1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
55 // Layout_task_runner methods.
57 // Lay out the sections. This is called after all the input objects
61 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
63 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
68 // Now we know the final size of the output file and we know where
69 // each piece of information goes.
71 if (this->mapfile_
!= NULL
)
73 this->mapfile_
->print_discarded_sections(this->input_objects_
);
74 this->layout_
->print_to_mapfile(this->mapfile_
);
77 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
78 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
79 of
->set_is_temporary();
82 // Queue up the final set of tasks.
83 gold::queue_final_tasks(this->options_
, this->input_objects_
,
84 this->symtab_
, this->layout_
, workqueue
, of
);
89 Layout::Layout(const General_options
& options
, Script_options
* script_options
)
91 script_options_(script_options
),
99 unattached_section_list_(),
100 sections_are_attached_(false),
101 special_output_list_(),
102 section_headers_(NULL
),
104 relro_segment_(NULL
),
105 symtab_section_(NULL
),
106 symtab_xindex_(NULL
),
107 dynsym_section_(NULL
),
108 dynsym_xindex_(NULL
),
109 dynamic_section_(NULL
),
111 eh_frame_section_(NULL
),
112 eh_frame_data_(NULL
),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL
),
115 build_id_note_(NULL
),
119 output_file_size_(-1),
120 input_requires_executable_stack_(false),
121 input_with_gnu_stack_note_(false),
122 input_without_gnu_stack_note_(false),
123 has_static_tls_(false),
124 any_postprocessing_sections_(false)
126 // Make space for more than enough segments for a typical file.
127 // This is just for efficiency--it's OK if we wind up needing more.
128 this->segment_list_
.reserve(12);
130 // We expect two unattached Output_data objects: the file header and
131 // the segment headers.
132 this->special_output_list_
.reserve(2);
135 // Hash a key we use to look up an output section mapping.
138 Layout::Hash_key::operator()(const Layout::Key
& k
) const
140 return k
.first
+ k
.second
.first
+ k
.second
.second
;
143 // Return whether PREFIX is a prefix of STR.
146 is_prefix_of(const char* prefix
, const char* str
)
148 return strncmp(prefix
, str
, strlen(prefix
)) == 0;
151 // Returns whether the given section is in the list of
152 // debug-sections-used-by-some-version-of-gdb. Currently,
153 // we've checked versions of gdb up to and including 6.7.1.
155 static const char* gdb_sections
[] =
157 // ".debug_aranges", // not used by gdb as of 6.7.1
163 // ".debug_pubnames", // not used by gdb as of 6.7.1
168 static const char* lines_only_debug_sections
[] =
170 // ".debug_aranges", // not used by gdb as of 6.7.1
176 // ".debug_pubnames", // not used by gdb as of 6.7.1
182 is_gdb_debug_section(const char* str
)
184 // We can do this faster: binary search or a hashtable. But why bother?
185 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
186 if (strcmp(str
, gdb_sections
[i
]) == 0)
192 is_lines_only_debug_section(const char* str
)
194 // We can do this faster: binary search or a hashtable. But why bother?
196 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
198 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
203 // Whether to include this section in the link.
205 template<int size
, bool big_endian
>
207 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
208 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
210 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
213 switch (shdr
.get_sh_type())
215 case elfcpp::SHT_NULL
:
216 case elfcpp::SHT_SYMTAB
:
217 case elfcpp::SHT_DYNSYM
:
218 case elfcpp::SHT_HASH
:
219 case elfcpp::SHT_DYNAMIC
:
220 case elfcpp::SHT_SYMTAB_SHNDX
:
223 case elfcpp::SHT_STRTAB
:
224 // Discard the sections which have special meanings in the ELF
225 // ABI. Keep others (e.g., .stabstr). We could also do this by
226 // checking the sh_link fields of the appropriate sections.
227 return (strcmp(name
, ".dynstr") != 0
228 && strcmp(name
, ".strtab") != 0
229 && strcmp(name
, ".shstrtab") != 0);
231 case elfcpp::SHT_RELA
:
232 case elfcpp::SHT_REL
:
233 case elfcpp::SHT_GROUP
:
234 // If we are emitting relocations these should be handled
236 gold_assert(!parameters
->options().relocatable()
237 && !parameters
->options().emit_relocs());
240 case elfcpp::SHT_PROGBITS
:
241 if (parameters
->options().strip_debug()
242 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
244 if (is_debug_info_section(name
))
247 if (parameters
->options().strip_debug_non_line()
248 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
250 // Debugging sections can only be recognized by name.
251 if (is_prefix_of(".debug", name
)
252 && !is_lines_only_debug_section(name
))
255 if (parameters
->options().strip_debug_gdb()
256 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
258 // Debugging sections can only be recognized by name.
259 if (is_prefix_of(".debug", name
)
260 && !is_gdb_debug_section(name
))
263 if (parameters
->options().strip_lto_sections()
264 && !parameters
->options().relocatable()
265 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
267 // Ignore LTO sections containing intermediate code.
268 if (is_prefix_of(".gnu.lto_", name
))
278 // Return an output section named NAME, or NULL if there is none.
281 Layout::find_output_section(const char* name
) const
283 for (Section_list::const_iterator p
= this->section_list_
.begin();
284 p
!= this->section_list_
.end();
286 if (strcmp((*p
)->name(), name
) == 0)
291 // Return an output segment of type TYPE, with segment flags SET set
292 // and segment flags CLEAR clear. Return NULL if there is none.
295 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
296 elfcpp::Elf_Word clear
) const
298 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
299 p
!= this->segment_list_
.end();
301 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
302 && ((*p
)->flags() & set
) == set
303 && ((*p
)->flags() & clear
) == 0)
308 // Return the output section to use for section NAME with type TYPE
309 // and section flags FLAGS. NAME must be canonicalized in the string
310 // pool, and NAME_KEY is the key.
313 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
314 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
316 elfcpp::Elf_Xword lookup_flags
= flags
;
318 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
319 // read-write with read-only sections. Some other ELF linkers do
320 // not do this. FIXME: Perhaps there should be an option
322 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
324 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
325 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
326 std::pair
<Section_name_map::iterator
, bool> ins(
327 this->section_name_map_
.insert(v
));
330 return ins
.first
->second
;
333 // This is the first time we've seen this name/type/flags
334 // combination. For compatibility with the GNU linker, we
335 // combine sections with contents and zero flags with sections
336 // with non-zero flags. This is a workaround for cases where
337 // assembler code forgets to set section flags. FIXME: Perhaps
338 // there should be an option to control this.
339 Output_section
* os
= NULL
;
341 if (type
== elfcpp::SHT_PROGBITS
)
345 Output_section
* same_name
= this->find_output_section(name
);
346 if (same_name
!= NULL
347 && same_name
->type() == elfcpp::SHT_PROGBITS
348 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
351 else if ((flags
& elfcpp::SHF_TLS
) == 0)
353 elfcpp::Elf_Xword zero_flags
= 0;
354 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
355 Section_name_map::iterator p
=
356 this->section_name_map_
.find(zero_key
);
357 if (p
!= this->section_name_map_
.end())
363 os
= this->make_output_section(name
, type
, flags
);
364 ins
.first
->second
= os
;
369 // Pick the output section to use for section NAME, in input file
370 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
371 // linker created section. IS_INPUT_SECTION is true if we are
372 // choosing an output section for an input section found in a input
373 // file. This will return NULL if the input section should be
377 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
378 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
379 bool is_input_section
)
381 // We should not see any input sections after we have attached
382 // sections to segments.
383 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
385 // Some flags in the input section should not be automatically
386 // copied to the output section.
387 flags
&= ~ (elfcpp::SHF_INFO_LINK
388 | elfcpp::SHF_LINK_ORDER
391 | elfcpp::SHF_STRINGS
);
393 if (this->script_options_
->saw_sections_clause())
395 // We are using a SECTIONS clause, so the output section is
396 // chosen based only on the name.
398 Script_sections
* ss
= this->script_options_
->script_sections();
399 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
400 Output_section
** output_section_slot
;
401 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
404 // The SECTIONS clause says to discard this input section.
408 // If this is an orphan section--one not mentioned in the linker
409 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
410 // default processing below.
412 if (output_section_slot
!= NULL
)
414 if (*output_section_slot
!= NULL
)
415 return *output_section_slot
;
417 // We don't put sections found in the linker script into
418 // SECTION_NAME_MAP_. That keeps us from getting confused
419 // if an orphan section is mapped to a section with the same
420 // name as one in the linker script.
422 name
= this->namepool_
.add(name
, false, NULL
);
424 Output_section
* os
= this->make_output_section(name
, type
, flags
);
425 os
->set_found_in_sections_clause();
426 *output_section_slot
= os
;
431 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
433 // Turn NAME from the name of the input section into the name of the
436 size_t len
= strlen(name
);
437 if (is_input_section
&& !parameters
->options().relocatable())
438 name
= Layout::output_section_name(name
, &len
);
440 Stringpool::Key name_key
;
441 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
443 // Find or make the output section. The output section is selected
444 // based on the section name, type, and flags.
445 return this->get_output_section(name
, name_key
, type
, flags
);
448 // Return the output section to use for input section SHNDX, with name
449 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
450 // index of a relocation section which applies to this section, or 0
451 // if none, or -1U if more than one. RELOC_TYPE is the type of the
452 // relocation section if there is one. Set *OFF to the offset of this
453 // input section without the output section. Return NULL if the
454 // section should be discarded. Set *OFF to -1 if the section
455 // contents should not be written directly to the output file, but
456 // will instead receive special handling.
458 template<int size
, bool big_endian
>
460 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
461 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
462 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
466 if (!this->include_section(object
, name
, shdr
))
471 // In a relocatable link a grouped section must not be combined with
472 // any other sections.
473 if (parameters
->options().relocatable()
474 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
476 name
= this->namepool_
.add(name
, true, NULL
);
477 os
= this->make_output_section(name
, shdr
.get_sh_type(),
478 shdr
.get_sh_flags());
482 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
483 shdr
.get_sh_flags(), true);
488 // By default the GNU linker sorts input sections whose names match
489 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
490 // are sorted by name. This is used to implement constructor
491 // priority ordering. We are compatible.
492 if (!this->script_options_
->saw_sections_clause()
493 && (is_prefix_of(".ctors.", name
)
494 || is_prefix_of(".dtors.", name
)
495 || is_prefix_of(".init_array.", name
)
496 || is_prefix_of(".fini_array.", name
)))
497 os
->set_must_sort_attached_input_sections();
499 // FIXME: Handle SHF_LINK_ORDER somewhere.
