PR ld/11843
[binutils.git] / bfd / elflink.c
blob074229f7ccb9ead11cb85d2cb637fee59e176a37
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
129 if (bed->want_got_plt)
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
155 return TRUE;
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
174 return TRUE;
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
260 if (info->emit_hash)
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
269 if (info->emit_gnu_hash)
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
293 return TRUE;
296 /* Create dynamic sections when linking against a dynamic object. */
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
351 if (bed->want_dynbss)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
388 return TRUE;
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
403 if (h->dynindx == -1)
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
426 default:
427 break;
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456 if (p != NULL)
457 *p = ELF_VER_CHR;
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
464 return TRUE;
467 /* Mark a symbol dynamic. */
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
512 switch (h->root.type)
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
569 h->def_regular = 1;
571 if (provide && hidden)
573 bed = get_elf_backend_data (output_bfd);
574 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
575 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 and executables. */
580 if (!info->relocatable
581 && h->dynindx != -1
582 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
584 h->forced_local = 1;
586 if ((h->def_dynamic
587 || h->ref_dynamic
588 || info->shared
589 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
590 && h->dynindx == -1)
592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
593 return FALSE;
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h->u.weakdef != NULL
599 && h->u.weakdef->dynindx == -1)
601 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
602 return FALSE;
606 return TRUE;
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
615 bfd *input_bfd,
616 long input_indx)
618 bfd_size_type amt;
619 struct elf_link_local_dynamic_entry *entry;
620 struct elf_link_hash_table *eht;
621 struct elf_strtab_hash *dynstr;
622 unsigned long dynstr_index;
623 char *name;
624 Elf_External_Sym_Shndx eshndx;
625 char esym[sizeof (Elf64_External_Sym)];
627 if (! is_elf_hash_table (info->hash))
628 return 0;
630 /* See if the entry exists already. */
631 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
632 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
633 return 1;
635 amt = sizeof (*entry);
636 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
637 if (entry == NULL)
638 return 0;
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
642 1, input_indx, &entry->isym, esym, &eshndx))
644 bfd_release (input_bfd, entry);
645 return 0;
648 if (entry->isym.st_shndx != SHN_UNDEF
649 && entry->isym.st_shndx < SHN_LORESERVE)
651 asection *s;
653 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
654 if (s == NULL || bfd_is_abs_section (s->output_section))
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd, entry);
659 return 2;
663 name = (bfd_elf_string_from_elf_section
664 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
665 entry->isym.st_name));
667 dynstr = elf_hash_table (info)->dynstr;
668 if (dynstr == NULL)
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
672 if (dynstr == NULL)
673 return 0;
676 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
677 if (dynstr_index == (unsigned long) -1)
678 return 0;
679 entry->isym.st_name = dynstr_index;
681 eht = elf_hash_table (info);
683 entry->next = eht->dynlocal;
684 eht->dynlocal = entry;
685 entry->input_bfd = input_bfd;
686 entry->input_indx = input_indx;
687 eht->dynsymcount++;
689 /* Whatever binding the symbol had before, it's now local. */
690 entry->isym.st_info
691 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693 /* The dynindx will be set at the end of size_dynamic_sections. */
695 return 1;
698 /* Return the dynindex of a local dynamic symbol. */
700 long
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
702 bfd *input_bfd,
703 long input_indx)
705 struct elf_link_local_dynamic_entry *e;
707 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
708 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
709 return e->dynindx;
710 return -1;
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
717 static bfd_boolean
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
719 void *data)
721 size_t *count = (size_t *) data;
723 if (h->root.type == bfd_link_hash_warning)
724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726 if (h->forced_local)
727 return TRUE;
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
732 return TRUE;
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
743 size_t *count = (size_t *) data;
745 if (h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748 if (!h->forced_local)
749 return TRUE;
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
754 return TRUE;
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
764 struct elf_link_hash_table *htab;
766 switch (elf_section_data (p)->this_hdr.sh_type)
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
784 asection *ip;
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
788 && (ip->flags & SEC_LINKER_CREATED)
789 && ip->output_section == p)
790 return TRUE;
792 return FALSE;
