1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*,
41 bfd
*, bfd_vma
*, bfd_vma
*));
42 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd
*, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma
, bfd_vma
));
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*sec
,
56 const Elf_Internal_Rela
*));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd
*, struct bfd_link_info
*));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym
*, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
65 const char **, flagword
*, asection
**, bfd_vma
*));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd
*, struct bfd_link_info
*, PTR
,
68 bfd_boolean (*) (PTR
, const char *, Elf_Internal_Sym
*,
69 asection
*, struct elf_link_hash_entry
*)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd
*, asymbol
*));
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd
*, bfd
*));
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd
*, Elf_Internal_Shdr
*, asection
*));
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd
*, PTR
, asymbol
*));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd
*, asection
*));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
87 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd
*, struct bfd_link_info
*));
93 static bfd_boolean sparc64_elf_object_p
PARAMS ((bfd
*));
94 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, bfd_boolean
));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd
*, asection
*, asymbol
**, bfd_boolean
));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd
*, asection
*, arelent
**, asymbol
**));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd
*, arelent
**, asymbol
**));
104 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela
*));
108 /* The relocation "howto" table. */
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
119 static reloc_howto_type sparc64_elf_howto_table
[] =
121 HOWTO(R_SPARC_NONE
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", FALSE
,0,0x00000000,TRUE
),
122 HOWTO(R_SPARC_8
, 0,0, 8,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", FALSE
,0,0x000000ff,TRUE
),
123 HOWTO(R_SPARC_16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", FALSE
,0,0x0000ffff,TRUE
),
124 HOWTO(R_SPARC_32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", FALSE
,0,0xffffffff,TRUE
),
125 HOWTO(R_SPARC_DISP8
, 0,0, 8,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", FALSE
,0,0x000000ff,TRUE
),
126 HOWTO(R_SPARC_DISP16
, 0,1,16,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", FALSE
,0,0x0000ffff,TRUE
),
127 HOWTO(R_SPARC_DISP32
, 0,2,32,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", FALSE
,0,0xffffffff,TRUE
),
128 HOWTO(R_SPARC_WDISP30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", FALSE
,0,0x3fffffff,TRUE
),
129 HOWTO(R_SPARC_WDISP22
, 2,2,22,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", FALSE
,0,0x003fffff,TRUE
),
130 HOWTO(R_SPARC_HI22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", FALSE
,0,0x003fffff,TRUE
),
131 HOWTO(R_SPARC_22
, 0,2,22,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", FALSE
,0,0x003fffff,TRUE
),
132 HOWTO(R_SPARC_13
, 0,2,13,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", FALSE
,0,0x00001fff,TRUE
),
133 HOWTO(R_SPARC_LO10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", FALSE
,0,0x000003ff,TRUE
),
134 HOWTO(R_SPARC_GOT10
, 0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", FALSE
,0,0x000003ff,TRUE
),
135 HOWTO(R_SPARC_GOT13
, 0,2,13,FALSE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", FALSE
,0,0x00001fff,TRUE
),
136 HOWTO(R_SPARC_GOT22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", FALSE
,0,0x003fffff,TRUE
),
137 HOWTO(R_SPARC_PC10
, 0,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", FALSE
,0,0x000003ff,TRUE
),
138 HOWTO(R_SPARC_PC22
, 10,2,22,TRUE
, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", FALSE
,0,0x003fffff,TRUE
),
139 HOWTO(R_SPARC_WPLT30
, 2,2,30,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", FALSE
,0,0x3fffffff,TRUE
),
140 HOWTO(R_SPARC_COPY
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", FALSE
,0,0x00000000,TRUE
),
141 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",FALSE
,0,0x00000000,TRUE
),
142 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",FALSE
,0,0x00000000,TRUE
),
143 HOWTO(R_SPARC_RELATIVE
, 0,0,00,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",FALSE
,0,0x00000000,TRUE
),
144 HOWTO(R_SPARC_UA32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA32", FALSE
,0,0xffffffff,TRUE
),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32
, 0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT32", FALSE
,0,0xffffffff,TRUE
),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", FALSE
,0,0x00000000,TRUE
),
149 HOWTO(R_SPARC_LOPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", FALSE
,0,0x00000000,TRUE
),
150 HOWTO(R_SPARC_PCPLT32
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", FALSE
,0,0x00000000,TRUE
),
151 HOWTO(R_SPARC_PCPLT22
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", FALSE
,0,0x00000000,TRUE
),
152 HOWTO(R_SPARC_PCPLT10
, 0,0,00,FALSE
,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", FALSE
,0,0x00000000,TRUE
),
154 HOWTO(R_SPARC_10
, 0,2,10,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", FALSE
,0,0x000003ff,TRUE
),
155 HOWTO(R_SPARC_11
, 0,2,11,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", FALSE
,0,0x000007ff,TRUE
),
156 HOWTO(R_SPARC_64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", FALSE
,0,MINUS_ONE
, TRUE
),
157 HOWTO(R_SPARC_OLO10
, 0,2,13,FALSE
,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", FALSE
,0,0x00001fff,TRUE
),
158 HOWTO(R_SPARC_HH22
, 42,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", FALSE
,0,0x003fffff,TRUE
),
159 HOWTO(R_SPARC_HM10
, 32,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", FALSE
,0,0x000003ff,TRUE
),
160 HOWTO(R_SPARC_LM22
, 10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", FALSE
,0,0x003fffff,TRUE
),
161 HOWTO(R_SPARC_PC_HH22
, 42,2,22,TRUE
, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", FALSE
,0,0x003fffff,TRUE
),
162 HOWTO(R_SPARC_PC_HM10
, 32,2,10,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", FALSE
,0,0x000003ff,TRUE
),
163 HOWTO(R_SPARC_PC_LM22
, 10,2,22,TRUE
, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", FALSE
,0,0x003fffff,TRUE
),
164 HOWTO(R_SPARC_WDISP16
, 2,2,16,TRUE
, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", FALSE
,0,0x00000000,TRUE
),
165 HOWTO(R_SPARC_WDISP19
, 2,2,19,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", FALSE
,0,0x0007ffff,TRUE
),
166 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",FALSE
,0,0x00000000,TRUE
),
167 HOWTO(R_SPARC_7
, 0,2, 7,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", FALSE
,0,0x0000007f,TRUE
),
168 HOWTO(R_SPARC_5
, 0,2, 5,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", FALSE
,0,0x0000001f,TRUE
),
169 HOWTO(R_SPARC_6
, 0,2, 6,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", FALSE
,0,0x0000003f,TRUE
),
170 HOWTO(R_SPARC_DISP64
, 0,4,64,TRUE
, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", FALSE
,0,MINUS_ONE
, TRUE
),
171 HOWTO(R_SPARC_PLT64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PLT64", FALSE
,0,MINUS_ONE
, TRUE
),
172 HOWTO(R_SPARC_HIX22
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", FALSE
,0,MINUS_ONE
, FALSE
),
173 HOWTO(R_SPARC_LOX10
, 0,4, 0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", FALSE
,0,MINUS_ONE
, FALSE
),
174 HOWTO(R_SPARC_H44
, 22,2,22,FALSE
,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", FALSE
,0,0x003fffff,FALSE
),
175 HOWTO(R_SPARC_M44
, 12,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", FALSE
,0,0x000003ff,FALSE
),
176 HOWTO(R_SPARC_L44
, 0,2,13,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", FALSE
,0,0x00000fff,FALSE
),
177 HOWTO(R_SPARC_REGISTER
, 0,4, 0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",FALSE
,0,MINUS_ONE
, FALSE
),
178 HOWTO(R_SPARC_UA64
, 0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", FALSE
,0,MINUS_ONE
, TRUE
),
179 HOWTO(R_SPARC_UA16
, 0,1,16,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", FALSE
,0,0x0000ffff,TRUE
),
180 HOWTO(R_SPARC_TLS_GD_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_HI22",FALSE
,0,0x003fffff,TRUE
),
181 HOWTO(R_SPARC_TLS_GD_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_LO10",FALSE
,0,0x000003ff,TRUE
),
182 HOWTO(R_SPARC_TLS_GD_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_ADD",FALSE
,0,0x00000000,TRUE
),
183 HOWTO(R_SPARC_TLS_GD_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_GD_CALL",FALSE
,0,0x3fffffff,TRUE
),
184 HOWTO(R_SPARC_TLS_LDM_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_HI22",FALSE
,0,0x003fffff,TRUE
),
185 HOWTO(R_SPARC_TLS_LDM_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_LO10",FALSE
,0,0x000003ff,TRUE
),
186 HOWTO(R_SPARC_TLS_LDM_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_ADD",FALSE
,0,0x00000000,TRUE
),
187 HOWTO(R_SPARC_TLS_LDM_CALL
,2,2,30,TRUE
,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDM_CALL",FALSE
,0,0x3fffffff,TRUE
