return TRUE;
2313 /* Make sure that all dynamic sections use the same input BFD. */
2314 if (elf_hash_table (info)->dynobj == NULL)
2315 elf_hash_table (info)->dynobj = abfd;
2316 else
2317 abfd = elf_hash_table (info)->dynobj;
2319 /* Note that we set the SEC_IN_MEMORY flag for all of these
2320 sections. */
2321 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2322 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2324 /* A dynamically linked executable has a .interp section, but a
2325 shared library does not. */
2326 if (! info->shared)
2328 s = bfd_make_section (abfd, ".interp");
2329 if (s == NULL
2330 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2331 return FALSE;
2334 if (! info->traditional_format
2335 && info->hash->creator->flavour == bfd_target_elf_flavour)
2337 s = bfd_make_section (abfd, ".eh_frame_hdr");
2338 if (s == NULL
2339 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2340 || ! bfd_set_section_alignment (abfd, s, 2))
2341 return FALSE;
2342 elf_hash_table (info)->eh_info.hdr_sec = s;
2345 /* Create sections to hold version informations. These are removed
2346 if they are not needed. */
2347 s = bfd_make_section (abfd, ".gnu.version_d");
2348 if (s == NULL
2349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2350 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2351 return FALSE;
2353 s = bfd_make_section (abfd, ".gnu.version");
2354 if (s == NULL
2355 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2356 || ! bfd_set_section_alignment (abfd, s, 1))
2357 return FALSE;
2359 s = bfd_make_section (abfd, ".gnu.version_r");
2360 if (s == NULL
2361 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2362 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2363 return FALSE;
2365 s = bfd_make_section (abfd, ".dynsym");
2366 if (s == NULL
2367 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2368 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2369 return FALSE;
2371 s = bfd_make_section (abfd, ".dynstr");
2372 if (s == NULL
2373 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2374 return FALSE;
2376 /* Create a strtab to hold the dynamic symbol names. */
2377 if (elf_hash_table (info)->dynstr == NULL)
2379 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2380 if (elf_hash_table (info)->dynstr == NULL)
2381 return FALSE;
2384 s = bfd_make_section (abfd, ".dynamic");
2385 if (s == NULL
2386 || ! bfd_set_section_flags (abfd, s, flags)
2387 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2388 return FALSE;
2390 /* The special symbol _DYNAMIC is always set to the start of the
2391 .dynamic section. This call occurs before we have processed the
2392 symbols for any dynamic object, so we don't have to worry about
2393 overriding a dynamic definition. We could set _DYNAMIC in a
2394 linker script, but we only want to define it if we are, in fact,
2395 creating a .dynamic section. We don't want to define it if there
2396 is no .dynamic section, since on some ELF platforms the start up
2397 code examines it to decide how to initialize the process. */
2398 bh = NULL;
2399 if (! (_bfd_generic_link_add_one_symbol
2400 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2401 (const char *) 0, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2402 return FALSE;
2403 h = (struct elf_link_hash_entry *) bh;
2404 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2405 h->type = STT_OBJECT;
2407 if (info->shared
2408 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2409 return FALSE;
2411 bed = get_elf_backend_data (abfd);
2413 s = bfd_make_section (abfd, ".hash");
2414 if (s == NULL
2415 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2416 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2417 return FALSE;
2418 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2420 /* Let the backend create the rest of the sections. This lets the
2421 backend set the right flags. The backend will normally create
2422 the .got and .plt sections. */
2423 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2424 return FALSE;
2426 elf_hash_table (info)->dynamic_sections_created = TRUE;
2428 return TRUE;
2431 /* Add an entry to the .dynamic table. */
2433 bfd_boolean
2434 elf_add_dynamic_entry (info, tag, val)
2435 struct bfd_link_info *info;
2436 bfd_vma tag;
2437 bfd_vma val;
2439 Elf_Internal_Dyn dyn;
2440 bfd *dynobj;
2441 asection *s;
2442 bfd_size_type newsize;
2443 bfd_byte *newcontents;
2445 if (! is_elf_hash_table (info))
2446 return FALSE;
2448 dynobj = elf_hash_table (info)->dynobj;
2450 s = bfd_get_section_by_name (dynobj, ".dynamic");
2451 BFD_ASSERT (s != NULL);
2453 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2454 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2455 if (newcontents == NULL)
2456 return FALSE;
2458 dyn.d_tag = tag;
2459 dyn.d_un.d_val = val;
2460 elf_swap_dyn_out (dynobj, &dyn,
2461 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2463 s->_raw_size = newsize;
2464 s->contents = newcontents;
2466 return TRUE;
2469 /* Read and swap the relocs from the section indicated by SHDR. This
2470 may be either a REL or a RELA section. The relocations are
2471 translated into RELA relocations and stored in INTERNAL_RELOCS,
2472 which should have already been allocated to contain enough space.
2473 The EXTERNAL_RELOCS are a buffer where the external form of the
2474 relocations should be stored.
2476 Returns FALSE if something goes wrong. */
2478 static bfd_boolean
2479 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2480 internal_relocs)
2481 bfd *abfd;
2482 Elf_Internal_Shdr *shdr;
2483 PTR external_relocs;
2484 Elf_Internal_Rela *internal_relocs;
2486 struct elf_backend_data *bed;
2487 void (*swap_in) PARAMS ((bfd *, const bfd_byte *, Elf_Internal_Rela *));
2488 const bfd_byte *erela;
2489 const bfd_byte *erelaend;
2490 Elf_Internal_Rela *irela;
2492 /* If there aren't any relocations, that's OK. */
2493 if (!shdr)
2494 return TRUE;
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2504 bed = get_elf_backend_data (abfd);
2506 /* Convert the external relocations to the internal format. */
2507 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2508 swap_in = bed->s->swap_reloc_in;
2509 else if (shdr->sh_entsize == sizeof (Elf_External_Rela))
2510 swap_in = bed->s->swap_reloca_in;
2511 else
2512 abort ();
2514 erela = external_relocs;
2515 erelaend = erela + NUM_SHDR_ENTRIES (shdr) * shdr->sh_entsize;
2516 irela = internal_relocs;
2517 while (erela < erelaend)
2519 (*swap_in) (abfd, erela, irela);
2520 irela += bed->s->int_rels_per_ext_rel;
2521 erela += shdr->sh_entsize;
2524 return TRUE;
2527 /* Read and swap the relocs for a section O. They may have been
2528 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2529 not NULL, they are used as buffers to read into. They are known to
2530 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2531 the return value is allocated using either malloc or bfd_alloc,
2532 according to the KEEP_MEMORY argument. If O has two relocation
2533 sections (both REL and RELA relocations), then the REL_HDR
2534 relocations will appear first in INTERNAL_RELOCS, followed by the
2535 REL_HDR2 relocations. */
2537 Elf_Internal_Rela *
2538 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2539 keep_memory)
2540 bfd *abfd;
2541 asection *o;
2542 PTR external_relocs;
2543 Elf_Internal_Rela *internal_relocs;
2544 bfd_boolean keep_memory;
2546 Elf_Internal_Shdr *rel_hdr;
2547 PTR alloc1 = NULL;
2548 Elf_Internal_Rela *alloc2 = NULL;
2549 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2551 if (elf_section_data (o)->relocs != NULL)
2552 return elf_section_data (o)->relocs;
2554 if (o->reloc_count == 0)
2555 return NULL;
2557 rel_hdr = &elf_section_data (o)->rel_hdr;
2559 if (internal_relocs == NULL)
2561 bfd_size_type size;
2563 size = o->reloc_count;
2564 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2565 if (keep_memory)
2566 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2567 else
2568 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2569 if (internal_relocs == NULL)
2570 goto error_return;
2573 if (external_relocs == NULL)
2575 bfd_size_type size = rel_hdr->sh_size;
2577 if (elf_section_data (o)->rel_hdr2)
2578 size += elf_section_data (o)->rel_hdr2->sh_size;
2579 alloc1 = (PTR) bfd_malloc (size);
2580 if (alloc1 == NULL)
2581 goto error_return;
2582 external_relocs = alloc1;
2585 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2586 external_relocs,
2587 internal_relocs))
2588 goto error_return;
2589 if (!elf_link_read_relocs_from_section
2590 (abfd,
2591 elf_section_data (o)->rel_hdr2,
2592 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2593 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2594 * bed->s->int_rels_per_ext_rel)))
2595 goto error_return;
2597 /* Cache the results for next time, if we can. */
2598 if (keep_memory)
2599 elf_section_data (o)->relocs = internal_relocs;
2601 if (alloc1 != NULL)
2602 free (alloc1);
2604 /* Don't free alloc2, since if it was allocated we are passing it
2605 back (under the name of internal_relocs). */
2607 return internal_relocs;
2609 error_return:
2610 if (alloc1 != NULL)
2611 free (alloc1);
2612 if (alloc2 != NULL)
2613 free (alloc2);
2614 return NULL;
2617 /* Record an assignment to a symbol made by a linker script. We need
2618 this in case some dynamic object refers to this symbol. */
2620 bfd_boolean
2621 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2622 bfd *output_bfd ATTRIBUTE_UNUSED;
2623 struct bfd_link_info *info;
2624 const char *name;
2625 bfd_boolean provide;
2627 struct elf_link_hash_entry *h;
2629 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2630 return TRUE;
2632 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
2633 if (h == NULL)
2634 return FALSE;
2636 if (h->root.type == bfd_link_hash_new)
2637 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2639 /* If this symbol is being provided by the linker script, and it is
2640 currently defined by a dynamic object, but not by a regular
2641 object, then mark it as undefined so that the generic linker will
2642 force the correct value. */
2643 if (provide
2644 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2645 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2646 h->root.type = bfd_link_hash_undefined;
2648 /* If this symbol is not being provided by the linker script, and it is
2649 currently defined by a dynamic object, but not by a regular object,
2650 then clear out any version information because the symbol will not be
2651 associated with the dynamic object any more. */
2652 if (!provide
2653 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2654 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2655 h->verinfo.verdef = NULL;
2657 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2659 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2660 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2661 || info->shared)
2662 && h->dynindx == -1)
2664 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2665 return FALSE;
2667 /* If this is a weak defined symbol, and we know a corresponding
2668 real symbol from the same dynamic object, make sure the real
2669 symbol is also made into a dynamic symbol. */
2670 if (h->weakdef != NULL
2671 && h->weakdef->dynindx == -1)
2673 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2674 return FALSE;
2678 return TRUE;
2681 /* This structure is used to pass information to
2682 elf_link_assign_sym_version. */
2684 struct elf_assign_sym_version_info
2686 /* Output BFD. */
2687 bfd *output_bfd;
2688 /* General link information. */
2689 struct bfd_link_info *info;
2690 /* Version tree. */
2691 struct bfd_elf_version_tree *verdefs;
2692 /* Whether we had a failure. */
2693 bfd_boolean failed;
2696 /* This structure is used to pass information to
2697 elf_link_find_version_dependencies. */
2699 struct elf_find_verdep_info
2701 /* Output BFD. */
2702 bfd *output_bfd;
2703 /* General link information. */
2704 struct bfd_link_info *info;
2705 /* The number of dependencies. */
2706 unsigned int vers;
2707 /* Whether we had a failure. */
2708 bfd_boolean failed;
2711 /* Array used to determine the number of hash table buckets to use
2712 based on the number of symbols there are. If there are fewer than
2713 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2714 fewer than 37 we use 17 buckets, and so forth. We never use more
2715 than 32771 buckets. */
2717 static const size_t elf_buckets[] =
2719 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2720 16411, 32771, 0
2723 /* Compute bucket count for hashing table. We do not use a static set
2724 of possible tables sizes anymore. Instead we determine for all
2725 possible reasonable sizes of the table the outcome (i.e., the
2726 number of collisions etc) and choose the best solution. The
2727 weighting functions are not too simple to allow the table to grow
2728 without bounds. Instead one of the weighting factors is the size.
2729 Therefore the result is always a good payoff between few collisions
2730 (= short chain lengths) and table size. */
2731 static size_t
2732 compute_bucket_count (info)
2733 struct bfd_link_info *info;
2735 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2736 size_t best_size = 0;
2737 unsigned long int *hashcodes;
2738 unsigned long int *hashcodesp;
2739 unsigned long int i;
2740 bfd_size_type amt;
2742 /* Compute the hash values for all exported symbols. At the same
2743 time store the values in an array so that we could use them for
2744 optimizations. */
2745 amt = dynsymcount;
2746 amt *= sizeof (unsigned long int);
2747 hashcodes = (unsigned long int *) bfd_malloc (amt);
2748 if (hashcodes == NULL)
2749 return 0;
2750 hashcodesp = hashcodes;
2752 /* Put all hash values in HASHCODES. */
2753 elf_link_hash_traverse (elf_hash_table (info),
2754 elf_collect_hash_codes, &hashcodesp);
2756 /* We have a problem here. The following code to optimize the table
2757 size requires an integer type with more the 32 bits. If
2758 BFD_HOST_U_64_BIT is set we know about such a type. */
2759 #ifdef BFD_HOST_U_64_BIT
2760 if (info->optimize)
2762 unsigned long int nsyms = hashcodesp - hashcodes;
2763 size_t minsize;
2764 size_t maxsize;
2765 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2766 unsigned long int *counts ;
2768 /* Possible optimization parameters: if we have NSYMS symbols we say
2769 that the hashing table must at least have NSYMS/4 and at most
2770 2*NSYMS buckets. */
2771 minsize = nsyms / 4;
2772 if (minsize == 0)
2773 minsize = 1;
2774 best_size = maxsize = nsyms * 2;
2776 /* Create array where we count the collisions in. We must use bfd_malloc
2777 since the size could be large. */
2778 amt = maxsize;
2779 amt *= sizeof (unsigned long int);
2780 counts = (unsigned long int *) bfd_malloc (amt);
2781 if (counts == NULL)
2783 free (hashcodes);
2784 return 0;
2787 /* Compute the "optimal" size for the hash table. The criteria is a
2788 minimal chain length. The minor criteria is (of course) the size
2789 of the table. */
2790 for (i = minsize; i < maxsize; ++i)
2792 /* Walk through the array of hashcodes and count the collisions. */
2793 BFD_HOST_U_64_BIT max;
2794 unsigned long int j;
2795 unsigned long int fact;
2797 memset (counts, '\0', i * sizeof (unsigned long int));
2799 /* Determine how often each hash bucket is used. */
2800 for (j = 0; j < nsyms; ++j)
2801 ++counts[hashcodes[j] % i];
2803 /* For the weight function we need some information about the
2804 pagesize on the target. This is information need not be 100%
2805 accurate. Since this information is not available (so far) we
2806 define it here to a reasonable default value. If it is crucial
2807 to have a better value some day simply define this value. */
2808 # ifndef BFD_TARGET_PAGESIZE
2809 # define BFD_TARGET_PAGESIZE (4096)
2810 # endif
2812 /* We in any case need 2 + NSYMS entries for the size values and
2813 the chains. */
2814 max = (2 + nsyms) * (ARCH_SIZE / 8);
2816 # if 1
2817 /* Variant 1: optimize for short chains. We add the squares
2818 of all the chain lengths (which favous many small chain
2819 over a few long chains). */
2820 for (j = 0; j < i; ++j)
2821 max += counts[j] * counts[j];
2823 /* This adds penalties for the overall size of the table. */
2824 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2825 max *= fact * fact;
2826 # else
2827 /* Variant 2: Optimize a lot more for small table. Here we
2828 also add squares of the size but we also add penalties for
2829 empty slots (the +1 term). */
2830 for (j = 0; j < i; ++j)
2831 max += (1 + counts[j]) * (1 + counts[j]);
2833 /* The overall size of the table is considered, but not as
2834 strong as in variant 1, where it is squared. */
2835 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2836 max *= fact;
2837 # endif
2839 /* Compare with current best results. */
2840 if (max < best_chlen)
2842 best_chlen = max;
2843 best_size = i;
2847 free (counts);
2849 else
2850 #endif /* defined (BFD_HOST_U_64_BIT) */
2852 /* This is the fallback solution if no 64bit type is available or if we
2853 are not supposed to spend much time on optimizations. We select the
2854 bucket count using a fixed set of numbers. */
2855 for (i = 0; elf_buckets[i] != 0; i++)
2857 best_size = elf_buckets[i];
2858 if (dynsymcount < elf_buckets[i + 1])
2859 break;
2863 /* Free the arrays we needed. */
2864 free (hashcodes);
2866 return best_size;
2869 /* Set up the sizes and contents of the ELF dynamic sections. This is
2870 called by the ELF linker emulation before_allocation routine. We
2871 must set the sizes of the sections before the linker sets the
2872 addresses of the various sections. */
2874 bfd_boolean
2875 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2876 filter_shlib,
2877 auxiliary_filters, info, sinterpptr,
2878 verdefs)
2879 bfd *output_bfd;
2880 const char *soname;
2881 const char *rpath;
2882 const char *filter_shlib;
2883 const char * const *auxiliary_filters;
2884 struct bfd_link_info *info;
2885 asection **sinterpptr;
2886 struct bfd_elf_version_tree *verdefs;
2888 bfd_size_type soname_indx;
2889 bfd *dynobj;
2890 struct elf_backend_data *bed;
2891 struct elf_assign_sym_version_info asvinfo;
2893 *sinterpptr = NULL;
2895 soname_indx = (bfd_size_type) -1;
2897 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2898 return TRUE;
2900 if (! is_elf_hash_table (info))
2901 return TRUE;
2903 /* Any syms created from now on start with -1 in
2904 got.refcount/offset and plt.refcount/offset. */
2905 elf_hash_table (info)->init_refcount = -1;
2907 /* The backend may have to create some sections regardless of whether
2908 we're dynamic or not. */
2909 bed = get_elf_backend_data (output_bfd);
2910 if (bed->elf_backend_always_size_sections
2911 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2912 return FALSE;
2914 dynobj = elf_hash_table (info)->dynobj;
2916 /* If there were no dynamic objects in the link, there is nothing to
2917 do here. */
2918 if (dynobj == NULL)
2919 return TRUE;
2921 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
2922 return FALSE;
2924 if (elf_hash_table (info)->dynamic_sections_created)
2926 struct elf_info_failed eif;
2927 struct elf_link_hash_entry *h;
2928 asection *dynstr;
2929 struct bfd_elf_version_tree *t;
2930 struct bfd_elf_version_expr *d;
2931 bfd_boolean all_defined;
2933 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2934 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2936 if (soname != NULL)
2938 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2939 soname, TRUE);
2940 if (soname_indx == (bfd_size_type) -1
2941 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
2942 soname_indx))
2943 return FALSE;
2946 if (info->symbolic)
2948 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
2949 (bfd_vma) 0))
2950 return FALSE;
2951 info->flags |= DF_SYMBOLIC;
2954 if (rpath != NULL)
2956 bfd_size_type indx;
2958 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
2959 TRUE);
2960 if (info->new_dtags)
2961 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
2962 if (indx == (bfd_size_type) -1
2963 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
2964 || (info->new_dtags
2965 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
2966 indx)))
2967 return FALSE;
2970 if (filter_shlib != NULL)
2972 bfd_size_type indx;
2974 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2975 filter_shlib, TRUE);
2976 if (indx == (bfd_size_type) -1
2977 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
2978 return FALSE;
2981 if (auxiliary_filters != NULL)
2983 const char * const *p;
2985 for (p = auxiliary_filters; *p != NULL; p++)
2987 bfd_size_type indx;
2989 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2990 *p, TRUE);
2991 if (indx == (bfd_size_type) -1
2992 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
2993 indx))
2994 return FALSE;
2998 eif.info = info;
2999 eif.verdefs = verdefs;
3000 eif.failed = FALSE;
3002 /* If we are supposed to export all symbols into the dynamic symbol
3003 table (this is not the normal case), then do so. */
3004 if (info->export_dynamic)
3006 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3007 (PTR) &eif);
3008 if (eif.failed)
3009 return FALSE;
3012 /* Make all global versions with definiton. */
3013 for (t = verdefs; t != NULL; t = t->next)
3014 for (d = t->globals; d != NULL; d = d->next)
3015 if (!d->symver && strchr (d->pattern, '*') == NULL)
3017 const char *verstr, *name;
3018 size_t namelen, verlen, newlen;
3019 char *newname, *p;
3020 struct elf_link_hash_entry *newh;
3022 name = d->pattern;
3023 namelen = strlen (name);
3024 verstr = t->name;
3025 verlen = strlen (verstr);
3026 newlen = namelen + verlen + 3;
3028 newname = (char *) bfd_malloc ((bfd_size_type) newlen);
3029 if (newname == NULL)
3030 return FALSE;
3031 memcpy (newname, name, namelen);
3033 /* Check the hidden versioned definition. */
3034 p = newname + namelen;
3035 *p++ = ELF_VER_CHR;
3036 memcpy (p, verstr, verlen + 1);
3037 newh = elf_link_hash_lookup (elf_hash_table (info),
3038 newname, FALSE, FALSE,
3039 FALSE);
3040 if (newh == NULL
3041 || (newh->root.type != bfd_link_hash_defined
3042 && newh->root.type != bfd_link_hash_defweak))
3044 /* Check the default versioned definition. */