501 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
502 this->script_options_
->saw_sections_clause());
507 // Handle a relocation section when doing a relocatable link.
509 template<int size
, bool big_endian
>
511 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
513 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
514 Output_section
* data_section
,
515 Relocatable_relocs
* rr
)
517 gold_assert(parameters
->options().relocatable()
518 || parameters
->options().emit_relocs());
520 int sh_type
= shdr
.get_sh_type();
523 if (sh_type
== elfcpp::SHT_REL
)
525 else if (sh_type
== elfcpp::SHT_RELA
)
529 name
+= data_section
->name();
531 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
536 os
->set_should_link_to_symtab();
537 os
->set_info_section(data_section
);
539 Output_section_data
* posd
;
540 if (sh_type
== elfcpp::SHT_REL
)
542 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
543 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
547 else if (sh_type
== elfcpp::SHT_RELA
)
549 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
550 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
557 os
->add_output_section_data(posd
);
558 rr
->set_output_data(posd
);
563 // Handle a group section when doing a relocatable link.
565 template<int size
, bool big_endian
>
567 Layout::layout_group(Symbol_table
* symtab
,
568 Sized_relobj
<size
, big_endian
>* object
,
570 const char* group_section_name
,
571 const char* signature
,
572 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
573 elfcpp::Elf_Word flags
,
574 std::vector
<unsigned int>* shndxes
)
576 gold_assert(parameters
->options().relocatable());
577 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
578 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
579 Output_section
* os
= this->make_output_section(group_section_name
,
581 shdr
.get_sh_flags());
583 // We need to find a symbol with the signature in the symbol table.
584 // If we don't find one now, we need to look again later.
585 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
587 os
->set_info_symndx(sym
);
590 // We will wind up using a symbol whose name is the signature.
591 // So just put the signature in the symbol name pool to save it.
592 signature
= symtab
->canonicalize_name(signature
);
593 this->group_signatures_
.push_back(Group_signature(os
, signature
));
596 os
->set_should_link_to_symtab();
599 section_size_type entry_count
=
600 convert_to_section_size_type(shdr
.get_sh_size() / 4);
601 Output_section_data
* posd
=
602 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
604 os
->add_output_section_data(posd
);
607 // Special GNU handling of sections name .eh_frame. They will
608 // normally hold exception frame data as defined by the C++ ABI
609 // (http://codesourcery.com/cxx-abi/).
611 template<int size
, bool big_endian
>
613 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
614 const unsigned char* symbols
,
616 const unsigned char* symbol_names
,
617 off_t symbol_names_size
,
619 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
620 unsigned int reloc_shndx
, unsigned int reloc_type
,
623 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
624 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
626 const char* const name
= ".eh_frame";
627 Output_section
* os
= this->choose_output_section(object
,
629 elfcpp::SHT_PROGBITS
,
635 if (this->eh_frame_section_
== NULL
)
637 this->eh_frame_section_
= os
;
638 this->eh_frame_data_
= new Eh_frame();
640 if (this->options_
.eh_frame_hdr())
642 Output_section
* hdr_os
=
643 this->choose_output_section(NULL
,
645 elfcpp::SHT_PROGBITS
,
651 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
652 this->eh_frame_data_
);
653 hdr_os
->add_output_section_data(hdr_posd
);
655 hdr_os
->set_after_input_sections();
657 if (!this->script_options_
->saw_phdrs_clause())
659 Output_segment
* hdr_oseg
;
660 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
662 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
665 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
670 gold_assert(this->eh_frame_section_
== os
);
672 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
681 os
->update_flags_for_input_section(shdr
.get_sh_flags());
683 // We found a .eh_frame section we are going to optimize, so now
684 // we can add the set of optimized sections to the output
685 // section. We need to postpone adding this until we've found a
686 // section we can optimize so that the .eh_frame section in
687 // crtbegin.o winds up at the start of the output section.
688 if (!this->added_eh_frame_data_
)
690 os
->add_output_section_data(this->eh_frame_data_
);
691 this->added_eh_frame_data_
= true;
697 // We couldn't handle this .eh_frame section for some reason.
698 // Add it as a normal section.
699 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
700 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
701 saw_sections_clause
);
707 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
708 // the output section.
711 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
712 elfcpp::Elf_Xword flags
,
713 Output_section_data
* posd
)
715 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
718 os
->add_output_section_data(posd
);
722 // Map section flags to segment flags.
725 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
727 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
728 if ((flags
& elfcpp::SHF_WRITE
) != 0)
730 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
735 // Sometimes we compress sections. This is typically done for
736 // sections that are not part of normal program execution (such as
737 // .debug_* sections), and where the readers of these sections know
738 // how to deal with compressed sections. (To make it easier for them,
739 // we will rename the ouput section in such cases from .foo to
740 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
741 // doesn't say for certain whether we'll compress -- it depends on
742 // commandline options as well -- just whether this section is a
743 // candidate for compression.
746 is_compressible_debug_section(const char* secname
)
748 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
751 // Make a new Output_section, and attach it to segments as
755 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
756 elfcpp::Elf_Xword flags
)
759 if ((flags
& elfcpp::SHF_ALLOC
) == 0
760 && strcmp(this->options_
.compress_debug_sections(), "none") != 0
761 && is_compressible_debug_section(name
))
762 os
= new Output_compressed_section(&this->options_
, name
, type
, flags
);
764 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
765 && this->options_
.strip_debug_non_line()
766 && strcmp(".debug_abbrev", name
) == 0)
768 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
770 if (this->debug_info_
)
771 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
773 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
774 && this->options_
.strip_debug_non_line()
775 && strcmp(".debug_info", name
) == 0)
777 os
= this->debug_info_
= new Output_reduced_debug_info_section(
779 if (this->debug_abbrev_
)
780 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
783 os
= new Output_section(name
, type
, flags
);
785 this->section_list_
.push_back(os
);
787 // The GNU linker by default sorts some sections by priority, so we
788 // do the same. We need to know that this might happen before we
789 // attach any input sections.
790 if (!this->script_options_
->saw_sections_clause()
791 && (strcmp(name
, ".ctors") == 0
792 || strcmp(name
, ".dtors") == 0
793 || strcmp(name
, ".init_array") == 0
794 || strcmp(name
, ".fini_array") == 0))
795 os
->set_may_sort_attached_input_sections();
797 // With -z relro, we have to recognize the special sections by name.
798 // There is no other way.
799 if (!this->script_options_
->saw_sections_clause()
800 && parameters
->options().relro()
801 && type
== elfcpp::SHT_PROGBITS
802 && (flags
& elfcpp::SHF_ALLOC
) != 0
803 && (flags
& elfcpp::SHF_WRITE
) != 0)
805 if (strcmp(name
, ".data.rel.ro") == 0)
807 else if (strcmp(name
, ".data.rel.ro.local") == 0)
810 os
->set_is_relro_local();
814 // If we have already attached the sections to segments, then we
815 // need to attach this one now. This happens for sections created
816 // directly by the linker.
817 if (this->sections_are_attached_
)
818 this->attach_section_to_segment(os
);
823 // Attach output sections to segments. This is called after we have
824 // seen all the input sections.
827 Layout::attach_sections_to_segments()
829 for (Section_list::iterator p
= this->section_list_
.begin();
830 p
!= this->section_list_
.end();
832 this->attach_section_to_segment(*p
);
834 this->sections_are_attached_
= true;
837 // Attach an output section to a segment.
840 Layout::attach_section_to_segment(Output_section
* os
)
842 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
843 this->unattached_section_list_
.push_back(os
);
845 this->attach_allocated_section_to_segment(os
);
848 // Attach an allocated output section to a segment.
851 Layout::attach_allocated_section_to_segment(Output_section
* os
)
853 elfcpp::Elf_Xword flags
= os
->flags();
854 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
856 if (parameters
->options().relocatable())
859 // If we have a SECTIONS clause, we can't handle the attachment to
860 // segments until after we've seen all the sections.
861 if (this->script_options_
->saw_sections_clause())
864 gold_assert(!this->script_options_
->saw_phdrs_clause());
866 // This output section goes into a PT_LOAD segment.
868 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
870 // In general the only thing we really care about for PT_LOAD
871 // segments is whether or not they are writable, so that is how we
872 // search for them. People who need segments sorted on some other
873 // basis will have to use a linker script.
875 Segment_list::const_iterator p
;
876 for (p
= this->segment_list_
.begin();
877 p
!= this->segment_list_
.end();
880 if ((*p
)->type() == elfcpp::PT_LOAD
881 && (parameters
->options().omagic()
882 || ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
)))
884 // If -Tbss was specified, we need to separate the data
886 if (this->options_
.user_set_Tbss())
888 if ((os
->type() == elfcpp::SHT_NOBITS
)
889 == (*p
)->has_any_data_sections())
893 (*p
)->add_output_section(os
, seg_flags
);
898 if (p
== this->segment_list_
.end())
900 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
902 oseg
->add_output_section(os
, seg_flags
);
905 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
907 if (os
->type() == elfcpp::SHT_NOTE
)
909 // See if we already have an equivalent PT_NOTE segment.
910 for (p
= this->segment_list_
.begin();
911 p
!= segment_list_
.end();
914 if ((*p
)->type() == elfcpp::PT_NOTE
915 && (((*p
)->flags() & elfcpp::PF_W
)
916 == (seg_flags
& elfcpp::PF_W
)))
918 (*p
)->add_output_section(os
, seg_flags
);
923 if (p
== this->segment_list_
.end())
925 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
927 oseg
->add_output_section(os
, seg_flags
);
931 // If we see a loadable SHF_TLS section, we create a PT_TLS
932 // segment. There can only be one such segment.
933 if ((flags
& elfcpp::SHF_TLS
) != 0)
935 if (this->tls_segment_
== NULL
)
936 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
937 this->tls_segment_
->add_output_section(os
, seg_flags
);
940 // If -z relro is in effect, and we see a relro section, we create a
941 // PT_GNU_RELRO segment. There can only be one such segment.
942 if (os
->is_relro() && parameters
->options().relro())
944 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
945 if (this->relro_segment_
== NULL
)
946 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
947 this->relro_segment_
->add_output_section(os
, seg_flags
);
951 // Make an output section for a script.
954 Layout::make_output_section_for_script(const char* name
)
956 name
= this->namepool_
.add(name
, false, NULL
);
957 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
959 os
->set_found_in_sections_clause();
963 // Return the number of segments we expect to see.
