* elfxx-mips.c (ecoff_swap_rpdr_out, mips_elf_output_extsym,
[binutils.git] / bfd / elfxx-mips.c
blob7e0e5103dbe29d70121754b22f21ffbace702f3e
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
44 #include "hashtab.h"
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
73 /* This structure is used to hold .got information when linking. */
75 struct mips_got_info
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
96 /* Map an input bfd to a got in a multi-got link. */
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
106 struct mips_elf_got_per_bfd_arg
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
130 /* Another structure used to pass arguments for got entries traversal. */
132 struct mips_elf_set_global_got_offset_arg
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
140 struct _mips_elf_section_data
142 struct bfd_elf_section_data elf;
143 union
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
156 struct mips_elf_hash_sort_data
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
176 struct mips_elf_link_hash_entry
178 struct elf_link_hash_entry root;
180 /* External symbol information. */
181 EXTR esym;
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
217 /* MIPS ELF linker hash table. */
219 struct mips_elf_link_hash_table
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
240 /* Structure used to pass information to mips_elf_output_extsym. */
242 struct extsym_info
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
251 /* The names of the runtime procedure table symbols used on IRIX5. */
253 static const char * const mips_elf_dynsym_rtproc_names[] =
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
264 typedef struct
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
274 typedef struct
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
284 typedef struct
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
294 typedef struct
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
303 typedef struct
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
310 typedef struct
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
316 /* These are the constants used to swap the bitfields in a crinfo. */
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
372 static struct mips_got_entry *mips_elf_create_local_got_entry
373 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
374 static bfd_boolean mips_elf_sort_hash_table_f
375 (struct mips_elf_link_hash_entry *, void *);
376 static bfd_vma mips_elf_high
377 (bfd_vma);
378 static bfd_boolean mips_elf_stub_section_p
379 (bfd *, asection *);
380 static bfd_boolean mips_elf_create_dynamic_relocation
381 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
382 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
383 bfd_vma *, asection *);
384 static hashval_t mips_elf_got_entry_hash
385 (const void *);
386 static bfd_vma mips_elf_adjust_gp
387 (bfd *, struct mips_got_info *, bfd *);
388 static struct mips_got_info *mips_elf_got_for_ibfd
389 (struct mips_got_info *, bfd *);
391 /* This will be used when we sort the dynamic relocation records. */
392 static bfd *reldyn_sorting_bfd;
394 /* Nonzero if ABFD is using the N32 ABI. */
396 #define ABI_N32_P(abfd) \
397 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
399 /* Nonzero if ABFD is using the N64 ABI. */
400 #define ABI_64_P(abfd) \
401 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
403 /* Nonzero if ABFD is using NewABI conventions. */
404 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
406 /* The IRIX compatibility level we are striving for. */
407 #define IRIX_COMPAT(abfd) \
408 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
410 /* Whether we are trying to be compatible with IRIX at all. */
411 #define SGI_COMPAT(abfd) \
412 (IRIX_COMPAT (abfd) != ict_none)
414 /* The name of the options section. */
415 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
416 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
418 /* The name of the stub section. */
419 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
421 /* The size of an external REL relocation. */
422 #define MIPS_ELF_REL_SIZE(abfd) \
423 (get_elf_backend_data (abfd)->s->sizeof_rel)
425 /* The size of an external dynamic table entry. */
426 #define MIPS_ELF_DYN_SIZE(abfd) \
427 (get_elf_backend_data (abfd)->s->sizeof_dyn)
429 /* The size of a GOT entry. */
430 #define MIPS_ELF_GOT_SIZE(abfd) \
431 (get_elf_backend_data (abfd)->s->arch_size / 8)
433 /* The size of a symbol-table entry. */
434 #define MIPS_ELF_SYM_SIZE(abfd) \
435 (get_elf_backend_data (abfd)->s->sizeof_sym)
437 /* The default alignment for sections, as a power of two. */
438 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
439 (get_elf_backend_data (abfd)->s->log_file_align)
441 /* Get word-sized data. */
442 #define MIPS_ELF_GET_WORD(abfd, ptr) \
443 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
445 /* Put out word-sized data. */
446 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
447 (ABI_64_P (abfd) \
448 ? bfd_put_64 (abfd, val, ptr) \
449 : bfd_put_32 (abfd, val, ptr))
451 /* Add a dynamic symbol table-entry. */
452 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
453 _bfd_elf_add_dynamic_entry (info, tag, val)
455 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
456 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
458 /* Determine whether the internal relocation of index REL_IDX is REL
459 (zero) or RELA (non-zero). The assumption is that, if there are
460 two relocation sections for this section, one of them is REL and
461 the other is RELA. If the index of the relocation we're testing is
462 in range for the first relocation section, check that the external
463 relocation size is that for RELA. It is also assumed that, if
464 rel_idx is not in range for the first section, and this first
465 section contains REL relocs, then the relocation is in the second
466 section, that is RELA. */
467 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
468 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
469 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
470 > (bfd_vma)(rel_idx)) \
471 == (elf_section_data (sec)->rel_hdr.sh_entsize \
472 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
473 : sizeof (Elf32_External_Rela))))
475 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
476 from smaller values. Start with zero, widen, *then* decrement. */
477 #define MINUS_ONE (((bfd_vma)0) - 1)
478 #define MINUS_TWO (((bfd_vma)0) - 2)
480 /* The number of local .got entries we reserve. */
481 #define MIPS_RESERVED_GOTNO (2)
483 /* The offset of $gp from the beginning of the .got section. */
484 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
486 /* The maximum size of the GOT for it to be addressable using 16-bit
487 offsets from $gp. */
488 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
490 /* Instructions which appear in a stub. */
491 #define STUB_LW(abfd) \
492 ((ABI_64_P (abfd) \
493 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
494 : 0x8f998010)) /* lw t9,0x8010(gp) */
495 #define STUB_MOVE(abfd) \
496 ((ABI_64_P (abfd) \
497 ? 0x03e0782d /* daddu t7,ra */ \
498 : 0x03e07821)) /* addu t7,ra */
499 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
500 #define STUB_LI16(abfd) \
501 ((ABI_64_P (abfd) \
502 ? 0x64180000 /* daddiu t8,zero,0 */ \
503 : 0x24180000)) /* addiu t8,zero,0 */
504 #define MIPS_FUNCTION_STUB_SIZE (16)
506 /* The name of the dynamic interpreter. This is put in the .interp
507 section. */
509 #define ELF_DYNAMIC_INTERPRETER(abfd) \
510 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
511 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
512 : "/usr/lib/libc.so.1")
514 #ifdef BFD64
515 #define MNAME(bfd,pre,pos) \
516 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
517 #define ELF_R_SYM(bfd, i) \
518 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
519 #define ELF_R_TYPE(bfd, i) \
520 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
521 #define ELF_R_INFO(bfd, s, t) \
522 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
523 #else
524 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
525 #define ELF_R_SYM(bfd, i) \
526 (ELF32_R_SYM (i))
527 #define ELF_R_TYPE(bfd, i) \
528 (ELF32_R_TYPE (i))
529 #define ELF_R_INFO(bfd, s, t) \
530 (ELF32_R_INFO (s, t))
531 #endif
533 /* The mips16 compiler uses a couple of special sections to handle
534 floating point arguments.
536 Section names that look like .mips16.fn.FNNAME contain stubs that
537 copy floating point arguments from the fp regs to the gp regs and
538 then jump to FNNAME. If any 32 bit function calls FNNAME, the
539 call should be redirected to the stub instead. If no 32 bit
540 function calls FNNAME, the stub should be discarded. We need to
541 consider any reference to the function, not just a call, because
542 if the address of the function is taken we will need the stub,
543 since the address might be passed to a 32 bit function.
545 Section names that look like .mips16.call.FNNAME contain stubs
546 that copy floating point arguments from the gp regs to the fp
547 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
548 then any 16 bit function that calls FNNAME should be redirected
549 to the stub instead. If FNNAME is not a 32 bit function, the
550 stub should be discarded.
552 .mips16.call.fp.FNNAME sections are similar, but contain stubs
553 which call FNNAME and then copy the return value from the fp regs
554 to the gp regs. These stubs store the return value in $18 while
555 calling FNNAME; any function which might call one of these stubs
556 must arrange to save $18 around the call. (This case is not
557 needed for 32 bit functions that call 16 bit functions, because
558 16 bit functions always return floating point values in both
559 $f0/$f1 and $2/$3.)
561 Note that in all cases FNNAME might be defined statically.
562 Therefore, FNNAME is not used literally. Instead, the relocation
563 information will indicate which symbol the section is for.
565 We record any stubs that we find in the symbol table. */
567 #define FN_STUB ".mips16.fn."
568 #define CALL_STUB ".mips16.call."
569 #define CALL_FP_STUB ".mips16.call.fp."
571 /* Look up an entry in a MIPS ELF linker hash table. */
573 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
574 ((struct mips_elf_link_hash_entry *) \
575 elf_link_hash_lookup (&(table)->root, (string), (create), \
576 (copy), (follow)))
578 /* Traverse a MIPS ELF linker hash table. */
580 #define mips_elf_link_hash_traverse(table, func, info) \
581 (elf_link_hash_traverse \
582 (&(table)->root, \
583 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
584 (info)))
586 /* Get the MIPS ELF linker hash table from a link_info structure. */
588 #define mips_elf_hash_table(p) \
589 ((struct mips_elf_link_hash_table *) ((p)->hash))
591 /* Create an entry in a MIPS ELF linker hash table. */
593 static struct bfd_hash_entry *
594 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
595 struct bfd_hash_table *table, const char *string)
597 struct mips_elf_link_hash_entry *ret =
598 (struct mips_elf_link_hash_entry *) entry;
600 /* Allocate the structure if it has not already been allocated by a
601 subclass. */
602 if (ret == NULL)
603 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
604 if (ret == NULL)
605 return (struct bfd_hash_entry *) ret;
607 /* Call the allocation method of the superclass. */
608 ret = ((struct mips_elf_link_hash_entry *)
609 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
610 table, string));
611 if (ret != NULL)
613 /* Set local fields. */
614 memset (&ret->esym, 0, sizeof (EXTR));
615 /* We use -2 as a marker to indicate that the information has
616 not been set. -1 means there is no associated ifd. */
617 ret->esym.ifd = -2;
618 ret->possibly_dynamic_relocs = 0;
619 ret->readonly_reloc = FALSE;
620 ret->no_fn_stub = FALSE;
621 ret->fn_stub = NULL;
622 ret->need_fn_stub = FALSE;
623 ret->call_stub = NULL;
624 ret->call_fp_stub = NULL;
625 ret->forced_local = FALSE;
628 return (struct bfd_hash_entry *) ret;
631 bfd_boolean
632 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
634 struct _mips_elf_section_data *sdata;
635 bfd_size_type amt = sizeof (*sdata);
637 sdata = bfd_zalloc (abfd, amt);
638 if (sdata == NULL)
639 return FALSE;
640 sec->used_by_bfd = sdata;
642 return _bfd_elf_new_section_hook (abfd, sec);
645 /* Read ECOFF debugging information from a .mdebug section into a
646 ecoff_debug_info structure. */
648 bfd_boolean
649 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
650 struct ecoff_debug_info *debug)
652 HDRR *symhdr;
653 const struct ecoff_debug_swap *swap;
654 char *ext_hdr;
656 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
657 memset (debug, 0, sizeof (*debug));
659 ext_hdr = bfd_malloc (swap->external_hdr_size);
660 if (ext_hdr == NULL && swap->external_hdr_size != 0)
661 goto error_return;
663 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
664 swap->external_hdr_size))
665 goto error_return;
667 symhdr = &debug->symbolic_header;
668 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
670 /* The symbolic header contains absolute file offsets and sizes to
671 read. */
672 #define READ(ptr, offset, count, size, type) \
673 if (symhdr->count == 0) \
674 debug->ptr = NULL; \
675 else \
677 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
678 debug->ptr = bfd_malloc (amt); \
679 if (debug->ptr == NULL) \
680 goto error_return; \
681 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
682 || bfd_bread (debug->ptr, amt, abfd) != amt) \
683 goto error_return; \
686 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
687 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
688 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
689 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
690 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
691 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
692 union aux_ext *);
693 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
694 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
695 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
696 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
697 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
698 #undef READ
700 debug->fdr = NULL;
702 return TRUE;
704 error_return:
705 if (ext_hdr != NULL)
706 free (ext_hdr);
707 if (debug->line != NULL)
708 free (debug->line);
709 if (debug->external_dnr != NULL)
710 free (debug->external_dnr);
711 if (debug->external_pdr != NULL)
712 free (debug->external_pdr);
713 if (debug->external_sym != NULL)
714 free (debug->external_sym);
715 if (debug->external_opt != NULL)
716 free (debug->external_opt);
717 if (debug->external_aux != NULL)
718 free (debug->external_aux);
719 if (debug->ss != NULL)
720 free (debug->ss);
721 if (debug->ssext != NULL)
722 free (debug->ssext);
723 if (debug->external_fdr != NULL)
724 free (debug->external_fdr);
725 if (debug->external_rfd != NULL)
726 free (debug->external_rfd);
727 if (debug->external_ext != NULL)
728 free (debug->external_ext);
729 return FALSE;
732 /* Swap RPDR (runtime procedure table entry) for output. */
734 static void
735 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
737 H_PUT_S32 (abfd, in->adr, ex->p_adr);
738 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
739 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
740 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
741 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
742 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
744 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
745 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
747 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
750 /* Create a runtime procedure table from the .mdebug section. */
752 static bfd_boolean
753 mips_elf_create_procedure_table (void *handle, bfd *abfd,
754 struct bfd_link_info *info, asection *s,
755 struct ecoff_debug_info *debug)
757 const struct ecoff_debug_swap *swap;
758 HDRR *hdr = &debug->symbolic_header;
759 RPDR *rpdr, *rp;
760 struct rpdr_ext *erp;
761 void *rtproc;
762 struct pdr_ext *epdr;
763 struct sym_ext *esym;
764 char *ss, **sv;
765 char *str;
766 bfd_size_type size;
767 bfd_size_type count;
768 unsigned long sindex;
769 unsigned long i;
770 PDR pdr;
771 SYMR sym;
772 const char *no_name_func = _("static procedure (no name)");
774 epdr = NULL;
775 rpdr = NULL;
776 esym = NULL;
777 ss = NULL;
778 sv = NULL;
780 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
782 sindex = strlen (no_name_func) + 1;
783 count = hdr->ipdMax;
784 if (count > 0)
786 size = swap->external_pdr_size;
788 epdr = bfd_malloc (size * count);
789 if (epdr == NULL)
790 goto error_return;
792 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
793 goto error_return;
795 size = sizeof (RPDR);
796 rp = rpdr = bfd_malloc (size * count);
797 if (rpdr == NULL)
798 goto error_return;
800 size = sizeof (char *);
801 sv = bfd_malloc (size * count);
802 if (sv == NULL)
803 goto error_return;
805 count = hdr->isymMax;
806 size = swap->external_sym_size;
807 esym = bfd_malloc (size * count);
808 if (esym == NULL)
809 goto error_return;
811 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
812 goto error_return;
814 count = hdr->issMax;
815 ss = bfd_malloc (count);
816 if (ss == NULL)
817 goto error_return;
818 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
819 goto error_return;
821 count = hdr->ipdMax;
822 for (i = 0; i < (unsigned long) count; i++, rp++)
824 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
825 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
826 rp->adr = sym.value;
827 rp->regmask = pdr.regmask;
828 rp->regoffset = pdr.regoffset;
829 rp->fregmask = pdr.fregmask;
830 rp->fregoffset = pdr.fregoffset;
831 rp->frameoffset = pdr.frameoffset;
832 rp->framereg = pdr.framereg;
833 rp->pcreg = pdr.pcreg;
834 rp->irpss = sindex;
835 sv[i] = ss + sym.iss;
836 sindex += strlen (sv[i]) + 1;
840 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
841 size = BFD_ALIGN (size, 16);
842 rtproc = bfd_alloc (abfd, size);
843 if (rtproc == NULL)
845 mips_elf_hash_table (info)->procedure_count = 0;
846 goto error_return;
849 mips_elf_hash_table (info)->procedure_count = count + 2;
851 erp = rtproc;
852 memset (erp, 0, sizeof (struct rpdr_ext));
853 erp++;
854 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
855 strcpy (str, no_name_func);
856 str += strlen (no_name_func) + 1;
857 for (i = 0; i < count; i++)
859 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
860 strcpy (str, sv[i]);
861 str += strlen (sv[i]) + 1;
863 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
865 /* Set the size and contents of .rtproc section. */
866 s->size = size;
867 s->contents = rtproc;
869 /* Skip this section later on (I don't think this currently
870 matters, but someday it might). */
871 s->link_order_head = NULL;
873 if (epdr != NULL)
874 free (epdr);
875 if (rpdr != NULL)
876 free (rpdr);
877 if (esym != NULL)
878 free (esym);
879 if (ss != NULL)
880 free (ss);
881 if (sv != NULL)
882 free (sv);
884 return TRUE;
886 error_return:
887 if (epdr != NULL)
888 free (epdr);
889 if (rpdr != NULL)
890 free (rpdr);
891 if (esym != NULL)
892 free (esym);
893 if (ss != NULL)
894 free (ss);
895 if (sv != NULL)
896 free (sv);
897 return FALSE;
900 /* Check the mips16 stubs for a particular symbol, and see if we can
901 discard them. */
903 static bfd_boolean
904 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
905 void *data ATTRIBUTE_UNUSED)
907 if (h->root.root.type == bfd_link_hash_warning)
908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
910 if (h->fn_stub != NULL
911 && ! h->need_fn_stub)
913 /* We don't need the fn_stub; the only references to this symbol
914 are 16 bit calls. Clobber the size to 0 to prevent it from
915 being included in the link. */
916 h->fn_stub->size = 0;
917 h->fn_stub->flags &= ~SEC_RELOC;
918 h->fn_stub->reloc_count = 0;
919 h->fn_stub->flags |= SEC_EXCLUDE;
922 if (h->call_stub != NULL
923 && h->root.other == STO_MIPS16)
925 /* We don't need the call_stub; this is a 16 bit function, so
926 calls from other 16 bit functions are OK. Clobber the size
927 to 0 to prevent it from being included in the link. */
928 h->call_stub->size = 0;
929 h->call_stub->flags &= ~SEC_RELOC;
930 h->call_stub->reloc_count = 0;
931 h->call_stub->flags |= SEC_EXCLUDE;
934 if (h->call_fp_stub != NULL
935 && h->root.other == STO_MIPS16)
937 /* We don't need the call_stub; this is a 16 bit function, so
938 calls from other 16 bit functions are OK. Clobber the size
939 to 0 to prevent it from being included in the link. */
940 h->call_fp_stub->size = 0;
941 h->call_fp_stub->flags &= ~SEC_RELOC;
942 h->call_fp_stub->reloc_count = 0;
943 h->call_fp_stub->flags |= SEC_EXCLUDE;
946 return TRUE;
949 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
950 Most mips16 instructions are 16 bits, but these instructions
951 are 32 bits.
953 The format of these instructions is:
955 +--------------+--------------------------------+
956 | JALX | X| Imm 20:16 | Imm 25:21 |
957 +--------------+--------------------------------+
958 | Immediate 15:0 |
959 +-----------------------------------------------+
961 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
962 Note that the immediate value in the first word is swapped.
964 When producing a relocatable object file, R_MIPS16_26 is
965 handled mostly like R_MIPS_26. In particular, the addend is
966 stored as a straight 26-bit value in a 32-bit instruction.
967 (gas makes life simpler for itself by never adjusting a
968 R_MIPS16_26 reloc to be against a section, so the addend is
969 always zero). However, the 32 bit instruction is stored as 2
970 16-bit values, rather than a single 32-bit value. In a
971 big-endian file, the result is the same; in a little-endian
972 file, the two 16-bit halves of the 32 bit value are swapped.
973 This is so that a disassembler can recognize the jal
974 instruction.
976 When doing a final link, R_MIPS16_26 is treated as a 32 bit
977 instruction stored as two 16-bit values. The addend A is the
978 contents of the targ26 field. The calculation is the same as
979 R_MIPS_26. When storing the calculated value, reorder the
980 immediate value as shown above, and don't forget to store the
981 value as two 16-bit values.
983 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
984 defined as
986 big-endian:
987 +--------+----------------------+
988 | | |
989 | | targ26-16 |
990 |31 26|25 0|
991 +--------+----------------------+
993 little-endian:
994 +----------+------+-------------+
995 | | | |
996 | sub1 | | sub2 |
997 |0 9|10 15|16 31|
998 +----------+--------------------+
999 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1000 ((sub1 << 16) | sub2)).
1002 When producing a relocatable object file, the calculation is
1003 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1004 When producing a fully linked file, the calculation is
1005 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1006 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1008 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1009 mode. A typical instruction will have a format like this:
1011 +--------------+--------------------------------+
1012 | EXTEND | Imm 10:5 | Imm 15:11 |
1013 +--------------+--------------------------------+
1014 | Major | rx | ry | Imm 4:0 |
1015 +--------------+--------------------------------+
1017 EXTEND is the five bit value 11110. Major is the instruction
1018 opcode.
1020 This is handled exactly like R_MIPS_GPREL16, except that the
1021 addend is retrieved and stored as shown in this diagram; that
1022 is, the Imm fields above replace the V-rel16 field.
1024 All we need to do here is shuffle the bits appropriately. As
1025 above, the two 16-bit halves must be swapped on a
1026 little-endian system.
1028 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1029 access data when neither GP-relative nor PC-relative addressing
1030 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1031 except that the addend is retrieved and stored as shown above
1032 for R_MIPS16_GPREL.
1034 void
1035 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1036 bfd_boolean jal_shuffle, bfd_byte *data)
1038 bfd_vma extend, insn, val;
1040 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1041 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1042 return;
1044 /* Pick up the mips16 extend instruction and the real instruction. */
1045 extend = bfd_get_16 (abfd, data);
1046 insn = bfd_get_16 (abfd, data + 2);
1047 if (r_type == R_MIPS16_26)
1049 if (jal_shuffle)
1050 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1051 | ((extend & 0x1f) << 21) | insn;
1052 else
1053 val = extend << 16 | insn;
1055 else
1056 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1057 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1058 bfd_put_32 (abfd, val, data);
1061 void
1062 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1063 bfd_boolean jal_shuffle, bfd_byte *data)
1065 bfd_vma extend, insn, val;
1067 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1068 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1069 return;
1071 val = bfd_get_32 (abfd, data);
1072 if (r_type == R_MIPS16_26)
1074 if (jal_shuffle)
1076 insn = val & 0xffff;
1077 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1078 | ((val >> 21) & 0x1f);
1080 else
1082 insn = val & 0xffff;
1083 extend = val >> 16;
1086 else
1088 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1089 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1091 bfd_put_16 (abfd, insn, data + 2);
1092 bfd_put_16 (abfd, extend, data);
1095 bfd_reloc_status_type
1096 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1097 arelent *reloc_entry, asection *input_section,
1098 bfd_boolean relocatable, void *data, bfd_vma gp)
1100 bfd_vma relocation;
1101 bfd_signed_vma val;
1102 bfd_reloc_status_type status;
1104 if (bfd_is_com_section (symbol->section))
1105 relocation = 0;
1106 else
1107 relocation = symbol->value;
1109 relocation += symbol->section->output_section->vma;
1110 relocation += symbol->section->output_offset;
1112 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1113 return bfd_reloc_outofrange;
1115 /* Set val to the offset into the section or symbol. */
1116 val = reloc_entry->addend;
1118 _bfd_mips_elf_sign_extend (val, 16);
1120 /* Adjust val for the final section location and GP value. If we
1121 are producing relocatable output, we don't want to do this for
1122 an external symbol. */
1123 if (! relocatable
1124 || (symbol->flags & BSF_SECTION_SYM) != 0)
1125 val += relocation - gp;
1127 if (reloc_entry->howto->partial_inplace)
1129 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1130 (bfd_byte *) data
1131 + reloc_entry->address);
1132 if (status != bfd_reloc_ok)
1133 return status;
1135 else
1136 reloc_entry->addend = val;
1138 if (relocatable)
1139 reloc_entry->address += input_section->output_offset;
1141 return bfd_reloc_ok;
1144 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1145 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1146 that contains the relocation field and DATA points to the start of
1147 INPUT_SECTION. */
1149 struct mips_hi16
1151 struct mips_hi16 *next;
1152 bfd_byte *data;
1153 asection *input_section;
1154 arelent rel;
1157 /* FIXME: This should not be a static variable. */
1159 static struct mips_hi16 *mips_hi16_list;
1161 /* A howto special_function for REL *HI16 relocations. We can only
1162 calculate the correct value once we've seen the partnering
1163 *LO16 relocation, so just save the information for later.
1165 The ABI requires that the *LO16 immediately follow the *HI16.
1166 However, as a GNU extension, we permit an arbitrary number of
1167 *HI16s to be associated with a single *LO16. This significantly
1168 simplies the relocation handling in gcc. */
1170 bfd_reloc_status_type
1171 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1172 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1173 asection *input_section, bfd *output_bfd,
1174 char **error_message ATTRIBUTE_UNUSED)
1176 struct mips_hi16 *n;
1178 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1179 return bfd_reloc_outofrange;
1181 n = bfd_malloc (sizeof *n);
1182 if (n == NULL)
1183 return bfd_reloc_outofrange;
1185 n->next = mips_hi16_list;
1186 n->data = data;
1187 n->input_section = input_section;
1188 n->rel = *reloc_entry;
1189 mips_hi16_list = n;
1191 if (output_bfd != NULL)
1192 reloc_entry->address += input_section->output_offset;
1194 return bfd_reloc_ok;
1197 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1198 like any other 16-bit relocation when applied to global symbols, but is
1199 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1201 bfd_reloc_status_type
1202 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1203 void *data, asection *input_section,
1204 bfd *output_bfd, char **error_message)
1206 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1207 || bfd_is_und_section (bfd_get_section (symbol))
1208 || bfd_is_com_section (bfd_get_section (symbol)))
1209 /* The relocation is against a global symbol. */
1210 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1211 input_section, output_bfd,
1212 error_message);
1214 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1215 input_section, output_bfd, error_message);
1218 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1219 is a straightforward 16 bit inplace relocation, but we must deal with
1220 any partnering high-part relocations as well. */
1222 bfd_reloc_status_type
1223 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1224 void *data, asection *input_section,
1225 bfd *output_bfd, char **error_message)
1227 bfd_vma vallo;
1228 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1230 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1231 return bfd_reloc_outofrange;
1233 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1234 location);
1235 vallo = bfd_get_32 (abfd, location);
1236 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1237 location);
1239 while (mips_hi16_list != NULL)
1241 bfd_reloc_status_type ret;
1242 struct mips_hi16 *hi;
1244 hi = mips_hi16_list;
1246 /* R_MIPS_GOT16 relocations are something of a special case. We
1247 want to install the addend in the same way as for a R_MIPS_HI16
1248 relocation (with a rightshift of 16). However, since GOT16
1249 relocations can also be used with global symbols, their howto
1250 has a rightshift of 0. */
1251 if (hi->rel.howto->type == R_MIPS_GOT16)
1252 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1254 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1255 carry or borrow will induce a change of +1 or -1 in the high part. */
1256 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1258 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1259 hi->input_section, output_bfd,
1260 error_message);
1261 if (ret != bfd_reloc_ok)
1262 return ret;
1264 mips_hi16_list = hi->next;
1265 free (hi);
1268 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1269 input_section, output_bfd,
1270 error_message);
1273 /* A generic howto special_function. This calculates and installs the
1274 relocation itself, thus avoiding the oft-discussed problems in
1275 bfd_perform_relocation and bfd_install_relocation. */
1277 bfd_reloc_status_type
1278 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1279 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1280 asection *input_section, bfd *output_bfd,
1281 char **error_message ATTRIBUTE_UNUSED)
1283 bfd_signed_vma val;
1284 bfd_reloc_status_type status;
1285 bfd_boolean relocatable;
1287 relocatable = (output_bfd != NULL);
1289 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1290 return bfd_reloc_outofrange;
1292 /* Build up the field adjustment in VAL. */
1293 val = 0;
1294 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1296 /* Either we're calculating the final field value or we have a
1297 relocation against a section symbol. Add in the section's
1298 offset or address. */
1299 val += symbol->section->output_section->vma;
1300 val += symbol->section->output_offset;
1303 if (!relocatable)
1305 /* We're calculating the final field value. Add in the symbol's value
1306 and, if pc-relative, subtract the address of the field itself. */
1307 val += symbol->value;
1308 if (reloc_entry->howto->pc_relative)
1310 val -= input_section->output_section->vma;
1311 val -= input_section->output_offset;
1312 val -= reloc_entry->address;
1316 /* VAL is now the final adjustment. If we're keeping this relocation
1317 in the output file, and if the relocation uses a separate addend,
1318 we just need to add VAL to that addend. Otherwise we need to add
1319 VAL to the relocation field itself. */
1320 if (relocatable && !reloc_entry->howto->partial_inplace)
1321 reloc_entry->addend += val;
1322 else
1324 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1326 /* Add in the separate addend, if any. */
1327 val += reloc_entry->addend;
1329 /* Add VAL to the relocation field. */
1330 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1331 location);
1332 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1333 location);
1334 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1335 location);
1337 if (status != bfd_reloc_ok)
1338 return status;
1341 if (relocatable)
1342 reloc_entry->address += input_section->output_offset;
1344 return bfd_reloc_ok;
1347 /* Swap an entry in a .gptab section. Note that these routines rely
1348 on the equivalence of the two elements of the union. */
1350 static void
1351 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1352 Elf32_gptab *in)
1354 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1355 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1358 static void
1359 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1360 Elf32_External_gptab *ex)
1362 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1363 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1366 static void
1367 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1368 Elf32_External_compact_rel *ex)
1370 H_PUT_32 (abfd, in->id1, ex->id1);
1371 H_PUT_32 (abfd, in->num, ex->num);
1372 H_PUT_32 (abfd, in->id2, ex->id2);
1373 H_PUT_32 (abfd, in->offset, ex->offset);
1374 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1375 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1378 static void
1379 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1380 Elf32_External_crinfo *ex)
1382 unsigned long l;
1384 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1385 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1386 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1387 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1388 H_PUT_32 (abfd, l, ex->info);
1389 H_PUT_32 (abfd, in->konst, ex->konst);
1390 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1393 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1394 routines swap this structure in and out. They are used outside of
1395 BFD, so they are globally visible. */
1397 void
1398 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1399 Elf32_RegInfo *in)
1401 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1402 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1403 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1404 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1405 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1406 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1409 void
1410 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1411 Elf32_External_RegInfo *ex)
1413 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1414 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1415 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1416 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1417 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1418 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1421 /* In the 64 bit ABI, the .MIPS.options section holds register
1422 information in an Elf64_Reginfo structure. These routines swap
1423 them in and out. They are globally visible because they are used
1424 outside of BFD. These routines are here so that gas can call them
1425 without worrying about whether the 64 bit ABI has been included. */
1427 void
1428 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1429 Elf64_Internal_RegInfo *in)
1431 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1432 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1433 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1434 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1435 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1436 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1437 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1440 void
1441 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1442 Elf64_External_RegInfo *ex)
1444 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1445 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1446 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1447 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1448 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1449 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1450 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1453 /* Swap in an options header. */
1455 void
1456 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1457 Elf_Internal_Options *in)
1459 in->kind = H_GET_8 (abfd, ex->kind);
1460 in->size = H_GET_8 (abfd, ex->size);
1461 in->section = H_GET_16 (abfd, ex->section);
1462 in->info = H_GET_32 (abfd, ex->info);
1465 /* Swap out an options header. */
1467 void
1468 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1469 Elf_External_Options *ex)
1471 H_PUT_8 (abfd, in->kind, ex->kind);
1472 H_PUT_8 (abfd, in->size, ex->size);
1473 H_PUT_16 (abfd, in->section, ex->section);
1474 H_PUT_32 (abfd, in->info, ex->info);
1477 /* This function is called via qsort() to sort the dynamic relocation
1478 entries by increasing r_symndx value. */
1480 static int
1481 sort_dynamic_relocs (const void *arg1, const void *arg2)
1483 Elf_Internal_Rela int_reloc1;
1484 Elf_Internal_Rela int_reloc2;
1486 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1487 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1489 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1492 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1494 static int
1495 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1496 const void *arg2 ATTRIBUTE_UNUSED)
1498 #ifdef BFD64
1499 Elf_Internal_Rela int_reloc1[3];
1500 Elf_Internal_Rela int_reloc2[3];
1502 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1503 (reldyn_sorting_bfd, arg1, int_reloc1);
1504 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1505 (reldyn_sorting_bfd, arg2, int_reloc2);
1507 return (ELF64_R_SYM (int_reloc1[0].r_info)
1508 - ELF64_R_SYM (int_reloc2[0].r_info));
1509 #else
1510 abort ();
1511 #endif
1515 /* This routine is used to write out ECOFF debugging external symbol
1516 information. It is called via mips_elf_link_hash_traverse. The
1517 ECOFF external symbol information must match the ELF external
1518 symbol information. Unfortunately, at this point we don't know
1519 whether a symbol is required by reloc information, so the two
1520 tables may wind up being different. We must sort out the external
1521 symbol information before we can set the final size of the .mdebug
1522 section, and we must set the size of the .mdebug section before we
1523 can relocate any sections, and we can't know which symbols are
1524 required by relocation until we relocate the sections.
