daily update
[binutils.git] / gold / output.h
blob9ccc21a67606ff8438f2aee565907227a6b42aa3
1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
26 #include <list>
27 #include <vector>
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
34 namespace gold
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
50 // An abtract class for data which has to go into the output file.
52 class Output_data
54 public:
55 explicit Output_data()
56 : address_(0), data_size_(0), offset_(-1),
57 is_address_valid_(false), is_data_size_valid_(false),
58 is_offset_valid_(false), is_data_size_fixed_(false),
59 has_dynamic_reloc_(false)
60 { }
62 virtual
63 ~Output_data();
65 // Return the address. For allocated sections, this is only valid
66 // after Layout::finalize is finished.
67 uint64_t
68 address() const
70 gold_assert(this->is_address_valid_);
71 return this->address_;
74 // Return the size of the data. For allocated sections, this must
75 // be valid after Layout::finalize calls set_address, but need not
76 // be valid before then.
77 off_t
78 data_size() const
80 gold_assert(this->is_data_size_valid_);
81 return this->data_size_;
84 // Return true if data size is fixed.
85 bool
86 is_data_size_fixed() const
87 { return this->is_data_size_fixed_; }
89 // Return the file offset. This is only valid after
90 // Layout::finalize is finished. For some non-allocated sections,
91 // it may not be valid until near the end of the link.
92 off_t
93 offset() const
95 gold_assert(this->is_offset_valid_);
96 return this->offset_;
99 // Reset the address and file offset. This essentially disables the
100 // sanity testing about duplicate and unknown settings.
101 void
102 reset_address_and_file_offset()
104 this->is_address_valid_ = false;
105 this->is_offset_valid_ = false;
106 if (!this->is_data_size_fixed_)
107 this->is_data_size_valid_ = false;
108 this->do_reset_address_and_file_offset();
111 // Return true if address and file offset already have reset values. In
112 // other words, calling reset_address_and_file_offset will not change them.
113 bool
114 address_and_file_offset_have_reset_values() const
115 { return this->do_address_and_file_offset_have_reset_values(); }
117 // Return the required alignment.
118 uint64_t
119 addralign() const
120 { return this->do_addralign(); }
122 // Return whether this has a load address.
123 bool
124 has_load_address() const
125 { return this->do_has_load_address(); }
127 // Return the load address.
128 uint64_t
129 load_address() const
130 { return this->do_load_address(); }
132 // Return whether this is an Output_section.
133 bool
134 is_section() const
135 { return this->do_is_section(); }
137 // Return whether this is an Output_section of the specified type.
138 bool
139 is_section_type(elfcpp::Elf_Word stt) const
140 { return this->do_is_section_type(stt); }
142 // Return whether this is an Output_section with the specified flag
143 // set.
144 bool
145 is_section_flag_set(elfcpp::Elf_Xword shf) const
146 { return this->do_is_section_flag_set(shf); }
148 // Return the output section that this goes in, if there is one.
149 Output_section*
150 output_section()
151 { return this->do_output_section(); }
153 const Output_section*
154 output_section() const
155 { return this->do_output_section(); }
157 // Return the output section index, if there is an output section.
158 unsigned int
159 out_shndx() const
160 { return this->do_out_shndx(); }
162 // Set the output section index, if this is an output section.
163 void
164 set_out_shndx(unsigned int shndx)
165 { this->do_set_out_shndx(shndx); }
167 // Set the address and file offset of this data, and finalize the
168 // size of the data. This is called during Layout::finalize for
169 // allocated sections.
170 void
171 set_address_and_file_offset(uint64_t addr, off_t off)
173 this->set_address(addr);
174 this->set_file_offset(off);
175 this->finalize_data_size();
178 // Set the address.
179 void
180 set_address(uint64_t addr)
182 gold_assert(!this->is_address_valid_);
183 this->address_ = addr;
184 this->is_address_valid_ = true;
187 // Set the file offset.
188 void
189 set_file_offset(off_t off)
191 gold_assert(!this->is_offset_valid_);
192 this->offset_ = off;
193 this->is_offset_valid_ = true;
196 // Finalize the data size.
197 void
198 finalize_data_size()
200 if (!this->is_data_size_valid_)
202 // Tell the child class to set the data size.
203 this->set_final_data_size();
204 gold_assert(this->is_data_size_valid_);
208 // Set the TLS offset. Called only for SHT_TLS sections.
209 void
210 set_tls_offset(uint64_t tls_base)
211 { this->do_set_tls_offset(tls_base); }
213 // Return the TLS offset, relative to the base of the TLS segment.
214 // Valid only for SHT_TLS sections.
215 uint64_t
216 tls_offset() const
217 { return this->do_tls_offset(); }
219 // Write the data to the output file. This is called after
220 // Layout::finalize is complete.
221 void
222 write(Output_file* file)
223 { this->do_write(file); }
225 // This is called by Layout::finalize to note that the sizes of
226 // allocated sections must now be fixed.
227 static void
228 layout_complete()
229 { Output_data::allocated_sizes_are_fixed = true; }
231 // Used to check that layout has been done.
232 static bool
233 is_layout_complete()
234 { return Output_data::allocated_sizes_are_fixed; }
236 // Note that a dynamic reloc has been applied to this data.
237 void
238 add_dynamic_reloc()
239 { this->has_dynamic_reloc_ = true; }
241 // Return whether a dynamic reloc has been applied.
242 bool
243 has_dynamic_reloc() const
244 { return this->has_dynamic_reloc_; }
246 // Whether the address is valid.
247 bool
248 is_address_valid() const
249 { return this->is_address_valid_; }
251 // Whether the file offset is valid.
252 bool
253 is_offset_valid() const
254 { return this->is_offset_valid_; }
256 // Whether the data size is valid.
257 bool
258 is_data_size_valid() const
259 { return this->is_data_size_valid_; }
261 // Print information to the map file.
262 void
263 print_to_mapfile(Mapfile* mapfile) const
264 { return this->do_print_to_mapfile(mapfile); }
266 protected:
267 // Functions that child classes may or in some cases must implement.
269 // Write the data to the output file.
270 virtual void
271 do_write(Output_file*) = 0;
273 // Return the required alignment.
274 virtual uint64_t
275 do_addralign() const = 0;
277 // Return whether this has a load address.
278 virtual bool
279 do_has_load_address() const
280 { return false; }
282 // Return the load address.
283 virtual uint64_t
284 do_load_address() const
285 { gold_unreachable(); }
287 // Return whether this is an Output_section.
288 virtual bool
289 do_is_section() const
290 { return false; }
292 // Return whether this is an Output_section of the specified type.
293 // This only needs to be implement by Output_section.
294 virtual bool
295 do_is_section_type(elfcpp::Elf_Word) const
296 { return false; }
298 // Return whether this is an Output_section with the specific flag
299 // set. This only needs to be implemented by Output_section.
300 virtual bool
301 do_is_section_flag_set(elfcpp::Elf_Xword) const
302 { return false; }
304 // Return the output section, if there is one.
305 virtual Output_section*
306 do_output_section()
307 { return NULL; }
309 virtual const Output_section*
310 do_output_section() const
311 { return NULL; }
313 // Return the output section index, if there is an output section.
314 virtual unsigned int
315 do_out_shndx() const
316 { gold_unreachable(); }
318 // Set the output section index, if this is an output section.
319 virtual void
320 do_set_out_shndx(unsigned int)
321 { gold_unreachable(); }
323 // This is a hook for derived classes to set the data size. This is
324 // called by finalize_data_size, normally called during
325 // Layout::finalize, when the section address is set.
326 virtual void
327 set_final_data_size()
328 { gold_unreachable(); }
330 // A hook for resetting the address and file offset.
331 virtual void
332 do_reset_address_and_file_offset()
335 // Return true if address and file offset already have reset values. In
336 // other words, calling reset_address_and_file_offset will not change them.
337 // A child class overriding do_reset_address_and_file_offset may need to
338 // also override this.
339 virtual bool
340 do_address_and_file_offset_have_reset_values() const
341 { return !this->is_address_valid_ && !this->is_offset_valid_; }
343 // Set the TLS offset. Called only for SHT_TLS sections.
344 virtual void
345 do_set_tls_offset(uint64_t)
346 { gold_unreachable(); }
348 // Return the TLS offset, relative to the base of the TLS segment.
349 // Valid only for SHT_TLS sections.
350 virtual uint64_t
351 do_tls_offset() const
352 { gold_unreachable(); }
354 // Print to the map file. This only needs to be implemented by
355 // classes which may appear in a PT_LOAD segment.
356 virtual void
357 do_print_to_mapfile(Mapfile*) const
358 { gold_unreachable(); }
360 // Functions that child classes may call.
362 // Reset the address. The Output_section class needs this when an
363 // SHF_ALLOC input section is added to an output section which was
364 // formerly not SHF_ALLOC.
365 void
366 mark_address_invalid()
367 { this->is_address_valid_ = false; }
369 // Set the size of the data.
370 void
371 set_data_size(off_t data_size)
373 gold_assert(!this->is_data_size_valid_
374 && !this->is_data_size_fixed_);
375 this->data_size_ = data_size;
376 this->is_data_size_valid_ = true;
379 // Fix the data size. Once it is fixed, it cannot be changed
380 // and the data size remains always valid.
381 void
382 fix_data_size()
384 gold_assert(this->is_data_size_valid_);
385 this->is_data_size_fixed_ = true;
388 // Get the current data size--this is for the convenience of
389 // sections which build up their size over time.
390 off_t
391 current_data_size_for_child() const
392 { return this->data_size_; }
394 // Set the current data size--this is for the convenience of
395 // sections which build up their size over time.
396 void
397 set_current_data_size_for_child(off_t data_size)
399 gold_assert(!this->is_data_size_valid_);
400 this->data_size_ = data_size;
403 // Return default alignment for the target size.
404 static uint64_t
405 default_alignment();
407 // Return default alignment for a specified size--32 or 64.
408 static uint64_t
409 default_alignment_for_size(int size);
411 private:
412 Output_data(const Output_data&);
413 Output_data& operator=(const Output_data&);
415 // This is used for verification, to make sure that we don't try to
416 // change any sizes of allocated sections after we set the section
417 // addresses.
418 static bool allocated_sizes_are_fixed;
420 // Memory address in output file.
421 uint64_t address_;
422 // Size of data in output file.
423 off_t data_size_;
424 // File offset of contents in output file.
425 off_t offset_;
426 // Whether address_ is valid.
427 bool is_address_valid_ : 1;
428 // Whether data_size_ is valid.
429 bool is_data_size_valid_ : 1;
430 // Whether offset_ is valid.
431 bool is_offset_valid_ : 1;
432 // Whether data size is fixed.
433 bool is_data_size_fixed_ : 1;
434 // Whether any dynamic relocs have been applied to this section.
435 bool has_dynamic_reloc_ : 1;
438 // Output the section headers.
440 class Output_section_headers : public Output_data
442 public:
443 Output_section_headers(const Layout*,
444 const Layout::Segment_list*,
445 const Layout::Section_list*,
446 const Layout::Section_list*,
447 const Stringpool*,
448 const Output_section*);
450 protected:
451 // Write the data to the file.
452 void
453 do_write(Output_file*);
455 // Return the required alignment.
456 uint64_t
457 do_addralign() const
458 { return Output_data::default_alignment(); }
460 // Write to a map file.
461 void
462 do_print_to_mapfile(Mapfile* mapfile) const
463 { mapfile->print_output_data(this, _("** section headers")); }
465 // Set final data size.
466 void
467 set_final_data_size()
468 { this->set_data_size(this->do_size()); }
470 private:
471 // Write the data to the file with the right size and endianness.
472 template<int size, bool big_endian>
473 void
474 do_sized_write(Output_file*);
476 // Compute data size.
477 off_t
478 do_size() const;
480 const Layout* layout_;
481 const Layout::Segment_list* segment_list_;
482 const Layout::Section_list* section_list_;
483 const Layout::Section_list* unattached_section_list_;
484 const Stringpool* secnamepool_;
485 const Output_section* shstrtab_section_;
488 // Output the segment headers.
490 class Output_segment_headers : public Output_data
492 public:
493 Output_segment_headers(const Layout::Segment_list& segment_list);
495 protected:
496 // Write the data to the file.
497 void
498 do_write(Output_file*);
500 // Return the required alignment.
501 uint64_t
502 do_addralign() const
503 { return Output_data::default_alignment(); }
505 // Write to a map file.
506 void
507 do_print_to_mapfile(Mapfile* mapfile) const
508 { mapfile->print_output_data(this, _("** segment headers")); }
510 // Set final data size.
511 void
512 set_final_data_size()
513 { this->set_data_size(this->do_size()); }
515 private:
516 // Write the data to the file with the right size and endianness.
517 template<int size, bool big_endian>
518 void
519 do_sized_write(Output_file*);
521 // Compute the current size.
522 off_t
523 do_size() const;
525 const Layout::Segment_list& segment_list_;
528 // Output the ELF file header.
530 class Output_file_header : public Output_data
532 public:
533 Output_file_header(const Target*,
534 const Symbol_table*,
535 const Output_segment_headers*,
536 const char* entry);
538 // Add information about the section headers. We lay out the ELF
539 // file header before we create the section headers.
540 void set_section_info(const Output_section_headers*,
541 const Output_section* shstrtab);
543 protected:
544 // Write the data to the file.
545 void
546 do_write(Output_file*);
548 // Return the required alignment.
549 uint64_t
550 do_addralign() const
551 { return Output_data::default_alignment(); }
553 // Write to a map file.
554 void
555 do_print_to_mapfile(Mapfile* mapfile) const
556 { mapfile->print_output_data(this, _("** file header")); }
558 // Set final data size.
559 void
560 set_final_data_size(void)
561 { this->set_data_size(this->do_size()); }
563 private:
564 // Write the data to the file with the right size and endianness.
565 template<int size, bool big_endian>
566 void
567 do_sized_write(Output_file*);
569 // Return the value to use for the entry address.
570 template<int size>
571 typename elfcpp::Elf_types<size>::Elf_Addr
572 entry();
574 // Compute the current data size.
575 off_t
576 do_size() const;
578 const Target* target_;
579 const Symbol_table* symtab_;
580 const Output_segment_headers* segment_header_;
581 const Output_section_headers* section_header_;
582 const Output_section* shstrtab_;
583 const char* entry_;
586 // Output sections are mainly comprised of input sections. However,
587 // there are cases where we have data to write out which is not in an
588 // input section. Output_section_data is used in such cases. This is
589 // an abstract base class.