),
188 HOWTO(R_SPARC_TLS_LDO_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
,"R_SPARC_TLS_LDO_HIX22",FALSE
,0,0x003fffff, FALSE
),
189 HOWTO(R_SPARC_TLS_LDO_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LDO_LOX10",FALSE
,0,0x000003ff, FALSE
),
190 HOWTO(R_SPARC_TLS_LDO_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_LDO_ADD",FALSE
,0,0x00000000,TRUE
),
191 HOWTO(R_SPARC_TLS_IE_HI22
,10,2,22,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_HI22",FALSE
,0,0x003fffff,TRUE
),
192 HOWTO(R_SPARC_TLS_IE_LO10
,0,2,10,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LO10",FALSE
,0,0x000003ff,TRUE
),
193 HOWTO(R_SPARC_TLS_IE_LD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LD",FALSE
,0,0x00000000,TRUE
),
194 HOWTO(R_SPARC_TLS_IE_LDX
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_LDX",FALSE
,0,0x00000000,TRUE
),
195 HOWTO(R_SPARC_TLS_IE_ADD
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_IE_ADD",FALSE
,0,0x00000000,TRUE
),
196 HOWTO(R_SPARC_TLS_LE_HIX22
,0,2,0,FALSE
,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_TLS_LE_HIX22",FALSE
,0,0x003fffff, FALSE
),
197 HOWTO(R_SPARC_TLS_LE_LOX10
,0,2,0,FALSE
,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_TLS_LE_LOX10",FALSE
,0,0x000003ff, FALSE
),
198 HOWTO(R_SPARC_TLS_DTPMOD32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD32",FALSE
,0,0x00000000,TRUE
),
199 HOWTO(R_SPARC_TLS_DTPMOD64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_DTPMOD64",FALSE
,0,0x00000000,TRUE
),
200 HOWTO(R_SPARC_TLS_DTPOFF32
,0,2,32,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF32",FALSE
,0,0xffffffff,TRUE
),
201 HOWTO(R_SPARC_TLS_DTPOFF64
,0,4,64,FALSE
,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
,"R_SPARC_TLS_DTPOFF64",FALSE
,0,MINUS_ONE
,TRUE
),
202 HOWTO(R_SPARC_TLS_TPOFF32
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF32",FALSE
,0,0x00000000,TRUE
),
203 HOWTO(R_SPARC_TLS_TPOFF64
,0,0, 0,FALSE
,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_TLS_TPOFF64",FALSE
,0,0x00000000,TRUE
)
206 struct elf_reloc_map
{
207 bfd_reloc_code_real_type bfd_reloc_val
;
208 unsigned char elf_reloc_val
;
211 static const struct elf_reloc_map sparc_reloc_map
[] =
213 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
214 { BFD_RELOC_16
, R_SPARC_16
, },
215 { BFD_RELOC_16_PCREL
, R_SPARC_DISP16
},
216 { BFD_RELOC_8
, R_SPARC_8
},
217 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
218 { BFD_RELOC_CTOR
, R_SPARC_64
},
219 { BFD_RELOC_32
, R_SPARC_32
},
220 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
221 { BFD_RELOC_HI22
, R_SPARC_HI22
},
222 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
223 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
224 { BFD_RELOC_64_PCREL
, R_SPARC_DISP64
},
225 { BFD_RELOC_SPARC22
, R_SPARC_22
},
226 { BFD_RELOC_SPARC13
, R_SPARC_13
},
227 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
228 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
229 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
230 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
231 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
232 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
233 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
234 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
235 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
236 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
237 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
238 { BFD_RELOC_SPARC_UA16
, R_SPARC_UA16
},
239 { BFD_RELOC_SPARC_UA32
, R_SPARC_UA32
},
240 { BFD_RELOC_SPARC_UA64
, R_SPARC_UA64
},
241 { BFD_RELOC_SPARC_10
, R_SPARC_10
},
242 { BFD_RELOC_SPARC_11
, R_SPARC_11
},
243 { BFD_RELOC_SPARC_64
, R_SPARC_64
},
244 { BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
245 { BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
246 { BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
247 { BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
248 { BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
249 { BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
250 { BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
251 { BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
252 { BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
253 { BFD_RELOC_SPARC_7
, R_SPARC_7
},
254 { BFD_RELOC_SPARC_5
, R_SPARC_5
},
255 { BFD_RELOC_SPARC_6
, R_SPARC_6
},
256 { BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
257 { BFD_RELOC_SPARC_TLS_GD_HI22
, R_SPARC_TLS_GD_HI22
},
258 { BFD_RELOC_SPARC_TLS_GD_LO10
, R_SPARC_TLS_GD_LO10
},
259 { BFD_RELOC_SPARC_TLS_GD_ADD
, R_SPARC_TLS_GD_ADD
},
260 { BFD_RELOC_SPARC_TLS_GD_CALL
, R_SPARC_TLS_GD_CALL
},
261 { BFD_RELOC_SPARC_TLS_LDM_HI22
, R_SPARC_TLS_LDM_HI22
},
262 { BFD_RELOC_SPARC_TLS_LDM_LO10
, R_SPARC_TLS_LDM_LO10
},
263 { BFD_RELOC_SPARC_TLS_LDM_ADD
, R_SPARC_TLS_LDM_ADD
},
264 { BFD_RELOC_SPARC_TLS_LDM_CALL
, R_SPARC_TLS_LDM_CALL
},
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22
, R_SPARC_TLS_LDO_HIX22
},
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10
, R_SPARC_TLS_LDO_LOX10
},
267 { BFD_RELOC_SPARC_TLS_LDO_ADD
, R_SPARC_TLS_LDO_ADD
},
268 { BFD_RELOC_SPARC_TLS_IE_HI22
, R_SPARC_TLS_IE_HI22
},
269 { BFD_RELOC_SPARC_TLS_IE_LO10
, R_SPARC_TLS_IE_LO10
},
270 { BFD_RELOC_SPARC_TLS_IE_LD
, R_SPARC_TLS_IE_LD
},
271 { BFD_RELOC_SPARC_TLS_IE_LDX
, R_SPARC_TLS_IE_LDX
},
272 { BFD_RELOC_SPARC_TLS_IE_ADD
, R_SPARC_TLS_IE_ADD
},
273 { BFD_RELOC_SPARC_TLS_LE_HIX22
, R_SPARC_TLS_LE_HIX22
},
274 { BFD_RELOC_SPARC_TLS_LE_LOX10
, R_SPARC_TLS_LE_LOX10
},
275 { BFD_RELOC_SPARC_TLS_DTPMOD32
, R_SPARC_TLS_DTPMOD32
},
276 { BFD_RELOC_SPARC_TLS_DTPMOD64
, R_SPARC_TLS_DTPMOD64
},
277 { BFD_RELOC_SPARC_TLS_DTPOFF32
, R_SPARC_TLS_DTPOFF32
},
278 { BFD_RELOC_SPARC_TLS_DTPOFF64
, R_SPARC_TLS_DTPOFF64
},
279 { BFD_RELOC_SPARC_TLS_TPOFF32
, R_SPARC_TLS_TPOFF32
},
280 { BFD_RELOC_SPARC_TLS_TPOFF64
, R_SPARC_TLS_TPOFF64
},
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32
, R_SPARC_PLT32
},
284 { BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
285 { BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
286 { BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
287 { BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
288 { BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
289 { BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
290 { BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
293 static reloc_howto_type
*
294 sparc64_elf_reloc_type_lookup (abfd
, code
)
295 bfd
*abfd ATTRIBUTE_UNUSED
;
296 bfd_reloc_code_real_type code
;
299 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
301 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
302 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
308 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
309 bfd
*abfd ATTRIBUTE_UNUSED
;
311 Elf_Internal_Rela
*dst
;
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
314 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
317 struct sparc64_elf_section_data
319 struct bfd_elf_section_data elf
;
320 unsigned int do_relax
, reloc_count
;
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
333 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
334 bfd
*abfd ATTRIBUTE_UNUSED
;
337 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
353 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
356 Elf_Internal_Shdr
*rel_hdr
;
360 PTR allocated
= NULL
;
361 bfd_byte
*native_relocs
;
368 allocated
= (PTR
) bfd_malloc (rel_hdr
->sh_size
);
369 if (allocated
== NULL
)
372 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
373 || bfd_bread (allocated
, rel_hdr
->sh_size
, abfd
) != rel_hdr
->sh_size
)
376 native_relocs
= (bfd_byte
*) allocated
;
378 relents
= asect
->relocation
+ canon_reloc_count (asect
);
380 entsize
= rel_hdr
->sh_entsize
;
381 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
383 count
= rel_hdr
->sh_size
/ entsize
;
385 for (i
= 0, relent
= relents
; i
< count
;
386 i
++, relent
++, native_relocs
+= entsize
)
388 Elf_Internal_Rela rela
;
390 bfd_elf64_swap_reloca_in (abfd
, native_relocs
, &rela
);
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
397 relent
->address
= rela
.r_offset
;
399 relent
->address
= rela
.r_offset
- asect
->vma
;
401 if (ELF64_R_SYM (rela
.r_info
) == 0)
402 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
407 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
412 relent
->sym_ptr_ptr
= ps
;
414 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
417 relent
->addend
= rela
.r_addend
;
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
420 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
422 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
423 relent
[1].address
= relent
->address
;
425 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
426 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
427 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
430 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
433 canon_reloc_count (asect
) += relent
- relents
;
435 if (allocated
!= NULL
)
441 if (allocated
!= NULL
)
446 /* Read in and swap the external relocs. */