1525 Fortunately, it is relatively unlikely that any symbol will be
1526 stripped but required by a reloc. In particular, it can not happen
1527 when generating a final executable. */
1529 static bfd_boolean
1530 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1532 struct extsym_info *einfo = data;
1533 bfd_boolean strip;
1534 asection *sec, *output_section;
1536 if (h->root.root.type == bfd_link_hash_warning)
1537 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1539 if (h->root.indx == -2)
1540 strip = FALSE;
1541 else if ((h->root.def_dynamic
1542 || h->root.ref_dynamic
1543 || h->root.type == bfd_link_hash_new)
1544 && !h->root.def_regular
1545 && !h->root.ref_regular)
1546 strip = TRUE;
1547 else if (einfo->info->strip == strip_all
1548 || (einfo->info->strip == strip_some
1549 && bfd_hash_lookup (einfo->info->keep_hash,
1550 h->root.root.root.string,
1551 FALSE, FALSE) == NULL))
1552 strip = TRUE;
1553 else
1554 strip = FALSE;
1556 if (strip)
1557 return TRUE;
1559 if (h->esym.ifd == -2)
1561 h->esym.jmptbl = 0;
1562 h->esym.cobol_main = 0;
1563 h->esym.weakext = 0;
1564 h->esym.reserved = 0;
1565 h->esym.ifd = ifdNil;
1566 h->esym.asym.value = 0;
1567 h->esym.asym.st = stGlobal;
1569 if (h->root.root.type == bfd_link_hash_undefined
1570 || h->root.root.type == bfd_link_hash_undefweak)
1572 const char *name;
1574 /* Use undefined class. Also, set class and type for some
1575 special symbols. */
1576 name = h->root.root.root.string;
1577 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1578 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1580 h->esym.asym.sc = scData;
1581 h->esym.asym.st = stLabel;
1582 h->esym.asym.value = 0;
1584 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1586 h->esym.asym.sc = scAbs;
1587 h->esym.asym.st = stLabel;
1588 h->esym.asym.value =
1589 mips_elf_hash_table (einfo->info)->procedure_count;
1591 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1593 h->esym.asym.sc = scAbs;
1594 h->esym.asym.st = stLabel;
1595 h->esym.asym.value = elf_gp (einfo->abfd);
1597 else
1598 h->esym.asym.sc = scUndefined;
1600 else if (h->root.root.type != bfd_link_hash_defined
1601 && h->root.root.type != bfd_link_hash_defweak)
1602 h->esym.asym.sc = scAbs;
1603 else
1605 const char *name;
1607 sec = h->root.root.u.def.section;
1608 output_section = sec->output_section;
1610 /* When making a shared library and symbol h is the one from
1611 the another shared library, OUTPUT_SECTION may be null. */
1612 if (output_section == NULL)
1613 h->esym.asym.sc = scUndefined;
1614 else
1616 name = bfd_section_name (output_section->owner, output_section);
1618 if (strcmp (name, ".text") == 0)
1619 h->esym.asym.sc = scText;
1620 else if (strcmp (name, ".data") == 0)
1621 h->esym.asym.sc = scData;
1622 else if (strcmp (name, ".sdata") == 0)
1623 h->esym.asym.sc = scSData;
1624 else if (strcmp (name, ".rodata") == 0
1625 || strcmp (name, ".rdata") == 0)
1626 h->esym.asym.sc = scRData;
1627 else if (strcmp (name, ".bss") == 0)
1628 h->esym.asym.sc = scBss;
1629 else if (strcmp (name, ".sbss") == 0)
1630 h->esym.asym.sc = scSBss;
1631 else if (strcmp (name, ".init") == 0)
1632 h->esym.asym.sc = scInit;
1633 else if (strcmp (name, ".fini") == 0)
1634 h->esym.asym.sc = scFini;
1635 else
1636 h->esym.asym.sc = scAbs;
1640 h->esym.asym.reserved = 0;
1641 h->esym.asym.index = indexNil;
1644 if (h->root.root.type == bfd_link_hash_common)
1645 h->esym.asym.value = h->root.root.u.c.size;
1646 else if (h->root.root.type == bfd_link_hash_defined
1647 || h->root.root.type == bfd_link_hash_defweak)
1649 if (h->esym.asym.sc == scCommon)
1650 h->esym.asym.sc = scBss;
1651 else if (h->esym.asym.sc == scSCommon)
1652 h->esym.asym.sc = scSBss;
1654 sec = h->root.root.u.def.section;
1655 output_section = sec->output_section;
1656 if (output_section != NULL)
1657 h->esym.asym.value = (h->root.root.u.def.value
1658 + sec->output_offset
1659 + output_section->vma);
1660 else
1661 h->esym.asym.value = 0;
1663 else if (h->root.needs_plt)
1665 struct mips_elf_link_hash_entry *hd = h;
1666 bfd_boolean no_fn_stub = h->no_fn_stub;
1668 while (hd->root.root.type == bfd_link_hash_indirect)
1670 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1671 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1674 if (!no_fn_stub)
1676 /* Set type and value for a symbol with a function stub. */
1677 h->esym.asym.st = stProc;
1678 sec = hd->root.root.u.def.section;
1679 if (sec == NULL)
1680 h->esym.asym.value = 0;
1681 else
1683 output_section = sec->output_section;
1684 if (output_section != NULL)
1685 h->esym.asym.value = (hd->root.plt.offset
1686 + sec->output_offset
1687 + output_section->vma);
1688 else
1689 h->esym.asym.value = 0;
1694 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1695 h->root.root.root.string,
1696 &h->esym))
1698 einfo->failed = TRUE;
1699 return FALSE;
1702 return TRUE;
1705 /* A comparison routine used to sort .gptab entries. */
1707 static int
1708 gptab_compare (const void *p1, const void *p2)
1710 const Elf32_gptab *a1 = p1;
1711 const Elf32_gptab *a2 = p2;
1713 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1716 /* Functions to manage the got entry hash table. */
1718 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1719 hash number. */
1721 static INLINE hashval_t
1722 mips_elf_hash_bfd_vma (bfd_vma addr)
1724 #ifdef BFD64
1725 return addr + (addr >> 32);
1726 #else
1727 return addr;
1728 #endif
1731 /* got_entries only match if they're identical, except for gotidx, so
1732 use all fields to compute the hash, and compare the appropriate
1733 union members. */
1735 static hashval_t
1736 mips_elf_got_entry_hash (const void *entry_)
1738 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1740 return entry->symndx
1741 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1742 : entry->abfd->id
1743 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1744 : entry->d.h->root.root.root.hash));
1747 static int
1748 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1750 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1751 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1753 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1754 && (! e1->abfd ? e1->d.address == e2->d.address
1755 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1756 : e1->d.h == e2->d.h);
1759 /* multi_got_entries are still a match in the case of global objects,
1760 even if the input bfd in which they're referenced differs, so the
1761 hash computation and compare functions are adjusted
1762 accordingly. */
1764 static hashval_t
1765 mips_elf_multi_got_entry_hash (const void *entry_)
1767 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1769 return entry->symndx
1770 + (! entry->abfd
1771 ? mips_elf_hash_bfd_vma (entry->d.address)
1772 : entry->symndx >= 0
1773 ? (entry->abfd->id
1774 + mips_elf_hash_bfd_vma (entry->d.addend))
1775 : entry->d.h->root.root.root.hash);
1778 static int
1779 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1781 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1782 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1784 return e1->symndx == e2->symndx
1785 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1786 : e1->abfd == NULL || e2->abfd == NULL
1787 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1788 : e1->d.h == e2->d.h);
1791 /* Returns the dynamic relocation section for DYNOBJ. */
1793 static asection *
1794 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1796 static const char dname[] = ".rel.dyn";
1797 asection *sreloc;
1799 sreloc = bfd_get_section_by_name (dynobj, dname);
1800 if (sreloc == NULL && create_p)
1802 sreloc = bfd_make_section (dynobj, dname);
1803 if (sreloc == NULL
1804 || ! bfd_set_section_flags (dynobj, sreloc,
1805 (SEC_ALLOC
1806 | SEC_LOAD
1807 | SEC_HAS_CONTENTS
1808 | SEC_IN_MEMORY
1809 | SEC_LINKER_CREATED
1810 | SEC_READONLY))
1811 || ! bfd_set_section_alignment (dynobj, sreloc,
1812 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1813 return NULL;
1815 return sreloc;
1818 /* Returns the GOT section for ABFD. */
1820 static asection *
1821 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1823 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1824 if (sgot == NULL
1825 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1826 return NULL;
1827 return sgot;
1830 /* Returns the GOT information associated with the link indicated by
1831 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1832 section. */
1834 static struct mips_got_info *
1835 mips_elf_got_info (bfd *abfd, asection **sgotp)
1837 asection *sgot;
1838 struct mips_got_info *g;
1840 sgot = mips_elf_got_section (abfd, TRUE);
1841 BFD_ASSERT (sgot != NULL);
1842 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1843 g = mips_elf_section_data (sgot)->u.got_info;
1844 BFD_ASSERT (g != NULL);
1846 if (sgotp)
1847 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1849 return g;
1852 /* Returns the GOT offset at which the indicated address can be found.
1853 If there is not yet a GOT entry for this value, create one. Returns
1854 -1 if no satisfactory GOT offset can be found. */
1856 static bfd_vma
1857 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1858 bfd_vma value)
1860 asection *sgot;
1861 struct mips_got_info *g;
1862 struct mips_got_entry *entry;
1864 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1866 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1867 if (entry)
1868 return entry->gotidx;
1869 else
1870 return MINUS_ONE;
1873 /* Returns the GOT index for the global symbol indicated by H. */
1875 static bfd_vma
1876 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1878 bfd_vma index;
1879 asection *sgot;
1880 struct mips_got_info *g, *gg;
1881 long global_got_dynindx = 0;
1883 gg = g = mips_elf_got_info (abfd, &sgot);
1884 if (g->bfd2got && ibfd)
1886 struct mips_got_entry e, *p;
1888 BFD_ASSERT (h->dynindx >= 0);
1890 g = mips_elf_got_for_ibfd (g, ibfd);
1891 if (g->next != gg)
1893 e.abfd = ibfd;
1894 e.symndx = -1;
1895 e.d.h = (struct mips_elf_link_hash_entry *)h;
1897 p = htab_find (g->got_entries, &e);
1899 BFD_ASSERT (p->gotidx > 0);
1900 return p->gotidx;
1904 if (gg->global_gotsym != NULL)
1905 global_got_dynindx = gg->global_gotsym->dynindx;
1907 /* Once we determine the global GOT entry with the lowest dynamic
1908 symbol table index, we must put all dynamic symbols with greater
1909 indices into the GOT. That makes it easy to calculate the GOT
1910 offset. */
1911 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1912 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1913 * MIPS_ELF_GOT_SIZE (abfd));
1914 BFD_ASSERT (index < sgot->size);
1916 return index;
1919 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1920 are supposed to be placed at small offsets in the GOT, i.e.,
1921 within 32KB of GP. Return the index into the GOT for this page,
1922 and store the offset from this entry to the desired address in
1923 OFFSETP, if it is non-NULL. */
1925 static bfd_vma
1926 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1927 bfd_vma value, bfd_vma *offsetp)
1929 asection *sgot;
1930 struct mips_got_info *g;
1931 bfd_vma index;
1932 struct mips_got_entry *entry;
1934 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1936 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1937 (value + 0x8000)
1938 & (~(bfd_vma)0xffff));
1940 if (!entry)
1941 return MINUS_ONE;
1943 index = entry->gotidx;
1945 if (offsetp)
1946 *offsetp = value - entry->d.address;
1948 return index;
1951 /* Find a GOT entry whose higher-order 16 bits are the same as those
1952 for value. Return the index into the GOT for this entry. */
1954 static bfd_vma
1955 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1956 bfd_vma value, bfd_boolean external)
1958 asection *sgot;
1959 struct mips_got_info *g;
1960 struct mips_got_entry *entry;
1962 if (! external)
1964 /* Although the ABI says that it is "the high-order 16 bits" that we
1965 want, it is really the %high value. The complete value is
1966 calculated with a `addiu' of a LO16 relocation, just as with a
1967 HI16/LO16 pair. */
1968 value = mips_elf_high (value) << 16;
1971 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1973 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1974 if (entry)
1975 return entry->gotidx;
1976 else
1977 return MINUS_ONE;
1980 /* Returns the offset for the entry at the INDEXth position
1981 in the GOT. */
1983 static bfd_vma
1984 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1985 bfd *input_bfd, bfd_vma index)
1987 asection *sgot;
1988 bfd_vma gp;
1989 struct mips_got_info *g;
1991 g = mips_elf_got_info (dynobj, &sgot);
1992 gp = _bfd_get_gp_value (output_bfd)
1993 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1995 return sgot->output_section->vma + sgot->output_offset + index - gp;
1998 /* Create a local GOT entry for VALUE. Return the index of the entry,
1999 or -1 if it could not be created. */
2001 static struct mips_got_entry *
2002 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2003 struct mips_got_info *gg,
2004 asection *sgot, bfd_vma value)
2006 struct mips_got_entry entry, **loc;
2007 struct mips_got_info *g;
2009 entry.abfd = NULL;
2010 entry.symndx = -1;
2011 entry.d.address = value;
2013 g = mips_elf_got_for_ibfd (gg, ibfd);
2014 if (g == NULL)
2016 g = mips_elf_got_for_ibfd (gg, abfd);
2017 BFD_ASSERT (g != NULL);
2020 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2021 INSERT);
2022 if (*loc)
2023 return *loc;
2025 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2027 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2029 if (! *loc)
2030 return NULL;
2032 memcpy (*loc, &entry, sizeof entry);
2034 if (g->assigned_gotno >= g->local_gotno)
2036 (*loc)->gotidx = -1;
2037 /* We didn't allocate enough space in the GOT. */
2038 (*_bfd_error_handler)
2039 (_("not enough GOT space for local GOT entries"));
2040 bfd_set_error (bfd_error_bad_value);
2041 return NULL;
2044 MIPS_ELF_PUT_WORD (abfd, value,
2045 (sgot->contents + entry.gotidx));
2047 return *loc;
2050 /* Sort the dynamic symbol table so that symbols that need GOT entries
2051 appear towards the end. This reduces the amount of GOT space
2052 required. MAX_LOCAL is used to set the number of local symbols
2053 known to be in the dynamic symbol table. During
2054 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2055 section symbols are added and the count is higher. */
2057 static bfd_boolean
2058 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2060 struct mips_elf_hash_sort_data hsd;
2061 struct mips_got_info *g;
2062 bfd *dynobj;
2064 dynobj = elf_hash_table (info)->dynobj;
2066 g = mips_elf_got_info (dynobj, NULL);
2068 hsd.low = NULL;
2069 hsd.max_unref_got_dynindx =
2070 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2071 /* In the multi-got case, assigned_gotno of the master got_info
2072 indicate the number of entries that aren't referenced in the
2073 primary GOT, but that must have entries because there are
2074 dynamic relocations that reference it. Since they aren't
2075 referenced, we move them to the end of the GOT, so that they
2076 don't prevent other entries that are referenced from getting
2077 too large offsets. */
2078 - (g->next ? g->assigned_gotno : 0);
2079 hsd.max_non_got_dynindx = max_local;
2080 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2081 elf_hash_table (info)),
2082 mips_elf_sort_hash_table_f,
2083 &hsd);
2085 /* There should have been enough room in the symbol table to
2086 accommodate both the GOT and non-GOT symbols. */
2087 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2088 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2089 <= elf_hash_table (info)->dynsymcount);
2091 /* Now we know which dynamic symbol has the lowest dynamic symbol
2092 table index in the GOT. */
2093 g->global_gotsym = hsd.low;
2095 return TRUE;
2098 /* If H needs a GOT entry, assign it the highest available dynamic
2099 index. Otherwise, assign it the lowest available dynamic
2100 index. */
2102 static bfd_boolean
2103 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2105 struct mips_elf_hash_sort_data *hsd = data;
2107 if (h->root.root.type == bfd_link_hash_warning)
2108 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2110 /* Symbols without dynamic symbol table entries aren't interesting
2111 at all. */
2112 if (h->root.dynindx == -1)
2113 return TRUE;
2115 /* Global symbols that need GOT entries that are not explicitly
2116 referenced are marked with got offset 2. Those that are
2117 referenced get a 1, and those that don't need GOT entries get
2118 -1. */
2119 if (h->root.got.offset == 2)
2121 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2122 hsd->low = (struct elf_link_hash_entry *) h;
2123 h->root.dynindx = hsd->max_unref_got_dynindx++;
2125 else if (h->root.got.offset != 1)
2126 h->root.dynindx = hsd->max_non_got_dynindx++;
2127 else
2129 h->root.dynindx = --hsd->min_got_dynindx;
2130 hsd->low = (struct elf_link_hash_entry *) h;
2133 return TRUE;
2136 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2137 symbol table index lower than any we've seen to date, record it for
2138 posterity. */
2140 static bfd_boolean
2141 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2142 bfd *abfd, struct bfd_link_info *info,
2143 struct mips_got_info *g)
2145 struct mips_got_entry entry, **loc;
2147 /* A global symbol in the GOT must also be in the dynamic symbol
2148 table. */
2149 if (h->dynindx == -1)
2151 switch (ELF_ST_VISIBILITY (h->other))
2153 case STV_INTERNAL:
2154 case STV_HIDDEN:
2155 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2156 break;
2158 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2159 return FALSE;
2162 entry.abfd = abfd;
2163 entry.symndx = -1;
2164 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2166 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2167 INSERT);
2169 /* If we've already marked this entry as needing GOT space, we don't
2170 need to do it again. */
2171 if (*loc)
2172 return TRUE;
2174 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2176 if (! *loc)
2177 return FALSE;
2179 entry.gotidx = -1;
2180 memcpy (*loc, &entry, sizeof entry);
2182 if (h->got.offset != MINUS_ONE)
2183 return TRUE;
2185 /* By setting this to a value other than -1, we are indicating that
2186 there needs to be a GOT entry for H. Avoid using zero, as the
2187 generic ELF copy_indirect_symbol tests for <= 0. */
2188 h->got.offset = 1;
2190 return TRUE;
2193 /* Reserve space in G for a GOT entry containing the value of symbol
2194 SYMNDX in input bfd ABDF, plus ADDEND. */
2196 static bfd_boolean
2197 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2198 struct mips_got_info *g)
2200 struct mips_got_entry entry, **loc;
2202 entry.abfd = abfd;
2203 entry.symndx = symndx;
2204 entry.d.addend = addend;
2205 loc = (struct mips_got_entry **)
2206 htab_find_slot (g->got_entries, &entry, INSERT);
2208 if (*loc)
2209 return TRUE;
2211 entry.gotidx = g->local_gotno++;
2213 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2215 if (! *loc)
2216 return FALSE;
2218 memcpy (*loc, &entry, sizeof entry);
2220 return TRUE;
2223 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2225 static hashval_t
2226 mips_elf_bfd2got_entry_hash (const void *entry_)
2228 const struct mips_elf_bfd2got_hash *entry
2229 = (struct mips_elf_bfd2got_hash *)entry_;
2231 return entry->bfd->id;
2234 /* Check whether two hash entries have the same bfd. */
2236 static int
2237 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2239 const struct mips_elf_bfd2got_hash *e1
2240 = (const struct mips_elf_bfd2got_hash *)entry1;
2241 const struct mips_elf_bfd2got_hash *e2
2242 = (const struct mips_elf_bfd2got_hash *)entry2;
2244 return e1->bfd == e2->bfd;
2247 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2248 be the master GOT data. */
2250 static struct mips_got_info *
2251 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2253 struct mips_elf_bfd2got_hash e, *p;
2255 if (! g->bfd2got)
2256 return g;
2258 e.bfd = ibfd;
2259 p = htab_find (g->bfd2got, &e);
2260 return p ? p->g : NULL;
2263 /* Create one separate got for each bfd that has entries in the global
2264 got, such that we can tell how many local and global entries each
2265 bfd requires. */
2267 static int
2268 mips_elf_make_got_per_bfd (void **entryp, void *p)
2270 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2271 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2272 htab_t bfd2got = arg->bfd2got;
2273 struct mips_got_info *g;
2274 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2275 void **bfdgotp;
2277 /* Find the got_info for this GOT entry's input bfd. Create one if
2278 none exists. */
2279 bfdgot_entry.bfd = entry->abfd;
2280 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2281 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2283 if (bfdgot != NULL)
2284 g = bfdgot->g;
2285 else
2287 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2288 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2290 if (bfdgot == NULL)
2292 arg->obfd = 0;
2293 return 0;
2296 *bfdgotp = bfdgot;
2298 bfdgot->bfd = entry->abfd;
2299 bfdgot->g = g = (struct mips_got_info *)
2300 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2301 if (g == NULL)
2303 arg->obfd = 0;
2304 return 0;
2307 g->global_gotsym = NULL;
2308 g->global_gotno = 0;
2309 g->local_gotno = 0;
2310 g->assigned_gotno = -1;
2311 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2312 mips_elf_multi_got_entry_eq, NULL);
2313 if (g->got_entries == NULL)
2315 arg->obfd = 0;
2316 return 0;
2319 g->bfd2got = NULL;
2320 g->next = NULL;
2323 /* Insert the GOT entry in the bfd's got entry hash table. */
2324 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2325 if (*entryp != NULL)
2326 return 1;
2328 *entryp = entry;
2330 if (entry->symndx >= 0 || entry->d.h->forced_local)
2331 ++g->local_gotno;
2332 else
2333 ++g->global_gotno;
2335 return 1;
2338 /* Attempt to merge gots of different input bfds. Try to use as much
2339 as possible of the primary got, since it doesn't require explicit
2340 dynamic relocations, but don't use bfds that would reference global
2341 symbols out of the addressable range. Failing the primary got,
2342 attempt to merge with the current got, or finish the current got
2343 and then make make the new got current. */
2345 static int
2346 mips_elf_merge_gots (void **bfd2got_, void *p)
2348 struct mips_elf_bfd2got_hash *bfd2got
2349 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2350 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2351 unsigned int lcount = bfd2got->g->local_gotno;
2352 unsigned int gcount = bfd2got->g->global_gotno;
2353 unsigned int maxcnt = arg->max_count;
2355 /* If we don't have a primary GOT and this is not too big, use it as
2356 a starting point for the primary GOT. */
2357 if (! arg->primary && lcount + gcount <= maxcnt)
2359 arg->primary = bfd2got->g;
2360 arg->primary_count = lcount + gcount;
2362 /* If it looks like we can merge this bfd's entries with those of
2363 the primary, merge them. The heuristics is conservative, but we
2364 don't have to squeeze it too hard. */
2365 else if (arg->primary
2366 && (arg->primary_count + lcount + gcount) <= maxcnt)
2368 struct mips_got_info *g = bfd2got->g;
2369 int old_lcount = arg->primary->local_gotno;
2370 int old_gcount = arg->primary->global_gotno;
2372 bfd2got->g = arg->primary;
2374 htab_traverse (g->got_entries,
2375 mips_elf_make_got_per_bfd,
2376 arg);
2377 if (arg->obfd == NULL)
2378 return 0;
2380 htab_delete (g->got_entries);
2381 /* We don't have to worry about releasing memory of the actual
2382 got entries, since they're all in the master got_entries hash
2383 table anyway. */
2385 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2386 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2388 arg->primary_count = arg->primary->local_gotno
2389 + arg->primary->global_gotno;
2391 /* If we can merge with the last-created got, do it. */
2392 else if (arg->current
2393 && arg->current_count + lcount + gcount <= maxcnt)
2395 struct mips_got_info *g = bfd2got->g;
2396 int old_lcount = arg->current->local_gotno;
2397 int old_gcount = arg->current->global_gotno;
2399 bfd2got->g = arg->current;
2401 htab_traverse (g->got_entries,
2402 mips_elf_make_got_per_bfd,
2403 arg);
2404 if (arg->obfd == NULL)
2405 return 0;
2407 htab_delete (g->got_entries);
2409 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2410 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2412 arg->current_count = arg->current->local_gotno
2413 + arg->current->global_gotno;
2415 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2416 fits; if it turns out that it doesn't, we'll get relocation
2417 overflows anyway. */
2418 else
2420 bfd2got->g->next = arg->current;
2421 arg->current = bfd2got->g;
2423 arg->current_count = lcount + gcount;
2426 return 1;
2429 /* If passed a NULL mips_got_info in the argument, set the marker used
2430 to tell whether a global symbol needs a got entry (in the primary
2431 got) to the given VALUE.
2433 If passed a pointer G to a mips_got_info in the argument (it must
2434 not be the primary GOT), compute the offset from the beginning of
2435 the (primary) GOT section to the entry in G corresponding to the
2436 global symbol. G's assigned_gotno must contain the index of the
2437 first available global GOT entry in G. VALUE must contain the size
2438 of a GOT entry in bytes. For each global GOT entry that requires a
2439 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2440 marked as not eligible for lazy resolution through a function
2441 stub. */
2442 static int
2443 mips_elf_set_global_got_offset (void **entryp, void *p)
2445 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2446 struct mips_elf_set_global_got_offset_arg *arg
2447 = (struct mips_elf_set_global_got_offset_arg *)p;
2448 struct mips_got_info *g = arg->g;
2450 if (entry->abfd != NULL && entry->symndx == -1
2451 && entry->d.h->root.dynindx != -1)
2453 if (g)
2455 BFD_ASSERT (g->global_gotsym == NULL);
2457 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2458 if (arg->info->shared
2459 || (elf_hash_table (arg->info)->dynamic_sections_created
2460 && entry->d.h->root.def_dynamic
2461 && !entry->d.h->root.def_regular))
2462 ++arg->needed_relocs;
2464 else
2465 entry->d.h->root.got.offset = arg->value;
2468 return 1;
2471 /* Mark any global symbols referenced in the GOT we are iterating over
2472 as inelligible for lazy resolution stubs. */
2473 static int
2474 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2476 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2478 if (entry->abfd != NULL
2479 && entry->symndx == -1
2480 && entry->d.h->root.dynindx != -1)
2481 entry->d.h->no_fn_stub = TRUE;
2483 return 1;
2486 /* Follow indirect and warning hash entries so that each got entry
2487 points to the final symbol definition. P must point to a pointer
2488 to the hash table we're traversing. Since this traversal may
2489 modify the hash table, we set this pointer to NULL to indicate
2490 we've made a potentially-destructive change to the hash table, so
2491 the traversal must be restarted. */
2492 static int
2493 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2495 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2496 htab_t got_entries = *(htab_t *)p;
2498 if (entry->abfd != NULL && entry->symndx == -1)
2500 struct mips_elf_link_hash_entry *h = entry->d.h;
2502 while (h->root.root.type == bfd_link_hash_indirect
2503 || h->root.root.type == bfd_link_hash_warning)
2504 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2506 if (entry->d.h == h)
2507 return 1;
2509 entry->d.h = h;
2511 /* If we can't find this entry with the new bfd hash, re-insert
2512 it, and get the traversal restarted. */
2513 if (! htab_find (got_entries, entry))
2515 htab_clear_slot (got_entries, entryp);
2516 entryp = htab_find_slot (got_entries, entry, INSERT);
2517 if (! *entryp)
2518 *entryp = entry;
2519 /* Abort the traversal, since the whole table may have
2520 moved, and leave it up to the parent to restart the
2521 process. */
2522 *(htab_t *)p = NULL;
2523 return 0;
2525 /* We might want to decrement the global_gotno count, but it's
2526 either too early or too late for that at this point. */
2529 return 1;
2532 /* Turn indirect got entries in a got_entries table into their final
2533 locations. */
2534 static void
2535 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2537 htab_t got_entries;
2541 got_entries = g->got_entries;
2543 htab_traverse (got_entries,
2544 mips_elf_resolve_final_got_entry,
2545 &got_entries);
2547 while (got_entries == NULL);
2550 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2551 the primary GOT. */
2552 static bfd_vma
2553 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2555 if (g->bfd2got == NULL)
2556 return 0;
2558 g = mips_elf_got_for_ibfd (g, ibfd);
2559 if (! g)
2560 return 0;
2562 BFD_ASSERT (g->next);
2564 g = g->next;
2566 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2569 /* Turn a single GOT that is too big for 16-bit addressing into
2570 a sequence of GOTs, each one 16-bit addressable. */
2572 static bfd_boolean
2573 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2574 struct mips_got_info *g, asection *got,
2575 bfd_size_type pages)
2577 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2578 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2579 struct mips_got_info *gg;
2580 unsigned int assign;
2582 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2583 mips_elf_bfd2got_entry_eq, NULL);
2584 if (g->bfd2got == NULL)
2585 return FALSE;
2587 got_per_bfd_arg.bfd2got = g->bfd2got;
2588 got_per_bfd_arg.obfd = abfd;
2589 got_per_bfd_arg.info = info;
2591 /* Count how many GOT entries each input bfd requires, creating a
2592 map from bfd to got info while at that. */
2593 mips_elf_resolve_final_got_entries (g);
2594 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2595 if (got_per_bfd_arg.obfd == NULL)
2596 return FALSE;
2598 got_per_bfd_arg.current = NULL;
2599 got_per_bfd_arg.primary = NULL;
2600 /* Taking out PAGES entries is a worst-case estimate. We could
2601 compute the maximum number of pages that each separate input bfd
2602 uses, but it's probably not worth it. */
2603 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2604 / MIPS_ELF_GOT_SIZE (abfd))
2605 - MIPS_RESERVED_GOTNO - pages);
2607 /* Try to merge the GOTs of input bfds together, as long as they
2608 don't seem to exceed the maximum GOT size, choosing one of them
2609 to be the primary GOT. */
2610 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2611 if (got_per_bfd_arg.obfd == NULL)
2612 return FALSE;
2614 /* If we find any suitable primary GOT, create an empty one. */
2615 if (got_per_bfd_arg.primary == NULL)
2617 g->next = (struct mips_got_info *)
2618 bfd_alloc (abfd, sizeof (struct mips_got_info));
2619 if (g->next == NULL)
2620 return FALSE;
2622 g->next->global_gotsym = NULL;
2623 g->next->global_gotno = 0;
2624 g->next->local_gotno = 0;
2625 g->next->assigned_gotno = 0;
2626 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2627 mips_elf_multi_got_entry_eq,
2628 NULL);
2629 if (g->next->got_entries == NULL)
2630 return FALSE;
2631 g->next->bfd2got = NULL;
2633 else
2634 g->next = got_per_bfd_arg.primary;
2635 g->next->next = got_per_bfd_arg.current;
2637 /* GG is now the master GOT, and G is the primary GOT. */
2638 gg = g;
2639 g = g->next;
2641 /* Map the output bfd to the primary got. That's what we're going
2642 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2643 didn't mark in check_relocs, and we want a quick way to find it.