966 Layout::expected_segment_count() const
968 size_t ret
= this->segment_list_
.size();
970 // If we didn't see a SECTIONS clause in a linker script, we should
971 // already have the complete list of segments. Otherwise we ask the
972 // SECTIONS clause how many segments it expects, and add in the ones
973 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
975 if (!this->script_options_
->saw_sections_clause())
979 const Script_sections
* ss
= this->script_options_
->script_sections();
980 return ret
+ ss
->expected_segment_count(this);
984 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
985 // is whether we saw a .note.GNU-stack section in the object file.
986 // GNU_STACK_FLAGS is the section flags. The flags give the
987 // protection required for stack memory. We record this in an
988 // executable as a PT_GNU_STACK segment. If an object file does not
989 // have a .note.GNU-stack segment, we must assume that it is an old
990 // object. On some targets that will force an executable stack.
993 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
996 this->input_without_gnu_stack_note_
= true;
999 this->input_with_gnu_stack_note_
= true;
1000 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1001 this->input_requires_executable_stack_
= true;
1005 // Create the dynamic sections which are needed before we read the
1009 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1011 if (parameters
->doing_static_link())
1014 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1015 elfcpp::SHT_DYNAMIC
,
1017 | elfcpp::SHF_WRITE
),
1019 this->dynamic_section_
->set_is_relro();
1021 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1022 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1023 elfcpp::STV_HIDDEN
, 0, false, false);
1025 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1027 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1030 // For each output section whose name can be represented as C symbol,
1031 // define __start and __stop symbols for the section. This is a GNU
1035 Layout::define_section_symbols(Symbol_table
* symtab
)
1037 for (Section_list::const_iterator p
= this->section_list_
.begin();
1038 p
!= this->section_list_
.end();
1041 const char* const name
= (*p
)->name();
1042 if (name
[strspn(name
,
1044 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1045 "abcdefghijklmnopqrstuvwxyz"
1049 const std::string
name_string(name
);
1050 const std::string
start_name("__start_" + name_string
);
1051 const std::string
stop_name("__stop_" + name_string
);
1053 symtab
->define_in_output_data(start_name
.c_str(),
1060 elfcpp::STV_DEFAULT
,
1062 false, // offset_is_from_end
1063 true); // only_if_ref
1065 symtab
->define_in_output_data(stop_name
.c_str(),
1072 elfcpp::STV_DEFAULT
,
1074 true, // offset_is_from_end
1075 true); // only_if_ref
1080 // Define symbols for group signatures.
1083 Layout::define_group_signatures(Symbol_table
* symtab
)
1085 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1086 p
!= this->group_signatures_
.end();
1089 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1091 p
->section
->set_info_symndx(sym
);
1094 // Force the name of the group section to the group
1095 // signature, and use the group's section symbol as the
1096 // signature symbol.
1097 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1099 const char* name
= this->namepool_
.add(p
->signature
,
1101 p
->section
->set_name(name
);
1103 p
->section
->set_needs_symtab_index();
1104 p
->section
->set_info_section_symndx(p
->section
);
1108 this->group_signatures_
.clear();
1111 // Find the first read-only PT_LOAD segment, creating one if
1115 Layout::find_first_load_seg()
1117 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1118 p
!= this->segment_list_
.end();
1121 if ((*p
)->type() == elfcpp::PT_LOAD
1122 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1123 && (parameters
->options().omagic()
1124 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1128 gold_assert(!this->script_options_
->saw_phdrs_clause());
1130 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1135 // Finalize the layout. When this is called, we have created all the
1136 // output sections and all the output segments which are based on
1137 // input sections. We have several things to do, and we have to do
1138 // them in the right order, so that we get the right results correctly
1141 // 1) Finalize the list of output segments and create the segment
1144 // 2) Finalize the dynamic symbol table and associated sections.
1146 // 3) Determine the final file offset of all the output segments.
1148 // 4) Determine the final file offset of all the SHF_ALLOC output
1151 // 5) Create the symbol table sections and the section name table
1154 // 6) Finalize the symbol table: set symbol values to their final
1155 // value and make a final determination of which symbols are going
1156 // into the output symbol table.
1158 // 7) Create the section table header.
1160 // 8) Determine the final file offset of all the output sections which
1161 // are not SHF_ALLOC, including the section table header.
1163 // 9) Finalize the ELF file header.
1165 // This function returns the size of the output file.
1168 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1169 Target
* target
, const Task
* task
)
1171 target
->finalize_sections(this);
1173 this->count_local_symbols(task
, input_objects
);
1175 this->create_gold_note();
1176 this->create_executable_stack_info(target
);
1177 this->create_build_id();
1179 Output_segment
* phdr_seg
= NULL
;
1180 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1182 // There was a dynamic object in the link. We need to create
1183 // some information for the dynamic linker.
1185 // Create the PT_PHDR segment which will hold the program
1187 if (!this->script_options_
->saw_phdrs_clause())
1188 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1190 // Create the dynamic symbol table, including the hash table.
1191 Output_section
* dynstr
;
1192 std::vector
<Symbol
*> dynamic_symbols
;
1193 unsigned int local_dynamic_count
;
1194 Versions
versions(*this->script_options()->version_script_info(),
1196 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1197 &local_dynamic_count
, &dynamic_symbols
,
1200 // Create the .interp section to hold the name of the
1201 // interpreter, and put it in a PT_INTERP segment.
1202 if (!parameters
->options().shared())
1203 this->create_interp(target
);
1205 // Finish the .dynamic section to hold the dynamic data, and put
1206 // it in a PT_DYNAMIC segment.
1207 this->finish_dynamic_section(input_objects
, symtab
);
1209 // We should have added everything we need to the dynamic string
1211 this->dynpool_
.set_string_offsets();
1213 // Create the version sections. We can't do this until the
1214 // dynamic string table is complete.
1215 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1216 dynamic_symbols
, dynstr
);
1219 // If there is a SECTIONS clause, put all the input sections into
1220 // the required order.
1221 Output_segment
* load_seg
;
1222 if (this->script_options_
->saw_sections_clause())
1223 load_seg
= this->set_section_addresses_from_script(symtab
);
1224 else if (parameters
->options().relocatable())
1227 load_seg
= this->find_first_load_seg();
1229 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
1232 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1234 // Lay out the segment headers.
1235 Output_segment_headers
* segment_headers
;
1236 if (parameters
->options().relocatable())
1237 segment_headers
= NULL
;
1240 segment_headers
= new Output_segment_headers(this->segment_list_
);
1241 if (load_seg
!= NULL
)
1242 load_seg
->add_initial_output_data(segment_headers
);
1243 if (phdr_seg
!= NULL
)
1244 phdr_seg
->add_initial_output_data(segment_headers
);
1247 // Lay out the file header.
1248 Output_file_header
* file_header
;
1249 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1250 this->options_
.entry());
1251 if (load_seg
!= NULL
)
1252 load_seg
->add_initial_output_data(file_header
);
1254 this->special_output_list_
.push_back(file_header
);
1255 if (segment_headers
!= NULL
)
1256 this->special_output_list_
.push_back(segment_headers
);
1258 if (this->script_options_
->saw_phdrs_clause()
1259 && !parameters
->options().relocatable())
1261 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1262 // clause in a linker script.
1263 Script_sections
* ss
= this->script_options_
->script_sections();
1264 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1267 // We set the output section indexes in set_segment_offsets and
1268 // set_section_indexes.
1269 unsigned int shndx
= 1;
1271 // Set the file offsets of all the segments, and all the sections
1274 if (!parameters
->options().relocatable())
1275 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1277 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1279 // Set the file offsets of all the non-data sections we've seen so
1280 // far which don't have to wait for the input sections. We need
1281 // this in order to finalize local symbols in non-allocated
1283 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1285 // Set the section indexes of all unallocated sections seen so far,
1286 // in case any of them are somehow referenced by a symbol.
1287 shndx
= this->set_section_indexes(shndx
);
1289 // Create the symbol table sections.
1290 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1291 if (!parameters
->doing_static_link())
1292 this->assign_local_dynsym_offsets(input_objects
);
1294 // Process any symbol assignments from a linker script. This must
1295 // be called after the symbol table has been finalized.
1296 this->script_options_
->finalize_symbols(symtab
, this);
1298 // Create the .shstrtab section.
1299 Output_section
* shstrtab_section
= this->create_shstrtab();
1301 // Set the file offsets of the rest of the non-data sections which
1302 // don't have to wait for the input sections.
1303 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1305 // Now that all sections have been created, set the section indexes
1306 // for any sections which haven't been done yet.
1307 shndx
= this->set_section_indexes(shndx
);
1309 // Create the section table header.
1310 this->create_shdrs(shstrtab_section
, &off
);
1312 // If there are no sections which require postprocessing, we can
1313 // handle the section names now, and avoid a resize later.
1314 if (!this->any_postprocessing_sections_
)
1315 off
= this->set_section_offsets(off
,
1316 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1318 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1320 // Now we know exactly where everything goes in the output file
1321 // (except for non-allocated sections which require postprocessing).
1322 Output_data::layout_complete();
1324 this->output_file_size_
= off
;
1329 // Create a note header following the format defined in the ELF ABI.
1330 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1331 // descriptor. ALLOCATE is true if the section should be allocated in
1332 // memory. This returns the new note section. It sets
1333 // *TRAILING_PADDING to the number of trailing zero bytes required.
1336 Layout::create_note(const char* name
, int note_type
, size_t descsz
,
1337 bool allocate
, size_t* trailing_padding
)
1339 // Authorities all agree that the values in a .note field should
1340 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1341 // they differ on what the alignment is for 64-bit binaries.
1342 // The GABI says unambiguously they take 8-byte alignment:
1343 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1344 // Other documentation says alignment should always be 4 bytes:
1345 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1346 // GNU ld and GNU readelf both support the latter (at least as of
1347 // version 2.16.91), and glibc always generates the latter for
1348 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1350 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1351 const int size
= parameters
->target().get_size();
1353 const int size
= 32;
1356 // The contents of the .note section.
1357 size_t namesz
= strlen(name
) + 1;
1358 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1359 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1361 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1363 unsigned char* buffer
= new unsigned char[notehdrsz
];
1364 memset(buffer
, 0, notehdrsz
);
1366 bool is_big_endian
= parameters
->target().is_big_endian();
1372 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1373 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1374 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1378 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1379 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1380 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1383 else if (size
== 64)
1387 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1388 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1389 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1393 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1394 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1395 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1401 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1403 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
1404 elfcpp::Elf_Xword flags
= 0;
1406 flags
= elfcpp::SHF_ALLOC
;
1407 Output_section
* os
= this->make_output_section(note_name
,
1410 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1413 os
->add_output_section_data(posd
);
1415 *trailing_padding
= aligned_descsz
- descsz
;
1420 // For an executable or shared library, create a note to record the
1421 // version of gold used to create the binary.
