PR ld/11843
[binutils.git] / gold / symtab.cc
blobf46d8deb75a464a56487f3710d411053eb97d146
1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
44 namespace gold
47 // Class Symbol.
49 // Initialize fields in Symbol. This initializes everything except u_
50 // and source_.
52 void
53 Symbol::init_fields(const char* name, const char* version,
54 elfcpp::STT type, elfcpp::STB binding,
55 elfcpp::STV visibility, unsigned char nonvis)
57 this->name_ = name;
58 this->version_ = version;
59 this->symtab_index_ = 0;
60 this->dynsym_index_ = 0;
61 this->got_offsets_.init();
62 this->plt_offset_ = -1U;
63 this->type_ = type;
64 this->binding_ = binding;
65 this->visibility_ = visibility;
66 this->nonvis_ = nonvis;
67 this->is_def_ = false;
68 this->is_forwarder_ = false;
69 this->has_alias_ = false;
70 this->needs_dynsym_entry_ = false;
71 this->in_reg_ = false;
72 this->in_dyn_ = false;
73 this->has_warning_ = false;
74 this->is_copied_from_dynobj_ = false;
75 this->is_forced_local_ = false;
76 this->is_ordinary_shndx_ = false;
77 this->in_real_elf_ = false;
78 this->is_defined_in_discarded_section_ = false;
79 this->undef_binding_set_ = false;
80 this->undef_binding_weak_ = false;
83 // Return the demangled version of the symbol's name, but only
84 // if the --demangle flag was set.
86 static std::string
87 demangle(const char* name)
89 if (!parameters->options().do_demangle())
90 return name;
92 // cplus_demangle allocates memory for the result it returns,
93 // and returns NULL if the name is already demangled.
94 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
95 if (demangled_name == NULL)
96 return name;
98 std::string retval(demangled_name);
99 free(demangled_name);
100 return retval;
103 std::string
104 Symbol::demangled_name() const
106 return demangle(this->name());
109 // Initialize the fields in the base class Symbol for SYM in OBJECT.
111 template<int size, bool big_endian>
112 void
113 Symbol::init_base_object(const char* name, const char* version, Object* object,
114 const elfcpp::Sym<size, big_endian>& sym,
115 unsigned int st_shndx, bool is_ordinary)
117 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
118 sym.get_st_visibility(), sym.get_st_nonvis());
119 this->u_.from_object.object = object;
120 this->u_.from_object.shndx = st_shndx;
121 this->is_ordinary_shndx_ = is_ordinary;
122 this->source_ = FROM_OBJECT;
123 this->in_reg_ = !object->is_dynamic();
124 this->in_dyn_ = object->is_dynamic();
125 this->in_real_elf_ = object->pluginobj() == NULL;
128 // Initialize the fields in the base class Symbol for a symbol defined
129 // in an Output_data.
131 void
132 Symbol::init_base_output_data(const char* name, const char* version,
133 Output_data* od, elfcpp::STT type,
134 elfcpp::STB binding, elfcpp::STV visibility,
135 unsigned char nonvis, bool offset_is_from_end)
137 this->init_fields(name, version, type, binding, visibility, nonvis);
138 this->u_.in_output_data.output_data = od;
139 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
140 this->source_ = IN_OUTPUT_DATA;
141 this->in_reg_ = true;
142 this->in_real_elf_ = true;
145 // Initialize the fields in the base class Symbol for a symbol defined
146 // in an Output_segment.
148 void
149 Symbol::init_base_output_segment(const char* name, const char* version,
150 Output_segment* os, elfcpp::STT type,
151 elfcpp::STB binding, elfcpp::STV visibility,
152 unsigned char nonvis,
153 Segment_offset_base offset_base)
155 this->init_fields(name, version, type, binding, visibility, nonvis);
156 this->u_.in_output_segment.output_segment = os;
157 this->u_.in_output_segment.offset_base = offset_base;
158 this->source_ = IN_OUTPUT_SEGMENT;
159 this->in_reg_ = true;
160 this->in_real_elf_ = true;
163 // Initialize the fields in the base class Symbol for a symbol defined
164 // as a constant.
166 void
167 Symbol::init_base_constant(const char* name, const char* version,
168 elfcpp::STT type, elfcpp::STB binding,
169 elfcpp::STV visibility, unsigned char nonvis)
171 this->init_fields(name, version, type, binding, visibility, nonvis);
172 this->source_ = IS_CONSTANT;
173 this->in_reg_ = true;
174 this->in_real_elf_ = true;
177 // Initialize the fields in the base class Symbol for an undefined
178 // symbol.
180 void
181 Symbol::init_base_undefined(const char* name, const char* version,
182 elfcpp::STT type, elfcpp::STB binding,
183 elfcpp::STV visibility, unsigned char nonvis)
185 this->init_fields(name, version, type, binding, visibility, nonvis);
186 this->dynsym_index_ = -1U;
187 this->source_ = IS_UNDEFINED;
188 this->in_reg_ = true;
189 this->in_real_elf_ = true;
192 // Allocate a common symbol in the base.
194 void
195 Symbol::allocate_base_common(Output_data* od)
197 gold_assert(this->is_common());
198 this->source_ = IN_OUTPUT_DATA;
199 this->u_.in_output_data.output_data = od;
200 this->u_.in_output_data.offset_is_from_end = false;
203 // Initialize the fields in Sized_symbol for SYM in OBJECT.
205 template<int size>
206 template<bool big_endian>
207 void
208 Sized_symbol<size>::init_object(const char* name, const char* version,
209 Object* object,
210 const elfcpp::Sym<size, big_endian>& sym,
211 unsigned int st_shndx, bool is_ordinary)
213 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
214 this->value_ = sym.get_st_value();
215 this->symsize_ = sym.get_st_size();
218 // Initialize the fields in Sized_symbol for a symbol defined in an
219 // Output_data.
221 template<int size>
222 void
223 Sized_symbol<size>::init_output_data(const char* name, const char* version,
224 Output_data* od, Value_type value,
225 Size_type symsize, elfcpp::STT type,
226 elfcpp::STB binding,
227 elfcpp::STV visibility,
228 unsigned char nonvis,
229 bool offset_is_from_end)
231 this->init_base_output_data(name, version, od, type, binding, visibility,
232 nonvis, offset_is_from_end);
233 this->value_ = value;
234 this->symsize_ = symsize;
237 // Initialize the fields in Sized_symbol for a symbol defined in an
238 // Output_segment.
240 template<int size>
241 void
242 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
243 Output_segment* os, Value_type value,
244 Size_type symsize, elfcpp::STT type,
245 elfcpp::STB binding,
246 elfcpp::STV visibility,
247 unsigned char nonvis,
248 Segment_offset_base offset_base)
250 this->init_base_output_segment(name, version, os, type, binding, visibility,
251 nonvis, offset_base);
252 this->value_ = value;
253 this->symsize_ = symsize;
256 // Initialize the fields in Sized_symbol for a symbol defined as a
257 // constant.
259 template<int size>
260 void
261 Sized_symbol<size>::init_constant(const char* name, const char* version,
262 Value_type value, Size_type symsize,
263 elfcpp::STT type, elfcpp::STB binding,
264 elfcpp::STV visibility, unsigned char nonvis)
266 this->init_base_constant(name, version, type, binding, visibility, nonvis);
267 this->value_ = value;
268 this->symsize_ = symsize;
271 // Initialize the fields in Sized_symbol for an undefined symbol.
273 template<int size>
274 void
275 Sized_symbol<size>::init_undefined(const char* name, const char* version,
276 elfcpp::STT type, elfcpp::STB binding,
277 elfcpp::STV visibility, unsigned char nonvis)
279 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
280 this->value_ = 0;
281 this->symsize_ = 0;
284 // Return true if SHNDX represents a common symbol.
286 bool
287 Symbol::is_common_shndx(unsigned int shndx)
289 return (shndx == elfcpp::SHN_COMMON
290 || shndx == parameters->target().small_common_shndx()
291 || shndx == parameters->target().large_common_shndx());
294 // Allocate a common symbol.
296 template<int size>
297 void
298 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
300 this->allocate_base_common(od);
301 this->value_ = value;
304 // The ""'s around str ensure str is a string literal, so sizeof works.
305 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
307 // Return true if this symbol should be added to the dynamic symbol
308 // table.
310 inline bool
311 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
313 // If the symbol is used by a dynamic relocation, we need to add it.
314 if (this->needs_dynsym_entry())
315 return true;
317 // If this symbol's section is not added, the symbol need not be added.
318 // The section may have been GCed. Note that export_dynamic is being
319 // overridden here. This should not be done for shared objects.
320 if (parameters->options().gc_sections()
321 && !parameters->options().shared()
322 && this->source() == Symbol::FROM_OBJECT
323 && !this->object()->is_dynamic())
325 Relobj* relobj = static_cast<Relobj*>(this->object());
326 bool is_ordinary;
327 unsigned int shndx = this->shndx(&is_ordinary);
328 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
329 && !relobj->is_section_included(shndx)
330 && !symtab->is_section_folded(relobj, shndx))
331 return false;
334 // If the symbol was forced local in a version script, do not add it.
335 if (this->is_forced_local())
336 return false;
338 // If the symbol was forced dynamic in a --dynamic-list file, add it.
339 if (parameters->options().in_dynamic_list(this->name()))
340 return true;
342 // If dynamic-list-data was specified, add any STT_OBJECT.
343 if (parameters->options().dynamic_list_data()
344 && !this->is_from_dynobj()
345 && this->type() == elfcpp::STT_OBJECT)
346 return true;
348 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
349 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
350 if ((parameters->options().dynamic_list_cpp_new()
351 || parameters->options().dynamic_list_cpp_typeinfo())
352 && !this->is_from_dynobj())
354 // TODO(csilvers): We could probably figure out if we're an operator
355 // new/delete or typeinfo without the need to demangle.
356 char* demangled_name = cplus_demangle(this->name(),
357 DMGL_ANSI | DMGL_PARAMS);
358 if (demangled_name == NULL)
360 // Not a C++ symbol, so it can't satisfy these flags
362 else if (parameters->options().dynamic_list_cpp_new()
363 && (strprefix(demangled_name, "operator new")
364 || strprefix(demangled_name, "operator delete")))
366 free(demangled_name);
367 return true;
369 else if (parameters->options().dynamic_list_cpp_typeinfo()
370 && (strprefix(demangled_name, "typeinfo name for")
371 || strprefix(demangled_name, "typeinfo for")))
373 free(demangled_name);
374 return true;
376 else
377 free(demangled_name);
380 // If exporting all symbols or building a shared library,
381 // and the symbol is defined in a regular object and is
382 // externally visible, we need to add it.
383 if ((parameters->options().export_dynamic() || parameters->options().shared())
384 && !this->is_from_dynobj()
385 && this->is_externally_visible())
386 return true;
388 return false;
391 // Return true if the final value of this symbol is known at link
392 // time.
394 bool
395 Symbol::final_value_is_known() const
397 // If we are not generating an executable, then no final values are
398 // known, since they will change at runtime.
399 if (parameters->options().output_is_position_independent()
400 || parameters->options().relocatable())
401 return false;
403 // If the symbol is not from an object file, and is not undefined,
404 // then it is defined, and known.
405 if (this->source_ != FROM_OBJECT)
407 if (this->source_ != IS_UNDEFINED)
408 return true;
410 else
412 // If the symbol is from a dynamic object, then the final value
413 // is not known.
414 if (this->object()->is_dynamic())
415 return false;
417 // If the symbol is not undefined (it is defined or common),
418 // then the final value is known.
419 if (!this->is_undefined())
420 return true;
423 // If the symbol is undefined, then whether the final value is known
424 // depends on whether we are doing a static link. If we are doing a
425 // dynamic link, then the final value could be filled in at runtime.
426 // This could reasonably be the case for a weak undefined symbol.
427 return parameters->doing_static_link();
430 // Return the output section where this symbol is defined.