449 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
455 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
456 Elf_Internal_Shdr
*rel_hdr
;
457 Elf_Internal_Shdr
*rel_hdr2
;
460 if (asect
->relocation
!= NULL
)
465 if ((asect
->flags
& SEC_RELOC
) == 0
466 || asect
->reloc_count
== 0)
469 rel_hdr
= &d
->rel_hdr
;
470 rel_hdr2
= d
->rel_hdr2
;
472 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
473 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect
->size
== 0)
484 rel_hdr
= &d
->this_hdr
;
485 asect
->reloc_count
= NUM_SHDR_ENTRIES (rel_hdr
);
489 amt
= asect
->reloc_count
;
490 amt
*= 2 * sizeof (arelent
);
491 asect
->relocation
= (arelent
*) bfd_alloc (abfd
, amt
);
492 if (asect
->relocation
== NULL
)
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect
) = 0;
499 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
504 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
511 /* Canonicalize the relocs. */
514 sparc64_elf_canonicalize_reloc (abfd
, section
, relptr
, symbols
)
522 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
524 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
527 tblptr
= section
->relocation
;
528 for (i
= 0; i
< canon_reloc_count (section
); i
++)
529 *relptr
++ = tblptr
++;
533 return canon_reloc_count (section
);
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
547 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
555 if (elf_dynsymtab (abfd
) == 0)
557 bfd_set_error (bfd_error_invalid_operation
);
562 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
564 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
565 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
570 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, TRUE
))
572 count
= canon_reloc_count (s
);
574 for (i
= 0; i
< count
; i
++)
585 /* Write out the relocs. */
588 sparc64_elf_write_relocs (abfd
, sec
, data
)
593 bfd_boolean
*failedp
= (bfd_boolean
*) data
;
594 Elf_Internal_Shdr
*rela_hdr
;
595 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
596 unsigned int idx
, count
;
597 asymbol
*last_sym
= 0;
598 int last_sym_idx
= 0;
600 /* If we have already failed, don't do anything. */
604 if ((sec
->flags
& SEC_RELOC
) == 0)
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
611 if (sec
->reloc_count
== 0)
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
618 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
624 addr
= sec
->orelocation
[idx
]->address
;
625 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
626 && idx
< sec
->reloc_count
- 1)
628 arelent
*r
= sec
->orelocation
[idx
+ 1];
630 if (r
->howto
->type
== R_SPARC_13
631 && r
->address
== addr
632 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
633 && (*r
->sym_ptr_ptr
)->value
== 0)
638 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
640 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
641 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
642 if (rela_hdr
->contents
== NULL
)
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr
->sh_type
!= SHT_RELA
)
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
654 src_rela
= outbound_relocas
;
656 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
658 Elf_Internal_Rela dst_rela
;
663 ptr
= sec
->orelocation
[idx
];
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
669 dst_rela
.r_offset
= ptr
->address
;
671 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
673 sym
= *ptr
->sym_ptr_ptr
;
676 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
681 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
690 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
691 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
692 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
698 if (ptr
->howto
->type
== R_SPARC_LO10
699 && idx
< sec
->reloc_count
- 1)
701 arelent
*r
= sec
->orelocation
[idx
+ 1];
703 if (r
->howto
->type
== R_SPARC_13
704 && r
->address
== ptr
->address
705 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
706 && (*r
->sym_ptr_ptr
)->value
== 0)
710 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
714 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
717 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
719 dst_rela
.r_addend
= ptr
->addend
;
720 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, (bfd_byte
*) src_rela
);
725 /* Sparc64 ELF linker hash table. */
727 struct sparc64_elf_app_reg
730 unsigned short shndx
;
735 struct sparc64_elf_link_hash_table
737 struct elf_link_hash_table root
;
739 struct sparc64_elf_app_reg app_regs
[4];
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
747 /* Create a Sparc64 ELF linker hash table. */
749 static struct bfd_link_hash_table
*
750 sparc64_elf_bfd_link_hash_table_create (abfd
)
753 struct sparc64_elf_link_hash_table
*ret
;
754 bfd_size_type amt
= sizeof (struct sparc64_elf_link_hash_table
);
756 ret
= (struct sparc64_elf_link_hash_table
*) bfd_zmalloc (amt
);
757 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
760 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
761 _bfd_elf_link_hash_newfunc
))
767 return &ret
->root
.root
;
770 /* Utility for performing the standard initial work of an instruction
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
778 static bfd_reloc_status_type
779 init_insn_reloc (abfd
,
788 arelent
*reloc_entry
;
791 asection
*input_section
;
793 bfd_vma
*prelocation
;
797 reloc_howto_type
*howto
= reloc_entry
->howto
;
799 if (output_bfd
!= (bfd
*) NULL
800 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
801 && (! howto
->partial_inplace
802 || reloc_entry
->addend
== 0))
804 reloc_entry
->address
+= input_section
->output_offset
;
808 /* This works because partial_inplace is FALSE. */
809 if (output_bfd
!= NULL
)
810 return bfd_reloc_continue
;
812 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
813 return bfd_reloc_outofrange
;
815 relocation
= (symbol
->value
816 + symbol
->section
->output_section
->vma
817 + symbol
->section
->output_offset
);
818 relocation
+= reloc_entry
->addend
;
819 if (howto
->pc_relative
)
821 relocation
-= (input_section
->output_section
->vma
822 + input_section
->output_offset
);
823 relocation
-= reloc_entry
->address
;
826 *prelocation
= relocation
;
827 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
828 return bfd_reloc_other
;
831 /* For unsupported relocs. */
833 static bfd_reloc_status_type
834 sparc_elf_notsup_reloc (abfd
,
841 bfd
*abfd ATTRIBUTE_UNUSED
;
842 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
843 asymbol
*symbol ATTRIBUTE_UNUSED
;
844 PTR data ATTRIBUTE_UNUSED
;
845 asection
*input_section ATTRIBUTE_UNUSED
;
846 bfd
*output_bfd ATTRIBUTE_UNUSED
;
847 char **error_message ATTRIBUTE_UNUSED
;
849 return bfd_reloc_notsupported
;
852 /* Handle the WDISP16 reloc. */
854 static bfd_reloc_status_type
855 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
856 output_bfd
, error_message
)
858 arelent
*reloc_entry
;
861 asection
*input_section
;
863 char **error_message ATTRIBUTE_UNUSED
;
867 bfd_reloc_status_type status
;
869 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
870 input_section
, output_bfd
, &relocation
, &insn
);
871 if (status
!= bfd_reloc_other
)
874 insn
&= ~ (bfd_vma
) 0x303fff;
875 insn
|= (((relocation
>> 2) & 0xc000) << 6) | ((relocation
>> 2) & 0x3fff);
876 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
878 if ((bfd_signed_vma
) relocation
< - 0x40000
879 || (bfd_signed_vma
) relocation
> 0x3ffff)
880 return bfd_reloc_overflow
;
885 /* Handle the HIX22 reloc. */
887 static bfd_reloc_status_type
888 sparc_elf_hix22_reloc (abfd
,
896 arelent
*reloc_entry
;
899 asection
*input_section
;
901 char **error_message ATTRIBUTE_UNUSED
;
905 bfd_reloc_status_type status
;
907 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
908 input_section
, output_bfd
, &relocation
, &insn
);
909 if (status
!= bfd_reloc_other
)
912 relocation
^= MINUS_ONE
;
913 insn
= (insn
&~ (bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
914 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
916 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
917 return bfd_reloc_overflow
;
922 /* Handle the LOX10 reloc. */
924 static bfd_reloc_status_type
925 sparc_elf_lox10_reloc (abfd
,
933 arelent
*reloc_entry
;
936 asection
*input_section
;
938 char **error_message ATTRIBUTE_UNUSED
;
942 bfd_reloc_status_type status
;
944 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
945 input_section
, output_bfd
, &relocation
, &insn
);
946 if (status
!= bfd_reloc_other
)
949 insn
= (insn
&~ (bfd_vma
) 0x1fff) | 0x1c00 | (relocation
& 0x3ff);
950 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
957 /* Both the headers and the entries are icache aligned. */
958 #define PLT_ENTRY_SIZE 32
959 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD 32768
961 #define GOT_RESERVED_ENTRIES 1
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
965 /* Fill in the .plt section. */
968 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
970 unsigned char *contents
;
973 const unsigned int nop
= 0x01000000;
976 /* The first four entries are reserved, and are initially undefined.
