1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*,
41 bfd
*, bfd_vma
*, bfd_vma
*));
42 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd
*, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma
, bfd_vma
));
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*sec
,
56 const Elf_Internal_Rela
*));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd
*, struct bfd_link_info
*));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym
*, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
65 const char **, flagword
*, asection
**, bfd_vma
*));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd
*, struct bfd_link_info
*, PTR
,
68 bfd_boolean (*) (PTR
, const char *, Elf_Internal_Sym
*,
69 asection
*, struct elf_link_hash_entry
*)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd
*, asymbol
*));
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd
*, bfd
*));
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd
*, PTR
, asymbol
*));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd
*, asection
*));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
87 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd
*, struct bfd_link_info
*));
93 static bfd_boolean sparc64_elf_object_p
PARAMS ((bfd
*));
94 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, bfd_boolean
));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd
*, asection
*, asymbol
**, bfd_boolean
));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd
*, asection
*, arelent
**, asymbol
**));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd
*, arelent
**, asymbol
**));
104 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela
*));
108 /* The relocation "howto" table. */
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
119 static reloc_howto_type sparc64_elf_howto_table
[] =
121 HOWTO(R_SPARC_NONE
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", FALSE
,0,0x00000000,TRUE
),
122 HOWTO(R_SPARC_8
, 0,0, 8,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", FALSE
,0,0x000000ff,TRUE
),
123 HOWTO(R_SPARC_16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", FALSE
,0,0x0000ffff,TRUE
),
124 HOWTO(R_SPARC_32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", FALSE
,0,0xffffffff,TRUE
),
125 HOWTO(R_SPARC_DISP8
, 0,0, 8,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", FALSE
,0,0x000000ff,TRUE
),
126 HOWTO(R_SPARC_DISP16
, 0,1,16,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", FALSE
,0,0x0000ffff,TRUE
),
127 HOWTO(R_SPARC_DISP32
, 0,2,32,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", FALSE
,0,0xffffffff,TRUE
),
128 HOWTO(R_SPARC_WDISP30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", FALSE
,0,0x3fffffff,TRUE
),
129 HOWTO(R_SPARC_WDISP22
, 2,2,22,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", FALSE
,0,0x003fffff,TRUE
),
130 HOWTO(R_SPARC_HI22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", FALSE
,0,0x003fffff,TRUE
),
131 HOWTO(R_SPARC_22
, 0,2,22,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", FALSE
,0,0x003fffff,TRUE
),
132 HOWTO(R_SPARC_13
, 0,2,13,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", FALSE
,0,0x00001fff,TRUE
),
133 HOWTO(R_SPARC_LO10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", FALSE
,0,0x000003ff,TRUE
),
134 HOWTO(R_SPARC_GOT10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", FALSE
,0,0x000003ff,TRUE
),
135 HOWTO(R_SPARC_GOT13
, 0,2,13,FALSE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", FALSE
,0,0x00001fff,TRUE
),
136 HOWTO(R_SPARC_GOT22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", FALSE
,0,0x003fffff,TRUE
),
137 HOWTO(R_SPARC_PC10
, 0,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", FALSE
,0,0x000003ff,TRUE
),
138 HOWTO(R_SPARC_PC22
, 10,2,22,TRUE
, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", FALSE
,0,0x003fffff,TRUE
),
139 HOWTO(R_SPARC_WPLT30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", FALSE
,0,0x3fffffff,TRUE
),
140 HOWTO(R_SPARC_COPY
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", FALSE
,0,0x00000000,TRUE
),
141 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",FALSE
,0,0x00000000,TRUE
),
142 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",FALSE
,0,0x00000000,TRUE
),
143 HOWTO(R_SPARC_RELATIVE
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",FALSE
,0,0x00000000,TRUE
),
144 HOWTO(R_SPARC_UA32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", FALSE
,0,0xffffffff,TRUE
),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT32", FALSE
,0,0xffffffff,TRUE
),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", FALSE
,0,0x00000000,TRUE
),
149 HOWTO(R_SPARC_LOPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", FALSE
,0,0x00000000,TRUE
),
150 HOWTO(R_SPARC_PCPLT32
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", FALSE
,0,0x00000000,TRUE
),
151 HOWTO(R_SPARC_PCPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", FALSE
,0,0x00000000,TRUE
),
152 HOWTO(R_SPARC_PCPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", FALSE
,0,0x00000000,TRUE
),
154 HOWTO(R_SPARC_10
, 0,2,10,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", FALSE
,0,0x000003ff,TRUE
),
155 HOWTO(R_SPARC_11
, 0,2,11,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", FALSE
,0,0x000007ff,TRUE
),
156 HOWTO(R_SPARC_64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", FALSE
,0,MINUS_ONE
, TRUE
),
157 HOWTO(R_SPARC_OLO10
, 0,2,13,FALSE
,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", FALSE
,0,0x00001fff,TRUE
),
158 HOWTO(R_SPARC_HH22
, 42,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", FALSE
,0,0x003fffff,TRUE
),
159 HOWTO(R_SPARC_HM10
, 32,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", FALSE
,0,0x000003ff,TRUE
),
160 HOWTO(R_SPARC_LM22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", FALSE
,0,0x003fffff,TRUE
),
161 HOWTO(R_SPARC_PC_HH22
, 42,2,22,TRUE
, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", FALSE
,0,0x003fffff,TRUE
),
162 HOWTO(R_SPARC_PC_HM10
, 32,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", FALSE
,0,0x000003ff,TRUE
),
163 HOWTO(R_SPARC_PC_LM22
, 10,2,22,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", FALSE
,0,0x003fffff,TRUE
),
164 HOWTO(R_SPARC_WDISP16
, 2,2,16,TRUE
, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", FALSE
,0,0x00000000,TRUE
),
165 HOWTO(R_SPARC_WDISP19
, 2,2,19,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", FALSE
,0,0x0007ffff,TRUE
),
166 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",FALSE
,0,0x00000000,TRUE
),
167 HOWTO(R_SPARC_7
, 0,2, 7,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", FALSE
,0,0x0000007f,TRUE
),
168 HOWTO(R_SPARC_5
, 0,2, 5,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", FALSE
,0,0x0000001f,TRUE
),
169 HOWTO(R_SPARC_6
, 0,2, 6,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", FALSE
,0,0x0000003f,TRUE
),
170 HOWTO(R_SPARC_DISP64
, 0,4,64,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", FALSE
,0,MINUS_ONE
, TRUE
),
171 HOWTO(R_SPARC_PLT64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT64", FALSE
,0,MINUS_ONE
, TRUE
),
172 HOWTO(R_SPARC_HIX22
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", FALSE
,0,MINUS_ONE
, FALSE
),
173 HOWTO(R_SPARC_LOX10
, 0,4, 0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", FALSE
,0,MINUS_ONE
, FALSE
),
174 HOWTO(R_SPARC_H44
, 22,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", FALSE
,0,0x003fffff,FALSE
),
175 HOWTO(R_SPARC_M44
, 12,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", FALSE
,0,0x000003ff,FALSE
),
176 HOWTO(R_SPARC_L44
, 0,2,13,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", FALSE
,0,0x00000fff,FALSE
),
177 HOWTO(R_SPARC_REGISTER
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",FALSE
,0,MINUS_ONE
, FALSE
),
178 HOWTO(R_SPARC_UA64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", FALSE
,0,MINUS_ONE
, TRUE
),
179 HOWTO(R_SPARC_UA16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", FALSE
,0,0x0000ffff,TRUE
),
180 HOWTO(R_SPARC_TLS_GD_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_HI22",FALSE
,0,0x003fffff,TRUE
),
181 HOWTO(R_SPARC_TLS_GD_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_LO10",FALSE
,0,0x000003ff,TRUE
),
182 HOWTO(R_SPARC_TLS_GD_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_ADD",FALSE
,0,0x00000000,TRUE
),
183 HOWTO(R_SPARC_TLS_GD_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_CALL",FALSE
,0,0x3fffffff,TRUE
),
184 HOWTO(R_SPARC_TLS_LDM_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_HI22",FALSE
,0,0x003fffff,TRUE
),
185 HOWTO(R_SPARC_TLS_LDM_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_LO10",FALSE
,0,0x000003ff,TRUE
),
186 HOWTO(R_SPARC_TLS_LDM_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_ADD",FALSE
,0,0x00000000,TRUE
),
187 HOWTO(R_SPARC_TLS_LDM_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_CALL",FALSE
,0,0x3fffffff,TRUE
),
188 HOWTO(R_SPARC_TLS_LDO_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
,"R_SPARC_TLS_LDO_HIX22",FALSE
,0,0x003fffff, FALSE
),
189 HOWTO(R_SPARC_TLS_LDO_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LDO_LOX10",FALSE
,0,0x000003ff, FALSE
),
190 HOWTO(R_SPARC_TLS_LDO_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDO_ADD",FALSE
,0,0x00000000,TRUE
),
191 HOWTO(R_SPARC_TLS_IE_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_HI22",FALSE
,0,0x003fffff,TRUE
),
192 HOWTO(R_SPARC_TLS_IE_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LO10",FALSE
,0,0x000003ff,TRUE
),
193 HOWTO(R_SPARC_TLS_IE_LD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LD",FALSE
,0,0x00000000,TRUE
),
194 HOWTO(R_SPARC_TLS_IE_LDX
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LDX",FALSE
,0,0x00000000,TRUE
),
195 HOWTO(R_SPARC_TLS_IE_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_ADD",FALSE
,0,0x00000000,TRUE
),
196 HOWTO(R_SPARC_TLS_LE_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_TLS_LE_HIX22",FALSE
,0,0x003fffff, FALSE
),
197 HOWTO(R_SPARC_TLS_LE_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LE_LOX10",FALSE
,0,0x000003ff, FALSE
),
198 HOWTO(R_SPARC_TLS_DTPMOD32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD32",FALSE
,0,0x00000000,TRUE
),
199 HOWTO(R_SPARC_TLS_DTPMOD64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD64",FALSE
,0,0x00000000,TRUE
),
200 HOWTO(R_SPARC_TLS_DTPOFF32
,0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF32",FALSE
,0,0xffffffff,TRUE
),
201 HOWTO(R_SPARC_TLS_DTPOFF64
,0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF64",FALSE
,0,MINUS_ONE
,TRUE
),
202 HOWTO(R_SPARC_TLS_TPOFF32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF32",FALSE
,0,0x00000000,TRUE
),
203 HOWTO(R_SPARC_TLS_TPOFF64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF64",FALSE
,0,0x00000000,TRUE
)
206 struct elf_reloc_map
{
207 bfd_reloc_code_real_type bfd_reloc_val
;
208 unsigned char elf_reloc_val
;
211 static const struct elf_reloc_map sparc_reloc_map
[] =
213 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
214 { BFD_RELOC_16
, R_SPARC_16
, },
215 { BFD_RELOC_16_PCREL