432 Output_section*
433 Symbol::output_section() const
435 switch (this->source_)
437 case FROM_OBJECT:
439 unsigned int shndx = this->u_.from_object.shndx;
440 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
442 gold_assert(!this->u_.from_object.object->is_dynamic());
443 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
444 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
445 return relobj->output_section(shndx);
447 return NULL;
450 case IN_OUTPUT_DATA:
451 return this->u_.in_output_data.output_data->output_section();
453 case IN_OUTPUT_SEGMENT:
454 case IS_CONSTANT:
455 case IS_UNDEFINED:
456 return NULL;
458 default:
459 gold_unreachable();
463 // Set the symbol's output section. This is used for symbols defined
464 // in scripts. This should only be called after the symbol table has
465 // been finalized.
467 void
468 Symbol::set_output_section(Output_section* os)
470 switch (this->source_)
472 case FROM_OBJECT:
473 case IN_OUTPUT_DATA:
474 gold_assert(this->output_section() == os);
475 break;
476 case IS_CONSTANT:
477 this->source_ = IN_OUTPUT_DATA;
478 this->u_.in_output_data.output_data = os;
479 this->u_.in_output_data.offset_is_from_end = false;
480 break;
481 case IN_OUTPUT_SEGMENT:
482 case IS_UNDEFINED:
483 default:
484 gold_unreachable();
488 // Class Symbol_table.
490 Symbol_table::Symbol_table(unsigned int count,
491 const Version_script_info& version_script)
492 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
493 forwarders_(), commons_(), tls_commons_(), small_commons_(),
494 large_commons_(), forced_locals_(), warnings_(),
495 version_script_(version_script), gc_(NULL), icf_(NULL)
497 namepool_.reserve(count);
500 Symbol_table::~Symbol_table()
504 // The hash function. The key values are Stringpool keys.
506 inline size_t
507 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
509 return key.first ^ key.second;
512 // The symbol table key equality function. This is called with
513 // Stringpool keys.
515 inline bool
516 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
517 const Symbol_table_key& k2) const
519 return k1.first == k2.first && k1.second == k2.second;
522 bool
523 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
525 return (parameters->options().icf_enabled()
526 && this->icf_->is_section_folded(obj, shndx));
529 // For symbols that have been listed with -u option, add them to the
530 // work list to avoid gc'ing them.
532 void
533 Symbol_table::gc_mark_undef_symbols(Layout* layout)
535 for (options::String_set::const_iterator p =
536 parameters->options().undefined_begin();
537 p != parameters->options().undefined_end();
538 ++p)
540 const char* name = p->c_str();
541 Symbol* sym = this->lookup(name);
542 gold_assert (sym != NULL);
543 if (sym->source() == Symbol::FROM_OBJECT
544 && !sym->object()->is_dynamic())
546 Relobj* obj = static_cast<Relobj*>(sym->object());
547 bool is_ordinary;
548 unsigned int shndx = sym->shndx(&is_ordinary);
549 if (is_ordinary)
551 gold_assert(this->gc_ != NULL);
552 this->gc_->worklist().push(Section_id(obj, shndx));
557 for (Script_options::referenced_const_iterator p =
558 layout->script_options()->referenced_begin();
559 p != layout->script_options()->referenced_end();
560 ++p)
562 Symbol* sym = this->lookup(p->c_str());
563 gold_assert(sym != NULL);
564 if (sym->source() == Symbol::FROM_OBJECT
565 && !sym->object()->is_dynamic())
567 Relobj* obj = static_cast<Relobj*>(sym->object());
568 bool is_ordinary;
569 unsigned int shndx = sym->shndx(&is_ordinary);
570 if (is_ordinary)
572 gold_assert(this->gc_ != NULL);
573 this->gc_->worklist().push(Section_id(obj, shndx));
579 void
580 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
582 if (!sym->is_from_dynobj()
583 && sym->is_externally_visible())
585 //Add the object and section to the work list.
586 Relobj* obj = static_cast<Relobj*>(sym->object());
587 bool is_ordinary;
588 unsigned int shndx = sym->shndx(&is_ordinary);
589 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
591 gold_assert(this->gc_!= NULL);
592 this->gc_->worklist().push(Section_id(obj, shndx));
597 // When doing garbage collection, keep symbols that have been seen in
598 // dynamic objects.
599 inline void
600 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
602 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
603 && !sym->object()->is_dynamic())
605 Relobj *obj = static_cast<Relobj*>(sym->object());
606 bool is_ordinary;
607 unsigned int shndx = sym->shndx(&is_ordinary);
608 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
610 gold_assert(this->gc_ != NULL);
611 this->gc_->worklist().push(Section_id(obj, shndx));
616 // Make TO a symbol which forwards to FROM.
618 void
619 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
621 gold_assert(from != to);
622 gold_assert(!from->is_forwarder() && !to->is_forwarder());
623 this->forwarders_[from] = to;
624 from->set_forwarder();
627 // Resolve the forwards from FROM, returning the real symbol.
629 Symbol*
630 Symbol_table::resolve_forwards(const Symbol* from) const
632 gold_assert(from->is_forwarder());
633 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
634 this->forwarders_.find(from);
635 gold_assert(p != this->forwarders_.end());
636 return p->second;
639 // Look up a symbol by name.
641 Symbol*
642 Symbol_table::lookup(const char* name, const char* version) const
644 Stringpool::Key name_key;
645 name = this->namepool_.find(name, &name_key);
646 if (name == NULL)
647 return NULL;
649 Stringpool::Key version_key = 0;
650 if (version != NULL)
652 version = this->namepool_.find(version, &version_key);
653 if (version == NULL)
654 return NULL;
657 Symbol_table_key key(name_key, version_key);
658 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
659 if (p == this->table_.end())
660 return NULL;
661 return p->second;
664 // Resolve a Symbol with another Symbol. This is only used in the
665 // unusual case where there are references to both an unversioned
666 // symbol and a symbol with a version, and we then discover that that
667 // version is the default version. Because this is unusual, we do
668 // this the slow way, by converting back to an ELF symbol.
670 template<int size, bool big_endian>
671 void
672 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
674 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
675 elfcpp::Sym_write<size, big_endian> esym(buf);
676 // We don't bother to set the st_name or the st_shndx field.
677 esym.put_st_value(from->value());
678 esym.put_st_size(from->symsize());
679 esym.put_st_info(from->binding(), from->type());
680 esym.put_st_other(from->visibility(), from->nonvis());
681 bool is_ordinary;
682 unsigned int shndx = from->shndx(&is_ordinary);
683 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
684 from->version());
685 if (from->in_reg())
686 to->set_in_reg();
687 if (from->in_dyn())
688 to->set_in_dyn();
689 if (parameters->options().gc_sections())
690 this->gc_mark_dyn_syms(to);
693 // Record that a symbol is forced to be local by a version script or
694 // by visibility.
696 void
697 Symbol_table::force_local(Symbol* sym)
699 if (!sym->is_defined() && !sym->is_common())
700 return;
701 if (sym->is_forced_local())
703 // We already got this one.
704 return;
706 sym->set_is_forced_local();
707 this->forced_locals_.push_back(sym);
710 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
711 // is only called for undefined symbols, when at least one --wrap
712 // option was used.
714 const char*
715 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
717 // For some targets, we need to ignore a specific character when
718 // wrapping, and add it back later.
719 char prefix = '\0';
720 if (name[0] == parameters->target().wrap_char())
722 prefix = name[0];
723 ++name;
726 if (parameters->options().is_wrap(name))
728 // Turn NAME into __wrap_NAME.
729 std::string s;
730 if (prefix != '\0')
731 s += prefix;
732 s += "__wrap_";
733 s += name;
735 // This will give us both the old and new name in NAMEPOOL_, but
736 // that is OK. Only the versions we need will wind up in the
737 // real string table in the output file.
738 return this->namepool_.add(s.c_str(), true, name_key);
741 const char* const real_prefix = "__real_";
742 const size_t real_prefix_length = strlen(real_prefix);
743 if (strncmp(name, real_prefix, real_prefix_length) == 0
744 && parameters->options().is_wrap(name + real_prefix_length))
746 // Turn __real_NAME into NAME.
747 std::string s;
748 if (prefix != '\0')
749 s += prefix;
750 s += name + real_prefix_length;
751 return this->namepool_.add(s.c_str(), true, name_key);
754 return name;
757 // This is called when we see a symbol NAME/VERSION, and the symbol
758 // already exists in the symbol table, and VERSION is marked as being
759 // the default version. SYM is the NAME/VERSION symbol we just added.
760 // DEFAULT_IS_NEW is true if this is the first time we have seen the
761 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
763 template<int size, bool big_endian>
764 void
765 Symbol_table::define_default_version(Sized_symbol<size>* sym,
766 bool default_is_new,
767 Symbol_table_type::iterator pdef)
769 if (default_is_new)
771 // This is the first time we have seen NAME/NULL. Make
772 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
773 // version.
774 pdef->second = sym;
775 sym->set_is_default();
777 else if (pdef->second == sym)
779 // NAME/NULL already points to NAME/VERSION. Don't mark the
780 // symbol as the default if it is not already the default.
782 else
784 // This is the unfortunate case where we already have entries
785 // for both NAME/VERSION and NAME/NULL. We now see a symbol
786 // NAME/VERSION where VERSION is the default version. We have
787 // already resolved this new symbol with the existing
788 // NAME/VERSION symbol.
790 // It's possible that NAME/NULL and NAME/VERSION are both
791 // defined in regular objects. This can only happen if one
792 // object file defines foo and another defines foo@@ver. This
793 // is somewhat obscure, but we call it a multiple definition
794 // error.
796 // It's possible that NAME/NULL actually has a version, in which
797 // case it won't be the same as VERSION. This happens with
798 // ver_test_7.so in the testsuite for the symbol t2_2. We see
799 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
800 // then see an unadorned t2_2 in an object file and give it
801 // version VER1 from the version script. This looks like a
802 // default definition for VER1, so it looks like we should merge
803 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
804 // not obvious that this is an error, either. So we just punt.
806 // If one of the symbols has non-default visibility, and the
807 // other is defined in a shared object, then they are different
808 // symbols.
810 // Otherwise, we just resolve the symbols as though they were
811 // the same.
813 if (pdef->second->version() != NULL)
814 gold_assert(pdef->second->version() != sym->version());
815 else if (sym->visibility() != elfcpp::STV_DEFAULT
816 && pdef->second->is_from_dynobj())
818 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
819 && sym->is_from_dynobj())
821 else
823 const Sized_symbol<size>* symdef;
824 symdef = this->get_sized_symbol<size>(pdef->second);
825 Symbol_table::resolve<size, big_endian>(sym, symdef);
826 this->make_forwarder(pdef->second, sym);
827 pdef->second = sym;
828 sym->set_is_default();
833 // Add one symbol from OBJECT to the symbol table. NAME is symbol
834 // name and VERSION is the version; both are canonicalized. DEF is
835 // whether this is the default version. ST_SHNDX is the symbol's
836 // section index; IS_ORDINARY is whether this is a normal section
837 // rather than a special code.
839 // If IS_DEFAULT_VERSION is true, then this is the definition of a
840 // default version of a symbol. That means that any lookup of
841 // NAME/NULL and any lookup of NAME/VERSION should always return the
842 // same symbol. This is obvious for references, but in particular we
843 // want to do this for definitions: overriding NAME/NULL should also
844 // override NAME/VERSION. If we don't do that, it would be very hard
845 // to override functions in a shared library which uses versioning.
847 // We implement this by simply making both entries in the hash table
848 // point to the same Symbol structure. That is easy enough if this is
849 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
850 // that we have seen both already, in which case they will both have
851 // independent entries in the symbol table. We can't simply change
852 // the symbol table entry, because we have pointers to the entries
853 // attached to the object files. So we mark the entry attached to the
854 // object file as a forwarder, and record it in the forwarders_ map.