2644 We can't just use gg->next because we're going to reverse the
2645 list. */
2647 struct mips_elf_bfd2got_hash *bfdgot;
2648 void **bfdgotp;
2650 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2651 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2653 if (bfdgot == NULL)
2654 return FALSE;
2656 bfdgot->bfd = abfd;
2657 bfdgot->g = g;
2658 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2660 BFD_ASSERT (*bfdgotp == NULL);
2661 *bfdgotp = bfdgot;
2664 /* The IRIX dynamic linker requires every symbol that is referenced
2665 in a dynamic relocation to be present in the primary GOT, so
2666 arrange for them to appear after those that are actually
2667 referenced.
2669 GNU/Linux could very well do without it, but it would slow down
2670 the dynamic linker, since it would have to resolve every dynamic
2671 symbol referenced in other GOTs more than once, without help from
2672 the cache. Also, knowing that every external symbol has a GOT
2673 helps speed up the resolution of local symbols too, so GNU/Linux
2674 follows IRIX's practice.
2676 The number 2 is used by mips_elf_sort_hash_table_f to count
2677 global GOT symbols that are unreferenced in the primary GOT, with
2678 an initial dynamic index computed from gg->assigned_gotno, where
2679 the number of unreferenced global entries in the primary GOT is
2680 preserved. */
2681 if (1)
2683 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2684 g->global_gotno = gg->global_gotno;
2685 set_got_offset_arg.value = 2;
2687 else
2689 /* This could be used for dynamic linkers that don't optimize
2690 symbol resolution while applying relocations so as to use
2691 primary GOT entries or assuming the symbol is locally-defined.
2692 With this code, we assign lower dynamic indices to global
2693 symbols that are not referenced in the primary GOT, so that
2694 their entries can be omitted. */
2695 gg->assigned_gotno = 0;
2696 set_got_offset_arg.value = -1;
2699 /* Reorder dynamic symbols as described above (which behavior
2700 depends on the setting of VALUE). */
2701 set_got_offset_arg.g = NULL;
2702 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2703 &set_got_offset_arg);
2704 set_got_offset_arg.value = 1;
2705 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2706 &set_got_offset_arg);
2707 if (! mips_elf_sort_hash_table (info, 1))
2708 return FALSE;
2710 /* Now go through the GOTs assigning them offset ranges.
2711 [assigned_gotno, local_gotno[ will be set to the range of local
2712 entries in each GOT. We can then compute the end of a GOT by
2713 adding local_gotno to global_gotno. We reverse the list and make
2714 it circular since then we'll be able to quickly compute the
2715 beginning of a GOT, by computing the end of its predecessor. To
2716 avoid special cases for the primary GOT, while still preserving
2717 assertions that are valid for both single- and multi-got links,
2718 we arrange for the main got struct to have the right number of
2719 global entries, but set its local_gotno such that the initial
2720 offset of the primary GOT is zero. Remember that the primary GOT
2721 will become the last item in the circular linked list, so it
2722 points back to the master GOT. */
2723 gg->local_gotno = -g->global_gotno;
2724 gg->global_gotno = g->global_gotno;
2725 assign = 0;
2726 gg->next = gg;
2730 struct mips_got_info *gn;
2732 assign += MIPS_RESERVED_GOTNO;
2733 g->assigned_gotno = assign;
2734 g->local_gotno += assign + pages;
2735 assign = g->local_gotno + g->global_gotno;
2737 /* Take g out of the direct list, and push it onto the reversed
2738 list that gg points to. */
2739 gn = g->next;
2740 g->next = gg->next;
2741 gg->next = g;
2742 g = gn;
2744 /* Mark global symbols in every non-primary GOT as ineligible for
2745 stubs. */
2746 if (g)
2747 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2749 while (g);
2751 got->size = (gg->next->local_gotno
2752 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2754 return TRUE;
2758 /* Returns the first relocation of type r_type found, beginning with
2759 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2761 static const Elf_Internal_Rela *
2762 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2763 const Elf_Internal_Rela *relocation,
2764 const Elf_Internal_Rela *relend)
2766 while (relocation < relend)
2768 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2769 return relocation;
2771 ++relocation;
2774 /* We didn't find it. */
2775 bfd_set_error (bfd_error_bad_value);
2776 return NULL;
2779 /* Return whether a relocation is against a local symbol. */
2781 static bfd_boolean
2782 mips_elf_local_relocation_p (bfd *input_bfd,
2783 const Elf_Internal_Rela *relocation,
2784 asection **local_sections,
2785 bfd_boolean check_forced)
2787 unsigned long r_symndx;
2788 Elf_Internal_Shdr *symtab_hdr;
2789 struct mips_elf_link_hash_entry *h;
2790 size_t extsymoff;
2792 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2793 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2794 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2796 if (r_symndx < extsymoff)
2797 return TRUE;
2798 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2799 return TRUE;
2801 if (check_forced)
2803 /* Look up the hash table to check whether the symbol
2804 was forced local. */
2805 h = (struct mips_elf_link_hash_entry *)
2806 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2807 /* Find the real hash-table entry for this symbol. */
2808 while (h->root.root.type == bfd_link_hash_indirect
2809 || h->root.root.type == bfd_link_hash_warning)
2810 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2811 if (h->root.forced_local)
2812 return TRUE;
2815 return FALSE;
2818 /* Sign-extend VALUE, which has the indicated number of BITS. */
2820 bfd_vma
2821 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2823 if (value & ((bfd_vma) 1 << (bits - 1)))
2824 /* VALUE is negative. */
2825 value |= ((bfd_vma) - 1) << bits;
2827 return value;
2830 /* Return non-zero if the indicated VALUE has overflowed the maximum
2831 range expressible by a signed number with the indicated number of
2832 BITS. */
2834 static bfd_boolean
2835 mips_elf_overflow_p (bfd_vma value, int bits)
2837 bfd_signed_vma svalue = (bfd_signed_vma) value;
2839 if (svalue > (1 << (bits - 1)) - 1)
2840 /* The value is too big. */
2841 return TRUE;
2842 else if (svalue < -(1 << (bits - 1)))
2843 /* The value is too small. */
2844 return TRUE;
2846 /* All is well. */
2847 return FALSE;
2850 /* Calculate the %high function. */
2852 static bfd_vma
2853 mips_elf_high (bfd_vma value)
2855 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2858 /* Calculate the %higher function. */
2860 static bfd_vma
2861 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2863 #ifdef BFD64
2864 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2865 #else
2866 abort ();
2867 return MINUS_ONE;
2868 #endif
2871 /* Calculate the %highest function. */
2873 static bfd_vma
2874 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2876 #ifdef BFD64
2877 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2878 #else
2879 abort ();
2880 return MINUS_ONE;
2881 #endif
2884 /* Create the .compact_rel section. */
2886 static bfd_boolean
2887 mips_elf_create_compact_rel_section
2888 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2890 flagword flags;
2891 register asection *s;
2893 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2895 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2896 | SEC_READONLY);
2898 s = bfd_make_section (abfd, ".compact_rel");
2899 if (s == NULL
2900 || ! bfd_set_section_flags (abfd, s, flags)
2901 || ! bfd_set_section_alignment (abfd, s,
2902 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2903 return FALSE;
2905 s->size = sizeof (Elf32_External_compact_rel);
2908 return TRUE;
2911 /* Create the .got section to hold the global offset table. */
2913 static bfd_boolean
2914 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2915 bfd_boolean maybe_exclude)
2917 flagword flags;
2918 register asection *s;
2919 struct elf_link_hash_entry *h;
2920 struct bfd_link_hash_entry *bh;
2921 struct mips_got_info *g;
2922 bfd_size_type amt;
2924 /* This function may be called more than once. */
2925 s = mips_elf_got_section (abfd, TRUE);
2926 if (s)
2928 if (! maybe_exclude)
2929 s->flags &= ~SEC_EXCLUDE;
2930 return TRUE;
2933 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2934 | SEC_LINKER_CREATED);
2936 if (maybe_exclude)
2937 flags |= SEC_EXCLUDE;
2939 /* We have to use an alignment of 2**4 here because this is hardcoded
2940 in the function stub generation and in the linker script. */
2941 s = bfd_make_section (abfd, ".got");
2942 if (s == NULL
2943 || ! bfd_set_section_flags (abfd, s, flags)
2944 || ! bfd_set_section_alignment (abfd, s, 4))
2945 return FALSE;
2947 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2948 linker script because we don't want to define the symbol if we
2949 are not creating a global offset table. */
2950 bh = NULL;
2951 if (! (_bfd_generic_link_add_one_symbol
2952 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2953 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2954 return FALSE;
2956 h = (struct elf_link_hash_entry *) bh;
2957 h->non_elf = 0;
2958 h->def_regular = 1;
2959 h->type = STT_OBJECT;
2961 if (info->shared
2962 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2963 return FALSE;
2965 amt = sizeof (struct mips_got_info);
2966 g = bfd_alloc (abfd, amt);
2967 if (g == NULL)
2968 return FALSE;
2969 g->global_gotsym = NULL;
2970 g->global_gotno = 0;
2971 g->local_gotno = MIPS_RESERVED_GOTNO;
2972 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2973 g->bfd2got = NULL;
2974 g->next = NULL;
2975 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2976 mips_elf_got_entry_eq, NULL);
2977 if (g->got_entries == NULL)
2978 return FALSE;
2979 mips_elf_section_data (s)->u.got_info = g;
2980 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2981 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2983 return TRUE;
2986 /* Calculate the value produced by the RELOCATION (which comes from
2987 the INPUT_BFD). The ADDEND is the addend to use for this
2988 RELOCATION; RELOCATION->R_ADDEND is ignored.
2990 The result of the relocation calculation is stored in VALUEP.
2991 REQUIRE_JALXP indicates whether or not the opcode used with this
2992 relocation must be JALX.
2994 This function returns bfd_reloc_continue if the caller need take no
2995 further action regarding this relocation, bfd_reloc_notsupported if
2996 something goes dramatically wrong, bfd_reloc_overflow if an
2997 overflow occurs, and bfd_reloc_ok to indicate success. */
2999 static bfd_reloc_status_type
3000 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3001 asection *input_section,
3002 struct bfd_link_info *info,
3003 const Elf_Internal_Rela *relocation,
3004 bfd_vma addend, reloc_howto_type *howto,
3005 Elf_Internal_Sym *local_syms,
3006 asection **local_sections, bfd_vma *valuep,
3007 const char **namep, bfd_boolean *require_jalxp,
3008 bfd_boolean save_addend)
3010 /* The eventual value we will return. */
3011 bfd_vma value;
3012 /* The address of the symbol against which the relocation is
3013 occurring. */
3014 bfd_vma symbol = 0;
3015 /* The final GP value to be used for the relocatable, executable, or
3016 shared object file being produced. */
3017 bfd_vma gp = MINUS_ONE;
3018 /* The place (section offset or address) of the storage unit being
3019 relocated. */
3020 bfd_vma p;
3021 /* The value of GP used to create the relocatable object. */
3022 bfd_vma gp0 = MINUS_ONE;
3023 /* The offset into the global offset table at which the address of
3024 the relocation entry symbol, adjusted by the addend, resides
3025 during execution. */
3026 bfd_vma g = MINUS_ONE;
3027 /* The section in which the symbol referenced by the relocation is
3028 located. */
3029 asection *sec = NULL;
3030 struct mips_elf_link_hash_entry *h = NULL;
3031 /* TRUE if the symbol referred to by this relocation is a local
3032 symbol. */
3033 bfd_boolean local_p, was_local_p;
3034 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3035 bfd_boolean gp_disp_p = FALSE;
3036 Elf_Internal_Shdr *symtab_hdr;
3037 size_t extsymoff;
3038 unsigned long r_symndx;
3039 int r_type;
3040 /* TRUE if overflow occurred during the calculation of the
3041 relocation value. */
3042 bfd_boolean overflowed_p;
3043 /* TRUE if this relocation refers to a MIPS16 function. */
3044 bfd_boolean target_is_16_bit_code_p = FALSE;
3046 /* Parse the relocation. */
3047 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3048 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3049 p = (input_section->output_section->vma
3050 + input_section->output_offset
3051 + relocation->r_offset);
3053 /* Assume that there will be no overflow. */
3054 overflowed_p = FALSE;
3056 /* Figure out whether or not the symbol is local, and get the offset
3057 used in the array of hash table entries. */
3058 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3059 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3060 local_sections, FALSE);
3061 was_local_p = local_p;
3062 if (! elf_bad_symtab (input_bfd))
3063 extsymoff = symtab_hdr->sh_info;
3064 else
3066 /* The symbol table does not follow the rule that local symbols
3067 must come before globals. */
3068 extsymoff = 0;
3071 /* Figure out the value of the symbol. */
3072 if (local_p)
3074 Elf_Internal_Sym *sym;
3076 sym = local_syms + r_symndx;
3077 sec = local_sections[r_symndx];
3079 symbol = sec->output_section->vma + sec->output_offset;
3080 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3081 || (sec->flags & SEC_MERGE))
3082 symbol += sym->st_value;
3083 if ((sec->flags & SEC_MERGE)
3084 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3086 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3087 addend -= symbol;
3088 addend += sec->output_section->vma + sec->output_offset;
3091 /* MIPS16 text labels should be treated as odd. */
3092 if (sym->st_other == STO_MIPS16)
3093 ++symbol;
3095 /* Record the name of this symbol, for our caller. */
3096 *namep = bfd_elf_string_from_elf_section (input_bfd,
3097 symtab_hdr->sh_link,
3098 sym->st_name);
3099 if (*namep == '\0')
3100 *namep = bfd_section_name (input_bfd, sec);
3102 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3104 else
3106 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3108 /* For global symbols we look up the symbol in the hash-table. */
3109 h = ((struct mips_elf_link_hash_entry *)
3110 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3111 /* Find the real hash-table entry for this symbol. */
3112 while (h->root.root.type == bfd_link_hash_indirect
3113 || h->root.root.type == bfd_link_hash_warning)
3114 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3116 /* Record the name of this symbol, for our caller. */
3117 *namep = h->root.root.root.string;
3119 /* See if this is the special _gp_disp symbol. Note that such a
3120 symbol must always be a global symbol. */
3121 if (strcmp (*namep, "_gp_disp") == 0
3122 && ! NEWABI_P (input_bfd))
3124 /* Relocations against _gp_disp are permitted only with
3125 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3126 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3127 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3128 return bfd_reloc_notsupported;
3130 gp_disp_p = TRUE;
3132 /* If this symbol is defined, calculate its address. Note that
3133 _gp_disp is a magic symbol, always implicitly defined by the
3134 linker, so it's inappropriate to check to see whether or not
3135 its defined. */
3136 else if ((h->root.root.type == bfd_link_hash_defined
3137 || h->root.root.type == bfd_link_hash_defweak)
3138 && h->root.root.u.def.section)
3140 sec = h->root.root.u.def.section;
3141 if (sec->output_section)
3142 symbol = (h->root.root.u.def.value
3143 + sec->output_section->vma
3144 + sec->output_offset);
3145 else
3146 symbol = h->root.root.u.def.value;
3148 else if (h->root.root.type == bfd_link_hash_undefweak)
3149 /* We allow relocations against undefined weak symbols, giving
3150 it the value zero, so that you can undefined weak functions
3151 and check to see if they exist by looking at their
3152 addresses. */
3153 symbol = 0;
3154 else if (info->unresolved_syms_in_objects == RM_IGNORE
3155 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3156 symbol = 0;
3157 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3158 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3160 /* If this is a dynamic link, we should have created a
3161 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3162 in in _bfd_mips_elf_create_dynamic_sections.
3163 Otherwise, we should define the symbol with a value of 0.
3164 FIXME: It should probably get into the symbol table
3165 somehow as well. */
3166 BFD_ASSERT (! info->shared);
3167 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3168 symbol = 0;
3170 else
3172 if (! ((*info->callbacks->undefined_symbol)
3173 (info, h->root.root.root.string, input_bfd,
3174 input_section, relocation->r_offset,
3175 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3176 || ELF_ST_VISIBILITY (h->root.other))))
3177 return bfd_reloc_undefined;
3178 symbol = 0;
3181 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3184 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3185 need to redirect the call to the stub, unless we're already *in*
3186 a stub. */
3187 if (r_type != R_MIPS16_26 && !info->relocatable
3188 && ((h != NULL && h->fn_stub != NULL)
3189 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3190 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3191 && !mips_elf_stub_section_p (input_bfd, input_section))
3193 /* This is a 32- or 64-bit call to a 16-bit function. We should
3194 have already noticed that we were going to need the
3195 stub. */
3196 if (local_p)
3197 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3198 else
3200 BFD_ASSERT (h->need_fn_stub);
3201 sec = h->fn_stub;
3204 symbol = sec->output_section->vma + sec->output_offset;
3206 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3207 need to redirect the call to the stub. */
3208 else if (r_type == R_MIPS16_26 && !info->relocatable
3209 && h != NULL
3210 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3211 && !target_is_16_bit_code_p)
3213 /* If both call_stub and call_fp_stub are defined, we can figure
3214 out which one to use by seeing which one appears in the input
3215 file. */
3216 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3218 asection *o;
3220 sec = NULL;
3221 for (o = input_bfd->sections; o != NULL; o = o->next)
3223 if (strncmp (bfd_get_section_name (input_bfd, o),
3224 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3226 sec = h->call_fp_stub;
3227 break;
3230 if (sec == NULL)
3231 sec = h->call_stub;
3233 else if (h->call_stub != NULL)
3234 sec = h->call_stub;
3235 else
3236 sec = h->call_fp_stub;
3238 BFD_ASSERT (sec->size > 0);
3239 symbol = sec->output_section->vma + sec->output_offset;
3242 /* Calls from 16-bit code to 32-bit code and vice versa require the
3243 special jalx instruction. */
3244 *require_jalxp = (!info->relocatable
3245 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3246 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3248 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3249 local_sections, TRUE);
3251 /* If we haven't already determined the GOT offset, or the GP value,
3252 and we're going to need it, get it now. */
3253 switch (r_type)
3255 case R_MIPS_GOT_PAGE:
3256 case R_MIPS_GOT_OFST:
3257 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3258 bind locally. */
3259 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3260 if (local_p || r_type == R_MIPS_GOT_OFST)
3261 break;
3262 /* Fall through. */
3264 case R_MIPS_CALL16:
3265 case R_MIPS_GOT16:
3266 case R_MIPS_GOT_DISP:
3267 case R_MIPS_GOT_HI16:
3268 case R_MIPS_CALL_HI16:
3269 case R_MIPS_GOT_LO16:
3270 case R_MIPS_CALL_LO16:
3271 /* Find the index into the GOT where this value is located. */
3272 if (!local_p)
3274 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3275 GOT_PAGE relocation that decays to GOT_DISP because the
3276 symbol turns out to be global. The addend is then added
3277 as GOT_OFST. */
3278 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3279 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3280 input_bfd,
3281 (struct elf_link_hash_entry *) h);
3282 if (! elf_hash_table(info)->dynamic_sections_created
3283 || (info->shared
3284 && (info->symbolic || h->root.dynindx == -1)
3285 && h->root.def_regular))
3287 /* This is a static link or a -Bsymbolic link. The
3288 symbol is defined locally, or was forced to be local.
3289 We must initialize this entry in the GOT. */
3290 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3291 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3292 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3295 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3296 /* There's no need to create a local GOT entry here; the
3297 calculation for a local GOT16 entry does not involve G. */
3298 break;
3299 else
3301 g = mips_elf_local_got_index (abfd, input_bfd,
3302 info, symbol + addend);
3303 if (g == MINUS_ONE)
3304 return bfd_reloc_outofrange;
3307 /* Convert GOT indices to actual offsets. */
3308 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3309 abfd, input_bfd, g);
3310 break;
3312 case R_MIPS_HI16:
3313 case R_MIPS_LO16:
3314 case R_MIPS_GPREL16:
3315 case R_MIPS_GPREL32:
3316 case R_MIPS_LITERAL:
3317 case R_MIPS16_HI16:
3318 case R_MIPS16_LO16:
3319 case R_MIPS16_GPREL:
3320 gp0 = _bfd_get_gp_value (input_bfd);
3321 gp = _bfd_get_gp_value (abfd);
3322 if (elf_hash_table (info)->dynobj)
3323 gp += mips_elf_adjust_gp (abfd,
3324 mips_elf_got_info
3325 (elf_hash_table (info)->dynobj, NULL),
3326 input_bfd);
3327 break;
3329 default:
3330 break;
3333 /* Figure out what kind of relocation is being performed. */
3334 switch (r_type)
3336 case R_MIPS_NONE:
3337 return bfd_reloc_continue;
3339 case R_MIPS_16:
3340 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3341 overflowed_p = mips_elf_overflow_p (value, 16);
3342 break;
3344 case R_MIPS_32:
3345 case R_MIPS_REL32:
3346 case R_MIPS_64:
3347 if ((info->shared
3348 || (elf_hash_table (info)->dynamic_sections_created
3349 && h != NULL
3350 && h->root.def_dynamic
3351 && !h->root.def_regular))
3352 && r_symndx != 0
3353 && (input_section->flags & SEC_ALLOC) != 0)
3355 /* If we're creating a shared library, or this relocation is
3356 against a symbol in a shared library, then we can't know
3357 where the symbol will end up. So, we create a relocation
3358 record in the output, and leave the job up to the dynamic
3359 linker. */
3360 value = addend;
3361 if (!mips_elf_create_dynamic_relocation (abfd,
3362 info,
3363 relocation,
3365 sec,
3366 symbol,
3367 &value,
3368 input_section))
3369 return bfd_reloc_undefined;
3371 else
3373 if (r_type != R_MIPS_REL32)
3374 value = symbol + addend;
3375 else
3376 value = addend;
3378 value &= howto->dst_mask;
3379 break;
3381 case R_MIPS_PC32:
3382 value = symbol + addend - p;
3383 value &= howto->dst_mask;
3384 break;
3386 case R_MIPS_GNU_REL16_S2:
3387 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3388 overflowed_p = mips_elf_overflow_p (value, 18);
3389 value = (value >> 2) & howto->dst_mask;
3390 break;
3392 case R_MIPS16_26:
3393 /* The calculation for R_MIPS16_26 is just the same as for an
3394 R_MIPS_26. It's only the storage of the relocated field into
3395 the output file that's different. That's handled in
3396 mips_elf_perform_relocation. So, we just fall through to the
3397 R_MIPS_26 case here. */
3398 case R_MIPS_26:
3399 if (local_p)
3400 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3401 else
3403 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3404 if (h->root.root.type != bfd_link_hash_undefweak)
3405 overflowed_p = (value >> 26) != ((p + 4) >> 28);
3407 value &= howto->dst_mask;
3408 break;
3410 case R_MIPS_HI16:
3411 case R_MIPS16_HI16:
3412 if (!gp_disp_p)
3414 value = mips_elf_high (addend + symbol);
3415 value &= howto->dst_mask;
3417 else
3419 /* For MIPS16 ABI code we generate this sequence
3420 0: li $v0,%hi(_gp_disp)
3421 4: addiupc $v1,%lo(_gp_disp)
3422 8: sll $v0,16
3423 12: addu $v0,$v1
3424 14: move $gp,$v0
3425 So the offsets of hi and lo relocs are the same, but the
3426 $pc is four higher than $t9 would be, so reduce
3427 both reloc addends by 4. */
3428 if (r_type == R_MIPS16_HI16)
3429 value = mips_elf_high (addend + gp - p - 4);
3430 else
3431 value = mips_elf_high (addend + gp - p);
3432 overflowed_p = mips_elf_overflow_p (value, 16);
3434 break;
3436 case R_MIPS_LO16:
3437 case R_MIPS16_LO16:
3438 if (!gp_disp_p)
3439 value = (symbol + addend) & howto->dst_mask;
3440 else
3442 /* See the comment for R_MIPS16_HI16 above for the reason
3443 for this conditional. */
3444 if (r_type == R_MIPS16_LO16)
3445 value = addend + gp - p;
3446 else
3447 value = addend + gp - p + 4;
3448 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3449 for overflow. But, on, say, IRIX5, relocations against
3450 _gp_disp are normally generated from the .cpload
3451 pseudo-op. It generates code that normally looks like
3452 this:
3454 lui $gp,%hi(_gp_disp)
3455 addiu $gp,$gp,%lo(_gp_disp)
3456 addu $gp,$gp,$t9
3458 Here $t9 holds the address of the function being called,
3459 as required by the MIPS ELF ABI. The R_MIPS_LO16
3460 relocation can easily overflow in this situation, but the
3461 R_MIPS_HI16 relocation will handle the overflow.
3462 Therefore, we consider this a bug in the MIPS ABI, and do
3463 not check for overflow here. */
3465 break;
3467 case R_MIPS_LITERAL:
3468 /* Because we don't merge literal sections, we can handle this
3469 just like R_MIPS_GPREL16. In the long run, we should merge
3470 shared literals, and then we will need to additional work
3471 here. */
3473 /* Fall through. */
3475 case R_MIPS16_GPREL:
3476 /* The R_MIPS16_GPREL performs the same calculation as
3477 R_MIPS_GPREL16, but stores the relocated bits in a different
3478 order. We don't need to do anything special here; the
3479 differences are handled in mips_elf_perform_relocation. */
3480 case R_MIPS_GPREL16:
3481 /* Only sign-extend the addend if it was extracted from the
3482 instruction. If the addend was separate, leave it alone,
3483 otherwise we may lose significant bits. */
3484 if (howto->partial_inplace)
3485 addend = _bfd_mips_elf_sign_extend (addend, 16);
3486 value = symbol + addend - gp;
3487 /* If the symbol was local, any earlier relocatable links will
3488 have adjusted its addend with the gp offset, so compensate
3489 for that now. Don't do it for symbols forced local in this
3490 link, though, since they won't have had the gp offset applied
3491 to them before. */
3492 if (was_local_p)
3493 value += gp0;
3494 overflowed_p = mips_elf_overflow_p (value, 16);
3495 break;
3497 case R_MIPS_GOT16:
3498 case R_MIPS_CALL16:
3499 if (local_p)
3501 bfd_boolean forced;
3503 /* The special case is when the symbol is forced to be local. We
3504 need the full address in the GOT since no R_MIPS_LO16 relocation
3505 follows. */
3506 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3507 local_sections, FALSE);
3508 value = mips_elf_got16_entry (abfd, input_bfd, info,
3509 symbol + addend, forced);
3510 if (value == MINUS_ONE)
3511 return bfd_reloc_outofrange;
3512 value
3513 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3514 abfd, input_bfd, value);
3515 overflowed_p = mips_elf_overflow_p (value, 16);
3516 break;
3519 /* Fall through. */
3521 case R_MIPS_GOT_DISP:
3522 got_disp:
3523 value = g;
3524 overflowed_p = mips_elf_overflow_p (value, 16);
3525 break;
3527 case R_MIPS_GPREL32:
3528 value = (addend + symbol + gp0 - gp);
3529 if (!save_addend)
3530 value &= howto->dst_mask;
3531 break;
3533 case R_MIPS_PC16:
3534 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3535 overflowed_p = mips_elf_overflow_p (value, 16);
3536 break;
3538 case R_MIPS_GOT_HI16:
3539 case R_MIPS_CALL_HI16:
3540 /* We're allowed to handle these two relocations identically.