3045 *p++ = ELF_VER_CHR;
3046 memcpy (p, verstr, verlen + 1);
3047 newh = elf_link_hash_lookup (elf_hash_table (info),
3048 newname, FALSE, FALSE,
3049 FALSE);
3051 free (newname);
3053 /* Mark this version if there is a definition and it is
3054 not defined in a shared object. */
3055 if (newh != NULL
3056 && ((newh->elf_link_hash_flags
3057 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3058 && (newh->root.type == bfd_link_hash_defined
3059 || newh->root.type == bfd_link_hash_defweak))
3060 d->symver = 1;
3063 /* Attach all the symbols to their version information. */
3064 asvinfo.output_bfd = output_bfd;
3065 asvinfo.info = info;
3066 asvinfo.verdefs = verdefs;
3067 asvinfo.failed = FALSE;
3069 elf_link_hash_traverse (elf_hash_table (info),
3070 elf_link_assign_sym_version,
3071 (PTR) &asvinfo);
3072 if (asvinfo.failed)
3073 return FALSE;
3075 if (!info->allow_undefined_version)
3077 /* Check if all global versions have a definiton. */
3078 all_defined = TRUE;
3079 for (t = verdefs; t != NULL; t = t->next)
3080 for (d = t->globals; d != NULL; d = d->next)
3081 if (!d->symver && !d->script
3082 && strchr (d->pattern, '*') == NULL)
3084 (*_bfd_error_handler)
3085 (_("%s: undefined version: %s"),
3086 d->pattern, t->name);
3087 all_defined = FALSE;
3090 if (!all_defined)
3092 bfd_set_error (bfd_error_bad_value);
3093 return FALSE;
3097 /* Find all symbols which were defined in a dynamic object and make
3098 the backend pick a reasonable value for them. */
3099 elf_link_hash_traverse (elf_hash_table (info),
3100 elf_adjust_dynamic_symbol,
3101 (PTR) &eif);
3102 if (eif.failed)
3103 return FALSE;
3105 /* Add some entries to the .dynamic section. We fill in some of the
3106 values later, in elf_bfd_final_link, but we must add the entries
3107 now so that we know the final size of the .dynamic section. */
3109 /* If there are initialization and/or finalization functions to
3110 call then add the corresponding DT_INIT/DT_FINI entries. */
3111 h = (info->init_function
3112 ? elf_link_hash_lookup (elf_hash_table (info),
3113 info->init_function, FALSE,
3114 FALSE, FALSE)
3115 : NULL);
3116 if (h != NULL
3117 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3118 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3120 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3121 return FALSE;
3123 h = (info->fini_function
3124 ? elf_link_hash_lookup (elf_hash_table (info),
3125 info->fini_function, FALSE,
3126 FALSE, FALSE)
3127 : NULL);
3128 if (h != NULL
3129 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3130 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3132 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3133 return FALSE;
3136 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3138 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3139 if (info->shared)
3141 bfd *sub;
3142 asection *o;
3144 for (sub = info->input_bfds; sub != NULL;
3145 sub = sub->link_next)
3146 for (o = sub->sections; o != NULL; o = o->next)
3147 if (elf_section_data (o)->this_hdr.sh_type
3148 == SHT_PREINIT_ARRAY)
3150 (*_bfd_error_handler)
3151 (_("%s: .preinit_array section is not allowed in DSO"),
3152 bfd_archive_filename (sub));
3153 break;
3156 bfd_set_error (bfd_error_nonrepresentable_section);
3157 return FALSE;
3160 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3161 (bfd_vma) 0)
3162 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3163 (bfd_vma) 0))
3164 return FALSE;
3166 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3168 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3169 (bfd_vma) 0)
3170 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3171 (bfd_vma) 0))
3172 return FALSE;
3174 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3176 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3177 (bfd_vma) 0)
3178 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3179 (bfd_vma) 0))
3180 return FALSE;
3183 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3184 /* If .dynstr is excluded from the link, we don't want any of
3185 these tags. Strictly, we should be checking each section
3186 individually; This quick check covers for the case where
3187 someone does a /DISCARD/ : { *(*) }. */
3188 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3190 bfd_size_type strsize;
3192 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3193 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3194 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3195 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3196 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3197 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3198 (bfd_vma) sizeof (Elf_External_Sym)))
3199 return FALSE;
3203 /* The backend must work out the sizes of all the other dynamic
3204 sections. */
3205 if (bed->elf_backend_size_dynamic_sections
3206 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3207 return FALSE;
3209 if (elf_hash_table (info)->dynamic_sections_created)
3211 bfd_size_type dynsymcount;
3212 asection *s;
3213 size_t bucketcount = 0;
3214 size_t hash_entry_size;
3215 unsigned int dtagcount;
3217 /* Set up the version definition section. */
3218 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3219 BFD_ASSERT (s != NULL);
3221 /* We may have created additional version definitions if we are
3222 just linking a regular application. */
3223 verdefs = asvinfo.verdefs;
3225 /* Skip anonymous version tag. */
3226 if (verdefs != NULL && verdefs->vernum == 0)
3227 verdefs = verdefs->next;
3229 if (verdefs == NULL)
3230 _bfd_strip_section_from_output (info, s);
3231 else
3233 unsigned int cdefs;
3234 bfd_size_type size;
3235 struct bfd_elf_version_tree *t;
3236 bfd_byte *p;
3237 Elf_Internal_Verdef def;
3238 Elf_Internal_Verdaux defaux;
3240 cdefs = 0;
3241 size = 0;
3243 /* Make space for the base version. */
3244 size += sizeof (Elf_External_Verdef);
3245 size += sizeof (Elf_External_Verdaux);
3246 ++cdefs;
3248 for (t = verdefs; t != NULL; t = t->next)
3250 struct bfd_elf_version_deps *n;
3252 size += sizeof (Elf_External_Verdef);
3253 size += sizeof (Elf_External_Verdaux);
3254 ++cdefs;
3256 for (n = t->deps; n != NULL; n = n->next)
3257 size += sizeof (Elf_External_Verdaux);
3260 s->_raw_size = size;
3261 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3262 if (s->contents == NULL && s->_raw_size != 0)
3263 return FALSE;
3265 /* Fill in the version definition section. */
3267 p = s->contents;
3269 def.vd_version = VER_DEF_CURRENT;
3270 def.vd_flags = VER_FLG_BASE;
3271 def.vd_ndx = 1;
3272 def.vd_cnt = 1;
3273 def.vd_aux = sizeof (Elf_External_Verdef);
3274 def.vd_next = (sizeof (Elf_External_Verdef)
3275 + sizeof (Elf_External_Verdaux));
3277 if (soname_indx != (bfd_size_type) -1)
3279 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3280 soname_indx);
3281 def.vd_hash = bfd_elf_hash (soname);
3282 defaux.vda_name = soname_indx;
3284 else
3286 const char *name;
3287 bfd_size_type indx;
3289 name = basename (output_bfd->filename);
3290 def.vd_hash = bfd_elf_hash (name);
3291 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3292 name, FALSE);
3293 if (indx == (bfd_size_type) -1)
3294 return FALSE;
3295 defaux.vda_name = indx;
3297 defaux.vda_next = 0;
3299 _bfd_elf_swap_verdef_out (output_bfd, &def,
3300 (Elf_External_Verdef *) p);
3301 p += sizeof (Elf_External_Verdef);
3302 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3303 (Elf_External_Verdaux *) p);
3304 p += sizeof (Elf_External_Verdaux);
3306 for (t = verdefs; t != NULL; t = t->next)
3308 unsigned int cdeps;
3309 struct bfd_elf_version_deps *n;
3310 struct elf_link_hash_entry *h;
3311 struct bfd_link_hash_entry *bh;
3313 cdeps = 0;
3314 for (n = t->deps; n != NULL; n = n->next)
3315 ++cdeps;
3317 /* Add a symbol representing this version. */
3318 bh = NULL;
3319 if (! (_bfd_generic_link_add_one_symbol
3320 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3321 (bfd_vma) 0, (const char *) NULL, FALSE,
3322 get_elf_backend_data (dynobj)->collect, &bh)))
3323 return FALSE;
3324 h = (struct elf_link_hash_entry *) bh;
3325 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3326 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3327 h->type = STT_OBJECT;
3328 h->verinfo.vertree = t;
3330 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3331 return FALSE;
3333 def.vd_version = VER_DEF_CURRENT;
3334 def.vd_flags = 0;
3335 if (t->globals == NULL && t->locals == NULL && ! t->used)
3336 def.vd_flags |= VER_FLG_WEAK;
3337 def.vd_ndx = t->vernum + 1;
3338 def.vd_cnt = cdeps + 1;
3339 def.vd_hash = bfd_elf_hash (t->name);
3340 def.vd_aux = sizeof (Elf_External_Verdef);
3341 if (t->next != NULL)
3342 def.vd_next = (sizeof (Elf_External_Verdef)
3343 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3344 else
3345 def.vd_next = 0;
3347 _bfd_elf_swap_verdef_out (output_bfd, &def,
3348 (Elf_External_Verdef *) p);
3349 p += sizeof (Elf_External_Verdef);
3351 defaux.vda_name = h->dynstr_index;
3352 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3353 h->dynstr_index);
3354 if (t->deps == NULL)
3355 defaux.vda_next = 0;
3356 else
3357 defaux.vda_next = sizeof (Elf_External_Verdaux);
3358 t->name_indx = defaux.vda_name;
3360 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3361 (Elf_External_Verdaux *) p);
3362 p += sizeof (Elf_External_Verdaux);
3364 for (n = t->deps; n != NULL; n = n->next)
3366 if (n->version_needed == NULL)
3368 /* This can happen if there was an error in the
3369 version script. */
3370 defaux.vda_name = 0;
3372 else
3374 defaux.vda_name = n->version_needed->name_indx;
3375 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3376 defaux.vda_name);
3378 if (n->next == NULL)
3379 defaux.vda_next = 0;
3380 else
3381 defaux.vda_next = sizeof (Elf_External_Verdaux);
3383 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3384 (Elf_External_Verdaux *) p);
3385 p += sizeof (Elf_External_Verdaux);
3389 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3390 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3391 (bfd_vma) cdefs))
3392 return FALSE;
3394 elf_tdata (output_bfd)->cverdefs = cdefs;
3397 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
3399 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3400 return FALSE;
3403 if (info->flags_1)
3405 if (! info->shared)
3406 info->flags_1 &= ~ (DF_1_INITFIRST
3407 | DF_1_NODELETE
3408 | DF_1_NOOPEN);
3409 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3410 info->flags_1))
3411 return FALSE;
3414 /* Work out the size of the version reference section. */
3416 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3417 BFD_ASSERT (s != NULL);
3419 struct elf_find_verdep_info sinfo;
3421 sinfo.output_bfd = output_bfd;
3422 sinfo.info = info;
3423 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3424 if (sinfo.vers == 0)
3425 sinfo.vers = 1;
3426 sinfo.failed = FALSE;
3428 elf_link_hash_traverse (elf_hash_table (info),
3429 elf_link_find_version_dependencies,
3430 (PTR) &sinfo);
3432 if (elf_tdata (output_bfd)->verref == NULL)
3433 _bfd_strip_section_from_output (info, s);
3434 else
3436 Elf_Internal_Verneed *t;
3437 unsigned int size;
3438 unsigned int crefs;
3439 bfd_byte *p;
3441 /* Build the version definition section. */
3442 size = 0;
3443 crefs = 0;
3444 for (t = elf_tdata (output_bfd)->verref;
3445 t != NULL;
3446 t = t->vn_nextref)
3448 Elf_Internal_Vernaux *a;
3450 size += sizeof (Elf_External_Verneed);
3451 ++crefs;
3452 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3453 size += sizeof (Elf_External_Vernaux);
3456 s->_raw_size = size;
3457 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3458 if (s->contents == NULL)
3459 return FALSE;
3461 p = s->contents;
3462 for (t = elf_tdata (output_bfd)->verref;
3463 t != NULL;
3464 t = t->vn_nextref)
3466 unsigned int caux;
3467 Elf_Internal_Vernaux *a;
3468 bfd_size_type indx;
3470 caux = 0;
3471 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3472 ++caux;
3474 t->vn_version = VER_NEED_CURRENT;
3475 t->vn_cnt = caux;
3476 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3477 elf_dt_name (t->vn_bfd) != NULL
3478 ? elf_dt_name (t->vn_bfd)
3479 : basename (t->vn_bfd->filename),
3480 FALSE);
3481 if (indx == (bfd_size_type) -1)
3482 return FALSE;
3483 t->vn_file = indx;
3484 t->vn_aux = sizeof (Elf_External_Verneed);
3485 if (t->vn_nextref == NULL)
3486 t->vn_next = 0;
3487 else
3488 t->vn_next = (sizeof (Elf_External_Verneed)
3489 + caux * sizeof (Elf_External_Vernaux));
3491 _bfd_elf_swap_verneed_out (output_bfd, t,
3492 (Elf_External_Verneed *) p);
3493 p += sizeof (Elf_External_Verneed);
3495 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3497 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3498 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3499 a->vna_nodename, FALSE);
3500 if (indx == (bfd_size_type) -1)
3501 return FALSE;
3502 a->vna_name = indx;
3503 if (a->vna_nextptr == NULL)
3504 a->vna_next = 0;
3505 else
3506 a->vna_next = sizeof (Elf_External_Vernaux);
3508 _bfd_elf_swap_vernaux_out (output_bfd, a,
3509 (Elf_External_Vernaux *) p);
3510 p += sizeof (Elf_External_Vernaux);
3514 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3515 (bfd_vma) 0)
3516 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3517 (bfd_vma) crefs))
3518 return FALSE;
3520 elf_tdata (output_bfd)->cverrefs = crefs;
3524 /* Assign dynsym indicies. In a shared library we generate a
3525 section symbol for each output section, which come first.
3526 Next come all of the back-end allocated local dynamic syms,
3527 followed by the rest of the global symbols. */
3529 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3531 /* Work out the size of the symbol version section. */
3532 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3533 BFD_ASSERT (s != NULL);
3534 if (dynsymcount == 0
3535 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3537 _bfd_strip_section_from_output (info, s);
3538 /* The DYNSYMCOUNT might have changed if we were going to
3539 output a dynamic symbol table entry for S. */
3540 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3542 else
3544 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3545 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3546 if (s->contents == NULL)
3547 return FALSE;
3549 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3550 return FALSE;
3553 /* Set the size of the .dynsym and .hash sections. We counted
3554 the number of dynamic symbols in elf_link_add_object_symbols.
3555 We will build the contents of .dynsym and .hash when we build
3556 the final symbol table, because until then we do not know the
3557 correct value to give the symbols. We built the .dynstr
3558 section as we went along in elf_link_add_object_symbols. */
3559 s = bfd_get_section_by_name (dynobj, ".dynsym");
3560 BFD_ASSERT (s != NULL);
3561 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3562 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3563 if (s->contents == NULL && s->_raw_size != 0)
3564 return FALSE;
3566 if (dynsymcount != 0)
3568 Elf_Internal_Sym isym;
3570 /* The first entry in .dynsym is a dummy symbol. */
3571 isym.st_value = 0;
3572 isym.st_size = 0;
3573 isym.st_name = 0;
3574 isym.st_info = 0;
3575 isym.st_other = 0;
3576 isym.st_shndx = 0;
3577 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3580 /* Compute the size of the hashing table. As a side effect this
3581 computes the hash values for all the names we export. */
3582 bucketcount = compute_bucket_count (info);
3584 s = bfd_get_section_by_name (dynobj, ".hash");
3585 BFD_ASSERT (s != NULL);
3586 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3587 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3588 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3589 if (s->contents == NULL)
3590 return FALSE;
3592 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3593 s->contents);
3594 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3595 s->contents + hash_entry_size);
3597 elf_hash_table (info)->bucketcount = bucketcount;
3599 s = bfd_get_section_by_name (dynobj, ".dynstr");
3600 BFD_ASSERT (s != NULL);
3602 elf_finalize_dynstr (output_bfd, info);
3604 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3606 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3607 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3608 return FALSE;
3611 return TRUE;
3614 /* This function is used to adjust offsets into .dynstr for
3615 dynamic symbols. This is called via elf_link_hash_traverse. */
3617 static bfd_boolean elf_adjust_dynstr_offsets
3618 PARAMS ((struct elf_link_hash_entry *, PTR));
3620 static bfd_boolean
3621 elf_adjust_dynstr_offsets (h, data)
3622 struct elf_link_hash_entry *h;
3623 PTR data;
3625 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3627 if (h->root.type == bfd_link_hash_warning)
3628 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3630 if (h->dynindx != -1)
3631 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3632 return TRUE;
3635 /* Assign string offsets in .dynstr, update all structures referencing
3636 them. */
3638 static bfd_boolean
3639 elf_finalize_dynstr (output_bfd, info)
3640 bfd *output_bfd;
3641 struct bfd_link_info *info;
3643 struct elf_link_local_dynamic_entry *entry;
3644 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3645 bfd *dynobj = elf_hash_table (info)->dynobj;
3646 asection *sdyn;
3647 bfd_size_type size;
3648 Elf_External_Dyn *dyncon, *dynconend;
3650 _bfd_elf_strtab_finalize (dynstr);
3651 size = _bfd_elf_strtab_size (dynstr);
3653 /* Update all .dynamic entries referencing .dynstr strings. */
3654 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3655 BFD_ASSERT (sdyn != NULL);
3657 dyncon = (Elf_External_Dyn *) sdyn->contents;
3658 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3659 sdyn->_raw_size);
3660 for (; dyncon < dynconend; dyncon++)
3662 Elf_Internal_Dyn dyn;
3664 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3665 switch (dyn.d_tag)
3667 case DT_STRSZ:
3668 dyn.d_un.d_val = size;
3669 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3670 break;
3671 case DT_NEEDED:
3672 case DT_SONAME:
3673 case DT_RPATH:
3674 case DT_RUNPATH:
3675 case DT_FILTER:
3676 case DT_AUXILIARY:
3677 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3678 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3679 break;
3680 default:
3681 break;
3685 /* Now update local dynamic symbols. */
3686 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3687 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3688 entry->isym.st_name);
3690 /* And the rest of dynamic symbols. */
3691 elf_link_hash_traverse (elf_hash_table (info),
3692 elf_adjust_dynstr_offsets, dynstr);
3694 /* Adjust version definitions. */
3695 if (elf_tdata (output_bfd)->cverdefs)
3697 asection *s;
3698 bfd_byte *p;
3699 bfd_size_type i;
3700 Elf_Internal_Verdef def;
3701 Elf_Internal_Verdaux defaux;
3703 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3704 p = (bfd_byte *) s->contents;
3707 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3708 &def);
3709 p += sizeof (Elf_External_Verdef);
3710 for (i = 0; i < def.vd_cnt; ++i)
3712 _bfd_elf_swap_verdaux_in (output_bfd,
3713 (Elf_External_Verdaux *) p, &defaux);
3714 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3715 defaux.vda_name);
3716 _bfd_elf_swap_verdaux_out (output_bfd,
3717 &defaux, (Elf_External_Verdaux *) p);
3718 p += sizeof (Elf_External_Verdaux);
3721 while (def.vd_next);
3724 /* Adjust version references. */
3725 if (elf_tdata (output_bfd)->verref)
3727 asection *s;
3728 bfd_byte *p;
3729 bfd_size_type i;
3730 Elf_Internal_Verneed need;
3731 Elf_Internal_Vernaux needaux;
3733 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3734 p = (bfd_byte *) s->contents;
3737 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3738 &need);
3739 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3740 _bfd_elf_swap_verneed_out (output_bfd, &need,
3741 (Elf_External_Verneed *) p);
3742 p += sizeof (Elf_External_Verneed);
3743 for (i = 0; i < need.vn_cnt; ++i)
3745 _bfd_elf_swap_vernaux_in (output_bfd,
3746 (Elf_External_Vernaux *) p, &needaux);
3747 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3748 needaux.vna_name);
3749 _bfd_elf_swap_vernaux_out (output_bfd,
3750 &needaux,
3751 (Elf_External_Vernaux *) p);
3752 p += sizeof (Elf_External_Vernaux);
3755 while (need.vn_next);
3758 return TRUE;
3761 /* Fix up the flags for a symbol. This handles various cases which
3762 can only be fixed after all the input files are seen. This is
3763 currently called by both adjust_dynamic_symbol and
3764 assign_sym_version, which is unnecessary but perhaps more robust in
3765 the face of future changes. */
3767 static bfd_boolean
3768 elf_fix_symbol_flags (h, eif)
3769 struct elf_link_hash_entry *h;
3770 struct elf_info_failed *eif;
3772 /* If this symbol was mentioned in a non-ELF file, try to set
3773 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3774 permit a non-ELF file to correctly refer to a symbol defined in
3775 an ELF dynamic object. */
3776 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3778 while (h->root.type == bfd_link_hash_indirect)
3779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3781 if (h->root.type != bfd_link_hash_defined
3782 && h->root.type != bfd_link_hash_defweak)
3783 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3784 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3785 else
3787 if (h->root.u.def.section->owner != NULL
3788 && (bfd_get_flavour (h->root.u.def.section->owner)
3789 == bfd_target_elf_flavour))
3790 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3791 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3792 else
3793 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3796 if (h->dynindx == -1
3797 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3798 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3800 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3802 eif->failed = TRUE;
3803 return FALSE;
3807 else
3809 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3810 was first seen in a non-ELF file. Fortunately, if the symbol
3811 was first seen in an ELF file, we're probably OK unless the
3812 symbol was defined in a non-ELF file. Catch that case here.