1424 Layout::create_gold_note()
1426 if (parameters
->options().relocatable())
1429 std::string desc
= std::string("gold ") + gold::get_version_string();
1431 size_t trailing_padding
;
1432 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1433 desc
.size(), false, &trailing_padding
);
1435 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1436 os
->add_output_section_data(posd
);
1438 if (trailing_padding
> 0)
1440 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1441 os
->add_output_section_data(posd
);
1445 // Record whether the stack should be executable. This can be set
1446 // from the command line using the -z execstack or -z noexecstack
1447 // options. Otherwise, if any input file has a .note.GNU-stack
1448 // section with the SHF_EXECINSTR flag set, the stack should be
1449 // executable. Otherwise, if at least one input file a
1450 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1451 // section, we use the target default for whether the stack should be
1452 // executable. Otherwise, we don't generate a stack note. When
1453 // generating a object file, we create a .note.GNU-stack section with
1454 // the appropriate marking. When generating an executable or shared
1455 // library, we create a PT_GNU_STACK segment.
1458 Layout::create_executable_stack_info(const Target
* target
)
1460 bool is_stack_executable
;
1461 if (this->options_
.is_execstack_set())
1462 is_stack_executable
= this->options_
.is_stack_executable();
1463 else if (!this->input_with_gnu_stack_note_
)
1467 if (this->input_requires_executable_stack_
)
1468 is_stack_executable
= true;
1469 else if (this->input_without_gnu_stack_note_
)
1470 is_stack_executable
= target
->is_default_stack_executable();
1472 is_stack_executable
= false;
1475 if (parameters
->options().relocatable())
1477 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1478 elfcpp::Elf_Xword flags
= 0;
1479 if (is_stack_executable
)
1480 flags
|= elfcpp::SHF_EXECINSTR
;
1481 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1485 if (this->script_options_
->saw_phdrs_clause())
1487 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1488 if (is_stack_executable
)
1489 flags
|= elfcpp::PF_X
;
1490 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1494 // If --build-id was used, set up the build ID note.
1497 Layout::create_build_id()
1499 if (!parameters
->options().user_set_build_id())
1502 const char* style
= parameters
->options().build_id();
1503 if (strcmp(style
, "none") == 0)
1506 // Set DESCSZ to the size of the note descriptor. When possible,
1507 // set DESC to the note descriptor contents.
1510 if (strcmp(style
, "md5") == 0)
1512 else if (strcmp(style
, "sha1") == 0)
1514 else if (strcmp(style
, "uuid") == 0)
1516 const size_t uuidsz
= 128 / 8;
1518 char buffer
[uuidsz
];
1519 memset(buffer
, 0, uuidsz
);
1521 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1523 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1527 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1528 release_descriptor(descriptor
, true);
1530 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1531 else if (static_cast<size_t>(got
) != uuidsz
)
1532 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1536 desc
.assign(buffer
, uuidsz
);
1539 else if (strncmp(style
, "0x", 2) == 0)
1542 const char* p
= style
+ 2;
1545 if (hex_p(p
[0]) && hex_p(p
[1]))
1547 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1551 else if (*p
== '-' || *p
== ':')
1554 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1557 descsz
= desc
.size();
1560 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1563 size_t trailing_padding
;
1564 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1565 descsz
, true, &trailing_padding
);
1569 // We know the value already, so we fill it in now.
1570 gold_assert(desc
.size() == descsz
);
1572 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1573 os
->add_output_section_data(posd
);
1575 if (trailing_padding
!= 0)
1577 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1578 os
->add_output_section_data(posd
);
1583 // We need to compute a checksum after we have completed the
1585 gold_assert(trailing_padding
== 0);
1586 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1587 os
->add_output_section_data(this->build_id_note_
);
1588 os
->set_after_input_sections();
1592 // Return whether SEG1 should be before SEG2 in the output file. This
1593 // is based entirely on the segment type and flags. When this is
1594 // called the segment addresses has normally not yet been set.
1597 Layout::segment_precedes(const Output_segment
* seg1
,
1598 const Output_segment
* seg2
)
1600 elfcpp::Elf_Word type1
= seg1
->type();
1601 elfcpp::Elf_Word type2
= seg2
->type();
1603 // The single PT_PHDR segment is required to precede any loadable
1604 // segment. We simply make it always first.
1605 if (type1
== elfcpp::PT_PHDR
)
1607 gold_assert(type2
!= elfcpp::PT_PHDR
);
1610 if (type2
== elfcpp::PT_PHDR
)
1613 // The single PT_INTERP segment is required to precede any loadable
1614 // segment. We simply make it always second.
1615 if (type1
== elfcpp::PT_INTERP
)
1617 gold_assert(type2
!= elfcpp::PT_INTERP
);
1620 if (type2
== elfcpp::PT_INTERP
)
1623 // We then put PT_LOAD segments before any other segments.
1624 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1626 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1629 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1630 // segment, because that is where the dynamic linker expects to find
1631 // it (this is just for efficiency; other positions would also work
1633 if (type1
== elfcpp::PT_TLS
1634 && type2
!= elfcpp::PT_TLS
1635 && type2
!= elfcpp::PT_GNU_RELRO
)
1637 if (type2
== elfcpp::PT_TLS
1638 && type1
!= elfcpp::PT_TLS
1639 && type1
!= elfcpp::PT_GNU_RELRO
)
1642 // We put the PT_GNU_RELRO segment last, because that is where the
1643 // dynamic linker expects to find it (as with PT_TLS, this is just
1645 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
1647 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
1650 const elfcpp::Elf_Word flags1
= seg1
->flags();
1651 const elfcpp::Elf_Word flags2
= seg2
->flags();
1653 // The order of non-PT_LOAD segments is unimportant. We simply sort
1654 // by the numeric segment type and flags values. There should not
1655 // be more than one segment with the same type and flags.
1656 if (type1
!= elfcpp::PT_LOAD
)
1659 return type1
< type2
;
1660 gold_assert(flags1
!= flags2
);
1661 return flags1
< flags2
;
1664 // If the addresses are set already, sort by load address.
1665 if (seg1
->are_addresses_set())
1667 if (!seg2
->are_addresses_set())
1670 unsigned int section_count1
= seg1
->output_section_count();
1671 unsigned int section_count2
= seg2
->output_section_count();
1672 if (section_count1
== 0 && section_count2
> 0)
1674 if (section_count1
> 0 && section_count2
== 0)
1677 uint64_t paddr1
= seg1
->first_section_load_address();
1678 uint64_t paddr2
= seg2
->first_section_load_address();
1679 if (paddr1
!= paddr2
)
1680 return paddr1
< paddr2
;
1682 else if (seg2
->are_addresses_set())
1685 // We sort PT_LOAD segments based on the flags. Readonly segments
1686 // come before writable segments. Then writable segments with data
1687 // come before writable segments without data. Then executable
1688 // segments come before non-executable segments. Then the unlikely
1689 // case of a non-readable segment comes before the normal case of a
1690 // readable segment. If there are multiple segments with the same
1691 // type and flags, we require that the address be set, and we sort
1692 // by virtual address and then physical address.
1693 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1694 return (flags1
& elfcpp::PF_W
) == 0;
1695 if ((flags1
& elfcpp::PF_W
) != 0
1696 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1697 return seg1
->has_any_data_sections();
1698 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1699 return (flags1
& elfcpp::PF_X
) != 0;
1700 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1701 return (flags1
& elfcpp::PF_R
) == 0;
1703 // We shouldn't get here--we shouldn't create segments which we
1704 // can't distinguish.
1708 // Set the file offsets of all the segments, and all the sections they
1709 // contain. They have all been created. LOAD_SEG must be be laid out
1710 // first. Return the offset of the data to follow.
1713 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1714 unsigned int *pshndx
)
1716 // Sort them into the final order.
1717 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1718 Layout::Compare_segments());
1720 // Find the PT_LOAD segments, and set their addresses and offsets
1721 // and their section's addresses and offsets.
1723 if (this->options_
.user_set_Ttext())
1724 addr
= this->options_
.Ttext();
1725 else if (parameters
->options().shared())
1728 addr
= target
->default_text_segment_address();
1731 // If LOAD_SEG is NULL, then the file header and segment headers
1732 // will not be loadable. But they still need to be at offset 0 in
1733 // the file. Set their offsets now.
1734 if (load_seg
== NULL
)
1736 for (Data_list::iterator p
= this->special_output_list_
.begin();
1737 p
!= this->special_output_list_
.end();
1740 off
= align_address(off
, (*p
)->addralign());
1741 (*p
)->set_address_and_file_offset(0, off
);
1742 off
+= (*p
)->data_size();
1746 const bool check_sections
= parameters
->options().check_sections();
1747 Output_segment
* last_load_segment
= NULL
;
1749 bool was_readonly
= false;
1750 for (Segment_list::iterator p
= this->segment_list_
.begin();
1751 p
!= this->segment_list_
.end();
1754 if ((*p
)->type() == elfcpp::PT_LOAD
)
1756 if (load_seg
!= NULL
&& load_seg
!= *p
)
1760 bool are_addresses_set
= (*p
)->are_addresses_set();
1761 if (are_addresses_set
)
1763 // When it comes to setting file offsets, we care about
1764 // the physical address.
1765 addr
= (*p
)->paddr();
1767 else if (this->options_
.user_set_Tdata()
1768 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1769 && (!this->options_
.user_set_Tbss()
1770 || (*p
)->has_any_data_sections()))
1772 addr
= this->options_
.Tdata();
1773 are_addresses_set
= true;
1775 else if (this->options_
.user_set_Tbss()
1776 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1777 && !(*p
)->has_any_data_sections())
1779 addr
= this->options_
.Tbss();
1780 are_addresses_set
= true;
1783 uint64_t orig_addr
= addr
;
1784 uint64_t orig_off
= off
;
1786 uint64_t aligned_addr
= 0;
1787 uint64_t abi_pagesize
= target
->abi_pagesize();
1788 uint64_t common_pagesize
= target
->common_pagesize();
1790 if (!parameters
->options().nmagic()
1791 && !parameters
->options().omagic())
1792 (*p
)->set_minimum_p_align(common_pagesize
);
1794 if (are_addresses_set
)
1796 if (!parameters
->options().nmagic()
1797 && !parameters
->options().omagic())
1799 // Adjust the file offset to the same address modulo
1801 uint64_t unsigned_off
= off
;
1802 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1803 | (addr
& (abi_pagesize
- 1)));
1804 if (aligned_off
< unsigned_off
)
1805 aligned_off
+= abi_pagesize
;
1811 // If the last segment was readonly, and this one is
1812 // not, then skip the address forward one page,
1813 // maintaining the same position within the page. This
1814 // lets us store both segments overlapping on a single
1815 // page in the file, but the loader will put them on
1816 // different pages in memory.