, R_SPARC_DISP16
},
216 { BFD_RELOC_8
, R_SPARC_8
},
217 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
218 { BFD_RELOC_CTOR
, R_SPARC_64
},
219 { BFD_RELOC_32
, R_SPARC_32
},
220 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
221 { BFD_RELOC_HI22
, R_SPARC_HI22
},
222 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
223 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
224 { BFD_RELOC_64_PCREL
, R_SPARC_DISP64
},
225 { BFD_RELOC_SPARC22
, R_SPARC_22
},
226 { BFD_RELOC_SPARC13
, R_SPARC_13
},
227 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
228 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
229 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
230 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
231 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
232 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
233 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
234 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
235 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
236 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
237 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
238 { BFD_RELOC_SPARC_UA16
, R_SPARC_UA16
},
239 { BFD_RELOC_SPARC_UA32
, R_SPARC_UA32
},
240 { BFD_RELOC_SPARC_UA64
, R_SPARC_UA64
},
241 { BFD_RELOC_SPARC_10
, R_SPARC_10
},
242 { BFD_RELOC_SPARC_11
, R_SPARC_11
},
243 { BFD_RELOC_SPARC_64
, R_SPARC_64
},
244 { BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
245 { BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
246 { BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
247 { BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
248 { BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
249 { BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
250 { BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
251 { BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
252 { BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
253 { BFD_RELOC_SPARC_7
, R_SPARC_7
},
254 { BFD_RELOC_SPARC_5
, R_SPARC_5
},
255 { BFD_RELOC_SPARC_6
, R_SPARC_6
},
256 { BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
257 { BFD_RELOC_SPARC_TLS_GD_HI22
, R_SPARC_TLS_GD_HI22
},
258 { BFD_RELOC_SPARC_TLS_GD_LO10
, R_SPARC_TLS_GD_LO10
},
259 { BFD_RELOC_SPARC_TLS_GD_ADD
, R_SPARC_TLS_GD_ADD
},
260 { BFD_RELOC_SPARC_TLS_GD_CALL
, R_SPARC_TLS_GD_CALL
},
261 { BFD_RELOC_SPARC_TLS_LDM_HI22
, R_SPARC_TLS_LDM_HI22
},
262 { BFD_RELOC_SPARC_TLS_LDM_LO10
, R_SPARC_TLS_LDM_LO10
},
263 { BFD_RELOC_SPARC_TLS_LDM_ADD
, R_SPARC_TLS_LDM_ADD
},
264 { BFD_RELOC_SPARC_TLS_LDM_CALL
, R_SPARC_TLS_LDM_CALL
},
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22
, R_SPARC_TLS_LDO_HIX22
},
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10
, R_SPARC_TLS_LDO_LOX10
},
267 { BFD_RELOC_SPARC_TLS_LDO_ADD
, R_SPARC_TLS_LDO_ADD
},
268 { BFD_RELOC_SPARC_TLS_IE_HI22
, R_SPARC_TLS_IE_HI22
},
269 { BFD_RELOC_SPARC_TLS_IE_LO10
, R_SPARC_TLS_IE_LO10
},
270 { BFD_RELOC_SPARC_TLS_IE_LD
, R_SPARC_TLS_IE_LD
},
271 { BFD_RELOC_SPARC_TLS_IE_LDX
, R_SPARC_TLS_IE_LDX
},
272 { BFD_RELOC_SPARC_TLS_IE_ADD
, R_SPARC_TLS_IE_ADD
},
273 { BFD_RELOC_SPARC_TLS_LE_HIX22
, R_SPARC_TLS_LE_HIX22
},
274 { BFD_RELOC_SPARC_TLS_LE_LOX10
, R_SPARC_TLS_LE_LOX10
},
275 { BFD_RELOC_SPARC_TLS_DTPMOD32
, R_SPARC_TLS_DTPMOD32
},
276 { BFD_RELOC_SPARC_TLS_DTPMOD64
, R_SPARC_TLS_DTPMOD64
},
277 { BFD_RELOC_SPARC_TLS_DTPOFF32
, R_SPARC_TLS_DTPOFF32
},
278 { BFD_RELOC_SPARC_TLS_DTPOFF64
, R_SPARC_TLS_DTPOFF64
},
279 { BFD_RELOC_SPARC_TLS_TPOFF32
, R_SPARC_TLS_TPOFF32
},
280 { BFD_RELOC_SPARC_TLS_TPOFF64
, R_SPARC_TLS_TPOFF64
},
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32
, R_SPARC_PLT32
},
284 { BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
285 { BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
286 { BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
287 { BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
288 { BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
289 { BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
290 { BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
293 static reloc_howto_type
*
294 sparc64_elf_reloc_type_lookup (abfd
, code
)
295 bfd
*abfd ATTRIBUTE_UNUSED
;
296 bfd_reloc_code_real_type code
;
299 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
301 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
302 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
308 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
309 bfd
*abfd ATTRIBUTE_UNUSED
;
311 Elf_Internal_Rela
*dst
;
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
314 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
317 struct sparc64_elf_section_data
319 struct bfd_elf_section_data elf
;
320 unsigned int do_relax
, reloc_count
;
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
333 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
334 bfd
*abfd ATTRIBUTE_UNUSED
;
337 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
353 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
356 Elf_Internal_Shdr
*rel_hdr
;
360 PTR allocated
= NULL
;
361 bfd_byte
*native_relocs
;
368 allocated
= (PTR
) bfd_malloc (rel_hdr
->sh_size
);
369 if (allocated
== NULL
)
372 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
373 || bfd_bread (allocated
, rel_hdr
->sh_size
, abfd
) != rel_hdr
->sh_size
)
376 native_relocs
= (bfd_byte
*) allocated
;
378 relents
= asect
->relocation
+ canon_reloc_count (asect
);
380 entsize
= rel_hdr
->sh_entsize
;
381 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
383 count
= rel_hdr
->sh_size
/ entsize
;
385 for (i
= 0, relent
= relents
; i
< count
;
386 i
++, relent
++, native_relocs
+= entsize
)
388 Elf_Internal_Rela rela
;
390 bfd_elf64_swap_reloca_in (abfd
, native_relocs
, &rela
);
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
397 relent
->address
= rela
.r_offset
;
399 relent
->address
= rela
.r_offset
- asect
->vma
;
401 if (ELF64_R_SYM (rela
.r_info
) == 0)
402 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
407 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
412 relent
->sym_ptr_ptr
= ps
;
414 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
417 relent
->addend
= rela
.r_addend
;
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
420 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
422 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
423 relent
[1].address
= relent
->address
;
425 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
426 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
427 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
430 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
433 canon_reloc_count (asect
) += relent
- relents
;
435 if (allocated
!= NULL
)
441 if (allocated
!= NULL
)
446 /* Read in and swap the external relocs. */
449 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
455 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
456 Elf_Internal_Shdr
*rel_hdr
;
457 Elf_Internal_Shdr
*rel_hdr2
;
460 if (asect
->relocation
!= NULL
)
465 if ((asect
->flags
& SEC_RELOC
) == 0
466 || asect
->reloc_count
== 0)
469 rel_hdr
= &d
->rel_hdr
;
470 rel_hdr2
= d
->rel_hdr2
;
472 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
473 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect
->_raw_size
== 0)
484 rel_hdr
= &d
->this_hdr
;
485 asect
->reloc_count
= NUM_SHDR_ENTRIES (rel_hdr
);
489 amt
= asect
->reloc_count
;
490 amt
*= 2 * sizeof (arelent
);
491 asect
->relocation
= (arelent
*) bfd_alloc (abfd
, amt
);
492 if (asect
->relocation
== NULL
)
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect
) = 0;
499 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
504 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
511 /* Canonicalize the relocs. */
514 sparc64_elf_canonicalize_reloc (abfd
, section
, relptr
, symbols
)
522 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
524 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
527 tblptr
= section
->relocation
;
528 for (i
= 0; i
< canon_reloc_count (section
); i
++)
529 *relptr
++ = tblptr
++;
533 return canon_reloc_count (section
);
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
547 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
555 if (elf_dynsymtab (abfd
) == 0)
557 bfd_set_error (bfd_error_invalid_operation
);
562 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
564 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
565 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
570 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, TRUE
))
572 count
= canon_reloc_count (s
);
574 for (i
= 0; i
< count
; i
++)
585 /* Write out the relocs. */
588 sparc64_elf_write_relocs (abfd
, sec
, data
)
593 bfd_boolean
*failedp
= (bfd_boolean
*) data
;
594 Elf_Internal_Shdr
*rela_hdr
;
595 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
596 unsigned int idx
, count
;
597 asymbol
*last_sym
= 0;
598 int last_sym_idx
= 0;
600 /* If we have already failed, don't do anything. */
604 if ((sec
->flags
& SEC_RELOC
) == 0)
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
611 if (sec
->reloc_count
== 0)
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
618 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
624 addr
= sec
->orelocation
[idx
]->address
;
625 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
626 && idx
< sec
->reloc_count
- 1)
628 arelent
*r
= sec
->orelocation
[idx
+ 1];
630 if (r
->howto
->type
== R_SPARC_13
631 && r
->address
== addr
632 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
633 && (*r
->sym_ptr_ptr
)->value
== 0)
638 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
640 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
641 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
642 if (rela_hdr
->contents
== NULL
)
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr
->sh_type
!= SHT_RELA
)
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
654 src_rela
= outbound_relocas
;
656 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
658 Elf_Internal_Rela dst_rela
;
663 ptr
= sec
->orelocation
[idx
];
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
669 dst_rela
.r_offset
= ptr
->address
;
671 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
673 sym
= *ptr
->sym_ptr_ptr
;
676 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
681 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
690 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
691 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
692 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
698 if (ptr
->howto
->type
== R_SPARC_LO10
699 && idx
< sec
->reloc_count
- 1)
701 arelent
*r
= sec
->orelocation
[idx
+ 1];
703 if (r
->howto
->type
== R_SPARC_13
704 && r
->address
== ptr
->address
705 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
706 && (*r
->sym_ptr_ptr
)->value
== 0)
710 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
714 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
