1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
30 #include "parameters.h"
40 // Layout_task_runner methods.
42 // Lay out the sections. This is called after all the input objects
46 Layout_task_runner::run(Workqueue
* workqueue
)
48 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
51 // Now we know the final size of the output file and we know where
52 // each piece of information goes.
53 Output_file
* of
= new Output_file(this->options_
,
54 this->input_objects_
->target());
57 // Queue up the final set of tasks.
58 gold::queue_final_tasks(this->options_
, this->input_objects_
,
59 this->symtab_
, this->layout_
, workqueue
, of
);
64 Layout::Layout(const General_options
& options
)
65 : options_(options
), namepool_(), sympool_(), dynpool_(), signatures_(),
66 section_name_map_(), segment_list_(), section_list_(),
67 unattached_section_list_(), special_output_list_(),
68 tls_segment_(NULL
), symtab_section_(NULL
),
69 dynsym_section_(NULL
), dynamic_section_(NULL
), dynamic_data_(NULL
),
70 eh_frame_section_(NULL
), output_file_size_(-1)
72 // Make space for more than enough segments for a typical file.
73 // This is just for efficiency--it's OK if we wind up needing more.
74 this->segment_list_
.reserve(12);
76 // We expect three unattached Output_data objects: the file header,
77 // the segment headers, and the section headers.
78 this->special_output_list_
.reserve(3);
81 // Hash a key we use to look up an output section mapping.
84 Layout::Hash_key::operator()(const Layout::Key
& k
) const
86 return k
.first
+ k
.second
.first
+ k
.second
.second
;
89 // Return whether PREFIX is a prefix of STR.
92 is_prefix_of(const char* prefix
, const char* str
)
94 return strncmp(prefix
, str
, strlen(prefix
)) == 0;
97 // Whether to include this section in the link.
99 template<int size
, bool big_endian
>
101 Layout::include_section(Object
*, const char* name
,
102 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
104 // Some section types are never linked. Some are only linked when
105 // doing a relocateable link.
106 switch (shdr
.get_sh_type())
108 case elfcpp::SHT_NULL
:
109 case elfcpp::SHT_SYMTAB
:
110 case elfcpp::SHT_DYNSYM
:
111 case elfcpp::SHT_STRTAB
:
112 case elfcpp::SHT_HASH
:
113 case elfcpp::SHT_DYNAMIC
:
114 case elfcpp::SHT_SYMTAB_SHNDX
:
117 case elfcpp::SHT_RELA
:
118 case elfcpp::SHT_REL
:
119 case elfcpp::SHT_GROUP
:
120 return parameters
->output_is_object();
122 case elfcpp::SHT_PROGBITS
:
123 if (parameters
->strip_debug()
124 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
126 // Debugging sections can only be recognized by name.
127 if (is_prefix_of(".debug", name
)
128 || is_prefix_of(".gnu.linkonce.wi.", name
)
129 || is_prefix_of(".line", name
)
130 || is_prefix_of(".stab", name
))
140 // Return an output section named NAME, or NULL if there is none.
143 Layout::find_output_section(const char* name
) const
145 for (Section_name_map::const_iterator p
= this->section_name_map_
.begin();
146 p
!= this->section_name_map_
.end();
148 if (strcmp(p
->second
->name(), name
) == 0)
153 // Return an output segment of type TYPE, with segment flags SET set
154 // and segment flags CLEAR clear. Return NULL if there is none.
157 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
158 elfcpp::Elf_Word clear
) const
160 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
161 p
!= this->segment_list_
.end();
163 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
164 && ((*p
)->flags() & set
) == set
165 && ((*p
)->flags() & clear
) == 0)
170 // Return the output section to use for section NAME with type TYPE
171 // and section flags FLAGS.
174 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
175 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
177 // We should ignore some flags.
178 flags
&= ~ (elfcpp::SHF_INFO_LINK
179 | elfcpp::SHF_LINK_ORDER
182 | elfcpp::SHF_STRINGS
);
184 const Key
key(name_key
, std::make_pair(type
, flags
));
185 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
186 std::pair
<Section_name_map::iterator
, bool> ins(
187 this->section_name_map_
.insert(v
));
190 return ins
.first
->second
;
193 // This is the first time we've seen this name/type/flags
195 Output_section
* os
= this->make_output_section(name
, type
, flags
);
196 ins
.first
->second
= os
;
201 // Return the output section to use for input section SHNDX, with name
202 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
203 // offset of this input section without the output section.
205 template<int size
, bool big_endian
>
207 Layout::layout(Relobj
* object
, unsigned int shndx
, const char* name
,
208 const elfcpp::Shdr
<size
, big_endian
>& shdr
, off_t
* off
)
210 if (!this->include_section(object
, name
, shdr
))
213 // If we are not doing a relocateable link, choose the name to use
214 // for the output section.
215 size_t len
= strlen(name
);
216 if (!parameters
->output_is_object())
217 name
= Layout::output_section_name(name
, &len
);
219 // FIXME: Handle SHF_OS_NONCONFORMING here.
221 // Canonicalize the section name.
222 Stringpool::Key name_key
;
223 name
= this->namepool_
.add_prefix(name
, len
, &name_key
);
225 // Find the output section. The output section is selected based on
226 // the section name, type, and flags.
227 Output_section
* os
= this->get_output_section(name
, name_key
,
229 shdr
.get_sh_flags());
231 // Special GNU handling of sections named .eh_frame.
232 if (!parameters
->output_is_object()
233 && strcmp(name
, ".eh_frame") == 0
234 && shdr
.get_sh_size() > 0
235 && shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
236 && shdr
.get_sh_flags() == elfcpp::SHF_ALLOC
)
238 this->layout_eh_frame(object
, shndx
, name
, shdr
, os
, off
);
242 // FIXME: Handle SHF_LINK_ORDER somewhere.