591 class Output_section_data : public Output_data
593 public:
594 Output_section_data(off_t data_size, uint64_t addralign,
595 bool is_data_size_fixed)
596 : Output_data(), output_section_(NULL), addralign_(addralign)
598 this->set_data_size(data_size);
599 if (is_data_size_fixed)
600 this->fix_data_size();
603 Output_section_data(uint64_t addralign)
604 : Output_data(), output_section_(NULL), addralign_(addralign)
607 // Return the output section.
608 Output_section*
609 output_section()
610 { return this->output_section_; }
612 const Output_section*
613 output_section() const
614 { return this->output_section_; }
616 // Record the output section.
617 void
618 set_output_section(Output_section* os);
620 // Add an input section, for SHF_MERGE sections. This returns true
621 // if the section was handled.
622 bool
623 add_input_section(Relobj* object, unsigned int shndx)
624 { return this->do_add_input_section(object, shndx); }
626 // Given an input OBJECT, an input section index SHNDX within that
627 // object, and an OFFSET relative to the start of that input
628 // section, return whether or not the corresponding offset within
629 // the output section is known. If this function returns true, it
630 // sets *POUTPUT to the output offset. The value -1 indicates that
631 // this input offset is being discarded.
632 bool
633 output_offset(const Relobj* object, unsigned int shndx,
634 section_offset_type offset,
635 section_offset_type* poutput) const
636 { return this->do_output_offset(object, shndx, offset, poutput); }
638 // Return whether this is the merge section for the input section
639 // SHNDX in OBJECT. This should return true when output_offset
640 // would return true for some values of OFFSET.
641 bool
642 is_merge_section_for(const Relobj* object, unsigned int shndx) const
643 { return this->do_is_merge_section_for(object, shndx); }
645 // Write the contents to a buffer. This is used for sections which
646 // require postprocessing, such as compression.
647 void
648 write_to_buffer(unsigned char* buffer)
649 { this->do_write_to_buffer(buffer); }
651 // Print merge stats to stderr. This should only be called for
652 // SHF_MERGE sections.
653 void
654 print_merge_stats(const char* section_name)
655 { this->do_print_merge_stats(section_name); }
657 protected:
658 // The child class must implement do_write.
660 // The child class may implement specific adjustments to the output
661 // section.
662 virtual void
663 do_adjust_output_section(Output_section*)
666 // May be implemented by child class. Return true if the section
667 // was handled.
668 virtual bool
669 do_add_input_section(Relobj*, unsigned int)
670 { gold_unreachable(); }
672 // The child class may implement output_offset.
673 virtual bool
674 do_output_offset(const Relobj*, unsigned int, section_offset_type,
675 section_offset_type*) const
676 { return false; }
678 // The child class may implement is_merge_section_for.
679 virtual bool
680 do_is_merge_section_for(const Relobj*, unsigned int) const
681 { return false; }
683 // The child class may implement write_to_buffer. Most child
684 // classes can not appear in a compressed section, and they do not
685 // implement this.
686 virtual void
687 do_write_to_buffer(unsigned char*)
688 { gold_unreachable(); }
690 // Print merge statistics.
691 virtual void
692 do_print_merge_stats(const char*)
693 { gold_unreachable(); }
695 // Return the required alignment.
696 uint64_t
697 do_addralign() const
698 { return this->addralign_; }
700 // Return the output section.
701 Output_section*
702 do_output_section()
703 { return this->output_section_; }
705 const Output_section*
706 do_output_section() const
707 { return this->output_section_; }
709 // Return the section index of the output section.
710 unsigned int
711 do_out_shndx() const;
713 // Set the alignment.
714 void
715 set_addralign(uint64_t addralign);
717 private:
718 // The output section for this section.
719 Output_section* output_section_;
720 // The required alignment.
721 uint64_t addralign_;
724 // Some Output_section_data classes build up their data step by step,
725 // rather than all at once. This class provides an interface for
726 // them.
728 class Output_section_data_build : public Output_section_data
730 public:
731 Output_section_data_build(uint64_t addralign)
732 : Output_section_data(addralign)
735 // Get the current data size.
736 off_t
737 current_data_size() const
738 { return this->current_data_size_for_child(); }
740 // Set the current data size.
741 void
742 set_current_data_size(off_t data_size)
743 { this->set_current_data_size_for_child(data_size); }
745 protected:
746 // Set the final data size.
747 virtual void
748 set_final_data_size()
749 { this->set_data_size(this->current_data_size_for_child()); }
752 // A simple case of Output_data in which we have constant data to
753 // output.
755 class Output_data_const : public Output_section_data
757 public:
758 Output_data_const(const std::string& data, uint64_t addralign)
759 : Output_section_data(data.size(), addralign, true), data_(data)
762 Output_data_const(const char* p, off_t len, uint64_t addralign)
763 : Output_section_data(len, addralign, true), data_(p, len)
766 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
767 : Output_section_data(len, addralign, true),
768 data_(reinterpret_cast<const char*>(p), len)
771 protected:
772 // Write the data to the output file.
773 void
774 do_write(Output_file*);
776 // Write the data to a buffer.
777 void
778 do_write_to_buffer(unsigned char* buffer)
779 { memcpy(buffer, this->data_.data(), this->data_.size()); }
781 // Write to a map file.
782 void
783 do_print_to_mapfile(Mapfile* mapfile) const
784 { mapfile->print_output_data(this, _("** fill")); }
786 private:
787 std::string data_;
790 // Another version of Output_data with constant data, in which the
791 // buffer is allocated by the caller.
793 class Output_data_const_buffer : public Output_section_data
795 public:
796 Output_data_const_buffer(const unsigned char* p, off_t len,
797 uint64_t addralign, const char* map_name)
798 : Output_section_data(len, addralign, true),
799 p_(p), map_name_(map_name)
802 protected:
803 // Write the data the output file.
804 void
805 do_write(Output_file*);
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->p_, this->data_size()); }
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _(this->map_name_)); }
817 private:
818 // The data to output.
819 const unsigned char* p_;
820 // Name to use in a map file. Maps are a rarely used feature, but
821 // the space usage is minor as aren't very many of these objects.
822 const char* map_name_;
825 // A place holder for a fixed amount of data written out via some
826 // other mechanism.
828 class Output_data_fixed_space : public Output_section_data
830 public:
831 Output_data_fixed_space(off_t data_size, uint64_t addralign,
832 const char* map_name)
833 : Output_section_data(data_size, addralign, true),
834 map_name_(map_name)
837 protected:
838 // Write out the data--the actual data must be written out
839 // elsewhere.
840 void
841 do_write(Output_file*)
844 // Write to a map file.
845 void
846 do_print_to_mapfile(Mapfile* mapfile) const
847 { mapfile->print_output_data(this, _(this->map_name_)); }
849 private:
850 // Name to use in a map file. Maps are a rarely used feature, but
851 // the space usage is minor as aren't very many of these objects.
852 const char* map_name_;
855 // A place holder for variable sized data written out via some other
856 // mechanism.
858 class Output_data_space : public Output_section_data_build
860 public:
861 explicit Output_data_space(uint64_t addralign, const char* map_name)
862 : Output_section_data_build(addralign),
863 map_name_(map_name)
866 // Set the alignment.
867 void
868 set_space_alignment(uint64_t align)
869 { this->set_addralign(align); }
871 protected:
872 // Write out the data--the actual data must be written out
873 // elsewhere.
874 void
875 do_write(Output_file*)
878 // Write to a map file.
879 void
880 do_print_to_mapfile(Mapfile* mapfile) const
881 { mapfile->print_output_data(this, _(this->map_name_)); }
883 private:
884 // Name to use in a map file. Maps are a rarely used feature, but
885 // the space usage is minor as aren't very many of these objects.
886 const char* map_name_;
889 // Fill fixed space with zeroes. This is just like
890 // Output_data_fixed_space, except that the map name is known.
892 class Output_data_zero_fill : public Output_section_data
894 public:
895 Output_data_zero_fill(off_t data_size, uint64_t addralign)
896 : Output_section_data(data_size, addralign, true)
899 protected:
900 // There is no data to write out.
901 void
902 do_write(Output_file*)
905 // Write to a map file.
906 void
907 do_print_to_mapfile(Mapfile* mapfile) const
908 { mapfile->print_output_data(this, "** zero fill"); }
911 // A string table which goes into an output section.
913 class Output_data_strtab : public Output_section_data
915 public:
916 Output_data_strtab(Stringpool* strtab)
917 : Output_section_data(1), strtab_(strtab)
920 protected:
921 // This is called to set the address and file offset. Here we make
922 // sure that the Stringpool is finalized.
923 void
924 set_final_data_size();
926 // Write out the data.
927 void
928 do_write(Output_file*);
930 // Write the data to a buffer.
931 void
932 do_write_to_buffer(unsigned char* buffer)
933 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
935 // Write to a map file.
936 void
937 do_print_to_mapfile(Mapfile* mapfile) const
938 { mapfile->print_output_data(this, _("** string table")); }
940 private:
941 Stringpool* strtab_;
944 // This POD class is used to represent a single reloc in the output
945 // file. This could be a private class within Output_data_reloc, but
946 // the templatization is complex enough that I broke it out into a
947 // separate class. The class is templatized on either elfcpp::SHT_REL
948 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
949 // relocation or an ordinary relocation.
951 // A relocation can be against a global symbol, a local symbol, a
952 // local section symbol, an output section, or the undefined symbol at
953 // index 0. We represent the latter by using a NULL global symbol.
955 template<int sh_type, bool dynamic, int size, bool big_endian>
956 class Output_reloc;
958 template<bool dynamic, int size, bool big_endian>
959 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
961 public:
962 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
963 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
965 static const Address invalid_address = static_cast<Address>(0) - 1;
967 // An uninitialized entry. We need this because we want to put
968 // instances of this class into an STL container.
969 Output_reloc()
970 : local_sym_index_(INVALID_CODE)
973 // We have a bunch of different constructors. They come in pairs
974 // depending on how the address of the relocation is specified. It
975 // can either be an offset in an Output_data or an offset in an
976 // input section.
978 // A reloc against a global symbol.
980 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
981 Address address, bool is_relative, bool is_symbolless);
983 Output_reloc(Symbol* gsym, unsigned int type,
984 Sized_relobj<size, big_endian>* relobj,
985 unsigned int shndx, Address address, bool is_relative,
986 bool is_symbolless);
988 // A reloc against a local symbol or local section symbol.
990 Output_reloc(Sized_relobj<size, big_endian>* relobj,
991 unsigned int local_sym_index, unsigned int type,
992 Output_data* od, Address address, bool is_relative,
993 bool is_symbolless, bool is_section_symbol);
995 Output_reloc(Sized_relobj<size, big_endian>* relobj,
996 unsigned int local_sym_index, unsigned int type,
997 unsigned int shndx, Address address, bool is_relative,
998 bool is_symbolless, bool is_section_symbol);
1000 // A reloc against the STT_SECTION symbol of an output section.
1002 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1003 Address address);
1005 Output_reloc(Output_section* os, unsigned int type,
1006 Sized_relobj<size, big_endian>* relobj,
1007 unsigned int shndx, Address address);
1009 // An absolute relocation with no symbol.
1011 Output_reloc(unsigned int type, Output_data* od, Address address);
1013 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1014 unsigned int shndx, Address address);
1016 // A target specific relocation. The target will be called to get
1017 // the symbol index, passing ARG. The type and offset will be set
1018 // as for other relocation types.
1020 Output_reloc(unsigned int type, void* arg, Output_data* od,
1021 Address address);
1023 Output_reloc(unsigned int type, void* arg,
1024 Sized_relobj<size, big_endian>* relobj,
1025 unsigned int shndx, Address address);
1027 // Return the reloc type.
1028 unsigned int
1029 type() const
1030 { return this->type_; }
1032 // Return whether this is a RELATIVE relocation.
1033 bool
1034 is_relative() const
1035 { return this->is_relative_; }
1037 // Return whether this is a relocation which should not use
1038 // a symbol, but which obtains its addend from a symbol.
1039 bool
1040 is_symbolless() const
1041 { return this->is_symbolless_; }
1043 // Return whether this is against a local section symbol.
1044 bool
1045 is_local_section_symbol() const
1047 return (this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != INVALID_CODE
1050 && this->local_sym_index_ != TARGET_CODE
1051 && this->is_section_symbol_);
1054 // Return whether this is a target specific relocation.
1055 bool
1056 is_target_specific() const
1057 { return this->local_sym_index_ == TARGET_CODE; }
1059 // Return the argument to pass to the target for a target specific
1060 // relocation.
1061 void*
1062 target_arg() const
1064 gold_assert(this->local_sym_index_ == TARGET_CODE);
1065 return this->u1_.arg;
1068 // For a local section symbol, return the offset of the input
1069 // section within the output section. ADDEND is the addend being
1070 // applied to the input section.
1071 Address
1072 local_section_offset(Addend addend) const;
1074 // Get the value of the symbol referred to by a Rel relocation when
1075 // we are adding the given ADDEND.
1076 Address
1077 symbol_value(Addend addend) const;
1079 // Write the reloc entry to an output view.
1080 void
1081 write(unsigned char* pov) const;
1083 // Write the offset and info fields to Write_rel.
1084 template<typename Write_rel>
1085 void write_rel(Write_rel*) const;
1087 // This is used when sorting dynamic relocs. Return -1 to sort this
1088 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1090 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1091 const;
1093 // Return whether this reloc should be sorted before the argument
1094 // when sorting dynamic relocs.
1095 bool
1096 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1097 r2) const
1098 { return this->compare(r2) < 0; }
1100 private:
1101 // Record that we need a dynamic symbol index.
1102 void
1103 set_needs_dynsym_index();
1105 // Return the symbol index.
1106 unsigned int
1107 get_symbol_index() const;
1109 // Return the output address.
1110 Address
1111 get_address() const;
1113 // Codes for local_sym_index_.
1114 enum
1116 // Global symbol.
1117 GSYM_CODE = -1U,
1118 // Output section.
1119 SECTION_CODE = -2U,
1120 // Target specific.
1121 TARGET_CODE = -3U,
1122 // Invalid uninitialized entry.
1123 INVALID_CODE = -4U
1126 union
1128 // For a local symbol or local section symbol
1129 // (this->local_sym_index_ >= 0), the object. We will never
1130 // generate a relocation against a local symbol in a dynamic
1131 // object; that doesn't make sense. And our callers will always
1132 // be templatized, so we use Sized_relobj here.