977 We fill them with `illtrap 0' to force ld.so to do something. */
979 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
980 bfd_put_32 (output_bfd
, (bfd_vma
) 0, contents
+i
*4);
982 /* The first 32768 entries are close enough to plt1 to get there via
983 a straight branch. */
985 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
987 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
988 unsigned int sethi
, ba
;
990 /* sethi (. - plt0), %g1 */
991 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
993 /* ba,a,pt %xcc, plt1 */
994 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
996 bfd_put_32 (output_bfd
, (bfd_vma
) sethi
, entry
);
997 bfd_put_32 (output_bfd
, (bfd_vma
) ba
, entry
+ 4);
998 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
999 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 12);
1000 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 16);
1001 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 20);
1002 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 24);
1003 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 28);
1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1007 160: 160 entries and 160 pointers. This is to separate code from data,
1008 which is much friendlier on the cache. */
1010 for (; i
< nentries
; i
+= 160)
1012 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
1013 for (j
= 0; j
< block
; ++j
)
1015 unsigned char *entry
, *ptr
;
1018 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
1019 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 ldx
= 0xc25be000 | ((ptr
- (entry
+4)) & 0x1fff);
1030 bfd_put_32 (output_bfd
, (bfd_vma
) 0x8a10000f, entry
);
1031 bfd_put_32 (output_bfd
, (bfd_vma
) 0x40000002, entry
+ 4);
1032 bfd_put_32 (output_bfd
, (bfd_vma
) nop
, entry
+ 8);
1033 bfd_put_32 (output_bfd
, (bfd_vma
) ldx
, entry
+ 12);
1034 bfd_put_32 (output_bfd
, (bfd_vma
) 0x83c3c001, entry
+ 16);
1035 bfd_put_32 (output_bfd
, (bfd_vma
) 0x9e100005, entry
+ 20);
1037 bfd_put_64 (output_bfd
, (bfd_vma
) (contents
- (entry
+ 4)), ptr
);
1042 /* Return the offset of a particular plt entry within the .plt section. */
1045 sparc64_elf_plt_entry_offset (index
)
1050 if (index
< LARGE_PLT_THRESHOLD
)
1051 return index
* PLT_ENTRY_SIZE
;
1053 /* See above for details. */
1055 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
1056 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
1058 return (LARGE_PLT_THRESHOLD
+ block
* 160) * PLT_ENTRY_SIZE
+ ofs
* 6 * 4;
1062 sparc64_elf_plt_ptr_offset (index
, max
)
1066 bfd_vma block
, ofs
, last
;
1068 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
1070 /* See above for details. */
1072 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160) + LARGE_PLT_THRESHOLD
;
1073 ofs
= index
- block
;
1074 if (block
+ 160 > max
)
1075 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
1079 return (block
* PLT_ENTRY_SIZE
1084 /* Look through the relocs for a section during the first phase, and
1085 allocate space in the global offset table or procedure linkage
1089 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
1091 struct bfd_link_info
*info
;
1093 const Elf_Internal_Rela
*relocs
;
1096 Elf_Internal_Shdr
*symtab_hdr
;
1097 struct elf_link_hash_entry
**sym_hashes
;
1098 bfd_vma
*local_got_offsets
;
1099 const Elf_Internal_Rela
*rel
;
1100 const Elf_Internal_Rela
*rel_end
;
1105 if (info
->relocatable
|| !(sec
->flags
& SEC_ALLOC
))
1108 dynobj
= elf_hash_table (info
)->dynobj
;
1109 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1110 sym_hashes
= elf_sym_hashes (abfd
);
1111 local_got_offsets
= elf_local_got_offsets (abfd
);
1117 rel_end
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (sec
)->rel_hdr
);
1118 for (rel
= relocs
; rel
< rel_end
; rel
++)
1120 unsigned long r_symndx
;
1121 struct elf_link_hash_entry
*h
;
1123 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1124 if (r_symndx
< symtab_hdr
->sh_info
)
1127 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1129 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1134 /* This symbol requires a global offset table entry. */
1138 /* Create the .got section. */
1139 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1140 if (! _bfd_elf_create_got_section (dynobj
, info
))
1146 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1147 BFD_ASSERT (sgot
!= NULL
);
1150 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1152 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1153 if (srelgot
== NULL
)
1155 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1157 || ! bfd_set_section_flags (dynobj
, srelgot
,
1162 | SEC_LINKER_CREATED
1164 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1171 if (h
->got
.offset
!= (bfd_vma
) -1)
1173 /* We have already allocated space in the .got. */
1176 h
->got
.offset
= sgot
->size
;
1178 /* Make sure this symbol is output as a dynamic symbol. */
1179 if (h
->dynindx
== -1)
1181 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1185 srelgot
->size
+= sizeof (Elf64_External_Rela
);
1189 /* This is a global offset table entry for a local
1191 if (local_got_offsets
== NULL
)
1194 register unsigned int i
;
1196 size
= symtab_hdr
->sh_info
;
1197 size
*= sizeof (bfd_vma
);
1198 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1199 if (local_got_offsets
== NULL
)
1201 elf_local_got_offsets (abfd
) = local_got_offsets
;
1202 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1203 local_got_offsets
[i
] = (bfd_vma
) -1;
1205 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1207 /* We have already allocated space in the .got. */
1210 local_got_offsets
[r_symndx
] = sgot
->size
;
1214 /* If we are generating a shared object, we need to
1215 output a R_SPARC_RELATIVE reloc so that the
1216 dynamic linker can adjust this GOT entry. */
1217 srelgot
->size
+= sizeof (Elf64_External_Rela
);
1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 unsigned numbers. If we permit ourselves to modify
1226 code so we get sethi/xor, this could work.
1227 Question: do we consider conditionally re-enabling
1228 this for -fpic, once we know about object code models? */
1229 /* If the .got section is more than 0x1000 bytes, we add
1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 bit relocations have a greater chance of working. */
1232 if (sgot
->size
>= 0x1000
1233 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1234 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1239 case R_SPARC_WPLT30
:
1241 case R_SPARC_HIPLT22
:
1242 case R_SPARC_LOPLT10
:
1243 case R_SPARC_PCPLT32
:
1244 case R_SPARC_PCPLT22
:
1245 case R_SPARC_PCPLT10
:
1247 /* This symbol requires a procedure linkage table entry. We
1248 actually build the entry in adjust_dynamic_symbol,
1249 because this might be a case of linking PIC code without
1250 linking in any dynamic objects, in which case we don't
1251 need to generate a procedure linkage table after all. */
1255 /* It does not make sense to have a procedure linkage
1256 table entry for a local symbol. */
1257 bfd_set_error (bfd_error_bad_value
);
1261 /* Make sure this symbol is output as a dynamic symbol. */
1262 if (h
->dynindx
== -1)
1264 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1269 if (ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT32
1270 && ELF64_R_TYPE_ID (rel
->r_info
) != R_SPARC_PLT64
)
1275 case R_SPARC_PC_HH22
:
1276 case R_SPARC_PC_HM10
:
1277 case R_SPARC_PC_LM22
:
1279 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1283 case R_SPARC_DISP16
:
1284 case R_SPARC_DISP32
:
1285 case R_SPARC_DISP64
:
1286 case R_SPARC_WDISP30
:
1287 case R_SPARC_WDISP22
:
1288 case R_SPARC_WDISP19
:
1289 case R_SPARC_WDISP16
:
1318 /* When creating a shared object, we must copy these relocs
1319 into the output file. We create a reloc section in
1320 dynobj and make room for the reloc.
1322 But don't do this for debugging sections -- this shows up
1323 with DWARF2 -- first because they are not loaded, and
1324 second because DWARF sez the debug info is not to be
1325 biased by the load address. */
1326 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1332 name
= (bfd_elf_string_from_elf_section
1334 elf_elfheader (abfd
)->e_shstrndx
,
1335 elf_section_data (sec
)->rel_hdr
.sh_name
));
1339 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1340 && strcmp (bfd_get_section_name (abfd
, sec
),
1343 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1348 sreloc
= bfd_make_section (dynobj
, name
);
1349 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1350 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1351 if ((sec
->flags
& SEC_ALLOC
) != 0)
1352 flags
|= SEC_ALLOC
| SEC_LOAD
;
1354 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1355 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1358 if (sec
->flags
& SEC_READONLY
)
1359 info
->flags
|= DF_TEXTREL
;
1362 sreloc
->size
+= sizeof (Elf64_External_Rela
);
1366 case R_SPARC_REGISTER
:
1367 /* Nothing to do. */
1371 (*_bfd_error_handler
) (_("%B: check_relocs: unhandled reloc type %d"),
1372 abfd
, ELF64_R_TYPE_ID (rel
->r_info
));
1380 /* Hook called by the linker routine which adds symbols from an object
1381 file. We use it for STT_REGISTER symbols. */
1384 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1386 struct bfd_link_info
*info
;
1387 Elf_Internal_Sym
*sym
;
1389 flagword
*flagsp ATTRIBUTE_UNUSED
;
1390 asection
**secp ATTRIBUTE_UNUSED
;
1391 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1393 static const char *const stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1395 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1398 struct sparc64_elf_app_reg
*p
;
1400 reg
= (int)sym
->st_value
;
1403 case 2: reg
-= 2; break;
1404 case 6: reg
-= 4; break;
1406 (*_bfd_error_handler
)
1407 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
1412 if (info
->hash
->creator
!= abfd
->xvec
1413 || (abfd
->flags
& DYNAMIC
) != 0)
1415 /* STT_REGISTER only works when linking an elf64_sparc object.
1416 If STT_REGISTER comes from a dynamic object, don't put it into
1417 the output bfd. The dynamic linker will recheck it. */
1422 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1424 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1426 (*_bfd_error_handler
)
1427 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
1428 abfd
, p
->abfd
, (int) sym
->st_value
,
1429 **namep
? *namep
: "#scratch",
1430 *p
->name
? p
->name
: "#scratch");
1434 if (p
->name
== NULL
)
1438 struct elf_link_hash_entry
*h
;
1440 h
= (struct elf_link_hash_entry
*)
1441 bfd_link_hash_lookup (info
->hash
, *namep
, FALSE
, FALSE
, FALSE
);
1445 unsigned char type
= h
->type
;
1447 if (type
> STT_FUNC
)
1449 (*_bfd_error_handler
)
1450 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
1451 abfd
, p
->abfd
, *namep
, stt_types
[type
]);
1455 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1456 strlen (*namep
) + 1);
1460 strcpy (p
->name
, *namep
);
1464 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1466 p
->shndx
= sym
->st_shndx
;
1470 if (p
->bind
== STB_WEAK
1471 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1473 p
->bind
= STB_GLOBAL
;
1480 else if (*namep
&& **namep
1481 && info
->hash
->creator
== abfd
->xvec
)
1484 struct sparc64_elf_app_reg
*p
;
1486 p
= sparc64_elf_hash_table(info
)->app_regs
;
1487 for (i
= 0; i
< 4; i
++, p
++)
1488 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1490 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1492 if (type
> STT_FUNC
)
1494 (*_bfd_error_handler
)
1495 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
1496 abfd
, p
->abfd
, *namep
, stt_types
[type
]);
1503 /* This function takes care of emitting STT_REGISTER symbols
1504 which we cannot easily keep in the symbol hash table. */
1507 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1508 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1509 struct bfd_link_info
*info
;
1512 PARAMS ((PTR
, const char *, Elf_Internal_Sym
*, asection
*,
1513 struct elf_link_hash_entry
*));
1516 struct sparc64_elf_app_reg
*app_regs
=
1517 sparc64_elf_hash_table(info
)->app_regs
;
1518 Elf_Internal_Sym sym
;
1520 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1521 at the end of the dynlocal list, so they came at the end of the local
1522 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1523 to back up symtab->sh_info. */
1524 if (elf_hash_table (info
)->dynlocal
)
1526 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1527 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1528 struct elf_link_local_dynamic_entry
*e
;
1530 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1531 if (e
->input_indx
== -1)
1535 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1540 if (info
->strip
== strip_all
)
1543 for (reg
= 0; reg
< 4; reg
++)
1544 if (app_regs
[reg
].name
!= NULL
)
1546 if (info
->strip
== strip_some
1547 && bfd_hash_lookup (info
->keep_hash
,
1548 app_regs
[reg
].name
,
1549 FALSE
, FALSE
) == NULL
)
1552 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1555 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1556 sym
.st_shndx
= app_regs
[reg
].shndx
;
1557 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1558 sym
.st_shndx
== SHN_ABS
1559 ? bfd_abs_section_ptr
: bfd_und_section_ptr
,
1568 sparc64_elf_get_symbol_type (elf_sym
, type
)
1569 Elf_Internal_Sym
* elf_sym
;
1572 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1573 return STT_REGISTER
;
1578 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1579 even in SHN_UNDEF section. */
1582 sparc64_elf_symbol_processing (abfd
, asym
)
1583 bfd
*abfd ATTRIBUTE_UNUSED
;
1586 elf_symbol_type
*elfsym
;
1588 elfsym
= (elf_symbol_type
*) asym
;
1589 if (elfsym
->internal_elf_sym
.st_info
1590 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1592 asym
->flags
|= BSF_GLOBAL
;
1596 /* Adjust a symbol defined by a dynamic object and referenced by a
1597 regular object. The current definition is in some section of the
1598 dynamic object, but we're not including those sections. We have to
1599 change the definition to something the rest of the link can
1603 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1604 struct bfd_link_info
*info
;
1605 struct elf_link_hash_entry
*h
;
1609 unsigned int power_of_two
;
1611 dynobj
= elf_hash_table (info
)->dynobj
;
1613 /* Make sure we know what is going on here. */
1614 BFD_ASSERT (dynobj
!= NULL
1616 || h
->u
.weakdef
!= NULL
1619 && !h
->def_regular
)));
1621 /* If this is a function, put it in the procedure linkage table. We
1622 will fill in the contents of the procedure linkage table later
1623 (although we could actually do it here). The STT_NOTYPE
1624 condition is a hack specifically for the Oracle libraries
1625 delivered for Solaris; for some inexplicable reason, they define
1626 some of their functions as STT_NOTYPE when they really should be
1628 if (h
->type
== STT_FUNC
1630 || (h
->type
== STT_NOTYPE
1631 && (h
->root
.type
== bfd_link_hash_defined
1632 || h
->root
.type
== bfd_link_hash_defweak
)
1633 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1635 if (! elf_hash_table (info
)->dynamic_sections_created
)
1637 /* This case can occur if we saw a WPLT30 reloc in an input
1638 file, but none of the input files were dynamic objects.