3541 The dynamic linker is allowed to handle the CALL relocations
3542 differently by creating a lazy evaluation stub. */
3543 value = g;
3544 value = mips_elf_high (value);
3545 value &= howto->dst_mask;
3546 break;
3548 case R_MIPS_GOT_LO16:
3549 case R_MIPS_CALL_LO16:
3550 value = g & howto->dst_mask;
3551 break;
3553 case R_MIPS_GOT_PAGE:
3554 /* GOT_PAGE relocations that reference non-local symbols decay
3555 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3556 0. */
3557 if (! local_p)
3558 goto got_disp;
3559 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3560 if (value == MINUS_ONE)
3561 return bfd_reloc_outofrange;
3562 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3563 abfd, input_bfd, value);
3564 overflowed_p = mips_elf_overflow_p (value, 16);
3565 break;
3567 case R_MIPS_GOT_OFST:
3568 if (local_p)
3569 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3570 else
3571 value = addend;
3572 overflowed_p = mips_elf_overflow_p (value, 16);
3573 break;
3575 case R_MIPS_SUB:
3576 value = symbol - addend;
3577 value &= howto->dst_mask;
3578 break;
3580 case R_MIPS_HIGHER:
3581 value = mips_elf_higher (addend + symbol);
3582 value &= howto->dst_mask;
3583 break;
3585 case R_MIPS_HIGHEST:
3586 value = mips_elf_highest (addend + symbol);
3587 value &= howto->dst_mask;
3588 break;
3590 case R_MIPS_SCN_DISP:
3591 value = symbol + addend - sec->output_offset;
3592 value &= howto->dst_mask;
3593 break;
3595 case R_MIPS_JALR:
3596 /* This relocation is only a hint. In some cases, we optimize
3597 it into a bal instruction. But we don't try to optimize
3598 branches to the PLT; that will wind up wasting time. */
3599 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
3600 return bfd_reloc_continue;
3601 value = symbol + addend;
3602 break;
3604 case R_MIPS_PJUMP:
3605 case R_MIPS_GNU_VTINHERIT:
3606 case R_MIPS_GNU_VTENTRY:
3607 /* We don't do anything with these at present. */
3608 return bfd_reloc_continue;
3610 default:
3611 /* An unrecognized relocation type. */
3612 return bfd_reloc_notsupported;
3615 /* Store the VALUE for our caller. */
3616 *valuep = value;
3617 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3620 /* Obtain the field relocated by RELOCATION. */
3622 static bfd_vma
3623 mips_elf_obtain_contents (reloc_howto_type *howto,
3624 const Elf_Internal_Rela *relocation,
3625 bfd *input_bfd, bfd_byte *contents)
3627 bfd_vma x;
3628 bfd_byte *location = contents + relocation->r_offset;
3630 /* Obtain the bytes. */
3631 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3633 return x;
3636 /* It has been determined that the result of the RELOCATION is the
3637 VALUE. Use HOWTO to place VALUE into the output file at the
3638 appropriate position. The SECTION is the section to which the
3639 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3640 for the relocation must be either JAL or JALX, and it is
3641 unconditionally converted to JALX.
3643 Returns FALSE if anything goes wrong. */
3645 static bfd_boolean
3646 mips_elf_perform_relocation (struct bfd_link_info *info,
3647 reloc_howto_type *howto,
3648 const Elf_Internal_Rela *relocation,
3649 bfd_vma value, bfd *input_bfd,
3650 asection *input_section, bfd_byte *contents,
3651 bfd_boolean require_jalx)
3653 bfd_vma x;
3654 bfd_byte *location;
3655 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3657 /* Figure out where the relocation is occurring. */
3658 location = contents + relocation->r_offset;
3660 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
3662 /* Obtain the current value. */
3663 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3665 /* Clear the field we are setting. */
3666 x &= ~howto->dst_mask;
3668 /* Set the field. */
3669 x |= (value & howto->dst_mask);
3671 /* If required, turn JAL into JALX. */
3672 if (require_jalx)
3674 bfd_boolean ok;
3675 bfd_vma opcode = x >> 26;
3676 bfd_vma jalx_opcode;
3678 /* Check to see if the opcode is already JAL or JALX. */
3679 if (r_type == R_MIPS16_26)
3681 ok = ((opcode == 0x6) || (opcode == 0x7));
3682 jalx_opcode = 0x7;
3684 else
3686 ok = ((opcode == 0x3) || (opcode == 0x1d));
3687 jalx_opcode = 0x1d;
3690 /* If the opcode is not JAL or JALX, there's a problem. */
3691 if (!ok)
3693 (*_bfd_error_handler)
3694 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3695 input_bfd,
3696 input_section,
3697 (unsigned long) relocation->r_offset);
3698 bfd_set_error (bfd_error_bad_value);
3699 return FALSE;
3702 /* Make this the JALX opcode. */
3703 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3706 /* On the RM9000, bal is faster than jal, because bal uses branch
3707 prediction hardware. If we are linking for the RM9000, and we
3708 see jal, and bal fits, use it instead. Note that this
3709 transformation should be safe for all architectures. */
3710 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
3711 && !info->relocatable
3712 && !require_jalx
3713 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
3714 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
3716 bfd_vma addr;
3717 bfd_vma dest;
3718 bfd_signed_vma off;
3720 addr = (input_section->output_section->vma
3721 + input_section->output_offset
3722 + relocation->r_offset
3723 + 4);
3724 if (r_type == R_MIPS_26)
3725 dest = (value << 2) | ((addr >> 28) << 28);
3726 else
3727 dest = value;
3728 off = dest - addr;
3729 if (off <= 0x1ffff && off >= -0x20000)
3730 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
3733 /* Put the value into the output. */
3734 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3736 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
3737 location);
3739 return TRUE;
3742 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3744 static bfd_boolean
3745 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3747 const char *name = bfd_get_section_name (abfd, section);
3749 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3750 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3751 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3754 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3756 static void
3757 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3759 asection *s;
3761 s = mips_elf_rel_dyn_section (abfd, FALSE);
3762 BFD_ASSERT (s != NULL);
3764 if (s->size == 0)
3766 /* Make room for a null element. */
3767 s->size += MIPS_ELF_REL_SIZE (abfd);
3768 ++s->reloc_count;
3770 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3773 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3774 is the original relocation, which is now being transformed into a
3775 dynamic relocation. The ADDENDP is adjusted if necessary; the
3776 caller should store the result in place of the original addend. */
3778 static bfd_boolean
3779 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3780 struct bfd_link_info *info,
3781 const Elf_Internal_Rela *rel,
3782 struct mips_elf_link_hash_entry *h,
3783 asection *sec, bfd_vma symbol,
3784 bfd_vma *addendp, asection *input_section)
3786 Elf_Internal_Rela outrel[3];
3787 asection *sreloc;
3788 bfd *dynobj;
3789 int r_type;
3790 long indx;
3791 bfd_boolean defined_p;
3793 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3794 dynobj = elf_hash_table (info)->dynobj;
3795 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3796 BFD_ASSERT (sreloc != NULL);
3797 BFD_ASSERT (sreloc->contents != NULL);
3798 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3799 < sreloc->size);
3801 outrel[0].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3803 outrel[1].r_offset =
3804 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3805 outrel[2].r_offset =
3806 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3808 if (outrel[0].r_offset == MINUS_ONE)
3809 /* The relocation field has been deleted. */
3810 return TRUE;
3812 if (outrel[0].r_offset == MINUS_TWO)
3814 /* The relocation field has been converted into a relative value of
3815 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3816 the field to be fully relocated, so add in the symbol's value. */
3817 *addendp += symbol;
3818 return TRUE;
3821 /* We must now calculate the dynamic symbol table index to use
3822 in the relocation. */
3823 if (h != NULL
3824 && (! info->symbolic || !h->root.def_regular)
3825 /* h->root.dynindx may be -1 if this symbol was marked to
3826 become local. */
3827 && h->root.dynindx != -1)
3829 indx = h->root.dynindx;
3830 if (SGI_COMPAT (output_bfd))
3831 defined_p = h->root.def_regular;
3832 else
3833 /* ??? glibc's ld.so just adds the final GOT entry to the
3834 relocation field. It therefore treats relocs against
3835 defined symbols in the same way as relocs against
3836 undefined symbols. */
3837 defined_p = FALSE;
3839 else
3841 if (sec != NULL && bfd_is_abs_section (sec))
3842 indx = 0;
3843 else if (sec == NULL || sec->owner == NULL)
3845 bfd_set_error (bfd_error_bad_value);
3846 return FALSE;
3848 else
3850 indx = elf_section_data (sec->output_section)->dynindx;
3851 if (indx == 0)
3852 abort ();
3855 /* Instead of generating a relocation using the section
3856 symbol, we may as well make it a fully relative
3857 relocation. We want to avoid generating relocations to
3858 local symbols because we used to generate them
3859 incorrectly, without adding the original symbol value,
3860 which is mandated by the ABI for section symbols. In
3861 order to give dynamic loaders and applications time to
3862 phase out the incorrect use, we refrain from emitting
3863 section-relative relocations. It's not like they're
3864 useful, after all. This should be a bit more efficient
3865 as well. */
3866 /* ??? Although this behavior is compatible with glibc's ld.so,
3867 the ABI says that relocations against STN_UNDEF should have
3868 a symbol value of 0. Irix rld honors this, so relocations
3869 against STN_UNDEF have no effect. */
3870 if (!SGI_COMPAT (output_bfd))
3871 indx = 0;
3872 defined_p = TRUE;
3875 /* If the relocation was previously an absolute relocation and
3876 this symbol will not be referred to by the relocation, we must
3877 adjust it by the value we give it in the dynamic symbol table.
3878 Otherwise leave the job up to the dynamic linker. */
3879 if (defined_p && r_type != R_MIPS_REL32)
3880 *addendp += symbol;
3882 /* The relocation is always an REL32 relocation because we don't
3883 know where the shared library will wind up at load-time. */
3884 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3885 R_MIPS_REL32);
3886 /* For strict adherence to the ABI specification, we should
3887 generate a R_MIPS_64 relocation record by itself before the
3888 _REL32/_64 record as well, such that the addend is read in as
3889 a 64-bit value (REL32 is a 32-bit relocation, after all).
3890 However, since none of the existing ELF64 MIPS dynamic
3891 loaders seems to care, we don't waste space with these
3892 artificial relocations. If this turns out to not be true,
3893 mips_elf_allocate_dynamic_relocation() should be tweaked so
3894 as to make room for a pair of dynamic relocations per
3895 invocation if ABI_64_P, and here we should generate an
3896 additional relocation record with R_MIPS_64 by itself for a
3897 NULL symbol before this relocation record. */
3898 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3899 ABI_64_P (output_bfd)
3900 ? R_MIPS_64
3901 : R_MIPS_NONE);
3902 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3904 /* Adjust the output offset of the relocation to reference the
3905 correct location in the output file. */
3906 outrel[0].r_offset += (input_section->output_section->vma
3907 + input_section->output_offset);
3908 outrel[1].r_offset += (input_section->output_section->vma
3909 + input_section->output_offset);
3910 outrel[2].r_offset += (input_section->output_section->vma
3911 + input_section->output_offset);
3913 /* Put the relocation back out. We have to use the special
3914 relocation outputter in the 64-bit case since the 64-bit
3915 relocation format is non-standard. */
3916 if (ABI_64_P (output_bfd))
3918 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3919 (output_bfd, &outrel[0],
3920 (sreloc->contents
3921 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3923 else
3924 bfd_elf32_swap_reloc_out
3925 (output_bfd, &outrel[0],
3926 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3928 /* We've now added another relocation. */
3929 ++sreloc->reloc_count;
3931 /* Make sure the output section is writable. The dynamic linker
3932 will be writing to it. */
3933 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3934 |= SHF_WRITE;
3936 /* On IRIX5, make an entry of compact relocation info. */
3937 if (IRIX_COMPAT (output_bfd) == ict_irix5)
3939 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3940 bfd_byte *cr;
3942 if (scpt)
3944 Elf32_crinfo cptrel;
3946 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3947 cptrel.vaddr = (rel->r_offset
3948 + input_section->output_section->vma
3949 + input_section->output_offset);
3950 if (r_type == R_MIPS_REL32)
3951 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3952 else
3953 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3954 mips_elf_set_cr_dist2to (cptrel, 0);
3955 cptrel.konst = *addendp;
3957 cr = (scpt->contents
3958 + sizeof (Elf32_External_compact_rel));
3959 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3960 ((Elf32_External_crinfo *) cr
3961 + scpt->reloc_count));
3962 ++scpt->reloc_count;
3966 return TRUE;
3969 /* Return the MACH for a MIPS e_flags value. */
3971 unsigned long
3972 _bfd_elf_mips_mach (flagword flags)
3974 switch (flags & EF_MIPS_MACH)
3976 case E_MIPS_MACH_3900:
3977 return bfd_mach_mips3900;
3979 case E_MIPS_MACH_4010:
3980 return bfd_mach_mips4010;
3982 case E_MIPS_MACH_4100:
3983 return bfd_mach_mips4100;
3985 case E_MIPS_MACH_4111:
3986 return bfd_mach_mips4111;
3988 case E_MIPS_MACH_4120:
3989 return bfd_mach_mips4120;
3991 case E_MIPS_MACH_4650:
3992 return bfd_mach_mips4650;
3994 case E_MIPS_MACH_5400:
3995 return bfd_mach_mips5400;
3997 case E_MIPS_MACH_5500:
3998 return bfd_mach_mips5500;
4000 case E_MIPS_MACH_9000:
4001 return bfd_mach_mips9000;
4003 case E_MIPS_MACH_SB1:
4004 return bfd_mach_mips_sb1;
4006 default:
4007 switch (flags & EF_MIPS_ARCH)
4009 default:
4010 case E_MIPS_ARCH_1:
4011 return bfd_mach_mips3000;
4012 break;
4014 case E_MIPS_ARCH_2:
4015 return bfd_mach_mips6000;
4016 break;
4018 case E_MIPS_ARCH_3:
4019 return bfd_mach_mips4000;
4020 break;
4022 case E_MIPS_ARCH_4:
4023 return bfd_mach_mips8000;
4024 break;
4026 case E_MIPS_ARCH_5:
4027 return bfd_mach_mips5;
4028 break;
4030 case E_MIPS_ARCH_32:
4031 return bfd_mach_mipsisa32;
4032 break;
4034 case E_MIPS_ARCH_64:
4035 return bfd_mach_mipsisa64;
4036 break;
4038 case E_MIPS_ARCH_32R2:
4039 return bfd_mach_mipsisa32r2;
4040 break;
4042 case E_MIPS_ARCH_64R2:
4043 return bfd_mach_mipsisa64r2;
4044 break;
4048 return 0;
4051 /* Return printable name for ABI. */
4053 static INLINE char *
4054 elf_mips_abi_name (bfd *abfd)
4056 flagword flags;
4058 flags = elf_elfheader (abfd)->e_flags;
4059 switch (flags & EF_MIPS_ABI)
4061 case 0:
4062 if (ABI_N32_P (abfd))
4063 return "N32";
4064 else if (ABI_64_P (abfd))
4065 return "64";
4066 else
4067 return "none";
4068 case E_MIPS_ABI_O32:
4069 return "O32";
4070 case E_MIPS_ABI_O64:
4071 return "O64";
4072 case E_MIPS_ABI_EABI32:
4073 return "EABI32";
4074 case E_MIPS_ABI_EABI64:
4075 return "EABI64";
4076 default:
4077 return "unknown abi";
4081 /* MIPS ELF uses two common sections. One is the usual one, and the
4082 other is for small objects. All the small objects are kept
4083 together, and then referenced via the gp pointer, which yields
4084 faster assembler code. This is what we use for the small common
4085 section. This approach is copied from ecoff.c. */
4086 static asection mips_elf_scom_section;
4087 static asymbol mips_elf_scom_symbol;
4088 static asymbol *mips_elf_scom_symbol_ptr;
4090 /* MIPS ELF also uses an acommon section, which represents an
4091 allocated common symbol which may be overridden by a
4092 definition in a shared library. */
4093 static asection mips_elf_acom_section;
4094 static asymbol mips_elf_acom_symbol;
4095 static asymbol *mips_elf_acom_symbol_ptr;
4097 /* Handle the special MIPS section numbers that a symbol may use.
4098 This is used for both the 32-bit and the 64-bit ABI. */
4100 void
4101 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4103 elf_symbol_type *elfsym;
4105 elfsym = (elf_symbol_type *) asym;
4106 switch (elfsym->internal_elf_sym.st_shndx)
4108 case SHN_MIPS_ACOMMON:
4109 /* This section is used in a dynamically linked executable file.
4110 It is an allocated common section. The dynamic linker can
4111 either resolve these symbols to something in a shared
4112 library, or it can just leave them here. For our purposes,
4113 we can consider these symbols to be in a new section. */
4114 if (mips_elf_acom_section.name == NULL)
4116 /* Initialize the acommon section. */
4117 mips_elf_acom_section.name = ".acommon";
4118 mips_elf_acom_section.flags = SEC_ALLOC;
4119 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4120 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4121 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4122 mips_elf_acom_symbol.name = ".acommon";
4123 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4124 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4125 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4127 asym->section = &mips_elf_acom_section;
4128 break;
4130 case SHN_COMMON:
4131 /* Common symbols less than the GP size are automatically
4132 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4133 if (asym->value > elf_gp_size (abfd)
4134 || IRIX_COMPAT (abfd) == ict_irix6)
4135 break;
4136 /* Fall through. */
4137 case SHN_MIPS_SCOMMON:
4138 if (mips_elf_scom_section.name == NULL)
4140 /* Initialize the small common section. */
4141 mips_elf_scom_section.name = ".scommon";
4142 mips_elf_scom_section.flags = SEC_IS_COMMON;
4143 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4144 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4145 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4146 mips_elf_scom_symbol.name = ".scommon";
4147 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4148 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4149 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4151 asym->section = &mips_elf_scom_section;
4152 asym->value = elfsym->internal_elf_sym.st_size;
4153 break;
4155 case SHN_MIPS_SUNDEFINED:
4156 asym->section = bfd_und_section_ptr;
4157 break;
4159 case SHN_MIPS_TEXT:
4161 asection *section = bfd_get_section_by_name (abfd, ".text");
4163 BFD_ASSERT (SGI_COMPAT (abfd));
4164 if (section != NULL)
4166 asym->section = section;
4167 /* MIPS_TEXT is a bit special, the address is not an offset
4168 to the base of the .text section. So substract the section
4169 base address to make it an offset. */
4170 asym->value -= section->vma;
4173 break;
4175 case SHN_MIPS_DATA:
4177 asection *section = bfd_get_section_by_name (abfd, ".data");
4179 BFD_ASSERT (SGI_COMPAT (abfd));
4180 if (section != NULL)
4182 asym->section = section;
4183 /* MIPS_DATA is a bit special, the address is not an offset
4184 to the base of the .data section. So substract the section
4185 base address to make it an offset. */
4186 asym->value -= section->vma;
4189 break;
4193 /* Implement elf_backend_eh_frame_address_size. This differs from
4194 the default in the way it handles EABI64.
4196 EABI64 was originally specified as an LP64 ABI, and that is what
4197 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4198 historically accepted the combination of -mabi=eabi and -mlong32,
4199 and this ILP32 variation has become semi-official over time.
4200 Both forms use elf32 and have pointer-sized FDE addresses.
4202 If an EABI object was generated by GCC 4.0 or above, it will have
4203 an empty .gcc_compiled_longXX section, where XX is the size of longs
4204 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4205 have no special marking to distinguish them from LP64 objects.
4207 We don't want users of the official LP64 ABI to be punished for the
4208 existence of the ILP32 variant, but at the same time, we don't want
4209 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4210 We therefore take the following approach:
4212 - If ABFD contains a .gcc_compiled_longXX section, use it to
4213 determine the pointer size.
4215 - Otherwise check the type of the first relocation. Assume that
4216 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4218 - Otherwise punt.
4220 The second check is enough to detect LP64 objects generated by pre-4.0
4221 compilers because, in the kind of output generated by those compilers,
4222 the first relocation will be associated with either a CIE personality
4223 routine or an FDE start address. Furthermore, the compilers never
4224 used a special (non-pointer) encoding for this ABI.
4226 Checking the relocation type should also be safe because there is no
4227 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4228 did so. */
4230 unsigned int
4231 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4233 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4234 return 8;
4235 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4237 bfd_boolean long32_p, long64_p;
4239 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4240 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4241 if (long32_p && long64_p)
4242 return 0;
4243 if (long32_p)
4244 return 4;
4245 if (long64_p)
4246 return 8;
4248 if (sec->reloc_count > 0
4249 && elf_section_data (sec)->relocs != NULL
4250 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4251 == R_MIPS_64))
4252 return 8;
4254 return 0;
4256 return 4;
4259 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4260 relocations against two unnamed section symbols to resolve to the
4261 same address. For example, if we have code like:
4263 lw $4,%got_disp(.data)($gp)
4264 lw $25,%got_disp(.text)($gp)
4265 jalr $25
4267 then the linker will resolve both relocations to .data and the program
4268 will jump there rather than to .text.
4270 We can work around this problem by giving names to local section symbols.
4271 This is also what the MIPSpro tools do. */
4273 bfd_boolean
4274 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4276 return SGI_COMPAT (abfd);
4279 /* Work over a section just before writing it out. This routine is
4280 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4281 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4282 a better way. */
4284 bfd_boolean
4285 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4287 if (hdr->sh_type == SHT_MIPS_REGINFO
4288 && hdr->sh_size > 0)
4290 bfd_byte buf[4];
4292 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4293 BFD_ASSERT (hdr->contents == NULL);
4295 if (bfd_seek (abfd,
4296 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4297 SEEK_SET) != 0)
4298 return FALSE;
4299 H_PUT_32 (abfd, elf_gp (abfd), buf);
4300 if (bfd_bwrite (buf, 4, abfd) != 4)
4301 return FALSE;
4304 if (hdr->sh_type == SHT_MIPS_OPTIONS
4305 && hdr->bfd_section != NULL
4306 && mips_elf_section_data (hdr->bfd_section) != NULL
4307 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4309 bfd_byte *contents, *l, *lend;
4311 /* We stored the section contents in the tdata field in the
4312 set_section_contents routine. We save the section contents
4313 so that we don't have to read them again.
4314 At this point we know that elf_gp is set, so we can look
4315 through the section contents to see if there is an
4316 ODK_REGINFO structure. */
4318 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4319 l = contents;
4320 lend = contents + hdr->sh_size;
4321 while (l + sizeof (Elf_External_Options) <= lend)
4323 Elf_Internal_Options intopt;
4325 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4326 &intopt);
4327 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4329 bfd_byte buf[8];
4331 if (bfd_seek (abfd,
4332 (hdr->sh_offset
4333 + (l - contents)
4334 + sizeof (Elf_External_Options)
4335 + (sizeof (Elf64_External_RegInfo) - 8)),
4336 SEEK_SET) != 0)
4337 return FALSE;
4338 H_PUT_64 (abfd, elf_gp (abfd), buf);
4339 if (bfd_bwrite (buf, 8, abfd) != 8)
4340 return FALSE;
4342 else if (intopt.kind == ODK_REGINFO)
4344 bfd_byte buf[4];
4346 if (bfd_seek (abfd,
4347 (hdr->sh_offset
4348 + (l - contents)
4349 + sizeof (Elf_External_Options)
4350 + (sizeof (Elf32_External_RegInfo) - 4)),
4351 SEEK_SET) != 0)
4352 return FALSE;
4353 H_PUT_32 (abfd, elf_gp (abfd), buf);
4354 if (bfd_bwrite (buf, 4, abfd) != 4)
4355 return FALSE;
4357 l += intopt.size;
4361 if (hdr->bfd_section != NULL)
4363 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4365 if (strcmp (name, ".sdata") == 0
4366 || strcmp (name, ".lit8") == 0
4367 || strcmp (name, ".lit4") == 0)
4369 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4370 hdr->sh_type = SHT_PROGBITS;
4372 else if (strcmp (name, ".sbss") == 0)
4374 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4375 hdr->sh_type = SHT_NOBITS;
4377 else if (strcmp (name, ".srdata") == 0)
4379 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4380 hdr->sh_type = SHT_PROGBITS;
4382 else if (strcmp (name, ".compact_rel") == 0)
4384 hdr->sh_flags = 0;
4385 hdr->sh_type = SHT_PROGBITS;
4387 else if (strcmp (name, ".rtproc") == 0)
4389 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4391 unsigned int adjust;
4393 adjust = hdr->sh_size % hdr->sh_addralign;
4394 if (adjust != 0)
4395 hdr->sh_size += hdr->sh_addralign - adjust;
4400 return TRUE;
4403 /* Handle a MIPS specific section when reading an object file. This
4404 is called when elfcode.h finds a section with an unknown type.
4405 This routine supports both the 32-bit and 64-bit ELF ABI.
4407 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4408 how to. */
4410 bfd_boolean
4411 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4412 const char *name)
4414 flagword flags = 0;
4416 /* There ought to be a place to keep ELF backend specific flags, but
4417 at the moment there isn't one. We just keep track of the
4418 sections by their name, instead. Fortunately, the ABI gives
4419 suggested names for all the MIPS specific sections, so we will
4420 probably get away with this. */
4421 switch (hdr->sh_type)
4423 case SHT_MIPS_LIBLIST:
4424 if (strcmp (name, ".liblist") != 0)
4425 return FALSE;
4426 break;
4427 case SHT_MIPS_MSYM:
4428 if (strcmp (name, ".msym") != 0)
4429 return FALSE;
4430 break;
4431 case SHT_MIPS_CONFLICT:
4432 if (strcmp (name, ".conflict") != 0)
4433 return FALSE;
4434 break;
4435 case SHT_MIPS_GPTAB:
4436 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4437 return FALSE;
4438 break;
4439 case SHT_MIPS_UCODE:
4440 if (strcmp (name, ".ucode") != 0)
4441 return FALSE;
4442 break;
4443 case SHT_MIPS_DEBUG:
4444 if (strcmp (name, ".mdebug") != 0)
4445 return FALSE;
4446 flags = SEC_DEBUGGING;
4447 break;
4448 case SHT_MIPS_REGINFO:
4449 if (strcmp (name, ".reginfo") != 0
4450 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4451 return FALSE;
4452 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4453 break;
4454 case SHT_MIPS_IFACE:
4455 if (strcmp (name, ".MIPS.interfaces") != 0)
4456 return FALSE;
4457 break;
4458 case SHT_MIPS_CONTENT:
4459 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4460 return FALSE;
4461 break;
4462 case SHT_MIPS_OPTIONS:
4463 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4464 return FALSE;
4465 break;
4466 case SHT_MIPS_DWARF:
4467 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4468 return FALSE;
4469 break;
4470 case SHT_MIPS_SYMBOL_LIB:
4471 if (strcmp (name, ".MIPS.symlib") != 0)
4472 return FALSE;
4473 break;
4474 case SHT_MIPS_EVENTS:
4475 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4476 && strncmp (name, ".MIPS.post_rel",
4477 sizeof ".MIPS.post_rel" - 1) != 0)
4478 return FALSE;
4479 break;
4480 default:
4481 return FALSE;
4484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4485 return FALSE;
4487 if (flags)
4489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4490 (bfd_get_section_flags (abfd,
4491 hdr->bfd_section)
4492 | flags)))
4493 return FALSE;
4496 /* FIXME: We should record sh_info for a .gptab section. */
4498 /* For a .reginfo section, set the gp value in the tdata information
4499 from the contents of this section. We need the gp value while
4500 processing relocs, so we just get it now. The .reginfo section
4501 is not used in the 64-bit MIPS ELF ABI. */
4502 if (hdr->sh_type == SHT_MIPS_REGINFO)
4504 Elf32_External_RegInfo ext;
4505 Elf32_RegInfo s;
4507 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4508 &ext, 0, sizeof ext))
4509 return FALSE;
4510 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4511 elf_gp (abfd) = s.ri_gp_value;
4514 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4515 set the gp value based on what we find. We may see both
4516 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4517 they should agree. */
4518 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4520 bfd_byte *contents, *l, *lend;
4522 contents = bfd_malloc (hdr->sh_size);
4523 if (contents == NULL)
4524 return FALSE;
4525 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4526 0, hdr->sh_size))
4528 free (contents);
4529 return FALSE;
4531 l = contents;
4532 lend = contents + hdr->sh_size;
4533 while (l + sizeof (Elf_External_Options) <= lend)
4535 Elf_Internal_Options intopt;
4537 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4538 &intopt);
4539 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4541 Elf64_Internal_RegInfo intreg;
4543 bfd_mips_elf64_swap_reginfo_in
4544 (abfd,
4545 ((Elf64_External_RegInfo *)
4546 (l + sizeof (Elf_External_Options))),
4547 &intreg);
4548 elf_gp (abfd) = intreg.ri_gp_value;
4550 else if (intopt.kind == ODK_REGINFO)
4552 Elf32_RegInfo intreg;
4554 bfd_mips_elf32_swap_reginfo_in
4555 (abfd,
4556 ((Elf32_External_RegInfo *)
4557 (l + sizeof (Elf_External_Options))),
4558 &intreg);
4559 elf_gp (abfd) = intreg.ri_gp_value;
4561 l += intopt.size;
4563 free (contents);
4566 return TRUE;
4569 /* Set the correct type for a MIPS ELF section. We do this by the
4570 section name, which is a hack, but ought to work. This routine is
4571 used by both the 32-bit and the 64-bit ABI. */
4573 bfd_boolean
4574 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4576 register const char *name;
4578 name = bfd_get_section_name (abfd, sec);
4580 if (strcmp (name, ".liblist") == 0)
4582 hdr->sh_type = SHT_MIPS_LIBLIST;
4583 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
4584 /* The sh_link field is set in final_write_processing. */
4586 else if (strcmp (name, ".conflict") == 0)
4587 hdr->sh_type = SHT_MIPS_CONFLICT;
4588 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4590 hdr->sh_type = SHT_MIPS_GPTAB;
4591 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4592 /* The sh_info field is set in final_write_processing. */
4594 else if (strcmp (name, ".ucode") == 0)
4595 hdr->sh_type = SHT_MIPS_UCODE;
4596 else if (strcmp (name, ".mdebug") == 0)
4598 hdr->sh_type = SHT_MIPS_DEBUG;
4599 /* In a shared object on IRIX 5.3, the .mdebug section has an
4600 entsize of 0. FIXME: Does this matter? */
4601 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4602 hdr->sh_entsize = 0;
4603 else
4604 hdr->sh_entsize = 1;
4606 else if (strcmp (name, ".reginfo") == 0)
4608 hdr->sh_type = SHT_MIPS_REGINFO;
4609 /* In a shared object on IRIX 5.3, the .reginfo section has an
4610 entsize of 0x18. FIXME: Does this matter? */
4611 if (SGI_COMPAT (abfd))
4613 if ((abfd->flags & DYNAMIC) != 0)
4614 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4615 else
4616 hdr->sh_entsize = 1;
4618 else
4619 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4621 else if (SGI_COMPAT (abfd)
4622 && (strcmp (name, ".hash") == 0
4623 || strcmp (name, ".dynamic") == 0
4624 || strcmp (name, ".dynstr") == 0))
4626 if (SGI_COMPAT (abfd))
4627 hdr->sh_entsize = 0;
4628 #if 0
4629 /* This isn't how the IRIX6 linker behaves. */
4630 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4631 #endif
4633 else if (strcmp (name, ".got") == 0
4634 || strcmp (name, ".srdata") == 0
4635 || strcmp (name, ".sdata") == 0
4636 || strcmp (name, ".sbss") == 0
4637 || strcmp (name, ".lit4") == 0
4638 || strcmp (name, ".lit8") == 0)
4639 hdr->sh_flags |= SHF_MIPS_GPREL;
4640 else if (strcmp (name, ".MIPS.interfaces") == 0)
4642 hdr->sh_type = SHT_MIPS_IFACE;
4643 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4645 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4647 hdr->sh_type = SHT_MIPS_CONTENT;
4648 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4649 /* The sh_info field is set in final_write_processing. */
4651 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4653 hdr->sh_type = SHT_MIPS_OPTIONS;
4654 hdr->sh_entsize = 1;
4655 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4657 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4658 hdr->sh_type = SHT_MIPS_DWARF;
4659 else if (strcmp (name, ".MIPS.symlib") == 0)
4661 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4662 /* The sh_link and sh_info fields are set in
4663 final_write_processing. */
4665 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4666 || strncmp (name, ".MIPS.post_rel",
4667 sizeof ".MIPS.post_rel" - 1) == 0)
4669 hdr->sh_type = SHT_MIPS_EVENTS;
4670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4671 /* The sh_link field is set in final_write_processing. */
4673 else if (strcmp (name, ".msym") == 0)
4675 hdr->sh_type = SHT_MIPS_MSYM;
4676 hdr->sh_flags |= SHF_ALLOC;
4677 hdr->sh_entsize = 8;
4680 /* The generic elf_fake_sections will set up REL_HDR using the default
4681 kind of relocations. We used to set up a second header for the
4682 non-default kind of relocations here, but only NewABI would use
4683 these, and the IRIX ld doesn't like resulting empty RELA sections.