855 // Note that entries in the hash table will never be marked as
856 // forwarders.
858 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
859 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
860 // for a special section code. ST_SHNDX may be modified if the symbol
861 // is defined in a section being discarded.
863 template<int size, bool big_endian>
864 Sized_symbol<size>*
865 Symbol_table::add_from_object(Object* object,
866 const char *name,
867 Stringpool::Key name_key,
868 const char *version,
869 Stringpool::Key version_key,
870 bool is_default_version,
871 const elfcpp::Sym<size, big_endian>& sym,
872 unsigned int st_shndx,
873 bool is_ordinary,
874 unsigned int orig_st_shndx)
876 // Print a message if this symbol is being traced.
877 if (parameters->options().is_trace_symbol(name))
879 if (orig_st_shndx == elfcpp::SHN_UNDEF)
880 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
881 else
882 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
885 // For an undefined symbol, we may need to adjust the name using
886 // --wrap.
887 if (orig_st_shndx == elfcpp::SHN_UNDEF
888 && parameters->options().any_wrap())
890 const char* wrap_name = this->wrap_symbol(name, &name_key);
891 if (wrap_name != name)
893 // If we see a reference to malloc with version GLIBC_2.0,
894 // and we turn it into a reference to __wrap_malloc, then we
895 // discard the version number. Otherwise the user would be
896 // required to specify the correct version for
897 // __wrap_malloc.
898 version = NULL;
899 version_key = 0;
900 name = wrap_name;
904 Symbol* const snull = NULL;
905 std::pair<typename Symbol_table_type::iterator, bool> ins =
906 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
907 snull));
909 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
910 std::make_pair(this->table_.end(), false);
911 if (is_default_version)
913 const Stringpool::Key vnull_key = 0;
914 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
915 vnull_key),
916 snull));
919 // ins.first: an iterator, which is a pointer to a pair.
920 // ins.first->first: the key (a pair of name and version).
921 // ins.first->second: the value (Symbol*).
922 // ins.second: true if new entry was inserted, false if not.
924 Sized_symbol<size>* ret;
925 bool was_undefined;
926 bool was_common;
927 if (!ins.second)
929 // We already have an entry for NAME/VERSION.
930 ret = this->get_sized_symbol<size>(ins.first->second);
931 gold_assert(ret != NULL);
933 was_undefined = ret->is_undefined();
934 was_common = ret->is_common();
936 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
937 version);
938 if (parameters->options().gc_sections())
939 this->gc_mark_dyn_syms(ret);
941 if (is_default_version)
942 this->define_default_version<size, big_endian>(ret, insdefault.second,
943 insdefault.first);
945 else
947 // This is the first time we have seen NAME/VERSION.
948 gold_assert(ins.first->second == NULL);
950 if (is_default_version && !insdefault.second)
952 // We already have an entry for NAME/NULL. If we override
953 // it, then change it to NAME/VERSION.
954 ret = this->get_sized_symbol<size>(insdefault.first->second);
956 was_undefined = ret->is_undefined();
957 was_common = ret->is_common();
959 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
960 version);
961 if (parameters->options().gc_sections())
962 this->gc_mark_dyn_syms(ret);
963 ins.first->second = ret;
965 else
967 was_undefined = false;
968 was_common = false;
970 Sized_target<size, big_endian>* target =
971 parameters->sized_target<size, big_endian>();
972 if (!target->has_make_symbol())
973 ret = new Sized_symbol<size>();
974 else
976 ret = target->make_symbol();
977 if (ret == NULL)
979 // This means that we don't want a symbol table
980 // entry after all.
981 if (!is_default_version)
982 this->table_.erase(ins.first);
983 else
985 this->table_.erase(insdefault.first);
986 // Inserting INSDEFAULT invalidated INS.
987 this->table_.erase(std::make_pair(name_key,
988 version_key));
990 return NULL;
994 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
996 ins.first->second = ret;
997 if (is_default_version)
999 // This is the first time we have seen NAME/NULL. Point
1000 // it at the new entry for NAME/VERSION.
1001 gold_assert(insdefault.second);
1002 insdefault.first->second = ret;
1006 if (is_default_version)
1007 ret->set_is_default();
1010 // Record every time we see a new undefined symbol, to speed up
1011 // archive groups.
1012 if (!was_undefined && ret->is_undefined())
1013 ++this->saw_undefined_;
1015 // Keep track of common symbols, to speed up common symbol
1016 // allocation.
1017 if (!was_common && ret->is_common())
1019 if (ret->type() == elfcpp::STT_TLS)
1020 this->tls_commons_.push_back(ret);
1021 else if (!is_ordinary
1022 && st_shndx == parameters->target().small_common_shndx())
1023 this->small_commons_.push_back(ret);
1024 else if (!is_ordinary
1025 && st_shndx == parameters->target().large_common_shndx())
1026 this->large_commons_.push_back(ret);
1027 else
1028 this->commons_.push_back(ret);
1031 // If we're not doing a relocatable link, then any symbol with
1032 // hidden or internal visibility is local.
1033 if ((ret->visibility() == elfcpp::STV_HIDDEN
1034 || ret->visibility() == elfcpp::STV_INTERNAL)
1035 && (ret->binding() == elfcpp::STB_GLOBAL
1036 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1037 || ret->binding() == elfcpp::STB_WEAK)
1038 && !parameters->options().relocatable())
1039 this->force_local(ret);
1041 return ret;
1044 // Add all the symbols in a relocatable object to the hash table.
1046 template<int size, bool big_endian>
1047 void
1048 Symbol_table::add_from_relobj(
1049 Sized_relobj<size, big_endian>* relobj,
1050 const unsigned char* syms,
1051 size_t count,
1052 size_t symndx_offset,
1053 const char* sym_names,
1054 size_t sym_name_size,
1055 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1056 size_t *defined)
1058 *defined = 0;
1060 gold_assert(size == parameters->target().get_size());
1062 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1064 const bool just_symbols = relobj->just_symbols();
1066 const unsigned char* p = syms;
1067 for (size_t i = 0; i < count; ++i, p += sym_size)
1069 (*sympointers)[i] = NULL;
1071 elfcpp::Sym<size, big_endian> sym(p);
1073 unsigned int st_name = sym.get_st_name();
1074 if (st_name >= sym_name_size)
1076 relobj->error(_("bad global symbol name offset %u at %zu"),
1077 st_name, i);
1078 continue;
1081 const char* name = sym_names + st_name;
1083 bool is_ordinary;
1084 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1085 sym.get_st_shndx(),
1086 &is_ordinary);
1087 unsigned int orig_st_shndx = st_shndx;
1088 if (!is_ordinary)
1089 orig_st_shndx = elfcpp::SHN_UNDEF;
1091 if (st_shndx != elfcpp::SHN_UNDEF)
1092 ++*defined;
1094 // A symbol defined in a section which we are not including must
1095 // be treated as an undefined symbol.
1096 bool is_defined_in_discarded_section = false;
1097 if (st_shndx != elfcpp::SHN_UNDEF
1098 && is_ordinary
1099 && !relobj->is_section_included(st_shndx)
1100 && !this->is_section_folded(relobj, st_shndx))
1102 st_shndx = elfcpp::SHN_UNDEF;
1103 is_defined_in_discarded_section = true;
1106 // In an object file, an '@' in the name separates the symbol
1107 // name from the version name. If there are two '@' characters,
1108 // this is the default version.
1109 const char* ver = strchr(name, '@');
1110 Stringpool::Key ver_key = 0;
1111 int namelen = 0;
1112 // IS_DEFAULT_VERSION: is the version default?
1113 // IS_FORCED_LOCAL: is the symbol forced local?
1114 bool is_default_version = false;
1115 bool is_forced_local = false;
1117 if (ver != NULL)
1119 // The symbol name is of the form foo@VERSION or foo@@VERSION
1120 namelen = ver - name;
1121 ++ver;
1122 if (*ver == '@')
1124 is_default_version = true;
1125 ++ver;
1127 ver = this->namepool_.add(ver, true, &ver_key);
1129 // We don't want to assign a version to an undefined symbol,
1130 // even if it is listed in the version script. FIXME: What
1131 // about a common symbol?
1132 else
1134 namelen = strlen(name);
1135 if (!this->version_script_.empty()
1136 && st_shndx != elfcpp::SHN_UNDEF)
1138 // The symbol name did not have a version, but the
1139 // version script may assign a version anyway.
1140 std::string version;
1141 bool is_global;
1142 if (this->version_script_.get_symbol_version(name, &version,
1143 &is_global))
1145 if (!is_global)
1146 is_forced_local = true;
1147 else if (!version.empty())
1149 ver = this->namepool_.add_with_length(version.c_str(),
1150 version.length(),
1151 true,
1152 &ver_key);
1153 is_default_version = true;
1159 elfcpp::Sym<size, big_endian>* psym = &sym;
1160 unsigned char symbuf[sym_size];
1161 elfcpp::Sym<size, big_endian> sym2(symbuf);
1162 if (just_symbols)
1164 memcpy(symbuf, p, sym_size);
1165 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1166 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1168 // Symbol values in object files are section relative.
1169 // This is normally what we want, but since here we are
1170 // converting the symbol to absolute we need to add the
1171 // section address. The section address in an object
1172 // file is normally zero, but people can use a linker
1173 // script to change it.
1174 sw.put_st_value(sym.get_st_value()
1175 + relobj->section_address(orig_st_shndx));
1177 st_shndx = elfcpp::SHN_ABS;
1178 is_ordinary = false;
1179 psym = &sym2;
1182 // Fix up visibility if object has no-export set.
1183 if (relobj->no_export()
1184 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1186 // We may have copied symbol already above.
1187 if (psym != &sym2)
1189 memcpy(symbuf, p, sym_size);
1190 psym = &sym2;
1193 elfcpp::STV visibility = sym2.get_st_visibility();
1194 if (visibility == elfcpp::STV_DEFAULT
1195 || visibility == elfcpp::STV_PROTECTED)
1197 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1198 unsigned char nonvis = sym2.get_st_nonvis();
1199 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1203 Stringpool::Key name_key;
1204 name = this->namepool_.add_with_length(name, namelen, true,
1205 &name_key);
1207 Sized_symbol<size>* res;
1208 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1209 is_default_version, *psym, st_shndx,
1210 is_ordinary, orig_st_shndx);
1212 // If building a shared library using garbage collection, do not
1213 // treat externally visible symbols as garbage.
1214 if (parameters->options().gc_sections()
1215 && parameters->options().shared())
1216 this->gc_mark_symbol_for_shlib(res);
1218 if (is_forced_local)
1219 this->force_local(res);
1221 if (is_defined_in_discarded_section)
1222 res->set_is_defined_in_discarded_section();
1224 (*sympointers)[i] = res;
1228 // Add a symbol from a plugin-claimed file.
1230 template<int size, bool big_endian>
1231 Symbol*
1232 Symbol_table::add_from_pluginobj(
1233 Sized_pluginobj<size, big_endian>* obj,
1234 const char* name,
1235 const char* ver,
1236 elfcpp::Sym<size, big_endian>* sym)
1238 unsigned int st_shndx = sym->get_st_shndx();
1239 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1241 Stringpool::Key ver_key = 0;
1242 bool is_default_version = false;
1243 bool is_forced_local = false;
1245 if (ver != NULL)
1247 ver = this->namepool_.add(ver, true, &ver_key);
1249 // We don't want to assign a version to an undefined symbol,
1250 // even if it is listed in the version script. FIXME: What
1251 // about a common symbol?
1252 else
1254 if (!this->version_script_.empty()
1255 && st_shndx != elfcpp::SHN_UNDEF)
1257 // The symbol name did not have a version, but the
1258 // version script may assign a version anyway.