1639 In such a case, we don't actually need to build a
1640 procedure linkage table, and we can just do a WDISP30
1642 BFD_ASSERT (h
->needs_plt
);
1646 s
= bfd_get_section_by_name (dynobj
, ".plt");
1647 BFD_ASSERT (s
!= NULL
);
1649 /* The first four bit in .plt is reserved. */
1651 s
->size
= PLT_HEADER_SIZE
;
1653 /* To simplify matters later, just store the plt index here. */
1654 h
->plt
.offset
= s
->size
/ PLT_ENTRY_SIZE
;
1656 /* If this symbol is not defined in a regular file, and we are
1657 not generating a shared library, then set the symbol to this
1658 location in the .plt. This is required to make function
1659 pointers compare as equal between the normal executable and
1660 the shared library. */
1664 h
->root
.u
.def
.section
= s
;
1665 h
->root
.u
.def
.value
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
1668 /* Make room for this entry. */
1669 s
->size
+= PLT_ENTRY_SIZE
;
1671 /* We also need to make an entry in the .rela.plt section. */
1673 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1674 BFD_ASSERT (s
!= NULL
);
1676 s
->size
+= sizeof (Elf64_External_Rela
);
1678 /* The procedure linkage table size is bounded by the magnitude
1679 of the offset we can describe in the entry. */
1680 if (s
->size
>= (bfd_vma
)1 << 32)
1682 bfd_set_error (bfd_error_bad_value
);
1689 /* If this is a weak symbol, and there is a real definition, the
1690 processor independent code will have arranged for us to see the
1691 real definition first, and we can just use the same value. */
1692 if (h
->u
.weakdef
!= NULL
)
1694 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1695 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1696 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1697 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1701 /* This is a reference to a symbol defined by a dynamic object which
1702 is not a function. */
1704 /* If we are creating a shared library, we must presume that the
1705 only references to the symbol are via the global offset table.
1706 For such cases we need not do anything here; the relocations will
1707 be handled correctly by relocate_section. */
1711 /* We must allocate the symbol in our .dynbss section, which will
1712 become part of the .bss section of the executable. There will be
1713 an entry for this symbol in the .dynsym section. The dynamic
1714 object will contain position independent code, so all references
1715 from the dynamic object to this symbol will go through the global
1716 offset table. The dynamic linker will use the .dynsym entry to
1717 determine the address it must put in the global offset table, so
1718 both the dynamic object and the regular object will refer to the
1719 same memory location for the variable. */
1721 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1722 BFD_ASSERT (s
!= NULL
);
1724 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1725 to copy the initial value out of the dynamic object and into the
1726 runtime process image. We need to remember the offset into the
1727 .rel.bss section we are going to use. */
1728 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1732 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1733 BFD_ASSERT (srel
!= NULL
);
1734 srel
->size
+= sizeof (Elf64_External_Rela
);
1738 /* We need to figure out the alignment required for this symbol. I
1739 have no idea how ELF linkers handle this. 16-bytes is the size
1740 of the largest type that requires hard alignment -- long double. */
1741 power_of_two
= bfd_log2 (h
->size
);
1742 if (power_of_two
> 4)
1745 /* Apply the required alignment. */
1746 s
->size
= BFD_ALIGN (s
->size
, (bfd_size_type
) (1 << power_of_two
));
1747 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1749 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1753 /* Define the symbol as being at this point in the section. */
1754 h
->root
.u
.def
.section
= s
;
1755 h
->root
.u
.def
.value
= s
->size
;
1757 /* Increment the section size to make room for the symbol. */
1763 /* Set the sizes of the dynamic sections. */
1766 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1768 struct bfd_link_info
*info
;
1774 dynobj
= elf_hash_table (info
)->dynobj
;
1775 BFD_ASSERT (dynobj
!= NULL
);
1777 if (elf_hash_table (info
)->dynamic_sections_created
)
1779 /* Set the contents of the .interp section to the interpreter. */
1780 if (info
->executable
)
1782 s
= bfd_get_section_by_name (dynobj
, ".interp");
1783 BFD_ASSERT (s
!= NULL
);
1784 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1785 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1790 /* We may have created entries in the .rela.got section.
1791 However, if we are not creating the dynamic sections, we will
1792 not actually use these entries. Reset the size of .rela.got,
1793 which will cause it to get stripped from the output file
1795 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1800 /* The check_relocs and adjust_dynamic_symbol entry points have
1801 determined the sizes of the various dynamic sections. Allocate
1804 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1809 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1812 /* It's OK to base decisions on the section name, because none
1813 of the dynobj section names depend upon the input files. */
1814 name
= bfd_get_section_name (dynobj
, s
);
1818 if (strncmp (name
, ".rela", 5) == 0)
1822 /* If we don't need this section, strip it from the
1823 output file. This is to handle .rela.bss and
1824 .rel.plt. We must create it in
1825 create_dynamic_sections, because it must be created
1826 before the linker maps input sections to output
1827 sections. The linker does that before
1828 adjust_dynamic_symbol is called, and it is that
1829 function which decides whether anything needs to go
1830 into these sections. */
1835 if (strcmp (name
, ".rela.plt") == 0)
1838 /* We use the reloc_count field as a counter if we need
1839 to copy relocs into the output file. */
1843 else if (strcmp (name
, ".plt") != 0
1844 && strncmp (name
, ".got", 4) != 0)
1846 /* It's not one of our sections, so don't allocate space. */
1852 _bfd_strip_section_from_output (info
, s
);
1856 /* Allocate memory for the section contents. Zero the memory
1857 for the benefit of .rela.plt, which has 4 unused entries
1858 at the beginning, and we don't want garbage. */
1859 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1860 if (s
->contents
== NULL
&& s
->size
!= 0)
1864 if (elf_hash_table (info
)->dynamic_sections_created
)
1866 /* Add some entries to the .dynamic section. We fill in the
1867 values later, in sparc64_elf_finish_dynamic_sections, but we
1868 must add the entries now so that we get the correct size for
1869 the .dynamic section. The DT_DEBUG entry is filled in by the
1870 dynamic linker and used by the debugger. */
1871 #define add_dynamic_entry(TAG, VAL) \
1872 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1875 struct sparc64_elf_app_reg
* app_regs
;
1876 struct elf_strtab_hash
*dynstr
;
1877 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1879 if (info
->executable
)
1881 if (!add_dynamic_entry (DT_DEBUG
, 0))
1887 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1888 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1889 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1890 || !add_dynamic_entry (DT_JMPREL
, 0))
1894 if (!add_dynamic_entry (DT_RELA
, 0)
1895 || !add_dynamic_entry (DT_RELASZ
, 0)
1896 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1899 if (info
->flags
& DF_TEXTREL
)
1901 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1905 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1906 entries if needed. */
1907 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1908 dynstr
= eht
->dynstr
;
1910 for (reg
= 0; reg
< 4; reg
++)
1911 if (app_regs
[reg
].name
!= NULL
)
1913 struct elf_link_local_dynamic_entry
*entry
, *e
;
1915 if (!add_dynamic_entry (DT_SPARC_REGISTER
, 0))
1918 entry
= (struct elf_link_local_dynamic_entry
*)
1919 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1923 /* We cheat here a little bit: the symbol will not be local, so we
1924 put it at the end of the dynlocal linked list. We will fix it
1925 later on, as we have to fix other fields anyway. */
1926 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1927 entry
->isym
.st_size
= 0;
1928 if (*app_regs
[reg
].name
!= '\0')