1133 Sized_relobj<size, big_endian>* relobj;
1134 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1135 // symbol. If this is NULL, it indicates a relocation against the
1136 // undefined 0 symbol.
1137 Symbol* gsym;
1138 // For a relocation against an output section
1139 // (this->local_sym_index_ == SECTION_CODE), the output section.
1140 Output_section* os;
1141 // For a target specific relocation, an argument to pass to the
1142 // target.
1143 void* arg;
1144 } u1_;
1145 union
1147 // If this->shndx_ is not INVALID CODE, the object which holds the
1148 // input section being used to specify the reloc address.
1149 Sized_relobj<size, big_endian>* relobj;
1150 // If this->shndx_ is INVALID_CODE, the output data being used to
1151 // specify the reloc address. This may be NULL if the reloc
1152 // address is absolute.
1153 Output_data* od;
1154 } u2_;
1155 // The address offset within the input section or the Output_data.
1156 Address address_;
1157 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1158 // relocation against an output section, or TARGET_CODE for a target
1159 // specific relocation, or INVALID_CODE for an uninitialized value.
1160 // Otherwise, for a local symbol (this->is_section_symbol_ is
1161 // false), the local symbol index. For a local section symbol
1162 // (this->is_section_symbol_ is true), the section index in the
1163 // input file.
1164 unsigned int local_sym_index_;
1165 // The reloc type--a processor specific code.
1166 unsigned int type_ : 29;
1167 // True if the relocation is a RELATIVE relocation.
1168 bool is_relative_ : 1;
1169 // True if the relocation is one which should not use
1170 // a symbol, but which obtains its addend from a symbol.
1171 bool is_symbolless_ : 1;
1172 // True if the relocation is against a section symbol.
1173 bool is_section_symbol_ : 1;
1174 // If the reloc address is an input section in an object, the
1175 // section index. This is INVALID_CODE if the reloc address is
1176 // specified in some other way.
1177 unsigned int shndx_;
1180 // The SHT_RELA version of Output_reloc<>. This is just derived from
1181 // the SHT_REL version of Output_reloc, but it adds an addend.
1183 template<bool dynamic, int size, bool big_endian>
1184 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1186 public:
1187 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1188 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1190 // An uninitialized entry.
1191 Output_reloc()
1192 : rel_()
1195 // A reloc against a global symbol.
1197 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1198 Address address, Addend addend, bool is_relative,
1199 bool is_symbolless)
1200 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1201 addend_(addend)
1204 Output_reloc(Symbol* gsym, unsigned int type,
1205 Sized_relobj<size, big_endian>* relobj,
1206 unsigned int shndx, Address address, Addend addend,
1207 bool is_relative, bool is_symbolless)
1208 : rel_(gsym, type, relobj, shndx, address, is_relative,
1209 is_symbolless), addend_(addend)
1212 // A reloc against a local symbol.
1214 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1215 unsigned int local_sym_index, unsigned int type,
1216 Output_data* od, Address address,
1217 Addend addend, bool is_relative,
1218 bool is_symbolless, bool is_section_symbol)
1219 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1220 is_symbolless, is_section_symbol),
1221 addend_(addend)
1224 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1225 unsigned int local_sym_index, unsigned int type,
1226 unsigned int shndx, Address address,
1227 Addend addend, bool is_relative,
1228 bool is_symbolless, bool is_section_symbol)
1229 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1230 is_symbolless, is_section_symbol),
1231 addend_(addend)
1234 // A reloc against the STT_SECTION symbol of an output section.
1236 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1237 Address address, Addend addend)
1238 : rel_(os, type, od, address), addend_(addend)
1241 Output_reloc(Output_section* os, unsigned int type,
1242 Sized_relobj<size, big_endian>* relobj,
1243 unsigned int shndx, Address address, Addend addend)
1244 : rel_(os, type, relobj, shndx, address), addend_(addend)
1247 // An absolute relocation with no symbol.
1249 Output_reloc(unsigned int type, Output_data* od, Address address,
1250 Addend addend)
1251 : rel_(type, od, address), addend_(addend)
1254 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1255 unsigned int shndx, Address address, Addend addend)
1256 : rel_(type, relobj, shndx, address), addend_(addend)
1259 // A target specific relocation. The target will be called to get
1260 // the symbol index and the addend, passing ARG. The type and
1261 // offset will be set as for other relocation types.
1263 Output_reloc(unsigned int type, void* arg, Output_data* od,
1264 Address address, Addend addend)
1265 : rel_(type, arg, od, address), addend_(addend)
1268 Output_reloc(unsigned int type, void* arg,
1269 Sized_relobj<size, big_endian>* relobj,
1270 unsigned int shndx, Address address, Addend addend)
1271 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1274 // Return whether this is a RELATIVE relocation.
1275 bool
1276 is_relative() const
1277 { return this->rel_.is_relative(); }
1279 // Return whether this is a relocation which should not use
1280 // a symbol, but which obtains its addend from a symbol.
1281 bool
1282 is_symbolless() const
1283 { return this->rel_.is_symbolless(); }
1285 // Write the reloc entry to an output view.
1286 void
1287 write(unsigned char* pov) const;
1289 // Return whether this reloc should be sorted before the argument
1290 // when sorting dynamic relocs.
1291 bool
1292 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1293 r2) const
1295 int i = this->rel_.compare(r2.rel_);
1296 if (i < 0)
1297 return true;
1298 else if (i > 0)
1299 return false;
1300 else
1301 return this->addend_ < r2.addend_;
1304 private:
1305 // The basic reloc.
1306 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1307 // The addend.
1308 Addend addend_;
1311 // Output_data_reloc_generic is a non-template base class for
1312 // Output_data_reloc_base. This gives the generic code a way to hold
1313 // a pointer to a reloc section.
1315 class Output_data_reloc_generic : public Output_section_data_build
1317 public:
1318 Output_data_reloc_generic(int size, bool sort_relocs)
1319 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1320 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1323 // Return the number of relative relocs in this section.
1324 size_t
1325 relative_reloc_count() const
1326 { return this->relative_reloc_count_; }
1328 // Whether we should sort the relocs.
1329 bool
1330 sort_relocs() const
1331 { return this->sort_relocs_; }
1333 protected:
1334 // Note that we've added another relative reloc.
1335 void
1336 bump_relative_reloc_count()
1337 { ++this->relative_reloc_count_; }
1339 private:
1340 // The number of relative relocs added to this section. This is to
1341 // support DT_RELCOUNT.
1342 size_t relative_reloc_count_;
1343 // Whether to sort the relocations when writing them out, to make
1344 // the dynamic linker more efficient.
1345 bool sort_relocs_;
1348 // Output_data_reloc is used to manage a section containing relocs.
1349 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1350 // indicates whether this is a dynamic relocation or a normal
1351 // relocation. Output_data_reloc_base is a base class.
1352 // Output_data_reloc is the real class, which we specialize based on
1353 // the reloc type.
1355 template<int sh_type, bool dynamic, int size, bool big_endian>
1356 class Output_data_reloc_base : public Output_data_reloc_generic
1358 public:
1359 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1360 typedef typename Output_reloc_type::Address Address;
1361 static const int reloc_size =
1362 Reloc_types<sh_type, size, big_endian>::reloc_size;
1364 // Construct the section.
1365 Output_data_reloc_base(bool sort_relocs)
1366 : Output_data_reloc_generic(size, sort_relocs)
1369 protected:
1370 // Write out the data.
1371 void
1372 do_write(Output_file*);
1374 // Set the entry size and the link.
1375 void
1376 do_adjust_output_section(Output_section* os);
1378 // Write to a map file.
1379 void
1380 do_print_to_mapfile(Mapfile* mapfile) const
1382 mapfile->print_output_data(this,
1383 (dynamic
1384 ? _("** dynamic relocs")
1385 : _("** relocs")));
1388 // Add a relocation entry.
1389 void
1390 add(Output_data* od, const Output_reloc_type& reloc)
1392 this->relocs_.push_back(reloc);
1393 this->set_current_data_size(this->relocs_.size() * reloc_size);
1394 od->add_dynamic_reloc();
1395 if (reloc.is_relative())
1396 this->bump_relative_reloc_count();
1399 private:
1400 typedef std::vector<Output_reloc_type> Relocs;
1402 // The class used to sort the relocations.
1403 struct Sort_relocs_comparison
1405 bool
1406 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1407 { return r1.sort_before(r2); }
1410 // The relocations in this section.
1411 Relocs relocs_;
1414 // The class which callers actually create.
1416 template<int sh_type, bool dynamic, int size, bool big_endian>
1417 class Output_data_reloc;
1419 // The SHT_REL version of Output_data_reloc.
1421 template<bool dynamic, int size, bool big_endian>
1422 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1423 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1425 private:
1426 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1427 big_endian> Base;
1429 public:
1430 typedef typename Base::Output_reloc_type Output_reloc_type;
1431 typedef typename Output_reloc_type::Address Address;
1433 Output_data_reloc(bool sr)
1434 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1437 // Add a reloc against a global symbol.
1439 void
1440 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1441 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1443 void
1444 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1445 Sized_relobj<size, big_endian>* relobj,
1446 unsigned int shndx, Address address)
1447 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1448 false, false)); }
1450 // These are to simplify the Copy_relocs class.
1452 void
1453 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1454 Address addend)
1456 gold_assert(addend == 0);
1457 this->add_global(gsym, type, od, address);
1460 void
1461 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1462 Sized_relobj<size, big_endian>* relobj,
1463 unsigned int shndx, Address address, Address addend)
1465 gold_assert(addend == 0);
1466 this->add_global(gsym, type, od, relobj, shndx, address);
1469 // Add a RELATIVE reloc against a global symbol. The final relocation
1470 // will not reference the symbol.
1472 void
1473 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1474 Address address)
1475 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1477 void
1478 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1479 Sized_relobj<size, big_endian>* relobj,
1480 unsigned int shndx, Address address)
1482 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1483 true, true));
1486 // Add a global relocation which does not use a symbol for the relocation,
1487 // but which gets its addend from a symbol.
1489 void
1490 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1491 Output_data* od, Address address)
1492 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1494 void
1495 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1496 Output_data* od,
1497 Sized_relobj<size, big_endian>* relobj,
1498 unsigned int shndx, Address address)
1500 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1501 false, true));
1504 // Add a reloc against a local symbol.
1506 void
1507 add_local(Sized_relobj<size, big_endian>* relobj,
1508 unsigned int local_sym_index, unsigned int type,
1509 Output_data* od, Address address)
1511 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1512 address, false, false, false));
1515 void
1516 add_local(Sized_relobj<size, big_endian>* relobj,
1517 unsigned int local_sym_index, unsigned int type,
1518 Output_data* od, unsigned int shndx, Address address)
1520 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1521 address, false, false, false));
1524 // Add a RELATIVE reloc against a local symbol.
1526 void
1527 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1528 unsigned int local_sym_index, unsigned int type,
1529 Output_data* od, Address address)
1531 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1532 address, true, true, false));
1535 void
1536 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1537 unsigned int local_sym_index, unsigned int type,
1538 Output_data* od, unsigned int shndx, Address address)
1540 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1541 address, true, true, false));
1544 // Add a local relocation which does not use a symbol for the relocation,
1545 // but which gets its addend from a symbol.
1547 void
1548 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1549 unsigned int local_sym_index, unsigned int type,
1550 Output_data* od, Address address)
1552 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1553 address, false, true, false));
1556 void
1557 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1558 unsigned int local_sym_index, unsigned int type,
1559 Output_data* od, unsigned int shndx,
1560 Address address)
1562 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1563 address, false, true, false));
1566 // Add a reloc against a local section symbol. This will be
1567 // converted into a reloc against the STT_SECTION symbol of the
1568 // output section.
1570 void
1571 add_local_section(Sized_relobj<size, big_endian>* relobj,
1572 unsigned int input_shndx, unsigned int type,
1573 Output_data* od, Address address)
1575 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1576 address, false, false, true));
1579 void
1580 add_local_section(Sized_relobj<size, big_endian>* relobj,
1581 unsigned int input_shndx, unsigned int type,
1582 Output_data* od, unsigned int shndx, Address address)
1584 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1585 address, false, false, true));
1588 // A reloc against the STT_SECTION symbol of an output section.
1589 // OS is the Output_section that the relocation refers to; OD is
1590 // the Output_data object being relocated.
1592 void
1593 add_output_section(Output_section* os, unsigned int type,
1594 Output_data* od, Address address)
1595 { this->add(od, Output_reloc_type(os, type, od, address)); }
1597 void
1598 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1599 Sized_relobj<size, big_endian>* relobj,
1600 unsigned int shndx, Address address)
1601 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1603 // Add an absolute relocation.
1605 void
1606 add_absolute(unsigned int type, Output_data* od, Address address)
1607 { this->add(od, Output_reloc_type(type, od, address)); }
1609 void
1610 add_absolute(unsigned int type, Output_data* od,
1611 Sized_relobj<size, big_endian>* relobj,
1612 unsigned int shndx, Address address)
1613 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1615 // Add a target specific relocation. A target which calls this must
1616 // define the reloc_symbol_index and reloc_addend virtual functions.
1618 void
1619 add_target_specific(unsigned int type, void* arg, Output_data* od,
1620 Address address)
1621 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1623 void
1624 add_target_specific(unsigned int type, void* arg, Output_data* od,
1625 Sized_relobj<size, big_endian>* relobj,
1626 unsigned int shndx, Address address)
1627 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1630 // The SHT_RELA version of Output_data_reloc.
1632 template<bool dynamic, int size, bool big_endian>
1633 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1634 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1636 private:
1637 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1638 big_endian> Base;
1640 public:
1641 typedef typename Base::Output_reloc_type Output_reloc_type;
1642 typedef typename Output_reloc_type::Address Address;
1643 typedef typename Output_reloc_type::Addend Addend;
1645 Output_data_reloc(bool sr)
1646 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1649 // Add a reloc against a global symbol.
1651 void
1652 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1653 Address address, Addend addend)
1654 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1655 false, false)); }
1657 void
1658 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1659 Sized_relobj<size, big_endian>* relobj,
1660 unsigned int shndx, Address address,
1661 Addend addend)
1662 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1663 addend, false, false)); }
1665 // Add a RELATIVE reloc against a global symbol. The final output
1666 // relocation will not reference the symbol, but we must keep the symbol
1667 // information long enough to set the addend of the relocation correctly
1668 // when it is written.