1818 addr
= align_address(addr
, (*p
)->maximum_alignment());
1819 aligned_addr
= addr
;
1821 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1823 if ((addr
& (abi_pagesize
- 1)) != 0)
1824 addr
= addr
+ abi_pagesize
;
1827 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1830 unsigned int shndx_hold
= *pshndx
;
1831 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1834 // Now that we know the size of this segment, we may be able
1835 // to save a page in memory, at the cost of wasting some
1836 // file space, by instead aligning to the start of a new
1837 // page. Here we use the real machine page size rather than
1838 // the ABI mandated page size.
1840 if (!are_addresses_set
&& aligned_addr
!= addr
)
1842 uint64_t first_off
= (common_pagesize
1844 & (common_pagesize
- 1)));
1845 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1848 && ((aligned_addr
& ~ (common_pagesize
- 1))
1849 != (new_addr
& ~ (common_pagesize
- 1)))
1850 && first_off
+ last_off
<= common_pagesize
)
1852 *pshndx
= shndx_hold
;
1853 addr
= align_address(aligned_addr
, common_pagesize
);
1854 addr
= align_address(addr
, (*p
)->maximum_alignment());
1855 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1856 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1863 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1864 was_readonly
= true;
1866 // Implement --check-sections. We know that the segments
1867 // are sorted by LMA.
1868 if (check_sections
&& last_load_segment
!= NULL
)
1870 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
1871 if (last_load_segment
->paddr() + last_load_segment
->memsz()
1874 unsigned long long lb1
= last_load_segment
->paddr();
1875 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
1876 unsigned long long lb2
= (*p
)->paddr();
1877 unsigned long long le2
= lb2
+ (*p
)->memsz();
1878 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1879 "[0x%llx -> 0x%llx]"),
1880 lb1
, le1
, lb2
, le2
);
1883 last_load_segment
= *p
;
1887 // Handle the non-PT_LOAD segments, setting their offsets from their
1888 // section's offsets.
1889 for (Segment_list::iterator p
= this->segment_list_
.begin();
1890 p
!= this->segment_list_
.end();
1893 if ((*p
)->type() != elfcpp::PT_LOAD
)
1897 // Set the TLS offsets for each section in the PT_TLS segment.
1898 if (this->tls_segment_
!= NULL
)
1899 this->tls_segment_
->set_tls_offsets();
1904 // Set the offsets of all the allocated sections when doing a
1905 // relocatable link. This does the same jobs as set_segment_offsets,
1906 // only for a relocatable link.
1909 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1910 unsigned int *pshndx
)
1914 file_header
->set_address_and_file_offset(0, 0);
1915 off
+= file_header
->data_size();
1917 for (Section_list::iterator p
= this->section_list_
.begin();
1918 p
!= this->section_list_
.end();
1921 // We skip unallocated sections here, except that group sections
1922 // have to come first.
1923 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1924 && (*p
)->type() != elfcpp::SHT_GROUP
)
1927 off
= align_address(off
, (*p
)->addralign());
1929 // The linker script might have set the address.
1930 if (!(*p
)->is_address_valid())
1931 (*p
)->set_address(0);
1932 (*p
)->set_file_offset(off
);
1933 (*p
)->finalize_data_size();
1934 off
+= (*p
)->data_size();
1936 (*p
)->set_out_shndx(*pshndx
);
1943 // Set the file offset of all the sections not associated with a
1947 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1949 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1950 p
!= this->unattached_section_list_
.end();
1953 // The symtab section is handled in create_symtab_sections.
1954 if (*p
== this->symtab_section_
)
1957 // If we've already set the data size, don't set it again.
1958 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
1961 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1962 && (*p
)->requires_postprocessing())
1964 (*p
)->create_postprocessing_buffer();
1965 this->any_postprocessing_sections_
= true;
1968 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1969 && (*p
)->after_input_sections())
1971 else if (pass
== POSTPROCESSING_SECTIONS_PASS
1972 && (!(*p
)->after_input_sections()
1973 || (*p
)->type() == elfcpp::SHT_STRTAB
))
1975 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1976 && (!(*p
)->after_input_sections()
1977 || (*p
)->type() != elfcpp::SHT_STRTAB
))
1980 off
= align_address(off
, (*p
)->addralign());
1981 (*p
)->set_file_offset(off
);
1982 (*p
)->finalize_data_size();
1983 off
+= (*p
)->data_size();
1985 // At this point the name must be set.
1986 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
1987 this->namepool_
.add((*p
)->name(), false, NULL
);
1992 // Set the section indexes of all the sections not associated with a
1996 Layout::set_section_indexes(unsigned int shndx
)
1998 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1999 p
!= this->unattached_section_list_
.end();
2002 if (!(*p
)->has_out_shndx())
2004 (*p
)->set_out_shndx(shndx
);
2011 // Set the section addresses according to the linker script. This is
2012 // only called when we see a SECTIONS clause. This returns the
2013 // program segment which should hold the file header and segment
2014 // headers, if any. It will return NULL if they should not be in a
2018 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2020 Script_sections
* ss
= this->script_options_
->script_sections();
2021 gold_assert(ss
->saw_sections_clause());
2023 // Place each orphaned output section in the script.
2024 for (Section_list::iterator p
= this->section_list_
.begin();
2025 p
!= this->section_list_
.end();
2028 if (!(*p
)->found_in_sections_clause())
2029 ss
->place_orphan(*p
);
2032 return this->script_options_
->set_section_addresses(symtab
, this);
2035 // Count the local symbols in the regular symbol table and the dynamic
2036 // symbol table, and build the respective string pools.
2039 Layout::count_local_symbols(const Task
* task
,
2040 const Input_objects
* input_objects
)
2042 // First, figure out an upper bound on the number of symbols we'll
2043 // be inserting into each pool. This helps us create the pools with
2044 // the right size, to avoid unnecessary hashtable resizing.
2045 unsigned int symbol_count
= 0;
2046 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2047 p
!= input_objects
->relobj_end();
2049 symbol_count
+= (*p
)->local_symbol_count();
2051 // Go from "upper bound" to "estimate." We overcount for two
2052 // reasons: we double-count symbols that occur in more than one
2053 // object file, and we count symbols that are dropped from the
2054 // output. Add it all together and assume we overcount by 100%.
2057 // We assume all symbols will go into both the sympool and dynpool.
2058 this->sympool_
.reserve(symbol_count
);
2059 this->dynpool_
.reserve(symbol_count
);
2061 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2062 p
!= input_objects
->relobj_end();
2065 Task_lock_obj
<Object
> tlo(task
, *p
);
2066 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2070 // Create the symbol table sections. Here we also set the final
2071 // values of the symbols. At this point all the loadable sections are
2072 // fully laid out. SHNUM is the number of sections so far.
2075 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2076 Symbol_table
* symtab
,
2082 if (parameters
->target().get_size() == 32)
2084 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2087 else if (parameters
->target().get_size() == 64)
2089 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2096 off
= align_address(off
, align
);
2097 off_t startoff
= off
;
2099 // Save space for the dummy symbol at the start of the section. We
2100 // never bother to write this out--it will just be left as zero.
2102 unsigned int local_symbol_index
= 1;
2104 // Add STT_SECTION symbols for each Output section which needs one.
2105 for (Section_list::iterator p
= this->section_list_
.begin();
2106 p
!= this->section_list_
.end();
2109 if (!(*p
)->needs_symtab_index())
2110 (*p
)->set_symtab_index(-1U);
2113 (*p
)->set_symtab_index(local_symbol_index
);
2114 ++local_symbol_index
;
2119 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2120 p
!= input_objects
->relobj_end();
2123 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2125 off
+= (index
- local_symbol_index
) * symsize
;
2126 local_symbol_index
= index
;
2129 unsigned int local_symcount
= local_symbol_index
;
2130 gold_assert(local_symcount
* symsize
== off
- startoff
);
2133 size_t dyn_global_index
;
2135 if (this->dynsym_section_
== NULL
)
2138 dyn_global_index
= 0;
2143 dyn_global_index
= this->dynsym_section_
->info();
2144 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2145 dynoff
= this->dynsym_section_
->offset() + locsize
;
2146 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2147 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2148 == this->dynsym_section_
->data_size() - locsize
);
2151 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2152 &this->sympool_
, &local_symcount
);
2154 if (!parameters
->options().strip_all())
2156 this->sympool_
.set_string_offsets();
2158 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2159 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2162 this->symtab_section_
= osymtab
;
2164 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2167 osymtab
->add_output_section_data(pos
);
2169 // We generate a .symtab_shndx section if we have more than
2170 // SHN_LORESERVE sections. Technically it is possible that we
2171 // don't need one, because it is possible that there are no
2172 // symbols in any of sections with indexes larger than
2173 // SHN_LORESERVE. That is probably unusual, though, and it is
2174 // easier to always create one than to compute section indexes
2175 // twice (once here, once when writing out the symbols).
2176 if (shnum
>= elfcpp::SHN_LORESERVE
)
2178 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2180 Output_section
* osymtab_xindex
=
2181 this->make_output_section(symtab_xindex_name
,
2182 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2184 size_t symcount
= (off
- startoff
) / symsize
;
2185 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2187 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2189 osymtab_xindex
->set_link_section(osymtab
);
2190 osymtab_xindex
->set_addralign(4);
2191 osymtab_xindex
->set_entsize(4);
2193 osymtab_xindex
->set_after_input_sections();
2195 // This tells the driver code to wait until the symbol table
2196 // has written out before writing out the postprocessing
2197 // sections, including the .symtab_shndx section.