1930 = _bfd_elf_strtab_add (dynstr
, app_regs
[reg
].name
, FALSE
);
1932 entry
->isym
.st_name
= 0;
1933 entry
->isym
.st_other
= 0;
1934 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1936 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1938 entry
->input_bfd
= output_bfd
;
1939 entry
->input_indx
= -1;
1941 if (eht
->dynlocal
== NULL
)
1942 eht
->dynlocal
= entry
;
1945 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1952 #undef add_dynamic_entry
1958 sparc64_elf_new_section_hook (abfd
, sec
)
1962 struct sparc64_elf_section_data
*sdata
;
1963 bfd_size_type amt
= sizeof (*sdata
);
1965 sdata
= (struct sparc64_elf_section_data
*) bfd_zalloc (abfd
, amt
);
1968 sec
->used_by_bfd
= (PTR
) sdata
;
1970 return _bfd_elf_new_section_hook (abfd
, sec
);
1974 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1975 bfd
*abfd ATTRIBUTE_UNUSED
;
1976 asection
*section ATTRIBUTE_UNUSED
;
1977 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1981 sec_do_relax (section
) = 1;
1985 /* Relocate a SPARC64 ELF section. */
1988 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1989 contents
, relocs
, local_syms
, local_sections
)
1991 struct bfd_link_info
*info
;
1993 asection
*input_section
;
1995 Elf_Internal_Rela
*relocs
;
1996 Elf_Internal_Sym
*local_syms
;
1997 asection
**local_sections
;
2000 Elf_Internal_Shdr
*symtab_hdr
;
2001 struct elf_link_hash_entry
**sym_hashes
;
2002 bfd_vma
*local_got_offsets
;
2007 Elf_Internal_Rela
*rel
;
2008 Elf_Internal_Rela
*relend
;
2010 if (info
->relocatable
)
2013 dynobj
= elf_hash_table (info
)->dynobj
;
2014 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2015 sym_hashes
= elf_sym_hashes (input_bfd
);
2016 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2018 if (elf_hash_table(info
)->hgot
== NULL
)
2021 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
2023 sgot
= splt
= sreloc
= NULL
;
2025 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2028 relend
= relocs
+ NUM_SHDR_ENTRIES (& elf_section_data (input_section
)->rel_hdr
);
2029 for (; rel
< relend
; rel
++)
2032 reloc_howto_type
*howto
;
2033 unsigned long r_symndx
;
2034 struct elf_link_hash_entry
*h
;
2035 Elf_Internal_Sym
*sym
;
2037 bfd_vma relocation
, off
;
2038 bfd_reloc_status_type r
;
2039 bfd_boolean is_plt
= FALSE
;
2040 bfd_boolean unresolved_reloc
;
2042 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
2043 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
2045 bfd_set_error (bfd_error_bad_value
);
2048 howto
= sparc64_elf_howto_table
+ r_type
;
2050 /* This is a final link. */
2051 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2055 unresolved_reloc
= FALSE
;
2056 if (r_symndx
< symtab_hdr
->sh_info
)
2058 sym
= local_syms
+ r_symndx
;
2059 sec
= local_sections
[r_symndx
];
2060 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2066 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2067 r_symndx
, symtab_hdr
, sym_hashes
,
2069 unresolved_reloc
, warned
);
2072 /* To avoid generating warning messages about truncated
2073 relocations, set the relocation's address to be the same as
2074 the start of this section. */
2075 if (input_section
->output_section
!= NULL
)
2076 relocation
= input_section
->output_section
->vma
;
2083 /* When generating a shared object, these relocations are copied
2084 into the output file to be resolved at run time. */
2085 if (info
->shared
&& r_symndx
!= 0 && (input_section
->flags
& SEC_ALLOC
))
2091 case R_SPARC_PC_HH22
:
2092 case R_SPARC_PC_HM10
:
2093 case R_SPARC_PC_LM22
:
2095 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2099 case R_SPARC_DISP16
:
2100 case R_SPARC_DISP32
:
2101 case R_SPARC_DISP64
:
2102 case R_SPARC_WDISP30
:
2103 case R_SPARC_WDISP22
:
2104 case R_SPARC_WDISP19
:
2105 case R_SPARC_WDISP16
:
2135 Elf_Internal_Rela outrel
;
2137 bfd_boolean skip
, relocate
;
2142 (bfd_elf_string_from_elf_section
2144 elf_elfheader (input_bfd
)->e_shstrndx
,
2145 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2150 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2151 && strcmp (bfd_get_section_name(input_bfd
,
2155 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2156 BFD_ASSERT (sreloc
!= NULL
);
2163 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2165 if (outrel
.r_offset
== (bfd_vma
) -1)
2167 else if (outrel
.r_offset
== (bfd_vma
) -2)
2168 skip
= TRUE
, relocate
= TRUE
;
2170 outrel
.r_offset
+= (input_section
->output_section
->vma
2171 + input_section
->output_offset
);
2173 /* Optimize unaligned reloc usage now that we know where
2174 it finally resides. */
2178 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2181 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2184 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2187 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2190 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2193 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2196 case R_SPARC_DISP16
:
2197 case R_SPARC_DISP32
:
2198 case R_SPARC_DISP64
:
2199 /* If the symbol is not dynamic, we should not keep
2200 a dynamic relocation. But an .rela.* slot has been
2201 allocated for it, output R_SPARC_NONE.
2202 FIXME: Add code tracking needed dynamic relocs as
2204 if (h
->dynindx
== -1)
2205 skip
= TRUE
, relocate
= TRUE
;
2209 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2212 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2213 && h
->root
.type
== bfd_link_hash_undefweak
)
2214 skip
= TRUE
, relocate
= TRUE
;
2217 memset (&outrel
, 0, sizeof outrel
);
2218 /* h->dynindx may be -1 if the symbol was marked to
2220 else if (h
!= NULL
&& ! is_plt
2221 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2222 || !h
->def_regular
))
2224 BFD_ASSERT (h
->dynindx
!= -1);
2226 = ELF64_R_INFO (h
->dynindx
,
2228 ELF64_R_TYPE_DATA (rel
->r_info
),
2230 outrel
.r_addend
= rel
->r_addend
;
2234 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2235 if (r_type
== R_SPARC_64
)
2236 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2244 if (bfd_is_abs_section (sec
))
2246 else if (sec
== NULL
|| sec
->owner
== NULL
)
2248 bfd_set_error (bfd_error_bad_value
);
2255 osec
= sec
->output_section
;
2256 indx
= elf_section_data (osec
)->dynindx
;
2258 /* We are turning this relocation into one
2259 against a section symbol, so subtract out
2260 the output section's address but not the
2261 offset of the input section in the output
2263 outrel
.r_addend
-= osec
->vma
;
2265 /* FIXME: we really should be able to link non-pic
2266 shared libraries. */
2270 (*_bfd_error_handler
)
2271 (_("%B: probably compiled without -fPIC?"),
2273 bfd_set_error (bfd_error_bad_value
);
2279 = ELF64_R_INFO (indx
,
2281 ELF64_R_TYPE_DATA (rel
->r_info
),
2286 loc
= sreloc
->contents
;
2287 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2288 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2290 /* This reloc will be computed at runtime, so there's no
2291 need to do anything now. */
2304 /* Relocation is to the entry for this symbol in the global
2308 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2309 BFD_ASSERT (sgot
!= NULL
);
2316 off
= h
->got
.offset
;
2317 BFD_ASSERT (off
!= (bfd_vma
) -1);
2318 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2320 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2327 /* This is actually a static link, or it is a -Bsymbolic
2328 link and the symbol is defined locally, or the symbol
2329 was forced to be local because of a version file. We
2330 must initialize this entry in the global offset table.
2331 Since the offset must always be a multiple of 8, we
2332 use the least significant bit to record whether we
2333 have initialized it already.
2335 When doing a dynamic link, we create a .rela.got
2336 relocation entry to initialize the value. This is
2337 done in the finish_dynamic_symbol routine. */
2343 bfd_put_64 (output_bfd
, relocation
,
2344 sgot
->contents
+ off
);
2349 unresolved_reloc
= FALSE
;
2353 BFD_ASSERT (local_got_offsets
!= NULL
);
2354 off
= local_got_offsets
[r_symndx
];
2355 BFD_ASSERT (off
!= (bfd_vma
) -1);
2357 /* The offset must always be a multiple of 8. We use
2358 the least significant bit to record whether we have
2359 already processed this entry. */
2364 local_got_offsets
[r_symndx
] |= 1;
2369 Elf_Internal_Rela outrel
;
2372 /* The Solaris 2.7 64-bit linker adds the contents
2373 of the location to the value of the reloc.