717 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
719 dst_rela
.r_addend
= ptr
->addend
;
720 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, (bfd_byte
*) src_rela
);
725 /* Sparc64 ELF linker hash table. */
727 struct sparc64_elf_app_reg
730 unsigned short shndx
;
735 struct sparc64_elf_link_hash_table
737 struct elf_link_hash_table root
;
739 struct sparc64_elf_app_reg app_regs
[4];
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
747 /* Create a Sparc64 ELF linker hash table. */
749 static struct bfd_link_hash_table
*
750 sparc64_elf_bfd_link_hash_table_create (abfd
)
753 struct sparc64_elf_link_hash_table
*ret
;
754 bfd_size_type amt
= sizeof (struct sparc64_elf_link_hash_table
);
756 ret
= (struct sparc64_elf_link_hash_table
*) bfd_zmalloc (amt
);
757 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
760 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
761 _bfd_elf_link_hash_newfunc
))
767 return &ret
->root
.root
;
770 /* Utility for performing the standard initial work of an instruction
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
778 static bfd_reloc_status_type
779 init_insn_reloc (abfd
,
788 arelent
*reloc_entry
;
791 asection
*input_section
;
793 bfd_vma
*prelocation
;
797 reloc_howto_type
*howto
= reloc_entry
->howto
;
799 if (output_bfd
!= (bfd
*) NULL
800 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
801 && (! howto
->partial_inplace
802 || reloc_entry
->addend
== 0))
804 reloc_entry
->address
+= input_section
->output_offset
;
808 /* This works because partial_inplace is FALSE. */
809 if (output_bfd
!= NULL
)
810 return bfd_reloc_continue
;
812 if (reloc_entry
->address
> input_section
->_cooked_size
)
813 return bfd_reloc_outofrange
;
815 relocation
= (symbol
->value
816 + symbol
->section
->output_section
->vma
817 + symbol
->section
->output_offset
);
818 relocation
+= reloc_entry
->addend
;
819 if (howto
->pc_relative
)
821 relocation
-= (input_section
->output_section
->vma
822 + input_section
->output_offset
);
823 relocation
-= reloc_entry
->address
;
826 *prelocation
= relocation
;
827 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
828 return bfd_reloc_other
;
831 /* For unsupported relocs. */
833 static bfd_reloc_status_type
834 sparc_elf_notsup_reloc (abfd
,
841 bfd
*abfd ATTRIBUTE_UNUSED
;
842 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
843 asymbol
*symbol ATTRIBUTE_UNUSED
;
844 PTR data ATTRIBUTE_UNUSED
;
845 asection
*input_section ATTRIBUTE_UNUSED
;
846 bfd
*output_bfd ATTRIBUTE_UNUSED
;
847 char **error_message ATTRIBUTE_UNUSED
;
849 return bfd_reloc_notsupported
;
852 /* Handle the WDISP16 reloc. */
854 static bfd_reloc_status_type
855 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
856 output_bfd
, error_message
)
858 arelent
*reloc_entry
;
861 asection
*input_section
;
863 char **error_message ATTRIBUTE_UNUSED
;
867 bfd_reloc_status_type status
;
869 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
870 input_section
, output_bfd
, &relocation
, &insn
);
871 if (status
!= bfd_reloc_other
)
874 insn
&= ~ (bfd_vma
) 0x303fff;
875 insn
|= (((relocation
>> 2) & 0xc000) << 6) | ((relocation
>> 2) & 0x3fff);
876 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
878 if ((bfd_signed_vma
) relocation
< - 0x40000
879 || (bfd_signed_vma
) relocation
> 0x3ffff)
880 return bfd_reloc_overflow
;
885 /* Handle the HIX22 reloc. */
887 static bfd_reloc_status_type
888 sparc_elf_hix22_reloc (abfd
,
896 arelent
*reloc_entry
;
899 asection
*input_section
;
901 char **error_message ATTRIBUTE_UNUSED
;
905 bfd_reloc_status_type status
;
907 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
908 input_section
, output_bfd
, &relocation
, &insn
);
909 if (status
!= bfd_reloc_other
)
912 relocation
^= MINUS_ONE
;
913 insn
= (insn
&~ (bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
914 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
916 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
917 return bfd_reloc_overflow
;
922 /* Handle the LOX10 reloc. */
924 static bfd_reloc_status_type
925 sparc_elf_lox10_reloc (abfd
,
933 arelent
*reloc_entry
;
936 asection
*input_section
;
938 char **error_message ATTRIBUTE_UNUSED
;
942 bfd_reloc_status_type status
;
944 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
945 input_section
, output_bfd
, &relocation
, &insn
);
946 if (status
!= bfd_reloc_other
)
949 insn
= (insn
&~ (bfd_vma
) 0x1fff) | 0x1c00 | (relocation
& 0x3ff);
950 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
957 /* Both the headers and the entries are icache aligned. */
958 #define PLT_ENTRY_SIZE 32
959 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD 32768
961 #define GOT_RESERVED_ENTRIES 1
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
965 /* Fill in the .plt section. */
968 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
970 unsigned char *contents
;
973 const unsigned int nop
= 0x01000000;
976 /* The first four entries are reserved, and are initially undefined.
977 We fill them with `illtrap 0' to force ld.so to do something. */
979 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
980 bfd_put_32 (output_bfd
, (bfd_vma
) 0, contents
+i
*4);
982 /* The first 32768 entries are close enough to plt1 to get there via
983 a straight branch. */
985 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
987 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
988 unsigned int sethi
, ba
;
990 /* sethi (. - plt0), %g1 */
991 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
993 /* ba,a,pt %xcc, plt1 */
994 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
996 bfd_put_32 (output_bfd
, (bfd_vma
) sethi
, entry
);
997 bfd_put_32 (output_bfd
, (bfd_vma
) ba
, entry
+ 4);
998 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
999 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 12);
1000 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 16);
1001 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 20);
1002 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 24);
1003 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 28);
1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1007 160: 160 entries and 160 pointers. This is to separate code from data,
1008 which is much friendlier on the cache. */
1010 for (; i
< nentries
; i
+= 160)
1012 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
1013 for (j
= 0; j
< block
; ++j
)
1015 unsigned char *entry
, *ptr
;
1018 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
1019 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 ldx
= 0xc25be000 | ((ptr
- (entry
+4)) & 0x1fff);
1030 bfd_put_32 (output_bfd
, (bfd_vma
) 0x8a10000f, entry
);
1031 bfd_put_32 (output_bfd
, (bfd_vma
) 0x40000002, entry
+ 4);
1032 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
1033 bfd_put_32 (output_bfd
, (bfd_vma
) ldx
, entry
+ 12);
1034 bfd_put_32 (output_bfd
, (bfd_vma
) 0x83c3c001, entry
+ 16);
1035 bfd_put_32 (output_bfd
, (bfd_vma
) 0x9e100005, entry
+ 20);
1037 bfd_put_64 (output_bfd
, (bfd_vma
) (contents
- (entry
+ 4)), ptr
);
1042 /* Return the offset of a particular plt entry within the .plt section. */
1045 sparc64_elf_plt_entry_offset (index
)
1050 if (index
< LARGE_PLT_THRESHOLD
)
1051 return index
* PLT_ENTRY_SIZE
;
1053 /* See above for details. */
1055 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
1056 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
1058 return (LARGE_PLT_THRESHOLD
+ block
* 160) * PLT_ENTRY_SIZE
+ ofs
* 6 * 4;
1062 sparc64_elf_plt_ptr_offset (index
, max
)
1066 bfd_vma block
, ofs
, last
;
1068 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
1070 /* See above for details. */
1072 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160) + LARGE_PLT_THRESHOLD
;
1073 ofs
= index
- block
;
1074 if (block
+ 160 > max
)
1075 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
1079 return (block
* PLT_ENTRY_SIZE
1084 /* Look through the relocs for a section during the first phase, and
1085 allocate space in the global offset table or procedure linkage
1089 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
1091 struct bfd_link_info
*info
;
1093 const Elf_Internal_Rela
*relocs
;
1096 Elf_Internal_Shdr
*symtab_hdr
;
1097 struct elf_link_hash_entry
**sym_hashes
;
1098 bfd_vma
*local_got_offsets
;
1099 const Elf_Internal_Rela
*rel
;
1100 const Elf_Internal_Rela
*rel_end
;
1105 if (info
->relocatable
|| !(sec
->flags
& SEC_ALLOC
))
1108 dynobj
= elf_hash_table (info
)->dynobj
;
1109 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1110 sym_hashes
= elf_sym_hashes (abfd
);
1111 local_got_offsets
= elf_local_got_offsets (abfd
);
1117 rel_end
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (sec
)->rel_hdr
);
1118 for (rel
= relocs
; rel
< rel_end
; rel
++)
1120 unsigned long r_symndx
;
1121 struct elf_link_hash_entry
*h
;
1123 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1124 if (r_symndx
< symtab_hdr
->sh_info
)
1127 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1129 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1134 /* This symbol requires a global offset table entry. */
1138 /* Create the .got section. */
1139 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1140 if (! _bfd_elf_create_got_section (dynobj
, info
))
1146 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1147 BFD_ASSERT (sgot
!= NULL
);
1150 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1152 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1153 if (srelgot
== NULL
)
1155 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1157 || ! bfd_set_section_flags (dynobj
, srelgot
,
1162 | SEC_LINKER_CREATED
1164 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1171 if (h
->got
.offset
!= (bfd_vma
) -1)
1173 /* We have already allocated space in the .got. */
1176 h
->got
.offset
= sgot
->_raw_size
;
1178 /* Make sure this symbol is output as a dynamic symbol. */
1179 if (h
->dynindx
== -1)
1181 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1185 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1189 /* This is a global offset table entry for a local
1191 if (local_got_offsets
== NULL
)
1194 register unsigned int i
;
1196 size
= symtab_hdr
->sh_info
;
1197 size
*= sizeof (bfd_vma
);
1198 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1199 if (local_got_offsets
== NULL
)
1201 elf_local_got_offsets (abfd
) = local_got_offsets
;
1202 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1203 local_got_offsets
[i
] = (bfd_vma
) -1;
1205 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1207 /* We have already allocated space in the .got. */
1210 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1214 /* If we are generating a shared object, we need to
1215 output a R_SPARC_RELATIVE reloc so that the
1216 dynamic linker can adjust this GOT entry. */
1217 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1221 sgot
->_raw_size
+= 8;
1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 unsigned numbers. If we permit ourselves to modify
1226 code so we get sethi/xor, this could work.