1259 std::string version;
1260 bool is_global;
1261 if (this->version_script_.get_symbol_version(name, &version,
1262 &is_global))
1264 if (!is_global)
1265 is_forced_local = true;
1266 else if (!version.empty())
1268 ver = this->namepool_.add_with_length(version.c_str(),
1269 version.length(),
1270 true,
1271 &ver_key);
1272 is_default_version = true;
1278 Stringpool::Key name_key;
1279 name = this->namepool_.add(name, true, &name_key);
1281 Sized_symbol<size>* res;
1282 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1283 is_default_version, *sym, st_shndx,
1284 is_ordinary, st_shndx);
1286 if (is_forced_local)
1287 this->force_local(res);
1289 return res;
1292 // Add all the symbols in a dynamic object to the hash table.
1294 template<int size, bool big_endian>
1295 void
1296 Symbol_table::add_from_dynobj(
1297 Sized_dynobj<size, big_endian>* dynobj,
1298 const unsigned char* syms,
1299 size_t count,
1300 const char* sym_names,
1301 size_t sym_name_size,
1302 const unsigned char* versym,
1303 size_t versym_size,
1304 const std::vector<const char*>* version_map,
1305 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1306 size_t* defined)
1308 *defined = 0;
1310 gold_assert(size == parameters->target().get_size());
1312 if (dynobj->just_symbols())
1314 gold_error(_("--just-symbols does not make sense with a shared object"));
1315 return;
1318 if (versym != NULL && versym_size / 2 < count)
1320 dynobj->error(_("too few symbol versions"));
1321 return;
1324 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1326 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1327 // weak aliases. This is necessary because if the dynamic object
1328 // provides the same variable under two names, one of which is a
1329 // weak definition, and the regular object refers to the weak
1330 // definition, we have to put both the weak definition and the
1331 // strong definition into the dynamic symbol table. Given a weak
1332 // definition, the only way that we can find the corresponding
1333 // strong definition, if any, is to search the symbol table.
1334 std::vector<Sized_symbol<size>*> object_symbols;
1336 const unsigned char* p = syms;
1337 const unsigned char* vs = versym;
1338 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1340 elfcpp::Sym<size, big_endian> sym(p);
1342 if (sympointers != NULL)
1343 (*sympointers)[i] = NULL;
1345 // Ignore symbols with local binding or that have
1346 // internal or hidden visibility.
1347 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1348 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1349 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1350 continue;
1352 // A protected symbol in a shared library must be treated as a
1353 // normal symbol when viewed from outside the shared library.
1354 // Implement this by overriding the visibility here.
1355 elfcpp::Sym<size, big_endian>* psym = &sym;
1356 unsigned char symbuf[sym_size];
1357 elfcpp::Sym<size, big_endian> sym2(symbuf);
1358 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1360 memcpy(symbuf, p, sym_size);
1361 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1362 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1363 psym = &sym2;
1366 unsigned int st_name = psym->get_st_name();
1367 if (st_name >= sym_name_size)
1369 dynobj->error(_("bad symbol name offset %u at %zu"),
1370 st_name, i);
1371 continue;
1374 const char* name = sym_names + st_name;
1376 bool is_ordinary;
1377 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1378 &is_ordinary);
1380 if (st_shndx != elfcpp::SHN_UNDEF)
1381 ++*defined;
1383 Sized_symbol<size>* res;
1385 if (versym == NULL)
1387 Stringpool::Key name_key;
1388 name = this->namepool_.add(name, true, &name_key);
1389 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1390 false, *psym, st_shndx, is_ordinary,
1391 st_shndx);
1393 else
1395 // Read the version information.
1397 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1399 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1400 v &= elfcpp::VERSYM_VERSION;
1402 // The Sun documentation says that V can be VER_NDX_LOCAL,
1403 // or VER_NDX_GLOBAL, or a version index. The meaning of
1404 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1405 // The old GNU linker will happily generate VER_NDX_LOCAL
1406 // for an undefined symbol. I don't know what the Sun
1407 // linker will generate.
1409 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1410 && st_shndx != elfcpp::SHN_UNDEF)
1412 // This symbol should not be visible outside the object.
1413 continue;
1416 // At this point we are definitely going to add this symbol.
1417 Stringpool::Key name_key;
1418 name = this->namepool_.add(name, true, &name_key);
1420 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1421 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1423 // This symbol does not have a version.
1424 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1425 false, *psym, st_shndx, is_ordinary,
1426 st_shndx);
1428 else
1430 if (v >= version_map->size())
1432 dynobj->error(_("versym for symbol %zu out of range: %u"),
1433 i, v);
1434 continue;
1437 const char* version = (*version_map)[v];
1438 if (version == NULL)
1440 dynobj->error(_("versym for symbol %zu has no name: %u"),
1441 i, v);
1442 continue;
1445 Stringpool::Key version_key;
1446 version = this->namepool_.add(version, true, &version_key);
1448 // If this is an absolute symbol, and the version name
1449 // and symbol name are the same, then this is the
1450 // version definition symbol. These symbols exist to
1451 // support using -u to pull in particular versions. We
1452 // do not want to record a version for them.
1453 if (st_shndx == elfcpp::SHN_ABS
1454 && !is_ordinary
1455 && name_key == version_key)
1456 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1457 false, *psym, st_shndx, is_ordinary,
1458 st_shndx);
1459 else
1461 const bool is_default_version =
1462 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1463 res = this->add_from_object(dynobj, name, name_key, version,
1464 version_key, is_default_version,
1465 *psym, st_shndx,
1466 is_ordinary, st_shndx);
1471 // Note that it is possible that RES was overridden by an
1472 // earlier object, in which case it can't be aliased here.
1473 if (st_shndx != elfcpp::SHN_UNDEF
1474 && is_ordinary
1475 && psym->get_st_type() == elfcpp::STT_OBJECT
1476 && res->source() == Symbol::FROM_OBJECT
1477 && res->object() == dynobj)
1478 object_symbols.push_back(res);
1480 if (sympointers != NULL)
1481 (*sympointers)[i] = res;
1484 this->record_weak_aliases(&object_symbols);
1487 // This is used to sort weak aliases. We sort them first by section
1488 // index, then by offset, then by weak ahead of strong.
1490 template<int size>
1491 class Weak_alias_sorter
1493 public:
1494 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1497 template<int size>
1498 bool
1499 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1500 const Sized_symbol<size>* s2) const
1502 bool is_ordinary;
1503 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1504 gold_assert(is_ordinary);
1505 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1506 gold_assert(is_ordinary);
1507 if (s1_shndx != s2_shndx)
1508 return s1_shndx < s2_shndx;
1510 if (s1->value() != s2->value())
1511 return s1->value() < s2->value();
1512 if (s1->binding() != s2->binding())
1514 if (s1->binding() == elfcpp::STB_WEAK)
1515 return true;
1516 if (s2->binding() == elfcpp::STB_WEAK)
1517 return false;
1519 return std::string(s1->name()) < std::string(s2->name());
1522 // SYMBOLS is a list of object symbols from a dynamic object. Look
1523 // for any weak aliases, and record them so that if we add the weak
1524 // alias to the dynamic symbol table, we also add the corresponding
1525 // strong symbol.
1527 template<int size>
1528 void
1529 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1531 // Sort the vector by section index, then by offset, then by weak
1532 // ahead of strong.
1533 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1535 // Walk through the vector. For each weak definition, record
1536 // aliases.
1537 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1538 symbols->begin();
1539 p != symbols->end();
1540 ++p)
1542 if ((*p)->binding() != elfcpp::STB_WEAK)
1543 continue;
1545 // Build a circular list of weak aliases. Each symbol points to
1546 // the next one in the circular list.
1548 Sized_symbol<size>* from_sym = *p;
1549 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1550 for (q = p + 1; q != symbols->end(); ++q)
1552 bool dummy;
1553 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1554 || (*q)->value() != from_sym->value())
1555 break;
1557 this->weak_aliases_[from_sym] = *q;
1558 from_sym->set_has_alias();
1559 from_sym = *q;
1562 if (from_sym != *p)
1564 this->weak_aliases_[from_sym] = *p;
1565 from_sym->set_has_alias();
1568 p = q - 1;
1572 // Create and return a specially defined symbol. If ONLY_IF_REF is
1573 // true, then only create the symbol if there is a reference to it.
1574 // If this does not return NULL, it sets *POLDSYM to the existing
1575 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1576 // resolve the newly created symbol to the old one. This
1577 // canonicalizes *PNAME and *PVERSION.
1579 template<int size, bool big_endian>
1580 Sized_symbol<size>*
1581 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1582 bool only_if_ref,
1583 Sized_symbol<size>** poldsym,
1584 bool *resolve_oldsym)
1586 *resolve_oldsym = false;
1588 // If the caller didn't give us a version, see if we get one from
1589 // the version script.
1590 std::string v;
1591 bool is_default_version = false;
1592 if (*pversion == NULL)
1594 bool is_global;
1595 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1597 if (is_global && !v.empty())
1599 *pversion = v.c_str();
1600 // If we get the version from a version script, then we
1601 // are also the default version.
1602 is_default_version = true;
1607 Symbol* oldsym;
1608 Sized_symbol<size>* sym;
1610 bool add_to_table = false;
1611 typename Symbol_table_type::iterator add_loc = this->table_.end();
1612 bool add_def_to_table = false;
1613 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1615 if (only_if_ref)
1617 oldsym = this->lookup(*pname, *pversion);
1618 if (oldsym == NULL && is_default_version)
1619 oldsym = this->lookup(*pname, NULL);
1620 if (oldsym == NULL || !oldsym->is_undefined())
1621 return NULL;
1623 *pname = oldsym->name();
1624 if (!is_default_version)
1625 *pversion = oldsym->version();
1627 else
1629 // Canonicalize NAME and VERSION.
1630 Stringpool::Key name_key;
1631 *pname = this->namepool_.add(*pname, true, &name_key);
1633 Stringpool::Key version_key = 0;
1634 if (*pversion != NULL)
1635 *pversion = this->namepool_.add(*pversion, true, &version_key);
1637 Symbol* const snull = NULL;
1638 std::pair<typename Symbol_table_type::iterator, bool> ins =
1639 this->table_.insert(std::make_pair(std::make_pair(name_key,
1640 version_key),
1641 snull));
1643 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1644 std::make_pair(this->table_.end(), false);
1645 if (is_default_version)
1647 const Stringpool::Key vnull = 0;
1648 insdefault =
1649 this->table_.insert(std::make_pair(std::make_pair(name_key,
1650 vnull),
1651 snull));
1654 if (!ins.second)
1656 // We already have a symbol table entry for NAME/VERSION.
1657 oldsym = ins.first->second;
1658 gold_assert(oldsym != NULL);
1660 if (is_default_version)
1662 Sized_symbol<size>* soldsym =
1663 this->get_sized_symbol<size>(oldsym);
1664 this->define_default_version<size, big_endian>(soldsym,
1665 insdefault.second,
1666 insdefault.first);
1669 else
1671 // We haven't seen this symbol before.
1672 gold_assert(ins.first->second == NULL);
1674 add_to_table = true;
1675 add_loc = ins.first;
1677 if (is_default_version && !insdefault.second)
1679 // We are adding NAME/VERSION, and it is the default
1680 // version. We already have an entry for NAME/NULL.
1681 oldsym = insdefault.first->second;
1682 *resolve_oldsym = true;
1684 else
1686 oldsym = NULL;
1688 if (is_default_version)
1690 add_def_to_table = true;
1691 add_def_loc = insdefault.first;
1697 const Target& target = parameters->target();
1698 if (!target.has_make_symbol())
1699 sym = new Sized_symbol<size>();
1700 else
1702 Sized_target<size, big_endian>* sized_target =
1703 parameters->sized_target<size, big_endian>();
1704 sym = sized_target->make_symbol();
1705 if (sym == NULL)
1706 return NULL;
1709 if (add_to_table)
1710 add_loc->second = sym;
1711 else
1712 gold_assert(oldsym != NULL);
1714 if (add_def_to_table)
1715 add_def_loc->second = sym;
1717 *poldsym = this->get_sized_symbol<size>(oldsym);
1719 return sym;
1722 // Define a symbol based on an Output_data.
