opcodes/
[binutils.git] / gold / layout.cc
blob8fafdcbaabf11305cf1be7f24b8e73ad4e8fdfbb
1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
37 namespace gold
40 // Layout_task_runner methods.
42 // Lay out the sections. This is called after all the input objects
43 // have been read.
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
48 off_t file_size = this->layout_->finalize(this->input_objects_,
49 this->symtab_);
51 // Now we know the final size of the output file and we know where
52 // each piece of information goes.
53 Output_file* of = new Output_file(this->options_,
54 this->input_objects_->target());
55 of->open(file_size);
57 // Queue up the final set of tasks.
58 gold::queue_final_tasks(this->options_, this->input_objects_,
59 this->symtab_, this->layout_, workqueue, of);
62 // Layout methods.
64 Layout::Layout(const General_options& options)
65 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66 section_name_map_(), segment_list_(), section_list_(),
67 unattached_section_list_(), special_output_list_(),
68 tls_segment_(NULL), symtab_section_(NULL),
69 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70 eh_frame_section_(NULL), output_file_size_(-1)
72 // Make space for more than enough segments for a typical file.
73 // This is just for efficiency--it's OK if we wind up needing more.
74 this->segment_list_.reserve(12);
76 // We expect three unattached Output_data objects: the file header,
77 // the segment headers, and the section headers.
78 this->special_output_list_.reserve(3);
81 // Hash a key we use to look up an output section mapping.
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
86 return k.first + k.second.first + k.second.second;
89 // Return whether PREFIX is a prefix of STR.
91 static inline bool
92 is_prefix_of(const char* prefix, const char* str)
94 return strncmp(prefix, str, strlen(prefix)) == 0;
97 // Whether to include this section in the link.
99 template<int size, bool big_endian>
100 bool
101 Layout::include_section(Object*, const char* name,
102 const elfcpp::Shdr<size, big_endian>& shdr)
104 // Some section types are never linked. Some are only linked when
105 // doing a relocateable link.
106 switch (shdr.get_sh_type())
108 case elfcpp::SHT_NULL:
109 case elfcpp::SHT_SYMTAB:
110 case elfcpp::SHT_DYNSYM:
111 case elfcpp::SHT_STRTAB:
112 case elfcpp::SHT_HASH:
113 case elfcpp::SHT_DYNAMIC:
114 case elfcpp::SHT_SYMTAB_SHNDX:
115 return false;
117 case elfcpp::SHT_RELA:
118 case elfcpp::SHT_REL:
119 case elfcpp::SHT_GROUP:
120 return parameters->output_is_object();
122 case elfcpp::SHT_PROGBITS:
123 if (parameters->strip_debug()
124 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
126 // Debugging sections can only be recognized by name.
127 if (is_prefix_of(".debug", name)
128 || is_prefix_of(".gnu.linkonce.wi.", name)
129 || is_prefix_of(".line", name)
130 || is_prefix_of(".stab", name))
131 return false;
133 return true;
135 default:
136 return true;
140 // Return an output section named NAME, or NULL if there is none.
142 Output_section*
143 Layout::find_output_section(const char* name) const
145 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
146 p != this->section_name_map_.end();
147 ++p)
148 if (strcmp(p->second->name(), name) == 0)
149 return p->second;
150 return NULL;
153 // Return an output segment of type TYPE, with segment flags SET set
154 // and segment flags CLEAR clear. Return NULL if there is none.
156 Output_segment*
157 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
158 elfcpp::Elf_Word clear) const
160 for (Segment_list::const_iterator p = this->segment_list_.begin();
161 p != this->segment_list_.end();
162 ++p)
163 if (static_cast<elfcpp::PT>((*p)->type()) == type
164 && ((*p)->flags() & set) == set
165 && ((*p)->flags() & clear) == 0)
166 return *p;
167 return NULL;
170 // Return the output section to use for section NAME with type TYPE
171 // and section flags FLAGS.
173 Output_section*
174 Layout::get_output_section(const char* name, Stringpool::Key name_key,
175 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
177 // We should ignore some flags.
178 flags &= ~ (elfcpp::SHF_INFO_LINK
179 | elfcpp::SHF_LINK_ORDER
180 | elfcpp::SHF_GROUP
181 | elfcpp::SHF_MERGE
182 | elfcpp::SHF_STRINGS);
184 const Key key(name_key, std::make_pair(type, flags));
185 const std::pair<Key, Output_section*> v(key, NULL);
186 std::pair<Section_name_map::iterator, bool> ins(
187 this->section_name_map_.insert(v));
189 if (!ins.second)
190 return ins.first->second;
191 else
193 // This is the first time we've seen this name/type/flags
194 // combination.
195 Output_section* os = this->make_output_section(name, type, flags);
196 ins.first->second = os;
197 return os;
201 // Return the output section to use for input section SHNDX, with name
202 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
203 // offset of this input section without the output section.
205 template<int size, bool big_endian>
206 Output_section*
207 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
208 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
210 if (!this->include_section(object, name, shdr))
211 return NULL;
213 // If we are not doing a relocateable link, choose the name to use
214 // for the output section.
215 size_t len = strlen(name);
216 if (!parameters->output_is_object())
217 name = Layout::output_section_name(name, &len);
219 // FIXME: Handle SHF_OS_NONCONFORMING here.
221 // Canonicalize the section name.
222 Stringpool::Key name_key;
223 name = this->namepool_.add_prefix(name, len, &name_key);
225 // Find the output section. The output section is selected based on
226 // the section name, type, and flags.
227 Output_section* os = this->get_output_section(name, name_key,
228 shdr.get_sh_type(),
229 shdr.get_sh_flags());
231 // Special GNU handling of sections named .eh_frame.
232 if (!parameters->output_is_object()
233 && strcmp(name, ".eh_frame") == 0
234 && shdr.get_sh_size() > 0
235 && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
236 && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
238 this->layout_eh_frame(object, shndx, name, shdr, os, off);
239 return os;
242 // FIXME: Handle SHF_LINK_ORDER somewhere.