244 *off
= os
->add_input_section(object
, shndx
, name
, shdr
);
249 // Special GNU handling of sections named .eh_frame. They will
250 // normally hold exception frame data.
252 template<int size
, bool big_endian
>
254 Layout::layout_eh_frame(Relobj
* object
,
257 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
258 Output_section
* os
, off_t
* off
)
260 if (this->eh_frame_section_
== NULL
)
262 this->eh_frame_section_
= os
;
264 if (this->options_
.create_eh_frame_hdr())
266 Stringpool::Key hdr_name_key
;
267 const char* hdr_name
= this->namepool_
.add(".eh_frame_hdr",
270 Output_section
* hdr_os
=
271 this->get_output_section(hdr_name
, hdr_name_key
,
272 elfcpp::SHT_PROGBITS
,
275 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
);
276 hdr_os
->add_output_section_data(hdr_posd
);
278 Output_segment
* hdr_oseg
=
279 new Output_segment(elfcpp::PT_GNU_EH_FRAME
, elfcpp::PF_R
);
280 this->segment_list_
.push_back(hdr_oseg
);
281 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
285 gold_assert(this->eh_frame_section_
== os
);
287 *off
= os
->add_input_section(object
, shndx
, name
, shdr
);
290 // Add POSD to an output section using NAME, TYPE, and FLAGS.
293 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
294 elfcpp::Elf_Xword flags
,
295 Output_section_data
* posd
)
297 // Canonicalize the name.
298 Stringpool::Key name_key
;
299 name
= this->namepool_
.add(name
, true, &name_key
);
301 Output_section
* os
= this->get_output_section(name
, name_key
, type
, flags
);
302 os
->add_output_section_data(posd
);
305 // Map section flags to segment flags.
308 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
310 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
311 if ((flags
& elfcpp::SHF_WRITE
) != 0)
313 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
318 // Make a new Output_section, and attach it to segments as
322 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
323 elfcpp::Elf_Xword flags
)
325 Output_section
* os
= new Output_section(name
, type
, flags
);
326 this->section_list_
.push_back(os
);
328 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
329 this->unattached_section_list_
.push_back(os
);
332 // This output section goes into a PT_LOAD segment.
334 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
336 // The only thing we really care about for PT_LOAD segments is
337 // whether or not they are writable, so that is how we search
338 // for them. People who need segments sorted on some other
339 // basis will have to wait until we implement a mechanism for
340 // them to describe the segments they want.
342 Segment_list::const_iterator p
;
343 for (p
= this->segment_list_
.begin();
344 p
!= this->segment_list_
.end();
347 if ((*p
)->type() == elfcpp::PT_LOAD
348 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
350 (*p
)->add_output_section(os
, seg_flags
);
355 if (p
== this->segment_list_
.end())
357 Output_segment
* oseg
= new Output_segment(elfcpp::PT_LOAD
,
359 this->segment_list_
.push_back(oseg
);
360 oseg
->add_output_section(os
, seg_flags
);
363 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
365 if (type
== elfcpp::SHT_NOTE
)
367 // See if we already have an equivalent PT_NOTE segment.
368 for (p
= this->segment_list_
.begin();
369 p
!= segment_list_
.end();
372 if ((*p
)->type() == elfcpp::PT_NOTE
373 && (((*p
)->flags() & elfcpp::PF_W
)
374 == (seg_flags
& elfcpp::PF_W
)))
376 (*p
)->add_output_section(os
, seg_flags
);
381 if (p
== this->segment_list_
.end())
383 Output_segment
* oseg
= new Output_segment(elfcpp::PT_NOTE
,
385 this->segment_list_
.push_back(oseg
);
386 oseg
->add_output_section(os
, seg_flags
);
390 // If we see a loadable SHF_TLS section, we create a PT_TLS
391 // segment. There can only be one such segment.
392 if ((flags
& elfcpp::SHF_TLS
) != 0)
394 if (this->tls_segment_
== NULL
)
396 this->tls_segment_
= new Output_segment(elfcpp::PT_TLS
,
398 this->segment_list_
.push_back(this->tls_segment_
);
400 this->tls_segment_
->add_output_section(os
, seg_flags
);
407 // Create the dynamic sections which are needed before we read the
411 Layout::create_initial_dynamic_sections(const Input_objects
* input_objects
,
412 Symbol_table
* symtab
)
414 if (parameters
->doing_static_link())
417 const char* dynamic_name
= this->namepool_
.add(".dynamic", false, NULL
);
418 this->dynamic_section_
= this->make_output_section(dynamic_name
,
421 | elfcpp::SHF_WRITE
));
423 symtab
->define_in_output_data(input_objects
->target(), "_DYNAMIC", NULL
,
424 this->dynamic_section_
, 0, 0,
425 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
426 elfcpp::STV_HIDDEN
, 0, false, false);
428 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
430 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
433 // For each output section whose name can be represented as C symbol,
434 // define __start and __stop symbols for the section. This is a GNU
438 Layout::define_section_symbols(Symbol_table
* symtab
, const Target
* target
)
440 for (Section_list::const_iterator p
= this->section_list_
.begin();
441 p
!= this->section_list_
.end();
444 const char* const name
= (*p
)->name();
445 if (name
[strspn(name
,
447 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
448 "abcdefghijklmnopqrstuvwxyz"
452 const std::string
name_string(name
);
453 const std::string
start_name("__start_" + name_string
);
454 const std::string
stop_name("__stop_" + name_string
);
456 symtab
->define_in_output_data(target
,
466 false, // offset_is_from_end
467 false); // only_if_ref
469 symtab
->define_in_output_data(target
,
479 true, // offset_is_from_end
480 false); // only_if_ref
485 // Find the first read-only PT_LOAD segment, creating one if
489 Layout::find_first_load_seg()
491 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
492 p
!= this->segment_list_
.end();
495 if ((*p
)->type() == elfcpp::PT_LOAD
496 && ((*p
)->flags() & elfcpp::PF_R
) != 0
497 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
501 Output_segment
* load_seg
= new Output_segment(elfcpp::PT_LOAD
, elfcpp::PF_R
);
502 this->segment_list_
.push_back(load_seg
);
506 // Finalize the layout. When this is called, we have created all the
507 // output sections and all the output segments which are based on
508 // input sections. We have several things to do, and we have to do
509 // them in the right order, so that we get the right results correctly
512 // 1) Finalize the list of output segments and create the segment
515 // 2) Finalize the dynamic symbol table and associated sections.