1670 void
1671 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1672 Address address, Addend addend)
1673 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1674 true)); }
1676 void
1677 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1678 Sized_relobj<size, big_endian>* relobj,
1679 unsigned int shndx, Address address, Addend addend)
1680 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1681 addend, true, true)); }
1683 // Add a global relocation which does not use a symbol for the relocation,
1684 // but which gets its addend from a symbol.
1686 void
1687 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1688 Address address, Addend addend)
1689 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1690 false, true)); }
1692 void
1693 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1694 Output_data* od,
1695 Sized_relobj<size, big_endian>* relobj,
1696 unsigned int shndx, Address address, Addend addend)
1697 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1698 addend, false, true)); }
1700 // Add a reloc against a local symbol.
1702 void
1703 add_local(Sized_relobj<size, big_endian>* relobj,
1704 unsigned int local_sym_index, unsigned int type,
1705 Output_data* od, Address address, Addend addend)
1707 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1708 addend, false, false, false));
1711 void
1712 add_local(Sized_relobj<size, big_endian>* relobj,
1713 unsigned int local_sym_index, unsigned int type,
1714 Output_data* od, unsigned int shndx, Address address,
1715 Addend addend)
1717 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1718 address, addend, false, false, false));
1721 // Add a RELATIVE reloc against a local symbol.
1723 void
1724 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1725 unsigned int local_sym_index, unsigned int type,
1726 Output_data* od, Address address, Addend addend)
1728 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1729 addend, true, true, false));
1732 void
1733 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1734 unsigned int local_sym_index, unsigned int type,
1735 Output_data* od, unsigned int shndx, Address address,
1736 Addend addend)
1738 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1739 address, addend, true, true, false));
1742 // Add a local relocation which does not use a symbol for the relocation,
1743 // but which gets it's addend from a symbol.
1745 void
1746 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1747 unsigned int local_sym_index, unsigned int type,
1748 Output_data* od, Address address, Addend addend)
1750 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1751 addend, false, true, false));
1754 void
1755 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1756 unsigned int local_sym_index, unsigned int type,
1757 Output_data* od, unsigned int shndx,
1758 Address address, Addend addend)
1760 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1761 address, addend, false, true, false));
1764 // Add a reloc against a local section symbol. This will be
1765 // converted into a reloc against the STT_SECTION symbol of the
1766 // output section.
1768 void
1769 add_local_section(Sized_relobj<size, big_endian>* relobj,
1770 unsigned int input_shndx, unsigned int type,
1771 Output_data* od, Address address, Addend addend)
1773 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1774 addend, false, false, true));
1777 void
1778 add_local_section(Sized_relobj<size, big_endian>* relobj,
1779 unsigned int input_shndx, unsigned int type,
1780 Output_data* od, unsigned int shndx, Address address,
1781 Addend addend)
1783 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1784 address, addend, false, false, true));
1787 // A reloc against the STT_SECTION symbol of an output section.
1789 void
1790 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1791 Address address, Addend addend)
1792 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1794 void
1795 add_output_section(Output_section* os, unsigned int type,
1796 Sized_relobj<size, big_endian>* relobj,
1797 unsigned int shndx, Address address, Addend addend)
1798 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1799 addend)); }
1801 // Add an absolute relocation.
1803 void
1804 add_absolute(unsigned int type, Output_data* od, Address address,
1805 Addend addend)
1806 { this->add(od, Output_reloc_type(type, od, address, addend)); }
1808 void
1809 add_absolute(unsigned int type, Output_data* od,
1810 Sized_relobj<size, big_endian>* relobj,
1811 unsigned int shndx, Address address, Addend addend)
1812 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1814 // Add a target specific relocation. A target which calls this must
1815 // define the reloc_symbol_index and reloc_addend virtual functions.
1817 void
1818 add_target_specific(unsigned int type, void* arg, Output_data* od,
1819 Address address, Addend addend)
1820 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1822 void
1823 add_target_specific(unsigned int type, void* arg, Output_data* od,
1824 Sized_relobj<size, big_endian>* relobj,
1825 unsigned int shndx, Address address, Addend addend)
1827 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1828 addend));
1832 // Output_relocatable_relocs represents a relocation section in a
1833 // relocatable link. The actual data is written out in the target
1834 // hook relocate_for_relocatable. This just saves space for it.
1836 template<int sh_type, int size, bool big_endian>
1837 class Output_relocatable_relocs : public Output_section_data
1839 public:
1840 Output_relocatable_relocs(Relocatable_relocs* rr)
1841 : Output_section_data(Output_data::default_alignment_for_size(size)),
1842 rr_(rr)
1845 void
1846 set_final_data_size();
1848 // Write out the data. There is nothing to do here.
1849 void
1850 do_write(Output_file*)
1853 // Write to a map file.
1854 void
1855 do_print_to_mapfile(Mapfile* mapfile) const
1856 { mapfile->print_output_data(this, _("** relocs")); }
1858 private:
1859 // The relocs associated with this input section.
1860 Relocatable_relocs* rr_;
1863 // Handle a GROUP section.
1865 template<int size, bool big_endian>
1866 class Output_data_group : public Output_section_data
1868 public:
1869 // The constructor clears *INPUT_SHNDXES.
1870 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1871 section_size_type entry_count,
1872 elfcpp::Elf_Word flags,
1873 std::vector<unsigned int>* input_shndxes);
1875 void
1876 do_write(Output_file*);
1878 // Write to a map file.
1879 void
1880 do_print_to_mapfile(Mapfile* mapfile) const
1881 { mapfile->print_output_data(this, _("** group")); }
1883 // Set final data size.
1884 void
1885 set_final_data_size()
1886 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1888 private:
1889 // The input object.
1890 Sized_relobj<size, big_endian>* relobj_;
1891 // The group flag word.
1892 elfcpp::Elf_Word flags_;
1893 // The section indexes of the input sections in this group.
1894 std::vector<unsigned int> input_shndxes_;
1897 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1898 // for one symbol--either a global symbol or a local symbol in an
1899 // object. The target specific code adds entries to the GOT as
1900 // needed.
1902 template<int size, bool big_endian>
1903 class Output_data_got : public Output_section_data_build
1905 public:
1906 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1907 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1908 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1910 Output_data_got()
1911 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1912 entries_()
1915 // Add an entry for a global symbol to the GOT. Return true if this
1916 // is a new GOT entry, false if the symbol was already in the GOT.
1917 bool
1918 add_global(Symbol* gsym, unsigned int got_type);
1920 // Like add_global, but use the PLT offset of the global symbol if
1921 // it has one.
1922 bool
1923 add_global_plt(Symbol* gsym, unsigned int got_type);
1925 // Add an entry for a global symbol to the GOT, and add a dynamic
1926 // relocation of type R_TYPE for the GOT entry.
1927 void
1928 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1929 Rel_dyn* rel_dyn, unsigned int r_type);
1931 void
1932 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1933 Rela_dyn* rela_dyn, unsigned int r_type);
1935 // Add a pair of entries for a global symbol to the GOT, and add
1936 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1937 void
1938 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1939 Rel_dyn* rel_dyn, unsigned int r_type_1,
1940 unsigned int r_type_2);
1942 void
1943 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1944 Rela_dyn* rela_dyn, unsigned int r_type_1,
1945 unsigned int r_type_2);
1947 // Add an entry for a local symbol to the GOT. This returns true if
1948 // this is a new GOT entry, false if the symbol already has a GOT
1949 // entry.
1950 bool
1951 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1952 unsigned int got_type);
1954 // Like add_local, but use the PLT offset of the local symbol if it
1955 // has one.
1956 bool
1957 add_local_plt(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1958 unsigned int got_type);
1960 // Add an entry for a local symbol to the GOT, and add a dynamic
1961 // relocation of type R_TYPE for the GOT entry.
1962 void
1963 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1964 unsigned int sym_index, unsigned int got_type,
1965 Rel_dyn* rel_dyn, unsigned int r_type);
1967 void
1968 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1969 unsigned int sym_index, unsigned int got_type,
1970 Rela_dyn* rela_dyn, unsigned int r_type);
1972 // Add a pair of entries for a local symbol to the GOT, and add
1973 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1974 void
1975 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1976 unsigned int sym_index, unsigned int shndx,
1977 unsigned int got_type, Rel_dyn* rel_dyn,
1978 unsigned int r_type_1, unsigned int r_type_2);
1980 void
1981 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1982 unsigned int sym_index, unsigned int shndx,
1983 unsigned int got_type, Rela_dyn* rela_dyn,
1984 unsigned int r_type_1, unsigned int r_type_2);
1986 // Add a constant to the GOT. This returns the offset of the new
1987 // entry from the start of the GOT.
1988 unsigned int
1989 add_constant(Valtype constant)
1991 this->entries_.push_back(Got_entry(constant));
1992 this->set_got_size();
1993 return this->last_got_offset();
1996 protected:
1997 // Write out the GOT table.
1998 void
1999 do_write(Output_file*);
2001 // Write to a map file.
2002 void
2003 do_print_to_mapfile(Mapfile* mapfile) const
2004 { mapfile->print_output_data(this, _("** GOT")); }
2006 private:
2007 // This POD class holds a single GOT entry.
2008 class Got_entry
2010 public:
2011 // Create a zero entry.
2012 Got_entry()
2013 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2014 { this->u_.constant = 0; }
2016 // Create a global symbol entry.
2017 Got_entry(Symbol* gsym, bool use_plt_offset)
2018 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2019 { this->u_.gsym = gsym; }
2021 // Create a local symbol entry.
2022 Got_entry(Sized_relobj<size, big_endian>* object,
2023 unsigned int local_sym_index, bool use_plt_offset)
2024 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2026 gold_assert(local_sym_index != GSYM_CODE
2027 && local_sym_index != CONSTANT_CODE
2028 && local_sym_index == this->local_sym_index_);
2029 this->u_.object = object;
2032 // Create a constant entry. The constant is a host value--it will
2033 // be swapped, if necessary, when it is written out.
2034 explicit Got_entry(Valtype constant)
2035 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2036 { this->u_.constant = constant; }
2038 // Write the GOT entry to an output view.
2039 void
2040 write(unsigned char* pov) const;
2042 private:
2043 enum
2045 GSYM_CODE = 0x7fffffff,
2046 CONSTANT_CODE = 0x7ffffffe
2049 union
2051 // For a local symbol, the object.
2052 Sized_relobj<size, big_endian>* object;
2053 // For a global symbol, the symbol.
2054 Symbol* gsym;
2055 // For a constant, the constant.
2056 Valtype constant;
2057 } u_;
2058 // For a local symbol, the local symbol index. This is GSYM_CODE
2059 // for a global symbol, or CONSTANT_CODE for a constant.
2060 unsigned int local_sym_index_ : 31;
2061 // Whether to use the PLT offset of the symbol if it has one.
2062 bool use_plt_offset_ : 1;
2065 typedef std::vector<Got_entry> Got_entries;
2067 // Return the offset into the GOT of GOT entry I.
2068 unsigned int
2069 got_offset(unsigned int i) const
2070 { return i * (size / 8); }
2072 // Return the offset into the GOT of the last entry added.
2073 unsigned int
2074 last_got_offset() const
2075 { return this->got_offset(this->entries_.size() - 1); }
2077 // Set the size of the section.
2078 void
2079 set_got_size()
2080 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2082 // The list of GOT entries.
2083 Got_entries entries_;
2086 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2087 // section.
2089 class Output_data_dynamic : public Output_section_data
2091 public:
2092 Output_data_dynamic(Stringpool* pool)
2093 : Output_section_data(Output_data::default_alignment()),
2094 entries_(), pool_(pool)
2097 // Add a new dynamic entry with a fixed numeric value.
2098 void
2099 add_constant(elfcpp::DT tag, unsigned int val)
2100 { this->add_entry(Dynamic_entry(tag, val)); }
2102 // Add a new dynamic entry with the address of output data.
2103 void
2104 add_section_address(elfcpp::DT tag, const Output_data* od)
2105 { this->add_entry(Dynamic_entry(tag, od, false)); }
2107 // Add a new dynamic entry with the address of output data
2108 // plus a constant offset.
2109 void
2110 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2111 unsigned int offset)
2112 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2114 // Add a new dynamic entry with the size of output data.
2115 void
2116 add_section_size(elfcpp::DT tag, const Output_data* od)
2117 { this->add_entry(Dynamic_entry(tag, od, true)); }
2119 // Add a new dynamic entry with the total size of two output datas.
2120 void
2121 add_section_size(elfcpp::DT tag, const Output_data* od,
2122 const Output_data* od2)
2123 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2125 // Add a new dynamic entry with the address of a symbol.
2126 void
2127 add_symbol(elfcpp::DT tag, const Symbol* sym)
2128 { this->add_entry(Dynamic_entry(tag, sym)); }
2130 // Add a new dynamic entry with a string.
2131 void
2132 add_string(elfcpp::DT tag, const char* str)
2133 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2135 void
2136 add_string(elfcpp::DT tag, const std::string& str)
2137 { this->add_string(tag, str.c_str()); }
2139 protected:
2140 // Adjust the output section to set the entry size.
2141 void
2142 do_adjust_output_section(Output_section*);
2144 // Set the final data size.
2145 void
2146 set_final_data_size();
2148 // Write out the dynamic entries.
2149 void
2150 do_write(Output_file*);
2152 // Write to a map file.
2153 void
2154 do_print_to_mapfile(Mapfile* mapfile) const
2155 { mapfile->print_output_data(this, _("** dynamic")); }
2157 private:
2158 // This POD class holds a single dynamic entry.
2159 class Dynamic_entry
2161 public:
2162 // Create an entry with a fixed numeric value.
2163 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2164 : tag_(tag), offset_(DYNAMIC_NUMBER)
2165 { this->u_.val = val; }
2167 // Create an entry with the size or address of a section.
2168 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2169 : tag_(tag),
2170 offset_(section_size
2171 ? DYNAMIC_SECTION_SIZE
2172 : DYNAMIC_SECTION_ADDRESS)
2174 this->u_.od = od;
2175 this->od2 = NULL;
2178 // Create an entry with the size of two sections.
2179 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2180 : tag_(tag),
2181 offset_(DYNAMIC_SECTION_SIZE)
2183 this->u_.od = od;
2184 this->od2 = od2;
2187 // Create an entry with the address of a section plus a constant offset.
2188 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2189 : tag_(tag),
2190 offset_(offset)
2191 { this->u_.od = od; }
2193 // Create an entry with the address of a symbol.