4684 Thus we create those header only on demand now. */
4686 return TRUE;
4689 /* Given a BFD section, try to locate the corresponding ELF section
4690 index. This is used by both the 32-bit and the 64-bit ABI.
4691 Actually, it's not clear to me that the 64-bit ABI supports these,
4692 but for non-PIC objects we will certainly want support for at least
4693 the .scommon section. */
4695 bfd_boolean
4696 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4697 asection *sec, int *retval)
4699 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4701 *retval = SHN_MIPS_SCOMMON;
4702 return TRUE;
4704 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4706 *retval = SHN_MIPS_ACOMMON;
4707 return TRUE;
4709 return FALSE;
4712 /* Hook called by the linker routine which adds symbols from an object
4713 file. We must handle the special MIPS section numbers here. */
4715 bfd_boolean
4716 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4717 Elf_Internal_Sym *sym, const char **namep,
4718 flagword *flagsp ATTRIBUTE_UNUSED,
4719 asection **secp, bfd_vma *valp)
4721 if (SGI_COMPAT (abfd)
4722 && (abfd->flags & DYNAMIC) != 0
4723 && strcmp (*namep, "_rld_new_interface") == 0)
4725 /* Skip IRIX5 rld entry name. */
4726 *namep = NULL;
4727 return TRUE;
4730 switch (sym->st_shndx)
4732 case SHN_COMMON:
4733 /* Common symbols less than the GP size are automatically
4734 treated as SHN_MIPS_SCOMMON symbols. */
4735 if (sym->st_size > elf_gp_size (abfd)
4736 || IRIX_COMPAT (abfd) == ict_irix6)
4737 break;
4738 /* Fall through. */
4739 case SHN_MIPS_SCOMMON:
4740 *secp = bfd_make_section_old_way (abfd, ".scommon");
4741 (*secp)->flags |= SEC_IS_COMMON;
4742 *valp = sym->st_size;
4743 break;
4745 case SHN_MIPS_TEXT:
4746 /* This section is used in a shared object. */
4747 if (elf_tdata (abfd)->elf_text_section == NULL)
4749 asymbol *elf_text_symbol;
4750 asection *elf_text_section;
4751 bfd_size_type amt = sizeof (asection);
4753 elf_text_section = bfd_zalloc (abfd, amt);
4754 if (elf_text_section == NULL)
4755 return FALSE;
4757 amt = sizeof (asymbol);
4758 elf_text_symbol = bfd_zalloc (abfd, amt);
4759 if (elf_text_symbol == NULL)
4760 return FALSE;
4762 /* Initialize the section. */
4764 elf_tdata (abfd)->elf_text_section = elf_text_section;
4765 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4767 elf_text_section->symbol = elf_text_symbol;
4768 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4770 elf_text_section->name = ".text";
4771 elf_text_section->flags = SEC_NO_FLAGS;
4772 elf_text_section->output_section = NULL;
4773 elf_text_section->owner = abfd;
4774 elf_text_symbol->name = ".text";
4775 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4776 elf_text_symbol->section = elf_text_section;
4778 /* This code used to do *secp = bfd_und_section_ptr if
4779 info->shared. I don't know why, and that doesn't make sense,
4780 so I took it out. */
4781 *secp = elf_tdata (abfd)->elf_text_section;
4782 break;
4784 case SHN_MIPS_ACOMMON:
4785 /* Fall through. XXX Can we treat this as allocated data? */
4786 case SHN_MIPS_DATA:
4787 /* This section is used in a shared object. */
4788 if (elf_tdata (abfd)->elf_data_section == NULL)
4790 asymbol *elf_data_symbol;
4791 asection *elf_data_section;
4792 bfd_size_type amt = sizeof (asection);
4794 elf_data_section = bfd_zalloc (abfd, amt);
4795 if (elf_data_section == NULL)
4796 return FALSE;
4798 amt = sizeof (asymbol);
4799 elf_data_symbol = bfd_zalloc (abfd, amt);
4800 if (elf_data_symbol == NULL)
4801 return FALSE;
4803 /* Initialize the section. */
4805 elf_tdata (abfd)->elf_data_section = elf_data_section;
4806 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4808 elf_data_section->symbol = elf_data_symbol;
4809 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4811 elf_data_section->name = ".data";
4812 elf_data_section->flags = SEC_NO_FLAGS;
4813 elf_data_section->output_section = NULL;
4814 elf_data_section->owner = abfd;
4815 elf_data_symbol->name = ".data";
4816 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4817 elf_data_symbol->section = elf_data_section;
4819 /* This code used to do *secp = bfd_und_section_ptr if
4820 info->shared. I don't know why, and that doesn't make sense,
4821 so I took it out. */
4822 *secp = elf_tdata (abfd)->elf_data_section;
4823 break;
4825 case SHN_MIPS_SUNDEFINED:
4826 *secp = bfd_und_section_ptr;
4827 break;
4830 if (SGI_COMPAT (abfd)
4831 && ! info->shared
4832 && info->hash->creator == abfd->xvec
4833 && strcmp (*namep, "__rld_obj_head") == 0)
4835 struct elf_link_hash_entry *h;
4836 struct bfd_link_hash_entry *bh;
4838 /* Mark __rld_obj_head as dynamic. */
4839 bh = NULL;
4840 if (! (_bfd_generic_link_add_one_symbol
4841 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4842 get_elf_backend_data (abfd)->collect, &bh)))
4843 return FALSE;
4845 h = (struct elf_link_hash_entry *) bh;
4846 h->non_elf = 0;
4847 h->def_regular = 1;
4848 h->type = STT_OBJECT;
4850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4851 return FALSE;
4853 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4856 /* If this is a mips16 text symbol, add 1 to the value to make it
4857 odd. This will cause something like .word SYM to come up with
4858 the right value when it is loaded into the PC. */
4859 if (sym->st_other == STO_MIPS16)
4860 ++*valp;
4862 return TRUE;
4865 /* This hook function is called before the linker writes out a global
4866 symbol. We mark symbols as small common if appropriate. This is
4867 also where we undo the increment of the value for a mips16 symbol. */
4869 bfd_boolean
4870 _bfd_mips_elf_link_output_symbol_hook
4871 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4872 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4873 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4875 /* If we see a common symbol, which implies a relocatable link, then
4876 if a symbol was small common in an input file, mark it as small
4877 common in the output file. */
4878 if (sym->st_shndx == SHN_COMMON
4879 && strcmp (input_sec->name, ".scommon") == 0)
4880 sym->st_shndx = SHN_MIPS_SCOMMON;
4882 if (sym->st_other == STO_MIPS16)
4883 sym->st_value &= ~1;
4885 return TRUE;
4888 /* Functions for the dynamic linker. */
4890 /* Create dynamic sections when linking against a dynamic object. */
4892 bfd_boolean
4893 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4895 struct elf_link_hash_entry *h;
4896 struct bfd_link_hash_entry *bh;
4897 flagword flags;
4898 register asection *s;
4899 const char * const *namep;
4901 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4902 | SEC_LINKER_CREATED | SEC_READONLY);
4904 /* Mips ABI requests the .dynamic section to be read only. */
4905 s = bfd_get_section_by_name (abfd, ".dynamic");
4906 if (s != NULL)
4908 if (! bfd_set_section_flags (abfd, s, flags))
4909 return FALSE;
4912 /* We need to create .got section. */
4913 if (! mips_elf_create_got_section (abfd, info, FALSE))
4914 return FALSE;
4916 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4917 return FALSE;
4919 /* Create .stub section. */
4920 if (bfd_get_section_by_name (abfd,
4921 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4923 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4924 if (s == NULL
4925 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4926 || ! bfd_set_section_alignment (abfd, s,
4927 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4928 return FALSE;
4931 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4932 && !info->shared
4933 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4935 s = bfd_make_section (abfd, ".rld_map");
4936 if (s == NULL
4937 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4938 || ! bfd_set_section_alignment (abfd, s,
4939 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4940 return FALSE;
4943 /* On IRIX5, we adjust add some additional symbols and change the
4944 alignments of several sections. There is no ABI documentation
4945 indicating that this is necessary on IRIX6, nor any evidence that
4946 the linker takes such action. */
4947 if (IRIX_COMPAT (abfd) == ict_irix5)
4949 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4951 bh = NULL;
4952 if (! (_bfd_generic_link_add_one_symbol
4953 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4954 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4955 return FALSE;
4957 h = (struct elf_link_hash_entry *) bh;
4958 h->non_elf = 0;
4959 h->def_regular = 1;
4960 h->type = STT_SECTION;
4962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4963 return FALSE;
4966 /* We need to create a .compact_rel section. */
4967 if (SGI_COMPAT (abfd))
4969 if (!mips_elf_create_compact_rel_section (abfd, info))
4970 return FALSE;
4973 /* Change alignments of some sections. */
4974 s = bfd_get_section_by_name (abfd, ".hash");
4975 if (s != NULL)
4976 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4977 s = bfd_get_section_by_name (abfd, ".dynsym");
4978 if (s != NULL)
4979 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4980 s = bfd_get_section_by_name (abfd, ".dynstr");
4981 if (s != NULL)
4982 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4983 s = bfd_get_section_by_name (abfd, ".reginfo");
4984 if (s != NULL)
4985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4986 s = bfd_get_section_by_name (abfd, ".dynamic");
4987 if (s != NULL)
4988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4991 if (!info->shared)
4993 const char *name;
4995 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4996 bh = NULL;
4997 if (!(_bfd_generic_link_add_one_symbol
4998 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4999 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5000 return FALSE;
5002 h = (struct elf_link_hash_entry *) bh;
5003 h->non_elf = 0;
5004 h->def_regular = 1;
5005 h->type = STT_SECTION;
5007 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5008 return FALSE;
5010 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5012 /* __rld_map is a four byte word located in the .data section
5013 and is filled in by the rtld to contain a pointer to
5014 the _r_debug structure. Its symbol value will be set in
5015 _bfd_mips_elf_finish_dynamic_symbol. */
5016 s = bfd_get_section_by_name (abfd, ".rld_map");
5017 BFD_ASSERT (s != NULL);
5019 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5020 bh = NULL;
5021 if (!(_bfd_generic_link_add_one_symbol
5022 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
5023 get_elf_backend_data (abfd)->collect, &bh)))
5024 return FALSE;
5026 h = (struct elf_link_hash_entry *) bh;
5027 h->non_elf = 0;
5028 h->def_regular = 1;
5029 h->type = STT_OBJECT;
5031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5032 return FALSE;
5036 return TRUE;
5039 /* Look through the relocs for a section during the first phase, and
5040 allocate space in the global offset table. */
5042 bfd_boolean
5043 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5044 asection *sec, const Elf_Internal_Rela *relocs)
5046 const char *name;
5047 bfd *dynobj;
5048 Elf_Internal_Shdr *symtab_hdr;
5049 struct elf_link_hash_entry **sym_hashes;
5050 struct mips_got_info *g;
5051 size_t extsymoff;
5052 const Elf_Internal_Rela *rel;
5053 const Elf_Internal_Rela *rel_end;
5054 asection *sgot;
5055 asection *sreloc;
5056 const struct elf_backend_data *bed;
5058 if (info->relocatable)
5059 return TRUE;
5061 dynobj = elf_hash_table (info)->dynobj;
5062 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5063 sym_hashes = elf_sym_hashes (abfd);
5064 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5066 /* Check for the mips16 stub sections. */
5068 name = bfd_get_section_name (abfd, sec);
5069 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5071 unsigned long r_symndx;
5073 /* Look at the relocation information to figure out which symbol
5074 this is for. */
5076 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5078 if (r_symndx < extsymoff
5079 || sym_hashes[r_symndx - extsymoff] == NULL)
5081 asection *o;
5083 /* This stub is for a local symbol. This stub will only be
5084 needed if there is some relocation in this BFD, other
5085 than a 16 bit function call, which refers to this symbol. */
5086 for (o = abfd->sections; o != NULL; o = o->next)
5088 Elf_Internal_Rela *sec_relocs;
5089 const Elf_Internal_Rela *r, *rend;
5091 /* We can ignore stub sections when looking for relocs. */
5092 if ((o->flags & SEC_RELOC) == 0
5093 || o->reloc_count == 0
5094 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5095 sizeof FN_STUB - 1) == 0
5096 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5097 sizeof CALL_STUB - 1) == 0
5098 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5099 sizeof CALL_FP_STUB - 1) == 0)
5100 continue;
5102 sec_relocs
5103 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5104 info->keep_memory);
5105 if (sec_relocs == NULL)
5106 return FALSE;
5108 rend = sec_relocs + o->reloc_count;
5109 for (r = sec_relocs; r < rend; r++)
5110 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5111 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5112 break;
5114 if (elf_section_data (o)->relocs != sec_relocs)
5115 free (sec_relocs);
5117 if (r < rend)
5118 break;
5121 if (o == NULL)
5123 /* There is no non-call reloc for this stub, so we do
5124 not need it. Since this function is called before
5125 the linker maps input sections to output sections, we
5126 can easily discard it by setting the SEC_EXCLUDE
5127 flag. */
5128 sec->flags |= SEC_EXCLUDE;
5129 return TRUE;
5132 /* Record this stub in an array of local symbol stubs for
5133 this BFD. */
5134 if (elf_tdata (abfd)->local_stubs == NULL)
5136 unsigned long symcount;
5137 asection **n;
5138 bfd_size_type amt;
5140 if (elf_bad_symtab (abfd))
5141 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5142 else
5143 symcount = symtab_hdr->sh_info;
5144 amt = symcount * sizeof (asection *);
5145 n = bfd_zalloc (abfd, amt);
5146 if (n == NULL)
5147 return FALSE;
5148 elf_tdata (abfd)->local_stubs = n;
5151 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5153 /* We don't need to set mips16_stubs_seen in this case.
5154 That flag is used to see whether we need to look through
5155 the global symbol table for stubs. We don't need to set
5156 it here, because we just have a local stub. */
5158 else
5160 struct mips_elf_link_hash_entry *h;
5162 h = ((struct mips_elf_link_hash_entry *)
5163 sym_hashes[r_symndx - extsymoff]);
5165 /* H is the symbol this stub is for. */
5167 h->fn_stub = sec;
5168 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5171 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5172 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5174 unsigned long r_symndx;
5175 struct mips_elf_link_hash_entry *h;
5176 asection **loc;
5178 /* Look at the relocation information to figure out which symbol
5179 this is for. */
5181 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5183 if (r_symndx < extsymoff
5184 || sym_hashes[r_symndx - extsymoff] == NULL)
5186 /* This stub was actually built for a static symbol defined
5187 in the same file. We assume that all static symbols in
5188 mips16 code are themselves mips16, so we can simply
5189 discard this stub. Since this function is called before
5190 the linker maps input sections to output sections, we can
5191 easily discard it by setting the SEC_EXCLUDE flag. */
5192 sec->flags |= SEC_EXCLUDE;
5193 return TRUE;
5196 h = ((struct mips_elf_link_hash_entry *)
5197 sym_hashes[r_symndx - extsymoff]);
5199 /* H is the symbol this stub is for. */
5201 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5202 loc = &h->call_fp_stub;
5203 else
5204 loc = &h->call_stub;
5206 /* If we already have an appropriate stub for this function, we
5207 don't need another one, so we can discard this one. Since
5208 this function is called before the linker maps input sections
5209 to output sections, we can easily discard it by setting the
5210 SEC_EXCLUDE flag. We can also discard this section if we
5211 happen to already know that this is a mips16 function; it is
5212 not necessary to check this here, as it is checked later, but
5213 it is slightly faster to check now. */
5214 if (*loc != NULL || h->root.other == STO_MIPS16)
5216 sec->flags |= SEC_EXCLUDE;
5217 return TRUE;
5220 *loc = sec;
5221 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5224 if (dynobj == NULL)
5226 sgot = NULL;
5227 g = NULL;
5229 else
5231 sgot = mips_elf_got_section (dynobj, FALSE);
5232 if (sgot == NULL)
5233 g = NULL;
5234 else
5236 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5237 g = mips_elf_section_data (sgot)->u.got_info;
5238 BFD_ASSERT (g != NULL);
5242 sreloc = NULL;
5243 bed = get_elf_backend_data (abfd);
5244 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5245 for (rel = relocs; rel < rel_end; ++rel)
5247 unsigned long r_symndx;
5248 unsigned int r_type;
5249 struct elf_link_hash_entry *h;
5251 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5252 r_type = ELF_R_TYPE (abfd, rel->r_info);
5254 if (r_symndx < extsymoff)
5255 h = NULL;
5256 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5258 (*_bfd_error_handler)
5259 (_("%B: Malformed reloc detected for section %s"),
5260 abfd, name);
5261 bfd_set_error (bfd_error_bad_value);
5262 return FALSE;
5264 else
5266 h = sym_hashes[r_symndx - extsymoff];
5268 /* This may be an indirect symbol created because of a version. */
5269 if (h != NULL)
5271 while (h->root.type == bfd_link_hash_indirect)
5272 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5276 /* Some relocs require a global offset table. */
5277 if (dynobj == NULL || sgot == NULL)
5279 switch (r_type)
5281 case R_MIPS_GOT16:
5282 case R_MIPS_CALL16:
5283 case R_MIPS_CALL_HI16:
5284 case R_MIPS_CALL_LO16:
5285 case R_MIPS_GOT_HI16:
5286 case R_MIPS_GOT_LO16:
5287 case R_MIPS_GOT_PAGE:
5288 case R_MIPS_GOT_OFST:
5289 case R_MIPS_GOT_DISP:
5290 if (dynobj == NULL)
5291 elf_hash_table (info)->dynobj = dynobj = abfd;
5292 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5293 return FALSE;
5294 g = mips_elf_got_info (dynobj, &sgot);
5295 break;
5297 case R_MIPS_32:
5298 case R_MIPS_REL32:
5299 case R_MIPS_64:
5300 if (dynobj == NULL
5301 && (info->shared || h != NULL)
5302 && (sec->flags & SEC_ALLOC) != 0)
5303 elf_hash_table (info)->dynobj = dynobj = abfd;
5304 break;
5306 default:
5307 break;
5311 if (!h && (r_type == R_MIPS_CALL_LO16
5312 || r_type == R_MIPS_GOT_LO16
5313 || r_type == R_MIPS_GOT_DISP))
5315 /* We may need a local GOT entry for this relocation. We
5316 don't count R_MIPS_GOT_PAGE because we can estimate the
5317 maximum number of pages needed by looking at the size of
5318 the segment. Similar comments apply to R_MIPS_GOT16 and
5319 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5320 R_MIPS_CALL_HI16 because these are always followed by an
5321 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5322 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5323 rel->r_addend, g))
5324 return FALSE;
5327 switch (r_type)
5329 case R_MIPS_CALL16:
5330 if (h == NULL)
5332 (*_bfd_error_handler)
5333 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5334 abfd, (unsigned long) rel->r_offset);
5335 bfd_set_error (bfd_error_bad_value);
5336 return FALSE;
5338 /* Fall through. */
5340 case R_MIPS_CALL_HI16:
5341 case R_MIPS_CALL_LO16:
5342 if (h != NULL)
5344 /* This symbol requires a global offset table entry. */
5345 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5346 return FALSE;
5348 /* We need a stub, not a plt entry for the undefined
5349 function. But we record it as if it needs plt. See
5350 _bfd_elf_adjust_dynamic_symbol. */
5351 h->needs_plt = 1;
5352 h->type = STT_FUNC;
5354 break;
5356 case R_MIPS_GOT_PAGE:
5357 /* If this is a global, overridable symbol, GOT_PAGE will
5358 decay to GOT_DISP, so we'll need a GOT entry for it. */
5359 if (h == NULL)
5360 break;
5361 else
5363 struct mips_elf_link_hash_entry *hmips =
5364 (struct mips_elf_link_hash_entry *) h;
5366 while (hmips->root.root.type == bfd_link_hash_indirect
5367 || hmips->root.root.type == bfd_link_hash_warning)
5368 hmips = (struct mips_elf_link_hash_entry *)
5369 hmips->root.root.u.i.link;
5371 if (hmips->root.def_regular
5372 && ! (info->shared && ! info->symbolic
5373 && ! hmips->root.forced_local))
5374 break;
5376 /* Fall through. */
5378 case R_MIPS_GOT16:
5379 case R_MIPS_GOT_HI16:
5380 case R_MIPS_GOT_LO16:
5381 case R_MIPS_GOT_DISP:
5382 /* This symbol requires a global offset table entry. */
5383 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5384 return FALSE;
5385 break;
5387 case R_MIPS_32:
5388 case R_MIPS_REL32:
5389 case R_MIPS_64:
5390 if ((info->shared || h != NULL)
5391 && (sec->flags & SEC_ALLOC) != 0)
5393 if (sreloc == NULL)
5395 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5396 if (sreloc == NULL)
5397 return FALSE;
5399 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5400 if (info->shared)
5402 /* When creating a shared object, we must copy these
5403 reloc types into the output file as R_MIPS_REL32
5404 relocs. We make room for this reloc in the
5405 .rel.dyn reloc section. */
5406 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5407 if ((sec->flags & MIPS_READONLY_SECTION)
5408 == MIPS_READONLY_SECTION)
5409 /* We tell the dynamic linker that there are
5410 relocations against the text segment. */
5411 info->flags |= DF_TEXTREL;
5413 else
5415 struct mips_elf_link_hash_entry *hmips;
5417 /* We only need to copy this reloc if the symbol is
5418 defined in a dynamic object. */
5419 hmips = (struct mips_elf_link_hash_entry *) h;
5420 ++hmips->possibly_dynamic_relocs;
5421 if ((sec->flags & MIPS_READONLY_SECTION)
5422 == MIPS_READONLY_SECTION)
5423 /* We need it to tell the dynamic linker if there
5424 are relocations against the text segment. */
5425 hmips->readonly_reloc = TRUE;
5428 /* Even though we don't directly need a GOT entry for
5429 this symbol, a symbol must have a dynamic symbol
5430 table index greater that DT_MIPS_GOTSYM if there are
5431 dynamic relocations against it. */
5432 if (h != NULL)
5434 if (dynobj == NULL)
5435 elf_hash_table (info)->dynobj = dynobj = abfd;
5436 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5437 return FALSE;
5438 g = mips_elf_got_info (dynobj, &sgot);
5439 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5440 return FALSE;
5444 if (SGI_COMPAT (abfd))
5445 mips_elf_hash_table (info)->compact_rel_size +=
5446 sizeof (Elf32_External_crinfo);
5447 break;
5449 case R_MIPS_26:
5450 case R_MIPS_GPREL16:
5451 case R_MIPS_LITERAL:
5452 case R_MIPS_GPREL32:
5453 if (SGI_COMPAT (abfd))
5454 mips_elf_hash_table (info)->compact_rel_size +=
5455 sizeof (Elf32_External_crinfo);
5456 break;
5458 /* This relocation describes the C++ object vtable hierarchy.
5459 Reconstruct it for later use during GC. */
5460 case R_MIPS_GNU_VTINHERIT:
5461 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5462 return FALSE;
5463 break;
5465 /* This relocation describes which C++ vtable entries are actually
5466 used. Record for later use during GC. */
5467 case R_MIPS_GNU_VTENTRY:
5468 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5469 return FALSE;
5470 break;
5472 default:
5473 break;
5476 /* We must not create a stub for a symbol that has relocations
5477 related to taking the function's address. */
5478 switch (r_type)
5480 default:
5481 if (h != NULL)
5483 struct mips_elf_link_hash_entry *mh;
5485 mh = (struct mips_elf_link_hash_entry *) h;
5486 mh->no_fn_stub = TRUE;
5488 break;
5489 case R_MIPS_CALL16:
5490 case R_MIPS_CALL_HI16:
5491 case R_MIPS_CALL_LO16:
5492 case R_MIPS_JALR:
5493 break;
5496 /* If this reloc is not a 16 bit call, and it has a global
5497 symbol, then we will need the fn_stub if there is one.
5498 References from a stub section do not count. */
5499 if (h != NULL
5500 && r_type != R_MIPS16_26
5501 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5502 sizeof FN_STUB - 1) != 0
5503 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5504 sizeof CALL_STUB - 1) != 0
5505 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5506 sizeof CALL_FP_STUB - 1) != 0)
5508 struct mips_elf_link_hash_entry *mh;
5510 mh = (struct mips_elf_link_hash_entry *) h;
5511 mh->need_fn_stub = TRUE;
5515 return TRUE;
5518 bfd_boolean
5519 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5520 struct bfd_link_info *link_info,
5521 bfd_boolean *again)
5523 Elf_Internal_Rela *internal_relocs;
5524 Elf_Internal_Rela *irel, *irelend;
5525 Elf_Internal_Shdr *symtab_hdr;
5526 bfd_byte *contents = NULL;
5527 size_t extsymoff;
5528 bfd_boolean changed_contents = FALSE;
5529 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5530 Elf_Internal_Sym *isymbuf = NULL;
5532 /* We are not currently changing any sizes, so only one pass. */
5533 *again = FALSE;
5535 if (link_info->relocatable)
5536 return TRUE;
5538 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5539 link_info->keep_memory);
5540 if (internal_relocs == NULL)
5541 return TRUE;
5543 irelend = internal_relocs + sec->reloc_count
5544 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5546 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5548 for (irel = internal_relocs; irel < irelend; irel++)
5550 bfd_vma symval;
5551 bfd_signed_vma sym_offset;
5552 unsigned int r_type;
5553 unsigned long r_symndx;
5554 asection *sym_sec;
5555 unsigned long instruction;
5557 /* Turn jalr into bgezal, and jr into beq, if they're marked
5558 with a JALR relocation, that indicate where they jump to.