517 // 3) Determine the final file offset of all the output segments.
519 // 4) Determine the final file offset of all the SHF_ALLOC output
522 // 5) Create the symbol table sections and the section name table
525 // 6) Finalize the symbol table: set symbol values to their final
526 // value and make a final determination of which symbols are going
527 // into the output symbol table.
529 // 7) Create the section table header.
531 // 8) Determine the final file offset of all the output sections which
532 // are not SHF_ALLOC, including the section table header.
534 // 9) Finalize the ELF file header.
536 // This function returns the size of the output file.
539 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
)
541 Target
* const target
= input_objects
->target();
543 target
->finalize_sections(this);
545 this->create_note_section();
547 Output_segment
* phdr_seg
= NULL
;
548 if (!parameters
->doing_static_link())
550 // There was a dynamic object in the link. We need to create
551 // some information for the dynamic linker.
553 // Create the PT_PHDR segment which will hold the program
555 phdr_seg
= new Output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
556 this->segment_list_
.push_back(phdr_seg
);
558 // Create the dynamic symbol table, including the hash table.
559 Output_section
* dynstr
;
560 std::vector
<Symbol
*> dynamic_symbols
;
561 unsigned int local_dynamic_count
;
563 this->create_dynamic_symtab(target
, symtab
, &dynstr
,
564 &local_dynamic_count
, &dynamic_symbols
,
567 // Create the .interp section to hold the name of the
568 // interpreter, and put it in a PT_INTERP segment.
569 this->create_interp(target
);
571 // Finish the .dynamic section to hold the dynamic data, and put
572 // it in a PT_DYNAMIC segment.
573 this->finish_dynamic_section(input_objects
, symtab
);
575 // We should have added everything we need to the dynamic string
577 this->dynpool_
.set_string_offsets();
579 // Create the version sections. We can't do this until the
580 // dynamic string table is complete.
581 this->create_version_sections(&versions
, local_dynamic_count
,
582 dynamic_symbols
, dynstr
);
585 // FIXME: Handle PT_GNU_STACK.
587 Output_segment
* load_seg
= this->find_first_load_seg();
589 // Lay out the segment headers.
590 Output_segment_headers
* segment_headers
;
591 segment_headers
= new Output_segment_headers(this->segment_list_
);
592 load_seg
->add_initial_output_data(segment_headers
);
593 this->special_output_list_
.push_back(segment_headers
);
594 if (phdr_seg
!= NULL
)
595 phdr_seg
->add_initial_output_data(segment_headers
);
597 // Lay out the file header.
598 Output_file_header
* file_header
;
599 file_header
= new Output_file_header(target
, symtab
, segment_headers
);
600 load_seg
->add_initial_output_data(file_header
);
601 this->special_output_list_
.push_back(file_header
);
603 // We set the output section indexes in set_segment_offsets and
604 // set_section_offsets.
605 unsigned int shndx
= 1;
607 // Set the file offsets of all the segments, and all the sections
609 off_t off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
611 // Create the symbol table sections.
612 this->create_symtab_sections(input_objects
, symtab
, &off
);
614 // Create the .shstrtab section.
615 Output_section
* shstrtab_section
= this->create_shstrtab();
617 // Set the file offsets of all the sections not associated with
619 off
= this->set_section_offsets(off
, &shndx
);
621 // Create the section table header.
622 Output_section_headers
* oshdrs
= this->create_shdrs(&off
);
624 file_header
->set_section_info(oshdrs
, shstrtab_section
);
626 // Now we know exactly where everything goes in the output file.
627 Output_data::layout_complete();
629 this->output_file_size_
= off
;
634 // Create a .note section for an executable or shared library. This
635 // records the version of gold used to create the binary.
638 Layout::create_note_section()
640 if (parameters
->output_is_object())
643 // Authorities all agree that the values in a .note field should
644 // be aligned on 4-byte boundaries for 32-bit binaries. However,
645 // they differ on what the alignment is for 64-bit binaries.
646 // The GABI says unambiguously they take 8-byte alignment:
647 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
648 // Other documentation says alignment should always be 4 bytes:
649 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
650 // GNU ld and GNU readelf both support the latter (at least as of
651 // version 2.16.91), and glibc always generates the latter for
652 // .note.ABI-tag (as of version 1.6), so that's the one we go with
654 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // this is not defined by default
655 const int size
= parameters
->get_size();
660 // The contents of the .note section.