2194 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2195 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2196 { this->u_.sym = sym; }
2198 // Create an entry with a string.
2199 Dynamic_entry(elfcpp::DT tag, const char* str)
2200 : tag_(tag), offset_(DYNAMIC_STRING)
2201 { this->u_.str = str; }
2203 // Return the tag of this entry.
2204 elfcpp::DT
2205 tag() const
2206 { return this->tag_; }
2208 // Write the dynamic entry to an output view.
2209 template<int size, bool big_endian>
2210 void
2211 write(unsigned char* pov, const Stringpool*) const;
2213 private:
2214 // Classification is encoded in the OFFSET field.
2215 enum Classification
2217 // Section address.
2218 DYNAMIC_SECTION_ADDRESS = 0,
2219 // Number.
2220 DYNAMIC_NUMBER = -1U,
2221 // Section size.
2222 DYNAMIC_SECTION_SIZE = -2U,
2223 // Symbol adress.
2224 DYNAMIC_SYMBOL = -3U,
2225 // String.
2226 DYNAMIC_STRING = -4U
2227 // Any other value indicates a section address plus OFFSET.
2230 union
2232 // For DYNAMIC_NUMBER.
2233 unsigned int val;
2234 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2235 const Output_data* od;
2236 // For DYNAMIC_SYMBOL.
2237 const Symbol* sym;
2238 // For DYNAMIC_STRING.
2239 const char* str;
2240 } u_;
2241 // For DYNAMIC_SYMBOL with two sections.
2242 const Output_data* od2;
2243 // The dynamic tag.
2244 elfcpp::DT tag_;
2245 // The type of entry (Classification) or offset within a section.
2246 unsigned int offset_;
2249 // Add an entry to the list.
2250 void
2251 add_entry(const Dynamic_entry& entry)
2252 { this->entries_.push_back(entry); }
2254 // Sized version of write function.
2255 template<int size, bool big_endian>
2256 void
2257 sized_write(Output_file* of);
2259 // The type of the list of entries.
2260 typedef std::vector<Dynamic_entry> Dynamic_entries;
2262 // The entries.
2263 Dynamic_entries entries_;
2264 // The pool used for strings.
2265 Stringpool* pool_;
2268 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2269 // which may be required if the object file has more than
2270 // SHN_LORESERVE sections.
2272 class Output_symtab_xindex : public Output_section_data
2274 public:
2275 Output_symtab_xindex(size_t symcount)
2276 : Output_section_data(symcount * 4, 4, true),
2277 entries_()
2280 // Add an entry: symbol number SYMNDX has section SHNDX.
2281 void
2282 add(unsigned int symndx, unsigned int shndx)
2283 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2285 protected:
2286 void
2287 do_write(Output_file*);
2289 // Write to a map file.
2290 void
2291 do_print_to_mapfile(Mapfile* mapfile) const
2292 { mapfile->print_output_data(this, _("** symtab xindex")); }
2294 private:
2295 template<bool big_endian>
2296 void
2297 endian_do_write(unsigned char*);
2299 // It is likely that most symbols will not require entries. Rather
2300 // than keep a vector for all symbols, we keep pairs of symbol index
2301 // and section index.
2302 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2304 // The entries we need.
2305 Xindex_entries entries_;
2308 // A relaxed input section.
2309 class Output_relaxed_input_section : public Output_section_data_build
2311 public:
2312 // We would like to call relobj->section_addralign(shndx) to get the
2313 // alignment but we do not want the constructor to fail. So callers
2314 // are repsonsible for ensuring that.
2315 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2316 uint64_t addralign)
2317 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2320 // Return the Relobj of this relaxed input section.
2321 Relobj*
2322 relobj() const
2323 { return this->relobj_; }
2325 // Return the section index of this relaxed input section.
2326 unsigned int
2327 shndx() const
2328 { return this->shndx_; }
2330 private:
2331 Relobj* relobj_;
2332 unsigned int shndx_;
2335 // This class describes properties of merge data sections. It is used
2336 // as a key type for maps.
2337 class Merge_section_properties
2339 public:
2340 Merge_section_properties(bool is_string, uint64_t entsize,
2341 uint64_t addralign)
2342 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2345 // Whether this equals to another Merge_section_properties MSP.
2346 bool
2347 eq(const Merge_section_properties& msp) const
2349 return ((this->is_string_ == msp.is_string_)
2350 && (this->entsize_ == msp.entsize_)
2351 && (this->addralign_ == msp.addralign_));
2354 // Compute a hash value for this using 64-bit FNV-1a hash.
2355 size_t
2356 hash_value() const
2358 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2359 uint64_t prime = 1099511628211ULL;
2360 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2361 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2362 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2363 return h;
2366 // Functors for associative containers.
2367 struct equal_to
2369 bool
2370 operator()(const Merge_section_properties& msp1,
2371 const Merge_section_properties& msp2) const
2372 { return msp1.eq(msp2); }
2375 struct hash
2377 size_t
2378 operator()(const Merge_section_properties& msp) const
2379 { return msp.hash_value(); }
2382 private:
2383 // Whether this merge data section is for strings.
2384 bool is_string_;
2385 // Entsize of this merge data section.
2386 uint64_t entsize_;
2387 // Address alignment.
2388 uint64_t addralign_;
2391 // This class is used to speed up look up of special input sections in an
2392 // Output_section.
2394 class Output_section_lookup_maps
2396 public:
2397 Output_section_lookup_maps()
2398 : is_valid_(true), merge_sections_by_properties_(),
2399 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2402 // Whether the maps are valid.
2403 bool
2404 is_valid() const
2405 { return this->is_valid_; }
2407 // Invalidate the maps.
2408 void
2409 invalidate()
2410 { this->is_valid_ = false; }
2412 // Clear the maps.
2413 void
2414 clear()
2416 this->merge_sections_by_properties_.clear();
2417 this->merge_sections_by_id_.clear();
2418 this->relaxed_input_sections_by_id_.clear();
2419 // A cleared map is valid.
2420 this->is_valid_ = true;
2423 // Find a merge section by merge section properties. Return NULL if none
2424 // is found.
2425 Output_merge_base*
2426 find_merge_section(const Merge_section_properties& msp) const
2428 gold_assert(this->is_valid_);
2429 Merge_sections_by_properties::const_iterator p =
2430 this->merge_sections_by_properties_.find(msp);
2431 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2434 // Find a merge section by section ID of a merge input section. Return NULL
2435 // if none is found.
2436 Output_merge_base*
2437 find_merge_section(const Object* object, unsigned int shndx) const
2439 gold_assert(this->is_valid_);
2440 Merge_sections_by_id::const_iterator p =
2441 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2442 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2445 // Add a merge section pointed by POMB with properties MSP.
2446 void
2447 add_merge_section(const Merge_section_properties& msp,
2448 Output_merge_base* pomb)
2450 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2451 std::pair<Merge_sections_by_properties::iterator, bool> result =
2452 this->merge_sections_by_properties_.insert(value);
2453 gold_assert(result.second);
2456 // Add a mapping from a merged input section in OBJECT with index SHNDX
2457 // to a merge output section pointed by POMB.
2458 void
2459 add_merge_input_section(const Object* object, unsigned int shndx,
2460 Output_merge_base* pomb)
2462 Const_section_id csid(object, shndx);
2463 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2464 std::pair<Merge_sections_by_id::iterator, bool> result =
2465 this->merge_sections_by_id_.insert(value);
2466 gold_assert(result.second);
2469 // Find a relaxed input section of OBJECT with index SHNDX.
2470 Output_relaxed_input_section*
2471 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2473 gold_assert(this->is_valid_);
2474 Relaxed_input_sections_by_id::const_iterator p =
2475 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2476 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2479 // Add a relaxed input section pointed by POMB and whose original input
2480 // section is in OBJECT with index SHNDX.
2481 void
2482 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2483 Output_relaxed_input_section* poris)
2485 Const_section_id csid(relobj, shndx);
2486 std::pair<Const_section_id, Output_relaxed_input_section*>
2487 value(csid, poris);
2488 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2489 this->relaxed_input_sections_by_id_.insert(value);
2490 gold_assert(result.second);
2493 private:
2494 typedef Unordered_map<Const_section_id, Output_merge_base*,
2495 Const_section_id_hash>
2496 Merge_sections_by_id;
2498 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2499 Merge_section_properties::hash,
2500 Merge_section_properties::equal_to>
2501 Merge_sections_by_properties;
2503 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2504 Const_section_id_hash>
2505 Relaxed_input_sections_by_id;
2507 // Whether this is valid
2508 bool is_valid_;
2509 // Merge sections by merge section properties.
2510 Merge_sections_by_properties merge_sections_by_properties_;
2511 // Merge sections by section IDs.
2512 Merge_sections_by_id merge_sections_by_id_;
2513 // Relaxed sections by section IDs.
2514 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2517 // An output section. We don't expect to have too many output
2518 // sections, so we don't bother to do a template on the size.
2520 class Output_section : public Output_data
2522 public:
2523 // Create an output section, giving the name, type, and flags.
2524 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2525 virtual ~Output_section();
2527 // Add a new input section SHNDX, named NAME, with header SHDR, from
2528 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2529 // which applies to this section, or 0 if none, or -1 if more than
2530 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2531 // in a linker script; in that case we need to keep track of input
2532 // sections associated with an output section. Return the offset
2533 // within the output section.
2534 template<int size, bool big_endian>
2535 off_t
2536 add_input_section(Layout* layout, Sized_relobj<size, big_endian>* object,
2537 unsigned int shndx, const char* name,
2538 const elfcpp::Shdr<size, big_endian>& shdr,
2539 unsigned int reloc_shndx, bool have_sections_script);
2541 // Add generated data POSD to this output section.
2542 void
2543 add_output_section_data(Output_section_data* posd);
2545 // Add a relaxed input section PORIS called NAME to this output section
2546 // with LAYOUT.
2547 void
2548 add_relaxed_input_section(Layout* layout,
2549 Output_relaxed_input_section* poris,
2550 const std::string& name);
2552 // Return the section name.
2553 const char*
2554 name() const
2555 { return this->name_; }
2557 // Return the section type.
2558 elfcpp::Elf_Word
2559 type() const
2560 { return this->type_; }
2562 // Return the section flags.
2563 elfcpp::Elf_Xword
2564 flags() const
2565 { return this->flags_; }
2567 // Update the output section flags based on input section flags.
2568 void
2569 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2571 // Return the entsize field.
2572 uint64_t
2573 entsize() const
2574 { return this->entsize_; }
2576 // Set the entsize field.
2577 void
2578 set_entsize(uint64_t v);
2580 // Set the load address.
2581 void
2582 set_load_address(uint64_t load_address)
2584 this->load_address_ = load_address;
2585 this->has_load_address_ = true;
2588 // Set the link field to the output section index of a section.
2589 void
2590 set_link_section(const Output_data* od)
2592 gold_assert(this->link_ == 0
2593 && !this->should_link_to_symtab_
2594 && !this->should_link_to_dynsym_);
2595 this->link_section_ = od;
2598 // Set the link field to a constant.
2599 void
2600 set_link(unsigned int v)
2602 gold_assert(this->link_section_ == NULL
2603 && !this->should_link_to_symtab_
2604 && !this->should_link_to_dynsym_);
2605 this->link_ = v;
2608 // Record that this section should link to the normal symbol table.
2609 void
2610 set_should_link_to_symtab()
2612 gold_assert(this->link_section_ == NULL
2613 && this->link_ == 0
2614 && !this->should_link_to_dynsym_);
2615 this->should_link_to_symtab_ = true;
2618 // Record that this section should link to the dynamic symbol table.
2619 void
2620 set_should_link_to_dynsym()
2622 gold_assert(this->link_section_ == NULL
2623 && this->link_ == 0
2624 && !this->should_link_to_symtab_);
2625 this->should_link_to_dynsym_ = true;
2628 // Return the info field.
2629 unsigned int
2630 info() const
2632 gold_assert(this->info_section_ == NULL
2633 && this->info_symndx_ == NULL);
2634 return this->info_;
2637 // Set the info field to the output section index of a section.
2638 void
2639 set_info_section(const Output_section* os)
2641 gold_assert((this->info_section_ == NULL
2642 || (this->info_section_ == os
2643 && this->info_uses_section_index_))
2644 && this->info_symndx_ == NULL
2645 && this->info_ == 0);
2646 this->info_section_ = os;
2647 this->info_uses_section_index_= true;
2650 // Set the info field to the symbol table index of a symbol.
2651 void
2652 set_info_symndx(const Symbol* sym)
2654 gold_assert(this->info_section_ == NULL
2655 && (this->info_symndx_ == NULL
2656 || this->info_symndx_ == sym)
2657 && this->info_ == 0);
2658 this->info_symndx_ = sym;
2661 // Set the info field to the symbol table index of a section symbol.
2662 void
2663 set_info_section_symndx(const Output_section* os)
2665 gold_assert((this->info_section_ == NULL
2666 || (this->info_section_ == os
2667 && !this->info_uses_section_index_))
2668 && this->info_symndx_ == NULL
2669 && this->info_ == 0);
2670 this->info_section_ = os;
2671 this->info_uses_section_index_ = false;
2674 // Set the info field to a constant.
2675 void
2676 set_info(unsigned int v)
2678 gold_assert(this->info_section_ == NULL
2679 && this->info_symndx_ == NULL
2680 && (this->info_ == 0
2681 || this->info_ == v));
2682 this->info_ = v;
2685 // Set the addralign field.
2686 void
2687 set_addralign(uint64_t v)
2688 { this->addralign_ = v; }
2690 // Whether the output section index has been set.
2691 bool
2692 has_out_shndx() const
2693 { return this->out_shndx_ != -1U; }
2695 // Indicate that we need a symtab index.
2696 void
2697 set_needs_symtab_index()
2698 { this->needs_symtab_index_ = true; }
2700 // Return whether we need a symtab index.
2701 bool
2702 needs_symtab_index() const
2703 { return this->needs_symtab_index_; }
2705 // Get the symtab index.
2706 unsigned int
2707 symtab_index() const
2709 gold_assert(this->symtab_index_ != 0);
2710 return this->symtab_index_;
2713 // Set the symtab index.
2714 void
2715 set_symtab_index(unsigned int index)
2717 gold_assert(index != 0);
2718 this->symtab_index_ = index;
2721 // Indicate that we need a dynsym index.
2722 void
2723 set_needs_dynsym_index()
2724 { this->needs_dynsym_index_ = true; }
2726 // Return whether we need a dynsym index.