2374 Note this is different behaviour to the
2375 32-bit linker, which both adds the contents
2376 and ignores the addend. So clear the location. */
2377 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2378 sgot
->contents
+ off
);
2380 /* We need to generate a R_SPARC_RELATIVE reloc
2381 for the dynamic linker. */
2382 s
= bfd_get_section_by_name(dynobj
, ".rela.got");
2383 BFD_ASSERT (s
!= NULL
);
2385 outrel
.r_offset
= (sgot
->output_section
->vma
2386 + sgot
->output_offset
2388 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2389 outrel
.r_addend
= relocation
;
2391 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2392 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2395 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2398 relocation
= sgot
->output_offset
+ off
- got_base
;
2401 case R_SPARC_WPLT30
:
2403 case R_SPARC_HIPLT22
:
2404 case R_SPARC_LOPLT10
:
2405 case R_SPARC_PCPLT32
:
2406 case R_SPARC_PCPLT22
:
2407 case R_SPARC_PCPLT10
:
2409 /* Relocation is to the entry for this symbol in the
2410 procedure linkage table. */
2411 BFD_ASSERT (h
!= NULL
);
2413 if (h
->plt
.offset
== (bfd_vma
) -1 || splt
== NULL
)
2415 /* We didn't make a PLT entry for this symbol. This
2416 happens when statically linking PIC code, or when
2417 using -Bsymbolic. */
2421 relocation
= (splt
->output_section
->vma
2422 + splt
->output_offset
2423 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2424 unresolved_reloc
= FALSE
;
2425 if (r_type
== R_SPARC_WPLT30
)
2427 if (r_type
== R_SPARC_PLT32
|| r_type
== R_SPARC_PLT64
)
2429 r_type
= r_type
== R_SPARC_PLT32
? R_SPARC_32
: R_SPARC_64
;
2439 relocation
+= rel
->r_addend
;
2440 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2442 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2443 x
= (x
& ~(bfd_vma
) 0x1fff) | (relocation
& 0x1fff);
2444 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2446 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2447 howto
->bitsize
, howto
->rightshift
,
2448 bfd_arch_bits_per_address (input_bfd
),
2453 case R_SPARC_WDISP16
:
2457 relocation
+= rel
->r_addend
;
2458 /* Adjust for pc-relative-ness. */
2459 relocation
-= (input_section
->output_section
->vma
2460 + input_section
->output_offset
);
2461 relocation
-= rel
->r_offset
;
2463 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2464 x
&= ~(bfd_vma
) 0x303fff;
2465 x
|= ((((relocation
>> 2) & 0xc000) << 6)
2466 | ((relocation
>> 2) & 0x3fff));
2467 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2469 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2470 howto
->bitsize
, howto
->rightshift
,
2471 bfd_arch_bits_per_address (input_bfd
),
2480 relocation
+= rel
->r_addend
;
2481 relocation
= relocation
^ MINUS_ONE
;
2483 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2484 x
= (x
& ~(bfd_vma
) 0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2485 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2487 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2488 howto
->bitsize
, howto
->rightshift
,
2489 bfd_arch_bits_per_address (input_bfd
),
2498 relocation
+= rel
->r_addend
;
2499 relocation
= (relocation
& 0x3ff) | 0x1c00;
2501 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2502 x
= (x
& ~(bfd_vma
) 0x1fff) | relocation
;
2503 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2509 case R_SPARC_WDISP30
:
2511 if (sec_do_relax (input_section
)
2512 && rel
->r_offset
+ 4 < input_section
->size
)
2516 #define XCC (2 << 20)
2517 #define COND(x) (((x)&0xf)<<25)
2518 #define CONDA COND(0x8)
2519 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2520 #define INSN_BA (F2(0,2) | CONDA)
2521 #define INSN_OR F3(2, 0x2, 0)
2522 #define INSN_NOP F2(0,4)
2526 /* If the instruction is a call with either:
2528 arithmetic instruction with rd == %o7
2529 where rs1 != %o7 and rs2 if it is register != %o7
2530 then we can optimize if the call destination is near
2531 by changing the call into a branch always. */
2532 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2533 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2534 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2536 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2537 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2538 && (y
& RD(~0)) == RD(O7
)))
2539 && (y
& RS1(~0)) != RS1(O7
)
2541 || (y
& RS2(~0)) != RS2(O7
)))
2545 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2546 reloc
-= (input_section
->output_section
->vma
2547 + input_section
->output_offset
);
2551 /* Ensure the branch fits into simm22. */
2552 if ((reloc
& ~(bfd_vma
)0x7fffff)
2553 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2557 /* Check whether it fits into simm19. */
2558 if ((reloc
& 0x3c0000) == 0
2559 || (reloc
& 0x3c0000) == 0x3c0000)
2560 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2562 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2563 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2565 if (rel
->r_offset
>= 4
2566 && (y
& (0xffffffff ^ RS1(~0)))
2567 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2572 z
= bfd_get_32 (input_bfd
,
2573 contents
+ rel
->r_offset
- 4);
2574 if ((z
& (0xffffffff ^ RD(~0)))
2575 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2583 If call foo was replaced with ba, replace
2584 or %rN, %g0, %o7 with nop. */
2586 reg
= (y
& RS1(~0)) >> 14;
2587 if (reg
!= ((z
& RD(~0)) >> 25)
2588 || reg
== G0
|| reg
== O7
)
2591 bfd_put_32 (input_bfd
, (bfd_vma
) INSN_NOP
,
2592 contents
+ rel
->r_offset
+ 4);
2602 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2603 contents
, rel
->r_offset
,
2604 relocation
, rel
->r_addend
);
2608 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2609 because such sections are not SEC_ALLOC and thus ld.so will
2610 not process them. */
2611 if (unresolved_reloc
2612 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2614 (*_bfd_error_handler
)
2615 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2616 input_bfd
, input_section
,
2617 (long) rel
->r_offset
,
2618 h
->root
.root
.string
);
2626 case bfd_reloc_outofrange
:
2629 case bfd_reloc_overflow
:
2633 /* The Solaris native linker silently disregards
2634 overflows. We don't, but this breaks stabs debugging
2635 info, whose relocations are only 32-bits wide. Ignore
2636 overflows for discarded entries. */
2637 if ((r_type
== R_SPARC_32
|| r_type
== R_SPARC_DISP32
)
2638 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2639 rel
->r_offset
) == (bfd_vma
) -1)
2644 if (h
->root
.type
== bfd_link_hash_undefweak
2645 && howto
->pc_relative
)
2647 /* Assume this is a call protected by other code that
2648 detect the symbol is undefined. If this is the case,
2649 we can safely ignore the overflow. If not, the
2650 program is hosed anyway, and a little warning isn't
2659 name
= (bfd_elf_string_from_elf_section
2661 symtab_hdr
->sh_link
,
2666 name
= bfd_section_name (input_bfd
, sec
);
2668 if (! ((*info
->callbacks
->reloc_overflow
)
2669 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
2670 (bfd_vma
) 0, input_bfd
, input_section
,
2681 /* Finish up dynamic symbol handling. We set the contents of various
2682 dynamic sections here. */
2685 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2687 struct bfd_link_info
*info
;
2688 struct elf_link_hash_entry
*h
;
2689 Elf_Internal_Sym
*sym
;
2693 dynobj
= elf_hash_table (info
)->dynobj
;
2695 if (h
->plt
.offset
!= (bfd_vma
) -1)
2699 Elf_Internal_Rela rela
;
2702 /* This symbol has an entry in the PLT. Set it up. */
2704 BFD_ASSERT (h
->dynindx
!= -1);
2706 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2707 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2708 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2710 /* Fill in the entry in the .rela.plt section. */
2712 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2714 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2719 bfd_vma max
= splt
->size
/ PLT_ENTRY_SIZE
;
2720 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2721 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2722 -(splt
->output_section
->vma
+ splt
->output_offset
);
2724 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2725 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2727 /* Adjust for the first 4 reserved elements in the .plt section
2728 when setting the offset in the .rela.plt section.
2729 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2730 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2732 loc
= srela
->contents
;
2733 loc
+= (h
->plt
.offset
- 4) * sizeof (Elf64_External_Rela
);
2734 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2736 if (!h
->def_regular
)
2738 /* Mark the symbol as undefined, rather than as defined in
2739 the .plt section. Leave the value alone. */
2740 sym
->st_shndx
= SHN_UNDEF
;
2741 /* If the symbol is weak, we do need to clear the value.
2742 Otherwise, the PLT entry would provide a definition for
2743 the symbol even if the symbol wasn't defined anywhere,
2744 and so the symbol would never be NULL. */
2745 if (!h
->ref_regular_nonweak
)
2750 if (h
->got
.offset
!= (bfd_vma
) -1)
2754 Elf_Internal_Rela rela
;
2757 /* This symbol has an entry in the GOT. Set it up. */
2759 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2760 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2761 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2763 rela
.r_offset
= (sgot
->output_section
->vma
2764 + sgot
->output_offset
2765 + (h
->got
.offset
&~ (bfd_vma
) 1));
2767 /* If this is a -Bsymbolic link, and the symbol is defined
2768 locally, we just want to emit a RELATIVE reloc. Likewise if
2769 the symbol was forced to be local because of a version file.