1724 Symbol*
1725 Symbol_table::define_in_output_data(const char* name,
1726 const char* version,
1727 Defined defined,
1728 Output_data* od,
1729 uint64_t value,
1730 uint64_t symsize,
1731 elfcpp::STT type,
1732 elfcpp::STB binding,
1733 elfcpp::STV visibility,
1734 unsigned char nonvis,
1735 bool offset_is_from_end,
1736 bool only_if_ref)
1738 if (parameters->target().get_size() == 32)
1740 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1741 return this->do_define_in_output_data<32>(name, version, defined, od,
1742 value, symsize, type, binding,
1743 visibility, nonvis,
1744 offset_is_from_end,
1745 only_if_ref);
1746 #else
1747 gold_unreachable();
1748 #endif
1750 else if (parameters->target().get_size() == 64)
1752 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1753 return this->do_define_in_output_data<64>(name, version, defined, od,
1754 value, symsize, type, binding,
1755 visibility, nonvis,
1756 offset_is_from_end,
1757 only_if_ref);
1758 #else
1759 gold_unreachable();
1760 #endif
1762 else
1763 gold_unreachable();
1766 // Define a symbol in an Output_data, sized version.
1768 template<int size>
1769 Sized_symbol<size>*
1770 Symbol_table::do_define_in_output_data(
1771 const char* name,
1772 const char* version,
1773 Defined defined,
1774 Output_data* od,
1775 typename elfcpp::Elf_types<size>::Elf_Addr value,
1776 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1777 elfcpp::STT type,
1778 elfcpp::STB binding,
1779 elfcpp::STV visibility,
1780 unsigned char nonvis,
1781 bool offset_is_from_end,
1782 bool only_if_ref)
1784 Sized_symbol<size>* sym;
1785 Sized_symbol<size>* oldsym;
1786 bool resolve_oldsym;
1788 if (parameters->target().is_big_endian())
1790 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1791 sym = this->define_special_symbol<size, true>(&name, &version,
1792 only_if_ref, &oldsym,
1793 &resolve_oldsym);
1794 #else
1795 gold_unreachable();
1796 #endif
1798 else
1800 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1801 sym = this->define_special_symbol<size, false>(&name, &version,
1802 only_if_ref, &oldsym,
1803 &resolve_oldsym);
1804 #else
1805 gold_unreachable();
1806 #endif
1809 if (sym == NULL)
1810 return NULL;
1812 sym->init_output_data(name, version, od, value, symsize, type, binding,
1813 visibility, nonvis, offset_is_from_end);
1815 if (oldsym == NULL)
1817 if (binding == elfcpp::STB_LOCAL
1818 || this->version_script_.symbol_is_local(name))
1819 this->force_local(sym);
1820 else if (version != NULL)
1821 sym->set_is_default();
1822 return sym;
1825 if (Symbol_table::should_override_with_special(oldsym, defined))
1826 this->override_with_special(oldsym, sym);
1828 if (resolve_oldsym)
1829 return sym;
1830 else
1832 delete sym;
1833 return oldsym;
1837 // Define a symbol based on an Output_segment.
1839 Symbol*
1840 Symbol_table::define_in_output_segment(const char* name,
1841 const char* version,
1842 Defined defined,
1843 Output_segment* os,
1844 uint64_t value,
1845 uint64_t symsize,
1846 elfcpp::STT type,
1847 elfcpp::STB binding,
1848 elfcpp::STV visibility,
1849 unsigned char nonvis,
1850 Symbol::Segment_offset_base offset_base,
1851 bool only_if_ref)
1853 if (parameters->target().get_size() == 32)
1855 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1856 return this->do_define_in_output_segment<32>(name, version, defined, os,
1857 value, symsize, type,
1858 binding, visibility, nonvis,
1859 offset_base, only_if_ref);
1860 #else
1861 gold_unreachable();
1862 #endif
1864 else if (parameters->target().get_size() == 64)
1866 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1867 return this->do_define_in_output_segment<64>(name, version, defined, os,
1868 value, symsize, type,
1869 binding, visibility, nonvis,
1870 offset_base, only_if_ref);
1871 #else
1872 gold_unreachable();
1873 #endif
1875 else
1876 gold_unreachable();
1879 // Define a symbol in an Output_segment, sized version.
1881 template<int size>
1882 Sized_symbol<size>*
1883 Symbol_table::do_define_in_output_segment(
1884 const char* name,
1885 const char* version,
1886 Defined defined,
1887 Output_segment* os,
1888 typename elfcpp::Elf_types<size>::Elf_Addr value,
1889 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1890 elfcpp::STT type,
1891 elfcpp::STB binding,
1892 elfcpp::STV visibility,
1893 unsigned char nonvis,
1894 Symbol::Segment_offset_base offset_base,
1895 bool only_if_ref)
1897 Sized_symbol<size>* sym;
1898 Sized_symbol<size>* oldsym;
1899 bool resolve_oldsym;
1901 if (parameters->target().is_big_endian())
1903 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1904 sym = this->define_special_symbol<size, true>(&name, &version,
1905 only_if_ref, &oldsym,
1906 &resolve_oldsym);
1907 #else
1908 gold_unreachable();
1909 #endif
1911 else
1913 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1914 sym = this->define_special_symbol<size, false>(&name, &version,
1915 only_if_ref, &oldsym,
1916 &resolve_oldsym);
1917 #else
1918 gold_unreachable();
1919 #endif
1922 if (sym == NULL)
1923 return NULL;
1925 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1926 visibility, nonvis, offset_base);
1928 if (oldsym == NULL)
1930 if (binding == elfcpp::STB_LOCAL
1931 || this->version_script_.symbol_is_local(name))
1932 this->force_local(sym);
1933 else if (version != NULL)
1934 sym->set_is_default();
1935 return sym;
1938 if (Symbol_table::should_override_with_special(oldsym, defined))
1939 this->override_with_special(oldsym, sym);
1941 if (resolve_oldsym)
1942 return sym;
1943 else
1945 delete sym;
1946 return oldsym;
1950 // Define a special symbol with a constant value. It is a multiple
1951 // definition error if this symbol is already defined.
1953 Symbol*
1954 Symbol_table::define_as_constant(const char* name,
1955 const char* version,
1956 Defined defined,
1957 uint64_t value,
1958 uint64_t symsize,
1959 elfcpp::STT type,
1960 elfcpp::STB binding,
1961 elfcpp::STV visibility,
1962 unsigned char nonvis,
1963 bool only_if_ref,
1964 bool force_override)
1966 if (parameters->target().get_size() == 32)
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1969 return this->do_define_as_constant<32>(name, version, defined, value,
1970 symsize, type, binding,
1971 visibility, nonvis, only_if_ref,
1972 force_override);
1973 #else
1974 gold_unreachable();
1975 #endif
1977 else if (parameters->target().get_size() == 64)
1979 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1980 return this->do_define_as_constant<64>(name, version, defined, value,
1981 symsize, type, binding,
1982 visibility, nonvis, only_if_ref,
1983 force_override);
1984 #else
1985 gold_unreachable();
1986 #endif
1988 else
1989 gold_unreachable();
1992 // Define a symbol as a constant, sized version.
1994 template<int size>
1995 Sized_symbol<size>*
1996 Symbol_table::do_define_as_constant(
1997 const char* name,
1998 const char* version,
1999 Defined defined,
2000 typename elfcpp::Elf_types<size>::Elf_Addr value,
2001 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2002 elfcpp::STT type,
2003 elfcpp::STB binding,
2004 elfcpp::STV visibility,
2005 unsigned char nonvis,
2006 bool only_if_ref,
2007 bool force_override)
2009 Sized_symbol<size>* sym;
2010 Sized_symbol<size>* oldsym;
2011 bool resolve_oldsym;
2013 if (parameters->target().is_big_endian())
2015 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2016 sym = this->define_special_symbol<size, true>(&name, &version,
2017 only_if_ref, &oldsym,
2018 &resolve_oldsym);
2019 #else
2020 gold_unreachable();
2021 #endif
2023 else
2025 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2026 sym = this->define_special_symbol<size, false>(&name, &version,
2027 only_if_ref, &oldsym,
2028 &resolve_oldsym);
2029 #else
2030 gold_unreachable();
2031 #endif
2034 if (sym == NULL)
2035 return NULL;
2037 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2038 nonvis);
2040 if (oldsym == NULL)
2042 // Version symbols are absolute symbols with name == version.
2043 // We don't want to force them to be local.
2044 if ((version == NULL
2045 || name != version
2046 || value != 0)
2047 && (binding == elfcpp::STB_LOCAL
2048 || this->version_script_.symbol_is_local(name)))
2049 this->force_local(sym);
2050 else if (version != NULL
2051 && (name != version || value != 0))
2052 sym->set_is_default();
2053 return sym;
2056 if (force_override
2057 || Symbol_table::should_override_with_special(oldsym, defined))
2058 this->override_with_special(oldsym, sym);
2060 if (resolve_oldsym)
2061 return sym;
2062 else
2064 delete sym;
2065 return oldsym;
2069 // Define a set of symbols in output sections.
2071 void
2072 Symbol_table::define_symbols(const Layout* layout, int count,
2073 const Define_symbol_in_section* p,
2074 bool only_if_ref)
2076 for (int i = 0; i < count; ++i, ++p)
2078 Output_section* os = layout->find_output_section(p->output_section);
2079 if (os != NULL)
2080 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2081 p->size, p->type, p->binding,
2082 p->visibility, p->nonvis,
2083 p->offset_is_from_end,
2084 only_if_ref || p->only_if_ref);
2085 else
2086 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2087 p->type, p->binding, p->visibility, p->nonvis,
2088 only_if_ref || p->only_if_ref,
2089 false);
2093 // Define a set of symbols in output segments.
2095 void
2096 Symbol_table::define_symbols(const Layout* layout, int count,
2097 const Define_symbol_in_segment* p,
2098 bool only_if_ref)
2100 for (int i = 0; i < count; ++i, ++p)
2102 Output_segment* os = layout->find_output_segment(p->segment_type,
2103 p->segment_flags_set,
2104 p->segment_flags_clear);
2105 if (os != NULL)
2106 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2107 p->size, p->type, p->binding,
2108 p->visibility, p->nonvis,
2109 p->offset_base,
2110 only_if_ref || p->only_if_ref);
2111 else
2112 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2113 p->type, p->binding, p->visibility, p->nonvis,
2114 only_if_ref || p->only_if_ref,
2115 false);
2119 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2120 // symbol should be defined--typically a .dyn.bss section. VALUE is
2121 // the offset within POSD.
2123 template<int size>
2124 void
2125 Symbol_table::define_with_copy_reloc(
2126 Sized_symbol<size>* csym,
2127 Output_data* posd,
2128 typename elfcpp::Elf_types<size>::Elf_Addr value)
2130 gold_assert(csym->is_from_dynobj());
2131 gold_assert(!csym->is_copied_from_dynobj());
2132 Object* object = csym->object();
2133 gold_assert(object->is_dynamic());
2134 Dynobj* dynobj = static_cast<Dynobj*>(object);
2136 // Our copied variable has to override any variable in a shared
2137 // library.
2138 elfcpp::STB binding = csym->binding();
2139 if (binding == elfcpp::STB_WEAK)
2140 binding = elfcpp::STB_GLOBAL;
2142 this->define_in_output_data(csym->name(), csym->version(), COPY,
2143 posd, value, csym->symsize(),
2144 csym->type(), binding,
2145 csym->visibility(), csym->nonvis(),
2146 false, false);
2148 csym->set_is_copied_from_dynobj();
2149 csym->set_needs_dynsym_entry();
2151 this->copied_symbol_dynobjs_[csym] = dynobj;
2153 // We have now defined all aliases, but we have not entered them all
2154 // in the copied_symbol_dynobjs_ map.