244 *off = os->add_input_section(object, shndx, name, shdr);
246 return os;
249 // Special GNU handling of sections named .eh_frame. They will
250 // normally hold exception frame data.
252 template<int size, bool big_endian>
253 void
254 Layout::layout_eh_frame(Relobj* object,
255 unsigned int shndx,
256 const char* name,
257 const elfcpp::Shdr<size, big_endian>& shdr,
258 Output_section* os, off_t* off)
260 if (this->eh_frame_section_ == NULL)
262 this->eh_frame_section_ = os;
264 if (this->options_.create_eh_frame_hdr())
266 Stringpool::Key hdr_name_key;
267 const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
268 false,
269 &hdr_name_key);
270 Output_section* hdr_os =
271 this->get_output_section(hdr_name, hdr_name_key,
272 elfcpp::SHT_PROGBITS,
273 elfcpp::SHF_ALLOC);
275 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
276 hdr_os->add_output_section_data(hdr_posd);
278 Output_segment* hdr_oseg =
279 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
280 this->segment_list_.push_back(hdr_oseg);
281 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
285 gold_assert(this->eh_frame_section_ == os);
287 *off = os->add_input_section(object, shndx, name, shdr);
290 // Add POSD to an output section using NAME, TYPE, and FLAGS.
292 void
293 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
294 elfcpp::Elf_Xword flags,
295 Output_section_data* posd)
297 // Canonicalize the name.
298 Stringpool::Key name_key;
299 name = this->namepool_.add(name, true, &name_key);
301 Output_section* os = this->get_output_section(name, name_key, type, flags);
302 os->add_output_section_data(posd);
305 // Map section flags to segment flags.
307 elfcpp::Elf_Word
308 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
310 elfcpp::Elf_Word ret = elfcpp::PF_R;
311 if ((flags & elfcpp::SHF_WRITE) != 0)
312 ret |= elfcpp::PF_W;
313 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
314 ret |= elfcpp::PF_X;
315 return ret;
318 // Make a new Output_section, and attach it to segments as
319 // appropriate.
321 Output_section*
322 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
323 elfcpp::Elf_Xword flags)
325 Output_section* os = new Output_section(name, type, flags);
326 this->section_list_.push_back(os);
328 if ((flags & elfcpp::SHF_ALLOC) == 0)
329 this->unattached_section_list_.push_back(os);
330 else
332 // This output section goes into a PT_LOAD segment.
334 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
336 // The only thing we really care about for PT_LOAD segments is
337 // whether or not they are writable, so that is how we search
338 // for them. People who need segments sorted on some other
339 // basis will have to wait until we implement a mechanism for
340 // them to describe the segments they want.
342 Segment_list::const_iterator p;
343 for (p = this->segment_list_.begin();
344 p != this->segment_list_.end();
345 ++p)
347 if ((*p)->type() == elfcpp::PT_LOAD
348 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
350 (*p)->add_output_section(os, seg_flags);
351 break;
355 if (p == this->segment_list_.end())
357 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
358 seg_flags);
359 this->segment_list_.push_back(oseg);
360 oseg->add_output_section(os, seg_flags);
363 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
364 // segment.
365 if (type == elfcpp::SHT_NOTE)
367 // See if we already have an equivalent PT_NOTE segment.
368 for (p = this->segment_list_.begin();
369 p != segment_list_.end();
370 ++p)
372 if ((*p)->type() == elfcpp::PT_NOTE
373 && (((*p)->flags() & elfcpp::PF_W)
374 == (seg_flags & elfcpp::PF_W)))
376 (*p)->add_output_section(os, seg_flags);
377 break;
381 if (p == this->segment_list_.end())
383 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
384 seg_flags);
385 this->segment_list_.push_back(oseg);
386 oseg->add_output_section(os, seg_flags);
390 // If we see a loadable SHF_TLS section, we create a PT_TLS
391 // segment. There can only be one such segment.
392 if ((flags & elfcpp::SHF_TLS) != 0)
394 if (this->tls_segment_ == NULL)
396 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
397 seg_flags);
398 this->segment_list_.push_back(this->tls_segment_);
400 this->tls_segment_->add_output_section(os, seg_flags);
404 return os;
407 // Create the dynamic sections which are needed before we read the
408 // relocs.
410 void
411 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
412 Symbol_table* symtab)
414 if (parameters->doing_static_link())
415 return;
417 const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
418 this->dynamic_section_ = this->make_output_section(dynamic_name,
419 elfcpp::SHT_DYNAMIC,
420 (elfcpp::SHF_ALLOC
421 | elfcpp::SHF_WRITE));
423 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
424 this->dynamic_section_, 0, 0,
425 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
426 elfcpp::STV_HIDDEN, 0, false, false);
428 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
430 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
433 // For each output section whose name can be represented as C symbol,
434 // define __start and __stop symbols for the section. This is a GNU
435 // extension.
437 void
438 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
440 for (Section_list::const_iterator p = this->section_list_.begin();
441 p != this->section_list_.end();
442 ++p)
444 const char* const name = (*p)->name();
445 if (name[strspn(name,
446 ("0123456789"
447 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
448 "abcdefghijklmnopqrstuvwxyz"
449 "_"))]
450 == '\0')
452 const std::string name_string(name);
453 const std::string start_name("__start_" + name_string);
454 const std::string stop_name("__stop_" + name_string);
456 symtab->define_in_output_data(target,
457 start_name.c_str(),
458 NULL, // version
460 0, // value
461 0, // symsize
462 elfcpp::STT_NOTYPE,
463 elfcpp::STB_GLOBAL,
464 elfcpp::STV_DEFAULT,
465 0, // nonvis
466 false, // offset_is_from_end
467 false); // only_if_ref
469 symtab->define_in_output_data(target,
470 stop_name.c_str(),
471 NULL, // version
473 0, // value
474 0, // symsize
475 elfcpp::STT_NOTYPE,
476 elfcpp::STB_GLOBAL,
477 elfcpp::STV_DEFAULT,
478 0, // nonvis
479 true, // offset_is_from_end
480 false); // only_if_ref
485 // Find the first read-only PT_LOAD segment, creating one if
486 // necessary.