794 /* There shouldn't be section relative relocations
795 against any other section. */
796 default:
797 return TRUE;
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
805 symbols. */
807 static unsigned long
808 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
809 struct bfd_link_info *info,
810 unsigned long *section_sym_count)
812 unsigned long dynsymcount = 0;
814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
817 asection *p;
818 for (p = output_bfd->sections; p ; p = p->next)
819 if ((p->flags & SEC_EXCLUDE) == 0
820 && (p->flags & SEC_ALLOC) != 0
821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
822 elf_section_data (p)->dynindx = ++dynsymcount;
823 else
824 elf_section_data (p)->dynindx = 0;
826 *section_sym_count = dynsymcount;
828 elf_link_hash_traverse (elf_hash_table (info),
829 elf_link_renumber_local_hash_table_dynsyms,
830 &dynsymcount);
832 if (elf_hash_table (info)->dynlocal)
834 struct elf_link_local_dynamic_entry *p;
835 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
836 p->dynindx = ++dynsymcount;
839 elf_link_hash_traverse (elf_hash_table (info),
840 elf_link_renumber_hash_table_dynsyms,
841 &dynsymcount);
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount != 0)
847 ++dynsymcount;
849 elf_hash_table (info)->dynsymcount = dynsymcount;
850 return dynsymcount;
853 /* Merge st_other field. */
855 static void
856 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
857 Elf_Internal_Sym *isym, bfd_boolean definition,
858 bfd_boolean dynamic)
860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed->elf_backend_merge_symbol_attribute)
866 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
867 dynamic);
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
871 if (definition
872 && !dynamic
873 && (abfd->no_export
874 || (abfd->my_archive && abfd->my_archive->no_export))
875 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
876 isym->st_other = (STV_HIDDEN
877 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 unsigned char hvis, symvis, other, nvis;
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other = h->other & ~ELF_ST_VISIBILITY (-1);
887 /* Combine visibilities, using the most constraining one. */
888 hvis = ELF_ST_VISIBILITY (h->other);
889 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 if (! hvis)
891 nvis = symvis;
892 else if (! symvis)
893 nvis = hvis;
894 else
895 nvis = hvis < symvis ? hvis : symvis;
897 h->other = other | nvis;
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
913 bfd_boolean
914 _bfd_elf_merge_symbol (bfd *abfd,
915 struct bfd_link_info *info,
916 const char *name,
917 Elf_Internal_Sym *sym,
918 asection **psec,
919 bfd_vma *pvalue,
920 unsigned int *pold_alignment,
921 struct elf_link_hash_entry **sym_hash,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
936 *skip = FALSE;
937 *override = FALSE;
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
945 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 *skip = TRUE;
948 return TRUE;
951 if (! bfd_is_und_section (sec))
952 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 else
954 h = ((struct elf_link_hash_entry *)
955 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
956 if (h == NULL)
957 return FALSE;
958 *sym_hash = h;
960 bed = get_elf_backend_data (abfd);
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
965 return TRUE;
967 /* For merging, we only care about real symbols. */
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
982 if (h->root.type == bfd_link_hash_new)
984 h->non_elf = 0;
985 return TRUE;
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
989 existing symbol. */
991 switch (h->root.type)
993 default:
994 oldbfd = NULL;
995 oldsec = NULL;
996 break;
998 case bfd_link_hash_undefined:
999 case bfd_link_hash_undefweak:
1000 oldbfd = h->root.u.undef.abfd;
1001 oldsec = NULL;
1002 break;
1004 case bfd_link_hash_defined:
1005 case bfd_link_hash_defweak:
1006 oldbfd = h->root.u.def.section->owner;
1007 oldsec = h->root.u.def.section;
1008 break;
1010 case bfd_link_hash_common:
1011 oldbfd = h->root.u.c.p->section->owner;
1012 oldsec = h->root.u.c.p->section;
1013 break;
1016 /* Differentiate strong and weak symbols. */
1017 newweak = bind == STB_WEAK;
1018 oldweak = (h->root.type == bfd_link_hash_defweak
1019 || h->root.type == bfd_link_hash_undefweak);
1021 /* In cases involving weak versioned symbols, we may wind up trying
1022 to merge a symbol with itself. Catch that here, to avoid the
1023 confusion that results if we try to override a symbol with
1024 itself. The additional tests catch cases like
1025 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1026 dynamic object, which we do want to handle here. */
1027 if (abfd == oldbfd
1028 && (newweak || oldweak)
1029 && ((abfd->flags & DYNAMIC) == 0
1030 || !h->def_regular))
1031 return TRUE;
1033 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1034 respectively, is from a dynamic object. */
1036 newdyn = (abfd->flags & DYNAMIC) != 0;
1038 olddyn = FALSE;
1039 if (oldbfd != NULL)
1040 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1041 else if (oldsec != NULL)
1043 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1044 indices used by MIPS ELF. */
1045 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1048 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1049 respectively, appear to be a definition rather than reference. */
1051 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053 olddef = (h->root.type != bfd_link_hash_undefined