2198 this->any_postprocessing_sections_
= true;
2201 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2202 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2206 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2207 ostrtab
->add_output_section_data(pstr
);
2209 osymtab
->set_file_offset(startoff
);
2210 osymtab
->finalize_data_size();
2211 osymtab
->set_link_section(ostrtab
);
2212 osymtab
->set_info(local_symcount
);
2213 osymtab
->set_entsize(symsize
);
2219 // Create the .shstrtab section, which holds the names of the
2220 // sections. At the time this is called, we have created all the
2221 // output sections except .shstrtab itself.
2224 Layout::create_shstrtab()
2226 // FIXME: We don't need to create a .shstrtab section if we are
2227 // stripping everything.
2229 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2231 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2233 // We can't write out this section until we've set all the section
2234 // names, and we don't set the names of compressed output sections
2235 // until relocations are complete.
2236 os
->set_after_input_sections();
2238 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2239 os
->add_output_section_data(posd
);
2244 // Create the section headers. SIZE is 32 or 64. OFF is the file
2248 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2250 Output_section_headers
* oshdrs
;
2251 oshdrs
= new Output_section_headers(this,
2252 &this->segment_list_
,
2253 &this->section_list_
,
2254 &this->unattached_section_list_
,
2257 off_t off
= align_address(*poff
, oshdrs
->addralign());
2258 oshdrs
->set_address_and_file_offset(0, off
);
2259 off
+= oshdrs
->data_size();
2261 this->section_headers_
= oshdrs
;
2264 // Count the allocated sections.
2267 Layout::allocated_output_section_count() const
2269 size_t section_count
= 0;
2270 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2271 p
!= this->segment_list_
.end();
2273 section_count
+= (*p
)->output_section_count();
2274 return section_count
;
2277 // Create the dynamic symbol table.
2280 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2281 Symbol_table
* symtab
,
2282 Output_section
**pdynstr
,
2283 unsigned int* plocal_dynamic_count
,
2284 std::vector
<Symbol
*>* pdynamic_symbols
,
2285 Versions
* pversions
)
2287 // Count all the symbols in the dynamic symbol table, and set the
2288 // dynamic symbol indexes.
2290 // Skip symbol 0, which is always all zeroes.
2291 unsigned int index
= 1;
2293 // Add STT_SECTION symbols for each Output section which needs one.
2294 for (Section_list::iterator p
= this->section_list_
.begin();
2295 p
!= this->section_list_
.end();
2298 if (!(*p
)->needs_dynsym_index())
2299 (*p
)->set_dynsym_index(-1U);
2302 (*p
)->set_dynsym_index(index
);
2307 // Count the local symbols that need to go in the dynamic symbol table,
2308 // and set the dynamic symbol indexes.
2309 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2310 p
!= input_objects
->relobj_end();
2313 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2317 unsigned int local_symcount
= index
;
2318 *plocal_dynamic_count
= local_symcount
;
2320 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2321 &this->dynpool_
, pversions
);
2325 const int size
= parameters
->target().get_size();
2328 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2331 else if (size
== 64)
2333 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2339 // Create the dynamic symbol table section.
2341 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2346 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2349 dynsym
->add_output_section_data(odata
);
2351 dynsym
->set_info(local_symcount
);
2352 dynsym
->set_entsize(symsize
);
2353 dynsym
->set_addralign(align
);
2355 this->dynsym_section_
= dynsym
;
2357 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2358 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2359 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2361 // If there are more than SHN_LORESERVE allocated sections, we
2362 // create a .dynsym_shndx section. It is possible that we don't
2363 // need one, because it is possible that there are no dynamic
2364 // symbols in any of the sections with indexes larger than
2365 // SHN_LORESERVE. This is probably unusual, though, and at this
2366 // time we don't know the actual section indexes so it is
2367 // inconvenient to check.
2368 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2370 Output_section
* dynsym_xindex
=
2371 this->choose_output_section(NULL
, ".dynsym_shndx",
2372 elfcpp::SHT_SYMTAB_SHNDX
,
2376 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2378 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2380 dynsym_xindex
->set_link_section(dynsym
);
2381 dynsym_xindex
->set_addralign(4);
2382 dynsym_xindex
->set_entsize(4);
2384 dynsym_xindex
->set_after_input_sections();
2386 // This tells the driver code to wait until the symbol table has
2387 // written out before writing out the postprocessing sections,
2388 // including the .dynsym_shndx section.
2389 this->any_postprocessing_sections_
= true;
2392 // Create the dynamic string table section.
2394 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2399 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2400 dynstr
->add_output_section_data(strdata
);
2402 dynsym
->set_link_section(dynstr
);
2403 this->dynamic_section_
->set_link_section(dynstr
);
2405 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2406 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2410 // Create the hash tables.
2412 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2413 || strcmp(parameters
->options().hash_style(), "both") == 0)
2415 unsigned char* phash
;
2416 unsigned int hashlen
;
2417 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2420 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2425 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2429 hashsec
->add_output_section_data(hashdata
);
2431 hashsec
->set_link_section(dynsym
);
2432 hashsec
->set_entsize(4);
2434 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2437 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2438 || strcmp(parameters
->options().hash_style(), "both") == 0)
2440 unsigned char* phash
;
2441 unsigned int hashlen
;
2442 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2445 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2446 elfcpp::SHT_GNU_HASH
,
2450 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2454 hashsec
->add_output_section_data(hashdata
);
2456 hashsec
->set_link_section(dynsym
);
2457 hashsec
->set_entsize(4);
2459 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2463 // Assign offsets to each local portion of the dynamic symbol table.
2466 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2468 Output_section
* dynsym
= this->dynsym_section_
;
2469 gold_assert(dynsym
!= NULL
);
2471 off_t off
= dynsym
->offset();
2473 // Skip the dummy symbol at the start of the section.
2474 off
+= dynsym
->entsize();
2476 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2477 p
!= input_objects
->relobj_end();
2480 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2481 off
+= count
* dynsym
->entsize();
2485 // Create the version sections.
2488 Layout::create_version_sections(const Versions
* versions
,
2489 const Symbol_table
* symtab
,
2490 unsigned int local_symcount
,
2491 const std::vector
<Symbol
*>& dynamic_symbols
,
2492 const Output_section
* dynstr
)
2494 if (!versions
->any_defs() && !versions
->any_needs())
2497 switch (parameters
->size_and_endianness())
2499 #ifdef HAVE_TARGET_32_LITTLE
2500 case Parameters::TARGET_32_LITTLE
:
2501 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2503 dynamic_symbols
, dynstr
);
2506 #ifdef HAVE_TARGET_32_BIG
2507 case Parameters::TARGET_32_BIG
:
2508 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2510 dynamic_symbols
, dynstr
);
2513 #ifdef HAVE_TARGET_64_LITTLE
2514 case Parameters::TARGET_64_LITTLE
:
2515 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2517 dynamic_symbols
, dynstr
);
2520 #ifdef HAVE_TARGET_64_BIG
2521 case Parameters::TARGET_64_BIG
:
2522 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2524 dynamic_symbols
, dynstr
);
2532 // Create the version sections, sized version.
2534 template<int size
, bool big_endian
>
2536 Layout::sized_create_version_sections(
2537 const Versions
* versions
,
2538 const Symbol_table
* symtab
,
2539 unsigned int local_symcount
,
2540 const std::vector
<Symbol
*>& dynamic_symbols
,
2541 const Output_section
* dynstr
)
2543 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2544 elfcpp::SHT_GNU_versym
,
2548 unsigned char* vbuf
;
2550 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2555 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2558 vsec
->add_output_section_data(vdata
);
2559 vsec
->set_entsize(2);
2560 vsec
->set_link_section(this->dynsym_section_
);
2562 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2563 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2565 if (versions
->any_defs())
2567 Output_section
* vdsec
;
2568 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2569 elfcpp::SHT_GNU_verdef
,
2573 unsigned char* vdbuf
;
2574 unsigned int vdsize
;
2575 unsigned int vdentries
;
2576 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2577 &vdsize
, &vdentries
);
2579 Output_section_data
* vddata
=
2580 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
2582 vdsec
->add_output_section_data(vddata
);
2583 vdsec
->set_link_section(dynstr
);
2584 vdsec
->set_info(vdentries
);
2586 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2587 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2590 if (versions
->any_needs())
2592 Output_section
* vnsec
;
2593 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2594 elfcpp::SHT_GNU_verneed
,
2598 unsigned char* vnbuf
;
2599 unsigned int vnsize
;
2600 unsigned int vnentries
;
2601 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2605 Output_section_data
* vndata
=
2606 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
2608 vnsec
->add_output_section_data(vndata
);
2609 vnsec
->set_link_section(dynstr
);
2610 vnsec
->set_info(vnentries
);
2612 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2613 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2617 // Create the .interp section and PT_INTERP segment.
2620 Layout::create_interp(const Target
* target
)
2622 const char* interp
= this->options_
.dynamic_linker();
2625 interp
= target
->dynamic_linker();
2626 gold_assert(interp
!= NULL
);
2629 size_t len
= strlen(interp
) + 1;
2631 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2633 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2634 elfcpp::SHT_PROGBITS
,
2637 osec
->add_output_section_data(odata
);
2639 if (!this->script_options_
->saw_phdrs_clause())
2641 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2643 oseg
->add_output_section(osec
, elfcpp::PF_R
);
2647 // Finish the .dynamic section and PT_DYNAMIC segment.
2650 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2651 const Symbol_table
* symtab
)
2653 if (!this->script_options_
->saw_phdrs_clause())
2655 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2658 oseg
->add_output_section(this->dynamic_section_
,
2659 elfcpp::PF_R
| elfcpp::PF_W
);
2662 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2664 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2665 p
!= input_objects
->dynobj_end();
2668 // FIXME: Handle --as-needed.
2669 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2672 if (parameters
->options().shared())
2674 const char* soname
= this->options_
.soname();
2676 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2679 // FIXME: Support --init and --fini.
2680 Symbol
* sym
= symtab
->lookup("_init");
2681 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2682 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2684 sym
= symtab
->lookup("_fini");
2685 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2686 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2688 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2690 // Add a DT_RPATH entry if needed.
2691 const General_options::Dir_list
& rpath(this->options_
.rpath());
2694 std::string rpath_val
;
2695 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2699 if (rpath_val
.empty())
2700 rpath_val
= p
->name();
2703 // Eliminate duplicates.
2704 General_options::Dir_list::const_iterator q
;
2705 for (q
= rpath
.begin(); q
!= p
; ++q
)
2706 if (q
->name() == p
->name())
2711 rpath_val
+= p
->name();
2716 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2717 if (parameters
->options().enable_new_dtags())
2718 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
2721 // Look for text segments that have dynamic relocations.