3813 FIXME: We're still in trouble if the symbol was first seen in
3814 a dynamic object, and then later in a non-ELF regular object. */
3815 if ((h->root.type == bfd_link_hash_defined
3816 || h->root.type == bfd_link_hash_defweak)
3817 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3818 && (h->root.u.def.section->owner != NULL
3819 ? (bfd_get_flavour (h->root.u.def.section->owner)
3820 != bfd_target_elf_flavour)
3821 : (bfd_is_abs_section (h->root.u.def.section)
3822 && (h->elf_link_hash_flags
3823 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3824 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3827 /* If this is a final link, and the symbol was defined as a common
3828 symbol in a regular object file, and there was no definition in
3829 any dynamic object, then the linker will have allocated space for
3830 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3831 flag will not have been set. */
3832 if (h->root.type == bfd_link_hash_defined
3833 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3834 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3835 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3836 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3837 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3839 /* If -Bsymbolic was used (which means to bind references to global
3840 symbols to the definition within the shared object), and this
3841 symbol was defined in a regular object, then it actually doesn't
3842 need a PLT entry, and we can accomplish that by forcing it local.
3843 Likewise, if the symbol has hidden or internal visibility.
3844 FIXME: It might be that we also do not need a PLT for other
3845 non-hidden visibilities, but we would have to tell that to the
3846 backend specifically; we can't just clear PLT-related data here. */
3847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3848 && eif->info->shared
3849 && is_elf_hash_table (eif->info)
3850 && (eif->info->symbolic
3851 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3852 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3853 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3855 struct elf_backend_data *bed;
3856 bfd_boolean force_local;
3858 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3860 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3861 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3862 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3865 /* If this is a weak defined symbol in a dynamic object, and we know
3866 the real definition in the dynamic object, copy interesting flags
3867 over to the real definition. */
3868 if (h->weakdef != NULL)
3870 struct elf_link_hash_entry *weakdef;
3872 weakdef = h->weakdef;
3873 if (h->root.type == bfd_link_hash_indirect)
3874 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3876 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3877 || h->root.type == bfd_link_hash_defweak);
3878 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3879 || weakdef->root.type == bfd_link_hash_defweak);
3880 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3882 /* If the real definition is defined by a regular object file,
3883 don't do anything special. See the longer description in
3884 elf_adjust_dynamic_symbol, below. */
3885 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3886 h->weakdef = NULL;
3887 else
3889 struct elf_backend_data *bed;
3891 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3892 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
3896 return TRUE;
3899 /* Make the backend pick a good value for a dynamic symbol. This is
3900 called via elf_link_hash_traverse, and also calls itself
3901 recursively. */
3903 static bfd_boolean
3904 elf_adjust_dynamic_symbol (h, data)
3905 struct elf_link_hash_entry *h;
3906 PTR data;
3908 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3909 bfd *dynobj;
3910 struct elf_backend_data *bed;
3912 if (h->root.type == bfd_link_hash_warning)
3914 h->plt.offset = (bfd_vma) -1;
3915 h->got.offset = (bfd_vma) -1;
3917 /* When warning symbols are created, they **replace** the "real"
3918 entry in the hash table, thus we never get to see the real
3919 symbol in a hash traversal. So look at it now. */
3920 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3923 /* Ignore indirect symbols. These are added by the versioning code. */
3924 if (h->root.type == bfd_link_hash_indirect)
3925 return TRUE;
3927 if (! is_elf_hash_table (eif->info))
3928 return FALSE;
3930 /* Fix the symbol flags. */
3931 if (! elf_fix_symbol_flags (h, eif))
3932 return FALSE;
3934 /* If this symbol does not require a PLT entry, and it is not
3935 defined by a dynamic object, or is not referenced by a regular
3936 object, ignore it. We do have to handle a weak defined symbol,
3937 even if no regular object refers to it, if we decided to add it
3938 to the dynamic symbol table. FIXME: Do we normally need to worry
3939 about symbols which are defined by one dynamic object and
3940 referenced by another one? */
3941 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3942 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3943 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3944 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3945 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3947 h->plt.offset = (bfd_vma) -1;
3948 return TRUE;
3951 /* If we've already adjusted this symbol, don't do it again. This
3952 can happen via a recursive call. */
3953 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3954 return TRUE;
3956 /* Don't look at this symbol again. Note that we must set this
3957 after checking the above conditions, because we may look at a
3958 symbol once, decide not to do anything, and then get called
3959 recursively later after REF_REGULAR is set below. */
3960 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3962 /* If this is a weak definition, and we know a real definition, and
3963 the real symbol is not itself defined by a regular object file,
3964 then get a good value for the real definition. We handle the
3965 real symbol first, for the convenience of the backend routine.
3967 Note that there is a confusing case here. If the real definition
3968 is defined by a regular object file, we don't get the real symbol
3969 from the dynamic object, but we do get the weak symbol. If the
3970 processor backend uses a COPY reloc, then if some routine in the
3971 dynamic object changes the real symbol, we will not see that
3972 change in the corresponding weak symbol. This is the way other
3973 ELF linkers work as well, and seems to be a result of the shared
3974 library model.
3976 I will clarify this issue. Most SVR4 shared libraries define the
3977 variable _timezone and define timezone as a weak synonym. The
3978 tzset call changes _timezone. If you write
3979 extern int timezone;
3980 int _timezone = 5;
3981 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3982 you might expect that, since timezone is a synonym for _timezone,
3983 the same number will print both times. However, if the processor
3984 backend uses a COPY reloc, then actually timezone will be copied
3985 into your process image, and, since you define _timezone
3986 yourself, _timezone will not. Thus timezone and _timezone will
3987 wind up at different memory locations. The tzset call will set
3988 _timezone, leaving timezone unchanged. */
3990 if (h->weakdef != NULL)
3992 /* If we get to this point, we know there is an implicit
3993 reference by a regular object file via the weak symbol H.
3994 FIXME: Is this really true? What if the traversal finds
3995 H->WEAKDEF before it finds H? */
3996 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3998 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3999 return FALSE;
4002 /* If a symbol has no type and no size and does not require a PLT
4003 entry, then we are probably about to do the wrong thing here: we
4004 are probably going to create a COPY reloc for an empty object.
4005 This case can arise when a shared object is built with assembly
4006 code, and the assembly code fails to set the symbol type. */
4007 if (h->size == 0
4008 && h->type == STT_NOTYPE
4009 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4010 (*_bfd_error_handler)
4011 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4012 h->root.root.string);
4014 dynobj = elf_hash_table (eif->info)->dynobj;
4015 bed = get_elf_backend_data (dynobj);
4016 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4018 eif->failed = TRUE;
4019 return FALSE;
4022 return TRUE;
4025 /* This routine is used to export all defined symbols into the dynamic
4026 symbol table. It is called via elf_link_hash_traverse. */
4028 static bfd_boolean
4029 elf_export_symbol (h, data)
4030 struct elf_link_hash_entry *h;
4031 PTR data;
4033 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4035 /* Ignore indirect symbols. These are added by the versioning code. */
4036 if (h->root.type == bfd_link_hash_indirect)
4037 return TRUE;
4039 if (h->root.type == bfd_link_hash_warning)
4040 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4042 if (h->dynindx == -1
4043 && (h->elf_link_hash_flags
4044 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4046 struct bfd_elf_version_tree *t;
4047 struct bfd_elf_version_expr *d;
4049 for (t = eif->verdefs; t != NULL; t = t->next)
4051 if (t->globals != NULL)
4053 for (d = t->globals; d != NULL; d = d->next)
4055 if ((*d->match) (d, h->root.root.string))
4056 goto doit;
4060 if (t->locals != NULL)
4062 for (d = t->locals ; d != NULL; d = d->next)
4064 if ((*d->match) (d, h->root.root.string))
4065 return TRUE;
4070 if (!eif->verdefs)
4072 doit:
4073 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4075 eif->failed = TRUE;
4076 return FALSE;
4081 return TRUE;
4084 /* Look through the symbols which are defined in other shared
4085 libraries and referenced here. Update the list of version
4086 dependencies. This will be put into the .gnu.version_r section.
4087 This function is called via elf_link_hash_traverse. */
4089 static bfd_boolean
4090 elf_link_find_version_dependencies (h, data)
4091 struct elf_link_hash_entry *h;
4092 PTR data;
4094 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4095 Elf_Internal_Verneed *t;
4096 Elf_Internal_Vernaux *a;
4097 bfd_size_type amt;
4099 if (h->root.type == bfd_link_hash_warning)
4100 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4102 /* We only care about symbols defined in shared objects with version
4103 information. */
4104 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4105 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4106 || h->dynindx == -1
4107 || h->verinfo.verdef == NULL)
4108 return TRUE;
4110 /* See if we already know about this version. */
4111 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4113 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4114 continue;
4116 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4117 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4118 return TRUE;
4120 break;
4123 /* This is a new version. Add it to tree we are building. */
4125 if (t == NULL)
4127 amt = sizeof *t;
4128 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4129 if (t == NULL)
4131 rinfo->failed = TRUE;
4132 return FALSE;
4135 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4136 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4137 elf_tdata (rinfo->output_bfd)->verref = t;
4140 amt = sizeof *a;
4141 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4143 /* Note that we are copying a string pointer here, and testing it
4144 above. If bfd_elf_string_from_elf_section is ever changed to
4145 discard the string data when low in memory, this will have to be
4146 fixed. */
4147 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4149 a->vna_flags = h->verinfo.verdef->vd_flags;
4150 a->vna_nextptr = t->vn_auxptr;
4152 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4153 ++rinfo->vers;
4155 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4157 t->vn_auxptr = a;
4159 return TRUE;
4162 /* Figure out appropriate versions for all the symbols. We may not
4163 have the version number script until we have read all of the input
4164 files, so until that point we don't know which symbols should be
4165 local. This function is called via elf_link_hash_traverse. */
4167 static bfd_boolean
4168 elf_link_assign_sym_version (h, data)
4169 struct elf_link_hash_entry *h;
4170 PTR data;
4172 struct elf_assign_sym_version_info *sinfo;
4173 struct bfd_link_info *info;
4174 struct elf_backend_data *bed;
4175 struct elf_info_failed eif;
4176 char *p;
4177 bfd_size_type amt;
4179 sinfo = (struct elf_assign_sym_version_info *) data;
4180 info = sinfo->info;
4182 if (h->root.type == bfd_link_hash_warning)
4183 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4185 /* Fix the symbol flags. */
4186 eif.failed = FALSE;
4187 eif.info = info;
4188 if (! elf_fix_symbol_flags (h, &eif))
4190 if (eif.failed)
4191 sinfo->failed = TRUE;
4192 return FALSE;
4195 /* We only need version numbers for symbols defined in regular
4196 objects. */
4197 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4198 return TRUE;
4200 bed = get_elf_backend_data (sinfo->output_bfd);
4201 p = strchr (h->root.root.string, ELF_VER_CHR);
4202 if (p != NULL && h->verinfo.vertree == NULL)
4204 struct bfd_elf_version_tree *t;
4205 bfd_boolean hidden;
4207 hidden = TRUE;
4209 /* There are two consecutive ELF_VER_CHR characters if this is
4210 not a hidden symbol. */
4211 ++p;
4212 if (*p == ELF_VER_CHR)
4214 hidden = FALSE;
4215 ++p;
4218 /* If there is no version string, we can just return out. */
4219 if (*p == '\0')
4221 if (hidden)
4222 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4223 return TRUE;
4226 /* Look for the version. If we find it, it is no longer weak. */
4227 for (t = sinfo->verdefs; t != NULL; t = t->next)
4229 if (strcmp (t->name, p) == 0)
4231 size_t len;
4232 char *alc;
4233 struct bfd_elf_version_expr *d;
4235 len = p - h->root.root.string;
4236 alc = bfd_malloc ((bfd_size_type) len);
4237 if (alc == NULL)
4238 return FALSE;
4239 memcpy (alc, h->root.root.string, len - 1);
4240 alc[len - 1] = '\0';
4241 if (alc[len - 2] == ELF_VER_CHR)
4242 alc[len - 2] = '\0';
4244 h->verinfo.vertree = t;
4245 t->used = TRUE;
4246 d = NULL;
4248 if (t->globals != NULL)
4250 for (d = t->globals; d != NULL; d = d->next)
4251 if ((*d->match) (d, alc))
4252 break;
4255 /* See if there is anything to force this symbol to
4256 local scope. */
4257 if (d == NULL && t->locals != NULL)
4259 for (d = t->locals; d != NULL; d = d->next)
4261 if ((*d->match) (d, alc))
4263 if (h->dynindx != -1
4264 && info->shared
4265 && ! info->export_dynamic)
4267 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4270 break;
4275 free (alc);
4276 break;
4280 /* If we are building an application, we need to create a
4281 version node for this version. */
4282 if (t == NULL && ! info->shared)
4284 struct bfd_elf_version_tree **pp;
4285 int version_index;
4287 /* If we aren't going to export this symbol, we don't need
4288 to worry about it. */
4289 if (h->dynindx == -1)
4290 return TRUE;
4292 amt = sizeof *t;
4293 t = ((struct bfd_elf_version_tree *)
4294 bfd_alloc (sinfo->output_bfd, amt));
4295 if (t == NULL)
4297 sinfo->failed = TRUE;
4298 return FALSE;
4301 t->next = NULL;
4302 t->name = p;
4303 t->globals = NULL;
4304 t->locals = NULL;
4305 t->deps = NULL;
4306 t->name_indx = (unsigned int) -1;
4307 t->used = TRUE;
4309 version_index = 1;
4310 /* Don't count anonymous version tag. */
4311 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4312 version_index = 0;
4313 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4314 ++version_index;
4315 t->vernum = version_index;
4317 *pp = t;
4319 h->verinfo.vertree = t;
4321 else if (t == NULL)
4323 /* We could not find the version for a symbol when
4324 generating a shared archive. Return an error. */
4325 (*_bfd_error_handler)
4326 (_("%s: undefined versioned symbol name %s"),
4327 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4328 bfd_set_error (bfd_error_bad_value);
4329 sinfo->failed = TRUE;
4330 return FALSE;
4333 if (hidden)
4334 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4337 /* If we don't have a version for this symbol, see if we can find
4338 something. */
4339 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4341 struct bfd_elf_version_tree *t;
4342 struct bfd_elf_version_tree *local_ver;
4343 struct bfd_elf_version_expr *d;
4345 /* See if can find what version this symbol is in. If the
4346 symbol is supposed to be local, then don't actually register
4347 it. */
4348 local_ver = NULL;
4349 for (t = sinfo->verdefs; t != NULL; t = t->next)
4351 if (t->globals != NULL)
4353 bfd_boolean matched;
4355 matched = FALSE;
4356 for (d = t->globals; d != NULL; d = d->next)
4358 if ((*d->match) (d, h->root.root.string))
4360 if (d->symver)
4361 matched = TRUE;
4362 else
4364 /* There is a version without definition. Make
4365 the symbol the default definition for this
4366 version. */
4367 h->verinfo.vertree = t;
4368 local_ver = NULL;
4369 d->script = 1;
4370 break;
4375 if (d != NULL)
4376 break;
4377 else if (matched)
4378 /* There is no undefined version for this symbol. Hide the
4379 default one. */
4380 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4383 if (t->locals != NULL)
4385 for (d = t->locals; d != NULL; d = d->next)
4387 /* If the match is "*", keep looking for a more
4388 explicit, perhaps even global, match. */
4389 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4390 local_ver = t;
4391 else if ((*d->match) (d, h->root.root.string))
4393 local_ver = t;
4394 break;
4398 if (d != NULL)
4399 break;
4403 if (local_ver != NULL)
4405 h->verinfo.vertree = local_ver;
4406 if (h->dynindx != -1
4407 && info->shared
4408 && ! info->export_dynamic)
4410 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4415 return TRUE;
4418 /* Final phase of ELF linker. */
4420 /* A structure we use to avoid passing large numbers of arguments. */
4422 struct elf_final_link_info
4424 /* General link information. */
4425 struct bfd_link_info *info;
4426 /* Output BFD. */
4427 bfd *output_bfd;
4428 /* Symbol string table. */
4429 struct bfd_strtab_hash *symstrtab;
4430 /* .dynsym section. */
4431 asection *dynsym_sec;
4432 /* .hash section. */
4433 asection *hash_sec;
4434 /* symbol version section (.gnu.version). */
4435 asection *symver_sec;
4436 /* first SHF_TLS section (if any). */
4437 asection *first_tls_sec;
4438 /* Buffer large enough to hold contents of any section. */
4439 bfd_byte *contents;
4440 /* Buffer large enough to hold external relocs of any section. */
4441 PTR external_relocs;
4442 /* Buffer large enough to hold internal relocs of any section. */
4443 Elf_Internal_Rela *internal_relocs;
4444 /* Buffer large enough to hold external local symbols of any input
4445 BFD. */
4446 Elf_External_Sym *external_syms;
4447 /* And a buffer for symbol section indices. */
4448 Elf_External_Sym_Shndx *locsym_shndx;
4449 /* Buffer large enough to hold internal local symbols of any input
4450 BFD. */
4451 Elf_Internal_Sym *internal_syms;
4452 /* Array large enough to hold a symbol index for each local symbol
4453 of any input BFD. */
4454 long *indices;
4455 /* Array large enough to hold a section pointer for each local
4456 symbol of any input BFD. */
4457 asection **sections;
4458 /* Buffer to hold swapped out symbols. */
4459 Elf_External_Sym *symbuf;
4460 /* And one for symbol section indices. */
4461 Elf_External_Sym_Shndx *symshndxbuf;
4462 /* Number of swapped out symbols in buffer. */
4463 size_t symbuf_count;
4464 /* Number of symbols which fit in symbuf. */
4465 size_t symbuf_size;
4466 /* And same for symshndxbuf. */
4467 size_t shndxbuf_size;
4470 static bfd_boolean elf_link_output_sym
4471 PARAMS ((struct elf_final_link_info *, const char *,
4472 Elf_Internal_Sym *, asection *));
4473 static bfd_boolean elf_link_flush_output_syms
4474 PARAMS ((struct elf_final_link_info *));
4475 static bfd_boolean elf_link_output_extsym
4476 PARAMS ((struct elf_link_hash_entry *, PTR));
4477 static bfd_boolean elf_link_sec_merge_syms
4478 PARAMS ((struct elf_link_hash_entry *, PTR));
4479 static bfd_boolean elf_link_check_versioned_symbol
4480 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
4481 static bfd_boolean elf_link_input_bfd
4482 PARAMS ((struct elf_final_link_info *, bfd *));
4483 static bfd_boolean elf_reloc_link_order
4484 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4485 struct bfd_link_order *));
4487 /* This struct is used to pass information to elf_link_output_extsym. */
4489 struct elf_outext_info
4491 bfd_boolean failed;
4492 bfd_boolean localsyms;
4493 struct elf_final_link_info *finfo;
4496 /* Compute the size of, and allocate space for, REL_HDR which is the
4497 section header for a section containing relocations for O. */
4499 static bfd_boolean
4500 elf_link_size_reloc_section (abfd, rel_hdr, o)
4501 bfd *abfd;
4502 Elf_Internal_Shdr *rel_hdr;
4503 asection *o;
4505 bfd_size_type reloc_count;
4506 bfd_size_type num_rel_hashes;
4508 /* Figure out how many relocations there will be. */
4509 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4510 reloc_count = elf_section_data (o)->rel_count;
4511 else
4512 reloc_count = elf_section_data (o)->rel_count2;
4514 num_rel_hashes = o->reloc_count;
4515 if (num_rel_hashes < reloc_count)
4516 num_rel_hashes = reloc_count;
4518 /* That allows us to calculate the size of the section. */
4519 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4521 /* The contents field must last into write_object_contents, so we
4522 allocate it with bfd_alloc rather than malloc. Also since we
4523 cannot be sure that the contents will actually be filled in,
4524 we zero the allocated space. */
4525 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4526 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4527 return FALSE;
4529 /* We only allocate one set of hash entries, so we only do it the
4530 first time we are called. */
4531 if (elf_section_data (o)->rel_hashes == NULL
4532 && num_rel_hashes)
4534 struct elf_link_hash_entry **p;
4536 p = ((struct elf_link_hash_entry **)
4537 bfd_zmalloc (num_rel_hashes
4538 * sizeof (struct elf_link_hash_entry *)));
4539 if (p == NULL)
4540 return FALSE;
4542 elf_section_data (o)->rel_hashes = p;
4545 return TRUE;
4548 /* When performing a relocateable link, the input relocations are
4549 preserved. But, if they reference global symbols, the indices
4550 referenced must be updated. Update all the relocations in
4551 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4553 static void
4554 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4555 bfd *abfd;
4556 Elf_Internal_Shdr *rel_hdr;
4557 unsigned int count;
4558 struct elf_link_hash_entry **rel_hash;
4560 unsigned int i;
4561 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4562 bfd_byte *erela;
4563 void (*swap_in) PARAMS ((bfd *, const bfd_byte *, Elf_Internal_Rela *));
4564 void (*swap_out) PARAMS ((bfd *, const Elf_Internal_Rela *, bfd_byte *));