1054 && h->root.type != bfd_link_hash_undefweak
1055 && h->root.type != bfd_link_hash_common);
1057 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1058 respectively, appear to be a function. */
1060 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1061 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063 oldfunc = (h->type != STT_NOTYPE
1064 && bed->is_function_type (h->type));
1066 /* When we try to create a default indirect symbol from the dynamic
1067 definition with the default version, we skip it if its type and
1068 the type of existing regular definition mismatch. We only do it
1069 if the existing regular definition won't be dynamic. */
1070 if (pold_alignment == NULL
1071 && !info->shared
1072 && !info->export_dynamic
1073 && !h->ref_dynamic
1074 && newdyn
1075 && newdef
1076 && !olddyn
1077 && (olddef || h->root.type == bfd_link_hash_common)
1078 && ELF_ST_TYPE (sym->st_info) != h->type
1079 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1080 && h->type != STT_NOTYPE
1081 && !(newfunc && oldfunc))
1083 *skip = TRUE;
1084 return TRUE;
1087 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 "ld -u". */
1089 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && oldbfd != NULL)
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1097 if (h->type == STT_TLS)
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1106 else
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1127 tbfd, tsec, ntbfd, h->root.root.string);
1128 else
1129 (*_bfd_error_handler)
1130 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1131 tbfd, ntbfd, ntsec, h->root.root.string);
1133 bfd_set_error (bfd_error_bad_value);
1134 return FALSE;
1137 /* We need to remember if a symbol has a definition in a dynamic
1138 object or is weak in all dynamic objects. Internal and hidden
1139 visibility will make it unavailable to dynamic objects. */
1140 if (newdyn && !h->dynamic_def)
1142 if (!bfd_is_und_section (sec))
1143 h->dynamic_def = 1;
1144 else
1146 /* Check if this symbol is weak in all dynamic objects. If it
1147 is the first time we see it in a dynamic object, we mark
1148 if it is weak. Otherwise, we clear it. */
1149 if (!h->ref_dynamic)
1151 if (bind == STB_WEAK)
1152 h->dynamic_weak = 1;
1154 else if (bind != STB_WEAK)
1155 h->dynamic_weak = 0;
1159 /* If the old symbol has non-default visibility, we ignore the new
1160 definition from a dynamic object. */
1161 if (newdyn
1162 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1163 && !bfd_is_und_section (sec))
1165 *skip = TRUE;
1166 /* Make sure this symbol is dynamic. */
1167 h->ref_dynamic = 1;
1168 /* A protected symbol has external availability. Make sure it is
1169 recorded as dynamic.
1171 FIXME: Should we check type and size for protected symbol? */
1172 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1173 return bfd_elf_link_record_dynamic_symbol (info, h);
1174 else
1175 return TRUE;
1177 else if (!newdyn
1178 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1179 && h->def_dynamic)
1181 /* If the new symbol with non-default visibility comes from a
1182 relocatable file and the old definition comes from a dynamic
1183 object, we remove the old definition. */
1184 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1186 /* Handle the case where the old dynamic definition is
1187 default versioned. We need to copy the symbol info from
1188 the symbol with default version to the normal one if it
1189 was referenced before. */
1190 if (h->ref_regular)
1192 struct elf_link_hash_entry *vh = *sym_hash;
1194 vh->root.type = h->root.type;
1195 h->root.type = bfd_link_hash_indirect;
1196 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1197 /* Protected symbols will override the dynamic definition
1198 with default version. */
1199 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1201 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1202 vh->dynamic_def = 1;
1203 vh->ref_dynamic = 1;
1205 else
1207 h->root.type = vh->root.type;
1208 vh->ref_dynamic = 0;
1209 /* We have to hide it here since it was made dynamic
1210 global with extra bits when the symbol info was
1211 copied from the old dynamic definition. */
1212 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1214 h = vh;
1216 else
1217 h = *sym_hash;
1220 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1221 && bfd_is_und_section (sec))
1223 /* If the new symbol is undefined and the old symbol was
1224 also undefined before, we need to make sure
1225 _bfd_generic_link_add_one_symbol doesn't mess
1226 up the linker hash table undefs list. Since the old
1227 definition came from a dynamic object, it is still on the
1228 undefs list. */
1229 h->root.type = bfd_link_hash_undefined;
1230 h->root.u.undef.abfd = abfd;
1232 else
1234 h->root.type = bfd_link_hash_new;
1235 h->root.u.undef.abfd = NULL;
1238 if (h->def_dynamic)
1240 h->def_dynamic = 0;
1241 h->ref_dynamic = 1;
1242 h->dynamic_def = 1;
1244 /* FIXME: Should we check type and size for protected symbol? */
1245 h->size = 0;
1246 h->type = 0;
1247 return TRUE;
1250 if (bind == STB_GNU_UNIQUE)
1251 h->unique_global = 1;
1253 /* If a new weak symbol definition comes from a regular file and the
1254 old symbol comes from a dynamic library, we treat the new one as
1255 strong. Similarly, an old weak symbol definition from a regular
1256 file is treated as strong when the new symbol comes from a dynamic
1257 library. Further, an old weak symbol from a dynamic library is
1258 treated as strong if the new symbol is from a dynamic library.