2155 if (csym->has_alias())
2157 Symbol* sym = csym;
2158 while (true)
2160 sym = this->weak_aliases_[sym];
2161 if (sym == csym)
2162 break;
2163 gold_assert(sym->output_data() == posd);
2165 sym->set_is_copied_from_dynobj();
2166 this->copied_symbol_dynobjs_[sym] = dynobj;
2171 // SYM is defined using a COPY reloc. Return the dynamic object where
2172 // the original definition was found.
2174 Dynobj*
2175 Symbol_table::get_copy_source(const Symbol* sym) const
2177 gold_assert(sym->is_copied_from_dynobj());
2178 Copied_symbol_dynobjs::const_iterator p =
2179 this->copied_symbol_dynobjs_.find(sym);
2180 gold_assert(p != this->copied_symbol_dynobjs_.end());
2181 return p->second;
2184 // Add any undefined symbols named on the command line.
2186 void
2187 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2189 if (parameters->options().any_undefined()
2190 || layout->script_options()->any_unreferenced())
2192 if (parameters->target().get_size() == 32)
2194 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2195 this->do_add_undefined_symbols_from_command_line<32>(layout);
2196 #else
2197 gold_unreachable();
2198 #endif
2200 else if (parameters->target().get_size() == 64)
2202 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2203 this->do_add_undefined_symbols_from_command_line<64>(layout);
2204 #else
2205 gold_unreachable();
2206 #endif
2208 else
2209 gold_unreachable();
2213 template<int size>
2214 void
2215 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2217 for (options::String_set::const_iterator p =
2218 parameters->options().undefined_begin();
2219 p != parameters->options().undefined_end();
2220 ++p)
2221 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2223 for (Script_options::referenced_const_iterator p =
2224 layout->script_options()->referenced_begin();
2225 p != layout->script_options()->referenced_end();
2226 ++p)
2227 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2230 template<int size>
2231 void
2232 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2234 if (this->lookup(name) != NULL)
2235 return;
2237 const char* version = NULL;
2239 Sized_symbol<size>* sym;
2240 Sized_symbol<size>* oldsym;
2241 bool resolve_oldsym;
2242 if (parameters->target().is_big_endian())
2244 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2245 sym = this->define_special_symbol<size, true>(&name, &version,
2246 false, &oldsym,
2247 &resolve_oldsym);
2248 #else
2249 gold_unreachable();
2250 #endif
2252 else
2254 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2255 sym = this->define_special_symbol<size, false>(&name, &version,
2256 false, &oldsym,
2257 &resolve_oldsym);
2258 #else
2259 gold_unreachable();
2260 #endif
2263 gold_assert(oldsym == NULL);
2265 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2266 elfcpp::STV_DEFAULT, 0);
2267 ++this->saw_undefined_;
2270 // Set the dynamic symbol indexes. INDEX is the index of the first
2271 // global dynamic symbol. Pointers to the symbols are stored into the
2272 // vector SYMS. The names are added to DYNPOOL. This returns an
2273 // updated dynamic symbol index.
2275 unsigned int
2276 Symbol_table::set_dynsym_indexes(unsigned int index,
2277 std::vector<Symbol*>* syms,
2278 Stringpool* dynpool,
2279 Versions* versions)
2281 for (Symbol_table_type::iterator p = this->table_.begin();
2282 p != this->table_.end();
2283 ++p)
2285 Symbol* sym = p->second;
2287 // Note that SYM may already have a dynamic symbol index, since
2288 // some symbols appear more than once in the symbol table, with
2289 // and without a version.
2291 if (!sym->should_add_dynsym_entry(this))
2292 sym->set_dynsym_index(-1U);
2293 else if (!sym->has_dynsym_index())
2295 sym->set_dynsym_index(index);
2296 ++index;
2297 syms->push_back(sym);
2298 dynpool->add(sym->name(), false, NULL);
2300 // Record any version information.
2301 if (sym->version() != NULL)
2302 versions->record_version(this, dynpool, sym);
2304 // If the symbol is defined in a dynamic object and is
2305 // referenced in a regular object, then mark the dynamic
2306 // object as needed. This is used to implement --as-needed.
2307 if (sym->is_from_dynobj() && sym->in_reg())
2308 sym->object()->set_is_needed();
2312 // Finish up the versions. In some cases this may add new dynamic
2313 // symbols.
2314 index = versions->finalize(this, index, syms);
2316 return index;
2319 // Set the final values for all the symbols. The index of the first
2320 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2321 // file offset OFF. Add their names to POOL. Return the new file
2322 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2324 off_t
2325 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2326 size_t dyncount, Stringpool* pool,
2327 unsigned int *plocal_symcount)
2329 off_t ret;
2331 gold_assert(*plocal_symcount != 0);
2332 this->first_global_index_ = *plocal_symcount;
2334 this->dynamic_offset_ = dynoff;
2335 this->first_dynamic_global_index_ = dyn_global_index;
2336 this->dynamic_count_ = dyncount;
2338 if (parameters->target().get_size() == 32)
2340 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2341 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2342 #else
2343 gold_unreachable();
2344 #endif
2346 else if (parameters->target().get_size() == 64)
2348 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2349 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2350 #else
2351 gold_unreachable();
2352 #endif
2354 else
2355 gold_unreachable();
2357 // Now that we have the final symbol table, we can reliably note
2358 // which symbols should get warnings.
2359 this->warnings_.note_warnings(this);
2361 return ret;
2364 // SYM is going into the symbol table at *PINDEX. Add the name to
2365 // POOL, update *PINDEX and *POFF.
2367 template<int size>
2368 void
2369 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2370 unsigned int* pindex, off_t* poff)
2372 sym->set_symtab_index(*pindex);
2373 pool->add(sym->name(), false, NULL);
2374 ++*pindex;
2375 *poff += elfcpp::Elf_sizes<size>::sym_size;
2378 // Set the final value for all the symbols. This is called after
2379 // Layout::finalize, so all the output sections have their final
2380 // address.
2382 template<int size>
2383 off_t
2384 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2385 unsigned int* plocal_symcount)
2387 off = align_address(off, size >> 3);
2388 this->offset_ = off;
2390 unsigned int index = *plocal_symcount;
2391 const unsigned int orig_index = index;
2393 // First do all the symbols which have been forced to be local, as
2394 // they must appear before all global symbols.
2395 for (Forced_locals::iterator p = this->forced_locals_.begin();
2396 p != this->forced_locals_.end();
2397 ++p)
2399 Symbol* sym = *p;
2400 gold_assert(sym->is_forced_local());
2401 if (this->sized_finalize_symbol<size>(sym))
2403 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2404 ++*plocal_symcount;
2408 // Now do all the remaining symbols.
2409 for (Symbol_table_type::iterator p = this->table_.begin();
2410 p != this->table_.end();
2411 ++p)
2413 Symbol* sym = p->second;
2414 if (this->sized_finalize_symbol<size>(sym))
2415 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2418 this->output_count_ = index - orig_index;
2420 return off;
2423 // Compute the final value of SYM and store status in location PSTATUS.
2424 // During relaxation, this may be called multiple times for a symbol to
2425 // compute its would-be final value in each relaxation pass.
2427 template<int size>
2428 typename Sized_symbol<size>::Value_type
2429 Symbol_table::compute_final_value(
2430 const Sized_symbol<size>* sym,
2431 Compute_final_value_status* pstatus) const
2433 typedef typename Sized_symbol<size>::Value_type Value_type;
2434 Value_type value;
2436 switch (sym->source())
2438 case Symbol::FROM_OBJECT:
2440 bool is_ordinary;
2441 unsigned int shndx = sym->shndx(&is_ordinary);
2443 if (!is_ordinary
2444 && shndx != elfcpp::SHN_ABS
2445 && !Symbol::is_common_shndx(shndx))
2447 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2448 return 0;
2451 Object* symobj = sym->object();
2452 if (symobj->is_dynamic())
2454 value = 0;
2455 shndx = elfcpp::SHN_UNDEF;
2457 else if (symobj->pluginobj() != NULL)
2459 value = 0;
2460 shndx = elfcpp::SHN_UNDEF;
2462 else if (shndx == elfcpp::SHN_UNDEF)
2463 value = 0;
2464 else if (!is_ordinary
2465 && (shndx == elfcpp::SHN_ABS
2466 || Symbol::is_common_shndx(shndx)))
2467 value = sym->value();
2468 else
2470 Relobj* relobj = static_cast<Relobj*>(symobj);
2471 Output_section* os = relobj->output_section(shndx);
2473 if (this->is_section_folded(relobj, shndx))
2475 gold_assert(os == NULL);
2476 // Get the os of the section it is folded onto.
2477 Section_id folded = this->icf_->get_folded_section(relobj,
2478 shndx);
2479 gold_assert(folded.first != NULL);
2480 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2481 unsigned folded_shndx = folded.second;
2483 os = folded_obj->output_section(folded_shndx);
2484 gold_assert(os != NULL);
2486 // Replace (relobj, shndx) with canonical ICF input section.
2487 shndx = folded_shndx;
2488 relobj = folded_obj;
2491 uint64_t secoff64 = relobj->output_section_offset(shndx);
2492 if (os == NULL)
2494 bool static_or_reloc = (parameters->doing_static_link() ||
2495 parameters->options().relocatable());
2496 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2498 *pstatus = CFVS_NO_OUTPUT_SECTION;
2499 return 0;
2502 if (secoff64 == -1ULL)
2504 // The section needs special handling (e.g., a merge section).
2506 value = os->output_address(relobj, shndx, sym->value());
2508 else
2510 Value_type secoff =
2511 convert_types<Value_type, uint64_t>(secoff64);
2512 if (sym->type() == elfcpp::STT_TLS)
2513 value = sym->value() + os->tls_offset() + secoff;
2514 else
2515 value = sym->value() + os->address() + secoff;
2519 break;
2521 case Symbol::IN_OUTPUT_DATA:
2523 Output_data* od = sym->output_data();
2524 value = sym->value();
2525 if (sym->type() != elfcpp::STT_TLS)
2526 value += od->address();
2527 else
2529 Output_section* os = od->output_section();
2530 gold_assert(os != NULL);
2531 value += os->tls_offset() + (od->address() - os->address());
2533 if (sym->offset_is_from_end())
2534 value += od->data_size();
2536 break;
2538 case Symbol::IN_OUTPUT_SEGMENT:
2540 Output_segment* os = sym->output_segment();
2541 value = sym->value();
2542 if (sym->type() != elfcpp::STT_TLS)
2543 value += os->vaddr();
2544 switch (sym->offset_base())
2546 case Symbol::SEGMENT_START:
2547 break;
2548 case Symbol::SEGMENT_END:
2549 value += os->memsz();
2550 break;
2551 case Symbol::SEGMENT_BSS:
2552 value += os->filesz();
2553 break;
2554 default:
2555 gold_unreachable();
2558 break;
2560 case Symbol::IS_CONSTANT:
2561 value = sym->value();
2562 break;
2564 case Symbol::IS_UNDEFINED:
2565 value = 0;
2566 break;
2568 default:
2569 gold_unreachable();
2572 *pstatus = CFVS_OK;
2573 return value;
2576 // Finalize the symbol SYM. This returns true if the symbol should be
2577 // added to the symbol table, false otherwise.
2579 template<int size>
2580 bool
2581 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2583 typedef typename Sized_symbol<size>::Value_type Value_type;
2585 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2587 // The default version of a symbol may appear twice in the symbol
2588 // table. We only need to finalize it once.
2589 if (sym->has_symtab_index())
2590 return false;
2592 if (!sym->in_reg())
2594 gold_assert(!sym->has_symtab_index());
2595 sym->set_symtab_index(-1U);
2596 gold_assert(sym->dynsym_index() == -1U);
2597 return false;
2600 // Compute final symbol value.