488 Output_segment*
489 Layout::find_first_load_seg()
491 for (Segment_list::const_iterator p = this->segment_list_.begin();
492 p != this->segment_list_.end();
493 ++p)
495 if ((*p)->type() == elfcpp::PT_LOAD
496 && ((*p)->flags() & elfcpp::PF_R) != 0
497 && ((*p)->flags() & elfcpp::PF_W) == 0)
498 return *p;
501 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
502 this->segment_list_.push_back(load_seg);
503 return load_seg;
506 // Finalize the layout. When this is called, we have created all the
507 // output sections and all the output segments which are based on
508 // input sections. We have several things to do, and we have to do
509 // them in the right order, so that we get the right results correctly
510 // and efficiently.
512 // 1) Finalize the list of output segments and create the segment
513 // table header.
515 // 2) Finalize the dynamic symbol table and associated sections.
517 // 3) Determine the final file offset of all the output segments.
519 // 4) Determine the final file offset of all the SHF_ALLOC output
520 // sections.
522 // 5) Create the symbol table sections and the section name table
523 // section.
525 // 6) Finalize the symbol table: set symbol values to their final
526 // value and make a final determination of which symbols are going
527 // into the output symbol table.
529 // 7) Create the section table header.
531 // 8) Determine the final file offset of all the output sections which
532 // are not SHF_ALLOC, including the section table header.
534 // 9) Finalize the ELF file header.
536 // This function returns the size of the output file.
538 off_t
539 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
541 Target* const target = input_objects->target();
543 target->finalize_sections(this);
545 this->create_note_section();
547 Output_segment* phdr_seg = NULL;
548 if (!parameters->doing_static_link())
550 // There was a dynamic object in the link. We need to create
551 // some information for the dynamic linker.
553 // Create the PT_PHDR segment which will hold the program
554 // headers.
555 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
556 this->segment_list_.push_back(phdr_seg);
558 // Create the dynamic symbol table, including the hash table.
559 Output_section* dynstr;
560 std::vector<Symbol*> dynamic_symbols;
561 unsigned int local_dynamic_count;
562 Versions versions;
563 this->create_dynamic_symtab(target, symtab, &dynstr,
564 &local_dynamic_count, &dynamic_symbols,
565 &versions);
567 // Create the .interp section to hold the name of the
568 // interpreter, and put it in a PT_INTERP segment.
569 this->create_interp(target);
571 // Finish the .dynamic section to hold the dynamic data, and put
572 // it in a PT_DYNAMIC segment.
573 this->finish_dynamic_section(input_objects, symtab);
575 // We should have added everything we need to the dynamic string
576 // table.
577 this->dynpool_.set_string_offsets();
579 // Create the version sections. We can't do this until the
580 // dynamic string table is complete.
581 this->create_version_sections(&versions, local_dynamic_count,
582 dynamic_symbols, dynstr);
585 // FIXME: Handle PT_GNU_STACK.
587 Output_segment* load_seg = this->find_first_load_seg();
589 // Lay out the segment headers.
590 Output_segment_headers* segment_headers;
591 segment_headers = new Output_segment_headers(this->segment_list_);
592 load_seg->add_initial_output_data(segment_headers);
593 this->special_output_list_.push_back(segment_headers);
594 if (phdr_seg != NULL)
595 phdr_seg->add_initial_output_data(segment_headers);
597 // Lay out the file header.
598 Output_file_header* file_header;
599 file_header = new Output_file_header(target, symtab, segment_headers);
600 load_seg->add_initial_output_data(file_header);
601 this->special_output_list_.push_back(file_header);
603 // We set the output section indexes in set_segment_offsets and
604 // set_section_offsets.
605 unsigned int shndx = 1;
607 // Set the file offsets of all the segments, and all the sections
608 // they contain.
609 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
611 // Create the symbol table sections.
612 this->create_symtab_sections(input_objects, symtab, &off);
614 // Create the .shstrtab section.
615 Output_section* shstrtab_section = this->create_shstrtab();
617 // Set the file offsets of all the sections not associated with
618 // segments.
619 off = this->set_section_offsets(off, &shndx);
621 // Create the section table header.
622 Output_section_headers* oshdrs = this->create_shdrs(&off);
624 file_header->set_section_info(oshdrs, shstrtab_section);
626 // Now we know exactly where everything goes in the output file.
627 Output_data::layout_complete();
629 this->output_file_size_ = off;
631 return off;
634 // Create a .note section for an executable or shared library. This
635 // records the version of gold used to create the binary.
637 void
638 Layout::create_note_section()
640 if (parameters->output_is_object())
641 return;
643 // Authorities all agree that the values in a .note field should
644 // be aligned on 4-byte boundaries for 32-bit binaries. However,
645 // they differ on what the alignment is for 64-bit binaries.
646 // The GABI says unambiguously they take 8-byte alignment:
647 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
648 // Other documentation says alignment should always be 4 bytes:
649 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
650 // GNU ld and GNU readelf both support the latter (at least as of
651 // version 2.16.91), and glibc always generates the latter for
652 // .note.ABI-tag (as of version 1.6), so that's the one we go with
653 // here.
654 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // this is not defined by default
655 const int size = parameters->get_size();
656 #else
657 const int size = 32;
658 #endif
660 // The contents of the .note section.