2770 The entry in the global offset table will already have been
2771 initialized in the relocate_section function. */
2773 && (info
->symbolic
|| h
->dynindx
== -1)
2776 asection
*sec
= h
->root
.u
.def
.section
;
2777 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2778 rela
.r_addend
= (h
->root
.u
.def
.value
2779 + sec
->output_section
->vma
2780 + sec
->output_offset
);
2784 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2788 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
2789 sgot
->contents
+ (h
->got
.offset
&~ (bfd_vma
) 1));
2790 loc
= srela
->contents
;
2791 loc
+= srela
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2792 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2798 Elf_Internal_Rela rela
;
2801 /* This symbols needs a copy reloc. Set it up. */
2802 BFD_ASSERT (h
->dynindx
!= -1);
2804 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2806 BFD_ASSERT (s
!= NULL
);
2808 rela
.r_offset
= (h
->root
.u
.def
.value
2809 + h
->root
.u
.def
.section
->output_section
->vma
2810 + h
->root
.u
.def
.section
->output_offset
);
2811 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2813 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2814 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2817 /* Mark some specially defined symbols as absolute. */
2818 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2819 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2820 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2821 sym
->st_shndx
= SHN_ABS
;
2826 /* Finish up the dynamic sections. */
2829 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2831 struct bfd_link_info
*info
;
2834 int stt_regidx
= -1;
2838 dynobj
= elf_hash_table (info
)->dynobj
;
2840 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2842 if (elf_hash_table (info
)->dynamic_sections_created
)
2845 Elf64_External_Dyn
*dyncon
, *dynconend
;
2847 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2848 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2850 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2851 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2852 for (; dyncon
< dynconend
; dyncon
++)
2854 Elf_Internal_Dyn dyn
;
2858 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2862 case DT_PLTGOT
: name
= ".plt"; size
= FALSE
; break;
2863 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= TRUE
; break;
2864 case DT_JMPREL
: name
= ".rela.plt"; size
= FALSE
; break;
2865 case DT_SPARC_REGISTER
:
2866 if (stt_regidx
== -1)
2869 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2870 if (stt_regidx
== -1)
2873 dyn
.d_un
.d_val
= stt_regidx
++;
2874 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2876 default: name
= NULL
; size
= FALSE
; break;
2883 s
= bfd_get_section_by_name (output_bfd
, name
);
2889 dyn
.d_un
.d_ptr
= s
->vma
;
2891 dyn
.d_un
.d_val
= s
->size
;
2893 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2897 /* Initialize the contents of the .plt section. */
2899 sparc64_elf_build_plt (output_bfd
, splt
->contents
,
2900 (int) (splt
->size
/ PLT_ENTRY_SIZE
));
2902 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2906 /* Set the first entry in the global offset table to the address of
2907 the dynamic section. */
2908 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2909 BFD_ASSERT (sgot
!= NULL
);
2913 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2915 bfd_put_64 (output_bfd
,
2916 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2920 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2925 static enum elf_reloc_type_class
2926 sparc64_elf_reloc_type_class (rela
)
2927 const Elf_Internal_Rela
*rela
;
2929 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2931 case R_SPARC_RELATIVE
:
2932 return reloc_class_relative
;
2933 case R_SPARC_JMP_SLOT
:
2934 return reloc_class_plt
;
2936 return reloc_class_copy
;
2938 return reloc_class_normal
;
2942 /* Functions for dealing with the e_flags field. */
2944 /* Merge backend specific data from an object file to the output
2945 object file when linking. */
2948 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2953 flagword new_flags
, old_flags
;
2956 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2957 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2960 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2961 old_flags
= elf_elfheader (obfd
)->e_flags
;
2963 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2965 elf_flags_init (obfd
) = TRUE
;
2966 elf_elfheader (obfd
)->e_flags
= new_flags
;
2969 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2972 else /* Incompatible flags */
2976 #define EF_SPARC_ISA_EXTENSIONS \
2977 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2979 if ((ibfd
->flags
& DYNAMIC
) != 0)
2981 /* We don't want dynamic objects memory ordering and
2982 architecture to have any role. That's what dynamic linker
2984 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
2985 new_flags
|= (old_flags
2986 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
2990 /* Choose the highest architecture requirements. */
2991 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
2992 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
2993 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
2994 && (old_flags
& EF_SPARC_HAL_R1
))
2997 (*_bfd_error_handler
)
2998 (_("%B: linking UltraSPARC specific with HAL specific code"),
3001 /* Choose the most restrictive memory ordering. */
3002 old_mm
= (old_flags
& EF_SPARCV9_MM
);
3003 new_mm
= (new_flags
& EF_SPARCV9_MM
);
3004 old_flags
&= ~EF_SPARCV9_MM
;
3005 new_flags
&= ~EF_SPARCV9_MM
;
3006 if (new_mm
< old_mm
)
3008 old_flags
|= old_mm
;
3009 new_flags
|= old_mm
;
3012 /* Warn about any other mismatches */
3013 if (new_flags
!= old_flags
)
3016 (*_bfd_error_handler
)
3017 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3018 ibfd
, (long) new_flags
, (long) old_flags
);
3021 elf_elfheader (obfd
)->e_flags
= old_flags
;
3025 bfd_set_error (bfd_error_bad_value
);
3032 /* MARCO: Set the correct entry size for the .stab section. */
3035 sparc64_elf_fake_sections (abfd
, hdr
, sec
)
3036 bfd
*abfd ATTRIBUTE_UNUSED
;
3037 Elf_Internal_Shdr
*hdr ATTRIBUTE_UNUSED
;
3042 name
= bfd_get_section_name (abfd
, sec
);
3044 if (strcmp (name
, ".stab") == 0)
3046 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3047 elf_section_data (sec
)->this_hdr
.sh_entsize
= 12;
3053 /* Print a STT_REGISTER symbol to file FILE. */
3056 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
3057 bfd
*abfd ATTRIBUTE_UNUSED
;
3061 FILE *file
= (FILE *) filep
;
3064 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
3068 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3069 type
= symbol
->flags
;
3070 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3072 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3073 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3074 (type
& BSF_WEAK
) ? 'w' : ' ');
3075 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3078 return symbol
->name
;
3081 /* Set the right machine number for a SPARC64 ELF file. */
3084 sparc64_elf_object_p (abfd
)
3087 unsigned long mach
= bfd_mach_sparc_v9
;
3089 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3090 mach
= bfd_mach_sparc_v9b
;
3091 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3092 mach
= bfd_mach_sparc_v9a
;
3093 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3096 /* Return address for Ith PLT stub in section PLT, for relocation REL
3097 or (bfd_vma) -1 if it should not be included. */
3100 sparc64_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
3101 const arelent
*rel ATTRIBUTE_UNUSED
)
3105 i
+= PLT_HEADER_SIZE
/ PLT_ENTRY_SIZE
;
3106 if (i
< LARGE_PLT_THRESHOLD
)
3107 return plt
->vma
+ i
* PLT_ENTRY_SIZE
;
3109 j
= (i
- LARGE_PLT_THRESHOLD
) % 160;
3111 return plt
->vma
+ i
* PLT_ENTRY_SIZE
+ j
* 4 * 6;
3114 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3115 standard ELF, because R_SPARC_OLO10 has secondary addend in
3116 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3117 relocation handling routines. */
3119 const struct elf_size_info sparc64_elf_size_info
=
3121 sizeof (Elf64_External_Ehdr
),
3122 sizeof (Elf64_External_Phdr
),
3123 sizeof (Elf64_External_Shdr
),
3124 sizeof (Elf64_External_Rel
),
3125 sizeof (Elf64_External_Rela
),
3126 sizeof (Elf64_External_Sym
),
3127 sizeof (Elf64_External_Dyn
),
3128 sizeof (Elf_External_Note
),
3129 4, /* hash-table entry size. */
3130 /* Internal relocations per external relocations.
3131 For link purposes we use just 1 internal per
3132 1 external, for assembly and slurp symbol table
3135 64, /* arch_size. */
3136 3, /* log_file_align. */
3139 bfd_elf64_write_out_phdrs
,
3140 bfd_elf64_write_shdrs_and_ehdr
,
3141 sparc64_elf_write_relocs
,
3142 bfd_elf64_swap_symbol_in
,
3143 bfd_elf64_swap_symbol_out
,
3144 sparc64_elf_slurp_reloc_table
,
3145 bfd_elf64_slurp_symbol_table
,
3146 bfd_elf64_swap_dyn_in
,
3147 bfd_elf64_swap_dyn_out
,
3148 bfd_elf64_swap_reloc_in
,
3149 bfd_elf64_swap_reloc_out
,
3150 bfd_elf64_swap_reloca_in
,
3151 bfd_elf64_swap_reloca_out
3154 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3155 #define TARGET_BIG_NAME "elf64-sparc"
3156 #define ELF_ARCH bfd_arch_sparc
3157 #define ELF_MAXPAGESIZE 0x100000
3159 /* This is the official ABI value. */
3160 #define ELF_MACHINE_CODE EM_SPARCV9
3162 /* This is the value that we used before the ABI was released. */
3163 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3165 #define bfd_elf64_bfd_link_hash_table_create \
3166 sparc64_elf_bfd_link_hash_table_create
3168 #define elf_info_to_howto \
3169 sparc64_elf_info_to_howto
3170 #define bfd_elf64_get_reloc_upper_bound \
3171 sparc64_elf_get_reloc_upper_bound
3172 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3173 sparc64_elf_get_dynamic_reloc_upper_bound
3174 #define bfd_elf64_canonicalize_reloc \
3175 sparc64_elf_canonicalize_reloc
3176 #define bfd_elf64_canonicalize_dynamic_reloc \
3177 sparc64_elf_canonicalize_dynamic_reloc
3178 #define bfd_elf64_bfd_reloc_type_lookup \
3179 sparc64_elf_reloc_type_lookup
3180 #define bfd_elf64_bfd_relax_section \
3181 sparc64_elf_relax_section
3182 #define bfd_elf64_new_section_hook \
3183 sparc64_elf_new_section_hook
3185 #define elf_backend_create_dynamic_sections \
3186 _bfd_elf_create_dynamic_sections
3187 #define elf_backend_add_symbol_hook \
3188 sparc64_elf_add_symbol_hook
3189 #define elf_backend_get_symbol_type \
3190 sparc64_elf_get_symbol_type
3191 #define elf_backend_symbol_processing \
3192 sparc64_elf_symbol_processing
3193 #define elf_backend_check_relocs \
3194 sparc64_elf_check_relocs
3195 #define elf_backend_adjust_dynamic_symbol \
3196 sparc64_elf_adjust_dynamic_symbol
3197 #define elf_backend_size_dynamic_sections \
3198 sparc64_elf_size_dynamic_sections
3199 #define elf_backend_relocate_section \
3200 sparc64_elf_relocate_section
3201 #define elf_backend_finish_dynamic_symbol \
3202 sparc64_elf_finish_dynamic_symbol
3203 #define elf_backend_finish_dynamic_sections \
3204 sparc64_elf_finish_dynamic_sections
3205 #define elf_backend_print_symbol_all \
3206 sparc64_elf_print_symbol_all
3207 #define elf_backend_output_arch_syms \
3208 sparc64_elf_output_arch_syms
3209 #define bfd_elf64_bfd_merge_private_bfd_data \
3210 sparc64_elf_merge_private_bfd_data
3211 #define elf_backend_fake_sections \
3212 sparc64_elf_fake_sections
3213 #define elf_backend_plt_sym_val \
3214 sparc64_elf_plt_sym_val
3216 #define elf_backend_size_info \
3217 sparc64_elf_size_info
3218 #define elf_backend_object_p \
3219 sparc64_elf_object_p
3220 #define elf_backend_reloc_type_class \
3221 sparc64_elf_reloc_type_class
3223 #define elf_backend_want_got_plt 0
3224 #define elf_backend_plt_readonly 0
3225 #define elf_backend_want_plt_sym 1
3226 #define elf_backend_rela_normal 1
3228 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3229 #define elf_backend_plt_alignment 8
3231 #define elf_backend_got_header_size 8
3233 #include "elf64-target.h"