2722 bool have_textrel
= false;
2723 if (!this->script_options_
->saw_sections_clause())
2725 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2726 p
!= this->segment_list_
.end();
2729 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2730 && (*p
)->dynamic_reloc_count() > 0)
2732 have_textrel
= true;
2739 // We don't know the section -> segment mapping, so we are
2740 // conservative and just look for readonly sections with
2741 // relocations. If those sections wind up in writable segments,
2742 // then we have created an unnecessary DT_TEXTREL entry.
2743 for (Section_list::const_iterator p
= this->section_list_
.begin();
2744 p
!= this->section_list_
.end();
2747 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2748 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2749 && ((*p
)->dynamic_reloc_count() > 0))
2751 have_textrel
= true;
2757 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2758 // post-link tools can easily modify these flags if desired.
2759 unsigned int flags
= 0;
2762 // Add a DT_TEXTREL for compatibility with older loaders.
2763 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2764 flags
|= elfcpp::DF_TEXTREL
;
2766 if (parameters
->options().shared() && this->has_static_tls())
2767 flags
|= elfcpp::DF_STATIC_TLS
;
2768 if (parameters
->options().origin())
2769 flags
|= elfcpp::DF_ORIGIN
;
2770 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2773 if (parameters
->options().initfirst())
2774 flags
|= elfcpp::DF_1_INITFIRST
;
2775 if (parameters
->options().interpose())
2776 flags
|= elfcpp::DF_1_INTERPOSE
;
2777 if (parameters
->options().loadfltr())
2778 flags
|= elfcpp::DF_1_LOADFLTR
;
2779 if (parameters
->options().nodefaultlib())
2780 flags
|= elfcpp::DF_1_NODEFLIB
;
2781 if (parameters
->options().nodelete())
2782 flags
|= elfcpp::DF_1_NODELETE
;
2783 if (parameters
->options().nodlopen())
2784 flags
|= elfcpp::DF_1_NOOPEN
;
2785 if (parameters
->options().nodump())
2786 flags
|= elfcpp::DF_1_NODUMP
;
2787 if (!parameters
->options().shared())
2788 flags
&= ~(elfcpp::DF_1_INITFIRST
2789 | elfcpp::DF_1_NODELETE
2790 | elfcpp::DF_1_NOOPEN
);
2791 if (parameters
->options().origin())
2792 flags
|= elfcpp::DF_1_ORIGIN
;
2794 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
2797 // The mapping of .gnu.linkonce section names to real section names.
2799 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2800 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
2802 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2803 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2804 MAPPING_INIT("t", ".text"),
2805 MAPPING_INIT("r", ".rodata"),
2806 MAPPING_INIT("d", ".data"),
2807 MAPPING_INIT("b", ".bss"),
2808 MAPPING_INIT("s", ".sdata"),
2809 MAPPING_INIT("sb", ".sbss"),
2810 MAPPING_INIT("s2", ".sdata2"),
2811 MAPPING_INIT("sb2", ".sbss2"),
2812 MAPPING_INIT("wi", ".debug_info"),
2813 MAPPING_INIT("td", ".tdata"),
2814 MAPPING_INIT("tb", ".tbss"),
2815 MAPPING_INIT("lr", ".lrodata"),
2816 MAPPING_INIT("l", ".ldata"),
2817 MAPPING_INIT("lb", ".lbss"),
2821 const int Layout::linkonce_mapping_count
=
2822 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
2824 // Return the name of the output section to use for a .gnu.linkonce
2825 // section. This is based on the default ELF linker script of the old
2826 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2827 // to ".text". Set *PLEN to the length of the name. *PLEN is
2828 // initialized to the length of NAME.
2831 Layout::linkonce_output_name(const char* name
, size_t *plen
)
2833 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
2837 const Linkonce_mapping
* plm
= linkonce_mapping
;
2838 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
2840 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
2849 // Choose the output section name to use given an input section name.
2850 // Set *PLEN to the length of the name. *PLEN is initialized to the
2854 Layout::output_section_name(const char* name
, size_t* plen
)
2856 if (Layout::is_linkonce(name
))
2858 // .gnu.linkonce sections are laid out as though they were named
2859 // for the sections are placed into.
2860 return Layout::linkonce_output_name(name
, plen
);
2863 // gcc 4.3 generates the following sorts of section names when it
2864 // needs a section name specific to a function:
2870 // .data.rel.local.FN
2872 // .data.rel.ro.local.FN
2879 // The GNU linker maps all of those to the part before the .FN,
2880 // except that .data.rel.local.FN is mapped to .data, and
2881 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2882 // beginning with .data.rel.ro.local are grouped together.
2884 // For an anonymous namespace, the string FN can contain a '.'.
2886 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2887 // GNU linker maps to .rodata.
2889 // The .data.rel.ro sections enable a security feature triggered by
2890 // the -z relro option. Section which need to be relocated at
2891 // program startup time but which may be readonly after startup are
2892 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2893 // segment. The dynamic linker will make that segment writable,
2894 // perform relocations, and then make it read-only. FIXME: We do
2895 // not yet implement this optimization.
2897 // It is hard to handle this in a principled way.
2899 // These are the rules we follow:
2901 // If the section name has no initial '.', or no dot other than an
2902 // initial '.', we use the name unchanged (i.e., "mysection" and
2903 // ".text" are unchanged).
2905 // If the name starts with ".data.rel.ro.local" we use
2906 // ".data.rel.ro.local".
2908 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2910 // Otherwise, we drop the second '.' and everything that comes after
2911 // it (i.e., ".text.XXX" becomes ".text").
2913 const char* s
= name
;
2917 const char* sdot
= strchr(s
, '.');
2921 const char* const data_rel_ro_local
= ".data.rel.ro.local";
2922 if (strncmp(name
, data_rel_ro_local
, strlen(data_rel_ro_local
)) == 0)
2924 *plen
= strlen(data_rel_ro_local
);
2925 return data_rel_ro_local
;
2928 const char* const data_rel_ro
= ".data.rel.ro";
2929 if (strncmp(name
, data_rel_ro
, strlen(data_rel_ro
)) == 0)
2931 *plen
= strlen(data_rel_ro
);
2935 *plen
= sdot
- name
;
2939 // Record the signature of a comdat section, and return whether to
2940 // include it in the link. If GROUP is true, this is a regular
2941 // section group. If GROUP is false, this is a group signature
2942 // derived from the name of a linkonce section. We want linkonce
2943 // signatures and group signatures to block each other, but we don't
2944 // want a linkonce signature to block another linkonce signature.
2947 Layout::add_comdat(Relobj
* object
, unsigned int shndx
,
2948 const std::string
& signature
, bool group
)
2950 Kept_section
kept(object
, shndx
, group
);
2951 std::pair
<Signatures::iterator
, bool> ins(
2952 this->signatures_
.insert(std::make_pair(signature
, kept
)));
2956 // This is the first time we've seen this signature.
2960 if (ins
.first
->second
.group_
)
2962 // We've already seen a real section group with this signature.
2963 // If the kept group is from a plugin object, and we're in
2964 // the replacement phase, accept the new one as a replacement.
2965 if (ins
.first
->second
.object_
== NULL
2966 && parameters
->options().plugins()->in_replacement_phase())
2968 ins
.first
->second
= kept
;
2975 // This is a real section group, and we've already seen a
2976 // linkonce section with this signature. Record that we've seen
2977 // a section group, and don't include this section group.
2978 ins
.first
->second
.group_
= true;
2983 // We've already seen a linkonce section and this is a linkonce
2984 // section. These don't block each other--this may be the same
2985 // symbol name with different section types.
2990 // Find the given comdat signature, and return the object and section
2991 // index of the kept group.
2993 Layout::find_kept_object(const std::string
& signature
,
2994 unsigned int* pshndx
) const
2996 Signatures::const_iterator p
= this->signatures_
.find(signature
);
2997 if (p
== this->signatures_
.end())
3000 *pshndx
= p
->second
.shndx_
;
3001 return p
->second
.object_
;
3004 // Store the allocated sections into the section list.
3007 Layout::get_allocated_sections(Section_list
* section_list
) const
3009 for (Section_list::const_iterator p
= this->section_list_
.begin();
3010 p
!= this->section_list_
.end();
3012 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3013 section_list
->push_back(*p
);
3016 // Create an output segment.
3019 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3021 gold_assert(!parameters
->options().relocatable());
3022 Output_segment
* oseg
= new Output_segment(type
, flags
);
3023 this->segment_list_
.push_back(oseg
);
3025 if (type
== elfcpp::PT_TLS
)
3026 this->tls_segment_
= oseg
;
3027 else if (type
== elfcpp::PT_GNU_RELRO
)
3028 this->relro_segment_
= oseg
;
3033 // Write out the Output_sections. Most won't have anything to write,
3034 // since most of the data will come from input sections which are
3035 // handled elsewhere. But some Output_sections do have Output_data.
3038 Layout::write_output_sections(Output_file
* of
) const
3040 for (Section_list::const_iterator p
= this->section_list_
.begin();
3041 p
!= this->section_list_
.end();
3044 if (!(*p
)->after_input_sections())
3049 // Write out data not associated with a section or the symbol table.
3052 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3054 if (!parameters
->options().strip_all())
3056 const Output_section
* symtab_section
= this->symtab_section_
;
3057 for (Section_list::const_iterator p
= this->section_list_
.begin();
3058 p
!= this->section_list_
.end();
3061 if ((*p
)->needs_symtab_index())
3063 gold_assert(symtab_section
!= NULL
);
3064 unsigned int index
= (*p
)->symtab_index();
3065 gold_assert(index
> 0 && index
!= -1U);
3066 off_t off
= (symtab_section
->offset()
3067 + index
* symtab_section
->entsize());
3068 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3073 const Output_section
* dynsym_section
= this->dynsym_section_
;
3074 for (Section_list::const_iterator p
= this->section_list_
.begin();
3075 p
!= this->section_list_
.end();
3078 if ((*p
)->needs_dynsym_index())
3080 gold_assert(dynsym_section
!= NULL
);
3081 unsigned int index
= (*p
)->dynsym_index();
3082 gold_assert(index
> 0 && index
!= -1U);
3083 off_t off
= (dynsym_section
->offset()
3084 + index
* dynsym_section
->entsize());
3085 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3089 // Write out the Output_data which are not in an Output_section.
3090 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3091 p
!= this->special_output_list_
.end();
3096 // Write out the Output_sections which can only be written after the
3097 // input sections are complete.