5559 This saves some pipeline bubbles. */
5560 r_type = ELF_R_TYPE (abfd, irel->r_info);
5561 if (r_type != R_MIPS_JALR)
5562 continue;
5564 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5565 /* Compute the address of the jump target. */
5566 if (r_symndx >= extsymoff)
5568 struct mips_elf_link_hash_entry *h
5569 = ((struct mips_elf_link_hash_entry *)
5570 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5572 while (h->root.root.type == bfd_link_hash_indirect
5573 || h->root.root.type == bfd_link_hash_warning)
5574 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5576 /* If a symbol is undefined, or if it may be overridden,
5577 skip it. */
5578 if (! ((h->root.root.type == bfd_link_hash_defined
5579 || h->root.root.type == bfd_link_hash_defweak)
5580 && h->root.root.u.def.section)
5581 || (link_info->shared && ! link_info->symbolic
5582 && !h->root.forced_local))
5583 continue;
5585 sym_sec = h->root.root.u.def.section;
5586 if (sym_sec->output_section)
5587 symval = (h->root.root.u.def.value
5588 + sym_sec->output_section->vma
5589 + sym_sec->output_offset);
5590 else
5591 symval = h->root.root.u.def.value;
5593 else
5595 Elf_Internal_Sym *isym;
5597 /* Read this BFD's symbols if we haven't done so already. */
5598 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5600 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5601 if (isymbuf == NULL)
5602 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5603 symtab_hdr->sh_info, 0,
5604 NULL, NULL, NULL);
5605 if (isymbuf == NULL)
5606 goto relax_return;
5609 isym = isymbuf + r_symndx;
5610 if (isym->st_shndx == SHN_UNDEF)
5611 continue;
5612 else if (isym->st_shndx == SHN_ABS)
5613 sym_sec = bfd_abs_section_ptr;
5614 else if (isym->st_shndx == SHN_COMMON)
5615 sym_sec = bfd_com_section_ptr;
5616 else
5617 sym_sec
5618 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5619 symval = isym->st_value
5620 + sym_sec->output_section->vma
5621 + sym_sec->output_offset;
5624 /* Compute branch offset, from delay slot of the jump to the
5625 branch target. */
5626 sym_offset = (symval + irel->r_addend)
5627 - (sec_start + irel->r_offset + 4);
5629 /* Branch offset must be properly aligned. */
5630 if ((sym_offset & 3) != 0)
5631 continue;
5633 sym_offset >>= 2;
5635 /* Check that it's in range. */
5636 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5637 continue;
5639 /* Get the section contents if we haven't done so already. */
5640 if (contents == NULL)
5642 /* Get cached copy if it exists. */
5643 if (elf_section_data (sec)->this_hdr.contents != NULL)
5644 contents = elf_section_data (sec)->this_hdr.contents;
5645 else
5647 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5648 goto relax_return;
5652 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5654 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5655 if ((instruction & 0xfc1fffff) == 0x0000f809)
5656 instruction = 0x04110000;
5657 /* If it was jr <reg>, turn it into b <target>. */
5658 else if ((instruction & 0xfc1fffff) == 0x00000008)
5659 instruction = 0x10000000;
5660 else
5661 continue;
5663 instruction |= (sym_offset & 0xffff);
5664 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5665 changed_contents = TRUE;
5668 if (contents != NULL
5669 && elf_section_data (sec)->this_hdr.contents != contents)
5671 if (!changed_contents && !link_info->keep_memory)
5672 free (contents);
5673 else
5675 /* Cache the section contents for elf_link_input_bfd. */
5676 elf_section_data (sec)->this_hdr.contents = contents;
5679 return TRUE;
5681 relax_return:
5682 if (contents != NULL
5683 && elf_section_data (sec)->this_hdr.contents != contents)
5684 free (contents);
5685 return FALSE;
5688 /* Adjust a symbol defined by a dynamic object and referenced by a
5689 regular object. The current definition is in some section of the
5690 dynamic object, but we're not including those sections. We have to
5691 change the definition to something the rest of the link can
5692 understand. */
5694 bfd_boolean
5695 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5696 struct elf_link_hash_entry *h)
5698 bfd *dynobj;
5699 struct mips_elf_link_hash_entry *hmips;
5700 asection *s;
5702 dynobj = elf_hash_table (info)->dynobj;
5704 /* Make sure we know what is going on here. */
5705 BFD_ASSERT (dynobj != NULL
5706 && (h->needs_plt
5707 || h->u.weakdef != NULL
5708 || (h->def_dynamic
5709 && h->ref_regular
5710 && !h->def_regular)));
5712 /* If this symbol is defined in a dynamic object, we need to copy
5713 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5714 file. */
5715 hmips = (struct mips_elf_link_hash_entry *) h;
5716 if (! info->relocatable
5717 && hmips->possibly_dynamic_relocs != 0
5718 && (h->root.type == bfd_link_hash_defweak
5719 || !h->def_regular))
5721 mips_elf_allocate_dynamic_relocations (dynobj,
5722 hmips->possibly_dynamic_relocs);
5723 if (hmips->readonly_reloc)
5724 /* We tell the dynamic linker that there are relocations
5725 against the text segment. */
5726 info->flags |= DF_TEXTREL;
5729 /* For a function, create a stub, if allowed. */
5730 if (! hmips->no_fn_stub
5731 && h->needs_plt)
5733 if (! elf_hash_table (info)->dynamic_sections_created)
5734 return TRUE;
5736 /* If this symbol is not defined in a regular file, then set
5737 the symbol to the stub location. This is required to make
5738 function pointers compare as equal between the normal
5739 executable and the shared library. */
5740 if (!h->def_regular)
5742 /* We need .stub section. */
5743 s = bfd_get_section_by_name (dynobj,
5744 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5745 BFD_ASSERT (s != NULL);
5747 h->root.u.def.section = s;
5748 h->root.u.def.value = s->size;
5750 /* XXX Write this stub address somewhere. */
5751 h->plt.offset = s->size;
5753 /* Make room for this stub code. */
5754 s->size += MIPS_FUNCTION_STUB_SIZE;
5756 /* The last half word of the stub will be filled with the index
5757 of this symbol in .dynsym section. */
5758 return TRUE;
5761 else if ((h->type == STT_FUNC)
5762 && !h->needs_plt)
5764 /* This will set the entry for this symbol in the GOT to 0, and
5765 the dynamic linker will take care of this. */
5766 h->root.u.def.value = 0;
5767 return TRUE;
5770 /* If this is a weak symbol, and there is a real definition, the
5771 processor independent code will have arranged for us to see the
5772 real definition first, and we can just use the same value. */
5773 if (h->u.weakdef != NULL)
5775 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5776 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5777 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5778 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5779 return TRUE;
5782 /* This is a reference to a symbol defined by a dynamic object which
5783 is not a function. */
5785 return TRUE;
5788 /* This function is called after all the input files have been read,
5789 and the input sections have been assigned to output sections. We
5790 check for any mips16 stub sections that we can discard. */
5792 bfd_boolean
5793 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5794 struct bfd_link_info *info)
5796 asection *ri;
5798 bfd *dynobj;
5799 asection *s;
5800 struct mips_got_info *g;
5801 int i;
5802 bfd_size_type loadable_size = 0;
5803 bfd_size_type local_gotno;
5804 bfd *sub;
5806 /* The .reginfo section has a fixed size. */
5807 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5808 if (ri != NULL)
5809 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5811 if (! (info->relocatable
5812 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5813 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5814 mips_elf_check_mips16_stubs, NULL);
5816 dynobj = elf_hash_table (info)->dynobj;
5817 if (dynobj == NULL)
5818 /* Relocatable links don't have it. */
5819 return TRUE;
5821 g = mips_elf_got_info (dynobj, &s);
5822 if (s == NULL)
5823 return TRUE;
5825 /* Calculate the total loadable size of the output. That
5826 will give us the maximum number of GOT_PAGE entries
5827 required. */
5828 for (sub = info->input_bfds; sub; sub = sub->link_next)
5830 asection *subsection;
5832 for (subsection = sub->sections;
5833 subsection;
5834 subsection = subsection->next)
5836 if ((subsection->flags & SEC_ALLOC) == 0)
5837 continue;
5838 loadable_size += ((subsection->size + 0xf)
5839 &~ (bfd_size_type) 0xf);
5843 /* There has to be a global GOT entry for every symbol with
5844 a dynamic symbol table index of DT_MIPS_GOTSYM or
5845 higher. Therefore, it make sense to put those symbols
5846 that need GOT entries at the end of the symbol table. We
5847 do that here. */
5848 if (! mips_elf_sort_hash_table (info, 1))
5849 return FALSE;
5851 if (g->global_gotsym != NULL)
5852 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5853 else
5854 /* If there are no global symbols, or none requiring
5855 relocations, then GLOBAL_GOTSYM will be NULL. */
5856 i = 0;
5858 /* In the worst case, we'll get one stub per dynamic symbol, plus
5859 one to account for the dummy entry at the end required by IRIX
5860 rld. */
5861 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5863 /* Assume there are two loadable segments consisting of
5864 contiguous sections. Is 5 enough? */
5865 local_gotno = (loadable_size >> 16) + 5;
5867 g->local_gotno += local_gotno;
5868 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5870 g->global_gotno = i;
5871 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5873 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5874 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5875 return FALSE;
5877 return TRUE;
5880 /* Set the sizes of the dynamic sections. */
5882 bfd_boolean
5883 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5884 struct bfd_link_info *info)
5886 bfd *dynobj;
5887 asection *s;
5888 bfd_boolean reltext;
5890 dynobj = elf_hash_table (info)->dynobj;
5891 BFD_ASSERT (dynobj != NULL);
5893 if (elf_hash_table (info)->dynamic_sections_created)
5895 /* Set the contents of the .interp section to the interpreter. */
5896 if (info->executable)
5898 s = bfd_get_section_by_name (dynobj, ".interp");
5899 BFD_ASSERT (s != NULL);
5900 s->size
5901 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5902 s->contents
5903 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5907 /* The check_relocs and adjust_dynamic_symbol entry points have
5908 determined the sizes of the various dynamic sections. Allocate
5909 memory for them. */
5910 reltext = FALSE;
5911 for (s = dynobj->sections; s != NULL; s = s->next)
5913 const char *name;
5914 bfd_boolean strip;
5916 /* It's OK to base decisions on the section name, because none
5917 of the dynobj section names depend upon the input files. */
5918 name = bfd_get_section_name (dynobj, s);
5920 if ((s->flags & SEC_LINKER_CREATED) == 0)
5921 continue;
5923 strip = FALSE;
5925 if (strncmp (name, ".rel", 4) == 0)
5927 if (s->size == 0)
5929 /* We only strip the section if the output section name
5930 has the same name. Otherwise, there might be several
5931 input sections for this output section. FIXME: This
5932 code is probably not needed these days anyhow, since
5933 the linker now does not create empty output sections. */
5934 if (s->output_section != NULL
5935 && strcmp (name,
5936 bfd_get_section_name (s->output_section->owner,
5937 s->output_section)) == 0)
5938 strip = TRUE;
5940 else
5942 const char *outname;
5943 asection *target;
5945 /* If this relocation section applies to a read only
5946 section, then we probably need a DT_TEXTREL entry.
5947 If the relocation section is .rel.dyn, we always
5948 assert a DT_TEXTREL entry rather than testing whether
5949 there exists a relocation to a read only section or
5950 not. */
5951 outname = bfd_get_section_name (output_bfd,
5952 s->output_section);
5953 target = bfd_get_section_by_name (output_bfd, outname + 4);
5954 if ((target != NULL
5955 && (target->flags & SEC_READONLY) != 0
5956 && (target->flags & SEC_ALLOC) != 0)
5957 || strcmp (outname, ".rel.dyn") == 0)
5958 reltext = TRUE;
5960 /* We use the reloc_count field as a counter if we need
5961 to copy relocs into the output file. */
5962 if (strcmp (name, ".rel.dyn") != 0)
5963 s->reloc_count = 0;
5965 /* If combreloc is enabled, elf_link_sort_relocs() will
5966 sort relocations, but in a different way than we do,
5967 and before we're done creating relocations. Also, it
5968 will move them around between input sections'
5969 relocation's contents, so our sorting would be
5970 broken, so don't let it run. */
5971 info->combreloc = 0;
5974 else if (strncmp (name, ".got", 4) == 0)
5976 /* _bfd_mips_elf_always_size_sections() has already done
5977 most of the work, but some symbols may have been mapped
5978 to versions that we must now resolve in the got_entries
5979 hash tables. */
5980 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5981 struct mips_got_info *g = gg;
5982 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5983 unsigned int needed_relocs = 0;
5985 if (gg->next)
5987 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5988 set_got_offset_arg.info = info;
5990 mips_elf_resolve_final_got_entries (gg);
5991 for (g = gg->next; g && g->next != gg; g = g->next)
5993 unsigned int save_assign;
5995 mips_elf_resolve_final_got_entries (g);
5997 /* Assign offsets to global GOT entries. */
5998 save_assign = g->assigned_gotno;
5999 g->assigned_gotno = g->local_gotno;
6000 set_got_offset_arg.g = g;
6001 set_got_offset_arg.needed_relocs = 0;
6002 htab_traverse (g->got_entries,
6003 mips_elf_set_global_got_offset,
6004 &set_got_offset_arg);
6005 needed_relocs += set_got_offset_arg.needed_relocs;
6006 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6007 <= g->global_gotno);
6009 g->assigned_gotno = save_assign;
6010 if (info->shared)
6012 needed_relocs += g->local_gotno - g->assigned_gotno;
6013 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6014 + g->next->global_gotno
6015 + MIPS_RESERVED_GOTNO);
6019 if (needed_relocs)
6020 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6023 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6025 /* IRIX rld assumes that the function stub isn't at the end
6026 of .text section. So put a dummy. XXX */
6027 s->size += MIPS_FUNCTION_STUB_SIZE;
6029 else if (! info->shared
6030 && ! mips_elf_hash_table (info)->use_rld_obj_head
6031 && strncmp (name, ".rld_map", 8) == 0)
6033 /* We add a room for __rld_map. It will be filled in by the
6034 rtld to contain a pointer to the _r_debug structure. */
6035 s->size += 4;
6037 else if (SGI_COMPAT (output_bfd)
6038 && strncmp (name, ".compact_rel", 12) == 0)
6039 s->size += mips_elf_hash_table (info)->compact_rel_size;
6040 else if (strncmp (name, ".init", 5) != 0)
6042 /* It's not one of our sections, so don't allocate space. */
6043 continue;
6046 if (strip)
6048 _bfd_strip_section_from_output (info, s);
6049 continue;
6052 /* Allocate memory for the section contents. */
6053 s->contents = bfd_zalloc (dynobj, s->size);
6054 if (s->contents == NULL && s->size != 0)
6056 bfd_set_error (bfd_error_no_memory);
6057 return FALSE;
6061 if (elf_hash_table (info)->dynamic_sections_created)
6063 /* Add some entries to the .dynamic section. We fill in the
6064 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6065 must add the entries now so that we get the correct size for
6066 the .dynamic section. The DT_DEBUG entry is filled in by the
6067 dynamic linker and used by the debugger. */
6068 if (! info->shared)
6070 /* SGI object has the equivalence of DT_DEBUG in the
6071 DT_MIPS_RLD_MAP entry. */
6072 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6073 return FALSE;
6074 if (!SGI_COMPAT (output_bfd))
6076 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6077 return FALSE;
6080 else
6082 /* Shared libraries on traditional mips have DT_DEBUG. */
6083 if (!SGI_COMPAT (output_bfd))
6085 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6086 return FALSE;
6090 if (reltext && SGI_COMPAT (output_bfd))
6091 info->flags |= DF_TEXTREL;
6093 if ((info->flags & DF_TEXTREL) != 0)
6095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6096 return FALSE;
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6100 return FALSE;
6102 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6105 return FALSE;
6107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6108 return FALSE;
6110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6111 return FALSE;
6114 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6115 return FALSE;
6117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6118 return FALSE;
6120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6121 return FALSE;
6123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6124 return FALSE;
6126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6127 return FALSE;
6129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6130 return FALSE;
6132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6133 return FALSE;
6135 if (IRIX_COMPAT (dynobj) == ict_irix5
6136 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6137 return FALSE;
6139 if (IRIX_COMPAT (dynobj) == ict_irix6
6140 && (bfd_get_section_by_name
6141 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6142 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6143 return FALSE;
6146 return TRUE;
6149 /* Relocate a MIPS ELF section. */
6151 bfd_boolean
6152 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6153 bfd *input_bfd, asection *input_section,
6154 bfd_byte *contents, Elf_Internal_Rela *relocs,
6155 Elf_Internal_Sym *local_syms,
6156 asection **local_sections)
6158 Elf_Internal_Rela *rel;
6159 const Elf_Internal_Rela *relend;
6160 bfd_vma addend = 0;
6161 bfd_boolean use_saved_addend_p = FALSE;
6162 const struct elf_backend_data *bed;
6164 bed = get_elf_backend_data (output_bfd);
6165 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6166 for (rel = relocs; rel < relend; ++rel)
6168 const char *name;
6169 bfd_vma value;
6170 reloc_howto_type *howto;
6171 bfd_boolean require_jalx;
6172 /* TRUE if the relocation is a RELA relocation, rather than a
6173 REL relocation. */
6174 bfd_boolean rela_relocation_p = TRUE;
6175 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6176 const char *msg;
6178 /* Find the relocation howto for this relocation. */
6179 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6181 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6182 64-bit code, but make sure all their addresses are in the
6183 lowermost or uppermost 32-bit section of the 64-bit address
6184 space. Thus, when they use an R_MIPS_64 they mean what is
6185 usually meant by R_MIPS_32, with the exception that the
6186 stored value is sign-extended to 64 bits. */
6187 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6189 /* On big-endian systems, we need to lie about the position
6190 of the reloc. */
6191 if (bfd_big_endian (input_bfd))
6192 rel->r_offset += 4;
6194 else
6195 /* NewABI defaults to RELA relocations. */
6196 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6197 NEWABI_P (input_bfd)
6198 && (MIPS_RELOC_RELA_P
6199 (input_bfd, input_section,
6200 rel - relocs)));
6202 if (!use_saved_addend_p)
6204 Elf_Internal_Shdr *rel_hdr;
6206 /* If these relocations were originally of the REL variety,
6207 we must pull the addend out of the field that will be
6208 relocated. Otherwise, we simply use the contents of the
6209 RELA relocation. To determine which flavor or relocation
6210 this is, we depend on the fact that the INPUT_SECTION's
6211 REL_HDR is read before its REL_HDR2. */
6212 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6213 if ((size_t) (rel - relocs)
6214 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6215 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6216 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6218 bfd_byte *location = contents + rel->r_offset;
6220 /* Note that this is a REL relocation. */
6221 rela_relocation_p = FALSE;
6223 /* Get the addend, which is stored in the input file. */
6224 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
6225 location);
6226 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6227 contents);
6228 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
6229 location);
6231 addend &= howto->src_mask;
6233 /* For some kinds of relocations, the ADDEND is a
6234 combination of the addend stored in two different
6235 relocations. */
6236 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
6237 || (r_type == R_MIPS_GOT16
6238 && mips_elf_local_relocation_p (input_bfd, rel,
6239 local_sections, FALSE)))
6241 bfd_vma l;
6242 const Elf_Internal_Rela *lo16_relocation;
6243 reloc_howto_type *lo16_howto;
6244 bfd_byte *lo16_location;
6245 int lo16_type;
6247 if (r_type == R_MIPS16_HI16)
6248 lo16_type = R_MIPS16_LO16;
6249 else
6250 lo16_type = R_MIPS_LO16;
6252 /* The combined value is the sum of the HI16 addend,
6253 left-shifted by sixteen bits, and the LO16
6254 addend, sign extended. (Usually, the code does
6255 a `lui' of the HI16 value, and then an `addiu' of
6256 the LO16 value.)
6258 Scan ahead to find a matching LO16 relocation.
6260 According to the MIPS ELF ABI, the R_MIPS_LO16
6261 relocation must be immediately following.
6262 However, for the IRIX6 ABI, the next relocation
6263 may be a composed relocation consisting of
6264 several relocations for the same address. In
6265 that case, the R_MIPS_LO16 relocation may occur
6266 as one of these. We permit a similar extension
6267 in general, as that is useful for GCC. */
6268 lo16_relocation = mips_elf_next_relocation (input_bfd,
6269 lo16_type,
6270 rel, relend);
6271 if (lo16_relocation == NULL)
6272 return FALSE;
6274 lo16_location = contents + lo16_relocation->r_offset;
6276 /* Obtain the addend kept there. */
6277 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6278 lo16_type, FALSE);
6279 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
6280 lo16_location);
6281 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6282 input_bfd, contents);
6283 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
6284 lo16_location);
6285 l &= lo16_howto->src_mask;
6286 l <<= lo16_howto->rightshift;
6287 l = _bfd_mips_elf_sign_extend (l, 16);
6289 addend <<= 16;
6291 /* Compute the combined addend. */
6292 addend += l;
6294 else
6295 addend <<= howto->rightshift;
6297 else
6298 addend = rel->r_addend;
6301 if (info->relocatable)
6303 Elf_Internal_Sym *sym;
6304 unsigned long r_symndx;
6306 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6307 && bfd_big_endian (input_bfd))
6308 rel->r_offset -= 4;
6310 /* Since we're just relocating, all we need to do is copy
6311 the relocations back out to the object file, unless
6312 they're against a section symbol, in which case we need
6313 to adjust by the section offset, or unless they're GP
6314 relative in which case we need to adjust by the amount
6315 that we're adjusting GP in this relocatable object. */
6317 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6318 FALSE))
6319 /* There's nothing to do for non-local relocations. */
6320 continue;
6322 if (r_type == R_MIPS16_GPREL
6323 || r_type == R_MIPS_GPREL16
6324 || r_type == R_MIPS_GPREL32
6325 || r_type == R_MIPS_LITERAL)
6326 addend -= (_bfd_get_gp_value (output_bfd)
6327 - _bfd_get_gp_value (input_bfd));
6329 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6330 sym = local_syms + r_symndx;
6331 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6332 /* Adjust the addend appropriately. */
6333 addend += local_sections[r_symndx]->output_offset;
6335 if (rela_relocation_p)
6336 /* If this is a RELA relocation, just update the addend. */
6337 rel->r_addend = addend;
6338 else
6340 if (r_type == R_MIPS_HI16
6341 || r_type == R_MIPS_GOT16)
6342 addend = mips_elf_high (addend);
6343 else if (r_type == R_MIPS_HIGHER)
6344 addend = mips_elf_higher (addend);
6345 else if (r_type == R_MIPS_HIGHEST)
6346 addend = mips_elf_highest (addend);
6347 else
6348 addend >>= howto->rightshift;
6350 /* We use the source mask, rather than the destination
6351 mask because the place to which we are writing will be
6352 source of the addend in the final link. */
6353 addend &= howto->src_mask;
6355 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6356 /* See the comment above about using R_MIPS_64 in the 32-bit
6357 ABI. Here, we need to update the addend. It would be
6358 possible to get away with just using the R_MIPS_32 reloc
6359 but for endianness. */
6361 bfd_vma sign_bits;
6362 bfd_vma low_bits;
6363 bfd_vma high_bits;
6365 if (addend & ((bfd_vma) 1 << 31))
6366 #ifdef BFD64
6367 sign_bits = ((bfd_vma) 1 << 32) - 1;
6368 #else
6369 sign_bits = -1;
6370 #endif
6371 else
6372 sign_bits = 0;
6374 /* If we don't know that we have a 64-bit type,
6375 do two separate stores. */
6376 if (bfd_big_endian (input_bfd))
6378 /* Store the sign-bits (which are most significant)
6379 first. */
6380 low_bits = sign_bits;
6381 high_bits = addend;
6383 else
6385 low_bits = addend;
6386 high_bits = sign_bits;
6388 bfd_put_32 (input_bfd, low_bits,
6389 contents + rel->r_offset);
6390 bfd_put_32 (input_bfd, high_bits,
6391 contents + rel->r_offset + 4);
6392 continue;
6395 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6396 input_bfd, input_section,
6397 contents, FALSE))
6398 return FALSE;
6401 /* Go on to the next relocation. */
6402 continue;
6405 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6406 relocations for the same offset. In that case we are
6407 supposed to treat the output of each relocation as the addend
6408 for the next. */
6409 if (rel + 1 < relend
6410 && rel->r_offset == rel[1].r_offset
6411 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6412 use_saved_addend_p = TRUE;
6413 else
6414 use_saved_addend_p = FALSE;
6416 /* Figure out what value we are supposed to relocate. */
6417 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6418 input_section, info, rel,
6419 addend, howto, local_syms,
6420 local_sections, &value,
6421 &name, &require_jalx,
6422 use_saved_addend_p))
6424 case bfd_reloc_continue:
6425 /* There's nothing to do. */
6426 continue;
6428 case bfd_reloc_undefined:
6429 /* mips_elf_calculate_relocation already called the
6430 undefined_symbol callback. There's no real point in
6431 trying to perform the relocation at this point, so we
6432 just skip ahead to the next relocation. */
6433 continue;
6435 case bfd_reloc_notsupported:
6436 msg = _("internal error: unsupported relocation error");
6437 info->callbacks->warning
6438 (info, msg, name, input_bfd, input_section, rel->r_offset);
6439 return FALSE;
6441 case bfd_reloc_overflow:
6442 if (use_saved_addend_p)
6443 /* Ignore overflow until we reach the last relocation for
6444 a given location. */
6446 else
6448 BFD_ASSERT (name != NULL);
6449 if (! ((*info->callbacks->reloc_overflow)
6450 (info, NULL, name, howto->name, (bfd_vma) 0,
6451 input_bfd, input_section, rel->r_offset)))
6452 return FALSE;
6454 break;
6456 case bfd_reloc_ok:
6457 break;
6459 default:
6460 abort ();
6461 break;
6464 /* If we've got another relocation for the address, keep going
6465 until we reach the last one. */
6466 if (use_saved_addend_p)
6468 addend = value;
6469 continue;
6472 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6473 /* See the comment above about using R_MIPS_64 in the 32-bit
6474 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6475 that calculated the right value. Now, however, we
6476 sign-extend the 32-bit result to 64-bits, and store it as a
6477 64-bit value. We are especially generous here in that we
6478 go to extreme lengths to support this usage on systems with
6479 only a 32-bit VMA. */
6481 bfd_vma sign_bits;
6482 bfd_vma low_bits;
6483 bfd_vma high_bits;
6485 if (value & ((bfd_vma) 1 << 31))
6486 #ifdef BFD64
6487 sign_bits = ((bfd_vma) 1 << 32) - 1;
6488 #else
6489 sign_bits = -1;
6490 #endif
6491 else
6492 sign_bits = 0;
6494 /* If we don't know that we have a 64-bit type,
6495 do two separate stores. */
6496 if (bfd_big_endian (input_bfd))
6498 /* Undo what we did above. */
6499 rel->r_offset -= 4;
6500 /* Store the sign-bits (which are most significant)
6501 first. */
6502 low_bits = sign_bits;
6503 high_bits = value;
6505 else
6507 low_bits = value;
6508 high_bits = sign_bits;
6510 bfd_put_32 (input_bfd, low_bits,
6511 contents + rel->r_offset);
6512 bfd_put_32 (input_bfd, high_bits,
6513 contents + rel->r_offset + 4);
6514 continue;
6517 /* Actually perform the relocation. */
6518 if (! mips_elf_perform_relocation (info, howto, rel, value,
6519 input_bfd, input_section,
6520 contents, require_jalx))
6521 return FALSE;
6524 return TRUE;
6527 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6528 adjust it appropriately now. */
6530 static void
6531 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6532 const char *name, Elf_Internal_Sym *sym)
6534 /* The linker script takes care of providing names and values for
6535 these, but we must place them into the right sections. */
6536 static const char* const text_section_symbols[] = {
6537 "_ftext",
6538 "_etext",
6539 "__dso_displacement",
6540 "__elf_header",
6541 "__program_header_table",
6542 NULL
6545 static const char* const data_section_symbols[] = {
6546 "_fdata",
6547 "_edata",
6548 "_end",
6549 "_fbss",
6550 NULL
6553 const char* const *p;
6554 int i;
6556 for (i = 0; i < 2; ++i)
6557 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6559 ++p)
6560 if (strcmp (*p, name) == 0)
6562 /* All of these symbols are given type STT_SECTION by the
6563 IRIX6 linker. */
6564 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6565 sym->st_other = STO_PROTECTED;
6567 /* The IRIX linker puts these symbols in special sections. */
6568 if (i == 0)
6569 sym->st_shndx = SHN_MIPS_TEXT;
6570 else
6571 sym->st_shndx = SHN_MIPS_DATA;
6573 break;
6577 /* Finish up dynamic symbol handling. We set the contents of various
6578 dynamic sections here. */
6580 bfd_boolean
6581 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6582 struct bfd_link_info *info,
6583 struct elf_link_hash_entry *h,
6584 Elf_Internal_Sym *sym)
6586 bfd *dynobj;
6587 asection *sgot;
6588 struct mips_got_info *g, *gg;
6589 const char *name;
6591 dynobj = elf_hash_table (info)->dynobj;
6593 if (h->plt.offset != MINUS_ONE)
6595 asection *s;
6596 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6598 /* This symbol has a stub. Set it up. */
6600 BFD_ASSERT (h->dynindx != -1);
6602 s = bfd_get_section_by_name (dynobj,
6603 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6604 BFD_ASSERT (s != NULL);
6606 /* FIXME: Can h->dynindex be more than 64K? */
6607 if (h->dynindx & 0xffff0000)
6608 return FALSE;
6610 /* Fill the stub. */
6611 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6612 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6613 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6614 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6616 BFD_ASSERT (h->plt.offset <= s->size);
6617 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6619 /* Mark the symbol as undefined. plt.offset != -1 occurs
6620 only for the referenced symbol. */
6621 sym->st_shndx = SHN_UNDEF;
6623 /* The run-time linker uses the st_value field of the symbol
6624 to reset the global offset table entry for this external
6625 to its stub address when unlinking a shared object. */
6626 sym->st_value = (s->output_section->vma + s->output_offset
6627 + h->plt.offset);
6630 BFD_ASSERT (h->dynindx != -1
6631 || h->forced_local);
6633 sgot = mips_elf_got_section (dynobj, FALSE);
6634 BFD_ASSERT (sgot != NULL);
6635 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6636 g = mips_elf_section_data (sgot)->u.got_info;
6637 BFD_ASSERT (g != NULL);
6639 /* Run through the global symbol table, creating GOT entries for all
6640 the symbols that need them. */
6641 if (g->global_gotsym != NULL
6642 && h->dynindx >= g->global_gotsym->dynindx)
6644 bfd_vma offset;
6645 bfd_vma value;
6647 value = sym->st_value;
6648 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6649 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6652 if (g->next && h->dynindx != -1)
6654 struct mips_got_entry e, *p;
6655 bfd_vma entry;
6656 bfd_vma offset;
6658 gg = g;
6660 e.abfd = output_bfd;
6661 e.symndx = -1;
6662 e.d.h = (struct mips_elf_link_hash_entry *)h;
6664 for (g = g->next; g->next != gg; g = g->next)
6666 if (g->got_entries
6667 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6668 &e)))
6670 offset = p->gotidx;
6671 if (info->shared
6672 || (elf_hash_table (info)->dynamic_sections_created
6673 && p->d.h != NULL
6674 && p->d.h->root.def_dynamic
6675 && !p->d.h->root.def_regular))
6677 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6678 the various compatibility problems, it's easier to mock
6679 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6680 mips_elf_create_dynamic_relocation to calculate the
6681 appropriate addend. */
6682 Elf_Internal_Rela rel[3];
6684 memset (rel, 0, sizeof (rel));
6685 if (ABI_64_P (output_bfd))
6686 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6687 else
6688 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6689 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6691 entry = 0;
6692 if (! (mips_elf_create_dynamic_relocation
6693 (output_bfd, info, rel,
6694 e.d.h, NULL, sym->st_value, &entry, sgot)))
6695 return FALSE;
6697 else
6698 entry = sym->st_value;
6699 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6704 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6705 name = h->root.root.string;
6706 if (strcmp (name, "_DYNAMIC") == 0
6707 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6708 sym->st_shndx = SHN_ABS;
6709 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6710 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6712 sym->st_shndx = SHN_ABS;
6713 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6714 sym->st_value = 1;
6716 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6718 sym->st_shndx = SHN_ABS;
6719 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6720 sym->st_value = elf_gp (output_bfd);
6722 else if (SGI_COMPAT (output_bfd))
6724 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6725 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6727 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6728 sym->st_other = STO_PROTECTED;
6729 sym->st_value = 0;
6730 sym->st_shndx = SHN_MIPS_DATA;
6732 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6734 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6735 sym->st_other = STO_PROTECTED;
6736 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6737 sym->st_shndx = SHN_ABS;
6739 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6741 if (h->type == STT_FUNC)
6742 sym->st_shndx = SHN_MIPS_TEXT;
6743 else if (h->type == STT_OBJECT)
6744 sym->st_shndx = SHN_MIPS_DATA;
6748 /* Handle the IRIX6-specific symbols. */
6749 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6750 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6752 if (! info->shared)
6754 if (! mips_elf_hash_table (info)->use_rld_obj_head
6755 && (strcmp (name, "__rld_map") == 0
6756 || strcmp (name, "__RLD_MAP") == 0))
6758 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6759 BFD_ASSERT (s != NULL);
6760 sym->st_value = s->output_section->vma + s->output_offset;
6761 bfd_put_32 (output_bfd, 0, s->contents);
6762 if (mips_elf_hash_table (info)->rld_value == 0)
6763 mips_elf_hash_table (info)->rld_value = sym->st_value;
6765 else if (mips_elf_hash_table (info)->use_rld_obj_head
6766 && strcmp (name, "__rld_obj_head") == 0)
6768 /* IRIX6 does not use a .rld_map section. */
6769 if (IRIX_COMPAT (output_bfd) == ict_irix5
6770 || IRIX_COMPAT (output_bfd) == ict_none)
6771 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6772 != NULL);
6773 mips_elf_hash_table (info)->rld_value = sym->st_value;
6777 /* If this is a mips16 symbol, force the value to be even. */
6778 if (sym->st_other == STO_MIPS16)
6779 sym->st_value &= ~1;
6781 return TRUE;
6784 /* Finish up the dynamic sections. */
6786 bfd_boolean
6787 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6788 struct bfd_link_info *info)
6790 bfd *dynobj;
6791 asection *sdyn;
6792 asection *sgot;
6793 struct mips_got_info *gg, *g;
6795 dynobj = elf_hash_table (info)->dynobj;
6797 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6799 sgot = mips_elf_got_section (dynobj, FALSE);
6800 if (sgot == NULL)
6801 gg = g = NULL;
6802 else
6804 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6805 gg = mips_elf_section_data (sgot)->u.got_info;
6806 BFD_ASSERT (gg != NULL);
6807 g = mips_elf_got_for_ibfd (gg, output_bfd);
6808 BFD_ASSERT (g != NULL);
6811 if (elf_hash_table (info)->dynamic_sections_created)
6813 bfd_byte *b;
6815 BFD_ASSERT (sdyn != NULL);
6816 BFD_ASSERT (g != NULL);
6818 for (b = sdyn->contents;
6819 b < sdyn->contents + sdyn->size;
6820 b += MIPS_ELF_DYN_SIZE (dynobj))
6822 Elf_Internal_Dyn dyn;
6823 const char *name;
6824 size_t elemsize;
6825 asection *s;
6826 bfd_boolean swap_out_p;
6828 /* Read in the current dynamic entry. */
6829 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6831 /* Assume that we're going to modify it and write it out. */
6832 swap_out_p = TRUE;
6834 switch (dyn.d_tag)
6836 case DT_RELENT:
6837 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6838 BFD_ASSERT (s != NULL);
6839 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6840 break;
6842 case DT_STRSZ:
6843 /* Rewrite DT_STRSZ. */
6844 dyn.d_un.d_val =
6845 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6846 break;
6848 case DT_PLTGOT:
6849 name = ".got";
6850 s = bfd_get_section_by_name (output_bfd, name);
6851 BFD_ASSERT (s != NULL);
6852 dyn.d_un.d_ptr = s->vma;
6853 break;
6855 case DT_MIPS_RLD_VERSION:
6856 dyn.d_un.d_val = 1; /* XXX */
6857 break;
6859 case DT_MIPS_FLAGS:
6860 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6861 break;
6863 case DT_MIPS_TIME_STAMP:
6864 time ((time_t *) &dyn.d_un.d_val);
6865 break;
6867 case DT_MIPS_ICHECKSUM:
6868 /* XXX FIXME: */
6869 swap_out_p = FALSE;
6870 break;
6872 case DT_MIPS_IVERSION:
6873 /* XXX FIXME: */
6874 swap_out_p = FALSE;
6875 break;
6877 case DT_MIPS_BASE_ADDRESS:
6878 s = output_bfd->sections;
6879 BFD_ASSERT (s != NULL);
6880 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6881 break;
6883 case DT_MIPS_LOCAL_GOTNO:
6884 dyn.d_un.d_val = g->local_gotno;
6885 break;
6887 case DT_MIPS_UNREFEXTNO:
6888 /* The index into the dynamic symbol table which is the
6889 entry of the first external symbol that is not
6890 referenced within the same object. */
6891 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6892 break;
6894 case DT_MIPS_GOTSYM:
6895 if (gg->global_gotsym)
6897 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6898 break;
6900 /* In case if we don't have global got symbols we default
6901 to setting DT_MIPS_GOTSYM to the same value as
6902 DT_MIPS_SYMTABNO, so we just fall through. */
6904 case DT_MIPS_SYMTABNO:
6905 name = ".dynsym";
6906 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6907 s = bfd_get_section_by_name (output_bfd, name);
6908 BFD_ASSERT (s != NULL);
6910 dyn.d_un.d_val = s->size / elemsize;
6911 break;
6913 case DT_MIPS_HIPAGENO:
6914 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6915 break;
6917 case DT_MIPS_RLD_MAP:
6918 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6919 break;
6921 case DT_MIPS_OPTIONS:
6922 s = (bfd_get_section_by_name
6923 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6924 dyn.d_un.d_ptr = s->vma;
6925 break;
6927 case DT_RELSZ:
6928 /* Reduce DT_RELSZ to account for any relocations we
6929 decided not to make. This is for the n64 irix rld,
6930 which doesn't seem to apply any relocations if there
6931 are trailing null entries. */
6932 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6933 dyn.d_un.d_val = (s->reloc_count
6934 * (ABI_64_P (output_bfd)
6935 ? sizeof (Elf64_Mips_External_Rel)
6936 : sizeof (Elf32_External_Rel)));
6937 break;
6939 default:
6940 swap_out_p = FALSE;
6941 break;
6944 if (swap_out_p)
6945 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6946 (dynobj, &dyn, b);
6950 /* The first entry of the global offset table will be filled at
6951 runtime. The second entry will be used by some runtime loaders.