4566 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4568 swap_in = bed->s->swap_reloc_in;
4569 swap_out = bed->s->swap_reloc_out;
4571 else if (rel_hdr->sh_entsize == sizeof (Elf_External_Rela))
4573 swap_in = bed->s->swap_reloca_in;
4574 swap_out = bed->s->swap_reloca_out;
4576 else
4577 abort ();
4579 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
4580 abort ();
4582 erela = rel_hdr->contents;
4583 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
4585 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
4586 unsigned int j;
4588 if (*rel_hash == NULL)
4589 continue;
4591 BFD_ASSERT ((*rel_hash)->indx >= 0);
4593 (*swap_in) (abfd, erela, irela);
4594 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4595 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4596 ELF_R_TYPE (irela[j].r_info));
4597 (*swap_out) (abfd, irela, erela);
4601 struct elf_link_sort_rela
4603 bfd_vma offset;
4604 enum elf_reloc_type_class type;
4605 /* We use this as an array of size int_rels_per_ext_rel. */
4606 Elf_Internal_Rela rela[1];
4609 static int
4610 elf_link_sort_cmp1 (A, B)
4611 const PTR A;
4612 const PTR B;
4614 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4615 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4616 int relativea, relativeb;
4618 relativea = a->type == reloc_class_relative;
4619 relativeb = b->type == reloc_class_relative;
4621 if (relativea < relativeb)
4622 return 1;
4623 if (relativea > relativeb)
4624 return -1;
4625 if (ELF_R_SYM (a->rela->r_info) < ELF_R_SYM (b->rela->r_info))
4626 return -1;
4627 if (ELF_R_SYM (a->rela->r_info) > ELF_R_SYM (b->rela->r_info))
4628 return 1;
4629 if (a->rela->r_offset < b->rela->r_offset)
4630 return -1;
4631 if (a->rela->r_offset > b->rela->r_offset)
4632 return 1;
4633 return 0;
4636 static int
4637 elf_link_sort_cmp2 (A, B)
4638 const PTR A;
4639 const PTR B;
4641 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4642 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4643 int copya, copyb;
4645 if (a->offset < b->offset)
4646 return -1;
4647 if (a->offset > b->offset)
4648 return 1;
4649 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4650 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4651 if (copya < copyb)
4652 return -1;
4653 if (copya > copyb)
4654 return 1;
4655 if (a->rela->r_offset < b->rela->r_offset)
4656 return -1;
4657 if (a->rela->r_offset > b->rela->r_offset)
4658 return 1;
4659 return 0;
4662 static size_t
4663 elf_link_sort_relocs (abfd, info, psec)
4664 bfd *abfd;
4665 struct bfd_link_info *info;
4666 asection **psec;
4668 bfd *dynobj = elf_hash_table (info)->dynobj;
4669 asection *reldyn, *o;
4670 bfd_size_type count, size;
4671 size_t i, ret, sort_elt, ext_size;
4672 bfd_byte *sort, *s_non_relative, *p;
4673 struct elf_link_sort_rela *sq;
4674 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4675 int i2e = bed->s->int_rels_per_ext_rel;
4676 void (*swap_in) PARAMS ((bfd *, const bfd_byte *, Elf_Internal_Rela *));
4677 void (*swap_out) PARAMS ((bfd *, const Elf_Internal_Rela *, bfd_byte *));
4679 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4680 if (reldyn == NULL || reldyn->_raw_size == 0)
4682 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4683 if (reldyn == NULL || reldyn->_raw_size == 0)
4684 return 0;
4685 ext_size = sizeof (Elf_External_Rel);
4686 swap_in = bed->s->swap_reloc_in;
4687 swap_out = bed->s->swap_reloc_out;
4689 else
4691 ext_size = sizeof (Elf_External_Rela);
4692 swap_in = bed->s->swap_reloca_in;
4693 swap_out = bed->s->swap_reloca_out;
4695 count = reldyn->_raw_size / ext_size;
4697 size = 0;
4698 for (o = dynobj->sections; o != NULL; o = o->next)
4699 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4700 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4701 && o->output_section == reldyn)
4702 size += o->_raw_size;
4704 if (size != reldyn->_raw_size)
4705 return 0;
4707 sort_elt = (sizeof (struct elf_link_sort_rela)
4708 + (i2e - 1) * sizeof (Elf_Internal_Rela));
4709 sort = bfd_zmalloc (sort_elt * count);
4710 if (sort == NULL)
4712 (*info->callbacks->warning)
4713 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4714 (bfd_vma) 0);
4715 return 0;
4718 for (o = dynobj->sections; o != NULL; o = o->next)
4719 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4720 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4721 && o->output_section == reldyn)
4723 bfd_byte *erel, *erelend;
4725 erel = o->contents;
4726 erelend = o->contents + o->_raw_size;
4727 p = sort + o->output_offset / ext_size * sort_elt;
4728 while (erel < erelend)
4730 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
4731 (*swap_in) (abfd, erel, s->rela);
4732 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
4733 p += sort_elt;
4734 erel += ext_size;
4738 qsort (sort, (size_t) count, sort_elt, elf_link_sort_cmp1);
4740 for (i = 0, p = sort; i < count; i++, p += sort_elt)
4742 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
4743 if (s->type != reloc_class_relative)
4744 break;
4746 ret = i;
4747 s_non_relative = p;
4749 sq = (struct elf_link_sort_rela *) s_non_relative;
4750 for (; i < count; i++, p += sort_elt)
4752 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
4753 if (ELF_R_SYM (sp->rela->r_info) != ELF_R_SYM (sq->rela->r_info))
4754 sq = sp;
4755 sp->offset = sq->rela->r_offset;
4758 qsort (s_non_relative, (size_t) count - ret, sort_elt, elf_link_sort_cmp2);
4760 for (o = dynobj->sections; o != NULL; o = o->next)
4761 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4762 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4763 && o->output_section == reldyn)
4765 bfd_byte *erel, *erelend;
4767 erel = o->contents;
4768 erelend = o->contents + o->_raw_size;
4769 p = sort + o->output_offset / ext_size * sort_elt;
4770 while (erel < erelend)
4772 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
4773 (*swap_out) (abfd, s->rela, erel);
4774 p += sort_elt;
4775 erel += ext_size;
4779 *psec = reldyn;
4780 return ret;
4783 /* Do the final step of an ELF link. */
4785 bfd_boolean
4786 elf_bfd_final_link (abfd, info)
4787 bfd *abfd;
4788 struct bfd_link_info *info;
4790 bfd_boolean dynamic;
4791 bfd_boolean emit_relocs;
4792 bfd *dynobj;
4793 struct elf_final_link_info finfo;
4794 register asection *o;
4795 register struct bfd_link_order *p;
4796 register bfd *sub;
4797 bfd_size_type max_contents_size;
4798 bfd_size_type max_external_reloc_size;
4799 bfd_size_type max_internal_reloc_count;
4800 bfd_size_type max_sym_count;
4801 bfd_size_type max_sym_shndx_count;
4802 file_ptr off;
4803 Elf_Internal_Sym elfsym;
4804 unsigned int i;
4805 Elf_Internal_Shdr *symtab_hdr;
4806 Elf_Internal_Shdr *symtab_shndx_hdr;
4807 Elf_Internal_Shdr *symstrtab_hdr;
4808 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4809 struct elf_outext_info eoinfo;
4810 bfd_boolean merged;
4811 size_t relativecount = 0;
4812 asection *reldyn = 0;
4813 bfd_size_type amt;
4815 if (! is_elf_hash_table (info))
4816 return FALSE;
4818 if (info->shared)
4819 abfd->flags |= DYNAMIC;
4821 dynamic = elf_hash_table (info)->dynamic_sections_created;
4822 dynobj = elf_hash_table (info)->dynobj;
4824 emit_relocs = (info->relocateable
4825 || info->emitrelocations
4826 || bed->elf_backend_emit_relocs);
4828 finfo.info = info;
4829 finfo.output_bfd = abfd;
4830 finfo.symstrtab = elf_stringtab_init ();
4831 if (finfo.symstrtab == NULL)
4832 return FALSE;
4834 if (! dynamic)
4836 finfo.dynsym_sec = NULL;
4837 finfo.hash_sec = NULL;
4838 finfo.symver_sec = NULL;
4840 else
4842 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4843 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4844 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4845 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4846 /* Note that it is OK if symver_sec is NULL. */
4849 finfo.contents = NULL;
4850 finfo.external_relocs = NULL;
4851 finfo.internal_relocs = NULL;
4852 finfo.external_syms = NULL;
4853 finfo.locsym_shndx = NULL;
4854 finfo.internal_syms = NULL;
4855 finfo.indices = NULL;
4856 finfo.sections = NULL;
4857 finfo.symbuf = NULL;
4858 finfo.symshndxbuf = NULL;
4859 finfo.symbuf_count = 0;
4860 finfo.shndxbuf_size = 0;
4861 finfo.first_tls_sec = NULL;
4862 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4863 if ((o->flags & SEC_THREAD_LOCAL) != 0
4864 && (o->flags & SEC_LOAD) != 0)
4866 finfo.first_tls_sec = o;
4867 break;
4870 /* Count up the number of relocations we will output for each output
4871 section, so that we know the sizes of the reloc sections. We
4872 also figure out some maximum sizes. */
4873 max_contents_size = 0;
4874 max_external_reloc_size = 0;
4875 max_internal_reloc_count = 0;
4876 max_sym_count = 0;
4877 max_sym_shndx_count = 0;
4878 merged = FALSE;
4879 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4881 o->reloc_count = 0;
4883 for (p = o->link_order_head; p != NULL; p = p->next)
4885 if (p->type == bfd_section_reloc_link_order
4886 || p->type == bfd_symbol_reloc_link_order)
4887 ++o->reloc_count;
4888 else if (p->type == bfd_indirect_link_order)
4890 asection *sec;
4892 sec = p->u.indirect.section;
4894 /* Mark all sections which are to be included in the
4895 link. This will normally be every section. We need
4896 to do this so that we can identify any sections which
4897 the linker has decided to not include. */
4898 sec->linker_mark = TRUE;
4900 if (sec->flags & SEC_MERGE)
4901 merged = TRUE;
4903 if (info->relocateable || info->emitrelocations)
4904 o->reloc_count += sec->reloc_count;
4905 else if (bed->elf_backend_count_relocs)
4907 Elf_Internal_Rela * relocs;
4909 relocs = (NAME(_bfd_elf,link_read_relocs)
4910 (abfd, sec, (PTR) NULL,
4911 (Elf_Internal_Rela *) NULL, info->keep_memory));
4913 o->reloc_count
4914 += (*bed->elf_backend_count_relocs) (sec, relocs);
4916 if (elf_section_data (o)->relocs != relocs)
4917 free (relocs);
4920 if (sec->_raw_size > max_contents_size)
4921 max_contents_size = sec->_raw_size;
4922 if (sec->_cooked_size > max_contents_size)
4923 max_contents_size = sec->_cooked_size;
4925 /* We are interested in just local symbols, not all
4926 symbols. */
4927 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4928 && (sec->owner->flags & DYNAMIC) == 0)
4930 size_t sym_count;
4932 if (elf_bad_symtab (sec->owner))
4933 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4934 / sizeof (Elf_External_Sym));
4935 else
4936 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4938 if (sym_count > max_sym_count)
4939 max_sym_count = sym_count;
4941 if (sym_count > max_sym_shndx_count
4942 && elf_symtab_shndx (sec->owner) != 0)
4943 max_sym_shndx_count = sym_count;
4945 if ((sec->flags & SEC_RELOC) != 0)
4947 size_t ext_size;
4949 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4950 if (ext_size > max_external_reloc_size)
4951 max_external_reloc_size = ext_size;
4952 if (sec->reloc_count > max_internal_reloc_count)
4953 max_internal_reloc_count = sec->reloc_count;
4959 if (o->reloc_count > 0)
4960 o->flags |= SEC_RELOC;
4961 else
4963 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4964 set it (this is probably a bug) and if it is set
4965 assign_section_numbers will create a reloc section. */
4966 o->flags &=~ SEC_RELOC;
4969 /* If the SEC_ALLOC flag is not set, force the section VMA to
4970 zero. This is done in elf_fake_sections as well, but forcing
4971 the VMA to 0 here will ensure that relocs against these
4972 sections are handled correctly. */
4973 if ((o->flags & SEC_ALLOC) == 0
4974 && ! o->user_set_vma)
4975 o->vma = 0;
4978 if (! info->relocateable && merged)
4979 elf_link_hash_traverse (elf_hash_table (info),
4980 elf_link_sec_merge_syms, (PTR) abfd);
4982 /* Figure out the file positions for everything but the symbol table
4983 and the relocs. We set symcount to force assign_section_numbers
4984 to create a symbol table. */
4985 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4986 BFD_ASSERT (! abfd->output_has_begun);
4987 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4988 goto error_return;
4990 /* Figure out how many relocations we will have in each section.
4991 Just using RELOC_COUNT isn't good enough since that doesn't
4992 maintain a separate value for REL vs. RELA relocations. */
4993 if (emit_relocs)
4994 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4995 for (o = sub->sections; o != NULL; o = o->next)
4997 asection *output_section;
4999 if (! o->linker_mark)
5001 /* This section was omitted from the link. */
5002 continue;
5005 output_section = o->output_section;
5007 if (output_section != NULL
5008 && (o->flags & SEC_RELOC) != 0)
5010 struct bfd_elf_section_data *esdi
5011 = elf_section_data (o);
5012 struct bfd_elf_section_data *esdo
5013 = elf_section_data (output_section);
5014 unsigned int *rel_count;
5015 unsigned int *rel_count2;
5016 bfd_size_type entsize;
5017 bfd_size_type entsize2;
5019 /* We must be careful to add the relocations from the
5020 input section to the right output count. */
5021 entsize = esdi->rel_hdr.sh_entsize;
5022 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5023 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5024 || entsize == sizeof (Elf_External_Rela))
5025 && entsize2 != entsize
5026 && (entsize2 == 0
5027 || entsize2 == sizeof (Elf_External_Rel)
5028 || entsize2 == sizeof (Elf_External_Rela)));
5029 if (entsize == esdo->rel_hdr.sh_entsize)
5031 rel_count = &esdo->rel_count;
5032 rel_count2 = &esdo->rel_count2;
5034 else
5036 rel_count = &esdo->rel_count2;
5037 rel_count2 = &esdo->rel_count;
5040 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5041 if (esdi->rel_hdr2)
5042 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5043 output_section->flags |= SEC_RELOC;
5047 /* That created the reloc sections. Set their sizes, and assign
5048 them file positions, and allocate some buffers. */
5049 for (o = abfd->sections; o != NULL; o = o->next)
5051 if ((o->flags & SEC_RELOC) != 0)
5053 if (!elf_link_size_reloc_section (abfd,
5054 &elf_section_data (o)->rel_hdr,
5056 goto error_return;
5058 if (elf_section_data (o)->rel_hdr2
5059 && !elf_link_size_reloc_section (abfd,
5060 elf_section_data (o)->rel_hdr2,
5062 goto error_return;
5065 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5066 to count upwards while actually outputting the relocations. */
5067 elf_section_data (o)->rel_count = 0;
5068 elf_section_data (o)->rel_count2 = 0;
5071 _bfd_elf_assign_file_positions_for_relocs (abfd);
5073 /* We have now assigned file positions for all the sections except
5074 .symtab and .strtab. We start the .symtab section at the current
5075 file position, and write directly to it. We build the .strtab
5076 section in memory. */
5077 bfd_get_symcount (abfd) = 0;
5078 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5079 /* sh_name is set in prep_headers. */
5080 symtab_hdr->sh_type = SHT_SYMTAB;
5081 /* sh_flags, sh_addr and sh_size all start off zero. */
5082 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5083 /* sh_link is set in assign_section_numbers. */
5084 /* sh_info is set below. */
5085 /* sh_offset is set just below. */
5086 symtab_hdr->sh_addralign = bed->s->file_align;
5088 off = elf_tdata (abfd)->next_file_pos;
5089 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
5091 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5092 incorrect. We do not yet know the size of the .symtab section.
5093 We correct next_file_pos below, after we do know the size. */
5095 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5096 continuously seeking to the right position in the file. */
5097 if (! info->keep_memory || max_sym_count < 20)
5098 finfo.symbuf_size = 20;
5099 else
5100 finfo.symbuf_size = max_sym_count;
5101 amt = finfo.symbuf_size;
5102 amt *= sizeof (Elf_External_Sym);
5103 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5104 if (finfo.symbuf == NULL)
5105 goto error_return;
5106 if (elf_numsections (abfd) > SHN_LORESERVE)
5108 /* Wild guess at number of output symbols. realloc'd as needed. */
5109 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
5110 finfo.shndxbuf_size = amt;
5111 amt *= sizeof (Elf_External_Sym_Shndx);
5112 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
5113 if (finfo.symshndxbuf == NULL)
5114 goto error_return;
5117 /* Start writing out the symbol table. The first symbol is always a
5118 dummy symbol. */
5119 if (info->strip != strip_all
5120 || emit_relocs)
5122 elfsym.st_value = 0;
5123 elfsym.st_size = 0;
5124 elfsym.st_info = 0;
5125 elfsym.st_other = 0;
5126 elfsym.st_shndx = SHN_UNDEF;
5127 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5128 &elfsym, bfd_und_section_ptr))
5129 goto error_return;
5132 #if 0
5133 /* Some standard ELF linkers do this, but we don't because it causes
5134 bootstrap comparison failures. */
5135 /* Output a file symbol for the output file as the second symbol.
5136 We output this even if we are discarding local symbols, although
5137 I'm not sure if this is correct. */
5138 elfsym.st_value = 0;
5139 elfsym.st_size = 0;
5140 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5141 elfsym.st_other = 0;
5142 elfsym.st_shndx = SHN_ABS;
5143 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5144 &elfsym, bfd_abs_section_ptr))
5145 goto error_return;
5146 #endif
5148 /* Output a symbol for each section. We output these even if we are
5149 discarding local symbols, since they are used for relocs. These
5150 symbols have no names. We store the index of each one in the
5151 index field of the section, so that we can find it again when
5152 outputting relocs. */
5153 if (info->strip != strip_all
5154 || emit_relocs)
5156 elfsym.st_size = 0;
5157 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5158 elfsym.st_other = 0;
5159 for (i = 1; i < elf_numsections (abfd); i++)
5161 o = section_from_elf_index (abfd, i);
5162 if (o != NULL)
5163 o->target_index = bfd_get_symcount (abfd);
5164 elfsym.st_shndx = i;
5165 if (info->relocateable || o == NULL)
5166 elfsym.st_value = 0;
5167 else
5168 elfsym.st_value = o->vma;
5169 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5170 &elfsym, o))
5171 goto error_return;
5172 if (i == SHN_LORESERVE - 1)
5173 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5177 /* Allocate some memory to hold information read in from the input
5178 files. */
5179 if (max_contents_size != 0)
5181 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5182 if (finfo.contents == NULL)
5183 goto error_return;
5186 if (max_external_reloc_size != 0)
5188 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5189 if (finfo.external_relocs == NULL)
5190 goto error_return;
5193 if (max_internal_reloc_count != 0)
5195 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5196 amt *= sizeof (Elf_Internal_Rela);
5197 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5198 if (finfo.internal_relocs == NULL)
5199 goto error_return;
5202 if (max_sym_count != 0)
5204 amt = max_sym_count * sizeof (Elf_External_Sym);
5205 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5206 if (finfo.external_syms == NULL)
5207 goto error_return;
5209 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5210 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5211 if (finfo.internal_syms == NULL)
5212 goto error_return;
5214 amt = max_sym_count * sizeof (long);
5215 finfo.indices = (long *) bfd_malloc (amt);
5216 if (finfo.indices == NULL)
5217 goto error_return;
5219 amt = max_sym_count * sizeof (asection *);
5220 finfo.sections = (asection **) bfd_malloc (amt);
5221 if (finfo.sections == NULL)
5222 goto error_return;
5225 if (max_sym_shndx_count != 0)
5227 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5228 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5229 if (finfo.locsym_shndx == NULL)
5230 goto error_return;
5233 if (finfo.first_tls_sec)
5235 unsigned int align = 0;
5236 bfd_vma base = finfo.first_tls_sec->vma, end = 0;
5237 asection *sec;
5239 for (sec = finfo.first_tls_sec;
5240 sec && (sec->flags & SEC_THREAD_LOCAL);
5241 sec = sec->next)
5243 bfd_vma size = sec->_raw_size;
5245 if (bfd_get_section_alignment (abfd, sec) > align)
5246 align = bfd_get_section_alignment (abfd, sec);
5247 if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
5249 struct bfd_link_order *o;
5251 size = 0;
5252 for (o = sec->link_order_head; o != NULL; o = o->next)
5253 if (size < o->offset + o->size)
5254 size = o->offset + o->size;
5256 end = sec->vma + size;
5258 elf_hash_table (info)->tls_segment
5259 = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
5260 if (elf_hash_table (info)->tls_segment == NULL)
5261 goto error_return;
5262 elf_hash_table (info)->tls_segment->start = base;
5263 elf_hash_table (info)->tls_segment->size = end - base;
5264 elf_hash_table (info)->tls_segment->align = align;
5267 /* Since ELF permits relocations to be against local symbols, we
5268 must have the local symbols available when we do the relocations.
5269 Since we would rather only read the local symbols once, and we
5270 would rather not keep them in memory, we handle all the
5271 relocations for a single input file at the same time.
5273 Unfortunately, there is no way to know the total number of local
5274 symbols until we have seen all of them, and the local symbol
5275 indices precede the global symbol indices. This means that when
5276 we are generating relocateable output, and we see a reloc against
5277 a global symbol, we can not know the symbol index until we have
5278 finished examining all the local symbols to see which ones we are
5279 going to output. To deal with this, we keep the relocations in
5280 memory, and don't output them until the end of the link. This is
5281 an unfortunate waste of memory, but I don't see a good way around
5282 it. Fortunately, it only happens when performing a relocateable
5283 link, which is not the common case. FIXME: If keep_memory is set
5284 we could write the relocs out and then read them again; I don't
5285 know how bad the memory loss will be. */
5287 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5288 sub->output_has_begun = FALSE;
5289 for (o = abfd->sections; o != NULL; o = o->next)
5291 for (p = o->link_order_head; p != NULL; p = p->next)
5293 if (p->type == bfd_indirect_link_order
5294 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5295 == bfd_target_elf_flavour)
5296 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5298 if (! sub->output_has_begun)
5300 if (! elf_link_input_bfd (&finfo, sub))
5301 goto error_return;
5302 sub->output_has_begun = TRUE;
5305 else if (p->type == bfd_section_reloc_link_order
5306 || p->type == bfd_symbol_reloc_link_order)
5308 if (! elf_reloc_link_order (abfd, info, o, p))
5309 goto error_return;
5311 else
5313 if (! _bfd_default_link_order (abfd, info, o, p))
5314 goto error_return;
5319 /* Output any global symbols that got converted to local in a
5320 version script or due to symbol visibility. We do this in a
5321 separate step since ELF requires all local symbols to appear
5322 prior to any global symbols. FIXME: We should only do this if
5323 some global symbols were, in fact, converted to become local.