661 const char* name = "GNU";
662 std::string desc(std::string("gold ") + gold::get_version_string());
663 size_t namesz = strlen(name) + 1;
664 size_t aligned_namesz = align_address(namesz, size / 8);
665 size_t descsz = desc.length() + 1;
666 size_t aligned_descsz = align_address(descsz, size / 8);
667 const int note_type = 4;
669 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
671 unsigned char buffer[128];
672 gold_assert(sizeof buffer >= notesz);
673 memset(buffer, 0, notesz);
675 bool is_big_endian = parameters->is_big_endian();
677 if (size == 32)
679 if (!is_big_endian)
681 elfcpp::Swap<32, false>::writeval(buffer, namesz);
682 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
683 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
685 else
687 elfcpp::Swap<32, true>::writeval(buffer, namesz);
688 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
689 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
692 else if (size == 64)
694 if (!is_big_endian)
696 elfcpp::Swap<64, false>::writeval(buffer, namesz);
697 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
698 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
700 else
702 elfcpp::Swap<64, true>::writeval(buffer, namesz);
703 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
704 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
707 else
708 gold_unreachable();
710 memcpy(buffer + 3 * (size / 8), name, namesz);
711 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
713 const char* note_name = this->namepool_.add(".note", false, NULL);
714 Output_section* os = this->make_output_section(note_name,
715 elfcpp::SHT_NOTE,
717 Output_section_data* posd = new Output_data_const(buffer, notesz,
718 size / 8);
719 os->add_output_section_data(posd);
722 // Return whether SEG1 should be before SEG2 in the output file. This
723 // is based entirely on the segment type and flags. When this is
724 // called the segment addresses has normally not yet been set.
726 bool
727 Layout::segment_precedes(const Output_segment* seg1,
728 const Output_segment* seg2)
730 elfcpp::Elf_Word type1 = seg1->type();
731 elfcpp::Elf_Word type2 = seg2->type();
733 // The single PT_PHDR segment is required to precede any loadable
734 // segment. We simply make it always first.
735 if (type1 == elfcpp::PT_PHDR)
737 gold_assert(type2 != elfcpp::PT_PHDR);
738 return true;
740 if (type2 == elfcpp::PT_PHDR)
741 return false;
743 // The single PT_INTERP segment is required to precede any loadable
744 // segment. We simply make it always second.
745 if (type1 == elfcpp::PT_INTERP)
747 gold_assert(type2 != elfcpp::PT_INTERP);
748 return true;
750 if (type2 == elfcpp::PT_INTERP)
751 return false;
753 // We then put PT_LOAD segments before any other segments.
754 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
755 return true;
756 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
757 return false;
759 // We put the PT_TLS segment last, because that is where the dynamic
760 // linker expects to find it (this is just for efficiency; other
761 // positions would also work correctly).
762 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
763 return false;
764 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
765 return true;
767 const elfcpp::Elf_Word flags1 = seg1->flags();
768 const elfcpp::Elf_Word flags2 = seg2->flags();
770 // The order of non-PT_LOAD segments is unimportant. We simply sort
771 // by the numeric segment type and flags values. There should not
772 // be more than one segment with the same type and flags.
773 if (type1 != elfcpp::PT_LOAD)
775 if (type1 != type2)
776 return type1 < type2;
777 gold_assert(flags1 != flags2);
778 return flags1 < flags2;
781 // We sort PT_LOAD segments based on the flags. Readonly segments
782 // come before writable segments. Then executable segments come
783 // before non-executable segments. Then the unlikely case of a
784 // non-readable segment comes before the normal case of a readable
785 // segment. If there are multiple segments with the same type and
786 // flags, we require that the address be set, and we sort by
787 // virtual address and then physical address.
788 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
789 return (flags1 & elfcpp::PF_W) == 0;
790 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
791 return (flags1 & elfcpp::PF_X) != 0;
792 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
793 return (flags1 & elfcpp::PF_R) == 0;
795 uint64_t vaddr1 = seg1->vaddr();
796 uint64_t vaddr2 = seg2->vaddr();
797 if (vaddr1 != vaddr2)
798 return vaddr1 < vaddr2;
800 uint64_t paddr1 = seg1->paddr();
801 uint64_t paddr2 = seg2->paddr();
802 gold_assert(paddr1 != paddr2);
803 return paddr1 < paddr2;
806 // Set the file offsets of all the segments, and all the sections they
807 // contain. They have all been created. LOAD_SEG must be be laid out
808 // first. Return the offset of the data to follow.
810 off_t
811 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
812 unsigned int *pshndx)
814 // Sort them into the final order.
815 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
816 Layout::Compare_segments());
818 // Find the PT_LOAD segments, and set their addresses and offsets
819 // and their section's addresses and offsets.
820 uint64_t addr;
821 if (options_.user_set_text_segment_address())
822 addr = options_.text_segment_address();
823 else
824 addr = target->default_text_segment_address();
825 off_t off = 0;
826 bool was_readonly = false;
827 for (Segment_list::iterator p = this->segment_list_.begin();
828 p != this->segment_list_.end();
829 ++p)
831 if ((*p)->type() == elfcpp::PT_LOAD)
833 if (load_seg != NULL && load_seg != *p)
834 gold_unreachable();
835 load_seg = NULL;
837 // If the last segment was readonly, and this one is not,
838 // then skip the address forward one page, maintaining the
839 // same position within the page. This lets us store both
840 // segments overlapping on a single page in the file, but
841 // the loader will put them on different pages in memory.
843 uint64_t orig_addr = addr;
844 uint64_t orig_off = off;
846 uint64_t aligned_addr = addr;
847 uint64_t abi_pagesize = target->abi_pagesize();
849 // FIXME: This should depend on the -n and -N options.
850 (*p)->set_minimum_addralign(target->common_pagesize());
852 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
854 uint64_t align = (*p)->addralign();
856 addr = align_address(addr, align);
857 aligned_addr = addr;
858 if ((addr & (abi_pagesize - 1)) != 0)
859 addr = addr + abi_pagesize;
862 unsigned int shndx_hold = *pshndx;
863 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
864 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
866 // Now that we know the size of this segment, we may be able
867 // to save a page in memory, at the cost of wasting some
868 // file space, by instead aligning to the start of a new
869 // page. Here we use the real machine page size rather than
870 // the ABI mandated page size.