1227 Question: do we consider conditionally re-enabling
1228 this for -fpic, once we know about object code models? */
1229 /* If the .got section is more than 0x1000 bytes, we add
1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 bit relocations have a greater chance of working. */
1232 if (sgot
->_raw_size
>= 0x1000
1233 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1234 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1239 case R_SPARC_WPLT30
:
1241 case R_SPARC_HIPLT22
:
1242 case R_SPARC_LOPLT10
:
1243 case R_SPARC_PCPLT32
:
1244 case R_SPARC_PCPLT22
:
1245 case R_SPARC_PCPLT10
:
1247 /* This symbol requires a procedure linkage table entry. We
1248 actually build the entry in adjust_dynamic_symbol,
1249 because this might be a case of linking PIC code without
1250 linking in any dynamic objects, in which case we don't
1251 need to generate a procedure linkage table after all. */
1255 /* It does not make sense to have a procedure linkage
1256 table entry for a local symbol. */
1257 bfd_set_error (bfd_error_bad_value
);
1261 /* Make sure this symbol is output as a dynamic symbol. */
1262 if (h
->dynindx
== -1)
1264 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1268 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1269 if (ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT32
1270 && ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT64
)
1275 case R_SPARC_PC_HH22
:
1276 case R_SPARC_PC_HM10
:
1277 case R_SPARC_PC_LM22
:
1279 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1283 case R_SPARC_DISP16
:
1284 case R_SPARC_DISP32
:
1285 case R_SPARC_DISP64
:
1286 case R_SPARC_WDISP30
:
1287 case R_SPARC_WDISP22
:
1288 case R_SPARC_WDISP19
:
1289 case R_SPARC_WDISP16
:
1318 /* When creating a shared object, we must copy these relocs
1319 into the output file. We create a reloc section in
1320 dynobj and make room for the reloc.
1322 But don't do this for debugging sections -- this shows up
1323 with DWARF2 -- first because they are not loaded, and
1324 second because DWARF sez the debug info is not to be
1325 biased by the load address. */
1326 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1332 name
= (bfd_elf_string_from_elf_section
1334 elf_elfheader (abfd
)->e_shstrndx
,
1335 elf_section_data (sec
)->rel_hdr
.sh_name
));
1339 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1340 && strcmp (bfd_get_section_name (abfd
, sec
),
1343 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1348 sreloc
= bfd_make_section (dynobj
, name
);
1349 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1350 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1351 if ((sec
->flags
& SEC_ALLOC
) != 0)
1352 flags
|= SEC_ALLOC
| SEC_LOAD
;
1354 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1355 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1358 if (sec
->flags
& SEC_READONLY
)
1359 info
->flags
|= DF_TEXTREL
;
1362 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1366 case R_SPARC_REGISTER
:
1367 /* Nothing to do. */
1371 (*_bfd_error_handler
) (_("%s: check_relocs: unhandled reloc type %d"),
1372 bfd_archive_filename (abfd
),
1373 ELF64_R_TYPE_ID (rel
->r_info
));
1381 /* Hook called by the linker routine which adds symbols from an object
1382 file. We use it for STT_REGISTER symbols. */
1385 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1387 struct bfd_link_info
*info
;
1388 const Elf_Internal_Sym
*sym
;
1390 flagword
*flagsp ATTRIBUTE_UNUSED
;
1391 asection
**secp ATTRIBUTE_UNUSED
;
1392 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1394 static const char *const stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1396 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1399 struct sparc64_elf_app_reg
*p
;
1401 reg
= (int)sym
->st_value
;
1404 case 2: reg
-= 2; break;
1405 case 6: reg
-= 4; break;
1407 (*_bfd_error_handler
)
1408 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1409 bfd_archive_filename (abfd
));
1413 if (info
->hash
->creator
!= abfd
->xvec
1414 || (abfd
->flags
& DYNAMIC
) != 0)
1416 /* STT_REGISTER only works when linking an elf64_sparc object.
1417 If STT_REGISTER comes from a dynamic object, don't put it into
1418 the output bfd. The dynamic linker will recheck it. */
1423 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1425 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1427 (*_bfd_error_handler
)
1428 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1429 (int) sym
->st_value
,
1430 **namep
? *namep
: "#scratch", bfd_archive_filename (abfd
),
1431 *p
->name
? p
->name
: "#scratch", bfd_archive_filename (p
->abfd
));
1435 if (p
->name
== NULL
)
1439 struct elf_link_hash_entry
*h
;
1441 h
= (struct elf_link_hash_entry
*)
1442 bfd_link_hash_lookup (info
->hash
, *namep
, FALSE
, FALSE
, FALSE
);
1446 unsigned char type
= h
->type
;
1448 if (type
> STT_FUNC
)
1450 (*_bfd_error_handler
)
1451 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1452 *namep
, bfd_archive_filename (abfd
),
1453 stt_types
[type
], bfd_archive_filename (p
->abfd
));
1457 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1458 strlen (*namep
) + 1);
1462 strcpy (p
->name
, *namep
);
1466 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1468 p
->shndx
= sym
->st_shndx
;
1472 if (p
->bind
== STB_WEAK
1473 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1475 p
->bind
= STB_GLOBAL
;
1482 else if (*namep
&& **namep
1483 && info
->hash
->creator
== abfd
->xvec
)
1486 struct sparc64_elf_app_reg
*p
;
1488 p
= sparc64_elf_hash_table(info
)->app_regs
;
1489 for (i
= 0; i
< 4; i
++, p
++)
1490 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1492 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1494 if (type
> STT_FUNC
)
1496 (*_bfd_error_handler
)
1497 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1498 *namep
, stt_types
[type
], bfd_archive_filename (abfd
),
1499 bfd_archive_filename (p
->abfd
));
1506 /* This function takes care of emitting STT_REGISTER symbols
1507 which we cannot easily keep in the symbol hash table. */
1510 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1511 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1512 struct bfd_link_info
*info
;
1515 PARAMS ((PTR
, const char *, Elf_Internal_Sym
*, asection
*,
1516 struct elf_link_hash_entry
*));
1519 struct sparc64_elf_app_reg
*app_regs
=
1520 sparc64_elf_hash_table(info
)->app_regs
;
1521 Elf_Internal_Sym sym
;
1523 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1524 at the end of the dynlocal list, so they came at the end of the local
1525 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1526 to back up symtab->sh_info. */
1527 if (elf_hash_table (info
)->dynlocal
)
1529 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1530 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1531 struct elf_link_local_dynamic_entry
*e
;
1533 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1534 if (e
->input_indx
== -1)
1538 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1543 if (info
->strip
== strip_all
)
1546 for (reg
= 0; reg
< 4; reg
++)
1547 if (app_regs
[reg
].name
!= NULL
)
1549 if (info
->strip
== strip_some
1550 && bfd_hash_lookup (info
->keep_hash
,
1551 app_regs
[reg
].name
,
1552 FALSE
, FALSE
) == NULL
)
1555 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1558 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1559 sym
.st_shndx
= app_regs
[reg
].shndx
;
1560 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1561 sym
.st_shndx
== SHN_ABS
1562 ? bfd_abs_section_ptr
: bfd_und_section_ptr
,
1571 sparc64_elf_get_symbol_type (elf_sym
, type
)
1572 Elf_Internal_Sym
* elf_sym
;
1575 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1576 return STT_REGISTER
;
1581 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1582 even in SHN_UNDEF section. */
1585 sparc64_elf_symbol_processing (abfd
, asym
)
1586 bfd
*abfd ATTRIBUTE_UNUSED
;
1589 elf_symbol_type
*elfsym
;
1591 elfsym
= (elf_symbol_type
*) asym
;
1592 if (elfsym
->internal_elf_sym
.st_info
1593 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1595 asym
->flags
|= BSF_GLOBAL
;
1599 /* Adjust a symbol defined by a dynamic object and referenced by a
1600 regular object. The current definition is in some section of the
1601 dynamic object, but we're not including those sections. We have to
1602 change the definition to something the rest of the link can
1606 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1607 struct bfd_link_info
*info
;
1608 struct elf_link_hash_entry
*h
;
1612 unsigned int power_of_two
;
1614 dynobj
= elf_hash_table (info
)->dynobj
;
1616 /* Make sure we know what is going on here. */
1617 BFD_ASSERT (dynobj
!= NULL
1618 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1619 || h
->weakdef
!= NULL
1620 || ((h
->elf_link_hash_flags
1621 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1622 && (h
->elf_link_hash_flags
1623 & ELF_LINK_HASH_REF_REGULAR
) != 0
1624 && (h
->elf_link_hash_flags
1625 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1627 /* If this is a function, put it in the procedure linkage table. We
1628 will fill in the contents of the procedure linkage table later
1629 (although we could actually do it here). The STT_NOTYPE
1630 condition is a hack specifically for the Oracle libraries
1631 delivered for Solaris; for some inexplicable reason, they define
1632 some of their functions as STT_NOTYPE when they really should be
1634 if (h
->type
== STT_FUNC
1635 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1636 || (h
->type
== STT_NOTYPE
1637 && (h
->root
.type
== bfd_link_hash_defined
1638 || h
->root
.type
== bfd_link_hash_defweak
)
1639 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1641 if (! elf_hash_table (info
)->dynamic_sections_created
)
1643 /* This case can occur if we saw a WPLT30 reloc in an input
1644 file, but none of the input files were dynamic objects.