5324 FIXME: Will this work correctly with the Irix 5 linker? */
5325 eoinfo.failed = FALSE;
5326 eoinfo.finfo = &finfo;
5327 eoinfo.localsyms = TRUE;
5328 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5329 (PTR) &eoinfo);
5330 if (eoinfo.failed)
5331 return FALSE;
5333 /* That wrote out all the local symbols. Finish up the symbol table
5334 with the global symbols. Even if we want to strip everything we
5335 can, we still need to deal with those global symbols that got
5336 converted to local in a version script. */
5338 /* The sh_info field records the index of the first non local symbol. */
5339 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5341 if (dynamic
5342 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5344 Elf_Internal_Sym sym;
5345 Elf_External_Sym *dynsym =
5346 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5347 long last_local = 0;
5349 /* Write out the section symbols for the output sections. */
5350 if (info->shared)
5352 asection *s;
5354 sym.st_size = 0;
5355 sym.st_name = 0;
5356 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5357 sym.st_other = 0;
5359 for (s = abfd->sections; s != NULL; s = s->next)
5361 int indx;
5362 Elf_External_Sym *dest;
5364 indx = elf_section_data (s)->this_idx;
5365 BFD_ASSERT (indx > 0);
5366 sym.st_shndx = indx;
5367 sym.st_value = s->vma;
5368 dest = dynsym + elf_section_data (s)->dynindx;
5369 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5372 last_local = bfd_count_sections (abfd);
5375 /* Write out the local dynsyms. */
5376 if (elf_hash_table (info)->dynlocal)
5378 struct elf_link_local_dynamic_entry *e;
5379 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5381 asection *s;
5382 Elf_External_Sym *dest;
5384 sym.st_size = e->isym.st_size;
5385 sym.st_other = e->isym.st_other;
5387 /* Copy the internal symbol as is.
5388 Note that we saved a word of storage and overwrote
5389 the original st_name with the dynstr_index. */
5390 sym = e->isym;
5392 if (e->isym.st_shndx != SHN_UNDEF
5393 && (e->isym.st_shndx < SHN_LORESERVE
5394 || e->isym.st_shndx > SHN_HIRESERVE))
5396 s = bfd_section_from_elf_index (e->input_bfd,
5397 e->isym.st_shndx);
5399 sym.st_shndx =
5400 elf_section_data (s->output_section)->this_idx;
5401 sym.st_value = (s->output_section->vma
5402 + s->output_offset
5403 + e->isym.st_value);
5406 if (last_local < e->dynindx)
5407 last_local = e->dynindx;
5409 dest = dynsym + e->dynindx;
5410 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5414 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5415 last_local + 1;
5418 /* We get the global symbols from the hash table. */
5419 eoinfo.failed = FALSE;
5420 eoinfo.localsyms = FALSE;
5421 eoinfo.finfo = &finfo;
5422 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5423 (PTR) &eoinfo);
5424 if (eoinfo.failed)
5425 return FALSE;
5427 /* If backend needs to output some symbols not present in the hash
5428 table, do it now. */
5429 if (bed->elf_backend_output_arch_syms)
5431 typedef bfd_boolean (*out_sym_func)
5432 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *));
5434 if (! ((*bed->elf_backend_output_arch_syms)
5435 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5436 return FALSE;
5439 /* Flush all symbols to the file. */
5440 if (! elf_link_flush_output_syms (&finfo))
5441 return FALSE;
5443 /* Now we know the size of the symtab section. */
5444 off += symtab_hdr->sh_size;
5446 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5447 if (symtab_shndx_hdr->sh_name != 0)
5449 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5450 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5451 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5452 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
5453 symtab_shndx_hdr->sh_size = amt;
5455 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
5456 off, TRUE);
5458 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
5459 || (bfd_bwrite ((PTR) finfo.symshndxbuf, amt, abfd) != amt))
5460 return FALSE;
5464 /* Finish up and write out the symbol string table (.strtab)
5465 section. */
5466 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5467 /* sh_name was set in prep_headers. */
5468 symstrtab_hdr->sh_type = SHT_STRTAB;
5469 symstrtab_hdr->sh_flags = 0;
5470 symstrtab_hdr->sh_addr = 0;
5471 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5472 symstrtab_hdr->sh_entsize = 0;
5473 symstrtab_hdr->sh_link = 0;
5474 symstrtab_hdr->sh_info = 0;
5475 /* sh_offset is set just below. */
5476 symstrtab_hdr->sh_addralign = 1;
5478 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
5479 elf_tdata (abfd)->next_file_pos = off;
5481 if (bfd_get_symcount (abfd) > 0)
5483 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5484 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5485 return FALSE;
5488 /* Adjust the relocs to have the correct symbol indices. */
5489 for (o = abfd->sections; o != NULL; o = o->next)
5491 if ((o->flags & SEC_RELOC) == 0)
5492 continue;
5494 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5495 elf_section_data (o)->rel_count,
5496 elf_section_data (o)->rel_hashes);
5497 if (elf_section_data (o)->rel_hdr2 != NULL)
5498 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5499 elf_section_data (o)->rel_count2,
5500 (elf_section_data (o)->rel_hashes
5501 + elf_section_data (o)->rel_count));
5503 /* Set the reloc_count field to 0 to prevent write_relocs from
5504 trying to swap the relocs out itself. */
5505 o->reloc_count = 0;
5508 if (dynamic && info->combreloc && dynobj != NULL)
5509 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5511 /* If we are linking against a dynamic object, or generating a
5512 shared library, finish up the dynamic linking information. */
5513 if (dynamic)
5515 Elf_External_Dyn *dyncon, *dynconend;
5517 /* Fix up .dynamic entries. */
5518 o = bfd_get_section_by_name (dynobj, ".dynamic");
5519 BFD_ASSERT (o != NULL);
5521 dyncon = (Elf_External_Dyn *) o->contents;
5522 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5523 for (; dyncon < dynconend; dyncon++)
5525 Elf_Internal_Dyn dyn;
5526 const char *name;
5527 unsigned int type;
5529 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5531 switch (dyn.d_tag)
5533 default:
5534 break;
5535 case DT_NULL:
5536 if (relativecount > 0 && dyncon + 1 < dynconend)
5538 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5540 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5541 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5542 default: break;
5544 if (dyn.d_tag != DT_NULL)
5546 dyn.d_un.d_val = relativecount;
5547 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5548 relativecount = 0;
5551 break;
5552 case DT_INIT:
5553 name = info->init_function;
5554 goto get_sym;
5555 case DT_FINI:
5556 name = info->fini_function;
5557 get_sym:
5559 struct elf_link_hash_entry *h;
5561 h = elf_link_hash_lookup (elf_hash_table (info), name,
5562 FALSE, FALSE, TRUE);
5563 if (h != NULL
5564 && (h->root.type == bfd_link_hash_defined
5565 || h->root.type == bfd_link_hash_defweak))
5567 dyn.d_un.d_val = h->root.u.def.value;
5568 o = h->root.u.def.section;
5569 if (o->output_section != NULL)
5570 dyn.d_un.d_val += (o->output_section->vma
5571 + o->output_offset);
5572 else
5574 /* The symbol is imported from another shared
5575 library and does not apply to this one. */
5576 dyn.d_un.d_val = 0;
5579 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5582 break;
5584 case DT_PREINIT_ARRAYSZ:
5585 name = ".preinit_array";
5586 goto get_size;
5587 case DT_INIT_ARRAYSZ:
5588 name = ".init_array";
5589 goto get_size;
5590 case DT_FINI_ARRAYSZ:
5591 name = ".fini_array";
5592 get_size:
5593 o = bfd_get_section_by_name (abfd, name);
5594 if (o == NULL)
5596 (*_bfd_error_handler)
5597 (_("%s: could not find output section %s"),
5598 bfd_get_filename (abfd), name);
5599 goto error_return;
5601 if (o->_raw_size == 0)
5602 (*_bfd_error_handler)
5603 (_("warning: %s section has zero size"), name);
5604 dyn.d_un.d_val = o->_raw_size;
5605 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5606 break;
5608 case DT_PREINIT_ARRAY:
5609 name = ".preinit_array";
5610 goto get_vma;
5611 case DT_INIT_ARRAY:
5612 name = ".init_array";
5613 goto get_vma;
5614 case DT_FINI_ARRAY:
5615 name = ".fini_array";
5616 goto get_vma;
5618 case DT_HASH:
5619 name = ".hash";
5620 goto get_vma;
5621 case DT_STRTAB:
5622 name = ".dynstr";
5623 goto get_vma;
5624 case DT_SYMTAB:
5625 name = ".dynsym";
5626 goto get_vma;
5627 case DT_VERDEF:
5628 name = ".gnu.version_d";
5629 goto get_vma;
5630 case DT_VERNEED:
5631 name = ".gnu.version_r";
5632 goto get_vma;
5633 case DT_VERSYM:
5634 name = ".gnu.version";
5635 get_vma:
5636 o = bfd_get_section_by_name (abfd, name);
5637 if (o == NULL)
5639 (*_bfd_error_handler)
5640 (_("%s: could not find output section %s"),
5641 bfd_get_filename (abfd), name);
5642 goto error_return;
5644 dyn.d_un.d_ptr = o->vma;
5645 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5646 break;
5648 case DT_REL:
5649 case DT_RELA:
5650 case DT_RELSZ:
5651 case DT_RELASZ:
5652 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5653 type = SHT_REL;
5654 else
5655 type = SHT_RELA;
5656 dyn.d_un.d_val = 0;
5657 for (i = 1; i < elf_numsections (abfd); i++)
5659 Elf_Internal_Shdr *hdr;
5661 hdr = elf_elfsections (abfd)[i];
5662 if (hdr->sh_type == type
5663 && (hdr->sh_flags & SHF_ALLOC) != 0)
5665 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5666 dyn.d_un.d_val += hdr->sh_size;
5667 else
5669 if (dyn.d_un.d_val == 0
5670 || hdr->sh_addr < dyn.d_un.d_val)
5671 dyn.d_un.d_val = hdr->sh_addr;
5675 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5676 break;
5681 /* If we have created any dynamic sections, then output them. */
5682 if (dynobj != NULL)
5684 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5685 goto error_return;
5687 for (o = dynobj->sections; o != NULL; o = o->next)
5689 if ((o->flags & SEC_HAS_CONTENTS) == 0
5690 || o->_raw_size == 0
5691 || o->output_section == bfd_abs_section_ptr)
5692 continue;
5693 if ((o->flags & SEC_LINKER_CREATED) == 0)
5695 /* At this point, we are only interested in sections
5696 created by elf_link_create_dynamic_sections. */
5697 continue;
5699 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5700 != SHT_STRTAB)
5701 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5703 if (! bfd_set_section_contents (abfd, o->output_section,
5704 o->contents,
5705 (file_ptr) o->output_offset,
5706 o->_raw_size))
5707 goto error_return;
5709 else
5711 /* The contents of the .dynstr section are actually in a
5712 stringtab. */
5713 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5714 if (bfd_seek (abfd, off, SEEK_SET) != 0
5715 || ! _bfd_elf_strtab_emit (abfd,
5716 elf_hash_table (info)->dynstr))
5717 goto error_return;
5722 if (info->relocateable)
5724 bfd_boolean failed = FALSE;
5726 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
5727 if (failed)
5728 goto error_return;
5731 /* If we have optimized stabs strings, output them. */
5732 if (elf_hash_table (info)->stab_info != NULL)
5734 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5735 goto error_return;
5738 if (info->eh_frame_hdr)
5740 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
5741 goto error_return;
5744 if (finfo.symstrtab != NULL)
5745 _bfd_stringtab_free (finfo.symstrtab);
5746 if (finfo.contents != NULL)
5747 free (finfo.contents);
5748 if (finfo.external_relocs != NULL)
5749 free (finfo.external_relocs);
5750 if (finfo.internal_relocs != NULL)
5751 free (finfo.internal_relocs);
5752 if (finfo.external_syms != NULL)
5753 free (finfo.external_syms);
5754 if (finfo.locsym_shndx != NULL)
5755 free (finfo.locsym_shndx);
5756 if (finfo.internal_syms != NULL)
5757 free (finfo.internal_syms);
5758 if (finfo.indices != NULL)
5759 free (finfo.indices);
5760 if (finfo.sections != NULL)
5761 free (finfo.sections);
5762 if (finfo.symbuf != NULL)
5763 free (finfo.symbuf);
5764 if (finfo.symshndxbuf != NULL)
5765 free (finfo.symshndxbuf);
5766 for (o = abfd->sections; o != NULL; o = o->next)
5768 if ((o->flags & SEC_RELOC) != 0
5769 && elf_section_data (o)->rel_hashes != NULL)
5770 free (elf_section_data (o)->rel_hashes);
5773 elf_tdata (abfd)->linker = TRUE;
5775 return TRUE;
5777 error_return:
5778 if (finfo.symstrtab != NULL)
5779 _bfd_stringtab_free (finfo.symstrtab);
5780 if (finfo.contents != NULL)
5781 free (finfo.contents);
5782 if (finfo.external_relocs != NULL)
5783 free (finfo.external_relocs);
5784 if (finfo.internal_relocs != NULL)
5785 free (finfo.internal_relocs);
5786 if (finfo.external_syms != NULL)
5787 free (finfo.external_syms);
5788 if (finfo.locsym_shndx != NULL)
5789 free (finfo.locsym_shndx);
5790 if (finfo.internal_syms != NULL)
5791 free (finfo.internal_syms);
5792 if (finfo.indices != NULL)
5793 free (finfo.indices);
5794 if (finfo.sections != NULL)
5795 free (finfo.sections);
5796 if (finfo.symbuf != NULL)
5797 free (finfo.symbuf);
5798 if (finfo.symshndxbuf != NULL)
5799 free (finfo.symshndxbuf);
5800 for (o = abfd->sections; o != NULL; o = o->next)
5802 if ((o->flags & SEC_RELOC) != 0
5803 && elf_section_data (o)->rel_hashes != NULL)
5804 free (elf_section_data (o)->rel_hashes);
5807 return FALSE;
5810 /* Add a symbol to the output symbol table. */
5812 static bfd_boolean
5813 elf_link_output_sym (finfo, name, elfsym, input_sec)
5814 struct elf_final_link_info *finfo;
5815 const char *name;
5816 Elf_Internal_Sym *elfsym;
5817 asection *input_sec;
5819 Elf_External_Sym *dest;
5820 Elf_External_Sym_Shndx *destshndx;
5821 bfd_boolean (*output_symbol_hook)
5822 PARAMS ((bfd *, struct bfd_link_info *info, const char *,
5823 Elf_Internal_Sym *, asection *));
5825 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5826 elf_backend_link_output_symbol_hook;
5827 if (output_symbol_hook != NULL)
5829 if (! ((*output_symbol_hook)
5830 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5831 return FALSE;
5834 if (name == (const char *) NULL || *name == '\0')
5835 elfsym->st_name = 0;
5836 else if (input_sec->flags & SEC_EXCLUDE)
5837 elfsym->st_name = 0;
5838 else
5840 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5841 name, TRUE, FALSE);
5842 if (elfsym->st_name == (unsigned long) -1)
5843 return FALSE;
5846 if (finfo->symbuf_count >= finfo->symbuf_size)
5848 if (! elf_link_flush_output_syms (finfo))
5849 return FALSE;
5852 dest = finfo->symbuf + finfo->symbuf_count;
5853 destshndx = finfo->symshndxbuf;
5854 if (destshndx != NULL)
5856 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5858 bfd_size_type amt;
5860 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5861 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5862 if (destshndx == NULL)
5863 return FALSE;
5864 memset ((char *) destshndx + amt, 0, amt);
5865 finfo->shndxbuf_size *= 2;
5867 destshndx += bfd_get_symcount (finfo->output_bfd);
5870 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5871 finfo->symbuf_count += 1;
5872 bfd_get_symcount (finfo->output_bfd) += 1;
5874 return TRUE;
5877 /* Flush the output symbols to the file. */
5879 static bfd_boolean
5880 elf_link_flush_output_syms (finfo)
5881 struct elf_final_link_info *finfo;
5883 if (finfo->symbuf_count > 0)
5885 Elf_Internal_Shdr *hdr;
5886 file_ptr pos;
5887 bfd_size_type amt;
5889 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5890 pos = hdr->sh_offset + hdr->sh_size;
5891 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5892 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5893 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5894 return FALSE;
5896 hdr->sh_size += amt;
5897 finfo->symbuf_count = 0;
5900 return TRUE;
5903 /* Adjust all external symbols pointing into SEC_MERGE sections
5904 to reflect the object merging within the sections. */
5906 static bfd_boolean
5907 elf_link_sec_merge_syms (h, data)
5908 struct elf_link_hash_entry *h;
5909 PTR data;
5911 asection *sec;
5913 if (h->root.type == bfd_link_hash_warning)
5914 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5916 if ((h->root.type == bfd_link_hash_defined
5917 || h->root.type == bfd_link_hash_defweak)
5918 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5919 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5921 bfd *output_bfd = (bfd *) data;
5923 h->root.u.def.value =
5924 _bfd_merged_section_offset (output_bfd,
5925 &h->root.u.def.section,
5926 elf_section_data (sec)->sec_info,
5927 h->root.u.def.value, (bfd_vma) 0);
5930 return TRUE;
5933 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5934 allowing an unsatisfied unversioned symbol in the DSO to match a
5935 versioned symbol that would normally require an explicit version. */
5937 static bfd_boolean
5938 elf_link_check_versioned_symbol (info, h)
5939 struct bfd_link_info *info;
5940 struct elf_link_hash_entry *h;
5942 bfd *undef_bfd = h->root.u.undef.abfd;
5943 struct elf_link_loaded_list *loaded;
5945 if ((undef_bfd->flags & DYNAMIC) == 0
5946 || info->hash->creator->flavour != bfd_target_elf_flavour
5947 || elf_dt_soname (h->root.u.undef.abfd) == NULL)
5948 return FALSE;
5950 for (loaded = elf_hash_table (info)->loaded;
5951 loaded != NULL;
5952 loaded = loaded->next)
5954 bfd *input;
5955 Elf_Internal_Shdr *hdr;
5956 bfd_size_type symcount;
5957 bfd_size_type extsymcount;
5958 bfd_size_type extsymoff;
5959 Elf_Internal_Shdr *versymhdr;
5960 Elf_Internal_Sym *isym;
5961 Elf_Internal_Sym *isymend;
5962 Elf_Internal_Sym *isymbuf;
5963 Elf_External_Versym *ever;
5964 Elf_External_Versym *extversym;
5966 input = loaded->abfd;
5968 /* We check each DSO for a possible hidden versioned definition. */
5969 if (input == undef_bfd
5970 || (input->flags & DYNAMIC) == 0
5971 || elf_dynversym (input) == 0)
5972 continue;
5974 hdr = &elf_tdata (input)->dynsymtab_hdr;
5976 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
5977 if (elf_bad_symtab (input))
5979 extsymcount = symcount;
5980 extsymoff = 0;
5982 else
5984 extsymcount = symcount - hdr->sh_info;
5985 extsymoff = hdr->sh_info;
5988 if (extsymcount == 0)
5989 continue;
5991 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5992 NULL, NULL, NULL);
5993 if (isymbuf == NULL)
5994 return FALSE;
5996 /* Read in any version definitions. */
5997 versymhdr = &elf_tdata (input)->dynversym_hdr;
5998 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
5999 if (extversym == NULL)
6000 goto error_ret;
6002 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6003 || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
6004 != versymhdr->sh_size))
6006 free (extversym);
6007 error_ret:
6008 free (isymbuf);
6009 return FALSE;
6012 ever = extversym + extsymoff;
6013 isymend = isymbuf + extsymcount;
6014 for (isym = isymbuf; isym < isymend; isym++, ever++)
6016 const char *name;
6017 Elf_Internal_Versym iver;
6019 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6020 || isym->st_shndx == SHN_UNDEF)
6021 continue;
6023 name = bfd_elf_string_from_elf_section (input,
6024 hdr->sh_link,
6025 isym->st_name);
6026 if (strcmp (name, h->root.root.string) != 0)
6027 continue;
6029 _bfd_elf_swap_versym_in (input, ever, &iver);
6031 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6033 /* If we have a non-hidden versioned sym, then it should
6034 have provided a definition for the undefined sym. */
6035 abort ();
6038 if ((iver.vs_vers & VERSYM_VERSION) == 2)
6040 /* This is the oldest (default) sym. We can use it. */
6041 free (extversym);
6042 free (isymbuf);
6043 return TRUE;
6047 free (extversym);
6048 free (isymbuf);
6051 return FALSE;
6054 /* Add an external symbol to the symbol table. This is called from
6055 the hash table traversal routine. When generating a shared object,
6056 we go through the symbol table twice. The first time we output
6057 anything that might have been forced to local scope in a version
6058 script. The second time we output the symbols that are still
6059 global symbols. */
6061 static bfd_boolean
6062 elf_link_output_extsym (h, data)
6063 struct elf_link_hash_entry *h;
6064 PTR data;
6066 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
6067 struct elf_final_link_info *finfo = eoinfo->finfo;
6068 bfd_boolean strip;
6069 Elf_Internal_Sym sym;
6070 asection *input_sec;
6072 if (h->root.type == bfd_link_hash_warning)
6074 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6075 if (h->root.type == bfd_link_hash_new)
6076 return TRUE;
6079 /* Decide whether to output this symbol in this pass. */
6080 if (eoinfo->localsyms)
6082 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6083 return TRUE;
6085 else
6087 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6088 return TRUE;
6091 /* If we are not creating a shared library, and this symbol is
6092 referenced by a shared library but is not defined anywhere, then
6093 warn that it is undefined. If we do not do this, the runtime
6094 linker will complain that the symbol is undefined when the
6095 program is run. We don't have to worry about symbols that are
6096 referenced by regular files, because we will already have issued