2601 Compute_final_value_status status;
2602 Value_type value = this->compute_final_value(sym, &status);
2604 switch (status)
2606 case CFVS_OK:
2607 break;
2608 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2610 bool is_ordinary;
2611 unsigned int shndx = sym->shndx(&is_ordinary);
2612 gold_error(_("%s: unsupported symbol section 0x%x"),
2613 sym->demangled_name().c_str(), shndx);
2615 break;
2616 case CFVS_NO_OUTPUT_SECTION:
2617 sym->set_symtab_index(-1U);
2618 return false;
2619 default:
2620 gold_unreachable();
2623 sym->set_value(value);
2625 if (parameters->options().strip_all()
2626 || !parameters->options().should_retain_symbol(sym->name()))
2628 sym->set_symtab_index(-1U);
2629 return false;
2632 return true;
2635 // Write out the global symbols.
2637 void
2638 Symbol_table::write_globals(const Stringpool* sympool,
2639 const Stringpool* dynpool,
2640 Output_symtab_xindex* symtab_xindex,
2641 Output_symtab_xindex* dynsym_xindex,
2642 Output_file* of) const
2644 switch (parameters->size_and_endianness())
2646 #ifdef HAVE_TARGET_32_LITTLE
2647 case Parameters::TARGET_32_LITTLE:
2648 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2649 dynsym_xindex, of);
2650 break;
2651 #endif
2652 #ifdef HAVE_TARGET_32_BIG
2653 case Parameters::TARGET_32_BIG:
2654 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2655 dynsym_xindex, of);
2656 break;
2657 #endif
2658 #ifdef HAVE_TARGET_64_LITTLE
2659 case Parameters::TARGET_64_LITTLE:
2660 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2661 dynsym_xindex, of);
2662 break;
2663 #endif
2664 #ifdef HAVE_TARGET_64_BIG
2665 case Parameters::TARGET_64_BIG:
2666 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2667 dynsym_xindex, of);
2668 break;
2669 #endif
2670 default:
2671 gold_unreachable();
2675 // Write out the global symbols.
2677 template<int size, bool big_endian>
2678 void
2679 Symbol_table::sized_write_globals(const Stringpool* sympool,
2680 const Stringpool* dynpool,
2681 Output_symtab_xindex* symtab_xindex,
2682 Output_symtab_xindex* dynsym_xindex,
2683 Output_file* of) const
2685 const Target& target = parameters->target();
2687 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2689 const unsigned int output_count = this->output_count_;
2690 const section_size_type oview_size = output_count * sym_size;
2691 const unsigned int first_global_index = this->first_global_index_;
2692 unsigned char* psyms;
2693 if (this->offset_ == 0 || output_count == 0)
2694 psyms = NULL;
2695 else
2696 psyms = of->get_output_view(this->offset_, oview_size);
2698 const unsigned int dynamic_count = this->dynamic_count_;
2699 const section_size_type dynamic_size = dynamic_count * sym_size;
2700 const unsigned int first_dynamic_global_index =
2701 this->first_dynamic_global_index_;
2702 unsigned char* dynamic_view;
2703 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2704 dynamic_view = NULL;
2705 else
2706 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2708 for (Symbol_table_type::const_iterator p = this->table_.begin();
2709 p != this->table_.end();
2710 ++p)
2712 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2714 // Possibly warn about unresolved symbols in shared libraries.
2715 this->warn_about_undefined_dynobj_symbol(sym);
2717 unsigned int sym_index = sym->symtab_index();
2718 unsigned int dynsym_index;
2719 if (dynamic_view == NULL)
2720 dynsym_index = -1U;
2721 else
2722 dynsym_index = sym->dynsym_index();
2724 if (sym_index == -1U && dynsym_index == -1U)
2726 // This symbol is not included in the output file.
2727 continue;
2730 unsigned int shndx;
2731 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2732 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2733 elfcpp::STB binding = sym->binding();
2734 switch (sym->source())
2736 case Symbol::FROM_OBJECT:
2738 bool is_ordinary;
2739 unsigned int in_shndx = sym->shndx(&is_ordinary);
2741 if (!is_ordinary
2742 && in_shndx != elfcpp::SHN_ABS
2743 && !Symbol::is_common_shndx(in_shndx))
2745 gold_error(_("%s: unsupported symbol section 0x%x"),
2746 sym->demangled_name().c_str(), in_shndx);
2747 shndx = in_shndx;
2749 else
2751 Object* symobj = sym->object();
2752 if (symobj->is_dynamic())
2754 if (sym->needs_dynsym_value())
2755 dynsym_value = target.dynsym_value(sym);
2756 shndx = elfcpp::SHN_UNDEF;
2757 if (sym->is_undef_binding_weak())
2758 binding = elfcpp::STB_WEAK;
2760 else if (symobj->pluginobj() != NULL)
2761 shndx = elfcpp::SHN_UNDEF;
2762 else if (in_shndx == elfcpp::SHN_UNDEF
2763 || (!is_ordinary
2764 && (in_shndx == elfcpp::SHN_ABS
2765 || Symbol::is_common_shndx(in_shndx))))
2766 shndx = in_shndx;
2767 else
2769 Relobj* relobj = static_cast<Relobj*>(symobj);
2770 Output_section* os = relobj->output_section(in_shndx);
2771 if (this->is_section_folded(relobj, in_shndx))
2773 // This global symbol must be written out even though
2774 // it is folded.
2775 // Get the os of the section it is folded onto.
2776 Section_id folded =
2777 this->icf_->get_folded_section(relobj, in_shndx);
2778 gold_assert(folded.first !=NULL);
2779 Relobj* folded_obj =
2780 reinterpret_cast<Relobj*>(folded.first);
2781 os = folded_obj->output_section(folded.second);
2782 gold_assert(os != NULL);
2784 gold_assert(os != NULL);
2785 shndx = os->out_shndx();
2787 if (shndx >= elfcpp::SHN_LORESERVE)
2789 if (sym_index != -1U)
2790 symtab_xindex->add(sym_index, shndx);
2791 if (dynsym_index != -1U)
2792 dynsym_xindex->add(dynsym_index, shndx);
2793 shndx = elfcpp::SHN_XINDEX;
2796 // In object files symbol values are section
2797 // relative.
2798 if (parameters->options().relocatable())
2799 sym_value -= os->address();
2803 break;
2805 case Symbol::IN_OUTPUT_DATA:
2806 shndx = sym->output_data()->out_shndx();
2807 if (shndx >= elfcpp::SHN_LORESERVE)
2809 if (sym_index != -1U)
2810 symtab_xindex->add(sym_index, shndx);
2811 if (dynsym_index != -1U)
2812 dynsym_xindex->add(dynsym_index, shndx);
2813 shndx = elfcpp::SHN_XINDEX;
2815 break;
2817 case Symbol::IN_OUTPUT_SEGMENT:
2818 shndx = elfcpp::SHN_ABS;
2819 break;
2821 case Symbol::IS_CONSTANT:
2822 shndx = elfcpp::SHN_ABS;
2823 break;
2825 case Symbol::IS_UNDEFINED:
2826 shndx = elfcpp::SHN_UNDEF;
2827 break;
2829 default:
2830 gold_unreachable();
2833 if (sym_index != -1U)
2835 sym_index -= first_global_index;
2836 gold_assert(sym_index < output_count);
2837 unsigned char* ps = psyms + (sym_index * sym_size);
2838 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2839 binding, sympool, ps);
2842 if (dynsym_index != -1U)
2844 dynsym_index -= first_dynamic_global_index;
2845 gold_assert(dynsym_index < dynamic_count);
2846 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2847 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2848 binding, dynpool, pd);
2852 of->write_output_view(this->offset_, oview_size, psyms);
2853 if (dynamic_view != NULL)
2854 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2857 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2858 // strtab holding the name.
2860 template<int size, bool big_endian>
2861 void
2862 Symbol_table::sized_write_symbol(
2863 Sized_symbol<size>* sym,
2864 typename elfcpp::Elf_types<size>::Elf_Addr value,
2865 unsigned int shndx,
2866 elfcpp::STB binding,
2867 const Stringpool* pool,
2868 unsigned char* p) const
2870 elfcpp::Sym_write<size, big_endian> osym(p);
2871 osym.put_st_name(pool->get_offset(sym->name()));
2872 osym.put_st_value(value);
2873 // Use a symbol size of zero for undefined symbols from shared libraries.
2874 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2875 osym.put_st_size(0);
2876 else
2877 osym.put_st_size(sym->symsize());
2878 elfcpp::STT type = sym->type();
2879 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2880 if (type == elfcpp::STT_GNU_IFUNC
2881 && sym->is_from_dynobj())
2882 type = elfcpp::STT_FUNC;
2883 // A version script may have overridden the default binding.
2884 if (sym->is_forced_local())
2885 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2886 else
2887 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2888 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2889 osym.put_st_shndx(shndx);
2892 // Check for unresolved symbols in shared libraries. This is
2893 // controlled by the --allow-shlib-undefined option.
2895 // We only warn about libraries for which we have seen all the
2896 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2897 // which were not seen in this link. If we didn't see a DT_NEEDED
2898 // entry, we aren't going to be able to reliably report whether the
2899 // symbol is undefined.
2901 // We also don't warn about libraries found in a system library
2902 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2903 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2904 // can have undefined references satisfied by ld-linux.so.
2906 inline void
2907 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2909 bool dummy;
2910 if (sym->source() == Symbol::FROM_OBJECT
2911 && sym->object()->is_dynamic()
2912 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2913 && sym->binding() != elfcpp::STB_WEAK
2914 && !parameters->options().allow_shlib_undefined()
2915 && !parameters->target().is_defined_by_abi(sym)
2916 && !sym->object()->is_in_system_directory())
2918 // A very ugly cast.
2919 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2920 if (!dynobj->has_unknown_needed_entries())
2921 gold_undefined_symbol(sym);
2925 // Write out a section symbol. Return the update offset.
2927 void
2928 Symbol_table::write_section_symbol(const Output_section *os,
2929 Output_symtab_xindex* symtab_xindex,
2930 Output_file* of,
2931 off_t offset) const
2933 switch (parameters->size_and_endianness())
2935 #ifdef HAVE_TARGET_32_LITTLE
2936 case Parameters::TARGET_32_LITTLE:
2937 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2938 offset);
2939 break;
2940 #endif
2941 #ifdef HAVE_TARGET_32_BIG
2942 case Parameters::TARGET_32_BIG:
2943 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2944 offset);
2945 break;
2946 #endif
2947 #ifdef HAVE_TARGET_64_LITTLE
2948 case Parameters::TARGET_64_LITTLE:
2949 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2950 offset);
2951 break;
2952 #endif
2953 #ifdef HAVE_TARGET_64_BIG
2954 case Parameters::TARGET_64_BIG:
2955 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2956 offset);
2957 break;
2958 #endif
2959 default:
2960 gold_unreachable();
2964 // Write out a section symbol, specialized for size and endianness.
2966 template<int size, bool big_endian>
2967 void
2968 Symbol_table::sized_write_section_symbol(const Output_section* os,
2969 Output_symtab_xindex* symtab_xindex,
2970 Output_file* of,
2971 off_t offset) const
2973 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2975 unsigned char* pov = of->get_output_view(offset, sym_size);
2977 elfcpp::Sym_write<size, big_endian> osym(pov);
2978 osym.put_st_name(0);
2979 if (parameters->options().relocatable())
2980 osym.put_st_value(0);
2981 else
2982 osym.put_st_value(os->address());
2983 osym.put_st_size(0);
2984 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2985 elfcpp::STT_SECTION));
2986 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2988 unsigned int shndx = os->out_shndx();
2989 if (shndx >= elfcpp::SHN_LORESERVE)
2991 symtab_xindex->add(os->symtab_index(), shndx);
2992 shndx = elfcpp::SHN_XINDEX;
2994 osym.put_st_shndx(shndx);
2996 of->write_output_view(offset, sym_size, pov);
2999 // Print statistical information to stderr. This is used for --stats.