872 if (aligned_addr != addr)
874 uint64_t common_pagesize = target->common_pagesize();
875 uint64_t first_off = (common_pagesize
876 - (aligned_addr
877 & (common_pagesize - 1)));
878 uint64_t last_off = new_addr & (common_pagesize - 1);
879 if (first_off > 0
880 && last_off > 0
881 && ((aligned_addr & ~ (common_pagesize - 1))
882 != (new_addr & ~ (common_pagesize - 1)))
883 && first_off + last_off <= common_pagesize)
885 *pshndx = shndx_hold;
886 addr = align_address(aligned_addr, common_pagesize);
887 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
888 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
892 addr = new_addr;
894 if (((*p)->flags() & elfcpp::PF_W) == 0)
895 was_readonly = true;
899 // Handle the non-PT_LOAD segments, setting their offsets from their
900 // section's offsets.
901 for (Segment_list::iterator p = this->segment_list_.begin();
902 p != this->segment_list_.end();
903 ++p)
905 if ((*p)->type() != elfcpp::PT_LOAD)
906 (*p)->set_offset();
909 return off;
912 // Set the file offset of all the sections not associated with a
913 // segment.
915 off_t
916 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
918 for (Section_list::iterator p = this->unattached_section_list_.begin();
919 p != this->unattached_section_list_.end();
920 ++p)
922 (*p)->set_out_shndx(*pshndx);
923 ++*pshndx;
924 if ((*p)->offset() != -1)
925 continue;
926 off = align_address(off, (*p)->addralign());
927 (*p)->set_address(0, off);
928 off += (*p)->data_size();
930 return off;
933 // Create the symbol table sections. Here we also set the final
934 // values of the symbols. At this point all the loadable sections are
935 // fully laid out.
937 void
938 Layout::create_symtab_sections(const Input_objects* input_objects,
939 Symbol_table* symtab,
940 off_t* poff)
942 int symsize;
943 unsigned int align;
944 if (parameters->get_size() == 32)
946 symsize = elfcpp::Elf_sizes<32>::sym_size;
947 align = 4;
949 else if (parameters->get_size() == 64)
951 symsize = elfcpp::Elf_sizes<64>::sym_size;
952 align = 8;
954 else
955 gold_unreachable();
957 off_t off = *poff;
958 off = align_address(off, align);
959 off_t startoff = off;
961 // Save space for the dummy symbol at the start of the section. We
962 // never bother to write this out--it will just be left as zero.
963 off += symsize;
964 unsigned int local_symbol_index = 1;
966 // Add STT_SECTION symbols for each Output section which needs one.
967 for (Section_list::iterator p = this->section_list_.begin();
968 p != this->section_list_.end();
969 ++p)
971 if (!(*p)->needs_symtab_index())
972 (*p)->set_symtab_index(-1U);
973 else
975 (*p)->set_symtab_index(local_symbol_index);
976 ++local_symbol_index;
977 off += symsize;
981 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
982 p != input_objects->relobj_end();
983 ++p)
985 Task_lock_obj<Object> tlo(**p);
986 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
987 off,
988 &this->sympool_);
989 off += (index - local_symbol_index) * symsize;
990 local_symbol_index = index;
993 unsigned int local_symcount = local_symbol_index;
994 gold_assert(local_symcount * symsize == off - startoff);
996 off_t dynoff;
997 size_t dyn_global_index;
998 size_t dyncount;
999 if (this->dynsym_section_ == NULL)
1001 dynoff = 0;
1002 dyn_global_index = 0;
1003 dyncount = 0;
1005 else
1007 dyn_global_index = this->dynsym_section_->info();
1008 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1009 dynoff = this->dynsym_section_->offset() + locsize;
1010 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1011 gold_assert(static_cast<off_t>(dyncount * symsize)
1012 == this->dynsym_section_->data_size() - locsize);
1015 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1016 dyncount, &this->sympool_);
1018 if (!parameters->strip_all())
1020 this->sympool_.set_string_offsets();
1022 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1023 Output_section* osymtab = this->make_output_section(symtab_name,
1024 elfcpp::SHT_SYMTAB,
1026 this->symtab_section_ = osymtab;
1028 Output_section_data* pos = new Output_data_space(off - startoff,
1029 align);
1030 osymtab->add_output_section_data(pos);
1032 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1033 Output_section* ostrtab = this->make_output_section(strtab_name,
1034 elfcpp::SHT_STRTAB,
1037 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1038 ostrtab->add_output_section_data(pstr);
1040 osymtab->set_address(0, startoff);
1041 osymtab->set_link_section(ostrtab);
1042 osymtab->set_info(local_symcount);
1043 osymtab->set_entsize(symsize);
1045 *poff = off;
1049 // Create the .shstrtab section, which holds the names of the
1050 // sections. At the time this is called, we have created all the
1051 // output sections except .shstrtab itself.
1053 Output_section*
1054 Layout::create_shstrtab()
1056 // FIXME: We don't need to create a .shstrtab section if we are
1057 // stripping everything.
1059 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1061 this->namepool_.set_string_offsets();
1063 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1065 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1066 os->add_output_section_data(posd);
1068 return os;
1071 // Create the section headers. SIZE is 32 or 64. OFF is the file
1072 // offset.
1074 Output_section_headers*
1075 Layout::create_shdrs(off_t* poff)
1077 Output_section_headers* oshdrs;
1078 oshdrs = new Output_section_headers(this,
1079 &this->segment_list_,
1080 &this->unattached_section_list_,
1081 &this->namepool_);
1082 off_t off = align_address(*poff, oshdrs->addralign());
1083 oshdrs->set_address(0, off);
1084 off += oshdrs->data_size();
1085 *poff = off;
1086 this->special_output_list_.push_back(oshdrs);
1087 return oshdrs;
1090 // Create the dynamic symbol table.
1092 void
1093 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1094 Output_section **pdynstr,
1095 unsigned int* plocal_dynamic_count,
1096 std::vector<Symbol*>* pdynamic_symbols,
1097 Versions* pversions)
1099 // Count all the symbols in the dynamic symbol table, and set the
1100 // dynamic symbol indexes.
1102 // Skip symbol 0, which is always all zeroes.