6097 warnings for them. */
6098 if (! finfo->info->relocateable
6099 && ! finfo->info->allow_shlib_undefined
6100 && ! finfo->info->shared
6101 && h->root.type == bfd_link_hash_undefined
6102 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6103 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6104 && ! elf_link_check_versioned_symbol (finfo->info, h))
6106 if (! ((*finfo->info->callbacks->undefined_symbol)
6107 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6108 (asection *) NULL, (bfd_vma) 0, TRUE)))
6110 eoinfo->failed = TRUE;
6111 return FALSE;
6115 /* We don't want to output symbols that have never been mentioned by
6116 a regular file, or that we have been told to strip. However, if
6117 h->indx is set to -2, the symbol is used by a reloc and we must
6118 output it. */
6119 if (h->indx == -2)
6120 strip = FALSE;
6121 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6122 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6123 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6124 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6125 strip = TRUE;
6126 else if (finfo->info->strip == strip_all
6127 || (finfo->info->strip == strip_some
6128 && bfd_hash_lookup (finfo->info->keep_hash,
6129 h->root.root.string,
6130 FALSE, FALSE) == NULL))
6131 strip = TRUE;
6132 else
6133 strip = FALSE;
6135 /* If we're stripping it, and it's not a dynamic symbol, there's
6136 nothing else to do unless it is a forced local symbol. */
6137 if (strip
6138 && h->dynindx == -1
6139 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6140 return TRUE;
6142 sym.st_value = 0;
6143 sym.st_size = h->size;
6144 sym.st_other = h->other;
6145 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6146 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6147 else if (h->root.type == bfd_link_hash_undefweak
6148 || h->root.type == bfd_link_hash_defweak)
6149 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6150 else
6151 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6153 switch (h->root.type)
6155 default:
6156 case bfd_link_hash_new:
6157 case bfd_link_hash_warning:
6158 abort ();
6159 return FALSE;
6161 case bfd_link_hash_undefined:
6162 case bfd_link_hash_undefweak:
6163 input_sec = bfd_und_section_ptr;
6164 sym.st_shndx = SHN_UNDEF;
6165 break;
6167 case bfd_link_hash_defined:
6168 case bfd_link_hash_defweak:
6170 input_sec = h->root.u.def.section;
6171 if (input_sec->output_section != NULL)
6173 sym.st_shndx =
6174 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6175 input_sec->output_section);
6176 if (sym.st_shndx == SHN_BAD)
6178 (*_bfd_error_handler)
6179 (_("%s: could not find output section %s for input section %s"),
6180 bfd_get_filename (finfo->output_bfd),
6181 input_sec->output_section->name,
6182 input_sec->name);
6183 eoinfo->failed = TRUE;
6184 return FALSE;
6187 /* ELF symbols in relocateable files are section relative,
6188 but in nonrelocateable files they are virtual
6189 addresses. */
6190 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6191 if (! finfo->info->relocateable)
6193 sym.st_value += input_sec->output_section->vma;
6194 if (h->type == STT_TLS)
6196 /* STT_TLS symbols are relative to PT_TLS segment
6197 base. */
6198 BFD_ASSERT (finfo->first_tls_sec != NULL);
6199 sym.st_value -= finfo->first_tls_sec->vma;
6203 else
6205 BFD_ASSERT (input_sec->owner == NULL
6206 || (input_sec->owner->flags & DYNAMIC) != 0);
6207 sym.st_shndx = SHN_UNDEF;
6208 input_sec = bfd_und_section_ptr;
6211 break;
6213 case bfd_link_hash_common:
6214 input_sec = h->root.u.c.p->section;
6215 sym.st_shndx = SHN_COMMON;
6216 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6217 break;
6219 case bfd_link_hash_indirect:
6220 /* These symbols are created by symbol versioning. They point
6221 to the decorated version of the name. For example, if the
6222 symbol foo@@GNU_1.2 is the default, which should be used when
6223 foo is used with no version, then we add an indirect symbol
6224 foo which points to foo@@GNU_1.2. We ignore these symbols,
6225 since the indirected symbol is already in the hash table. */
6226 return TRUE;
6229 /* Give the processor backend a chance to tweak the symbol value,
6230 and also to finish up anything that needs to be done for this
6231 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6232 forced local syms when non-shared is due to a historical quirk. */
6233 if ((h->dynindx != -1
6234 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6235 && (finfo->info->shared
6236 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6237 && elf_hash_table (finfo->info)->dynamic_sections_created)
6239 struct elf_backend_data *bed;
6241 bed = get_elf_backend_data (finfo->output_bfd);
6242 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6243 (finfo->output_bfd, finfo->info, h, &sym)))
6245 eoinfo->failed = TRUE;
6246 return FALSE;
6250 /* If we are marking the symbol as undefined, and there are no
6251 non-weak references to this symbol from a regular object, then
6252 mark the symbol as weak undefined; if there are non-weak
6253 references, mark the symbol as strong. We can't do this earlier,
6254 because it might not be marked as undefined until the
6255 finish_dynamic_symbol routine gets through with it. */
6256 if (sym.st_shndx == SHN_UNDEF
6257 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6258 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6259 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6261 int bindtype;
6263 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6264 bindtype = STB_GLOBAL;
6265 else
6266 bindtype = STB_WEAK;
6267 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6270 /* If a symbol is not defined locally, we clear the visibility field. */
6271 if (! finfo->info->relocateable
6272 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6273 sym.st_other &= ~ ELF_ST_VISIBILITY (-1);
6275 /* If this symbol should be put in the .dynsym section, then put it
6276 there now. We already know the symbol index. We also fill in
6277 the entry in the .hash section. */
6278 if (h->dynindx != -1
6279 && elf_hash_table (finfo->info)->dynamic_sections_created)
6281 size_t bucketcount;
6282 size_t bucket;
6283 size_t hash_entry_size;
6284 bfd_byte *bucketpos;
6285 bfd_vma chain;
6286 Elf_External_Sym *esym;
6288 sym.st_name = h->dynstr_index;
6289 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6290 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6292 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6293 bucket = h->elf_hash_value % bucketcount;
6294 hash_entry_size
6295 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6296 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6297 + (bucket + 2) * hash_entry_size);
6298 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6299 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6300 bucketpos);
6301 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6302 ((bfd_byte *) finfo->hash_sec->contents
6303 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6305 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6307 Elf_Internal_Versym iversym;
6308 Elf_External_Versym *eversym;
6310 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6312 if (h->verinfo.verdef == NULL)
6313 iversym.vs_vers = 0;
6314 else
6315 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6317 else
6319 if (h->verinfo.vertree == NULL)
6320 iversym.vs_vers = 1;
6321 else
6322 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6325 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6326 iversym.vs_vers |= VERSYM_HIDDEN;
6328 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6329 eversym += h->dynindx;
6330 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6334 /* If we're stripping it, then it was just a dynamic symbol, and
6335 there's nothing else to do. */
6336 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6337 return TRUE;
6339 h->indx = bfd_get_symcount (finfo->output_bfd);
6341 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6343 eoinfo->failed = TRUE;
6344 return FALSE;
6347 return TRUE;
6350 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6351 originated from the section given by INPUT_REL_HDR) to the
6352 OUTPUT_BFD. */
6354 static bfd_boolean
6355 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6356 internal_relocs)
6357 bfd *output_bfd;
6358 asection *input_section;
6359 Elf_Internal_Shdr *input_rel_hdr;
6360 Elf_Internal_Rela *internal_relocs;
6362 Elf_Internal_Rela *irela;
6363 Elf_Internal_Rela *irelaend;
6364 bfd_byte *erel;
6365 Elf_Internal_Shdr *output_rel_hdr;
6366 asection *output_section;
6367 unsigned int *rel_countp = NULL;
6368 struct elf_backend_data *bed;
6369 void (*swap_out) PARAMS ((bfd *, const Elf_Internal_Rela *, bfd_byte *));
6371 output_section = input_section->output_section;
6372 output_rel_hdr = NULL;
6374 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6375 == input_rel_hdr->sh_entsize)
6377 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6378 rel_countp = &elf_section_data (output_section)->rel_count;
6380 else if (elf_section_data (output_section)->rel_hdr2
6381 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6382 == input_rel_hdr->sh_entsize))
6384 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6385 rel_countp = &elf_section_data (output_section)->rel_count2;
6387 else
6389 (*_bfd_error_handler)
6390 (_("%s: relocation size mismatch in %s section %s"),
6391 bfd_get_filename (output_bfd),
6392 bfd_archive_filename (input_section->owner),
6393 input_section->name);
6394 bfd_set_error (bfd_error_wrong_object_format);
6395 return FALSE;
6398 bed = get_elf_backend_data (output_bfd);
6399 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6400 swap_out = bed->s->swap_reloc_out;
6401 else if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela))
6402 swap_out = bed->s->swap_reloca_out;
6403 else
6404 abort ();
6406 erel = output_rel_hdr->contents;
6407 erel += *rel_countp * input_rel_hdr->sh_entsize;
6408 irela = internal_relocs;
6409 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
6410 * bed->s->int_rels_per_ext_rel);
6411 while (irela < irelaend)
6413 (*swap_out) (output_bfd, irela, erel);
6414 irela += bed->s->int_rels_per_ext_rel;
6415 erel += input_rel_hdr->sh_entsize;
6418 /* Bump the counter, so that we know where to add the next set of
6419 relocations. */
6420 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6422 return TRUE;
6425 /* Link an input file into the linker output file. This function
6426 handles all the sections and relocations of the input file at once.
6427 This is so that we only have to read the local symbols once, and
6428 don't have to keep them in memory. */
6430 static bfd_boolean
6431 elf_link_input_bfd (finfo, input_bfd)
6432 struct elf_final_link_info *finfo;
6433 bfd *input_bfd;
6435 bfd_boolean (*relocate_section)
6436 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6437 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
6438 bfd *output_bfd;
6439 Elf_Internal_Shdr *symtab_hdr;
6440 size_t locsymcount;
6441 size_t extsymoff;
6442 Elf_Internal_Sym *isymbuf;
6443 Elf_Internal_Sym *isym;
6444 Elf_Internal_Sym *isymend;
6445 long *pindex;
6446 asection **ppsection;
6447 asection *o;
6448 struct elf_backend_data *bed;
6449 bfd_boolean emit_relocs;
6450 struct elf_link_hash_entry **sym_hashes;
6452 output_bfd = finfo->output_bfd;
6453 bed = get_elf_backend_data (output_bfd);
6454 relocate_section = bed->elf_backend_relocate_section;
6456 /* If this is a dynamic object, we don't want to do anything here:
6457 we don't want the local symbols, and we don't want the section
6458 contents. */
6459 if ((input_bfd->flags & DYNAMIC) != 0)
6460 return TRUE;
6462 emit_relocs = (finfo->info->relocateable
6463 || finfo->info->emitrelocations
6464 || bed->elf_backend_emit_relocs);
6466 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6467 if (elf_bad_symtab (input_bfd))
6469 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6470 extsymoff = 0;
6472 else
6474 locsymcount = symtab_hdr->sh_info;
6475 extsymoff = symtab_hdr->sh_info;
6478 /* Read the local symbols. */
6479 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6480 if (isymbuf == NULL && locsymcount != 0)
6482 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6483 finfo->internal_syms,
6484 finfo->external_syms,
6485 finfo->locsym_shndx);
6486 if (isymbuf == NULL)
6487 return FALSE;
6490 /* Find local symbol sections and adjust values of symbols in
6491 SEC_MERGE sections. Write out those local symbols we know are
6492 going into the output file. */
6493 isymend = isymbuf + locsymcount;
6494 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6495 isym < isymend;
6496 isym++, pindex++, ppsection++)
6498 asection *isec;
6499 const char *name;
6500 Elf_Internal_Sym osym;
6502 *pindex = -1;
6504 if (elf_bad_symtab (input_bfd))
6506 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6508 *ppsection = NULL;
6509 continue;
6513 if (isym->st_shndx == SHN_UNDEF)
6514 isec = bfd_und_section_ptr;
6515 else if (isym->st_shndx < SHN_LORESERVE
6516 || isym->st_shndx > SHN_HIRESERVE)
6518 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6519 if (isec
6520 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6521 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6522 isym->st_value =
6523 _bfd_merged_section_offset (output_bfd, &isec,
6524 elf_section_data (isec)->sec_info,
6525 isym->st_value, (bfd_vma) 0);
6527 else if (isym->st_shndx == SHN_ABS)
6528 isec = bfd_abs_section_ptr;
6529 else if (isym->st_shndx == SHN_COMMON)
6530 isec = bfd_com_section_ptr;
6531 else
6533 /* Who knows? */
6534 isec = NULL;
6537 *ppsection = isec;
6539 /* Don't output the first, undefined, symbol. */
6540 if (ppsection == finfo->sections)
6541 continue;
6543 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6545 /* We never output section symbols. Instead, we use the
6546 section symbol of the corresponding section in the output
6547 file. */
6548 continue;
6551 /* If we are stripping all symbols, we don't want to output this
6552 one. */
6553 if (finfo->info->strip == strip_all)
6554 continue;
6556 /* If we are discarding all local symbols, we don't want to
6557 output this one. If we are generating a relocateable output
6558 file, then some of the local symbols may be required by
6559 relocs; we output them below as we discover that they are
6560 needed. */
6561 if (finfo->info->discard == discard_all)
6562 continue;
6564 /* If this symbol is defined in a section which we are
6565 discarding, we don't need to keep it, but note that
6566 linker_mark is only reliable for sections that have contents.
6567 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6568 as well as linker_mark. */
6569 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6570 && isec != NULL
6571 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6572 || (! finfo->info->relocateable
6573 && (isec->flags & SEC_EXCLUDE) != 0)))
6574 continue;
6576 /* Get the name of the symbol. */
6577 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6578 isym->st_name);
6579 if (name == NULL)
6580 return FALSE;
6582 /* See if we are discarding symbols with this name. */
6583 if ((finfo->info->strip == strip_some
6584 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6585 == NULL))
6586 || (((finfo->info->discard == discard_sec_merge
6587 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6588 || finfo->info->discard == discard_l)
6589 && bfd_is_local_label_name (input_bfd, name)))
6590 continue;
6592 /* If we get here, we are going to output this symbol. */
6594 osym = *isym;
6596 /* Adjust the section index for the output file. */
6597 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6598 isec->output_section);
6599 if (osym.st_shndx == SHN_BAD)
6600 return FALSE;
6602 *pindex = bfd_get_symcount (output_bfd);
6604 /* ELF symbols in relocateable files are section relative, but
6605 in executable files they are virtual addresses. Note that
6606 this code assumes that all ELF sections have an associated
6607 BFD section with a reasonable value for output_offset; below
6608 we assume that they also have a reasonable value for
6609 output_section. Any special sections must be set up to meet
6610 these requirements. */
6611 osym.st_value += isec->output_offset;
6612 if (! finfo->info->relocateable)
6614 osym.st_value += isec->output_section->vma;
6615 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6617 /* STT_TLS symbols are relative to PT_TLS segment base. */
6618 BFD_ASSERT (finfo->first_tls_sec != NULL);
6619 osym.st_value -= finfo->first_tls_sec->vma;
6623 if (! elf_link_output_sym (finfo, name, &osym, isec))
6624 return FALSE;
6627 /* Relocate the contents of each section. */
6628 sym_hashes = elf_sym_hashes (input_bfd);
6629 for (o = input_bfd->sections; o != NULL; o = o->next)
6631 bfd_byte *contents;
6633 if (! o->linker_mark)
6635 /* This section was omitted from the link. */
6636 continue;
6639 if ((o->flags & SEC_HAS_CONTENTS) == 0
6640 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6641 continue;
6643 if ((o->flags & SEC_LINKER_CREATED) != 0)
6645 /* Section was created by elf_link_create_dynamic_sections
6646 or somesuch. */
6647 continue;
6650 /* Get the contents of the section. They have been cached by a
6651 relaxation routine. Note that o is a section in an input
6652 file, so the contents field will not have been set by any of
6653 the routines which work on output files. */
6654 if (elf_section_data (o)->this_hdr.contents != NULL)
6655 contents = elf_section_data (o)->this_hdr.contents;
6656 else
6658 contents = finfo->contents;
6659 if (! bfd_get_section_contents (input_bfd, o, contents,
6660 (file_ptr) 0, o->_raw_size))
6661 return FALSE;
6664 if ((o->flags & SEC_RELOC) != 0)
6666 Elf_Internal_Rela *internal_relocs;
6668 /* Get the swapped relocs. */
6669 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6670 (input_bfd, o, finfo->external_relocs,
6671 finfo->internal_relocs, FALSE));
6672 if (internal_relocs == NULL
6673 && o->reloc_count > 0)
6674 return FALSE;
6676 /* Run through the relocs looking for any against symbols
6677 from discarded sections and section symbols from
6678 removed link-once sections. Complain about relocs
6679 against discarded sections. Zero relocs against removed
6680 link-once sections. */
6681 if (!finfo->info->relocateable
6682 && !elf_section_ignore_discarded_relocs (o))
6684 Elf_Internal_Rela *rel, *relend;
6686 rel = internal_relocs;
6687 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6688 for ( ; rel < relend; rel++)
6690 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6692 if (r_symndx >= locsymcount
6693 || (elf_bad_symtab (input_bfd)
6694 && finfo->sections[r_symndx] == NULL))
6696 struct elf_link_hash_entry *h;
6698 h = sym_hashes[r_symndx - extsymoff];
6699 while (h->root.type == bfd_link_hash_indirect
6700 || h->root.type == bfd_link_hash_warning)
6701 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6703 /* Complain if the definition comes from a
6704 discarded section. */
6705 if ((h->root.type == bfd_link_hash_defined
6706 || h->root.type == bfd_link_hash_defweak)
6707 && elf_discarded_section (h->root.u.def.section))
6709 if ((o->flags & SEC_DEBUGGING) != 0)
6711 BFD_ASSERT (r_symndx != 0);
6712 memset (rel, 0, sizeof (*rel));
6714 else
6716 if (! ((*finfo->info->callbacks->undefined_symbol)
6717 (finfo->info, h->root.root.string,
6718 input_bfd, o, rel->r_offset,
6719 TRUE)))
6720 return FALSE;
6724 else
6726 asection *sec = finfo->sections[r_symndx];
6728 if (sec != NULL && elf_discarded_section (sec))
6730 if ((o->flags & SEC_DEBUGGING) != 0
6731 || (sec->flags & SEC_LINK_ONCE) != 0)
6733 BFD_ASSERT (r_symndx != 0);
6734 rel->r_info
6735 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6736 rel->r_addend = 0;
6738 else
6740 bfd_boolean ok;
6741 const char *msg
6742 = _("local symbols in discarded section %s");
6743 bfd_size_type amt
6744 = strlen (sec->name) + strlen (msg) - 1;
6745 char *buf = (char *) bfd_malloc (amt);
6747 if (buf != NULL)
6748 sprintf (buf, msg, sec->name);
6749 else
6750 buf = (char *) sec->name;
6751 ok = (*finfo->info->callbacks
6752 ->undefined_symbol) (finfo->info, buf,
6753 input_bfd, o,
6754 rel->r_offset,
6755 TRUE);
6756 if (buf != sec->name)
6757 free (buf);
6758 if (!ok)
6759 return FALSE;
6766 /* Relocate the section by invoking a back end routine.
6768 The back end routine is responsible for adjusting the
6769 section contents as necessary, and (if using Rela relocs
6770 and generating a relocateable output file) adjusting the
6771 reloc addend as necessary.
6773 The back end routine does not have to worry about setting
6774 the reloc address or the reloc symbol index.
6776 The back end routine is given a pointer to the swapped in
6777 internal symbols, and can access the hash table entries
6778 for the external symbols via elf_sym_hashes (input_bfd).