1259 This reflects the way glibc's ld.so works.
1261 Do this before setting *type_change_ok or *size_change_ok so that
1262 we warn properly when dynamic library symbols are overridden. */
1264 if (newdef && !newdyn && olddyn)
1265 newweak = FALSE;
1266 if (olddef && newdyn)
1267 oldweak = FALSE;
1269 /* Allow changes between different types of function symbol. */
1270 if (newfunc && oldfunc)
1271 *type_change_ok = TRUE;
1273 /* It's OK to change the type if either the existing symbol or the
1274 new symbol is weak. A type change is also OK if the old symbol
1275 is undefined and the new symbol is defined. */
1277 if (oldweak
1278 || newweak
1279 || (newdef
1280 && h->root.type == bfd_link_hash_undefined))
1281 *type_change_ok = TRUE;
1283 /* It's OK to change the size if either the existing symbol or the
1284 new symbol is weak, or if the old symbol is undefined. */
1286 if (*type_change_ok
1287 || h->root.type == bfd_link_hash_undefined)
1288 *size_change_ok = TRUE;
1290 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1291 symbol, respectively, appears to be a common symbol in a dynamic
1292 object. If a symbol appears in an uninitialized section, and is
1293 not weak, and is not a function, then it may be a common symbol
1294 which was resolved when the dynamic object was created. We want
1295 to treat such symbols specially, because they raise special
1296 considerations when setting the symbol size: if the symbol
1297 appears as a common symbol in a regular object, and the size in
1298 the regular object is larger, we must make sure that we use the
1299 larger size. This problematic case can always be avoided in C,
1300 but it must be handled correctly when using Fortran shared
1301 libraries.
1303 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1304 likewise for OLDDYNCOMMON and OLDDEF.
1306 Note that this test is just a heuristic, and that it is quite
1307 possible to have an uninitialized symbol in a shared object which
1308 is really a definition, rather than a common symbol. This could
1309 lead to some minor confusion when the symbol really is a common
1310 symbol in some regular object. However, I think it will be
1311 harmless. */
1313 if (newdyn
1314 && newdef
1315 && !newweak
1316 && (sec->flags & SEC_ALLOC) != 0
1317 && (sec->flags & SEC_LOAD) == 0
1318 && sym->st_size > 0
1319 && !newfunc)
1320 newdyncommon = TRUE;
1321 else
1322 newdyncommon = FALSE;
1324 if (olddyn
1325 && olddef
1326 && h->root.type == bfd_link_hash_defined
1327 && h->def_dynamic
1328 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1329 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330 && h->size > 0
1331 && !oldfunc)
1332 olddyncommon = TRUE;
1333 else
1334 olddyncommon = FALSE;
1336 /* We now know everything about the old and new symbols. We ask the
1337 backend to check if we can merge them. */
1338 if (bed->merge_symbol
1339 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1340 pold_alignment, skip, override,
1341 type_change_ok, size_change_ok,
1342 &newdyn, &newdef, &newdyncommon, &newweak,
1343 abfd, &sec,
1344 &olddyn, &olddef, &olddyncommon, &oldweak,
1345 oldbfd, &oldsec))
1346 return FALSE;
1348 /* If both the old and the new symbols look like common symbols in a
1349 dynamic object, set the size of the symbol to the larger of the
1350 two. */
1352 if (olddyncommon
1353 && newdyncommon
1354 && sym->st_size != h->size)
1356 /* Since we think we have two common symbols, issue a multiple
1357 common warning if desired. Note that we only warn if the
1358 size is different. If the size is the same, we simply let
1359 the old symbol override the new one as normally happens with
1360 symbols defined in dynamic objects. */
1362 if (! ((*info->callbacks->multiple_common)
1363 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1364 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1365 return FALSE;
1367 if (sym->st_size > h->size)
1368 h->size = sym->st_size;
1370 *size_change_ok = TRUE;
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
1385 object to override a weak symbol in a shared object. */
1387 if (newdyn