1103 unsigned int index = 1;
1105 // Add STT_SECTION symbols for each Output section which needs one.
1106 for (Section_list::iterator p = this->section_list_.begin();
1107 p != this->section_list_.end();
1108 ++p)
1110 if (!(*p)->needs_dynsym_index())
1111 (*p)->set_dynsym_index(-1U);
1112 else
1114 (*p)->set_dynsym_index(index);
1115 ++index;
1119 // FIXME: Some targets apparently require local symbols in the
1120 // dynamic symbol table. Here is where we will have to count them,
1121 // and set the dynamic symbol indexes, and add the names to
1122 // this->dynpool_.
1124 unsigned int local_symcount = index;
1125 *plocal_dynamic_count = local_symcount;
1127 // FIXME: We have to tell set_dynsym_indexes whether the
1128 // -E/--export-dynamic option was used.
1129 index = symtab->set_dynsym_indexes(&this->options_, target, index,
1130 pdynamic_symbols, &this->dynpool_,
1131 pversions);
1133 int symsize;
1134 unsigned int align;
1135 const int size = parameters->get_size();
1136 if (size == 32)
1138 symsize = elfcpp::Elf_sizes<32>::sym_size;
1139 align = 4;
1141 else if (size == 64)
1143 symsize = elfcpp::Elf_sizes<64>::sym_size;
1144 align = 8;
1146 else
1147 gold_unreachable();
1149 // Create the dynamic symbol table section.
1151 const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1152 Output_section* dynsym = this->make_output_section(dynsym_name,
1153 elfcpp::SHT_DYNSYM,
1154 elfcpp::SHF_ALLOC);
1156 Output_section_data* odata = new Output_data_space(index * symsize,
1157 align);
1158 dynsym->add_output_section_data(odata);
1160 dynsym->set_info(local_symcount);
1161 dynsym->set_entsize(symsize);
1162 dynsym->set_addralign(align);
1164 this->dynsym_section_ = dynsym;
1166 Output_data_dynamic* const odyn = this->dynamic_data_;
1167 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1168 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1170 // Create the dynamic string table section.
1172 const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1173 Output_section* dynstr = this->make_output_section(dynstr_name,
1174 elfcpp::SHT_STRTAB,
1175 elfcpp::SHF_ALLOC);
1177 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1178 dynstr->add_output_section_data(strdata);
1180 dynsym->set_link_section(dynstr);
1181 this->dynamic_section_->set_link_section(dynstr);
1183 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1184 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1186 *pdynstr = dynstr;
1188 // Create the hash tables.
1190 // FIXME: We need an option to create a GNU hash table.
1192 unsigned char* phash;
1193 unsigned int hashlen;
1194 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1195 &phash, &hashlen);
1197 const char* hash_name = this->namepool_.add(".hash", false, NULL);
1198 Output_section* hashsec = this->make_output_section(hash_name,
1199 elfcpp::SHT_HASH,
1200 elfcpp::SHF_ALLOC);
1202 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1203 hashlen,
1204 align);
1205 hashsec->add_output_section_data(hashdata);
1207 hashsec->set_link_section(dynsym);
1208 hashsec->set_entsize(4);
1210 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1213 // Create the version sections.
1215 void
1216 Layout::create_version_sections(const Versions* versions,
1217 unsigned int local_symcount,
1218 const std::vector<Symbol*>& dynamic_symbols,
1219 const Output_section* dynstr)
1221 if (!versions->any_defs() && !versions->any_needs())
1222 return;
1224 if (parameters->get_size() == 32)
1226 if (parameters->is_big_endian())
1228 #ifdef HAVE_TARGET_32_BIG
1229 this->sized_create_version_sections
1230 SELECT_SIZE_ENDIAN_NAME(32, true)(
1231 versions, local_symcount, dynamic_symbols, dynstr
1232 SELECT_SIZE_ENDIAN(32, true));
1233 #else
1234 gold_unreachable();
1235 #endif
1237 else
1239 #ifdef HAVE_TARGET_32_LITTLE
1240 this->sized_create_version_sections
1241 SELECT_SIZE_ENDIAN_NAME(32, false)(
1242 versions, local_symcount, dynamic_symbols, dynstr
1243 SELECT_SIZE_ENDIAN(32, false));
1244 #else
1245 gold_unreachable();
1246 #endif
1249 else if (parameters->get_size() == 64)
1251 if (parameters->is_big_endian())
1253 #ifdef HAVE_TARGET_64_BIG
1254 this->sized_create_version_sections
1255 SELECT_SIZE_ENDIAN_NAME(64, true)(
1256 versions, local_symcount, dynamic_symbols, dynstr
1257 SELECT_SIZE_ENDIAN(64, true));
1258 #else
1259 gold_unreachable();
1260 #endif
1262 else
1264 #ifdef HAVE_TARGET_64_LITTLE
1265 this->sized_create_version_sections
1266 SELECT_SIZE_ENDIAN_NAME(64, false)(
1267 versions, local_symcount, dynamic_symbols, dynstr
1268 SELECT_SIZE_ENDIAN(64, false));
1269 #else
1270 gold_unreachable();
1271 #endif
1274 else
1275 gold_unreachable();
1278 // Create the version sections, sized version.