1645 In such a case, we don't actually need to build a
1646 procedure linkage table, and we can just do a WDISP30
1648 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1652 s
= bfd_get_section_by_name (dynobj
, ".plt");
1653 BFD_ASSERT (s
!= NULL
);
1655 /* The first four bit in .plt is reserved. */
1656 if (s
->_raw_size
== 0)
1657 s
->_raw_size
= PLT_HEADER_SIZE
;
1659 /* To simplify matters later, just store the plt index here. */
1660 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1662 /* If this symbol is not defined in a regular file, and we are
1663 not generating a shared library, then set the symbol to this
1664 location in the .plt. This is required to make function
1665 pointers compare as equal between the normal executable and
1666 the shared library. */
1668 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1670 h
->root
.u
.def
.section
= s
;
1671 h
->root
.u
.def
.value
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
1674 /* Make room for this entry. */
1675 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1677 /* We also need to make an entry in the .rela.plt section. */
1679 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1680 BFD_ASSERT (s
!= NULL
);
1682 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1684 /* The procedure linkage table size is bounded by the magnitude
1685 of the offset we can describe in the entry. */
1686 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1688 bfd_set_error (bfd_error_bad_value
);
1695 /* If this is a weak symbol, and there is a real definition, the
1696 processor independent code will have arranged for us to see the
1697 real definition first, and we can just use the same value. */
1698 if (h
->weakdef
!= NULL
)
1700 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1701 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1702 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1703 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1707 /* This is a reference to a symbol defined by a dynamic object which
1708 is not a function. */
1710 /* If we are creating a shared library, we must presume that the
1711 only references to the symbol are via the global offset table.
1712 For such cases we need not do anything here; the relocations will
1713 be handled correctly by relocate_section. */
1717 /* We must allocate the symbol in our .dynbss section, which will
1718 become part of the .bss section of the executable. There will be
1719 an entry for this symbol in the .dynsym section. The dynamic
1720 object will contain position independent code, so all references
1721 from the dynamic object to this symbol will go through the global
1722 offset table. The dynamic linker will use the .dynsym entry to
1723 determine the address it must put in the global offset table, so
1724 both the dynamic object and the regular object will refer to the
1725 same memory location for the variable. */
1727 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1728 BFD_ASSERT (s
!= NULL
);
1730 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1731 to copy the initial value out of the dynamic object and into the
1732 runtime process image. We need to remember the offset into the
1733 .rel.bss section we are going to use. */
1734 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1738 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1739 BFD_ASSERT (srel
!= NULL
);
1740 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1741 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1744 /* We need to figure out the alignment required for this symbol. I
1745 have no idea how ELF linkers handle this. 16-bytes is the size
1746 of the largest type that requires hard alignment -- long double. */
1747 power_of_two
= bfd_log2 (h
->size
);
1748 if (power_of_two
> 4)
1751 /* Apply the required alignment. */
1752 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1753 (bfd_size_type
) (1 << power_of_two
));
1754 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1756 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1760 /* Define the symbol as being at this point in the section. */
1761 h
->root
.u
.def
.section
= s
;
1762 h
->root
.u
.def
.value
= s
->_raw_size
;
1764 /* Increment the section size to make room for the symbol. */
1765 s
->_raw_size
+= h
->size
;
1770 /* Set the sizes of the dynamic sections. */
1773 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1775 struct bfd_link_info
*info
;
1781 dynobj
= elf_hash_table (info
)->dynobj
;
1782 BFD_ASSERT (dynobj
!= NULL
);
1784 if (elf_hash_table (info
)->dynamic_sections_created
)
1786 /* Set the contents of the .interp section to the interpreter. */
1787 if (info
->executable
)
1789 s
= bfd_get_section_by_name (dynobj
, ".interp");
1790 BFD_ASSERT (s
!= NULL
);
1791 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1792 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1797 /* We may have created entries in the .rela.got section.
1798 However, if we are not creating the dynamic sections, we will
1799 not actually use these entries. Reset the size of .rela.got,
1800 which will cause it to get stripped from the output file
1802 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1807 /* The check_relocs and adjust_dynamic_symbol entry points have
1808 determined the sizes of the various dynamic sections. Allocate
1811 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1816 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1819 /* It's OK to base decisions on the section name, because none
1820 of the dynobj section names depend upon the input files. */
1821 name
= bfd_get_section_name (dynobj
, s
);
1825 if (strncmp (name
, ".rela", 5) == 0)
1827 if (s
->_raw_size
== 0)
1829 /* If we don't need this section, strip it from the
1830 output file. This is to handle .rela.bss and
1831 .rel.plt. We must create it in
1832 create_dynamic_sections, because it must be created
1833 before the linker maps input sections to output
1834 sections. The linker does that before
1835 adjust_dynamic_symbol is called, and it is that
1836 function which decides whether anything needs to go
1837 into these sections. */
1842 if (strcmp (name
, ".rela.plt") == 0)
1845 /* We use the reloc_count field as a counter if we need
1846 to copy relocs into the output file. */
1850 else if (strcmp (name
, ".plt") != 0
1851 && strncmp (name
, ".got", 4) != 0)
1853 /* It's not one of our sections, so don't allocate space. */
1859 _bfd_strip_section_from_output (info
, s
);
1863 /* Allocate memory for the section contents. Zero the memory
1864 for the benefit of .rela.plt, which has 4 unused entries
1865 at the beginning, and we don't want garbage. */
1866 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1867 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1871 if (elf_hash_table (info
)->dynamic_sections_created
)
1873 /* Add some entries to the .dynamic section. We fill in the
1874 values later, in sparc64_elf_finish_dynamic_sections, but we
1875 must add the entries now so that we get the correct size for
1876 the .dynamic section. The DT_DEBUG entry is filled in by the
1877 dynamic linker and used by the debugger. */
1878 #define add_dynamic_entry(TAG, VAL) \
1879 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1882 struct sparc64_elf_app_reg
* app_regs
;
1883 struct elf_strtab_hash
*dynstr
;
1884 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1886 if (info
->executable
)
1888 if (!add_dynamic_entry (DT_DEBUG
, 0))
1894 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1895 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1896 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1897 || !add_dynamic_entry (DT_JMPREL
, 0))
1901 if (!add_dynamic_entry (DT_RELA
, 0)
1902 || !add_dynamic_entry (DT_RELASZ
, 0)
1903 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1906 if (info
->flags
& DF_TEXTREL
)
1908 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1912 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1913 entries if needed. */
1914 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1915 dynstr
= eht
->dynstr
;
1917 for (reg
= 0; reg
< 4; reg
++)
1918 if (app_regs
[reg
].name
!= NULL
)
1920 struct elf_link_local_dynamic_entry
*entry
, *e
;
1922 if (!add_dynamic_entry (DT_SPARC_REGISTER
, 0))
1925 entry
= (struct elf_link_local_dynamic_entry
*)
1926 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1930 /* We cheat here a little bit: the symbol will not be local, so we
1931 put it at the end of the dynlocal linked list. We will fix it
1932 later on, as we have to fix other fields anyway. */
1933 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1934 entry
->isym
.st_size
= 0;
1935 if (*app_regs
[reg
].name
!= '\0')
1937 = _bfd_elf_strtab_add (dynstr
, app_regs
[reg
].name