6952 This isn't the case of IRIX rld. */
6953 if (sgot != NULL && sgot->size > 0)
6955 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6956 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6957 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6960 if (sgot != NULL)
6961 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6962 = MIPS_ELF_GOT_SIZE (output_bfd);
6964 /* Generate dynamic relocations for the non-primary gots. */
6965 if (gg != NULL && gg->next)
6967 Elf_Internal_Rela rel[3];
6968 bfd_vma addend = 0;
6970 memset (rel, 0, sizeof (rel));
6971 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6973 for (g = gg->next; g->next != gg; g = g->next)
6975 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6977 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6978 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6979 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6980 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6982 if (! info->shared)
6983 continue;
6985 while (index < g->assigned_gotno)
6987 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6988 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6989 if (!(mips_elf_create_dynamic_relocation
6990 (output_bfd, info, rel, NULL,
6991 bfd_abs_section_ptr,
6992 0, &addend, sgot)))
6993 return FALSE;
6994 BFD_ASSERT (addend == 0);
7000 asection *s;
7001 Elf32_compact_rel cpt;
7003 if (SGI_COMPAT (output_bfd))
7005 /* Write .compact_rel section out. */
7006 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7007 if (s != NULL)
7009 cpt.id1 = 1;
7010 cpt.num = s->reloc_count;
7011 cpt.id2 = 2;
7012 cpt.offset = (s->output_section->filepos
7013 + sizeof (Elf32_External_compact_rel));
7014 cpt.reserved0 = 0;
7015 cpt.reserved1 = 0;
7016 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7017 ((Elf32_External_compact_rel *)
7018 s->contents));
7020 /* Clean up a dummy stub function entry in .text. */
7021 s = bfd_get_section_by_name (dynobj,
7022 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7023 if (s != NULL)
7025 file_ptr dummy_offset;
7027 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7028 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
7029 memset (s->contents + dummy_offset, 0,
7030 MIPS_FUNCTION_STUB_SIZE);
7035 /* We need to sort the entries of the dynamic relocation section. */
7037 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7039 if (s != NULL
7040 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7042 reldyn_sorting_bfd = output_bfd;
7044 if (ABI_64_P (output_bfd))
7045 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7046 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7047 else
7048 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7049 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7053 return TRUE;
7057 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7059 static void
7060 mips_set_isa_flags (bfd *abfd)
7062 flagword val;
7064 switch (bfd_get_mach (abfd))
7066 default:
7067 case bfd_mach_mips3000:
7068 val = E_MIPS_ARCH_1;
7069 break;
7071 case bfd_mach_mips3900:
7072 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7073 break;
7075 case bfd_mach_mips6000:
7076 val = E_MIPS_ARCH_2;
7077 break;
7079 case bfd_mach_mips4000:
7080 case bfd_mach_mips4300:
7081 case bfd_mach_mips4400:
7082 case bfd_mach_mips4600:
7083 val = E_MIPS_ARCH_3;
7084 break;
7086 case bfd_mach_mips4010:
7087 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7088 break;
7090 case bfd_mach_mips4100:
7091 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7092 break;
7094 case bfd_mach_mips4111:
7095 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7096 break;
7098 case bfd_mach_mips4120:
7099 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7100 break;
7102 case bfd_mach_mips4650:
7103 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7104 break;
7106 case bfd_mach_mips5400:
7107 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7108 break;
7110 case bfd_mach_mips5500:
7111 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7112 break;
7114 case bfd_mach_mips9000:
7115 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7116 break;
7118 case bfd_mach_mips5000:
7119 case bfd_mach_mips7000:
7120 case bfd_mach_mips8000:
7121 case bfd_mach_mips10000:
7122 case bfd_mach_mips12000:
7123 val = E_MIPS_ARCH_4;
7124 break;
7126 case bfd_mach_mips5:
7127 val = E_MIPS_ARCH_5;
7128 break;
7130 case bfd_mach_mips_sb1:
7131 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7132 break;
7134 case bfd_mach_mipsisa32:
7135 val = E_MIPS_ARCH_32;
7136 break;
7138 case bfd_mach_mipsisa64:
7139 val = E_MIPS_ARCH_64;
7140 break;
7142 case bfd_mach_mipsisa32r2:
7143 val = E_MIPS_ARCH_32R2;
7144 break;
7146 case bfd_mach_mipsisa64r2:
7147 val = E_MIPS_ARCH_64R2;
7148 break;
7150 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7151 elf_elfheader (abfd)->e_flags |= val;
7156 /* The final processing done just before writing out a MIPS ELF object
7157 file. This gets the MIPS architecture right based on the machine
7158 number. This is used by both the 32-bit and the 64-bit ABI. */
7160 void
7161 _bfd_mips_elf_final_write_processing (bfd *abfd,
7162 bfd_boolean linker ATTRIBUTE_UNUSED)
7164 unsigned int i;
7165 Elf_Internal_Shdr **hdrpp;
7166 const char *name;
7167 asection *sec;
7169 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7170 is nonzero. This is for compatibility with old objects, which used
7171 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7172 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7173 mips_set_isa_flags (abfd);
7175 /* Set the sh_info field for .gptab sections and other appropriate
7176 info for each special section. */
7177 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7178 i < elf_numsections (abfd);
7179 i++, hdrpp++)
7181 switch ((*hdrpp)->sh_type)
7183 case SHT_MIPS_MSYM:
7184 case SHT_MIPS_LIBLIST:
7185 sec = bfd_get_section_by_name (abfd, ".dynstr");
7186 if (sec != NULL)
7187 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7188 break;
7190 case SHT_MIPS_GPTAB:
7191 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7192 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7193 BFD_ASSERT (name != NULL
7194 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7195 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7196 BFD_ASSERT (sec != NULL);
7197 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7198 break;
7200 case SHT_MIPS_CONTENT:
7201 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7202 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7203 BFD_ASSERT (name != NULL
7204 && strncmp (name, ".MIPS.content",
7205 sizeof ".MIPS.content" - 1) == 0);
7206 sec = bfd_get_section_by_name (abfd,
7207 name + sizeof ".MIPS.content" - 1);
7208 BFD_ASSERT (sec != NULL);
7209 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7210 break;
7212 case SHT_MIPS_SYMBOL_LIB:
7213 sec = bfd_get_section_by_name (abfd, ".dynsym");
7214 if (sec != NULL)
7215 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7216 sec = bfd_get_section_by_name (abfd, ".liblist");
7217 if (sec != NULL)
7218 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7219 break;
7221 case SHT_MIPS_EVENTS:
7222 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7223 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7224 BFD_ASSERT (name != NULL);
7225 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7226 sec = bfd_get_section_by_name (abfd,
7227 name + sizeof ".MIPS.events" - 1);
7228 else
7230 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7231 sizeof ".MIPS.post_rel" - 1) == 0);
7232 sec = bfd_get_section_by_name (abfd,
7233 (name
7234 + sizeof ".MIPS.post_rel" - 1));
7236 BFD_ASSERT (sec != NULL);
7237 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7238 break;
7244 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7245 segments. */
7248 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7250 asection *s;
7251 int ret = 0;
7253 /* See if we need a PT_MIPS_REGINFO segment. */
7254 s = bfd_get_section_by_name (abfd, ".reginfo");
7255 if (s && (s->flags & SEC_LOAD))
7256 ++ret;
7258 /* See if we need a PT_MIPS_OPTIONS segment. */
7259 if (IRIX_COMPAT (abfd) == ict_irix6
7260 && bfd_get_section_by_name (abfd,
7261 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7262 ++ret;
7264 /* See if we need a PT_MIPS_RTPROC segment. */
7265 if (IRIX_COMPAT (abfd) == ict_irix5
7266 && bfd_get_section_by_name (abfd, ".dynamic")
7267 && bfd_get_section_by_name (abfd, ".mdebug"))
7268 ++ret;
7270 return ret;
7273 /* Modify the segment map for an IRIX5 executable. */
7275 bfd_boolean
7276 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7277 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7279 asection *s;
7280 struct elf_segment_map *m, **pm;
7281 bfd_size_type amt;
7283 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7284 segment. */
7285 s = bfd_get_section_by_name (abfd, ".reginfo");
7286 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7288 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7289 if (m->p_type == PT_MIPS_REGINFO)
7290 break;
7291 if (m == NULL)
7293 amt = sizeof *m;
7294 m = bfd_zalloc (abfd, amt);
7295 if (m == NULL)
7296 return FALSE;
7298 m->p_type = PT_MIPS_REGINFO;
7299 m->count = 1;
7300 m->sections[0] = s;
7302 /* We want to put it after the PHDR and INTERP segments. */
7303 pm = &elf_tdata (abfd)->segment_map;
7304 while (*pm != NULL
7305 && ((*pm)->p_type == PT_PHDR
7306 || (*pm)->p_type == PT_INTERP))
7307 pm = &(*pm)->next;
7309 m->next = *pm;
7310 *pm = m;
7314 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7315 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7316 PT_MIPS_OPTIONS segment immediately following the program header
7317 table. */
7318 if (NEWABI_P (abfd)
7319 /* On non-IRIX6 new abi, we'll have already created a segment
7320 for this section, so don't create another. I'm not sure this
7321 is not also the case for IRIX 6, but I can't test it right
7322 now. */
7323 && IRIX_COMPAT (abfd) == ict_irix6)
7325 for (s = abfd->sections; s; s = s->next)
7326 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7327 break;
7329 if (s)
7331 struct elf_segment_map *options_segment;
7333 pm = &elf_tdata (abfd)->segment_map;
7334 while (*pm != NULL
7335 && ((*pm)->p_type == PT_PHDR
7336 || (*pm)->p_type == PT_INTERP))
7337 pm = &(*pm)->next;
7339 amt = sizeof (struct elf_segment_map);
7340 options_segment = bfd_zalloc (abfd, amt);
7341 options_segment->next = *pm;
7342 options_segment->p_type = PT_MIPS_OPTIONS;
7343 options_segment->p_flags = PF_R;
7344 options_segment->p_flags_valid = TRUE;
7345 options_segment->count = 1;
7346 options_segment->sections[0] = s;
7347 *pm = options_segment;
7350 else
7352 if (IRIX_COMPAT (abfd) == ict_irix5)
7354 /* If there are .dynamic and .mdebug sections, we make a room
7355 for the RTPROC header. FIXME: Rewrite without section names. */
7356 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7357 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7358 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7360 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7361 if (m->p_type == PT_MIPS_RTPROC)
7362 break;
7363 if (m == NULL)
7365 amt = sizeof *m;
7366 m = bfd_zalloc (abfd, amt);
7367 if (m == NULL)
7368 return FALSE;
7370 m->p_type = PT_MIPS_RTPROC;
7372 s = bfd_get_section_by_name (abfd, ".rtproc");
7373 if (s == NULL)
7375 m->count = 0;
7376 m->p_flags = 0;
7377 m->p_flags_valid = 1;
7379 else
7381 m->count = 1;
7382 m->sections[0] = s;
7385 /* We want to put it after the DYNAMIC segment. */
7386 pm = &elf_tdata (abfd)->segment_map;
7387 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7388 pm = &(*pm)->next;
7389 if (*pm != NULL)
7390 pm = &(*pm)->next;
7392 m->next = *pm;
7393 *pm = m;
7397 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7398 .dynstr, .dynsym, and .hash sections, and everything in
7399 between. */
7400 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7401 pm = &(*pm)->next)
7402 if ((*pm)->p_type == PT_DYNAMIC)
7403 break;
7404 m = *pm;
7405 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7407 /* For a normal mips executable the permissions for the PT_DYNAMIC
7408 segment are read, write and execute. We do that here since
7409 the code in elf.c sets only the read permission. This matters
7410 sometimes for the dynamic linker. */
7411 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7413 m->p_flags = PF_R | PF_W | PF_X;
7414 m->p_flags_valid = 1;
7417 if (m != NULL
7418 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7420 static const char *sec_names[] =
7422 ".dynamic", ".dynstr", ".dynsym", ".hash"
7424 bfd_vma low, high;
7425 unsigned int i, c;
7426 struct elf_segment_map *n;
7428 low = ~(bfd_vma) 0;
7429 high = 0;
7430 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7432 s = bfd_get_section_by_name (abfd, sec_names[i]);
7433 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7435 bfd_size_type sz;
7437 if (low > s->vma)
7438 low = s->vma;
7439 sz = s->size;
7440 if (high < s->vma + sz)
7441 high = s->vma + sz;
7445 c = 0;
7446 for (s = abfd->sections; s != NULL; s = s->next)
7447 if ((s->flags & SEC_LOAD) != 0
7448 && s->vma >= low
7449 && s->vma + s->size <= high)
7450 ++c;
7452 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7453 n = bfd_zalloc (abfd, amt);
7454 if (n == NULL)
7455 return FALSE;
7456 *n = *m;
7457 n->count = c;
7459 i = 0;
7460 for (s = abfd->sections; s != NULL; s = s->next)
7462 if ((s->flags & SEC_LOAD) != 0
7463 && s->vma >= low
7464 && s->vma + s->size <= high)
7466 n->sections[i] = s;
7467 ++i;
7471 *pm = n;
7475 return TRUE;
7478 /* Return the section that should be marked against GC for a given
7479 relocation. */
7481 asection *
7482 _bfd_mips_elf_gc_mark_hook (asection *sec,
7483 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7484 Elf_Internal_Rela *rel,
7485 struct elf_link_hash_entry *h,
7486 Elf_Internal_Sym *sym)
7488 /* ??? Do mips16 stub sections need to be handled special? */
7490 if (h != NULL)
7492 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7494 case R_MIPS_GNU_VTINHERIT:
7495 case R_MIPS_GNU_VTENTRY:
7496 break;
7498 default:
7499 switch (h->root.type)
7501 case bfd_link_hash_defined:
7502 case bfd_link_hash_defweak:
7503 return h->root.u.def.section;
7505 case bfd_link_hash_common:
7506 return h->root.u.c.p->section;
7508 default:
7509 break;
7513 else
7514 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7516 return NULL;
7519 /* Update the got entry reference counts for the section being removed. */
7521 bfd_boolean
7522 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7523 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7524 asection *sec ATTRIBUTE_UNUSED,
7525 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7527 #if 0
7528 Elf_Internal_Shdr *symtab_hdr;
7529 struct elf_link_hash_entry **sym_hashes;
7530 bfd_signed_vma *local_got_refcounts;
7531 const Elf_Internal_Rela *rel, *relend;
7532 unsigned long r_symndx;
7533 struct elf_link_hash_entry *h;
7535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7536 sym_hashes = elf_sym_hashes (abfd);
7537 local_got_refcounts = elf_local_got_refcounts (abfd);
7539 relend = relocs + sec->reloc_count;
7540 for (rel = relocs; rel < relend; rel++)
7541 switch (ELF_R_TYPE (abfd, rel->r_info))
7543 case R_MIPS_GOT16:
7544 case R_MIPS_CALL16:
7545 case R_MIPS_CALL_HI16:
7546 case R_MIPS_CALL_LO16:
7547 case R_MIPS_GOT_HI16:
7548 case R_MIPS_GOT_LO16:
7549 case R_MIPS_GOT_DISP:
7550 case R_MIPS_GOT_PAGE:
7551 case R_MIPS_GOT_OFST:
7552 /* ??? It would seem that the existing MIPS code does no sort
7553 of reference counting or whatnot on its GOT and PLT entries,
7554 so it is not possible to garbage collect them at this time. */
7555 break;
7557 default:
7558 break;
7560 #endif
7562 return TRUE;
7565 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7566 hiding the old indirect symbol. Process additional relocation
7567 information. Also called for weakdefs, in which case we just let
7568 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7570 void
7571 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7572 struct elf_link_hash_entry *dir,
7573 struct elf_link_hash_entry *ind)
7575 struct mips_elf_link_hash_entry *dirmips, *indmips;
7577 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7579 if (ind->root.type != bfd_link_hash_indirect)
7580 return;
7582 dirmips = (struct mips_elf_link_hash_entry *) dir;
7583 indmips = (struct mips_elf_link_hash_entry *) ind;
7584 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7585 if (indmips->readonly_reloc)
7586 dirmips->readonly_reloc = TRUE;
7587 if (indmips->no_fn_stub)
7588 dirmips->no_fn_stub = TRUE;
7591 void
7592 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7593 struct elf_link_hash_entry *entry,
7594 bfd_boolean force_local)
7596 bfd *dynobj;
7597 asection *got;
7598 struct mips_got_info *g;
7599 struct mips_elf_link_hash_entry *h;
7601 h = (struct mips_elf_link_hash_entry *) entry;
7602 if (h->forced_local)
7603 return;
7604 h->forced_local = force_local;
7606 dynobj = elf_hash_table (info)->dynobj;
7607 if (dynobj != NULL && force_local)
7609 got = mips_elf_got_section (dynobj, FALSE);
7610 g = mips_elf_section_data (got)->u.got_info;
7612 if (g->next)
7614 struct mips_got_entry e;
7615 struct mips_got_info *gg = g;
7617 /* Since we're turning what used to be a global symbol into a
7618 local one, bump up the number of local entries of each GOT
7619 that had an entry for it. This will automatically decrease
7620 the number of global entries, since global_gotno is actually
7621 the upper limit of global entries. */
7622 e.abfd = dynobj;
7623 e.symndx = -1;
7624 e.d.h = h;
7626 for (g = g->next; g != gg; g = g->next)
7627 if (htab_find (g->got_entries, &e))
7629 BFD_ASSERT (g->global_gotno > 0);
7630 g->local_gotno++;
7631 g->global_gotno--;
7634 /* If this was a global symbol forced into the primary GOT, we
7635 no longer need an entry for it. We can't release the entry
7636 at this point, but we must at least stop counting it as one
7637 of the symbols that required a forced got entry. */
7638 if (h->root.got.offset == 2)
7640 BFD_ASSERT (gg->assigned_gotno > 0);
7641 gg->assigned_gotno--;
7644 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7645 /* If we haven't got through GOT allocation yet, just bump up the
7646 number of local entries, as this symbol won't be counted as
7647 global. */
7648 g->local_gotno++;
7649 else if (h->root.got.offset == 1)
7651 /* If we're past non-multi-GOT allocation and this symbol had
7652 been marked for a global got entry, give it a local entry
7653 instead. */
7654 BFD_ASSERT (g->global_gotno > 0);
7655 g->local_gotno++;
7656 g->global_gotno--;
7660 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7663 #define PDR_SIZE 32
7665 bfd_boolean
7666 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7667 struct bfd_link_info *info)
7669 asection *o;
7670 bfd_boolean ret = FALSE;
7671 unsigned char *tdata;
7672 size_t i, skip;
7674 o = bfd_get_section_by_name (abfd, ".pdr");
7675 if (! o)
7676 return FALSE;
7677 if (o->size == 0)
7678 return FALSE;
7679 if (o->size % PDR_SIZE != 0)
7680 return FALSE;
7681 if (o->output_section != NULL
7682 && bfd_is_abs_section (o->output_section))
7683 return FALSE;
7685 tdata = bfd_zmalloc (o->size / PDR_SIZE);
7686 if (! tdata)
7687 return FALSE;
7689 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7690 info->keep_memory);
7691 if (!cookie->rels)
7693 free (tdata);
7694 return FALSE;
7697 cookie->rel = cookie->rels;
7698 cookie->relend = cookie->rels + o->reloc_count;
7700 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
7702 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7704 tdata[i] = 1;
7705 skip ++;
7709 if (skip != 0)
7711 mips_elf_section_data (o)->u.tdata = tdata;
7712 o->size -= skip * PDR_SIZE;
7713 ret = TRUE;
7715 else
7716 free (tdata);
7718 if (! info->keep_memory)
7719 free (cookie->rels);
7721 return ret;
7724 bfd_boolean
7725 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7727 if (strcmp (sec->name, ".pdr") == 0)
7728 return TRUE;
7729 return FALSE;
7732 bfd_boolean
7733 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7734 bfd_byte *contents)
7736 bfd_byte *to, *from, *end;
7737 int i;
7739 if (strcmp (sec->name, ".pdr") != 0)
7740 return FALSE;
7742 if (mips_elf_section_data (sec)->u.tdata == NULL)
7743 return FALSE;
7745 to = contents;
7746 end = contents + sec->size;
7747 for (from = contents, i = 0;
7748 from < end;
7749 from += PDR_SIZE, i++)
7751 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7752 continue;
7753 if (to != from)
7754 memcpy (to, from, PDR_SIZE);
7755 to += PDR_SIZE;
7757 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7758 sec->output_offset, sec->size);
7759 return TRUE;
7762 /* MIPS ELF uses a special find_nearest_line routine in order the
7763 handle the ECOFF debugging information. */
7765 struct mips_elf_find_line
7767 struct ecoff_debug_info d;
7768 struct ecoff_find_line i;
7771 bfd_boolean
7772 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7773 asymbol **symbols, bfd_vma offset,
7774 const char **filename_ptr,
7775 const char **functionname_ptr,
7776 unsigned int *line_ptr)
7778 asection *msec;
7780 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7781 filename_ptr, functionname_ptr,
7782 line_ptr))
7783 return TRUE;
7785 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7786 filename_ptr, functionname_ptr,
7787 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7788 &elf_tdata (abfd)->dwarf2_find_line_info))
7789 return TRUE;
7791 msec = bfd_get_section_by_name (abfd, ".mdebug");
7792 if (msec != NULL)
7794 flagword origflags;
7795 struct mips_elf_find_line *fi;
7796 const struct ecoff_debug_swap * const swap =
7797 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7799 /* If we are called during a link, mips_elf_final_link may have
7800 cleared the SEC_HAS_CONTENTS field. We force it back on here
7801 if appropriate (which it normally will be). */
7802 origflags = msec->flags;
7803 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7804 msec->flags |= SEC_HAS_CONTENTS;
7806 fi = elf_tdata (abfd)->find_line_info;
7807 if (fi == NULL)
7809 bfd_size_type external_fdr_size;
7810 char *fraw_src;
7811 char *fraw_end;
7812 struct fdr *fdr_ptr;
7813 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7815 fi = bfd_zalloc (abfd, amt);
7816 if (fi == NULL)
7818 msec->flags = origflags;
7819 return FALSE;
7822 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7824 msec->flags = origflags;
7825 return FALSE;
7828 /* Swap in the FDR information. */
7829 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7830 fi->d.fdr = bfd_alloc (abfd, amt);
7831 if (fi->d.fdr == NULL)
7833 msec->flags = origflags;
7834 return FALSE;
7836 external_fdr_size = swap->external_fdr_size;
7837 fdr_ptr = fi->d.fdr;
7838 fraw_src = (char *) fi->d.external_fdr;
7839 fraw_end = (fraw_src
7840 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7841 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7842 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7844 elf_tdata (abfd)->find_line_info = fi;
7846 /* Note that we don't bother to ever free this information.
7847 find_nearest_line is either called all the time, as in
7848 objdump -l, so the information should be saved, or it is
7849 rarely called, as in ld error messages, so the memory
7850 wasted is unimportant. Still, it would probably be a
7851 good idea for free_cached_info to throw it away. */
7854 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7855 &fi->i, filename_ptr, functionname_ptr,
7856 line_ptr))
7858 msec->flags = origflags;
7859 return TRUE;
7862 msec->flags = origflags;
7865 /* Fall back on the generic ELF find_nearest_line routine. */
7867 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7868 filename_ptr, functionname_ptr,
7869 line_ptr);
7872 /* When are writing out the .options or .MIPS.options section,
7873 remember the bytes we are writing out, so that we can install the
7874 GP value in the section_processing routine. */
7876 bfd_boolean
7877 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7878 const void *location,
7879 file_ptr offset, bfd_size_type count)
7881 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7883 bfd_byte *c;
7885 if (elf_section_data (section) == NULL)
7887 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7888 section->used_by_bfd = bfd_zalloc (abfd, amt);
7889 if (elf_section_data (section) == NULL)
7890 return FALSE;
7892 c = mips_elf_section_data (section)->u.tdata;
7893 if (c == NULL)
7895 c = bfd_zalloc (abfd, section->size);
7896 if (c == NULL)
7897 return FALSE;
7898 mips_elf_section_data (section)->u.tdata = c;
7901 memcpy (c + offset, location, count);
7904 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7905 count);
7908 /* This is almost identical to bfd_generic_get_... except that some
7909 MIPS relocations need to be handled specially. Sigh. */
7911 bfd_byte *
7912 _bfd_elf_mips_get_relocated_section_contents
7913 (bfd *abfd,
7914 struct bfd_link_info *link_info,
7915 struct bfd_link_order *link_order,
7916 bfd_byte *data,
7917 bfd_boolean relocatable,
7918 asymbol **symbols)
7920 /* Get enough memory to hold the stuff */
7921 bfd *input_bfd = link_order->u.indirect.section->owner;
7922 asection *input_section = link_order->u.indirect.section;
7923 bfd_size_type sz;
7925 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7926 arelent **reloc_vector = NULL;
7927 long reloc_count;
7929 if (reloc_size < 0)
7930 goto error_return;
7932 reloc_vector = bfd_malloc (reloc_size);
7933 if (reloc_vector == NULL && reloc_size != 0)
7934 goto error_return;
7936 /* read in the section */
7937 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7938 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
7939 goto error_return;
7941 reloc_count = bfd_canonicalize_reloc (input_bfd,
7942 input_section,
7943 reloc_vector,
7944 symbols);
7945 if (reloc_count < 0)
7946 goto error_return;
7948 if (reloc_count > 0)
7950 arelent **parent;
7951 /* for mips */
7952 int gp_found;
7953 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7956 struct bfd_hash_entry *h;
7957 struct bfd_link_hash_entry *lh;
7958 /* Skip all this stuff if we aren't mixing formats. */
7959 if (abfd && input_bfd
7960 && abfd->xvec == input_bfd->xvec)
7961 lh = 0;
7962 else
7964 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7965 lh = (struct bfd_link_hash_entry *) h;
7967 lookup:
7968 if (lh)
7970 switch (lh->type)
7972 case bfd_link_hash_undefined:
7973 case bfd_link_hash_undefweak:
7974 case bfd_link_hash_common:
7975 gp_found = 0;
7976 break;
7977 case bfd_link_hash_defined:
7978 case bfd_link_hash_defweak:
7979 gp_found = 1;
7980 gp = lh->u.def.value;
7981 break;
7982 case bfd_link_hash_indirect:
7983 case bfd_link_hash_warning:
7984 lh = lh->u.i.link;
7985 /* @@FIXME ignoring warning for now */
7986 goto lookup;
7987 case bfd_link_hash_new:
7988 default:
7989 abort ();
7992 else
7993 gp_found = 0;
7995 /* end mips */
7996 for (parent = reloc_vector; *parent != NULL; parent++)
7998 char *error_message = NULL;
7999 bfd_reloc_status_type r;
8001 /* Specific to MIPS: Deal with relocation types that require
8002 knowing the gp of the output bfd. */
8003 asymbol *sym = *(*parent)->sym_ptr_ptr;
8004 if (bfd_is_abs_section (sym->section) && abfd)
8006 /* The special_function wouldn't get called anyway. */
8008 else if (!gp_found)
8010 /* The gp isn't there; let the special function code
8011 fall over on its own. */
8013 else if ((*parent)->howto->special_function
8014 == _bfd_mips_elf32_gprel16_reloc)
8016 /* bypass special_function call */
8017 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8018 input_section, relocatable,
8019 data, gp);
8020 goto skip_bfd_perform_relocation;
8022 /* end mips specific stuff */
8024 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8025 relocatable ? abfd : NULL,
8026 &error_message);
8027 skip_bfd_perform_relocation:
8029 if (relocatable)
8031 asection *os = input_section->output_section;
8033 /* A partial link, so keep the relocs */
8034 os->orelocation[os->reloc_count] = *parent;
8035 os->reloc_count++;
8038 if (r != bfd_reloc_ok)
8040 switch (r)
8042 case bfd_reloc_undefined:
8043 if (!((*link_info->callbacks->undefined_symbol)
8044 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8045 input_bfd, input_section, (*parent)->address,
8046 TRUE)))
8047 goto error_return;
8048 break;
8049 case bfd_reloc_dangerous:
8050 BFD_ASSERT (error_message != NULL);
8051 if (!((*link_info->callbacks->reloc_dangerous)
8052 (link_info, error_message, input_bfd, input_section,
8053 (*parent)->address)))
8054 goto error_return;
8055 break;
8056 case bfd_reloc_overflow:
8057 if (!((*link_info->callbacks->reloc_overflow)
8058 (link_info, NULL,
8059 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8060 (*parent)->howto->name, (*parent)->addend,
8061 input_bfd, input_section, (*parent)->address)))
8062 goto error_return;
8063 break;
8064 case bfd_reloc_outofrange:
8065 default:
8066 abort ();
8067 break;
8073 if (reloc_vector != NULL)
8074 free (reloc_vector);
8075 return data;
8077 error_return:
8078 if (reloc_vector != NULL)
8079 free (reloc_vector);
8080 return NULL;
8083 /* Create a MIPS ELF linker hash table. */
8085 struct bfd_link_hash_table *
8086 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8088 struct mips_elf_link_hash_table *ret;
8089 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8091 ret = bfd_malloc (amt);
8092 if (ret == NULL)
8093 return NULL;
8095 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8096 mips_elf_link_hash_newfunc))
8098 free (ret);
8099 return NULL;
8102 #if 0
8103 /* We no longer use this. */
8104 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8105 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8106 #endif
8107 ret->procedure_count = 0;
8108 ret->compact_rel_size = 0;
8109 ret->use_rld_obj_head = FALSE;
8110 ret->rld_value = 0;
8111 ret->mips16_stubs_seen = FALSE;
8113 return &ret->root.root;
8116 /* We need to use a special link routine to handle the .reginfo and
8117 the .mdebug sections. We need to merge all instances of these
8118 sections together, not write them all out sequentially. */
8120 bfd_boolean
8121 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8123 asection **secpp;
8124 asection *o;
8125 struct bfd_link_order *p;
8126 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8127 asection *rtproc_sec;
8128 Elf32_RegInfo reginfo;
8129 struct ecoff_debug_info debug;
8130 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8131 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8132 HDRR *symhdr = &debug.symbolic_header;
8133 void *mdebug_handle = NULL;
8134 asection *s;
8135 EXTR esym;
8136 unsigned int i;
8137 bfd_size_type amt;
8139 static const char * const secname[] =
8141 ".text", ".init", ".fini", ".data",
8142 ".rodata", ".sdata", ".sbss", ".bss"
8144 static const int sc[] =
8146 scText, scInit, scFini, scData,
8147 scRData, scSData, scSBss, scBss
8150 /* We'd carefully arranged the dynamic symbol indices, and then the
8151 generic size_dynamic_sections renumbered them out from under us.