2727 bool
2728 needs_dynsym_index() const
2729 { return this->needs_dynsym_index_; }
2731 // Get the dynsym index.
2732 unsigned int
2733 dynsym_index() const
2735 gold_assert(this->dynsym_index_ != 0);
2736 return this->dynsym_index_;
2739 // Set the dynsym index.
2740 void
2741 set_dynsym_index(unsigned int index)
2743 gold_assert(index != 0);
2744 this->dynsym_index_ = index;
2747 // Return whether the input sections sections attachd to this output
2748 // section may require sorting. This is used to handle constructor
2749 // priorities compatibly with GNU ld.
2750 bool
2751 may_sort_attached_input_sections() const
2752 { return this->may_sort_attached_input_sections_; }
2754 // Record that the input sections attached to this output section
2755 // may require sorting.
2756 void
2757 set_may_sort_attached_input_sections()
2758 { this->may_sort_attached_input_sections_ = true; }
2760 // Returns true if input sections must be sorted according to the
2761 // order in which their name appear in the --section-ordering-file.
2762 bool
2763 input_section_order_specified()
2764 { return this->input_section_order_specified_; }
2766 // Record that input sections must be sorted as some of their names
2767 // match the patterns specified through --section-ordering-file.
2768 void
2769 set_input_section_order_specified()
2770 { this->input_section_order_specified_ = true; }
2772 // Return whether the input sections attached to this output section
2773 // require sorting. This is used to handle constructor priorities
2774 // compatibly with GNU ld.
2775 bool
2776 must_sort_attached_input_sections() const
2777 { return this->must_sort_attached_input_sections_; }
2779 // Record that the input sections attached to this output section
2780 // require sorting.
2781 void
2782 set_must_sort_attached_input_sections()
2783 { this->must_sort_attached_input_sections_ = true; }
2785 // Get the order in which this section appears in the PT_LOAD output
2786 // segment.
2787 Output_section_order
2788 order() const
2789 { return this->order_; }
2791 // Set the order for this section.
2792 void
2793 set_order(Output_section_order order)
2794 { this->order_ = order; }
2796 // Return whether this section holds relro data--data which has
2797 // dynamic relocations but which may be marked read-only after the
2798 // dynamic relocations have been completed.
2799 bool
2800 is_relro() const
2801 { return this->is_relro_; }
2803 // Record that this section holds relro data.
2804 void
2805 set_is_relro()
2806 { this->is_relro_ = true; }
2808 // Record that this section does not hold relro data.
2809 void
2810 clear_is_relro()
2811 { this->is_relro_ = false; }
2813 // True if this is a small section: a section which holds small
2814 // variables.
2815 bool
2816 is_small_section() const
2817 { return this->is_small_section_; }
2819 // Record that this is a small section.
2820 void
2821 set_is_small_section()
2822 { this->is_small_section_ = true; }
2824 // True if this is a large section: a section which holds large
2825 // variables.
2826 bool
2827 is_large_section() const
2828 { return this->is_large_section_; }
2830 // Record that this is a large section.
2831 void
2832 set_is_large_section()
2833 { this->is_large_section_ = true; }
2835 // True if this is a large data (not BSS) section.
2836 bool
2837 is_large_data_section()
2838 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2840 // Return whether this section should be written after all the input
2841 // sections are complete.
2842 bool
2843 after_input_sections() const
2844 { return this->after_input_sections_; }
2846 // Record that this section should be written after all the input
2847 // sections are complete.
2848 void
2849 set_after_input_sections()
2850 { this->after_input_sections_ = true; }
2852 // Return whether this section requires postprocessing after all
2853 // relocations have been applied.
2854 bool
2855 requires_postprocessing() const
2856 { return this->requires_postprocessing_; }
2858 // If a section requires postprocessing, return the buffer to use.
2859 unsigned char*
2860 postprocessing_buffer() const
2862 gold_assert(this->postprocessing_buffer_ != NULL);
2863 return this->postprocessing_buffer_;
2866 // If a section requires postprocessing, create the buffer to use.
2867 void
2868 create_postprocessing_buffer();
2870 // If a section requires postprocessing, this is the size of the
2871 // buffer to which relocations should be applied.
2872 off_t
2873 postprocessing_buffer_size() const
2874 { return this->current_data_size_for_child(); }
2876 // Modify the section name. This is only permitted for an
2877 // unallocated section, and only before the size has been finalized.
2878 // Otherwise the name will not get into Layout::namepool_.
2879 void
2880 set_name(const char* newname)
2882 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2883 gold_assert(!this->is_data_size_valid());
2884 this->name_ = newname;
2887 // Return whether the offset OFFSET in the input section SHNDX in
2888 // object OBJECT is being included in the link.
2889 bool
2890 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2891 off_t offset) const;
2893 // Return the offset within the output section of OFFSET relative to
2894 // the start of input section SHNDX in object OBJECT.
2895 section_offset_type
2896 output_offset(const Relobj* object, unsigned int shndx,
2897 section_offset_type offset) const;
2899 // Return the output virtual address of OFFSET relative to the start
2900 // of input section SHNDX in object OBJECT.
2901 uint64_t
2902 output_address(const Relobj* object, unsigned int shndx,
2903 off_t offset) const;
2905 // Look for the merged section for input section SHNDX in object
2906 // OBJECT. If found, return true, and set *ADDR to the address of
2907 // the start of the merged section. This is not necessary the
2908 // output offset corresponding to input offset 0 in the section,
2909 // since the section may be mapped arbitrarily.
2910 bool
2911 find_starting_output_address(const Relobj* object, unsigned int shndx,
2912 uint64_t* addr) const;
2914 // Record that this output section was found in the SECTIONS clause
2915 // of a linker script.
2916 void
2917 set_found_in_sections_clause()
2918 { this->found_in_sections_clause_ = true; }
2920 // Return whether this output section was found in the SECTIONS
2921 // clause of a linker script.
2922 bool
2923 found_in_sections_clause() const
2924 { return this->found_in_sections_clause_; }
2926 // Write the section header into *OPHDR.
2927 template<int size, bool big_endian>
2928 void
2929 write_header(const Layout*, const Stringpool*,
2930 elfcpp::Shdr_write<size, big_endian>*) const;
2932 // The next few calls are for linker script support.
2934 // In some cases we need to keep a list of the input sections
2935 // associated with this output section. We only need the list if we
2936 // might have to change the offsets of the input section within the
2937 // output section after we add the input section. The ordinary
2938 // input sections will be written out when we process the object
2939 // file, and as such we don't need to track them here. We do need
2940 // to track Output_section_data objects here. We store instances of
2941 // this structure in a std::vector, so it must be a POD. There can
2942 // be many instances of this structure, so we use a union to save
2943 // some space.
2944 class Input_section
2946 public:
2947 Input_section()
2948 : shndx_(0), p2align_(0)
2950 this->u1_.data_size = 0;
2951 this->u2_.object = NULL;
2954 // For an ordinary input section.
2955 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
2956 uint64_t addralign)
2957 : shndx_(shndx),
2958 p2align_(ffsll(static_cast<long long>(addralign))),
2959 section_order_index_(0)
2961 gold_assert(shndx != OUTPUT_SECTION_CODE
2962 && shndx != MERGE_DATA_SECTION_CODE
2963 && shndx != MERGE_STRING_SECTION_CODE
2964 && shndx != RELAXED_INPUT_SECTION_CODE);
2965 this->u1_.data_size = data_size;
2966 this->u2_.object = object;
2969 // For a non-merge output section.
2970 Input_section(Output_section_data* posd)
2971 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
2972 section_order_index_(0)
2974 this->u1_.data_size = 0;
2975 this->u2_.posd = posd;
2978 // For a merge section.
2979 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2980 : shndx_(is_string
2981 ? MERGE_STRING_SECTION_CODE
2982 : MERGE_DATA_SECTION_CODE),
2983 p2align_(0),
2984 section_order_index_(0)
2986 this->u1_.entsize = entsize;
2987 this->u2_.posd = posd;
2990 // For a relaxed input section.
2991 Input_section(Output_relaxed_input_section* psection)
2992 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
2993 section_order_index_(0)
2995 this->u1_.data_size = 0;
2996 this->u2_.poris = psection;
2999 unsigned int
3000 section_order_index() const
3002 return this->section_order_index_;
3005 void
3006 set_section_order_index(unsigned int number)
3008 this->section_order_index_ = number;
3011 // The required alignment.
3012 uint64_t
3013 addralign() const
3015 if (this->p2align_ != 0)
3016 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3017 else if (!this->is_input_section())
3018 return this->u2_.posd->addralign();
3019 else
3020 return 0;
3023 // Set the required alignment, which must be either 0 or a power of 2.
3024 // For input sections that are sub-classes of Output_section_data, a
3025 // alignment of zero means asking the underlying object for alignment.
3026 void
3027 set_addralign(uint64_t addralign)
3029 if (addralign == 0)
3030 this->p2align_ = 0;
3031 else
3033 gold_assert((addralign & (addralign - 1)) == 0);
3034 this->p2align_ = ffsll(static_cast<long long>(addralign));
3038 // Return the required size.
3039 off_t
3040 data_size() const;
3042 // Whether this is an input section.
3043 bool
3044 is_input_section() const
3046 return (this->shndx_ != OUTPUT_SECTION_CODE
3047 && this->shndx_ != MERGE_DATA_SECTION_CODE
3048 && this->shndx_ != MERGE_STRING_SECTION_CODE
3049 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3052 // Return whether this is a merge section which matches the
3053 // parameters.
3054 bool
3055 is_merge_section(bool is_string, uint64_t entsize,
3056 uint64_t addralign) const
3058 return (this->shndx_ == (is_string
3059 ? MERGE_STRING_SECTION_CODE
3060 : MERGE_DATA_SECTION_CODE)
3061 && this->u1_.entsize == entsize
3062 && this->addralign() == addralign);
3065 // Return whether this is a merge section for some input section.
3066 bool
3067 is_merge_section() const
3069 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3070 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3073 // Return whether this is a relaxed input section.
3074 bool
3075 is_relaxed_input_section() const
3076 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3078 // Return whether this is a generic Output_section_data.
3079 bool
3080 is_output_section_data() const
3082 return this->shndx_ == OUTPUT_SECTION_CODE;
3085 // Return the object for an input section.
3086 Relobj*
3087 relobj() const;
3089 // Return the input section index for an input section.
3090 unsigned int
3091 shndx() const;
3093 // For non-input-sections, return the associated Output_section_data
3094 // object.
3095 Output_section_data*
3096 output_section_data() const
3098 gold_assert(!this->is_input_section());
3099 return this->u2_.posd;
3102 // For a merge section, return the Output_merge_base pointer.
3103 Output_merge_base*
3104 output_merge_base() const
3106 gold_assert(this->is_merge_section());
3107 return this->u2_.pomb;
3110 // Return the Output_relaxed_input_section object.
3111 Output_relaxed_input_section*
3112 relaxed_input_section() const
3114 gold_assert(this->is_relaxed_input_section());
3115 return this->u2_.poris;
3118 // Set the output section.
3119 void
3120 set_output_section(Output_section* os)
3122 gold_assert(!this->is_input_section());
3123 Output_section_data* posd =
3124 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3125 posd->set_output_section(os);
3128 // Set the address and file offset. This is called during
3129 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3130 // the enclosing section.
3131 void
3132 set_address_and_file_offset(uint64_t address, off_t file_offset,
3133 off_t section_file_offset);
3135 // Reset the address and file offset.
3136 void
3137 reset_address_and_file_offset();
3139 // Finalize the data size.
3140 void
3141 finalize_data_size();
3143 // Add an input section, for SHF_MERGE sections.
3144 bool
3145 add_input_section(Relobj* object, unsigned int shndx)
3147 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3148 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3149 return this->u2_.posd->add_input_section(object, shndx);
3152 // Given an input OBJECT, an input section index SHNDX within that
3153 // object, and an OFFSET relative to the start of that input
3154 // section, return whether or not the output offset is known. If
3155 // this function returns true, it sets *POUTPUT to the offset in
3156 // the output section, relative to the start of the input section
3157 // in the output section. *POUTPUT may be different from OFFSET
3158 // for a merged section.
3159 bool
3160 output_offset(const Relobj* object, unsigned int shndx,
3161 section_offset_type offset,
3162 section_offset_type* poutput) const;
3164 // Return whether this is the merge section for the input section
3165 // SHNDX in OBJECT.
3166 bool
3167 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3169 // Write out the data. This does nothing for an input section.
3170 void
3171 write(Output_file*);
3173 // Write the data to a buffer. This does nothing for an input
3174 // section.
3175 void
3176 write_to_buffer(unsigned char*);
3178 // Print to a map file.
3179 void
3180 print_to_mapfile(Mapfile*) const;
3182 // Print statistics about merge sections to stderr.
3183 void
3184 print_merge_stats(const char* section_name)
3186 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3187 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3188 this->u2_.posd->print_merge_stats(section_name);
3191 private:
3192 // Code values which appear in shndx_. If the value is not one of
3193 // these codes, it is the input section index in the object file.
3194 enum
3196 // An Output_section_data.
3197 OUTPUT_SECTION_CODE = -1U,
3198 // An Output_section_data for an SHF_MERGE section with
3199 // SHF_STRINGS not set.
3200 MERGE_DATA_SECTION_CODE = -2U,
3201 // An Output_section_data for an SHF_MERGE section with
3202 // SHF_STRINGS set.
3203 MERGE_STRING_SECTION_CODE = -3U,
3204 // An Output_section_data for a relaxed input section.
3205 RELAXED_INPUT_SECTION_CODE = -4U
3208 // For an ordinary input section, this is the section index in the
3209 // input file. For an Output_section_data, this is
3210 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3211 // MERGE_STRING_SECTION_CODE.
3212 unsigned int shndx_;
3213 // The required alignment, stored as a power of 2.
3214 unsigned int p2align_;
3215 union
3217 // For an ordinary input section, the section size.
3218 off_t data_size;
3219 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3220 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3221 // entity size.
3222 uint64_t entsize;
3223 } u1_;
3224 union
3226 // For an ordinary input section, the object which holds the
3227 // input section.
3228 Relobj* object;
3229 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3230 // MERGE_STRING_SECTION_CODE, the data.
3231 Output_section_data* posd;
3232 Output_merge_base* pomb;
3233 // For RELAXED_INPUT_SECTION_CODE, the data.