1280 template<int size, bool big_endian>
1281 void
1282 Layout::sized_create_version_sections(
1283 const Versions* versions,
1284 unsigned int local_symcount,
1285 const std::vector<Symbol*>& dynamic_symbols,
1286 const Output_section* dynstr
1287 ACCEPT_SIZE_ENDIAN)
1289 const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1290 Output_section* vsec = this->make_output_section(vname,
1291 elfcpp::SHT_GNU_versym,
1292 elfcpp::SHF_ALLOC);
1294 unsigned char* vbuf;
1295 unsigned int vsize;
1296 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1297 &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1298 SELECT_SIZE_ENDIAN(size, big_endian));
1300 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1302 vsec->add_output_section_data(vdata);
1303 vsec->set_entsize(2);
1304 vsec->set_link_section(this->dynsym_section_);
1306 Output_data_dynamic* const odyn = this->dynamic_data_;
1307 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1309 if (versions->any_defs())
1311 const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1312 Output_section *vdsec;
1313 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1314 elfcpp::SHF_ALLOC);
1316 unsigned char* vdbuf;
1317 unsigned int vdsize;
1318 unsigned int vdentries;
1319 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1320 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1321 SELECT_SIZE_ENDIAN(size, big_endian));
1323 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1324 vdsize,
1327 vdsec->add_output_section_data(vddata);
1328 vdsec->set_link_section(dynstr);
1329 vdsec->set_info(vdentries);
1331 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1332 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1335 if (versions->any_needs())
1337 const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1338 Output_section* vnsec;
1339 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1340 elfcpp::SHF_ALLOC);
1342 unsigned char* vnbuf;
1343 unsigned int vnsize;
1344 unsigned int vnentries;
1345 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1346 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1347 SELECT_SIZE_ENDIAN(size, big_endian));
1349 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1350 vnsize,
1353 vnsec->add_output_section_data(vndata);
1354 vnsec->set_link_section(dynstr);
1355 vnsec->set_info(vnentries);
1357 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1358 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1362 // Create the .interp section and PT_INTERP segment.
1364 void
1365 Layout::create_interp(const Target* target)
1367 const char* interp = this->options_.dynamic_linker();
1368 if (interp == NULL)
1370 interp = target->dynamic_linker();
1371 gold_assert(interp != NULL);
1374 size_t len = strlen(interp) + 1;
1376 Output_section_data* odata = new Output_data_const(interp, len, 1);
1378 const char* interp_name = this->namepool_.add(".interp", false, NULL);
1379 Output_section* osec = this->make_output_section(interp_name,
1380 elfcpp::SHT_PROGBITS,
1381 elfcpp::SHF_ALLOC);
1382 osec->add_output_section_data(odata);
1384 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1385 this->segment_list_.push_back(oseg);
1386 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1389 // Finish the .dynamic section and PT_DYNAMIC segment.
1391 void
1392 Layout::finish_dynamic_section(const Input_objects* input_objects,
1393 const Symbol_table* symtab)
1395 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1396 elfcpp::PF_R | elfcpp::PF_W);
1397 this->segment_list_.push_back(oseg);
1398 oseg->add_initial_output_section(this->dynamic_section_,
1399 elfcpp::PF_R | elfcpp::PF_W);
1401 Output_data_dynamic* const odyn = this->dynamic_data_;
1403 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1404 p != input_objects->dynobj_end();
1405 ++p)
1407 // FIXME: Handle --as-needed.
1408 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1411 // FIXME: Support --init and --fini.
1412 Symbol* sym = symtab->lookup("_init");
1413 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1414 odyn->add_symbol(elfcpp::DT_INIT, sym);
1416 sym = symtab->lookup("_fini");
1417 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1418 odyn->add_symbol(elfcpp::DT_FINI, sym);
1420 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1422 // Add a DT_RPATH entry if needed.
1423 const General_options::Dir_list& rpath(this->options_.rpath());
1424 if (!rpath.empty())
1426 std::string rpath_val;
1427 for (General_options::Dir_list::const_iterator p = rpath.begin();
1428 p != rpath.end();
1429 ++p)
1431 if (rpath_val.empty())
1432 rpath_val = p->name();
1433 else
1435 // Eliminate duplicates.
1436 General_options::Dir_list::const_iterator q;
1437 for (q = rpath.begin(); q != p; ++q)
1438 if (q->name() == p->name())
1439 break;
1440 if (q == p)
1442 rpath_val += ':';
1443 rpath_val += p->name();
1448 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1452 // The mapping of .gnu.linkonce section names to real section names.
1454 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1455 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1457 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1458 MAPPING_INIT("t", ".text"),
1459 MAPPING_INIT("r", ".rodata"),
1460 MAPPING_INIT("d", ".data"),
1461 MAPPING_INIT("b", ".bss"),
1462 MAPPING_INIT("s", ".sdata"),
1463 MAPPING_INIT("sb", ".sbss"),
1464 MAPPING_INIT("s2", ".sdata2"),
1465 MAPPING_INIT("sb2", ".sbss2"),
1466 MAPPING_INIT("wi", ".debug_info"),
1467 MAPPING_INIT("td", ".tdata"),
1468 MAPPING_INIT("tb", ".tbss"),
1469 MAPPING_INIT("lr", ".lrodata"),
1470 MAPPING_INIT("l", ".ldata"),
1471 MAPPING_INIT("lb", ".lbss"),
1473 #undef MAPPING_INIT
1475 const int Layout::linkonce_mapping_count =
1476 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1478 // Return the name of the output section to use for a .gnu.linkonce
1479 // section. This is based on the default ELF linker script of the old
1480 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1481 // to ".text". Set *PLEN to the length of the name. *PLEN is
1482 // initialized to the length of NAME.
1484 const char*
1485 Layout::linkonce_output_name(const char* name, size_t *plen)
1487 const char* s = name + sizeof(".gnu.linkonce") - 1;
1488 if (*s != '.')
1489 return name;
1490 ++s;
1491 const Linkonce_mapping* plm = linkonce_mapping;
1492 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1494 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1496 *plen = plm->tolen;
1497 return plm->to;
1500 return name;
1503 // Choose the output section name to use given an input section name.
1504 // Set *PLEN to the length of the name. *PLEN is initialized to the
1505 // length of NAME.
1507 const char*
1508 Layout::output_section_name(const char* name, size_t* plen)
1510 if (Layout::is_linkonce(name))
1512 // .gnu.linkonce sections are laid out as though they were named
1513 // for the sections are placed into.
1514 return Layout::linkonce_output_name(name, plen);
1517 // If the section name has no '.', or only an initial '.', we use
1518 // the name unchanged (i.e., ".text" is unchanged).
1520 // Otherwise, if the section name does not include ".rel", we drop
1521 // the last '.' and everything that follows (i.e., ".text.XXX"
1522 // becomes ".text").