8152 Rather than trying somehow to prevent the renumbering, just do
8153 the sort again. */
8154 if (elf_hash_table (info)->dynamic_sections_created)
8156 bfd *dynobj;
8157 asection *got;
8158 struct mips_got_info *g;
8159 bfd_size_type dynsecsymcount;
8161 /* When we resort, we must tell mips_elf_sort_hash_table what
8162 the lowest index it may use is. That's the number of section
8163 symbols we're going to add. The generic ELF linker only
8164 adds these symbols when building a shared object. Note that
8165 we count the sections after (possibly) removing the .options
8166 section above. */
8168 dynsecsymcount = 0;
8169 if (info->shared)
8171 asection * p;
8173 for (p = abfd->sections; p ; p = p->next)
8174 if ((p->flags & SEC_EXCLUDE) == 0
8175 && (p->flags & SEC_ALLOC) != 0
8176 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8177 ++ dynsecsymcount;
8180 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
8181 return FALSE;
8183 /* Make sure we didn't grow the global .got region. */
8184 dynobj = elf_hash_table (info)->dynobj;
8185 got = mips_elf_got_section (dynobj, FALSE);
8186 g = mips_elf_section_data (got)->u.got_info;
8188 if (g->global_gotsym != NULL)
8189 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8190 - g->global_gotsym->dynindx)
8191 <= g->global_gotno);
8194 /* Get a value for the GP register. */
8195 if (elf_gp (abfd) == 0)
8197 struct bfd_link_hash_entry *h;
8199 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8200 if (h != NULL && h->type == bfd_link_hash_defined)
8201 elf_gp (abfd) = (h->u.def.value
8202 + h->u.def.section->output_section->vma
8203 + h->u.def.section->output_offset);
8204 else if (info->relocatable)
8206 bfd_vma lo = MINUS_ONE;
8208 /* Find the GP-relative section with the lowest offset. */
8209 for (o = abfd->sections; o != NULL; o = o->next)
8210 if (o->vma < lo
8211 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8212 lo = o->vma;
8214 /* And calculate GP relative to that. */
8215 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8217 else
8219 /* If the relocate_section function needs to do a reloc
8220 involving the GP value, it should make a reloc_dangerous
8221 callback to warn that GP is not defined. */
8225 /* Go through the sections and collect the .reginfo and .mdebug
8226 information. */
8227 reginfo_sec = NULL;
8228 mdebug_sec = NULL;
8229 gptab_data_sec = NULL;
8230 gptab_bss_sec = NULL;
8231 for (o = abfd->sections; o != NULL; o = o->next)
8233 if (strcmp (o->name, ".reginfo") == 0)
8235 memset (&reginfo, 0, sizeof reginfo);
8237 /* We have found the .reginfo section in the output file.
8238 Look through all the link_orders comprising it and merge
8239 the information together. */
8240 for (p = o->link_order_head; p != NULL; p = p->next)
8242 asection *input_section;
8243 bfd *input_bfd;
8244 Elf32_External_RegInfo ext;
8245 Elf32_RegInfo sub;
8247 if (p->type != bfd_indirect_link_order)
8249 if (p->type == bfd_data_link_order)
8250 continue;
8251 abort ();
8254 input_section = p->u.indirect.section;
8255 input_bfd = input_section->owner;
8257 if (! bfd_get_section_contents (input_bfd, input_section,
8258 &ext, 0, sizeof ext))
8259 return FALSE;
8261 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8263 reginfo.ri_gprmask |= sub.ri_gprmask;
8264 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8265 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8266 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8267 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8269 /* ri_gp_value is set by the function
8270 mips_elf32_section_processing when the section is
8271 finally written out. */
8273 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8274 elf_link_input_bfd ignores this section. */
8275 input_section->flags &= ~SEC_HAS_CONTENTS;
8278 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8279 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
8281 /* Skip this section later on (I don't think this currently
8282 matters, but someday it might). */
8283 o->link_order_head = NULL;
8285 reginfo_sec = o;
8288 if (strcmp (o->name, ".mdebug") == 0)
8290 struct extsym_info einfo;
8291 bfd_vma last;
8293 /* We have found the .mdebug section in the output file.
8294 Look through all the link_orders comprising it and merge
8295 the information together. */
8296 symhdr->magic = swap->sym_magic;
8297 /* FIXME: What should the version stamp be? */
8298 symhdr->vstamp = 0;
8299 symhdr->ilineMax = 0;
8300 symhdr->cbLine = 0;
8301 symhdr->idnMax = 0;
8302 symhdr->ipdMax = 0;
8303 symhdr->isymMax = 0;
8304 symhdr->ioptMax = 0;
8305 symhdr->iauxMax = 0;
8306 symhdr->issMax = 0;
8307 symhdr->issExtMax = 0;
8308 symhdr->ifdMax = 0;
8309 symhdr->crfd = 0;
8310 symhdr->iextMax = 0;
8312 /* We accumulate the debugging information itself in the
8313 debug_info structure. */
8314 debug.line = NULL;
8315 debug.external_dnr = NULL;
8316 debug.external_pdr = NULL;
8317 debug.external_sym = NULL;
8318 debug.external_opt = NULL;
8319 debug.external_aux = NULL;
8320 debug.ss = NULL;
8321 debug.ssext = debug.ssext_end = NULL;
8322 debug.external_fdr = NULL;
8323 debug.external_rfd = NULL;
8324 debug.external_ext = debug.external_ext_end = NULL;
8326 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8327 if (mdebug_handle == NULL)
8328 return FALSE;
8330 esym.jmptbl = 0;
8331 esym.cobol_main = 0;
8332 esym.weakext = 0;
8333 esym.reserved = 0;
8334 esym.ifd = ifdNil;
8335 esym.asym.iss = issNil;
8336 esym.asym.st = stLocal;
8337 esym.asym.reserved = 0;
8338 esym.asym.index = indexNil;
8339 last = 0;
8340 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8342 esym.asym.sc = sc[i];
8343 s = bfd_get_section_by_name (abfd, secname[i]);
8344 if (s != NULL)
8346 esym.asym.value = s->vma;
8347 last = s->vma + s->size;
8349 else
8350 esym.asym.value = last;
8351 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8352 secname[i], &esym))
8353 return FALSE;
8356 for (p = o->link_order_head; p != NULL; p = p->next)
8358 asection *input_section;
8359 bfd *input_bfd;
8360 const struct ecoff_debug_swap *input_swap;
8361 struct ecoff_debug_info input_debug;
8362 char *eraw_src;
8363 char *eraw_end;
8365 if (p->type != bfd_indirect_link_order)
8367 if (p->type == bfd_data_link_order)
8368 continue;
8369 abort ();
8372 input_section = p->u.indirect.section;
8373 input_bfd = input_section->owner;
8375 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8376 || (get_elf_backend_data (input_bfd)
8377 ->elf_backend_ecoff_debug_swap) == NULL)
8379 /* I don't know what a non MIPS ELF bfd would be
8380 doing with a .mdebug section, but I don't really
8381 want to deal with it. */
8382 continue;
8385 input_swap = (get_elf_backend_data (input_bfd)
8386 ->elf_backend_ecoff_debug_swap);
8388 BFD_ASSERT (p->size == input_section->size);
8390 /* The ECOFF linking code expects that we have already
8391 read in the debugging information and set up an
8392 ecoff_debug_info structure, so we do that now. */
8393 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8394 &input_debug))
8395 return FALSE;
8397 if (! (bfd_ecoff_debug_accumulate
8398 (mdebug_handle, abfd, &debug, swap, input_bfd,
8399 &input_debug, input_swap, info)))
8400 return FALSE;
8402 /* Loop through the external symbols. For each one with
8403 interesting information, try to find the symbol in
8404 the linker global hash table and save the information
8405 for the output external symbols. */
8406 eraw_src = input_debug.external_ext;
8407 eraw_end = (eraw_src
8408 + (input_debug.symbolic_header.iextMax
8409 * input_swap->external_ext_size));
8410 for (;
8411 eraw_src < eraw_end;
8412 eraw_src += input_swap->external_ext_size)
8414 EXTR ext;
8415 const char *name;
8416 struct mips_elf_link_hash_entry *h;
8418 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8419 if (ext.asym.sc == scNil
8420 || ext.asym.sc == scUndefined
8421 || ext.asym.sc == scSUndefined)
8422 continue;
8424 name = input_debug.ssext + ext.asym.iss;
8425 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8426 name, FALSE, FALSE, TRUE);
8427 if (h == NULL || h->esym.ifd != -2)
8428 continue;
8430 if (ext.ifd != -1)
8432 BFD_ASSERT (ext.ifd
8433 < input_debug.symbolic_header.ifdMax);
8434 ext.ifd = input_debug.ifdmap[ext.ifd];
8437 h->esym = ext;
8440 /* Free up the information we just read. */
8441 free (input_debug.line);
8442 free (input_debug.external_dnr);
8443 free (input_debug.external_pdr);
8444 free (input_debug.external_sym);
8445 free (input_debug.external_opt);
8446 free (input_debug.external_aux);
8447 free (input_debug.ss);
8448 free (input_debug.ssext);
8449 free (input_debug.external_fdr);
8450 free (input_debug.external_rfd);
8451 free (input_debug.external_ext);
8453 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8454 elf_link_input_bfd ignores this section. */
8455 input_section->flags &= ~SEC_HAS_CONTENTS;
8458 if (SGI_COMPAT (abfd) && info->shared)
8460 /* Create .rtproc section. */
8461 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8462 if (rtproc_sec == NULL)
8464 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8465 | SEC_LINKER_CREATED | SEC_READONLY);
8467 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8468 if (rtproc_sec == NULL
8469 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8470 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8471 return FALSE;
8474 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8475 info, rtproc_sec,
8476 &debug))
8477 return FALSE;
8480 /* Build the external symbol information. */
8481 einfo.abfd = abfd;
8482 einfo.info = info;
8483 einfo.debug = &debug;
8484 einfo.swap = swap;
8485 einfo.failed = FALSE;
8486 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8487 mips_elf_output_extsym, &einfo);
8488 if (einfo.failed)
8489 return FALSE;
8491 /* Set the size of the .mdebug section. */
8492 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
8494 /* Skip this section later on (I don't think this currently
8495 matters, but someday it might). */
8496 o->link_order_head = NULL;
8498 mdebug_sec = o;
8501 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8503 const char *subname;
8504 unsigned int c;
8505 Elf32_gptab *tab;
8506 Elf32_External_gptab *ext_tab;
8507 unsigned int j;
8509 /* The .gptab.sdata and .gptab.sbss sections hold
8510 information describing how the small data area would
8511 change depending upon the -G switch. These sections
8512 not used in executables files. */
8513 if (! info->relocatable)
8515 for (p = o->link_order_head; p != NULL; p = p->next)
8517 asection *input_section;
8519 if (p->type != bfd_indirect_link_order)
8521 if (p->type == bfd_data_link_order)
8522 continue;
8523 abort ();
8526 input_section = p->u.indirect.section;
8528 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8529 elf_link_input_bfd ignores this section. */
8530 input_section->flags &= ~SEC_HAS_CONTENTS;
8533 /* Skip this section later on (I don't think this
8534 currently matters, but someday it might). */
8535 o->link_order_head = NULL;
8537 /* Really remove the section. */
8538 for (secpp = &abfd->sections;
8539 *secpp != o;
8540 secpp = &(*secpp)->next)
8542 bfd_section_list_remove (abfd, secpp);
8543 --abfd->section_count;
8545 continue;
8548 /* There is one gptab for initialized data, and one for
8549 uninitialized data. */
8550 if (strcmp (o->name, ".gptab.sdata") == 0)
8551 gptab_data_sec = o;
8552 else if (strcmp (o->name, ".gptab.sbss") == 0)
8553 gptab_bss_sec = o;
8554 else
8556 (*_bfd_error_handler)
8557 (_("%s: illegal section name `%s'"),
8558 bfd_get_filename (abfd), o->name);
8559 bfd_set_error (bfd_error_nonrepresentable_section);
8560 return FALSE;
8563 /* The linker script always combines .gptab.data and
8564 .gptab.sdata into .gptab.sdata, and likewise for
8565 .gptab.bss and .gptab.sbss. It is possible that there is
8566 no .sdata or .sbss section in the output file, in which
8567 case we must change the name of the output section. */
8568 subname = o->name + sizeof ".gptab" - 1;
8569 if (bfd_get_section_by_name (abfd, subname) == NULL)
8571 if (o == gptab_data_sec)
8572 o->name = ".gptab.data";
8573 else
8574 o->name = ".gptab.bss";
8575 subname = o->name + sizeof ".gptab" - 1;
8576 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8579 /* Set up the first entry. */
8580 c = 1;
8581 amt = c * sizeof (Elf32_gptab);
8582 tab = bfd_malloc (amt);
8583 if (tab == NULL)
8584 return FALSE;
8585 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8586 tab[0].gt_header.gt_unused = 0;
8588 /* Combine the input sections. */
8589 for (p = o->link_order_head; p != NULL; p = p->next)
8591 asection *input_section;
8592 bfd *input_bfd;
8593 bfd_size_type size;
8594 unsigned long last;
8595 bfd_size_type gpentry;
8597 if (p->type != bfd_indirect_link_order)
8599 if (p->type == bfd_data_link_order)
8600 continue;
8601 abort ();
8604 input_section = p->u.indirect.section;
8605 input_bfd = input_section->owner;
8607 /* Combine the gptab entries for this input section one
8608 by one. We know that the input gptab entries are
8609 sorted by ascending -G value. */
8610 size = input_section->size;
8611 last = 0;
8612 for (gpentry = sizeof (Elf32_External_gptab);
8613 gpentry < size;
8614 gpentry += sizeof (Elf32_External_gptab))
8616 Elf32_External_gptab ext_gptab;
8617 Elf32_gptab int_gptab;
8618 unsigned long val;
8619 unsigned long add;
8620 bfd_boolean exact;
8621 unsigned int look;
8623 if (! (bfd_get_section_contents
8624 (input_bfd, input_section, &ext_gptab, gpentry,
8625 sizeof (Elf32_External_gptab))))
8627 free (tab);
8628 return FALSE;
8631 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8632 &int_gptab);
8633 val = int_gptab.gt_entry.gt_g_value;
8634 add = int_gptab.gt_entry.gt_bytes - last;
8636 exact = FALSE;
8637 for (look = 1; look < c; look++)
8639 if (tab[look].gt_entry.gt_g_value >= val)
8640 tab[look].gt_entry.gt_bytes += add;
8642 if (tab[look].gt_entry.gt_g_value == val)
8643 exact = TRUE;
8646 if (! exact)
8648 Elf32_gptab *new_tab;
8649 unsigned int max;
8651 /* We need a new table entry. */
8652 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8653 new_tab = bfd_realloc (tab, amt);
8654 if (new_tab == NULL)
8656 free (tab);
8657 return FALSE;
8659 tab = new_tab;
8660 tab[c].gt_entry.gt_g_value = val;
8661 tab[c].gt_entry.gt_bytes = add;
8663 /* Merge in the size for the next smallest -G
8664 value, since that will be implied by this new
8665 value. */
8666 max = 0;
8667 for (look = 1; look < c; look++)
8669 if (tab[look].gt_entry.gt_g_value < val
8670 && (max == 0
8671 || (tab[look].gt_entry.gt_g_value
8672 > tab[max].gt_entry.gt_g_value)))
8673 max = look;
8675 if (max != 0)
8676 tab[c].gt_entry.gt_bytes +=
8677 tab[max].gt_entry.gt_bytes;
8679 ++c;
8682 last = int_gptab.gt_entry.gt_bytes;
8685 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8686 elf_link_input_bfd ignores this section. */
8687 input_section->flags &= ~SEC_HAS_CONTENTS;
8690 /* The table must be sorted by -G value. */
8691 if (c > 2)
8692 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8694 /* Swap out the table. */
8695 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8696 ext_tab = bfd_alloc (abfd, amt);
8697 if (ext_tab == NULL)
8699 free (tab);
8700 return FALSE;
8703 for (j = 0; j < c; j++)
8704 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8705 free (tab);
8707 o->size = c * sizeof (Elf32_External_gptab);
8708 o->contents = (bfd_byte *) ext_tab;
8710 /* Skip this section later on (I don't think this currently
8711 matters, but someday it might). */
8712 o->link_order_head = NULL;
8716 /* Invoke the regular ELF backend linker to do all the work. */
8717 if (!bfd_elf_final_link (abfd, info))
8718 return FALSE;
8720 /* Now write out the computed sections. */
8722 if (reginfo_sec != NULL)
8724 Elf32_External_RegInfo ext;
8726 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8727 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8728 return FALSE;
8731 if (mdebug_sec != NULL)
8733 BFD_ASSERT (abfd->output_has_begun);
8734 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8735 swap, info,
8736 mdebug_sec->filepos))
8737 return FALSE;
8739 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8742 if (gptab_data_sec != NULL)
8744 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8745 gptab_data_sec->contents,
8746 0, gptab_data_sec->size))
8747 return FALSE;
8750 if (gptab_bss_sec != NULL)
8752 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8753 gptab_bss_sec->contents,
8754 0, gptab_bss_sec->size))
8755 return FALSE;
8758 if (SGI_COMPAT (abfd))
8760 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8761 if (rtproc_sec != NULL)
8763 if (! bfd_set_section_contents (abfd, rtproc_sec,
8764 rtproc_sec->contents,
8765 0, rtproc_sec->size))
8766 return FALSE;
8770 return TRUE;
8773 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8775 struct mips_mach_extension {
8776 unsigned long extension, base;
8780 /* An array describing how BFD machines relate to one another. The entries
8781 are ordered topologically with MIPS I extensions listed last. */
8783 static const struct mips_mach_extension mips_mach_extensions[] = {
8784 /* MIPS64 extensions. */
8785 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8786 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8788 /* MIPS V extensions. */
8789 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8791 /* R10000 extensions. */
8792 { bfd_mach_mips12000, bfd_mach_mips10000 },
8794 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8795 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8796 better to allow vr5400 and vr5500 code to be merged anyway, since
8797 many libraries will just use the core ISA. Perhaps we could add
8798 some sort of ASE flag if this ever proves a problem. */
8799 { bfd_mach_mips5500, bfd_mach_mips5400 },
8800 { bfd_mach_mips5400, bfd_mach_mips5000 },
8802 /* MIPS IV extensions. */
8803 { bfd_mach_mips5, bfd_mach_mips8000 },
8804 { bfd_mach_mips10000, bfd_mach_mips8000 },
8805 { bfd_mach_mips5000, bfd_mach_mips8000 },
8806 { bfd_mach_mips7000, bfd_mach_mips8000 },
8807 { bfd_mach_mips9000, bfd_mach_mips8000 },
8809 /* VR4100 extensions. */
8810 { bfd_mach_mips4120, bfd_mach_mips4100 },
8811 { bfd_mach_mips4111, bfd_mach_mips4100 },
8813 /* MIPS III extensions. */
8814 { bfd_mach_mips8000, bfd_mach_mips4000 },
8815 { bfd_mach_mips4650, bfd_mach_mips4000 },
8816 { bfd_mach_mips4600, bfd_mach_mips4000 },
8817 { bfd_mach_mips4400, bfd_mach_mips4000 },
8818 { bfd_mach_mips4300, bfd_mach_mips4000 },
8819 { bfd_mach_mips4100, bfd_mach_mips4000 },
8820 { bfd_mach_mips4010, bfd_mach_mips4000 },
8822 /* MIPS32 extensions. */
8823 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8825 /* MIPS II extensions. */
8826 { bfd_mach_mips4000, bfd_mach_mips6000 },
8827 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8829 /* MIPS I extensions. */
8830 { bfd_mach_mips6000, bfd_mach_mips3000 },
8831 { bfd_mach_mips3900, bfd_mach_mips3000 }
8835 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8837 static bfd_boolean
8838 mips_mach_extends_p (unsigned long base, unsigned long extension)
8840 size_t i;
8842 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8843 if (extension == mips_mach_extensions[i].extension)
8844 extension = mips_mach_extensions[i].base;
8846 return extension == base;
8850 /* Return true if the given ELF header flags describe a 32-bit binary. */
8852 static bfd_boolean
8853 mips_32bit_flags_p (flagword flags)
8855 return ((flags & EF_MIPS_32BITMODE) != 0
8856 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8857 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8858 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8859 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8860 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8861 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8865 /* Merge backend specific data from an object file to the output
8866 object file when linking. */
8868 bfd_boolean
8869 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8871 flagword old_flags;
8872 flagword new_flags;
8873 bfd_boolean ok;
8874 bfd_boolean null_input_bfd = TRUE;
8875 asection *sec;
8877 /* Check if we have the same endianess */
8878 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8880 (*_bfd_error_handler)
8881 (_("%B: endianness incompatible with that of the selected emulation"),
8882 ibfd);
8883 return FALSE;
8886 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8887 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8888 return TRUE;
8890 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8892 (*_bfd_error_handler)
8893 (_("%B: ABI is incompatible with that of the selected emulation"),
8894 ibfd);
8895 return FALSE;
8898 new_flags = elf_elfheader (ibfd)->e_flags;
8899 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8900 old_flags = elf_elfheader (obfd)->e_flags;
8902 if (! elf_flags_init (obfd))
8904 elf_flags_init (obfd) = TRUE;
8905 elf_elfheader (obfd)->e_flags = new_flags;
8906 elf_elfheader (obfd)->e_ident[EI_CLASS]
8907 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8909 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8910 && bfd_get_arch_info (obfd)->the_default)
8912 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8913 bfd_get_mach (ibfd)))
8914 return FALSE;
8917 return TRUE;
8920 /* Check flag compatibility. */
8922 new_flags &= ~EF_MIPS_NOREORDER;
8923 old_flags &= ~EF_MIPS_NOREORDER;
8925 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8926 doesn't seem to matter. */
8927 new_flags &= ~EF_MIPS_XGOT;
8928 old_flags &= ~EF_MIPS_XGOT;
8930 /* MIPSpro generates ucode info in n64 objects. Again, we should
8931 just be able to ignore this. */
8932 new_flags &= ~EF_MIPS_UCODE;
8933 old_flags &= ~EF_MIPS_UCODE;
8935 if (new_flags == old_flags)
8936 return TRUE;
8938 /* Check to see if the input BFD actually contains any sections.
8939 If not, its flags may not have been initialised either, but it cannot
8940 actually cause any incompatibility. */
8941 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8943 /* Ignore synthetic sections and empty .text, .data and .bss sections
8944 which are automatically generated by gas. */
8945 if (strcmp (sec->name, ".reginfo")
8946 && strcmp (sec->name, ".mdebug")
8947 && (sec->size != 0
8948 || (strcmp (sec->name, ".text")
8949 && strcmp (sec->name, ".data")
8950 && strcmp (sec->name, ".bss"))))
8952 null_input_bfd = FALSE;
8953 break;
8956 if (null_input_bfd)
8957 return TRUE;
8959 ok = TRUE;
8961 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8962 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8964 (*_bfd_error_handler)
8965 (_("%B: warning: linking PIC files with non-PIC files"),
8966 ibfd);
8967 ok = TRUE;
8970 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8971 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8972 if (! (new_flags & EF_MIPS_PIC))
8973 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8975 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8976 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8978 /* Compare the ISAs. */
8979 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8981 (*_bfd_error_handler)
8982 (_("%B: linking 32-bit code with 64-bit code"),
8983 ibfd);
8984 ok = FALSE;
8986 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8988 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8989 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
8991 /* Copy the architecture info from IBFD to OBFD. Also copy
8992 the 32-bit flag (if set) so that we continue to recognise
8993 OBFD as a 32-bit binary. */
8994 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8995 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8996 elf_elfheader (obfd)->e_flags
8997 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8999 /* Copy across the ABI flags if OBFD doesn't use them
9000 and if that was what caused us to treat IBFD as 32-bit. */
9001 if ((old_flags & EF_MIPS_ABI) == 0
9002 && mips_32bit_flags_p (new_flags)
9003 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9004 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9006 else
9008 /* The ISAs aren't compatible. */
9009 (*_bfd_error_handler)
9010 (_("%B: linking %s module with previous %s modules"),
9011 ibfd,
9012 bfd_printable_name (ibfd),
9013 bfd_printable_name (obfd));
9014 ok = FALSE;
9018 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9019 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9021 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9022 does set EI_CLASS differently from any 32-bit ABI. */
9023 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9027 /* Only error if both are set (to different values). */
9028 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9029 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9030 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9032 (*_bfd_error_handler)
9033 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9034 ibfd,
9035 elf_mips_abi_name (ibfd),
9036 elf_mips_abi_name (obfd));
9037 ok = FALSE;
9039 new_flags &= ~EF_MIPS_ABI;
9040 old_flags &= ~EF_MIPS_ABI;
9043 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9044 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9046 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9048 new_flags &= ~ EF_MIPS_ARCH_ASE;
9049 old_flags &= ~ EF_MIPS_ARCH_ASE;
9052 /* Warn about any other mismatches */
9053 if (new_flags != old_flags)
9055 (*_bfd_error_handler)
9056 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9057 ibfd, (unsigned long) new_flags,
9058 (unsigned long) old_flags);
9059 ok = FALSE;
9062 if (! ok)
9064 bfd_set_error (bfd_error_bad_value);
9065 return FALSE;
9068 return TRUE;
9071 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9073 bfd_boolean
9074 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9076 BFD_ASSERT (!elf_flags_init (abfd)
9077 || elf_elfheader (abfd)->e_flags == flags);
9079 elf_elfheader (abfd)->e_flags = flags;
9080 elf_flags_init (abfd) = TRUE;
9081 return TRUE;
9084 bfd_boolean
9085 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9087 FILE *file = ptr;
9089 BFD_ASSERT (abfd != NULL && ptr != NULL);
9091 /* Print normal ELF private data. */
9092 _bfd_elf_print_private_bfd_data (abfd, ptr);
9094 /* xgettext:c-format */
9095 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9097 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9098 fprintf (file, _(" [abi=O32]"));
9099 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9100 fprintf (file, _(" [abi=O64]"));
9101 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9102 fprintf (file, _(" [abi=EABI32]"));
9103 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9104 fprintf (file, _(" [abi=EABI64]"));
9105 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9106 fprintf (file, _(" [abi unknown]"));
9107 else if (ABI_N32_P (abfd))
9108 fprintf (file, _(" [abi=N32]"));
9109 else if (ABI_64_P (abfd))
9110 fprintf (file, _(" [abi=64]"));
9111 else
9112 fprintf (file, _(" [no abi set]"));
9114 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9115 fprintf (file, _(" [mips1]"));
9116 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9117 fprintf (file, _(" [mips2]"));
9118 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9119 fprintf (file, _(" [mips3]"));
9120 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9121 fprintf (file, _(" [mips4]"));
9122 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9123 fprintf (file, _(" [mips5]"));
9124 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9125 fprintf (file, _(" [mips32]"));
9126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9127 fprintf (file, _(" [mips64]"));
9128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9129 fprintf (file, _(" [mips32r2]"));
9130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9131 fprintf (file, _(" [mips64r2]"));
9132 else
9133 fprintf (file, _(" [unknown ISA]"));
9135 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9136 fprintf (file, _(" [mdmx]"));
9138 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9139 fprintf (file, _(" [mips16]"));
9141 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9142 fprintf (file, _(" [32bitmode]"));
9143 else
9144 fprintf (file, _(" [not 32bitmode]"));
9146 fputc ('\n', file);
9148 return TRUE;
9151 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9153 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9154 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9155 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9156 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9157 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9158 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9159 { NULL, 0, 0, 0, 0 }