661 const char* name
= "GNU";
662 std::string
desc(std::string("gold ") + gold::get_version_string());
663 size_t namesz
= strlen(name
) + 1;
664 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
665 size_t descsz
= desc
.length() + 1;
666 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
667 const int note_type
= 4;
669 size_t notesz
= 3 * (size
/ 8) + aligned_namesz
+ aligned_descsz
;
671 unsigned char buffer
[128];
672 gold_assert(sizeof buffer
>= notesz
);
673 memset(buffer
, 0, notesz
);
675 bool is_big_endian
= parameters
->is_big_endian();
681 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
682 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
683 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
687 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
688 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
689 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
696 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
697 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
698 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
702 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
703 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
704 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
710 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
711 memcpy(buffer
+ 3 * (size
/ 8) + aligned_namesz
, desc
.data(), descsz
);
713 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
714 Output_section
* os
= this->make_output_section(note_name
,
717 Output_section_data
* posd
= new Output_data_const(buffer
, notesz
,
719 os
->add_output_section_data(posd
);
722 // Return whether SEG1 should be before SEG2 in the output file. This
723 // is based entirely on the segment type and flags. When this is
724 // called the segment addresses has normally not yet been set.
727 Layout::segment_precedes(const Output_segment
* seg1
,
728 const Output_segment
* seg2
)
730 elfcpp::Elf_Word type1
= seg1
->type();
731 elfcpp::Elf_Word type2
= seg2
->type();
733 // The single PT_PHDR segment is required to precede any loadable
734 // segment. We simply make it always first.
735 if (type1
== elfcpp::PT_PHDR
)
737 gold_assert(type2
!= elfcpp::PT_PHDR
);
740 if (type2
== elfcpp::PT_PHDR
)
743 // The single PT_INTERP segment is required to precede any loadable
744 // segment. We simply make it always second.
745 if (type1
== elfcpp::PT_INTERP
)
747 gold_assert(type2
!= elfcpp::PT_INTERP
);
750 if (type2
== elfcpp::PT_INTERP
)
753 // We then put PT_LOAD segments before any other segments.
754 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
756 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
759 // We put the PT_TLS segment last, because that is where the dynamic
760 // linker expects to find it (this is just for efficiency; other
761 // positions would also work correctly).
762 if (type1
== elfcpp::PT_TLS
&& type2
!= elfcpp::PT_TLS
)
764 if (type2
== elfcpp::PT_TLS
&& type1
!= elfcpp::PT_TLS
)
767 const elfcpp::Elf_Word flags1
= seg1
->flags();
768 const elfcpp::Elf_Word flags2
= seg2
->flags();
770 // The order of non-PT_LOAD segments is unimportant. We simply sort
771 // by the numeric segment type and flags values. There should not
772 // be more than one segment with the same type and flags.
773 if (type1
!= elfcpp::PT_LOAD
)
776 return type1
< type2
;
777 gold_assert(flags1
!= flags2
);
778 return flags1
< flags2
;
781 // We sort PT_LOAD segments based on the flags. Readonly segments
782 // come before writable segments. Then executable segments come
783 // before non-executable segments. Then the unlikely case of a
784 // non-readable segment comes before the normal case of a readable
785 // segment. If there are multiple segments with the same type and
786 // flags, we require that the address be set, and we sort by
787 // virtual address and then physical address.
788 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
789 return (flags1
& elfcpp::PF_W
) == 0;
790 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
791 return (flags1
& elfcpp::PF_X
) != 0;
792 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
793 return (flags1
& elfcpp::PF_R
) == 0;
795 uint64_t vaddr1
= seg1
->vaddr();
796 uint64_t vaddr2
= seg2
->vaddr();
797 if (vaddr1
!= vaddr2
)
798 return vaddr1
< vaddr2
;
800 uint64_t paddr1
= seg1
->paddr();
801 uint64_t paddr2
= seg2
->paddr();
802 gold_assert(paddr1
!= paddr2
);
803 return paddr1
< paddr2
;
806 // Set the file offsets of all the segments, and all the sections they
807 // contain. They have all been created. LOAD_SEG must be be laid out
808 // first. Return the offset of the data to follow.
811 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
812 unsigned int *pshndx
)
814 // Sort them into the final order.
815 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
816 Layout::Compare_segments());
818 // Find the PT_LOAD segments, and set their addresses and offsets
819 // and their section's addresses and offsets.
821 if (options_
.user_set_text_segment_address())
822 addr
= options_
.text_segment_address();
824 addr
= target
->default_text_segment_address();
826 bool was_readonly
= false;
827 for (Segment_list::iterator p
= this->segment_list_
.begin();
828 p
!= this->segment_list_
.end();
831 if ((*p
)->type() == elfcpp::PT_LOAD
)
833 if (load_seg
!= NULL
&& load_seg
!= *p
)
837 // If the last segment was readonly, and this one is not,
838 // then skip the address forward one page, maintaining the
839 // same position within the page. This lets us store both
840 // segments overlapping on a single page in the file, but
841 // the loader will put them on different pages in memory.
843 uint64_t orig_addr
= addr
;
844 uint64_t orig_off
= off
;
846 uint64_t aligned_addr
= addr
;
847 uint64_t abi_pagesize
= target
->abi_pagesize();
849 // FIXME: This should depend on the -n and -N options.
850 (*p
)->set_minimum_addralign(target
->common_pagesize());
852 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
854 uint64_t align
= (*p
)->addralign();
856 addr
= align_address(addr
, align
);
858 if ((addr
& (abi_pagesize
- 1)) != 0)
859 addr
= addr
+ abi_pagesize
;
862 unsigned int shndx_hold
= *pshndx
;
863 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
864 uint64_t new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
866 // Now that we know the size of this segment, we may be able
867 // to save a page in memory, at the cost of wasting some
868 // file space, by instead aligning to the start of a new
869 // page. Here we use the real machine page size rather than
870 // the ABI mandated page size.