3001 void
3002 Symbol_table::print_stats() const
3004 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3005 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3006 program_name, this->table_.size(), this->table_.bucket_count());
3007 #else
3008 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3009 program_name, this->table_.size());
3010 #endif
3011 this->namepool_.print_stats("symbol table stringpool");
3014 // We check for ODR violations by looking for symbols with the same
3015 // name for which the debugging information reports that they were
3016 // defined in different source locations. When comparing the source
3017 // location, we consider instances with the same base filename and
3018 // line number to be the same. This is because different object
3019 // files/shared libraries can include the same header file using
3020 // different paths, and we don't want to report an ODR violation in
3021 // that case.
3023 // This struct is used to compare line information, as returned by
3024 // Dwarf_line_info::one_addr2line. It implements a < comparison
3025 // operator used with std::set.
3027 struct Odr_violation_compare
3029 bool
3030 operator()(const std::string& s1, const std::string& s2) const
3032 std::string::size_type pos1 = s1.rfind('/');
3033 std::string::size_type pos2 = s2.rfind('/');
3034 if (pos1 == std::string::npos
3035 || pos2 == std::string::npos)
3036 return s1 < s2;
3037 return s1.compare(pos1, std::string::npos,
3038 s2, pos2, std::string::npos) < 0;
3042 // Check candidate_odr_violations_ to find symbols with the same name
3043 // but apparently different definitions (different source-file/line-no).
3045 void
3046 Symbol_table::detect_odr_violations(const Task* task,
3047 const char* output_file_name) const
3049 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3050 it != candidate_odr_violations_.end();
3051 ++it)
3053 const char* symbol_name = it->first;
3054 // Maps from symbol location to a sample object file we found
3055 // that location in. We use a sorted map so the location order
3056 // is deterministic, but we only store an arbitrary object file
3057 // to avoid copying lots of names.
3058 std::map<std::string, std::string, Odr_violation_compare> line_nums;
3060 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3061 locs = it->second.begin();
3062 locs != it->second.end();
3063 ++locs)
3065 // We need to lock the object in order to read it. This
3066 // means that we have to run in a singleton Task. If we
3067 // want to run this in a general Task for better
3068 // performance, we will need one Task for object, plus
3069 // appropriate locking to ensure that we don't conflict with
3070 // other uses of the object. Also note, one_addr2line is not
3071 // currently thread-safe.
3072 Task_lock_obj<Object> tl(task, locs->object);
3073 // 16 is the size of the object-cache that one_addr2line should use.
3074 std::string lineno = Dwarf_line_info::one_addr2line(
3075 locs->object, locs->shndx, locs->offset, 16);
3076 if (!lineno.empty())
3078 std::string& sample_object = line_nums[lineno];
3079 if (sample_object.empty())
3080 sample_object = locs->object->name();
3084 if (line_nums.size() > 1)
3086 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
3087 "places (possible ODR violation):"),
3088 output_file_name, demangle(symbol_name).c_str());
3089 for (std::map<std::string, std::string>::const_iterator it2 =
3090 line_nums.begin();
3091 it2 != line_nums.end();
3092 ++it2)
3093 fprintf(stderr, _(" %s from %s\n"),
3094 it2->first.c_str(), it2->second.c_str());
3097 // We only call one_addr2line() in this function, so we can clear its cache.
3098 Dwarf_line_info::clear_addr2line_cache();
3101 // Warnings functions.
3103 // Add a new warning.
3105 void
3106 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3107 const std::string& warning)
3109 name = symtab->canonicalize_name(name);
3110 this->warnings_[name].set(obj, warning);
3113 // Look through the warnings and mark the symbols for which we should
3114 // warn. This is called during Layout::finalize when we know the
3115 // sources for all the symbols.
3117 void
3118 Warnings::note_warnings(Symbol_table* symtab)
3120 for (Warning_table::iterator p = this->warnings_.begin();
3121 p != this->warnings_.end();
3122 ++p)
3124 Symbol* sym = symtab->lookup(p->first, NULL);
3125 if (sym != NULL
3126 && sym->source() == Symbol::FROM_OBJECT
3127 && sym->object() == p->second.object)
3128 sym->set_has_warning();
3132 // Issue a warning. This is called when we see a relocation against a
3133 // symbol for which has a warning.
3135 template<int size, bool big_endian>
3136 void
3137 Warnings::issue_warning(const Symbol* sym,
3138 const Relocate_info<size, big_endian>* relinfo,
3139 size_t relnum, off_t reloffset) const
3141 gold_assert(sym->has_warning());
3142 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3143 gold_assert(p != this->warnings_.end());
3144 gold_warning_at_location(relinfo, relnum, reloffset,
3145 "%s", p->second.text.c_str());
3148 // Instantiate the templates we need. We could use the configure
3149 // script to restrict this to only the ones needed for implemented
3150 // targets.
3152 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3153 template
3154 void
3155 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3156 #endif
3158 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3159 template
3160 void
3161 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3162 #endif
3164 #ifdef HAVE_TARGET_32_LITTLE
3165 template
3166 void
3167 Symbol_table::add_from_relobj<32, false>(
3168 Sized_relobj<32, false>* relobj,
3169 const unsigned char* syms,
3170 size_t count,
3171 size_t symndx_offset,
3172 const char* sym_names,
3173 size_t sym_name_size,
3174 Sized_relobj<32, false>::Symbols* sympointers,
3175 size_t* defined);
3176 #endif
3178 #ifdef HAVE_TARGET_32_BIG
3179 template
3180 void
3181 Symbol_table::add_from_relobj<32, true>(
3182 Sized_relobj<32, true>* relobj,
3183 const unsigned char* syms,
3184 size_t count,
3185 size_t symndx_offset,
3186 const char* sym_names,
3187 size_t sym_name_size,
3188 Sized_relobj<32, true>::Symbols* sympointers,
3189 size_t* defined);
3190 #endif
3192 #ifdef HAVE_TARGET_64_LITTLE
3193 template
3194 void
3195 Symbol_table::add_from_relobj<64, false>(
3196 Sized_relobj<64, false>* relobj,
3197 const unsigned char* syms,
3198 size_t count,
3199 size_t symndx_offset,
3200 const char* sym_names,
3201 size_t sym_name_size,
3202 Sized_relobj<64, false>::Symbols* sympointers,
3203 size_t* defined);
3204 #endif
3206 #ifdef HAVE_TARGET_64_BIG
3207 template
3208 void
3209 Symbol_table::add_from_relobj<64, true>(
3210 Sized_relobj<64, true>* relobj,
3211 const unsigned char* syms,
3212 size_t count,
3213 size_t symndx_offset,
3214 const char* sym_names,
3215 size_t sym_name_size,
3216 Sized_relobj<64, true>::Symbols* sympointers,
3217 size_t* defined);
3218 #endif
3220 #ifdef HAVE_TARGET_32_LITTLE
3221 template
3222 Symbol*
3223 Symbol_table::add_from_pluginobj<32, false>(
3224 Sized_pluginobj<32, false>* obj,
3225 const char* name,
3226 const char* ver,
3227 elfcpp::Sym<32, false>* sym);
3228 #endif
3230 #ifdef HAVE_TARGET_32_BIG
3231 template
3232 Symbol*
3233 Symbol_table::add_from_pluginobj<32, true>(
3234 Sized_pluginobj<32, true>* obj,
3235 const char* name,
3236 const char* ver,
3237 elfcpp::Sym<32, true>* sym);
3238 #endif
3240 #ifdef HAVE_TARGET_64_LITTLE
3241 template
3242 Symbol*
3243 Symbol_table::add_from_pluginobj<64, false>(
3244 Sized_pluginobj<64, false>* obj,
3245 const char* name,
3246 const char* ver,
3247 elfcpp::Sym<64, false>* sym);
3248 #endif
3250 #ifdef HAVE_TARGET_64_BIG
3251 template
3252 Symbol*
3253 Symbol_table::add_from_pluginobj<64, true>(
3254 Sized_pluginobj<64, true>* obj,
3255 const char* name,
3256 const char* ver,
3257 elfcpp::Sym<64, true>* sym);
3258 #endif
3260 #ifdef HAVE_TARGET_32_LITTLE
3261 template
3262 void
3263 Symbol_table::add_from_dynobj<32, false>(
3264 Sized_dynobj<32, false>* dynobj,
3265 const unsigned char* syms,
3266 size_t count,
3267 const char* sym_names,
3268 size_t sym_name_size,
3269 const unsigned char* versym,
3270 size_t versym_size,
3271 const std::vector<const char*>* version_map,
3272 Sized_relobj<32, false>::Symbols* sympointers,
3273 size_t* defined);
3274 #endif
3276 #ifdef HAVE_TARGET_32_BIG
3277 template
3278 void
3279 Symbol_table::add_from_dynobj<32, true>(
3280 Sized_dynobj<32, true>* dynobj,
3281 const unsigned char* syms,
3282 size_t count,
3283 const char* sym_names,
3284 size_t sym_name_size,
3285 const unsigned char* versym,
3286 size_t versym_size,
3287 const std::vector<const char*>* version_map,
3288 Sized_relobj<32, true>::Symbols* sympointers,
3289 size_t* defined);
3290 #endif
3292 #ifdef HAVE_TARGET_64_LITTLE
3293 template
3294 void
3295 Symbol_table::add_from_dynobj<64, false>(
3296 Sized_dynobj<64, false>* dynobj,
3297 const unsigned char* syms,
3298 size_t count,
3299 const char* sym_names,
3300 size_t sym_name_size,
3301 const unsigned char* versym,
3302 size_t versym_size,
3303 const std::vector<const char*>* version_map,
3304 Sized_relobj<64, false>::Symbols* sympointers,
3305 size_t* defined);
3306 #endif
3308 #ifdef HAVE_TARGET_64_BIG
3309 template
3310 void
3311 Symbol_table::add_from_dynobj<64, true>(
3312 Sized_dynobj<64, true>* dynobj,
3313 const unsigned char* syms,
3314 size_t count,
3315 const char* sym_names,
3316 size_t sym_name_size,
3317 const unsigned char* versym,
3318 size_t versym_size,
3319 const std::vector<const char*>* version_map,
3320 Sized_relobj<64, true>::Symbols* sympointers,
3321 size_t* defined);
3322 #endif
3324 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3325 template
3326 void
3327 Symbol_table::define_with_copy_reloc<32>(
3328 Sized_symbol<32>* sym,
3329 Output_data* posd,
3330 elfcpp::Elf_types<32>::Elf_Addr value);
3331 #endif
3333 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3334 template
3335 void
3336 Symbol_table::define_with_copy_reloc<64>(
3337 Sized_symbol<64>* sym,
3338 Output_data* posd,
3339 elfcpp::Elf_types<64>::Elf_Addr value);
3340 #endif
3342 #ifdef HAVE_TARGET_32_LITTLE
3343 template
3344 void
3345 Warnings::issue_warning<32, false>(const Symbol* sym,
3346 const Relocate_info<32, false>* relinfo,
3347 size_t relnum, off_t reloffset) const;
3348 #endif
3350 #ifdef HAVE_TARGET_32_BIG
3351 template
3352 void
3353 Warnings::issue_warning<32, true>(const Symbol* sym,
3354 const Relocate_info<32, true>* relinfo,
3355 size_t relnum, off_t reloffset) const;
3356 #endif
3358 #ifdef HAVE_TARGET_64_LITTLE
3359 template
3360 void
3361 Warnings::issue_warning<64, false>(const Symbol* sym,
3362 const Relocate_info<64, false>* relinfo,
3363 size_t relnum, off_t reloffset) const;
3364 #endif
3366 #ifdef HAVE_TARGET_64_BIG
3367 template
3368 void
3369 Warnings::issue_warning<64, true>(const Symbol* sym,
3370 const Relocate_info<64, true>* relinfo,
3371 size_t relnum, off_t reloffset) const;
3372 #endif
3374 } // End namespace gold.