3100 Layout::write_sections_after_input_sections(Output_file
* of
)
3102 // Determine the final section offsets, and thus the final output
3103 // file size. Note we finalize the .shstrab last, to allow the
3104 // after_input_section sections to modify their section-names before
3106 if (this->any_postprocessing_sections_
)
3108 off_t off
= this->output_file_size_
;
3109 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3111 // Now that we've finalized the names, we can finalize the shstrab.
3113 this->set_section_offsets(off
,
3114 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3116 if (off
> this->output_file_size_
)
3119 this->output_file_size_
= off
;
3123 for (Section_list::const_iterator p
= this->section_list_
.begin();
3124 p
!= this->section_list_
.end();
3127 if ((*p
)->after_input_sections())
3131 this->section_headers_
->write(of
);
3134 // If the build ID requires computing a checksum, do so here, and
3135 // write it out. We compute a checksum over the entire file because
3136 // that is simplest.
3139 Layout::write_build_id(Output_file
* of
) const
3141 if (this->build_id_note_
== NULL
)
3144 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3146 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3147 this->build_id_note_
->data_size());
3149 const char* style
= parameters
->options().build_id();
3150 if (strcmp(style
, "sha1") == 0)
3153 sha1_init_ctx(&ctx
);
3154 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3155 sha1_finish_ctx(&ctx
, ov
);
3157 else if (strcmp(style
, "md5") == 0)
3161 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3162 md5_finish_ctx(&ctx
, ov
);
3167 of
->write_output_view(this->build_id_note_
->offset(),
3168 this->build_id_note_
->data_size(),
3171 of
->free_input_view(0, this->output_file_size_
, iv
);
3174 // Write out a binary file. This is called after the link is
3175 // complete. IN is the temporary output file we used to generate the
3176 // ELF code. We simply walk through the segments, read them from
3177 // their file offset in IN, and write them to their load address in
3178 // the output file. FIXME: with a bit more work, we could support
3179 // S-records and/or Intel hex format here.
3182 Layout::write_binary(Output_file
* in
) const
3184 gold_assert(this->options_
.oformat_enum()
3185 == General_options::OBJECT_FORMAT_BINARY
);
3187 // Get the size of the binary file.
3188 uint64_t max_load_address
= 0;
3189 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3190 p
!= this->segment_list_
.end();
3193 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3195 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3196 if (max_paddr
> max_load_address
)
3197 max_load_address
= max_paddr
;
3201 Output_file
out(parameters
->options().output_file_name());
3202 out
.open(max_load_address
);
3204 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3205 p
!= this->segment_list_
.end();
3208 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3210 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3212 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3214 memcpy(vout
, vin
, (*p
)->filesz());
3215 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3216 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3223 // Print the output sections to the map file.
3226 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3228 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3229 p
!= this->segment_list_
.end();
3231 (*p
)->print_sections_to_mapfile(mapfile
);
3234 // Print statistical information to stderr. This is used for --stats.
3237 Layout::print_stats() const
3239 this->namepool_
.print_stats("section name pool");
3240 this->sympool_
.print_stats("output symbol name pool");
3241 this->dynpool_
.print_stats("dynamic name pool");
3243 for (Section_list::const_iterator p
= this->section_list_
.begin();
3244 p
!= this->section_list_
.end();
3246 (*p
)->print_merge_stats();
3249 // Write_sections_task methods.
3251 // We can always run this task.
3254 Write_sections_task::is_runnable()
3259 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3263 Write_sections_task::locks(Task_locker
* tl
)
3265 tl
->add(this, this->output_sections_blocker_
);
3266 tl
->add(this, this->final_blocker_
);
3269 // Run the task--write out the data.
3272 Write_sections_task::run(Workqueue
*)
3274 this->layout_
->write_output_sections(this->of_
);
3277 // Write_data_task methods.
3279 // We can always run this task.
3282 Write_data_task::is_runnable()
3287 // We need to unlock FINAL_BLOCKER when finished.
3290 Write_data_task::locks(Task_locker
* tl
)
3292 tl
->add(this, this->final_blocker_
);
3295 // Run the task--write out the data.
3298 Write_data_task::run(Workqueue
*)
3300 this->layout_
->write_data(this->symtab_
, this->of_
);
3303 // Write_symbols_task methods.
3305 // We can always run this task.
3308 Write_symbols_task::is_runnable()
3313 // We need to unlock FINAL_BLOCKER when finished.
3316 Write_symbols_task::locks(Task_locker
* tl
)
3318 tl
->add(this, this->final_blocker_
);
3321 // Run the task--write out the symbols.
3324 Write_symbols_task::run(Workqueue
*)
3326 this->symtab_
->write_globals(this->input_objects_
, this->sympool_
,
3327 this->dynpool_
, this->layout_
->symtab_xindex(),
3328 this->layout_
->dynsym_xindex(), this->of_
);
3331 // Write_after_input_sections_task methods.
3333 // We can only run this task after the input sections have completed.
3336 Write_after_input_sections_task::is_runnable()
3338 if (this->input_sections_blocker_
->is_blocked())
3339 return this->input_sections_blocker_
;
3343 // We need to unlock FINAL_BLOCKER when finished.
3346 Write_after_input_sections_task::locks(Task_locker
* tl
)
3348 tl
->add(this, this->final_blocker_
);
3354 Write_after_input_sections_task::run(Workqueue
*)
3356 this->layout_
->write_sections_after_input_sections(this->of_
);
3359 // Close_task_runner methods.
3361 // Run the task--close the file.
3364 Close_task_runner::run(Workqueue
*, const Task
*)
3366 // If we need to compute a checksum for the BUILD if, we do so here.
3367 this->layout_
->write_build_id(this->of_
);
3369 // If we've been asked to create a binary file, we do so here.
3370 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3371 this->layout_
->write_binary(this->of_
);
3376 // Instantiate the templates we need. We could use the configure
3377 // script to restrict this to only the ones for implemented targets.
3379 #ifdef HAVE_TARGET_32_LITTLE
3382 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3384 const elfcpp::Shdr
<32, false>& shdr
,
3385 unsigned int, unsigned int, off_t
*);
3388 #ifdef HAVE_TARGET_32_BIG
3391 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3393 const elfcpp::Shdr
<32, true>& shdr
,
3394 unsigned int, unsigned int, off_t
*);
3397 #ifdef HAVE_TARGET_64_LITTLE
3400 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3402 const elfcpp::Shdr
<64, false>& shdr
,
3403 unsigned int, unsigned int, off_t
*);
3406 #ifdef HAVE_TARGET_64_BIG
3409 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3411 const elfcpp::Shdr
<64, true>& shdr
,
3412 unsigned int, unsigned int, off_t
*);
3415 #ifdef HAVE_TARGET_32_LITTLE
3418 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3419 unsigned int reloc_shndx
,
3420 const elfcpp::Shdr
<32, false>& shdr
,
3421 Output_section
* data_section
,
3422 Relocatable_relocs
* rr
);
3425 #ifdef HAVE_TARGET_32_BIG
3428 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3429 unsigned int reloc_shndx
,
3430 const elfcpp::Shdr
<32, true>& shdr
,
3431 Output_section
* data_section
,
3432 Relocatable_relocs
* rr
);
3435 #ifdef HAVE_TARGET_64_LITTLE
3438 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3439 unsigned int reloc_shndx
,
3440 const elfcpp::Shdr
<64, false>& shdr
,
3441 Output_section
* data_section
,
3442 Relocatable_relocs
* rr
);
3445 #ifdef HAVE_TARGET_64_BIG
3448 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3449 unsigned int reloc_shndx
,
3450 const elfcpp::Shdr
<64, true>& shdr
,
3451 Output_section
* data_section
,
3452 Relocatable_relocs
* rr
);
3455 #ifdef HAVE_TARGET_32_LITTLE
3458 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3459 Sized_relobj
<32, false>* object
,
3461 const char* group_section_name
,
3462 const char* signature
,
3463 const elfcpp::Shdr
<32, false>& shdr
,
3464 elfcpp::Elf_Word flags
,
3465 std::vector
<unsigned int>* shndxes
);
3468 #ifdef HAVE_TARGET_32_BIG
3471 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3472 Sized_relobj
<32, true>* object
,
3474 const char* group_section_name
,
3475 const char* signature
,
3476 const elfcpp::Shdr
<32, true>& shdr
,
3477 elfcpp::Elf_Word flags
,
3478 std::vector
<unsigned int>* shndxes
);
3481 #ifdef HAVE_TARGET_64_LITTLE
3484 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3485 Sized_relobj
<64, false>* object
,
3487 const char* group_section_name
,
3488 const char* signature
,
3489 const elfcpp::Shdr
<64, false>& shdr
,
3490 elfcpp::Elf_Word flags
,
3491 std::vector
<unsigned int>* shndxes
);
3494 #ifdef HAVE_TARGET_64_BIG
3497 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3498 Sized_relobj
<64, true>* object
,
3500 const char* group_section_name
,
3501 const char* signature
,
3502 const elfcpp::Shdr
<64, true>& shdr
,
3503 elfcpp::Elf_Word flags
,
3504 std::vector
<unsigned int>* shndxes
);
3507 #ifdef HAVE_TARGET_32_LITTLE
3510 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3511 const unsigned char* symbols
,
3513 const unsigned char* symbol_names
,
3514 off_t symbol_names_size
,
3516 const elfcpp::Shdr
<32, false>& shdr
,
3517 unsigned int reloc_shndx
,
3518 unsigned int reloc_type
,
3522 #ifdef HAVE_TARGET_32_BIG
3525 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3526 const unsigned char* symbols
,
3528 const unsigned char* symbol_names
,
3529 off_t symbol_names_size
,
3531 const elfcpp::Shdr
<32, true>& shdr
,
3532 unsigned int reloc_shndx
,
3533 unsigned int reloc_type
,
3537 #ifdef HAVE_TARGET_64_LITTLE
3540 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3541 const unsigned char* symbols
,
3543 const unsigned char* symbol_names
,
3544 off_t symbol_names_size
,
3546 const elfcpp::Shdr
<64, false>& shdr
,
3547 unsigned int reloc_shndx
,
3548 unsigned int reloc_type
,
3552 #ifdef HAVE_TARGET_64_BIG
3555 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3556 const unsigned char* symbols
,
3558 const unsigned char* symbol_names
,
3559 off_t symbol_names_size
,
3561 const elfcpp::Shdr
<64, true>& shdr
,
3562 unsigned int reloc_shndx
,
3563 unsigned int reloc_type
,
3567 } // End namespace gold.