872 if (aligned_addr
!= addr
)
874 uint64_t common_pagesize
= target
->common_pagesize();
875 uint64_t first_off
= (common_pagesize
877 & (common_pagesize
- 1)));
878 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
881 && ((aligned_addr
& ~ (common_pagesize
- 1))
882 != (new_addr
& ~ (common_pagesize
- 1)))
883 && first_off
+ last_off
<= common_pagesize
)
885 *pshndx
= shndx_hold
;
886 addr
= align_address(aligned_addr
, common_pagesize
);
887 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
888 new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
894 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
899 // Handle the non-PT_LOAD segments, setting their offsets from their
900 // section's offsets.
901 for (Segment_list::iterator p
= this->segment_list_
.begin();
902 p
!= this->segment_list_
.end();
905 if ((*p
)->type() != elfcpp::PT_LOAD
)
912 // Set the file offset of all the sections not associated with a
916 Layout::set_section_offsets(off_t off
, unsigned int* pshndx
)
918 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
919 p
!= this->unattached_section_list_
.end();
922 (*p
)->set_out_shndx(*pshndx
);
924 if ((*p
)->offset() != -1)
926 off
= align_address(off
, (*p
)->addralign());
927 (*p
)->set_address(0, off
);
928 off
+= (*p
)->data_size();
933 // Create the symbol table sections. Here we also set the final
934 // values of the symbols. At this point all the loadable sections are
938 Layout::create_symtab_sections(const Input_objects
* input_objects
,
939 Symbol_table
* symtab
,
944 if (parameters
->get_size() == 32)
946 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
949 else if (parameters
->get_size() == 64)
951 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
958 off
= align_address(off
, align
);
959 off_t startoff
= off
;
961 // Save space for the dummy symbol at the start of the section. We
962 // never bother to write this out--it will just be left as zero.
964 unsigned int local_symbol_index
= 1;
966 // Add STT_SECTION symbols for each Output section which needs one.
967 for (Section_list::iterator p
= this->section_list_
.begin();
968 p
!= this->section_list_
.end();
971 if (!(*p
)->needs_symtab_index())
972 (*p
)->set_symtab_index(-1U);
975 (*p
)->set_symtab_index(local_symbol_index
);
976 ++local_symbol_index
;
981 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
982 p
!= input_objects
->relobj_end();
985 Task_lock_obj
<Object
> tlo(**p
);
986 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
989 off
+= (index
- local_symbol_index
) * symsize
;
990 local_symbol_index
= index
;
993 unsigned int local_symcount
= local_symbol_index
;
994 gold_assert(local_symcount
* symsize
== off
- startoff
);
997 size_t dyn_global_index
;
999 if (this->dynsym_section_
== NULL
)
1002 dyn_global_index
= 0;
1007 dyn_global_index
= this->dynsym_section_
->info();
1008 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
1009 dynoff
= this->dynsym_section_
->offset() + locsize
;
1010 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
1011 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
1012 == this->dynsym_section_
->data_size() - locsize
);
1015 off
= symtab
->finalize(local_symcount
, off
, dynoff
, dyn_global_index
,
1016 dyncount
, &this->sympool_
);
1018 if (!parameters
->strip_all())
1020 this->sympool_
.set_string_offsets();
1022 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
1023 Output_section
* osymtab
= this->make_output_section(symtab_name
,
1026 this->symtab_section_
= osymtab
;
1028 Output_section_data
* pos
= new Output_data_space(off
- startoff
,
1030 osymtab
->add_output_section_data(pos
);
1032 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
1033 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
1037 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
1038 ostrtab
->add_output_section_data(pstr
);
1040 osymtab
->set_address(0, startoff
);
1041 osymtab
->set_link_section(ostrtab
);
1042 osymtab
->set_info(local_symcount
);
1043 osymtab
->set_entsize(symsize
);
1049 // Create the .shstrtab section, which holds the names of the
1050 // sections. At the time this is called, we have created all the
1051 // output sections except .shstrtab itself.
1054 Layout::create_shstrtab()
1056 // FIXME: We don't need to create a .shstrtab section if we are
1057 // stripping everything.
1059 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
1061 this->namepool_
.set_string_offsets();
1063 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
1065 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
1066 os
->add_output_section_data(posd
);
1071 // Create the section headers. SIZE is 32 or 64. OFF is the file
1074 Output_section_headers
*
1075 Layout::create_shdrs(off_t
* poff
)
1077 Output_section_headers
* oshdrs
;
1078 oshdrs
= new Output_section_headers(this,
1079 &this->segment_list_
,
1080 &this->unattached_section_list_
,
1082 off_t off
= align_address(*poff
, oshdrs
->addralign());
1083 oshdrs
->set_address(0, off
);
1084 off
+= oshdrs
->data_size();
1086 this->special_output_list_
.push_back(oshdrs
);
1090 // Create the dynamic symbol table.
1093 Layout::create_dynamic_symtab(const Target
* target
, Symbol_table
* symtab
,
1094 Output_section
**pdynstr
,
1095 unsigned int* plocal_dynamic_count
,
1096 std::vector
<Symbol
*>* pdynamic_symbols
,
1097 Versions
* pversions
)
1099 // Count all the symbols in the dynamic symbol table, and set the
1100 // dynamic symbol indexes.
1102 // Skip symbol 0, which is always all zeroes.
1103 unsigned int index
= 1;
1105 // Add STT_SECTION symbols for each Output section which needs one.