1388 && newdef
1389 && (olddef
1390 || (h->root.type == bfd_link_hash_common
1391 && (newweak || newfunc))))
1393 *override = TRUE;
1394 newdef = FALSE;
1395 newdyncommon = FALSE;
1397 *psec = sec = bfd_und_section_ptr;
1398 *size_change_ok = TRUE;
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
1406 if (h->root.type == bfd_link_hash_common)
1407 *type_change_ok = TRUE;
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1414 right thing. */
1416 if (newdyncommon
1417 && h->root.type == bfd_link_hash_common)
1419 *override = TRUE;
1420 newdef = FALSE;
1421 newdyncommon = FALSE;
1422 *pvalue = sym->st_size;
1423 *psec = sec = bed->common_section (oldsec);
1424 *size_change_ok = TRUE;
1427 /* Skip weak definitions of symbols that are already defined. */
1428 if (newdef && olddef && newweak)
1430 *skip = TRUE;
1432 /* Merge st_other. If the symbol already has a dynamic index,
1433 but visibility says it should not be visible, turn it into a
1434 local symbol. */
1435 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1436 if (h->dynindx != -1)
1437 switch (ELF_ST_VISIBILITY (h->other))
1439 case STV_INTERNAL:
1440 case STV_HIDDEN:
1441 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1442 break;
1446 /* If the old symbol is from a dynamic object, and the new symbol is
1447 a definition which is not from a dynamic object, then the new
1448 symbol overrides the old symbol. Symbols from regular files
1449 always take precedence over symbols from dynamic objects, even if
1450 they are defined after the dynamic object in the link.
1452 As above, we again permit a common symbol in a regular object to
1453 override a definition in a shared object if the shared object
1454 symbol is a function or is weak. */
1456 flip = NULL;
1457 if (!newdyn
1458 && (newdef
1459 || (bfd_is_com_section (sec)
1460 && (oldweak || oldfunc)))
1461 && olddyn
1462 && olddef
1463 && h->def_dynamic)
1465 /* Change the hash table entry to undefined, and let
1466 _bfd_generic_link_add_one_symbol do the right thing with the
1467 new definition. */
1469 h->root.type = bfd_link_hash_undefined;
1470 h->root.u.undef.abfd = h->root.u.def.section->owner;
1471 *size_change_ok = TRUE;
1473 olddef = FALSE;
1474 olddyncommon = FALSE;
1476 /* We again permit a type change when a common symbol may be
1477 overriding a function. */
1479 if (bfd_is_com_section (sec))
1481 if (oldfunc)
1483 /* If a common symbol overrides a function, make sure
1484 that it isn't defined dynamically nor has type
1485 function. */
1486 h->def_dynamic = 0;
1487 h->type = STT_NOTYPE;
1489 *type_change_ok = TRUE;
1492 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1493 flip = *sym_hash;
1494 else
1495 /* This union may have been set to be non-NULL when this symbol
1496 was seen in a dynamic object. We must force the union to be
1497 NULL, so that it is correct for a regular symbol. */
1498 h->verinfo.vertree = NULL;
1501 /* Handle the special case of a new common symbol merging with an
1502 old symbol that looks like it might be a common symbol defined in
1503 a shared object. Note that we have already handled the case in
1504 which a new common symbol should simply override the definition
1505 in the shared library. */
1507 if (! newdyn
1508 && bfd_is_com_section (sec)
1509 && olddyncommon)
1511 /* It would be best if we could set the hash table entry to a
1512 common symbol, but we don't know what to use for the section
1513 or the alignment. */
1514 if (! ((*info->callbacks->multiple_common)
1515 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1516 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1545 if (flip != NULL)
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1562 return TRUE;
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1602 if (override)
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1643 if (skip)
1644 goto nondefault;
1646 if (! override)
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1655 else
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1706 if (hi->root.type == bfd_link_hash_indirect)
1708 struct elf_link_hash_entry *ht;