1524 // Otherwise, if the section name has zero or one '.' after the
1525 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1526 // unchanged).
1528 // Otherwise, we drop the last '.' and everything that follows
1529 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1531 const char* s = name;
1532 if (*s == '.')
1533 ++s;
1534 const char* sdot = strchr(s, '.');
1535 if (sdot == NULL)
1536 return name;
1538 const char* srel = strstr(s, ".rel");
1539 if (srel == NULL)
1541 *plen = sdot - name;
1542 return name;
1545 sdot = strchr(srel + 1, '.');
1546 if (sdot == NULL)
1547 return name;
1548 sdot = strchr(sdot + 1, '.');
1549 if (sdot == NULL)
1550 return name;
1552 *plen = sdot - name;
1553 return name;
1556 // Record the signature of a comdat section, and return whether to
1557 // include it in the link. If GROUP is true, this is a regular
1558 // section group. If GROUP is false, this is a group signature
1559 // derived from the name of a linkonce section. We want linkonce
1560 // signatures and group signatures to block each other, but we don't
1561 // want a linkonce signature to block another linkonce signature.
1563 bool
1564 Layout::add_comdat(const char* signature, bool group)
1566 std::string sig(signature);
1567 std::pair<Signatures::iterator, bool> ins(
1568 this->signatures_.insert(std::make_pair(sig, group)));
1570 if (ins.second)
1572 // This is the first time we've seen this signature.
1573 return true;
1576 if (ins.first->second)
1578 // We've already seen a real section group with this signature.
1579 return false;
1581 else if (group)
1583 // This is a real section group, and we've already seen a
1584 // linkonce section with this signature. Record that we've seen
1585 // a section group, and don't include this section group.
1586 ins.first->second = true;
1587 return false;
1589 else
1591 // We've already seen a linkonce section and this is a linkonce
1592 // section. These don't block each other--this may be the same
1593 // symbol name with different section types.
1594 return true;
1598 // Write out data not associated with a section or the symbol table.
1600 void
1601 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1603 if (!parameters->strip_all())
1605 const Output_section* symtab_section = this->symtab_section_;
1606 for (Section_list::const_iterator p = this->section_list_.begin();
1607 p != this->section_list_.end();
1608 ++p)
1610 if ((*p)->needs_symtab_index())
1612 gold_assert(symtab_section != NULL);
1613 unsigned int index = (*p)->symtab_index();
1614 gold_assert(index > 0 && index != -1U);
1615 off_t off = (symtab_section->offset()
1616 + index * symtab_section->entsize());
1617 symtab->write_section_symbol(*p, of, off);
1622 const Output_section* dynsym_section = this->dynsym_section_;
1623 for (Section_list::const_iterator p = this->section_list_.begin();
1624 p != this->section_list_.end();
1625 ++p)
1627 if ((*p)->needs_dynsym_index())
1629 gold_assert(dynsym_section != NULL);
1630 unsigned int index = (*p)->dynsym_index();
1631 gold_assert(index > 0 && index != -1U);
1632 off_t off = (dynsym_section->offset()
1633 + index * dynsym_section->entsize());
1634 symtab->write_section_symbol(*p, of, off);
1638 // Write out the Output_sections. Most won't have anything to
1639 // write, since most of the data will come from input sections which
1640 // are handled elsewhere. But some Output_sections do have
1641 // Output_data.
1642 for (Section_list::const_iterator p = this->section_list_.begin();
1643 p != this->section_list_.end();
1644 ++p)
1645 (*p)->write(of);
1647 // Write out the Output_data which are not in an Output_section.
1648 for (Data_list::const_iterator p = this->special_output_list_.begin();
1649 p != this->special_output_list_.end();
1650 ++p)
1651 (*p)->write(of);
1654 // Write_data_task methods.
1656 // We can always run this task.
1658 Task::Is_runnable_type
1659 Write_data_task::is_runnable(Workqueue*)
1661 return IS_RUNNABLE;
1664 // We need to unlock FINAL_BLOCKER when finished.
1666 Task_locker*
1667 Write_data_task::locks(Workqueue* workqueue)
1669 return new Task_locker_block(*this->final_blocker_, workqueue);
1672 // Run the task--write out the data.
1674 void
1675 Write_data_task::run(Workqueue*)
1677 this->layout_->write_data(this->symtab_, this->of_);
1680 // Write_symbols_task methods.
1682 // We can always run this task.
1684 Task::Is_runnable_type
1685 Write_symbols_task::is_runnable(Workqueue*)
1687 return IS_RUNNABLE;
1690 // We need to unlock FINAL_BLOCKER when finished.
1692 Task_locker*
1693 Write_symbols_task::locks(Workqueue* workqueue)
1695 return new Task_locker_block(*this->final_blocker_, workqueue);
1698 // Run the task--write out the symbols.
1700 void
1701 Write_symbols_task::run(Workqueue*)
1703 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1704 this->of_);
1707 // Close_task_runner methods.
1709 // Run the task--close the file.
1711 void
1712 Close_task_runner::run(Workqueue*)
1714 this->of_->close();
1717 // Instantiate the templates we need. We could use the configure
1718 // script to restrict this to only the ones for implemented targets.
1720 #ifdef HAVE_TARGET_32_LITTLE
1721 template
1722 Output_section*
1723 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1724 const elfcpp::Shdr<32, false>& shdr, off_t*);
1725 #endif
1727 #ifdef HAVE_TARGET_32_BIG
1728 template
1729 Output_section*
1730 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1731 const elfcpp::Shdr<32, true>& shdr, off_t*);
1732 #endif
1734 #ifdef HAVE_TARGET_64_LITTLE
1735 template
1736 Output_section*
1737 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1738 const elfcpp::Shdr<64, false>& shdr, off_t*);
1739 #endif
1741 #ifdef HAVE_TARGET_64_BIG
1742 template
1743 Output_section*
1744 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1745 const elfcpp::Shdr<64, true>& shdr, off_t*);
1746 #endif
1749 } // End namespace gold.