1106 for (Section_list::iterator p
= this->section_list_
.begin();
1107 p
!= this->section_list_
.end();
1110 if (!(*p
)->needs_dynsym_index())
1111 (*p
)->set_dynsym_index(-1U);
1114 (*p
)->set_dynsym_index(index
);
1119 // FIXME: Some targets apparently require local symbols in the
1120 // dynamic symbol table. Here is where we will have to count them,
1121 // and set the dynamic symbol indexes, and add the names to
1124 unsigned int local_symcount
= index
;
1125 *plocal_dynamic_count
= local_symcount
;
1127 // FIXME: We have to tell set_dynsym_indexes whether the
1128 // -E/--export-dynamic option was used.
1129 index
= symtab
->set_dynsym_indexes(&this->options_
, target
, index
,
1130 pdynamic_symbols
, &this->dynpool_
,
1135 const int size
= parameters
->get_size();
1138 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
1141 else if (size
== 64)
1143 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
1149 // Create the dynamic symbol table section.
1151 const char* dynsym_name
= this->namepool_
.add(".dynsym", false, NULL
);
1152 Output_section
* dynsym
= this->make_output_section(dynsym_name
,
1156 Output_section_data
* odata
= new Output_data_space(index
* symsize
,
1158 dynsym
->add_output_section_data(odata
);
1160 dynsym
->set_info(local_symcount
);
1161 dynsym
->set_entsize(symsize
);
1162 dynsym
->set_addralign(align
);
1164 this->dynsym_section_
= dynsym
;
1166 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1167 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
1168 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
1170 // Create the dynamic string table section.
1172 const char* dynstr_name
= this->namepool_
.add(".dynstr", false, NULL
);
1173 Output_section
* dynstr
= this->make_output_section(dynstr_name
,
1177 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
1178 dynstr
->add_output_section_data(strdata
);
1180 dynsym
->set_link_section(dynstr
);
1181 this->dynamic_section_
->set_link_section(dynstr
);
1183 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
1184 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
1188 // Create the hash tables.
1190 // FIXME: We need an option to create a GNU hash table.
1192 unsigned char* phash
;
1193 unsigned int hashlen
;
1194 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
1197 const char* hash_name
= this->namepool_
.add(".hash", false, NULL
);
1198 Output_section
* hashsec
= this->make_output_section(hash_name
,
1202 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
1205 hashsec
->add_output_section_data(hashdata
);
1207 hashsec
->set_link_section(dynsym
);
1208 hashsec
->set_entsize(4);
1210 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
1213 // Create the version sections.
1216 Layout::create_version_sections(const Versions
* versions
,
1217 unsigned int local_symcount
,
1218 const std::vector
<Symbol
*>& dynamic_symbols
,
1219 const Output_section
* dynstr
)
1221 if (!versions
->any_defs() && !versions
->any_needs())
1224 if (parameters
->get_size() == 32)
1226 if (parameters
->is_big_endian())
1228 #ifdef HAVE_TARGET_32_BIG
1229 this->sized_create_version_sections
1230 SELECT_SIZE_ENDIAN_NAME(32, true)(
1231 versions
, local_symcount
, dynamic_symbols
, dynstr
1232 SELECT_SIZE_ENDIAN(32, true));
1239 #ifdef HAVE_TARGET_32_LITTLE
1240 this->sized_create_version_sections
1241 SELECT_SIZE_ENDIAN_NAME(32, false)(
1242 versions
, local_symcount
, dynamic_symbols
, dynstr
1243 SELECT_SIZE_ENDIAN(32, false));
1249 else if (parameters
->get_size() == 64)
1251 if (parameters
->is_big_endian())
1253 #ifdef HAVE_TARGET_64_BIG
1254 this->sized_create_version_sections
1255 SELECT_SIZE_ENDIAN_NAME(64, true)(
1256 versions
, local_symcount
, dynamic_symbols
, dynstr
1257 SELECT_SIZE_ENDIAN(64, true));
1264 #ifdef HAVE_TARGET_64_LITTLE
1265 this->sized_create_version_sections
1266 SELECT_SIZE_ENDIAN_NAME(64, false)(
1267 versions
, local_symcount
, dynamic_symbols
, dynstr
1268 SELECT_SIZE_ENDIAN(64, false));
1278 // Create the version sections, sized version.
1280 template<int size
, bool big_endian
>
1282 Layout::sized_create_version_sections(
1283 const Versions
* versions
,
1284 unsigned int local_symcount
,
1285 const std::vector
<Symbol
*>& dynamic_symbols
,
1286 const Output_section
* dynstr
1289 const char* vname
= this->namepool_
.add(".gnu.version", false, NULL
);
1290 Output_section
* vsec
= this->make_output_section(vname
,
1291 elfcpp::SHT_GNU_versym
,
1294 unsigned char* vbuf
;
1296 versions
->symbol_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1297 &this->dynpool_
, local_symcount
, dynamic_symbols
, &vbuf
, &vsize
1298 SELECT_SIZE_ENDIAN(size
, big_endian
));
1300 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2);
1302 vsec
->add_output_section_data(vdata
);
1303 vsec
->set_entsize(2);
1304 vsec
->set_link_section(this->dynsym_section_
);
1306 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1307 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
1309 if (versions
->any_defs())
1311 const char* vdname
= this->namepool_
.add(".gnu.version_d", false, NULL
);
1312 Output_section
*vdsec
;
1313 vdsec
= this->make_output_section(vdname
, elfcpp::SHT_GNU_verdef
,
1316 unsigned char* vdbuf
;
1317 unsigned int vdsize
;
1318 unsigned int vdentries
;
1319 versions
->def_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1320 &this->dynpool_
, &vdbuf
, &vdsize
, &vdentries
1321 SELECT_SIZE_ENDIAN(size
, big_endian
));
1323 Output_section_data
* vddata
= new Output_data_const_buffer(vdbuf
,
1327 vdsec
->add_output_section_data(vddata
);
1328 vdsec
->set_link_section(dynstr
);
1329 vdsec
->set_info(vdentries
);
1331 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
1332 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
1335 if (versions
->any_needs())
1337 const char* vnname
= this->namepool_
.add(".gnu.version_r", false, NULL
);
1338 Output_section
* vnsec
;
1339 vnsec
= this->make_output_section(vnname
, elfcpp::SHT_GNU_verneed
,
1342 unsigned char* vnbuf
;
1343 unsigned int vnsize
;
1344 unsigned int vnentries
;
1345 versions
->need_section_contents
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)
1346 (&this->dynpool_
, &vnbuf
, &vnsize
, &vnentries
1347 SELECT_SIZE_ENDIAN(size
, big_endian
));
1349 Output_section_data
* vndata
= new Output_data_const_buffer(vnbuf
,
1353 vnsec
->add_output_section_data(vndata
);
1354 vnsec
->set_link_section(dynstr
);
1355 vnsec
->set_info(vnentries
);
1357 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
1358 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
1362 // Create the .interp section and PT_INTERP segment.