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1717 if (! dynamic)
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1723 else
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1751 if (skip)
1752 return TRUE;
1754 if (override)
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1765 else
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1778 if (hi->root.type == bfd_link_hash_indirect)
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1786 if (! dynamic)
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1792 else
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1801 return TRUE;
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812 /* Ignore this if we won't export it. */
1813 if (!eif->info->export_dynamic && !h->dynamic)
1814 return TRUE;
1816 /* Ignore indirect symbols. These are added by the versioning code. */
1817 if (h->root.type == bfd_link_hash_indirect)
1818 return TRUE;
1820 if (h->root.type == bfd_link_hash_warning)
1821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1823 if (h->dynindx == -1
1824 && (h->def_regular
1825 || h->ref_regular))
1827 bfd_boolean hide;
1829 if (eif->verdefs == NULL
1830 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1831 && !hide))
1833 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1835 eif->failed = TRUE;
1836 return FALSE;
1841 return TRUE;
1844 /* Look through the symbols which are defined in other shared
1845 libraries and referenced here. Update the list of version
1846 dependencies. This will be put into the .gnu.version_r section.
1847 This function is called via elf_link_hash_traverse. */
1849 static bfd_boolean
1850 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1851 void *data)
1853 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1854 Elf_Internal_Verneed *t;
1855 Elf_Internal_Vernaux *a;
1856 bfd_size_type amt;
1858 if (h->root.type == bfd_link_hash_warning)
1859 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1861 /* We only care about symbols defined in shared objects with version
1862 information. */
1863 if (!h->def_dynamic
1864 || h->def_regular
1865 || h->dynindx == -1
1866 || h->verinfo.verdef == NULL)
1867 return TRUE;
1869 /* See if we already know about this version. */
1870 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1871 t != NULL;
1872 t = t->vn_nextref)
1874 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1875 continue;
1877 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1878 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1879 return TRUE;
1881 break;
1884 /* This is a new version. Add it to tree we are building. */
1886 if (t == NULL)
1888 amt = sizeof *t;
1889 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1890 if (t == NULL)
1892 rinfo->failed = TRUE;
1893 return FALSE;
1896 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1897 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1898 elf_tdata (rinfo->info->output_bfd)->verref = t;
1901 amt = sizeof *a;
1902 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1903 if (a == NULL)
1905 rinfo->failed = TRUE;
1906 return FALSE;
1909 /* Note that we are copying a string pointer here, and testing it
1910 above. If bfd_elf_string_from_elf_section is ever changed to
1911 discard the string data when low in memory, this will have to be
1912 fixed. */
1913 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1915 a->vna_flags = h->verinfo.verdef->vd_flags;
1916 a->vna_nextptr = t->vn_auxptr;
1918 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1919 ++rinfo->vers;
1921 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1923 t->vn_auxptr = a;
1925 return TRUE;
1928 /* Figure out appropriate versions for all the symbols. We may not
1929 have the version number script until we have read all of the input
1930 files, so until that point we don't know which symbols should be
1931 local. This function is called via elf_link_hash_traverse. */
1933 static bfd_boolean
1934 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1936 struct elf_info_failed *sinfo;
1937 struct bfd_link_info *info;
1938 const struct elf_backend_data *bed;
1939 struct elf_info_failed eif;