, FALSE
);
1939 entry
->isym
.st_name
= 0;
1940 entry
->isym
.st_other
= 0;
1941 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1943 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1945 entry
->input_bfd
= output_bfd
;
1946 entry
->input_indx
= -1;
1948 if (eht
->dynlocal
== NULL
)
1949 eht
->dynlocal
= entry
;
1952 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1959 #undef add_dynamic_entry
1965 sparc64_elf_new_section_hook (abfd
, sec
)
1969 struct sparc64_elf_section_data
*sdata
;
1970 bfd_size_type amt
= sizeof (*sdata
);
1972 sdata
= (struct sparc64_elf_section_data
*) bfd_zalloc (abfd
, amt
);
1975 sec
->used_by_bfd
= (PTR
) sdata
;
1977 return _bfd_elf_new_section_hook (abfd
, sec
);
1981 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1982 bfd
*abfd ATTRIBUTE_UNUSED
;
1983 asection
*section ATTRIBUTE_UNUSED
;
1984 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1988 sec_do_relax (section
) = 1;
1992 /* This is the condition under which finish_dynamic_symbol will be called
1993 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1994 routine, we'll need to do something about initializing any .plt and
1995 .got entries in relocate_section. */
1996 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1998 && ((INFO)->shared \
1999 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
2000 && ((H)->dynindx != -1 \
2001 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
2003 /* Relocate a SPARC64 ELF section. */
2006 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
2007 contents
, relocs
, local_syms
, local_sections
)
2009 struct bfd_link_info
*info
;
2011 asection
*input_section
;
2013 Elf_Internal_Rela
*relocs
;
2014 Elf_Internal_Sym
*local_syms
;
2015 asection
**local_sections
;
2018 Elf_Internal_Shdr
*symtab_hdr
;
2019 struct elf_link_hash_entry
**sym_hashes
;
2020 bfd_vma
*local_got_offsets
;
2025 Elf_Internal_Rela
*rel
;
2026 Elf_Internal_Rela
*relend
;
2028 if (info
->relocatable
)
2031 dynobj
= elf_hash_table (info
)->dynobj
;
2032 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2033 sym_hashes
= elf_sym_hashes (input_bfd
);
2034 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2036 if (elf_hash_table(info
)->hgot
== NULL
)
2039 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
2041 sgot
= splt
= sreloc
= NULL
;
2044 relend
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (input_section
)->rel_hdr
);
2045 for (; rel
< relend
; rel
++)
2048 reloc_howto_type
*howto
;
2049 unsigned long r_symndx
;
2050 struct elf_link_hash_entry
*h
;
2051 Elf_Internal_Sym
*sym
;
2053 bfd_vma relocation
, off
;
2054 bfd_reloc_status_type r
;
2055 bfd_boolean is_plt
= FALSE
;
2056 bfd_boolean unresolved_reloc
;
2058 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
2059 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
2061 bfd_set_error (bfd_error_bad_value
);
2064 howto
= sparc64_elf_howto_table
+ r_type
;
2066 /* This is a final link. */
2067 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2071 unresolved_reloc
= FALSE
;
2072 if (r_symndx
< symtab_hdr
->sh_info
)
2074 sym
= local_syms
+ r_symndx
;
2075 sec
= local_sections
[r_symndx
];
2076 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2082 RELOC_FOR_GLOBAL_SYMBOL (h
, sym_hashes
, r_symndx
,
2083 symtab_hdr
, relocation
, sec
,
2084 unresolved_reloc
, info
,
2088 /* To avoid generating warning messages about truncated
2089 relocations, set the relocation's address to be the same as
2090 the start of this section. */
2091 if (input_section
->output_section
!= NULL
)
2092 relocation
= input_section
->output_section
->vma
;
2099 /* When generating a shared object, these relocations are copied
2100 into the output file to be resolved at run time. */
2101 if (info
->shared
&& r_symndx
!= 0 && (input_section
->flags
& SEC_ALLOC
))
2107 case R_SPARC_PC_HH22
:
2108 case R_SPARC_PC_HM10
:
2109 case R_SPARC_PC_LM22
:
2111 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2115 case R_SPARC_DISP16
:
2116 case R_SPARC_DISP32
:
2117 case R_SPARC_DISP64
:
2118 case R_SPARC_WDISP30
:
2119 case R_SPARC_WDISP22
:
2120 case R_SPARC_WDISP19
:
2121 case R_SPARC_WDISP16
:
2151 Elf_Internal_Rela outrel
;
2153 bfd_boolean skip
, relocate
;
2158 (bfd_elf_string_from_elf_section
2160 elf_elfheader (input_bfd
)->e_shstrndx
,
2161 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2166 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2167 && strcmp (bfd_get_section_name(input_bfd
,
2171 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2172 BFD_ASSERT (sreloc
!= NULL
);
2179 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2181 if (outrel
.r_offset
== (bfd_vma
) -1)
2183 else if (outrel
.r_offset
== (bfd_vma
) -2)
2184 skip
= TRUE
, relocate
= TRUE
;
2186 outrel
.r_offset
+= (input_section
->output_section
->vma
2187 + input_section
->output_offset
);
2189 /* Optimize unaligned reloc usage now that we know where
2190 it finally resides. */
2194 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2197 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2200 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2203 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2206 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2209 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2212 case R_SPARC_DISP16
:
2213 case R_SPARC_DISP32
:
2214 case R_SPARC_DISP64
:
2215 /* If the symbol is not dynamic, we should not keep
2216 a dynamic relocation. But an .rela.* slot has been
2217 allocated for it, output R_SPARC_NONE.
2218 FIXME: Add code tracking needed dynamic relocs as
2220 if (h
->dynindx
== -1)
2221 skip
= TRUE
, relocate
= TRUE
;
2226 memset (&outrel
, 0, sizeof outrel
);
2227 /* h->dynindx may be -1 if the symbol was marked to
2229 else if (h
!= NULL
&& ! is_plt
2230 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2231 || (h
->elf_link_hash_flags
2232 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2234 BFD_ASSERT (h
->dynindx
!= -1);
2236 = ELF64_R_INFO (h
->dynindx
,
2238 ELF64_R_TYPE_DATA (rel
->r_info
),
2240 outrel
.r_addend
= rel
->r_addend
;
2244 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2245 if (r_type
== R_SPARC_64
)
2246 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2254 if (bfd_is_abs_section (sec
))
2256 else if (sec
== NULL
|| sec
->owner
== NULL
)
2258 bfd_set_error (bfd_error_bad_value
);
2265 osec
= sec
->output_section
;
2266 indx
= elf_section_data (osec
)->dynindx
;
2268 /* We are turning this relocation into one
2269 against a section symbol, so subtract out
2270 the output section's address but not the
2271 offset of the input section in the output
2273 outrel
.r_addend
-= osec
->vma
;
2275 /* FIXME: we really should be able to link non-pic
2276 shared libraries. */
2280 (*_bfd_error_handler
)
2281 (_("%s: probably compiled without -fPIC?"),
2282 bfd_archive_filename (input_bfd
));
2283 bfd_set_error (bfd_error_bad_value
);
2289 = ELF64_R_INFO (indx
,
2291 ELF64_R_TYPE_DATA (rel
->r_info
),
2296 loc
= sreloc
->contents
;
2297 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2298 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2300 /* This reloc will be computed at runtime, so there's no
2301 need to do anything now. */
2314 /* Relocation is to the entry for this symbol in the global
2318 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2319 BFD_ASSERT (sgot
!= NULL
);
2326 off
= h
->got
.offset
;
2327 BFD_ASSERT (off
!= (bfd_vma
) -1);
2328 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2330 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
, h
)
2334 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
))
2335 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
2337 /* This is actually a static link, or it is a -Bsymbolic
2338 link and the symbol is defined locally, or the symbol
2339 was forced to be local because of a version file. We
2340 must initialize this entry in the global offset table.
2341 Since the offset must always be a multiple of 8, we
2342 use the least significant bit to record whether we
2343 have initialized it already.
2345 When doing a dynamic link, we create a .rela.got
2346 relocation entry to initialize the value. This is
2347 done in the finish_dynamic_symbol routine. */
2353 bfd_put_64 (output_bfd
, relocation
,
2354 sgot
->contents
+ off
);
2359 unresolved_reloc
= FALSE
;
2363 BFD_ASSERT (local_got_offsets
!= NULL
);
2364 off
= local_got_offsets
[r_symndx
];
2365 BFD_ASSERT (off
!= (bfd_vma
) -1);
2367 /* The offset must always be a multiple of 8. We use
2368 the least significant bit to record whether we have
2369 already processed this entry. */
2374 local_got_offsets
[r_symndx
] |= 1;
2379 Elf_Internal_Rela outrel
;
2382 /* The Solaris 2.7 64-bit linker adds the contents
2383 of the location to the value of the reloc.