1365 Layout::create_interp(const Target
* target
)
1367 const char* interp
= this->options_
.dynamic_linker();
1370 interp
= target
->dynamic_linker();
1371 gold_assert(interp
!= NULL
);
1374 size_t len
= strlen(interp
) + 1;
1376 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
1378 const char* interp_name
= this->namepool_
.add(".interp", false, NULL
);
1379 Output_section
* osec
= this->make_output_section(interp_name
,
1380 elfcpp::SHT_PROGBITS
,
1382 osec
->add_output_section_data(odata
);
1384 Output_segment
* oseg
= new Output_segment(elfcpp::PT_INTERP
, elfcpp::PF_R
);
1385 this->segment_list_
.push_back(oseg
);
1386 oseg
->add_initial_output_section(osec
, elfcpp::PF_R
);
1389 // Finish the .dynamic section and PT_DYNAMIC segment.
1392 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
1393 const Symbol_table
* symtab
)
1395 Output_segment
* oseg
= new Output_segment(elfcpp::PT_DYNAMIC
,
1396 elfcpp::PF_R
| elfcpp::PF_W
);
1397 this->segment_list_
.push_back(oseg
);
1398 oseg
->add_initial_output_section(this->dynamic_section_
,
1399 elfcpp::PF_R
| elfcpp::PF_W
);
1401 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1403 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
1404 p
!= input_objects
->dynobj_end();
1407 // FIXME: Handle --as-needed.
1408 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
1411 // FIXME: Support --init and --fini.
1412 Symbol
* sym
= symtab
->lookup("_init");
1413 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
1414 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
1416 sym
= symtab
->lookup("_fini");
1417 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
1418 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
1420 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1422 // Add a DT_RPATH entry if needed.
1423 const General_options::Dir_list
& rpath(this->options_
.rpath());
1426 std::string rpath_val
;
1427 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
1431 if (rpath_val
.empty())
1432 rpath_val
= p
->name();
1435 // Eliminate duplicates.
1436 General_options::Dir_list::const_iterator q
;
1437 for (q
= rpath
.begin(); q
!= p
; ++q
)
1438 if (q
->name() == p
->name())
1443 rpath_val
+= p
->name();
1448 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
1452 // The mapping of .gnu.linkonce section names to real section names.
1454 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1455 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
1457 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1458 MAPPING_INIT("t", ".text"),
1459 MAPPING_INIT("r", ".rodata"),
1460 MAPPING_INIT("d", ".data"),
1461 MAPPING_INIT("b", ".bss"),
1462 MAPPING_INIT("s", ".sdata"),
1463 MAPPING_INIT("sb", ".sbss"),
1464 MAPPING_INIT("s2", ".sdata2"),
1465 MAPPING_INIT("sb2", ".sbss2"),
1466 MAPPING_INIT("wi", ".debug_info"),
1467 MAPPING_INIT("td", ".tdata"),
1468 MAPPING_INIT("tb", ".tbss"),
1469 MAPPING_INIT("lr", ".lrodata"),
1470 MAPPING_INIT("l", ".ldata"),
1471 MAPPING_INIT("lb", ".lbss"),
1475 const int Layout::linkonce_mapping_count
=
1476 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
1478 // Return the name of the output section to use for a .gnu.linkonce
1479 // section. This is based on the default ELF linker script of the old
1480 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1481 // to ".text". Set *PLEN to the length of the name. *PLEN is
1482 // initialized to the length of NAME.
1485 Layout::linkonce_output_name(const char* name
, size_t *plen
)
1487 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
1491 const Linkonce_mapping
* plm
= linkonce_mapping
;
1492 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
1494 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
1503 // Choose the output section name to use given an input section name.
1504 // Set *PLEN to the length of the name. *PLEN is initialized to the
1508 Layout::output_section_name(const char* name
, size_t* plen
)
1510 if (Layout::is_linkonce(name
))
1512 // .gnu.linkonce sections are laid out as though they were named
1513 // for the sections are placed into.
1514 return Layout::linkonce_output_name(name
, plen
);
1517 // If the section name has no '.', or only an initial '.', we use
1518 // the name unchanged (i.e., ".text" is unchanged).
1520 // Otherwise, if the section name does not include ".rel", we drop
1521 // the last '.' and everything that follows (i.e., ".text.XXX"
1522 // becomes ".text").