3234 Output_relaxed_input_section* poris;
3235 } u2_;
3236 // The line number of the pattern it matches in the --section-ordering-file
3237 // file. It is 0 if does not match any pattern.
3238 unsigned int section_order_index_;
3241 // Store the list of input sections for this Output_section into the
3242 // list passed in. This removes the input sections, leaving only
3243 // any Output_section_data elements. This returns the size of those
3244 // Output_section_data elements. ADDRESS is the address of this
3245 // output section. FILL is the fill value to use, in case there are
3246 // any spaces between the remaining Output_section_data elements.
3247 uint64_t
3248 get_input_sections(uint64_t address, const std::string& fill,
3249 std::list<Input_section>*);
3251 // Add a script input section. A script input section can either be
3252 // a plain input section or a sub-class of Output_section_data.
3253 void
3254 add_script_input_section(const Input_section& input_section);
3256 // Set the current size of the output section.
3257 void
3258 set_current_data_size(off_t size)
3259 { this->set_current_data_size_for_child(size); }
3261 // Get the current size of the output section.
3262 off_t
3263 current_data_size() const
3264 { return this->current_data_size_for_child(); }
3266 // End of linker script support.
3268 // Save states before doing section layout.
3269 // This is used for relaxation.
3270 void
3271 save_states();
3273 // Restore states prior to section layout.
3274 void
3275 restore_states();
3277 // Discard states.
3278 void
3279 discard_states();
3281 // Convert existing input sections to relaxed input sections.
3282 void
3283 convert_input_sections_to_relaxed_sections(
3284 const std::vector<Output_relaxed_input_section*>& sections);
3286 // Find a relaxed input section to an input section in OBJECT
3287 // with index SHNDX. Return NULL if none is found.
3288 const Output_relaxed_input_section*
3289 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3291 // Whether section offsets need adjustment due to relaxation.
3292 bool
3293 section_offsets_need_adjustment() const
3294 { return this->section_offsets_need_adjustment_; }
3296 // Set section_offsets_need_adjustment to be true.
3297 void
3298 set_section_offsets_need_adjustment()
3299 { this->section_offsets_need_adjustment_ = true; }
3301 // Adjust section offsets of input sections in this. This is
3302 // requires if relaxation caused some input sections to change sizes.
3303 void
3304 adjust_section_offsets();
3306 // Whether this is a NOLOAD section.
3307 bool
3308 is_noload() const
3309 { return this->is_noload_; }
3311 // Set NOLOAD flag.
3312 void
3313 set_is_noload()
3314 { this->is_noload_ = true; }
3316 // Print merge statistics to stderr.
3317 void
3318 print_merge_stats();
3320 protected:
3321 // Return the output section--i.e., the object itself.
3322 Output_section*
3323 do_output_section()
3324 { return this; }
3326 const Output_section*
3327 do_output_section() const
3328 { return this; }
3330 // Return the section index in the output file.
3331 unsigned int
3332 do_out_shndx() const
3334 gold_assert(this->out_shndx_ != -1U);
3335 return this->out_shndx_;
3338 // Set the output section index.
3339 void
3340 do_set_out_shndx(unsigned int shndx)
3342 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3343 this->out_shndx_ = shndx;
3346 // Set the final data size of the Output_section. For a typical
3347 // Output_section, there is nothing to do, but if there are any
3348 // Output_section_data objects we need to set their final addresses
3349 // here.
3350 virtual void
3351 set_final_data_size();
3353 // Reset the address and file offset.
3354 void
3355 do_reset_address_and_file_offset();
3357 // Return true if address and file offset already have reset values. In
3358 // other words, calling reset_address_and_file_offset will not change them.
3359 bool
3360 do_address_and_file_offset_have_reset_values() const;
3362 // Write the data to the file. For a typical Output_section, this
3363 // does nothing: the data is written out by calling Object::Relocate
3364 // on each input object. But if there are any Output_section_data
3365 // objects we do need to write them out here.
3366 virtual void
3367 do_write(Output_file*);
3369 // Return the address alignment--function required by parent class.
3370 uint64_t
3371 do_addralign() const
3372 { return this->addralign_; }
3374 // Return whether there is a load address.
3375 bool
3376 do_has_load_address() const
3377 { return this->has_load_address_; }
3379 // Return the load address.
3380 uint64_t
3381 do_load_address() const
3383 gold_assert(this->has_load_address_);
3384 return this->load_address_;
3387 // Return whether this is an Output_section.
3388 bool
3389 do_is_section() const
3390 { return true; }
3392 // Return whether this is a section of the specified type.
3393 bool
3394 do_is_section_type(elfcpp::Elf_Word type) const
3395 { return this->type_ == type; }
3397 // Return whether the specified section flag is set.
3398 bool
3399 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3400 { return (this->flags_ & flag) != 0; }
3402 // Set the TLS offset. Called only for SHT_TLS sections.
3403 void
3404 do_set_tls_offset(uint64_t tls_base);
3406 // Return the TLS offset, relative to the base of the TLS segment.
3407 // Valid only for SHT_TLS sections.
3408 uint64_t
3409 do_tls_offset() const
3410 { return this->tls_offset_; }
3412 // This may be implemented by a child class.
3413 virtual void
3414 do_finalize_name(Layout*)
3417 // Print to the map file.
3418 virtual void
3419 do_print_to_mapfile(Mapfile*) const;
3421 // Record that this section requires postprocessing after all
3422 // relocations have been applied. This is called by a child class.
3423 void
3424 set_requires_postprocessing()
3426 this->requires_postprocessing_ = true;
3427 this->after_input_sections_ = true;
3430 // Write all the data of an Output_section into the postprocessing
3431 // buffer.
3432 void
3433 write_to_postprocessing_buffer();
3435 typedef std::vector<Input_section> Input_section_list;
3437 // Allow a child class to access the input sections.
3438 const Input_section_list&
3439 input_sections() const
3440 { return this->input_sections_; }
3442 // Whether this always keeps an input section list
3443 bool
3444 always_keeps_input_sections() const
3445 { return this->always_keeps_input_sections_; }
3447 // Always keep an input section list.
3448 void
3449 set_always_keeps_input_sections()
3451 gold_assert(this->current_data_size_for_child() == 0);
3452 this->always_keeps_input_sections_ = true;
3455 private:
3456 // We only save enough information to undo the effects of section layout.
3457 class Checkpoint_output_section
3459 public:
3460 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3461 const Input_section_list& input_sections,
3462 off_t first_input_offset,
3463 bool attached_input_sections_are_sorted)
3464 : addralign_(addralign), flags_(flags),
3465 input_sections_(input_sections),
3466 input_sections_size_(input_sections_.size()),
3467 input_sections_copy_(), first_input_offset_(first_input_offset),
3468 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3471 virtual
3472 ~Checkpoint_output_section()
3475 // Return the address alignment.
3476 uint64_t
3477 addralign() const
3478 { return this->addralign_; }
3480 // Return the section flags.
3481 elfcpp::Elf_Xword
3482 flags() const
3483 { return this->flags_; }
3485 // Return a reference to the input section list copy.
3486 Input_section_list*
3487 input_sections()
3488 { return &this->input_sections_copy_; }
3490 // Return the size of input_sections at the time when checkpoint is
3491 // taken.
3492 size_t
3493 input_sections_size() const
3494 { return this->input_sections_size_; }
3496 // Whether input sections are copied.
3497 bool
3498 input_sections_saved() const
3499 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3501 off_t
3502 first_input_offset() const
3503 { return this->first_input_offset_; }
3505 bool
3506 attached_input_sections_are_sorted() const
3507 { return this->attached_input_sections_are_sorted_; }
3509 // Save input sections.
3510 void
3511 save_input_sections()
3513 this->input_sections_copy_.reserve(this->input_sections_size_);
3514 this->input_sections_copy_.clear();
3515 Input_section_list::const_iterator p = this->input_sections_.begin();
3516 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3517 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3518 this->input_sections_copy_.push_back(*p);
3521 private:
3522 // The section alignment.
3523 uint64_t addralign_;
3524 // The section flags.
3525 elfcpp::Elf_Xword flags_;
3526 // Reference to the input sections to be checkpointed.
3527 const Input_section_list& input_sections_;
3528 // Size of the checkpointed portion of input_sections_;
3529 size_t input_sections_size_;
3530 // Copy of input sections.
3531 Input_section_list input_sections_copy_;
3532 // The offset of the first entry in input_sections_.
3533 off_t first_input_offset_;
3534 // True if the input sections attached to this output section have
3535 // already been sorted.
3536 bool attached_input_sections_are_sorted_;
3539 // This class is used to sort the input sections.
3540 class Input_section_sort_entry;
3542 // This is the sort comparison function for ctors and dtors.
3543 struct Input_section_sort_compare
3545 bool
3546 operator()(const Input_section_sort_entry&,
3547 const Input_section_sort_entry&) const;
3550 // This is the sort comparison function for .init_array and .fini_array.
3551 struct Input_section_sort_init_fini_compare
3553 bool
3554 operator()(const Input_section_sort_entry&,
3555 const Input_section_sort_entry&) const;
3558 // This is the sort comparison function when a section order is specified
3559 // from an input file.
3560 struct Input_section_sort_section_order_index_compare
3562 bool
3563 operator()(const Input_section_sort_entry&,
3564 const Input_section_sort_entry&) const;
3567 // Fill data. This is used to fill in data between input sections.
3568 // It is also used for data statements (BYTE, WORD, etc.) in linker
3569 // scripts. When we have to keep track of the input sections, we
3570 // can use an Output_data_const, but we don't want to have to keep
3571 // track of input sections just to implement fills.
3572 class Fill
3574 public:
3575 Fill(off_t section_offset, off_t length)
3576 : section_offset_(section_offset),
3577 length_(convert_to_section_size_type(length))
3580 // Return section offset.
3581 off_t
3582 section_offset() const
3583 { return this->section_offset_; }
3585 // Return fill length.
3586 section_size_type
3587 length() const
3588 { return this->length_; }
3590 private:
3591 // The offset within the output section.
3592 off_t section_offset_;
3593 // The length of the space to fill.
3594 section_size_type length_;
3597 typedef std::vector<Fill> Fill_list;
3599 // Map used during relaxation of existing sections. This map
3600 // a section id an input section list index. We assume that
3601 // Input_section_list is a vector.
3602 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3604 // Add a new output section by Input_section.
3605 void
3606 add_output_section_data(Input_section*);
3608 // Add an SHF_MERGE input section. Returns true if the section was
3609 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
3610 // stores information about the merged input sections.
3611 bool
3612 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3613 uint64_t entsize, uint64_t addralign,
3614 bool keeps_input_sections);
3616 // Add an output SHF_MERGE section POSD to this output section.
3617 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3618 // ENTSIZE is the entity size. This returns the entry added to
3619 // input_sections_.
3620 void
3621 add_output_merge_section(Output_section_data* posd, bool is_string,
3622 uint64_t entsize);
3624 // Sort the attached input sections.
3625 void
3626 sort_attached_input_sections();
3628 // Find the merge section into which an input section with index SHNDX in
3629 // OBJECT has been added. Return NULL if none found.
3630 Output_section_data*
3631 find_merge_section(const Relobj* object, unsigned int shndx) const;
3633 // Build a relaxation map.
3634 void
3635 build_relaxation_map(
3636 const Input_section_list& input_sections,
3637 size_t limit,
3638 Relaxation_map* map) const;
3640 // Convert input sections in an input section list into relaxed sections.
3641 void
3642 convert_input_sections_in_list_to_relaxed_sections(
3643 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3644 const Relaxation_map& map,
3645 Input_section_list* input_sections);
3647 // Build the lookup maps for merge and relaxed input sections.
3648 void
3649 build_lookup_maps() const;
3651 // Most of these fields are only valid after layout.
3653 // The name of the section. This will point into a Stringpool.
3654 const char* name_;
3655 // The section address is in the parent class.
3656 // The section alignment.
3657 uint64_t addralign_;
3658 // The section entry size.
3659 uint64_t entsize_;
3660 // The load address. This is only used when using a linker script
3661 // with a SECTIONS clause. The has_load_address_ field indicates
3662 // whether this field is valid.
3663 uint64_t load_address_;
3664 // The file offset is in the parent class.
3665 // Set the section link field to the index of this section.
3666 const Output_data* link_section_;
3667 // If link_section_ is NULL, this is the link field.
3668 unsigned int link_;
3669 // Set the section info field to the index of this section.
3670 const Output_section* info_section_;
3671 // If info_section_ is NULL, set the info field to the symbol table
3672 // index of this symbol.
3673 const Symbol* info_symndx_;
3674 // If info_section_ and info_symndx_ are NULL, this is the section
3675 // info field.
3676 unsigned int info_;
3677 // The section type.
3678 const elfcpp::Elf_Word type_;
3679 // The section flags.
3680 elfcpp::Elf_Xword flags_;
3681 // The order of this section in the output segment.
3682 Output_section_order order_;
3683 // The section index.
3684 unsigned int out_shndx_;
3685 // If there is a STT_SECTION for this output section in the normal
3686 // symbol table, this is the symbol index. This starts out as zero.
3687 // It is initialized in Layout::finalize() to be the index, or -1U
3688 // if there isn't one.
3689 unsigned int symtab_index_;
3690 // If there is a STT_SECTION for this output section in the dynamic
3691 // symbol table, this is the symbol index. This starts out as zero.
3692 // It is initialized in Layout::finalize() to be the index, or -1U
3693 // if there isn't one.
3694 unsigned int dynsym_index_;
3695 // The input sections. This will be empty in cases where we don't
3696 // need to keep track of them.
3697 Input_section_list input_sections_;
3698 // The offset of the first entry in input_sections_.
3699 off_t first_input_offset_;
3700 // The fill data. This is separate from input_sections_ because we
3701 // often will need fill sections without needing to keep track of
3702 // input sections.
3703 Fill_list fills_;
3704 // If the section requires postprocessing, this buffer holds the
3705 // section contents during relocation.
3706 unsigned char* postprocessing_buffer_;
3707 // Whether this output section needs a STT_SECTION symbol in the
3708 // normal symbol table. This will be true if there is a relocation
3709 // which needs it.
3710 bool needs_symtab_index_ : 1;
3711 // Whether this output section needs a STT_SECTION symbol in the
3712 // dynamic symbol table. This will be true if there is a dynamic
3713 // relocation which needs it.
3714 bool needs_dynsym_index_ : 1;
3715 // Whether the link field of this output section should point to the
3716 // normal symbol table.