2384 Note this is different behaviour to the
2385 32-bit linker, which both adds the contents
2386 and ignores the addend. So clear the location. */
2387 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2388 sgot
->contents
+ off
);
2390 /* We need to generate a R_SPARC_RELATIVE reloc
2391 for the dynamic linker. */
2392 s
= bfd_get_section_by_name(dynobj
, ".rela.got");
2393 BFD_ASSERT (s
!= NULL
);
2395 outrel
.r_offset
= (sgot
->output_section
->vma
2396 + sgot
->output_offset
2398 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2399 outrel
.r_addend
= relocation
;
2401 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2402 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2405 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2408 relocation
= sgot
->output_offset
+ off
- got_base
;
2411 case R_SPARC_WPLT30
:
2413 case R_SPARC_HIPLT22
:
2414 case R_SPARC_LOPLT10
:
2415 case R_SPARC_PCPLT32
:
2416 case R_SPARC_PCPLT22
:
2417 case R_SPARC_PCPLT10
:
2419 /* Relocation is to the entry for this symbol in the
2420 procedure linkage table. */
2421 BFD_ASSERT (h
!= NULL
);
2423 if (h
->plt
.offset
== (bfd_vma
) -1)
2425 /* We didn't make a PLT entry for this symbol. This
2426 happens when statically linking PIC code, or when
2427 using -Bsymbolic. */
2433 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2434 BFD_ASSERT (splt
!= NULL
);
2437 relocation
= (splt
->output_section
->vma
2438 + splt
->output_offset
2439 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2440 unresolved_reloc
= FALSE
;
2441 if (r_type
== R_SPARC_WPLT30
)
2443 if (r_type
== R_SPARC_PLT32
|| r_type
== R_SPARC_PLT64
)
2445 r_type
= r_type
== R_SPARC_PLT32
? R_SPARC_32
: R_SPARC_64
;
2455 relocation
+= rel
->r_addend
;
2456 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2458 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2459 x
= (x
& ~(bfd_vma
) 0x1fff) | (relocation
& 0x1fff);
2460 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2462 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2463 howto
->bitsize
, howto
->rightshift
,
2464 bfd_arch_bits_per_address (input_bfd
),
2469 case R_SPARC_WDISP16
:
2473 relocation
+= rel
->r_addend
;
2474 /* Adjust for pc-relative-ness. */
2475 relocation
-= (input_section
->output_section
->vma
2476 + input_section
->output_offset
);
2477 relocation
-= rel
->r_offset
;
2479 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2480 x
&= ~(bfd_vma
) 0x303fff;
2481 x
|= ((((relocation
>> 2) & 0xc000) << 6)
2482 | ((relocation
>> 2) & 0x3fff));
2483 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2485 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2486 howto
->bitsize
, howto
->rightshift
,
2487 bfd_arch_bits_per_address (input_bfd
),
2496 relocation
+= rel
->r_addend
;
2497 relocation
= relocation
^ MINUS_ONE
;
2499 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2500 x
= (x
& ~(bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2501 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2503 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2504 howto
->bitsize
, howto
->rightshift
,
2505 bfd_arch_bits_per_address (input_bfd
),
2514 relocation
+= rel
->r_addend
;
2515 relocation
= (relocation
& 0x3ff) | 0x1c00;
2517 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2518 x
= (x
& ~(bfd_vma
) 0x1fff) | relocation
;
2519 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2525 case R_SPARC_WDISP30
:
2527 if (sec_do_relax (input_section
)
2528 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2532 #define XCC (2 << 20)
2533 #define COND(x) (((x)&0xf)<<25)
2534 #define CONDA COND(0x8)
2535 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2536 #define INSN_BA (F2(0,2) | CONDA)
2537 #define INSN_OR F3(2, 0x2, 0)
2538 #define INSN_NOP F2(0,4)
2542 /* If the instruction is a call with either:
2544 arithmetic instruction with rd == %o7
2545 where rs1 != %o7 and rs2 if it is register != %o7
2546 then we can optimize if the call destination is near
2547 by changing the call into a branch always. */
2548 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2549 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2550 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2552 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2553 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2554 && (y
& RD(~0)) == RD(O7
)))
2555 && (y
& RS1(~0)) != RS1(O7
)
2557 || (y
& RS2(~0)) != RS2(O7
)))
2561 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2562 reloc
-= (input_section
->output_section
->vma
2563 + input_section
->output_offset
);
2567 /* Ensure the branch fits into simm22. */
2568 if ((reloc
& ~(bfd_vma
)0x7fffff)
2569 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2573 /* Check whether it fits into simm19. */
2574 if ((reloc
& 0x3c0000) == 0
2575 || (reloc
& 0x3c0000) == 0x3c0000)
2576 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2578 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2579 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2581 if (rel
->r_offset
>= 4
2582 && (y
& (0xffffffff ^ RS1(~0)))
2583 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2588 z
= bfd_get_32 (input_bfd
,
2589 contents
+ rel
->r_offset
- 4);
2590 if ((z
& (0xffffffff ^ RD(~0)))
2591 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2599 If call foo was replaced with ba, replace
2600 or %rN, %g0, %o7 with nop. */
2602 reg
= (y
& RS1(~0)) >> 14;
2603 if (reg
!= ((z
& RD(~0)) >> 25)
2604 || reg
== G0
|| reg
== O7
)
2607 bfd_put_32 (input_bfd
, (bfd_vma
) INSN_NOP
,
2608 contents
+ rel
->r_offset
+ 4);
2618 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2619 contents
, rel
->r_offset
,
2620 relocation
, rel
->r_addend
);
2624 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2625 because such sections are not SEC_ALLOC and thus ld.so will
2626 not process them. */
2627 if (unresolved_reloc
2628 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2629 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0))
2630 (*_bfd_error_handler
)
2631 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2632 bfd_archive_filename (input_bfd
),
2633 bfd_get_section_name (input_bfd
, input_section
),
2634 (long) rel
->r_offset
,
2635 h
->root
.root
.string
);
2643 case bfd_reloc_outofrange
:
2646 case bfd_reloc_overflow
:
2650 /* The Solaris native linker silently disregards
2651 overflows. We don't, but this breaks stabs debugging
2652 info, whose relocations are only 32-bits wide. Ignore
2653 overflows for discarded entries. */
2654 if ((r_type
== R_SPARC_32
|| r_type
== R_SPARC_DISP32
)
2655 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2656 rel
->r_offset
) == (bfd_vma
) -1)
2661 if (h
->root
.type
== bfd_link_hash_undefweak
2662 && howto
->pc_relative
)
2664 /* Assume this is a call protected by other code that
2665 detect the symbol is undefined. If this is the case,
2666 we can safely ignore the overflow. If not, the
2667 program is hosed anyway, and a little warning isn't
2672 name
= h
->root
.root
.string
;
2676 name
= (bfd_elf_string_from_elf_section
2678 symtab_hdr
->sh_link
,
2683 name
= bfd_section_name (input_bfd
, sec
);
2685 if (! ((*info
->callbacks
->reloc_overflow
)
2686 (info
, name
, howto
->name
, (bfd_vma
) 0,
2687 input_bfd
, input_section
, rel
->r_offset
)))
2697 /* Finish up dynamic symbol handling. We set the contents of various
2698 dynamic sections here. */
2701 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2703 struct bfd_link_info
*info
;
2704 struct elf_link_hash_entry
*h
;
2705 Elf_Internal_Sym
*sym
;
2709 dynobj
= elf_hash_table (info
)->dynobj
;
2711 if (h
->plt
.offset
!= (bfd_vma
) -1)
2715 Elf_Internal_Rela rela
;
2718 /* This symbol has an entry in the PLT. Set it up. */
2720 BFD_ASSERT (h
->dynindx
!= -1);
2722 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2723 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2724 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2726 /* Fill in the entry in the .rela.plt section. */
2728 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2730 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2735 bfd_vma max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2736 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2737 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2738 -(splt
->output_section
->vma
+ splt
->output_offset
);
2740 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2741 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2743 /* Adjust for the first 4 reserved elements in the .plt section
2744 when setting the offset in the .rela.plt section.
2745 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2746 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2748 loc
= srela
->contents
;
2749 loc
+= (h
->plt
.offset
- 4) * sizeof (Elf64_External_Rela
);
2750 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2752 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2754 /* Mark the symbol as undefined, rather than as defined in
2755 the .plt section. Leave the value alone. */
2756 sym
->st_shndx
= SHN_UNDEF
;
2757 /* If the symbol is weak, we do need to clear the value.
2758 Otherwise, the PLT entry would provide a definition for
2759 the symbol even if the symbol wasn't defined anywhere,
2760 and so the symbol would never be NULL. */
2761 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
)
2767 if (h
->got
.offset
!= (bfd_vma
) -1)
2771 Elf_Internal_Rela rela
;
2774 /* This symbol has an entry in the GOT. Set it up. */
2776 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2777 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2778 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2780 rela
.r_offset
= (sgot
->output_section
->vma
2781 + sgot
->output_offset
2782 + (h
->got
.offset
&~ (bfd_vma
) 1));
2784 /* If this is a -Bsymbolic link, and the symbol is defined
2785 locally, we just want to emit a RELATIVE reloc. Likewise if
2786 the symbol was forced to be local because of a version file.