1524 // Otherwise, if the section name has zero or one '.' after the
1525 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1528 // Otherwise, we drop the last '.' and everything that follows
1529 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1531 const char* s
= name
;
1534 const char* sdot
= strchr(s
, '.');
1538 const char* srel
= strstr(s
, ".rel");
1541 *plen
= sdot
- name
;
1545 sdot
= strchr(srel
+ 1, '.');
1548 sdot
= strchr(sdot
+ 1, '.');
1552 *plen
= sdot
- name
;
1556 // Record the signature of a comdat section, and return whether to
1557 // include it in the link. If GROUP is true, this is a regular
1558 // section group. If GROUP is false, this is a group signature
1559 // derived from the name of a linkonce section. We want linkonce
1560 // signatures and group signatures to block each other, but we don't
1561 // want a linkonce signature to block another linkonce signature.
1564 Layout::add_comdat(const char* signature
, bool group
)
1566 std::string
sig(signature
);
1567 std::pair
<Signatures::iterator
, bool> ins(
1568 this->signatures_
.insert(std::make_pair(sig
, group
)));
1572 // This is the first time we've seen this signature.
1576 if (ins
.first
->second
)
1578 // We've already seen a real section group with this signature.
1583 // This is a real section group, and we've already seen a
1584 // linkonce section with this signature. Record that we've seen
1585 // a section group, and don't include this section group.
1586 ins
.first
->second
= true;
1591 // We've already seen a linkonce section and this is a linkonce
1592 // section. These don't block each other--this may be the same
1593 // symbol name with different section types.
1598 // Write out data not associated with a section or the symbol table.
1601 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
1603 if (!parameters
->strip_all())
1605 const Output_section
* symtab_section
= this->symtab_section_
;
1606 for (Section_list::const_iterator p
= this->section_list_
.begin();
1607 p
!= this->section_list_
.end();
1610 if ((*p
)->needs_symtab_index())
1612 gold_assert(symtab_section
!= NULL
);
1613 unsigned int index
= (*p
)->symtab_index();
1614 gold_assert(index
> 0 && index
!= -1U);
1615 off_t off
= (symtab_section
->offset()
1616 + index
* symtab_section
->entsize());
1617 symtab
->write_section_symbol(*p
, of
, off
);
1622 const Output_section
* dynsym_section
= this->dynsym_section_
;
1623 for (Section_list::const_iterator p
= this->section_list_
.begin();
1624 p
!= this->section_list_
.end();
1627 if ((*p
)->needs_dynsym_index())
1629 gold_assert(dynsym_section
!= NULL
);
1630 unsigned int index
= (*p
)->dynsym_index();
1631 gold_assert(index
> 0 && index
!= -1U);
1632 off_t off
= (dynsym_section
->offset()
1633 + index
* dynsym_section
->entsize());
1634 symtab
->write_section_symbol(*p
, of
, off
);
1638 // Write out the Output_sections. Most won't have anything to
1639 // write, since most of the data will come from input sections which
1640 // are handled elsewhere. But some Output_sections do have
1642 for (Section_list::const_iterator p
= this->section_list_
.begin();
1643 p
!= this->section_list_
.end();
1647 // Write out the Output_data which are not in an Output_section.
1648 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
1649 p
!= this->special_output_list_
.end();
1654 // Write_data_task methods.
1656 // We can always run this task.
1658 Task::Is_runnable_type
1659 Write_data_task::is_runnable(Workqueue
*)
1664 // We need to unlock FINAL_BLOCKER when finished.
1667 Write_data_task::locks(Workqueue
* workqueue
)
1669 return new Task_locker_block(*this->final_blocker_
, workqueue
);
1672 // Run the task--write out the data.
1675 Write_data_task::run(Workqueue
*)
1677 this->layout_
->write_data(this->symtab_
, this->of_
);
1680 // Write_symbols_task methods.
1682 // We can always run this task.
1684 Task::Is_runnable_type
1685 Write_symbols_task::is_runnable(Workqueue
*)
1690 // We need to unlock FINAL_BLOCKER when finished.
1693 Write_symbols_task::locks(Workqueue
* workqueue
)
1695 return new Task_locker_block(*this->final_blocker_
, workqueue
);
1698 // Run the task--write out the symbols.
1701 Write_symbols_task::run(Workqueue
*)
1703 this->symtab_
->write_globals(this->target_
, this->sympool_
, this->dynpool_
,
1707 // Close_task_runner methods.
1709 // Run the task--close the file.
1712 Close_task_runner::run(Workqueue
*)
1717 // Instantiate the templates we need. We could use the configure
1718 // script to restrict this to only the ones for implemented targets.
1720 #ifdef HAVE_TARGET_32_LITTLE
1723 Layout::layout
<32, false>(Relobj
* object
, unsigned int shndx
, const char* name
,
1724 const elfcpp::Shdr
<32, false>& shdr
, off_t
*);
1727 #ifdef HAVE_TARGET_32_BIG
1730 Layout::layout
<32, true>(Relobj
* object
, unsigned int shndx
, const char* name
,
1731 const elfcpp::Shdr
<32, true>& shdr
, off_t
*);
1734 #ifdef HAVE_TARGET_64_LITTLE
1737 Layout::layout
<64, false>(Relobj
* object
, unsigned int shndx
, const char* name
,
1738 const elfcpp::Shdr
<64, false>& shdr
, off_t
*);
1741 #ifdef HAVE_TARGET_64_BIG
1744 Layout::layout
<64, true>(Relobj
* object
, unsigned int shndx
, const char* name
,
1745 const elfcpp::Shdr
<64, true>& shdr
, off_t
*);
1749 } // End namespace gold.