6780 When generating relocateable output, the back end routine
6781 must handle STB_LOCAL/STT_SECTION symbols specially. The
6782 output symbol is going to be a section symbol
6783 corresponding to the output section, which will require
6784 the addend to be adjusted. */
6786 if (! (*relocate_section) (output_bfd, finfo->info,
6787 input_bfd, o, contents,
6788 internal_relocs,
6789 isymbuf,
6790 finfo->sections))
6791 return FALSE;
6793 if (emit_relocs)
6795 Elf_Internal_Rela *irela;
6796 Elf_Internal_Rela *irelaend;
6797 bfd_vma last_offset;
6798 struct elf_link_hash_entry **rel_hash;
6799 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6800 unsigned int next_erel;
6801 bfd_boolean (*reloc_emitter)
6802 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *,
6803 Elf_Internal_Rela *));
6804 bfd_boolean rela_normal;
6806 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6807 rela_normal = (bed->rela_normal
6808 && (input_rel_hdr->sh_entsize
6809 == sizeof (Elf_External_Rela)));
6811 /* Adjust the reloc addresses and symbol indices. */
6813 irela = internal_relocs;
6814 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6815 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6816 + elf_section_data (o->output_section)->rel_count
6817 + elf_section_data (o->output_section)->rel_count2);
6818 last_offset = o->output_offset;
6819 if (!finfo->info->relocateable)
6820 last_offset += o->output_section->vma;
6821 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6823 unsigned long r_symndx;
6824 asection *sec;
6825 Elf_Internal_Sym sym;
6827 if (next_erel == bed->s->int_rels_per_ext_rel)
6829 rel_hash++;
6830 next_erel = 0;
6833 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6834 finfo->info, o,
6835 irela->r_offset);
6836 if (irela->r_offset >= (bfd_vma) -2)
6838 /* This is a reloc for a deleted entry or somesuch.
6839 Turn it into an R_*_NONE reloc, at the same
6840 offset as the last reloc. elf_eh_frame.c and
6841 elf_bfd_discard_info rely on reloc offsets
6842 being ordered. */
6843 irela->r_offset = last_offset;
6844 irela->r_info = 0;
6845 irela->r_addend = 0;
6846 continue;
6849 irela->r_offset += o->output_offset;
6851 /* Relocs in an executable have to be virtual addresses. */
6852 if (!finfo->info->relocateable)
6853 irela->r_offset += o->output_section->vma;
6855 last_offset = irela->r_offset;
6857 r_symndx = ELF_R_SYM (irela->r_info);
6858 if (r_symndx == STN_UNDEF)
6859 continue;
6861 if (r_symndx >= locsymcount
6862 || (elf_bad_symtab (input_bfd)
6863 && finfo->sections[r_symndx] == NULL))
6865 struct elf_link_hash_entry *rh;
6866 unsigned long indx;
6868 /* This is a reloc against a global symbol. We
6869 have not yet output all the local symbols, so
6870 we do not know the symbol index of any global
6871 symbol. We set the rel_hash entry for this
6872 reloc to point to the global hash table entry
6873 for this symbol. The symbol index is then
6874 set at the end of elf_bfd_final_link. */
6875 indx = r_symndx - extsymoff;
6876 rh = elf_sym_hashes (input_bfd)[indx];
6877 while (rh->root.type == bfd_link_hash_indirect
6878 || rh->root.type == bfd_link_hash_warning)
6879 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6881 /* Setting the index to -2 tells
6882 elf_link_output_extsym that this symbol is
6883 used by a reloc. */
6884 BFD_ASSERT (rh->indx < 0);
6885 rh->indx = -2;
6887 *rel_hash = rh;
6889 continue;
6892 /* This is a reloc against a local symbol. */
6894 *rel_hash = NULL;
6895 sym = isymbuf[r_symndx];
6896 sec = finfo->sections[r_symndx];
6897 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6899 /* I suppose the backend ought to fill in the
6900 section of any STT_SECTION symbol against a
6901 processor specific section. If we have
6902 discarded a section, the output_section will
6903 be the absolute section. */
6904 if (bfd_is_abs_section (sec)
6905 || (sec != NULL
6906 && bfd_is_abs_section (sec->output_section)))
6907 r_symndx = 0;
6908 else if (sec == NULL || sec->owner == NULL)
6910 bfd_set_error (bfd_error_bad_value);
6911 return FALSE;
6913 else
6915 r_symndx = sec->output_section->target_index;
6916 BFD_ASSERT (r_symndx != 0);
6919 /* Adjust the addend according to where the
6920 section winds up in the output section. */
6921 if (rela_normal)
6922 irela->r_addend += sec->output_offset;
6924 else
6926 if (finfo->indices[r_symndx] == -1)
6928 unsigned long shlink;
6929 const char *name;
6930 asection *osec;
6932 if (finfo->info->strip == strip_all)
6934 /* You can't do ld -r -s. */
6935 bfd_set_error (bfd_error_invalid_operation);
6936 return FALSE;
6939 /* This symbol was skipped earlier, but
6940 since it is needed by a reloc, we
6941 must output it now. */
6942 shlink = symtab_hdr->sh_link;
6943 name = (bfd_elf_string_from_elf_section
6944 (input_bfd, shlink, sym.st_name));
6945 if (name == NULL)
6946 return FALSE;
6948 osec = sec->output_section;
6949 sym.st_shndx =
6950 _bfd_elf_section_from_bfd_section (output_bfd,
6951 osec);
6952 if (sym.st_shndx == SHN_BAD)
6953 return FALSE;
6955 sym.st_value += sec->output_offset;
6956 if (! finfo->info->relocateable)
6958 sym.st_value += osec->vma;
6959 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6961 /* STT_TLS symbols are relative to PT_TLS
6962 segment base. */
6963 BFD_ASSERT (finfo->first_tls_sec != NULL);
6964 sym.st_value -= finfo->first_tls_sec->vma;
6968 finfo->indices[r_symndx]
6969 = bfd_get_symcount (output_bfd);
6971 if (! elf_link_output_sym (finfo, name, &sym, sec))
6972 return FALSE;
6975 r_symndx = finfo->indices[r_symndx];
6978 irela->r_info = ELF_R_INFO (r_symndx,
6979 ELF_R_TYPE (irela->r_info));
6982 /* Swap out the relocs. */
6983 if (bed->elf_backend_emit_relocs
6984 && !(finfo->info->relocateable
6985 || finfo->info->emitrelocations))
6986 reloc_emitter = bed->elf_backend_emit_relocs;
6987 else
6988 reloc_emitter = elf_link_output_relocs;
6990 if (input_rel_hdr->sh_size != 0
6991 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6992 internal_relocs))
6993 return FALSE;
6995 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6996 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6998 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6999 * bed->s->int_rels_per_ext_rel);
7000 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7001 internal_relocs))
7002 return FALSE;
7007 /* Write out the modified section contents. */
7008 if (bed->elf_backend_write_section
7009 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7011 /* Section written out. */
7013 else switch (elf_section_data (o)->sec_info_type)
7015 case ELF_INFO_TYPE_STABS:
7016 if (! (_bfd_write_section_stabs
7017 (output_bfd,
7018 &elf_hash_table (finfo->info)->stab_info,
7019 o, &elf_section_data (o)->sec_info, contents)))
7020 return FALSE;
7021 break;
7022 case ELF_INFO_TYPE_MERGE:
7023 if (! _bfd_write_merged_section (output_bfd, o,
7024 elf_section_data (o)->sec_info))
7025 return FALSE;
7026 break;
7027 case ELF_INFO_TYPE_EH_FRAME:
7029 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7030 o, contents))
7031 return FALSE;
7033 break;
7034 default:
7036 bfd_size_type sec_size;
7038 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
7039 if (! (o->flags & SEC_EXCLUDE)
7040 && ! bfd_set_section_contents (output_bfd, o->output_section,
7041 contents,
7042 (file_ptr) o->output_offset,
7043 sec_size))
7044 return FALSE;
7046 break;
7050 return TRUE;
7053 /* Generate a reloc when linking an ELF file. This is a reloc
7054 requested by the linker, and does come from any input file. This
7055 is used to build constructor and destructor tables when linking
7056 with -Ur. */
7058 static bfd_boolean
7059 elf_reloc_link_order (output_bfd, info, output_section, link_order)
7060 bfd *output_bfd;
7061 struct bfd_link_info *info;
7062 asection *output_section;
7063 struct bfd_link_order *link_order;
7065 reloc_howto_type *howto;
7066 long indx;
7067 bfd_vma offset;
7068 bfd_vma addend;
7069 struct elf_link_hash_entry **rel_hash_ptr;
7070 Elf_Internal_Shdr *rel_hdr;
7071 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7072 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7073 bfd_byte *erel;
7074 unsigned int i;
7076 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7077 if (howto == NULL)
7079 bfd_set_error (bfd_error_bad_value);
7080 return FALSE;
7083 addend = link_order->u.reloc.p->addend;
7085 /* Figure out the symbol index. */
7086 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7087 + elf_section_data (output_section)->rel_count
7088 + elf_section_data (output_section)->rel_count2);
7089 if (link_order->type == bfd_section_reloc_link_order)
7091 indx = link_order->u.reloc.p->u.section->target_index;
7092 BFD_ASSERT (indx != 0);
7093 *rel_hash_ptr = NULL;
7095 else
7097 struct elf_link_hash_entry *h;
7099 /* Treat a reloc against a defined symbol as though it were
7100 actually against the section. */
7101 h = ((struct elf_link_hash_entry *)
7102 bfd_wrapped_link_hash_lookup (output_bfd, info,
7103 link_order->u.reloc.p->u.name,
7104 FALSE, FALSE, TRUE));
7105 if (h != NULL
7106 && (h->root.type == bfd_link_hash_defined
7107 || h->root.type == bfd_link_hash_defweak))
7109 asection *section;
7111 section = h->root.u.def.section;
7112 indx = section->output_section->target_index;
7113 *rel_hash_ptr = NULL;
7114 /* It seems that we ought to add the symbol value to the
7115 addend here, but in practice it has already been added
7116 because it was passed to constructor_callback. */
7117 addend += section->output_section->vma + section->output_offset;
7119 else if (h != NULL)
7121 /* Setting the index to -2 tells elf_link_output_extsym that
7122 this symbol is used by a reloc. */
7123 h->indx = -2;
7124 *rel_hash_ptr = h;
7125 indx = 0;
7127 else
7129 if (! ((*info->callbacks->unattached_reloc)
7130 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7131 (asection *) NULL, (bfd_vma) 0)))
7132 return FALSE;
7133 indx = 0;
7137 /* If this is an inplace reloc, we must write the addend into the
7138 object file. */
7139 if (howto->partial_inplace && addend != 0)
7141 bfd_size_type size;
7142 bfd_reloc_status_type rstat;
7143 bfd_byte *buf;
7144 bfd_boolean ok;
7145 const char *sym_name;
7147 size = bfd_get_reloc_size (howto);
7148 buf = (bfd_byte *) bfd_zmalloc (size);
7149 if (buf == (bfd_byte *) NULL)
7150 return FALSE;
7151 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7152 switch (rstat)
7154 case bfd_reloc_ok:
7155 break;
7157 default:
7158 case bfd_reloc_outofrange:
7159 abort ();
7161 case bfd_reloc_overflow:
7162 if (link_order->type == bfd_section_reloc_link_order)
7163 sym_name = bfd_section_name (output_bfd,
7164 link_order->u.reloc.p->u.section);
7165 else
7166 sym_name = link_order->u.reloc.p->u.name;
7167 if (! ((*info->callbacks->reloc_overflow)
7168 (info, sym_name, howto->name, addend,
7169 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7171 free (buf);
7172 return FALSE;
7174 break;
7176 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7177 (file_ptr) link_order->offset, size);
7178 free (buf);
7179 if (! ok)
7180 return FALSE;
7183 /* The address of a reloc is relative to the section in a
7184 relocateable file, and is a virtual address in an executable
7185 file. */
7186 offset = link_order->offset;
7187 if (! info->relocateable)
7188 offset += output_section->vma;
7190 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7192 irel[i].r_offset = offset;
7193 irel[i].r_info = 0;
7194 irel[i].r_addend = 0;
7196 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7198 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7199 erel = rel_hdr->contents;
7200 if (rel_hdr->sh_type == SHT_REL)
7202 erel += (elf_section_data (output_section)->rel_count
7203 * sizeof (Elf_External_Rel));
7204 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7206 else
7208 irel[0].r_addend = addend;
7209 erel += (elf_section_data (output_section)->rel_count
7210 * sizeof (Elf_External_Rela));
7211 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7214 ++elf_section_data (output_section)->rel_count;
7216 return TRUE;
7219 /* Allocate a pointer to live in a linker created section. */
7221 bfd_boolean
7222 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7223 bfd *abfd;
7224 struct bfd_link_info *info;
7225 elf_linker_section_t *lsect;
7226 struct elf_link_hash_entry *h;
7227 const Elf_Internal_Rela *rel;
7229 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7230 elf_linker_section_pointers_t *linker_section_ptr;
7231 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7232 bfd_size_type amt;
7234 BFD_ASSERT (lsect != NULL);
7236 /* Is this a global symbol? */
7237 if (h != NULL)
7239 /* Has this symbol already been allocated? If so, our work is done. */
7240 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7241 rel->r_addend,
7242 lsect->which))
7243 return TRUE;
7245 ptr_linker_section_ptr = &h->linker_section_pointer;
7246 /* Make sure this symbol is output as a dynamic symbol. */
7247 if (h->dynindx == -1)
7249 if (! elf_link_record_dynamic_symbol (info, h))
7250 return FALSE;
7253 if (lsect->rel_section)
7254 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7256 else
7258 /* Allocation of a pointer to a local symbol. */
7259 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7261 /* Allocate a table to hold the local symbols if first time. */
7262 if (!ptr)
7264 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7265 register unsigned int i;
7267 amt = num_symbols;
7268 amt *= sizeof (elf_linker_section_pointers_t *);
7269 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7271 if (!ptr)
7272 return FALSE;
7274 elf_local_ptr_offsets (abfd) = ptr;
7275 for (i = 0; i < num_symbols; i++)
7276 ptr[i] = (elf_linker_section_pointers_t *) 0;
7279 /* Has this symbol already been allocated? If so, our work is done. */
7280 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7281 rel->r_addend,
7282 lsect->which))
7283 return TRUE;
7285 ptr_linker_section_ptr = &ptr[r_symndx];
7287 if (info->shared)
7289 /* If we are generating a shared object, we need to
7290 output a R_<xxx>_RELATIVE reloc so that the
7291 dynamic linker can adjust this GOT entry. */
7292 BFD_ASSERT (lsect->rel_section != NULL);
7293 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7297 /* Allocate space for a pointer in the linker section, and allocate
7298 a new pointer record from internal memory. */
7299 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7300 amt = sizeof (elf_linker_section_pointers_t);
7301 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7303 if (!linker_section_ptr)
7304 return FALSE;
7306 linker_section_ptr->next = *ptr_linker_section_ptr;
7307 linker_section_ptr->addend = rel->r_addend;
7308 linker_section_ptr->which = lsect->which;
7309 linker_section_ptr->written_address_p = FALSE;
7310 *ptr_linker_section_ptr = linker_section_ptr;
7312 #if 0
7313 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7315 linker_section_ptr->offset = (lsect->section->_raw_size
7316 - lsect->hole_size + (ARCH_SIZE / 8));
7317 lsect->hole_offset += ARCH_SIZE / 8;
7318 lsect->sym_offset += ARCH_SIZE / 8;
7319 if (lsect->sym_hash)
7321 /* Bump up symbol value if needed. */
7322 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7323 #ifdef DEBUG
7324 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7325 lsect->sym_hash->root.root.string,
7326 (long) ARCH_SIZE / 8,
7327 (long) lsect->sym_hash->root.u.def.value);
7328 #endif
7331 else
7332 #endif
7333 linker_section_ptr->offset = lsect->section->_raw_size;
7335 lsect->section->_raw_size += ARCH_SIZE / 8;
7337 #ifdef DEBUG
7338 fprintf (stderr,
7339 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7340 lsect->name, (long) linker_section_ptr->offset,
7341 (long) lsect->section->_raw_size);
7342 #endif
7344 return TRUE;
7347 #if ARCH_SIZE==64
7348 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7349 #endif
7350 #if ARCH_SIZE==32
7351 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7352 #endif
7354 /* Fill in the address for a pointer generated in a linker section. */
7356 bfd_vma
7357 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7358 relocation, rel, relative_reloc)
7359 bfd *output_bfd;
7360 bfd *input_bfd;
7361 struct bfd_link_info *info;
7362 elf_linker_section_t *lsect;
7363 struct elf_link_hash_entry *h;
7364 bfd_vma relocation;
7365 const Elf_Internal_Rela *rel;
7366 int relative_reloc;
7368 elf_linker_section_pointers_t *linker_section_ptr;
7370 BFD_ASSERT (lsect != NULL);
7372 if (h != NULL)
7374 /* Handle global symbol. */
7375 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7376 (h->linker_section_pointer,
7377 rel->r_addend,
7378 lsect->which));
7380 BFD_ASSERT (linker_section_ptr != NULL);
7382 if (! elf_hash_table (info)->dynamic_sections_created
7383 || (info->shared
7384 && info->symbolic
7385 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7387 /* This is actually a static link, or it is a
7388 -Bsymbolic link and the symbol is defined
7389 locally. We must initialize this entry in the
7390 global section.