3717 bool should_link_to_symtab_ : 1;
3718 // Whether the link field of this output section should point to the
3719 // dynamic symbol table.
3720 bool should_link_to_dynsym_ : 1;
3721 // Whether this section should be written after all the input
3722 // sections are complete.
3723 bool after_input_sections_ : 1;
3724 // Whether this section requires post processing after all
3725 // relocations have been applied.
3726 bool requires_postprocessing_ : 1;
3727 // Whether an input section was mapped to this output section
3728 // because of a SECTIONS clause in a linker script.
3729 bool found_in_sections_clause_ : 1;
3730 // Whether this section has an explicitly specified load address.
3731 bool has_load_address_ : 1;
3732 // True if the info_section_ field means the section index of the
3733 // section, false if it means the symbol index of the corresponding
3734 // section symbol.
3735 bool info_uses_section_index_ : 1;
3736 // True if input sections attached to this output section have to be
3737 // sorted according to a specified order.
3738 bool input_section_order_specified_ : 1;
3739 // True if the input sections attached to this output section may
3740 // need sorting.
3741 bool may_sort_attached_input_sections_ : 1;
3742 // True if the input sections attached to this output section must
3743 // be sorted.
3744 bool must_sort_attached_input_sections_ : 1;
3745 // True if the input sections attached to this output section have
3746 // already been sorted.
3747 bool attached_input_sections_are_sorted_ : 1;
3748 // True if this section holds relro data.
3749 bool is_relro_ : 1;
3750 // True if this is a small section.
3751 bool is_small_section_ : 1;
3752 // True if this is a large section.
3753 bool is_large_section_ : 1;
3754 // Whether code-fills are generated at write.
3755 bool generate_code_fills_at_write_ : 1;
3756 // Whether the entry size field should be zero.
3757 bool is_entsize_zero_ : 1;
3758 // Whether section offsets need adjustment due to relaxation.
3759 bool section_offsets_need_adjustment_ : 1;
3760 // Whether this is a NOLOAD section.
3761 bool is_noload_ : 1;
3762 // Whether this always keeps input section.
3763 bool always_keeps_input_sections_ : 1;
3764 // For SHT_TLS sections, the offset of this section relative to the base
3765 // of the TLS segment.
3766 uint64_t tls_offset_;
3767 // Saved checkpoint.
3768 Checkpoint_output_section* checkpoint_;
3769 // Fast lookup maps for merged and relaxed input sections.
3770 Output_section_lookup_maps* lookup_maps_;
3773 // An output segment. PT_LOAD segments are built from collections of
3774 // output sections. Other segments typically point within PT_LOAD
3775 // segments, and are built directly as needed.
3777 // NOTE: We want to use the copy constructor for this class. During
3778 // relaxation, we may try built the segments multiple times. We do
3779 // that by copying the original segment list before lay-out, doing
3780 // a trial lay-out and roll-back to the saved copied if we need to
3781 // to the lay-out again.
3783 class Output_segment
3785 public:
3786 // Create an output segment, specifying the type and flags.
3787 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3789 // Return the virtual address.
3790 uint64_t
3791 vaddr() const
3792 { return this->vaddr_; }
3794 // Return the physical address.
3795 uint64_t
3796 paddr() const
3797 { return this->paddr_; }
3799 // Return the segment type.
3800 elfcpp::Elf_Word
3801 type() const
3802 { return this->type_; }
3804 // Return the segment flags.
3805 elfcpp::Elf_Word
3806 flags() const
3807 { return this->flags_; }
3809 // Return the memory size.
3810 uint64_t
3811 memsz() const
3812 { return this->memsz_; }
3814 // Return the file size.
3815 off_t
3816 filesz() const
3817 { return this->filesz_; }
3819 // Return the file offset.
3820 off_t
3821 offset() const
3822 { return this->offset_; }
3824 // Whether this is a segment created to hold large data sections.
3825 bool
3826 is_large_data_segment() const
3827 { return this->is_large_data_segment_; }
3829 // Record that this is a segment created to hold large data
3830 // sections.
3831 void
3832 set_is_large_data_segment()
3833 { this->is_large_data_segment_ = true; }
3835 // Return the maximum alignment of the Output_data.
3836 uint64_t
3837 maximum_alignment();
3839 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
3840 // the segment flags to use.
3841 void
3842 add_output_section_to_load(Layout* layout, Output_section* os,
3843 elfcpp::Elf_Word seg_flags);
3845 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
3846 // is the segment flags to use.
3847 void
3848 add_output_section_to_nonload(Output_section* os,
3849 elfcpp::Elf_Word seg_flags);
3851 // Remove an Output_section from this segment. It is an error if it
3852 // is not present.
3853 void
3854 remove_output_section(Output_section* os);
3856 // Add an Output_data (which need not be an Output_section) to the
3857 // start of this segment.
3858 void
3859 add_initial_output_data(Output_data*);
3861 // Return true if this segment has any sections which hold actual
3862 // data, rather than being a BSS section.
3863 bool
3864 has_any_data_sections() const;
3866 // Whether this segment has a dynamic relocs.
3867 bool
3868 has_dynamic_reloc() const;
3870 // Return the address of the first section.
3871 uint64_t
3872 first_section_load_address() const;
3874 // Return whether the addresses have been set already.
3875 bool
3876 are_addresses_set() const
3877 { return this->are_addresses_set_; }
3879 // Set the addresses.
3880 void
3881 set_addresses(uint64_t vaddr, uint64_t paddr)
3883 this->vaddr_ = vaddr;
3884 this->paddr_ = paddr;
3885 this->are_addresses_set_ = true;
3888 // Update the flags for the flags of an output section added to this
3889 // segment.
3890 void
3891 update_flags_for_output_section(elfcpp::Elf_Xword flags)
3893 // The ELF ABI specifies that a PT_TLS segment should always have
3894 // PF_R as the flags.
3895 if (this->type() != elfcpp::PT_TLS)
3896 this->flags_ |= flags;
3899 // Set the segment flags. This is only used if we have a PHDRS
3900 // clause which explicitly specifies the flags.
3901 void
3902 set_flags(elfcpp::Elf_Word flags)
3903 { this->flags_ = flags; }
3905 // Set the address of the segment to ADDR and the offset to *POFF
3906 // and set the addresses and offsets of all contained output
3907 // sections accordingly. Set the section indexes of all contained
3908 // output sections starting with *PSHNDX. If RESET is true, first
3909 // reset the addresses of the contained sections. Return the
3910 // address of the immediately following segment. Update *POFF and
3911 // *PSHNDX. This should only be called for a PT_LOAD segment.
3912 uint64_t
3913 set_section_addresses(const Layout*, bool reset, uint64_t addr,
3914 unsigned int* increase_relro, bool* has_relro,
3915 off_t* poff, unsigned int* pshndx);
3917 // Set the minimum alignment of this segment. This may be adjusted
3918 // upward based on the section alignments.
3919 void
3920 set_minimum_p_align(uint64_t align)
3922 if (align > this->min_p_align_)
3923 this->min_p_align_ = align;
3926 // Set the offset of this segment based on the section. This should
3927 // only be called for a non-PT_LOAD segment.
3928 void
3929 set_offset(unsigned int increase);
3931 // Set the TLS offsets of the sections contained in the PT_TLS segment.
3932 void
3933 set_tls_offsets();
3935 // Return the number of output sections.
3936 unsigned int
3937 output_section_count() const;
3939 // Return the section attached to the list segment with the lowest
3940 // load address. This is used when handling a PHDRS clause in a
3941 // linker script.
3942 Output_section*
3943 section_with_lowest_load_address() const;
3945 // Write the segment header into *OPHDR.
3946 template<int size, bool big_endian>
3947 void
3948 write_header(elfcpp::Phdr_write<size, big_endian>*);
3950 // Write the section headers of associated sections into V.
3951 template<int size, bool big_endian>
3952 unsigned char*
3953 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
3954 unsigned int* pshndx) const;
3956 // Print the output sections in the map file.
3957 void
3958 print_sections_to_mapfile(Mapfile*) const;
3960 private:
3961 typedef std::vector<Output_data*> Output_data_list;
3963 // Find the maximum alignment in an Output_data_list.
3964 static uint64_t
3965 maximum_alignment_list(const Output_data_list*);
3967 // Return whether the first data section is a relro section.
3968 bool
3969 is_first_section_relro() const;
3971 // Set the section addresses in an Output_data_list.
3972 uint64_t
3973 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
3974 uint64_t addr, off_t* poff, unsigned int* pshndx,
3975 bool* in_tls);
3977 // Return the number of Output_sections in an Output_data_list.
3978 unsigned int
3979 output_section_count_list(const Output_data_list*) const;
3981 // Return whether an Output_data_list has a dynamic reloc.
3982 bool
3983 has_dynamic_reloc_list(const Output_data_list*) const;
3985 // Find the section with the lowest load address in an
3986 // Output_data_list.
3987 void
3988 lowest_load_address_in_list(const Output_data_list* pdl,
3989 Output_section** found,
3990 uint64_t* found_lma) const;
3992 // Find the first and last entries by address.
3993 void
3994 find_first_and_last_list(const Output_data_list* pdl,
3995 const Output_data** pfirst,
3996 const Output_data** plast) const;
3998 // Write the section headers in the list into V.
3999 template<int size, bool big_endian>
4000 unsigned char*
4001 write_section_headers_list(const Layout*, const Stringpool*,
4002 const Output_data_list*, unsigned char* v,
4003 unsigned int* pshdx) const;
4005 // Print a section list to the mapfile.
4006 void
4007 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4009 // NOTE: We want to use the copy constructor. Currently, shallow copy
4010 // works for us so we do not need to write our own copy constructor.
4012 // The list of output data attached to this segment.
4013 Output_data_list output_lists_[ORDER_MAX];
4014 // The segment virtual address.
4015 uint64_t vaddr_;
4016 // The segment physical address.
4017 uint64_t paddr_;
4018 // The size of the segment in memory.
4019 uint64_t memsz_;
4020 // The maximum section alignment. The is_max_align_known_ field
4021 // indicates whether this has been finalized.
4022 uint64_t max_align_;
4023 // The required minimum value for the p_align field. This is used
4024 // for PT_LOAD segments. Note that this does not mean that
4025 // addresses should be aligned to this value; it means the p_paddr
4026 // and p_vaddr fields must be congruent modulo this value. For
4027 // non-PT_LOAD segments, the dynamic linker works more efficiently
4028 // if the p_align field has the more conventional value, although it
4029 // can align as needed.
4030 uint64_t min_p_align_;
4031 // The offset of the segment data within the file.
4032 off_t offset_;
4033 // The size of the segment data in the file.
4034 off_t filesz_;
4035 // The segment type;
4036 elfcpp::Elf_Word type_;
4037 // The segment flags.
4038 elfcpp::Elf_Word flags_;
4039 // Whether we have finalized max_align_.
4040 bool is_max_align_known_ : 1;
4041 // Whether vaddr and paddr were set by a linker script.
4042 bool are_addresses_set_ : 1;
4043 // Whether this segment holds large data sections.
4044 bool is_large_data_segment_ : 1;
4047 // This class represents the output file.
4049 class Output_file
4051 public:
4052 Output_file(const char* name);
4054 // Indicate that this is a temporary file which should not be
4055 // output.
4056 void
4057 set_is_temporary()
4058 { this->is_temporary_ = true; }
4060 // Try to open an existing file. Returns false if the file doesn't
4061 // exist, has a size of 0 or can't be mmaped. This method is
4062 // thread-unsafe.
4063 bool
4064 open_for_modification();
4066 // Open the output file. FILE_SIZE is the final size of the file.
4067 // If the file already exists, it is deleted/truncated. This method
4068 // is thread-unsafe.
4069 void
4070 open(off_t file_size);
4072 // Resize the output file. This method is thread-unsafe.
4073 void
4074 resize(off_t file_size);
4076 // Close the output file (flushing all buffered data) and make sure
4077 // there are no errors. This method is thread-unsafe.
4078 void
4079 close();
4081 // Return the size of this file.
4082 off_t
4083 filesize()
4084 { return this->file_size_; }
4086 // Return the name of this file.
4087 const char*
4088 filename()
4089 { return this->name_; }
4091 // We currently always use mmap which makes the view handling quite
4092 // simple. In the future we may support other approaches.
4094 // Write data to the output file.
4095 void
4096 write(off_t offset, const void* data, size_t len)
4097 { memcpy(this->base_ + offset, data, len); }
4099 // Get a buffer to use to write to the file, given the offset into
4100 // the file and the size.
4101 unsigned char*
4102 get_output_view(off_t start, size_t size)
4104 gold_assert(start >= 0
4105 && start + static_cast<off_t>(size) <= this->file_size_);
4106 return this->base_ + start;
4109 // VIEW must have been returned by get_output_view. Write the
4110 // buffer to the file, passing in the offset and the size.
4111 void
4112 write_output_view(off_t, size_t, unsigned char*)
4115 // Get a read/write buffer. This is used when we want to write part
4116 // of the file, read it in, and write it again.
4117 unsigned char*
4118 get_input_output_view(off_t start, size_t size)
4119 { return this->get_output_view(start, size); }
4121 // Write a read/write buffer back to the file.
4122 void
4123 write_input_output_view(off_t, size_t, unsigned char*)
4126 // Get a read buffer. This is used when we just want to read part
4127 // of the file back it in.
4128 const unsigned char*
4129 get_input_view(off_t start, size_t size)
4130 { return this->get_output_view(start, size); }
4132 // Release a read bfufer.
4133 void
4134 free_input_view(off_t, size_t, const unsigned char*)
4137 private:
4138 // Map the file into memory or, if that fails, allocate anonymous
4139 // memory.
4140 void
4141 map();
4143 // Allocate anonymous memory for the file.
4144 bool
4145 map_anonymous();
4147 // Map the file into memory.
4148 bool
4149 map_no_anonymous();
4151 // Unmap the file from memory (and flush to disk buffers).
4152 void
4153 unmap();
4155 // File name.
4156 const char* name_;
4157 // File descriptor.
4158 int o_;
4159 // File size.
4160 off_t file_size_;
4161 // Base of file mapped into memory.
4162 unsigned char* base_;
4163 // True iff base_ points to a memory buffer rather than an output file.
4164 bool map_is_anonymous_;
4165 // True if this is a temporary file which should not be output.
4166 bool is_temporary_;
4169 } // End namespace gold.
4171 #endif // !defined(GOLD_OUTPUT_H)