2787 The entry in the global offset table will already have been
2788 initialized in the relocate_section function. */
2790 && (info
->symbolic
|| h
->dynindx
== -1)
2791 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2793 asection
*sec
= h
->root
.u
.def
.section
;
2794 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2795 rela
.r_addend
= (h
->root
.u
.def
.value
2796 + sec
->output_section
->vma
2797 + sec
->output_offset
);
2801 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2805 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2806 sgot
->contents
+ (h
->got
.offset
&~ (bfd_vma
) 1));
2807 loc
= srela
->contents
;
2808 loc
+= srela
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2809 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2812 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2815 Elf_Internal_Rela rela
;
2818 /* This symbols needs a copy reloc. Set it up. */
2819 BFD_ASSERT (h
->dynindx
!= -1);
2821 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2823 BFD_ASSERT (s
!= NULL
);
2825 rela
.r_offset
= (h
->root
.u
.def
.value
2826 + h
->root
.u
.def
.section
->output_section
->vma
2827 + h
->root
.u
.def
.section
->output_offset
);
2828 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2830 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2831 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2834 /* Mark some specially defined symbols as absolute. */
2835 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2836 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2837 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2838 sym
->st_shndx
= SHN_ABS
;
2843 /* Finish up the dynamic sections. */
2846 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2848 struct bfd_link_info
*info
;
2851 int stt_regidx
= -1;
2855 dynobj
= elf_hash_table (info
)->dynobj
;
2857 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2859 if (elf_hash_table (info
)->dynamic_sections_created
)
2862 Elf64_External_Dyn
*dyncon
, *dynconend
;
2864 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2865 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2867 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2868 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2869 for (; dyncon
< dynconend
; dyncon
++)
2871 Elf_Internal_Dyn dyn
;
2875 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2879 case DT_PLTGOT
: name
= ".plt"; size
= FALSE
; break;
2880 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= TRUE
; break;
2881 case DT_JMPREL
: name
= ".rela.plt"; size
= FALSE
; break;
2882 case DT_SPARC_REGISTER
:
2883 if (stt_regidx
== -1)
2886 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2887 if (stt_regidx
== -1)
2890 dyn
.d_un
.d_val
= stt_regidx
++;
2891 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2893 default: name
= NULL
; size
= FALSE
; break;
2900 s
= bfd_get_section_by_name (output_bfd
, name
);
2906 dyn
.d_un
.d_ptr
= s
->vma
;
2909 if (s
->_cooked_size
!= 0)
2910 dyn
.d_un
.d_val
= s
->_cooked_size
;
2912 dyn
.d_un
.d_val
= s
->_raw_size
;
2915 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2919 /* Initialize the contents of the .plt section. */
2920 if (splt
->_raw_size
> 0)
2921 sparc64_elf_build_plt (output_bfd
, splt
->contents
,
2922 (int) (splt
->_raw_size
/ PLT_ENTRY_SIZE
));
2924 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2928 /* Set the first entry in the global offset table to the address of
2929 the dynamic section. */
2930 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2931 BFD_ASSERT (sgot
!= NULL
);
2932 if (sgot
->_raw_size
> 0)
2935 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2937 bfd_put_64 (output_bfd
,
2938 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2942 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2947 static enum elf_reloc_type_class
2948 sparc64_elf_reloc_type_class (rela
)
2949 const Elf_Internal_Rela
*rela
;
2951 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2953 case R_SPARC_RELATIVE
:
2954 return reloc_class_relative
;
2955 case R_SPARC_JMP_SLOT
:
2956 return reloc_class_plt
;
2958 return reloc_class_copy
;
2960 return reloc_class_normal
;
2964 /* Functions for dealing with the e_flags field. */
2966 /* Merge backend specific data from an object file to the output
2967 object file when linking. */
2970 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2975 flagword new_flags
, old_flags
;
2978 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2979 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2982 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2983 old_flags
= elf_elfheader (obfd
)->e_flags
;
2985 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2987 elf_flags_init (obfd
) = TRUE
;
2988 elf_elfheader (obfd
)->e_flags
= new_flags
;
2991 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2994 else /* Incompatible flags */
2998 #define EF_SPARC_ISA_EXTENSIONS \
2999 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3001 if ((ibfd
->flags
& DYNAMIC
) != 0)
3003 /* We don't want dynamic objects memory ordering and
3004 architecture to have any role. That's what dynamic linker
3006 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
3007 new_flags
|= (old_flags
3008 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
3012 /* Choose the highest architecture requirements. */
3013 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
3014 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
3015 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
3016 && (old_flags
& EF_SPARC_HAL_R1
))
3019 (*_bfd_error_handler
)
3020 (_("%s: linking UltraSPARC specific with HAL specific code"),
3021 bfd_archive_filename (ibfd
));
3023 /* Choose the most restrictive memory ordering. */
3024 old_mm
= (old_flags
& EF_SPARCV9_MM
);
3025 new_mm
= (new_flags
& EF_SPARCV9_MM
);
3026 old_flags
&= ~EF_SPARCV9_MM
;
3027 new_flags
&= ~EF_SPARCV9_MM
;
3028 if (new_mm
< old_mm
)
3030 old_flags
|= old_mm
;
3031 new_flags
|= old_mm
;
3034 /* Warn about any other mismatches */
3035 if (new_flags
!= old_flags
)
3038 (*_bfd_error_handler
)
3039 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3040 bfd_archive_filename (ibfd
), (long) new_flags
, (long) old_flags
);
3043 elf_elfheader (obfd
)->e_flags
= old_flags
;
3047 bfd_set_error (bfd_error_bad_value
);
3054 /* MARCO: Set the correct entry size for the .stab section. */
3057 sparc64_elf_fake_sections (abfd
, hdr
, sec
)
3058 bfd
*abfd ATTRIBUTE_UNUSED
;
3059 Elf_Internal_Shdr
*hdr ATTRIBUTE_UNUSED
;
3064 name
= bfd_get_section_name (abfd
, sec
);
3066 if (strcmp (name
, ".stab") == 0)
3068 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3069 elf_section_data (sec
)->this_hdr
.sh_entsize
= 12;
3075 /* Print a STT_REGISTER symbol to file FILE. */
3078 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3079 bfd
*abfd ATTRIBUTE_UNUSED
;
3083 FILE *file
= (FILE *) filep
;
3086 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3090 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3091 type
= symbol
->flags
;
3092 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3094 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3095 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3096 (type
& BSF_WEAK
) ? 'w' : ' ');
3097 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3100 return symbol
->name
;
3103 /* Set the right machine number for a SPARC64 ELF file. */
3106 sparc64_elf_object_p (abfd
)
3109 unsigned long mach
= bfd_mach_sparc_v9
;
3111 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3112 mach
= bfd_mach_sparc_v9b
;
3113 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3114 mach
= bfd_mach_sparc_v9a
;
3115 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3118 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3119 standard ELF, because R_SPARC_OLO10 has secondary addend in
3120 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3121 relocation handling routines. */
3123 const struct elf_size_info sparc64_elf_size_info
=
3125 sizeof (Elf64_External_Ehdr
),
3126 sizeof (Elf64_External_Phdr
),
3127 sizeof (Elf64_External_Shdr
),
3128 sizeof (Elf64_External_Rel
),
3129 sizeof (Elf64_External_Rela
),
3130 sizeof (Elf64_External_Sym
),
3131 sizeof (Elf64_External_Dyn
),
3132 sizeof (Elf_External_Note
),
3133 4, /* hash-table entry size. */
3134 /* Internal relocations per external relocations.
3135 For link purposes we use just 1 internal per
3136 1 external, for assembly and slurp symbol table
3139 64, /* arch_size. */
3140 3, /* log_file_align. */
3143 bfd_elf64_write_out_phdrs
,
3144 bfd_elf64_write_shdrs_and_ehdr
,
3145 sparc64_elf_write_relocs
,
3146 bfd_elf64_swap_symbol_in
,
3147 bfd_elf64_swap_symbol_out
,
3148 sparc64_elf_slurp_reloc_table
,
3149 bfd_elf64_slurp_symbol_table
,
3150 bfd_elf64_swap_dyn_in
,
3151 bfd_elf64_swap_dyn_out
,
3152 bfd_elf64_swap_reloc_in
,
3153 bfd_elf64_swap_reloc_out
,
3154 bfd_elf64_swap_reloca_in
,
3155 bfd_elf64_swap_reloca_out
3158 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3159 #define TARGET_BIG_NAME "elf64-sparc"
3160 #define ELF_ARCH bfd_arch_sparc
3161 #define ELF_MAXPAGESIZE 0x100000
3163 /* This is the official ABI value. */
3164 #define ELF_MACHINE_CODE EM_SPARCV9
3166 /* This is the value that we used before the ABI was released. */
3167 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3169 #define bfd_elf64_bfd_link_hash_table_create \
3170 sparc64_elf_bfd_link_hash_table_create
3172 #define elf_info_to_howto \
3173 sparc64_elf_info_to_howto
3174 #define bfd_elf64_get_reloc_upper_bound \
3175 sparc64_elf_get_reloc_upper_bound
3176 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3177 sparc64_elf_get_dynamic_reloc_upper_bound
3178 #define bfd_elf64_canonicalize_reloc \
3179 sparc64_elf_canonicalize_reloc
3180 #define bfd_elf64_canonicalize_dynamic_reloc \
3181 sparc64_elf_canonicalize_dynamic_reloc
3182 #define bfd_elf64_bfd_reloc_type_lookup \
3183 sparc64_elf_reloc_type_lookup
3184 #define bfd_elf64_bfd_relax_section \
3185 sparc64_elf_relax_section
3186 #define bfd_elf64_new_section_hook \
3187 sparc64_elf_new_section_hook
3189 #define elf_backend_create_dynamic_sections \
3190 _bfd_elf_create_dynamic_sections
3191 #define elf_backend_add_symbol_hook \
3192 sparc64_elf_add_symbol_hook
3193 #define elf_backend_get_symbol_type \
3194 sparc64_elf_get_symbol_type
3195 #define elf_backend_symbol_processing \
3196 sparc64_elf_symbol_processing
3197 #define elf_backend_check_relocs \
3198 sparc64_elf_check_relocs
3199 #define elf_backend_adjust_dynamic_symbol \
3200 sparc64_elf_adjust_dynamic_symbol
3201 #define elf_backend_size_dynamic_sections \
3202 sparc64_elf_size_dynamic_sections
3203 #define elf_backend_relocate_section \
3204 sparc64_elf_relocate_section
3205 #define elf_backend_finish_dynamic_symbol \
3206 sparc64_elf_finish_dynamic_symbol
3207 #define elf_backend_finish_dynamic_sections \
3208 sparc64_elf_finish_dynamic_sections
3209 #define elf_backend_print_symbol_all \
3210 sparc64_elf_print_symbol_all
3211 #define elf_backend_output_arch_syms \
3212 sparc64_elf_output_arch_syms
3213 #define bfd_elf64_bfd_merge_private_bfd_data \
3214 sparc64_elf_merge_private_bfd_data
3215 #define elf_backend_fake_sections \
3216 sparc64_elf_fake_sections
3218 #define elf_backend_size_info \
3219 sparc64_elf_size_info
3220 #define elf_backend_object_p \
3221 sparc64_elf_object_p
3222 #define elf_backend_reloc_type_class \
3223 sparc64_elf_reloc_type_class
3225 #define elf_backend_want_got_plt 0
3226 #define elf_backend_plt_readonly 0
3227 #define elf_backend_want_plt_sym 1
3228 #define elf_backend_rela_normal 1
3230 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3231 #define elf_backend_plt_alignment 8
3233 #define elf_backend_got_header_size 8
3235 #include "elf64-target.h"