1940 char *p;
1941 bfd_size_type amt;
1943 sinfo = (struct elf_info_failed *) data;
1944 info = sinfo->info;
1946 if (h->root.type == bfd_link_hash_warning)
1947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1949 /* Fix the symbol flags. */
1950 eif.failed = FALSE;
1951 eif.info = info;
1952 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1954 if (eif.failed)
1955 sinfo->failed = TRUE;
1956 return FALSE;
1959 /* We only need version numbers for symbols defined in regular
1960 objects. */
1961 if (!h->def_regular)
1962 return TRUE;
1964 bed = get_elf_backend_data (info->output_bfd);
1965 p = strchr (h->root.root.string, ELF_VER_CHR);
1966 if (p != NULL && h->verinfo.vertree == NULL)
1968 struct bfd_elf_version_tree *t;
1969 bfd_boolean hidden;
1971 hidden = TRUE;
1973 /* There are two consecutive ELF_VER_CHR characters if this is
1974 not a hidden symbol. */
1975 ++p;
1976 if (*p == ELF_VER_CHR)
1978 hidden = FALSE;
1979 ++p;
1982 /* If there is no version string, we can just return out. */
1983 if (*p == '\0')
1985 if (hidden)
1986 h->hidden = 1;
1987 return TRUE;
1990 /* Look for the version. If we find it, it is no longer weak. */
1991 for (t = sinfo->verdefs; t != NULL; t = t->next)
1993 if (strcmp (t->name, p) == 0)
1995 size_t len;
1996 char *alc;
1997 struct bfd_elf_version_expr *d;
1999 len = p - h->root.root.string;
2000 alc = (char *) bfd_malloc (len);
2001 if (alc == NULL)
2003 sinfo->failed = TRUE;
2004 return FALSE;
2006 memcpy (alc, h->root.root.string, len - 1);
2007 alc[len - 1] = '\0';
2008 if (alc[len - 2] == ELF_VER_CHR)
2009 alc[len - 2] = '\0';
2011 h->verinfo.vertree = t;
2012 t->used = TRUE;
2013 d = NULL;
2015 if (t->globals.list != NULL)
2016 d = (*t->match) (&t->globals, NULL, alc);
2018 /* See if there is anything to force this symbol to
2019 local scope. */
2020 if (d == NULL && t->locals.list != NULL)
2022 d = (*t->match) (&t->locals, NULL, alc);
2023 if (d != NULL
2024 && h->dynindx != -1
2025 && ! info->export_dynamic)
2026 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2029 free (alc);
2030 break;
2034 /* If we are building an application, we need to create a
2035 version node for this version. */
2036 if (t == NULL && info->executable)
2038 struct bfd_elf_version_tree **pp;
2039 int version_index;
2041 /* If we aren't going to export this symbol, we don't need
2042 to worry about it. */
2043 if (h->dynindx == -1)
2044 return TRUE;
2046 amt = sizeof *t;
2047 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2048 if (t == NULL)
2050 sinfo->failed = TRUE;
2051 return FALSE;
2054 t->name = p;
2055 t->name_indx = (unsigned int) -1;
2056 t->used = TRUE;
2058 version_index = 1;
2059 /* Don't count anonymous version tag. */
2060 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2061 version_index = 0;
2062 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2063 ++version_index;
2064 t->vernum = version_index;
2066 *pp = t;
2068 h->verinfo.vertree = t;
2070 else if (t == NULL)
2072 /* We could not find the version for a symbol when
2073 generating a shared archive. Return an error. */
2074 (*_bfd_error_handler)
2075 (_("%B: version node not found for symbol %s"),
2076 info->output_bfd, h->root.root.string);
2077 bfd_set_error (bfd_error_bad_value);
2078 sinfo->failed = TRUE;
2079 return FALSE;
2082 if (hidden)
2083 h->hidden = 1;
2086 /* If we don't have a version for this symbol, see if we can find
2087 something. */
2088 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2090 bfd_boolean hide;
2092 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2093 h->root.root.string, &hide);
2094 if (h->verinfo.vertree != NULL && hide)
2095 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098 return TRUE;
2101 /* Read and swap the relocs from the section indicated by SHDR. This
2102 may be either a REL or a RELA section. The relocations are
2103 translated into RELA relocations and stored in INTERNAL_RELOCS,
2104 which should have already been allocated to contain enough space.
2105 The EXTERNAL_RELOCS are a buffer where the external form of the
2106 relocations should be stored.