7392 When doing a dynamic link, we create a .rela.<xxx>
7393 relocation entry to initialize the value. This
7394 is done in the finish_dynamic_symbol routine. */
7395 if (!linker_section_ptr->written_address_p)
7397 linker_section_ptr->written_address_p = TRUE;
7398 bfd_put_ptr (output_bfd,
7399 relocation + linker_section_ptr->addend,
7400 (lsect->section->contents
7401 + linker_section_ptr->offset));
7405 else
7407 /* Handle local symbol. */
7408 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7409 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7410 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7411 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7412 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7413 rel->r_addend,
7414 lsect->which));
7416 BFD_ASSERT (linker_section_ptr != NULL);
7418 /* Write out pointer if it hasn't been rewritten out before. */
7419 if (!linker_section_ptr->written_address_p)
7421 linker_section_ptr->written_address_p = TRUE;
7422 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7423 lsect->section->contents + linker_section_ptr->offset);
7425 if (info->shared)
7427 asection *srel = lsect->rel_section;
7428 Elf_Internal_Rela outrel[MAX_INT_RELS_PER_EXT_REL];
7429 bfd_byte *erel;
7430 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7431 unsigned int i;
7433 /* We need to generate a relative reloc for the dynamic
7434 linker. */
7435 if (!srel)
7437 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7438 lsect->rel_name);
7439 lsect->rel_section = srel;
7442 BFD_ASSERT (srel != NULL);
7444 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7446 outrel[i].r_offset = (lsect->section->output_section->vma
7447 + lsect->section->output_offset
7448 + linker_section_ptr->offset);
7449 outrel[i].r_info = 0;
7450 outrel[i].r_addend = 0;
7452 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7453 erel = lsect->section->contents;
7454 erel += (elf_section_data (lsect->section)->rel_count++
7455 * sizeof (Elf_External_Rela));
7456 elf_swap_reloca_out (output_bfd, outrel, erel);
7461 relocation = (lsect->section->output_offset
7462 + linker_section_ptr->offset
7463 - lsect->hole_offset
7464 - lsect->sym_offset);
7466 #ifdef DEBUG
7467 fprintf (stderr,
7468 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7469 lsect->name, (long) relocation, (long) relocation);
7470 #endif
7472 /* Subtract out the addend, because it will get added back in by the normal
7473 processing. */
7474 return relocation - linker_section_ptr->addend;
7477 /* Garbage collect unused sections. */
7479 static bfd_boolean elf_gc_mark
7480 PARAMS ((struct bfd_link_info *, asection *,
7481 asection * (*) (asection *, struct bfd_link_info *,
7482 Elf_Internal_Rela *, struct elf_link_hash_entry *,
7483 Elf_Internal_Sym *)));
7485 static bfd_boolean elf_gc_sweep
7486 PARAMS ((struct bfd_link_info *,
7487 bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *,
7488 const Elf_Internal_Rela *)));
7490 static bfd_boolean elf_gc_sweep_symbol
7491 PARAMS ((struct elf_link_hash_entry *, PTR));
7493 static bfd_boolean elf_gc_allocate_got_offsets
7494 PARAMS ((struct elf_link_hash_entry *, PTR));
7496 static bfd_boolean elf_gc_propagate_vtable_entries_used
7497 PARAMS ((struct elf_link_hash_entry *, PTR));
7499 static bfd_boolean elf_gc_smash_unused_vtentry_relocs
7500 PARAMS ((struct elf_link_hash_entry *, PTR));
7502 /* The mark phase of garbage collection. For a given section, mark
7503 it and any sections in this section's group, and all the sections
7504 which define symbols to which it refers. */
7506 typedef asection * (*gc_mark_hook_fn)
7507 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
7508 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7510 static bfd_boolean
7511 elf_gc_mark (info, sec, gc_mark_hook)
7512 struct bfd_link_info *info;
7513 asection *sec;
7514 gc_mark_hook_fn gc_mark_hook;
7516 bfd_boolean ret;
7517 asection *group_sec;
7519 sec->gc_mark = 1;
7521 /* Mark all the sections in the group. */
7522 group_sec = elf_section_data (sec)->next_in_group;
7523 if (group_sec && !group_sec->gc_mark)
7524 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7525 return FALSE;
7527 /* Look through the section relocs. */
7528 ret = TRUE;
7529 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7531 Elf_Internal_Rela *relstart, *rel, *relend;
7532 Elf_Internal_Shdr *symtab_hdr;
7533 struct elf_link_hash_entry **sym_hashes;
7534 size_t nlocsyms;
7535 size_t extsymoff;
7536 bfd *input_bfd = sec->owner;
7537 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7538 Elf_Internal_Sym *isym = NULL;
7540 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7541 sym_hashes = elf_sym_hashes (input_bfd);
7543 /* Read the local symbols. */
7544 if (elf_bad_symtab (input_bfd))
7546 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7547 extsymoff = 0;
7549 else
7550 extsymoff = nlocsyms = symtab_hdr->sh_info;
7552 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
7553 if (isym == NULL && nlocsyms != 0)
7555 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
7556 NULL, NULL, NULL);
7557 if (isym == NULL)
7558 return FALSE;
7561 /* Read the relocations. */
7562 relstart = (NAME(_bfd_elf,link_read_relocs)
7563 (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
7564 info->keep_memory));
7565 if (relstart == NULL)
7567 ret = FALSE;
7568 goto out1;
7570 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7572 for (rel = relstart; rel < relend; rel++)
7574 unsigned long r_symndx;
7575 asection *rsec;
7576 struct elf_link_hash_entry *h;
7578 r_symndx = ELF_R_SYM (rel->r_info);
7579 if (r_symndx == 0)
7580 continue;
7582 if (r_symndx >= nlocsyms
7583 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
7585 h = sym_hashes[r_symndx - extsymoff];
7586 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
7588 else
7590 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
7593 if (rsec && !rsec->gc_mark)
7595 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7596 rsec->gc_mark = 1;
7597 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7599 ret = FALSE;
7600 goto out2;
7605 out2:
7606 if (elf_section_data (sec)->relocs != relstart)
7607 free (relstart);
7608 out1:
7609 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
7611 if (! info->keep_memory)
7612 free (isym);
7613 else
7614 symtab_hdr->contents = (unsigned char *) isym;
7618 return ret;
7621 /* The sweep phase of garbage collection. Remove all garbage sections. */
7623 typedef bfd_boolean (*gc_sweep_hook_fn)
7624 PARAMS ((bfd *, struct bfd_link_info *, asection *,
7625 const Elf_Internal_Rela *));
7627 static bfd_boolean
7628 elf_gc_sweep (info, gc_sweep_hook)
7629 struct bfd_link_info *info;
7630 gc_sweep_hook_fn gc_sweep_hook;
7632 bfd *sub;
7634 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7636 asection *o;
7638 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7639 continue;
7641 for (o = sub->sections; o != NULL; o = o->next)
7643 /* Keep special sections. Keep .debug sections. */
7644 if ((o->flags & SEC_LINKER_CREATED)
7645 || (o->flags & SEC_DEBUGGING))
7646 o->gc_mark = 1;
7648 if (o->gc_mark)
7649 continue;
7651 /* Skip sweeping sections already excluded. */
7652 if (o->flags & SEC_EXCLUDE)
7653 continue;
7655 /* Since this is early in the link process, it is simple
7656 to remove a section from the output. */
7657 o->flags |= SEC_EXCLUDE;
7659 /* But we also have to update some of the relocation
7660 info we collected before. */
7661 if (gc_sweep_hook
7662 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7664 Elf_Internal_Rela *internal_relocs;
7665 bfd_boolean r;
7667 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7668 (o->owner, o, NULL, NULL, info->keep_memory));
7669 if (internal_relocs == NULL)
7670 return FALSE;
7672 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7674 if (elf_section_data (o)->relocs != internal_relocs)
7675 free (internal_relocs);
7677 if (!r)
7678 return FALSE;
7683 /* Remove the symbols that were in the swept sections from the dynamic
7684 symbol table. GCFIXME: Anyone know how to get them out of the
7685 static symbol table as well? */
7687 int i = 0;
7689 elf_link_hash_traverse (elf_hash_table (info),
7690 elf_gc_sweep_symbol,
7691 (PTR) &i);
7693 elf_hash_table (info)->dynsymcount = i;
7696 return TRUE;
7699 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7701 static bfd_boolean
7702 elf_gc_sweep_symbol (h, idxptr)
7703 struct elf_link_hash_entry *h;
7704 PTR idxptr;
7706 int *idx = (int *) idxptr;
7708 if (h->root.type == bfd_link_hash_warning)
7709 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7711 if (h->dynindx != -1
7712 && ((h->root.type != bfd_link_hash_defined
7713 && h->root.type != bfd_link_hash_defweak)
7714 || h->root.u.def.section->gc_mark))
7715 h->dynindx = (*idx)++;
7717 return TRUE;
7720 /* Propogate collected vtable information. This is called through
7721 elf_link_hash_traverse. */
7723 static bfd_boolean
7724 elf_gc_propagate_vtable_entries_used (h, okp)
7725 struct elf_link_hash_entry *h;
7726 PTR okp;
7728 if (h->root.type == bfd_link_hash_warning)
7729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7731 /* Those that are not vtables. */
7732 if (h->vtable_parent == NULL)
7733 return TRUE;
7735 /* Those vtables that do not have parents, we cannot merge. */
7736 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7737 return TRUE;
7739 /* If we've already been done, exit. */
7740 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7741 return TRUE;
7743 /* Make sure the parent's table is up to date. */
7744 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7746 if (h->vtable_entries_used == NULL)
7748 /* None of this table's entries were referenced. Re-use the
7749 parent's table. */
7750 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7751 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7753 else
7755 size_t n;
7756 bfd_boolean *cu, *pu;
7758 /* Or the parent's entries into ours. */
7759 cu = h->vtable_entries_used;
7760 cu[-1] = TRUE;
7761 pu = h->vtable_parent->vtable_entries_used;
7762 if (pu != NULL)
7764 asection *sec = h->root.u.def.section;
7765 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7766 int file_align = bed->s->file_align;
7768 n = h->vtable_parent->vtable_entries_size / file_align;
7769 while (n--)
7771 if (*pu)
7772 *cu = TRUE;
7773 pu++;
7774 cu++;
7779 return TRUE;
7782 static bfd_boolean
7783 elf_gc_smash_unused_vtentry_relocs (h, okp)
7784 struct elf_link_hash_entry *h;
7785 PTR okp;
7787 asection *sec;
7788 bfd_vma hstart, hend;
7789 Elf_Internal_Rela *relstart, *relend, *rel;
7790 struct elf_backend_data *bed;
7791 int file_align;
7793 if (h->root.type == bfd_link_hash_warning)
7794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7796 /* Take care of both those symbols that do not describe vtables as
7797 well as those that are not loaded. */
7798 if (h->vtable_parent == NULL)
7799 return TRUE;
7801 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7802 || h->root.type == bfd_link_hash_defweak);
7804 sec = h->root.u.def.section;
7805 hstart = h->root.u.def.value;
7806 hend = hstart + h->size;
7808 relstart = (NAME(_bfd_elf,link_read_relocs)
7809 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, TRUE));
7810 if (!relstart)
7811 return *(bfd_boolean *) okp = FALSE;
7812 bed = get_elf_backend_data (sec->owner);
7813 file_align = bed->s->file_align;
7815 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7817 for (rel = relstart; rel < relend; ++rel)
7818 if (rel->r_offset >= hstart && rel->r_offset < hend)
7820 /* If the entry is in use, do nothing. */
7821 if (h->vtable_entries_used
7822 && (rel->r_offset - hstart) < h->vtable_entries_size)
7824 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7825 if (h->vtable_entries_used[entry])
7826 continue;
7828 /* Otherwise, kill it. */
7829 rel->r_offset = rel->r_info = rel->r_addend = 0;
7832 return TRUE;
7835 /* Do mark and sweep of unused sections. */
7837 bfd_boolean
7838 elf_gc_sections (abfd, info)
7839 bfd *abfd;
7840 struct bfd_link_info *info;
7842 bfd_boolean ok = TRUE;
7843 bfd *sub;
7844 asection * (*gc_mark_hook)
7845 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
7846 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7848 if (!get_elf_backend_data (abfd)->can_gc_sections
7849 || info->relocateable || info->emitrelocations
7850 || elf_hash_table (info)->dynamic_sections_created)
7851 return TRUE;
7853 /* Apply transitive closure to the vtable entry usage info. */
7854 elf_link_hash_traverse (elf_hash_table (info),
7855 elf_gc_propagate_vtable_entries_used,
7856 (PTR) &ok);
7857 if (!ok)
7858 return FALSE;
7860 /* Kill the vtable relocations that were not used. */
7861 elf_link_hash_traverse (elf_hash_table (info),
7862 elf_gc_smash_unused_vtentry_relocs,
7863 (PTR) &ok);
7864 if (!ok)
7865 return FALSE;
7867 /* Grovel through relocs to find out who stays ... */
7869 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
7870 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7872 asection *o;
7874 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7875 continue;
7877 for (o = sub->sections; o != NULL; o = o->next)
7879 if (o->flags & SEC_KEEP)
7880 if (!elf_gc_mark (info, o, gc_mark_hook))
7881 return FALSE;
7885 /* ... and mark SEC_EXCLUDE for those that go. */
7886 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
7887 return FALSE;
7889 return TRUE;
7892 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7894 bfd_boolean
7895 elf_gc_record_vtinherit (abfd, sec, h, offset)
7896 bfd *abfd;
7897 asection *sec;
7898 struct elf_link_hash_entry *h;
7899 bfd_vma offset;
7901 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
7902 struct elf_link_hash_entry **search, *child;
7903 bfd_size_type extsymcount;
7905 /* The sh_info field of the symtab header tells us where the
7906 external symbols start. We don't care about the local symbols at
7907 this point. */
7908 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
7909 if (!elf_bad_symtab (abfd))
7910 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
7912 sym_hashes = elf_sym_hashes (abfd);
7913 sym_hashes_end = sym_hashes + extsymcount;
7915 /* Hunt down the child symbol, which is in this section at the same
7916 offset as the relocation. */
7917 for (search = sym_hashes; search != sym_hashes_end; ++search)
7919 if ((child = *search) != NULL
7920 && (child->root.type == bfd_link_hash_defined
7921 || child->root.type == bfd_link_hash_defweak)
7922 && child->root.u.def.section == sec
7923 && child->root.u.def.value == offset)
7924 goto win;
7927 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
7928 bfd_archive_filename (abfd), sec->name,
7929 (unsigned long) offset);
7930 bfd_set_error (bfd_error_invalid_operation);
7931 return FALSE;
7933 win:
7934 if (!h)
7936 /* This *should* only be the absolute section. It could potentially
7937 be that someone has defined a non-global vtable though, which
7938 would be bad. It isn't worth paging in the local symbols to be
7939 sure though; that case should simply be handled by the assembler. */
7941 child->vtable_parent = (struct elf_link_hash_entry *) -1;
7943 else
7944 child->vtable_parent = h;
7946 return TRUE;
7949 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7951 bfd_boolean
7952 elf_gc_record_vtentry (abfd, sec, h, addend)
7953 bfd *abfd ATTRIBUTE_UNUSED;
7954 asection *sec ATTRIBUTE_UNUSED;
7955 struct elf_link_hash_entry *h;
7956 bfd_vma addend;
7958 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7959 int file_align = bed->s->file_align;
7961 if (addend >= h->vtable_entries_size)
7963 size_t size, bytes;
7964 bfd_boolean *ptr = h->vtable_entries_used;
7966 /* While the symbol is undefined, we have to be prepared to handle
7967 a zero size. */
7968 if (h->root.type == bfd_link_hash_undefined)
7969 size = addend;
7970 else
7972 size = h->size;
7973 if (size < addend)
7975 /* Oops! We've got a reference past the defined end of
7976 the table. This is probably a bug -- shall we warn? */
7977 size = addend;
7981 /* Allocate one extra entry for use as a "done" flag for the
7982 consolidation pass. */
7983 bytes = (size / file_align + 1) * sizeof (bfd_boolean);
7985 if (ptr)
7987 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
7989 if (ptr != NULL)
7991 size_t oldbytes;
7993 oldbytes = ((h->vtable_entries_size / file_align + 1)
7994 * sizeof (bfd_boolean));
7995 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
7998 else
7999 ptr = bfd_zmalloc ((bfd_size_type) bytes);
8001 if (ptr == NULL)
8002 return FALSE;
8004 /* And arrange for that done flag to be at index -1. */
8005 h->vtable_entries_used = ptr + 1;
8006 h->vtable_entries_size = size;
8009 h->vtable_entries_used[addend / file_align] = TRUE;
8011 return TRUE;
8014 /* And an accompanying bit to work out final got entry offsets once
8015 we're done. Should be called from final_link. */
8017 bfd_boolean
8018 elf_gc_common_finalize_got_offsets (abfd, info)
8019 bfd *abfd;
8020 struct bfd_link_info *info;
8022 bfd *i;
8023 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8024 bfd_vma gotoff;
8026 /* The GOT offset is relative to the .got section, but the GOT header is
8027 put into the .got.plt section, if the backend uses it. */
8028 if (bed->want_got_plt)
8029 gotoff = 0;
8030 else
8031 gotoff = bed->got_header_size;
8033 /* Do the local .got entries first. */
8034 for (i = info->input_bfds; i; i = i->link_next)
8036 bfd_signed_vma *local_got;
8037 bfd_size_type j, locsymcount;
8038 Elf_Internal_Shdr *symtab_hdr;
8040 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8041 continue;
8043 local_got = elf_local_got_refcounts (i);
8044 if (!local_got)
8045 continue;
8047 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8048 if (elf_bad_symtab (i))
8049 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8050 else
8051 locsymcount = symtab_hdr->sh_info;
8053 for (j = 0; j < locsymcount; ++j)
8055 if (local_got[j] > 0)
8057 local_got[j] = gotoff;
8058 gotoff += ARCH_SIZE / 8;
8060 else
8061 local_got[j] = (bfd_vma) -1;
8065 /* Then the global .got entries. .plt refcounts are handled by
8066 adjust_dynamic_symbol */
8067 elf_link_hash_traverse (elf_hash_table (info),
8068 elf_gc_allocate_got_offsets,
8069 (PTR) &gotoff);
8070 return TRUE;
8073 /* We need a special top-level link routine to convert got reference counts
8074 to real got offsets. */
8076 static bfd_boolean
8077 elf_gc_allocate_got_offsets (h, offarg)
8078 struct elf_link_hash_entry *h;
8079 PTR offarg;
8081 bfd_vma *off = (bfd_vma *) offarg;
8083 if (h->root.type == bfd_link_hash_warning)
8084 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8086 if (h->got.refcount > 0)
8088 h->got.offset = off[0];
8089 off[0] += ARCH_SIZE / 8;
8091 else
8092 h->got.offset = (bfd_vma) -1;
8094 return TRUE;
8097 /* Many folk need no more in the way of final link than this, once
8098 got entry reference counting is enabled. */
8100 bfd_boolean
8101 elf_gc_common_final_link (abfd, info)
8102 bfd *abfd;
8103 struct bfd_link_info *info;
8105 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8106 return FALSE;
8108 /* Invoke the regular ELF backend linker to do all the work. */
8109 return elf_bfd_final_link (abfd, info);
8112 /* This function will be called though elf_link_hash_traverse to store
8113 all hash value of the exported symbols in an array. */
8115 static bfd_boolean
8116 elf_collect_hash_codes (h, data)
8117 struct elf_link_hash_entry *h;
8118 PTR data;
8120 unsigned long **valuep = (unsigned long **) data;
8121 const char *name;
8122 char *p;
8123 unsigned long ha;
8124 char *alc = NULL;
8126 if (h->root.type == bfd_link_hash_warning)
8127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8129 /* Ignore indirect symbols. These are added by the versioning code. */
8130 if (h->dynindx == -1)
8131 return TRUE;
8133 name = h->root.root.string;
8134 p = strchr (name, ELF_VER_CHR);
8135 if (p != NULL)
8137 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8138 memcpy (alc, name, (size_t) (p - name));
8139 alc[p - name] = '\0';
8140 name = alc;
8143 /* Compute the hash value. */
8144 ha = bfd_elf_hash (name);
8146 /* Store the found hash value in the array given as the argument. */
8147 *(*valuep)++ = ha;
8149 /* And store it in the struct so that we can put it in the hash table
8150 later. */
8151 h->elf_hash_value = ha;
8153 if (alc != NULL)
8154 free (alc);
8156 return TRUE;
8159 bfd_boolean
8160 elf_reloc_symbol_deleted_p (offset, cookie)
8161 bfd_vma offset;
8162 PTR cookie;
8164 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8166 if (rcookie->bad_symtab)
8167 rcookie->rel = rcookie->rels;
8169 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8171 unsigned long r_symndx;
8173 if (! rcookie->bad_symtab)
8174 if (rcookie->rel->r_offset > offset)
8175 return FALSE;
8176 if (rcookie->rel->r_offset != offset)
8177 continue;
8179 r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8180 if (r_symndx == SHN_UNDEF)
8181 return TRUE;
8183 if (r_symndx >= rcookie->locsymcount
8184 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8186 struct elf_link_hash_entry *h;
8188 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8190 while (h->root.type == bfd_link_hash_indirect
8191 || h->root.type == bfd_link_hash_warning)
8192 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8194 if ((h->root.type == bfd_link_hash_defined
8195 || h->root.type == bfd_link_hash_defweak)
8196 && elf_discarded_section (h->root.u.def.section))
8197 return TRUE;
8198 else
8199 return FALSE;
8201 else
8203 /* It's not a relocation against a global symbol,
8204 but it could be a relocation against a local
8205 symbol for a discarded section. */
8206 asection *isec;
8207 Elf_Internal_Sym *isym;
8209 /* Need to: get the symbol; get the section. */
8210 isym = &rcookie->locsyms[r_symndx];
8211 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8213 isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
8214 if (isec != NULL && elf_discarded_section (isec))
8215 return TRUE;
8218 return FALSE;
8220 return FALSE;
8223 /* Discard unneeded references to discarded sections.
8224 Returns TRUE if any section's size was changed. */
8225 /* This function assumes that the relocations are in sorted order,
8226 which is TRUE for all known assemblers. */
8228 bfd_boolean
8229 elf_bfd_discard_info (output_bfd, info)
8230 bfd *output_bfd;
8231 struct bfd_link_info *info;
8233 struct elf_reloc_cookie cookie;
8234 asection *stab, *eh;
8235 Elf_Internal_Shdr *symtab_hdr;
8236 struct elf_backend_data *bed;
8237 bfd *abfd;
8238 unsigned int count;
8239 bfd_boolean ret = FALSE;
8241 if (info->traditional_format
8242 || info->hash->creator->flavour != bfd_target_elf_flavour
8243 || ! is_elf_hash_table (info))
8244 return FALSE;
8246 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8248 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8249 continue;
8251 bed = get_elf_backend_data (abfd);
8253 if ((abfd->flags & DYNAMIC) != 0)
8254 continue;
8256 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8257 if (eh != NULL
8258 && (eh->_raw_size == 0
8259 || bfd_is_abs_section (eh->output_section)))
8260 eh = NULL;
8262 stab = bfd_get_section_by_name (abfd, ".stab");
8263 if (stab != NULL
8264 && (stab->_raw_size == 0
8265 || bfd_is_abs_section (stab->output_section)
8266 || elf_section_data (stab)->sec_info_type != ELF_INFO_TYPE_STABS))
8267 stab = NULL;
8269 if (stab == NULL
8270 && eh == NULL
8271 && bed->elf_backend_discard_info == NULL)
8272 continue;
8274 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8275 cookie.abfd = abfd;
8276 cookie.sym_hashes = elf_sym_hashes (abfd);
8277 cookie.bad_symtab = elf_bad_symtab (abfd);
8278 if (cookie.bad_symtab)
8280 cookie.locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8281 cookie.extsymoff = 0;
8283 else
8285 cookie.locsymcount = symtab_hdr->sh_info;
8286 cookie.extsymoff = symtab_hdr->sh_info;
8289 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8290 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8292 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8293 cookie.locsymcount, 0,
8294 NULL, NULL, NULL);
8295 if (cookie.locsyms == NULL)
8296 return FALSE;
8299 if (stab != NULL)
8301 cookie.rels = NULL;
8302 count = stab->reloc_count;
8303 if (count != 0)
8304 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8305 (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8306 info->keep_memory));
8307 if (cookie.rels != NULL)
8309 cookie.rel = cookie.rels;
8310 cookie.relend = cookie.rels;
8311 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8312 if (_bfd_discard_section_stabs (abfd, stab,
8313 elf_section_data (stab)->sec_info,
8314 elf_reloc_symbol_deleted_p,
8315 &cookie))
8316 ret = TRUE;
8317 if (elf_section_data (stab)->relocs != cookie.rels)
8318 free (cookie.rels);
8322 if (eh != NULL)
8324 cookie.rels = NULL;
8325 count = eh->reloc_count;
8326 if (count != 0)
8327 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8328 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8329 info->keep_memory));
8330 cookie.rel = cookie.rels;
8331 cookie.relend = cookie.rels;
8332 if (cookie.rels != NULL)
8333 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8335 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
8336 elf_reloc_symbol_deleted_p,
8337 &cookie))
8338 ret = TRUE;
8340 if (cookie.rels != NULL
8341 && elf_section_data (eh)->relocs != cookie.rels)
8342 free (cookie.rels);
8345 if (bed->elf_backend_discard_info != NULL
8346 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
8347 ret = TRUE;
8349 if (cookie.locsyms != NULL
8350 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8352 if (! info->keep_memory)
8353 free (cookie.locsyms);
8354 else
8355 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8359 if (info->eh_frame_hdr
8360 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
8361 ret = TRUE;
8363 return ret;
8366 static bfd_boolean
8367 elf_section_ignore_discarded_relocs (sec)
8368 asection *sec;
8370 struct elf_backend_data *bed;
8372 switch (elf_section_data (sec)->sec_info_type)
8374 case ELF_INFO_TYPE_STABS:
8375 case ELF_INFO_TYPE_EH_FRAME:
8376 return TRUE;
8377 default:
8378 break;
8381 bed = get_elf_backend_data (sec->owner);
8382 if (bed->elf_backend_ignore_discarded_relocs != NULL
8383 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8384 return TRUE;
8386 return FALSE;