2108 Returns FALSE if something goes wrong. */
2110 static bfd_boolean
2111 elf_link_read_relocs_from_section (bfd *abfd,
2112 asection *sec,
2113 Elf_Internal_Shdr *shdr,
2114 void *external_relocs,
2115 Elf_Internal_Rela *internal_relocs)
2117 const struct elf_backend_data *bed;
2118 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2119 const bfd_byte *erela;
2120 const bfd_byte *erelaend;
2121 Elf_Internal_Rela *irela;
2122 Elf_Internal_Shdr *symtab_hdr;
2123 size_t nsyms;
2125 /* Position ourselves at the start of the section. */
2126 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2127 return FALSE;
2129 /* Read the relocations. */
2130 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2131 return FALSE;
2133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2134 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2136 bed = get_elf_backend_data (abfd);
2138 /* Convert the external relocations to the internal format. */
2139 if (shdr->sh_entsize == bed->s->sizeof_rel)
2140 swap_in = bed->s->swap_reloc_in;
2141 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2142 swap_in = bed->s->swap_reloca_in;
2143 else
2145 bfd_set_error (bfd_error_wrong_format);
2146 return FALSE;
2149 erela = (const bfd_byte *) external_relocs;
2150 erelaend = erela + shdr->sh_size;
2151 irela = internal_relocs;
2152 while (erela < erelaend)
2154 bfd_vma r_symndx;
2156 (*swap_in) (abfd, erela, irela);
2157 r_symndx = ELF32_R_SYM (irela->r_info);
2158 if (bed->s->arch_size == 64)
2159 r_symndx >>= 24;
2160 if (nsyms > 0)
2162 if ((size_t) r_symndx >= nsyms)
2164 (*_bfd_error_handler)
2165 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2166 " for offset 0x%lx in section `%A'"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2173 else if (r_symndx != 0)
2175 (*_bfd_error_handler)
2176 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2177 " when the object file has no symbol table"),
2178 abfd, sec,
2179 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2180 bfd_set_error (bfd_error_bad_value);
2181 return FALSE;
2183 irela += bed->s->int_rels_per_ext_rel;
2184 erela += shdr->sh_entsize;
2187 return TRUE;
2190 /* Read and swap the relocs for a section O. They may have been
2191 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2192 not NULL, they are used as buffers to read into. They are known to
2193 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2194 the return value is allocated using either malloc or bfd_alloc,
2195 according to the KEEP_MEMORY argument. If O has two relocation
2196 sections (both REL and RELA relocations), then the REL_HDR
2197 relocations will appear first in INTERNAL_RELOCS, followed by the
2198 REL_HDR2 relocations. */
2200 Elf_Internal_Rela *
2201 _bfd_elf_link_read_relocs (bfd *abfd,
2202 asection *o,
2203 void *external_relocs,
2204 Elf_Internal_Rela *internal_relocs,
2205 bfd_boolean keep_memory)
2207 Elf_Internal_Shdr *rel_hdr;
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2212 if (elf_section_data (o)->relocs != NULL)
2213 return elf_section_data (o)->relocs;
2215 if (o->reloc_count == 0)
2216 return NULL;
2218 rel_hdr = &elf_section_data (o)->rel_hdr;
2220 if (internal_relocs == NULL)
2222 bfd_size_type size;
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2234 if (external_relocs == NULL)
2236 bfd_size_type size = rel_hdr->sh_size;
2238 if (elf_section_data (o)->rel_hdr2)
2239 size += elf_section_data (o)->rel_hdr2->sh_size;
2240 alloc1 = bfd_malloc (size);
2241 if (alloc1 == NULL)
2242 goto error_return;
2243 external_relocs = alloc1;
2246 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2247 external_relocs,
2248 internal_relocs))
2249 goto error_return;
2250 if (elf_section_data (o)->rel_hdr2
2251 && (!elf_link_read_relocs_from_section
2252 (abfd, o,
2253 elf_section_data (o)->rel_hdr2,
2254 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2255 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2256 * bed->s->int_rels_per_ext_rel))))
2257 goto error_return;
2259 /* Cache the results for next time, if we can. */
2260 if (keep_memory)
2261 elf_section_data (o)->relocs = internal_relocs;
2263 if (alloc1 != NULL)
2264 free (alloc1);
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2269 return internal_relocs;
2271 error_return:
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274 if (alloc2 != NULL)
2276 if (keep_memory)
2277 bfd_release (abfd, alloc2);
2278 else
2279 free (alloc2);
2281 return NULL;
2284 /* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2287 static bfd_boolean
2288 _bfd_elf_link_size_reloc_section (bfd *abfd,
2289 Elf_Internal_Shdr *rel_hdr,
2290 asection *o)
2292 bfd_size_type reloc_count;
2293 bfd_size_type num_rel_hashes;
2295 /* Figure out how many relocations there will be. */
2296 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2297 reloc_count = elf_section_data (o)->rel_count;
2298 else
2299 reloc_count = elf_section_data (o)->rel_count2;
2301 num_rel_hashes = o->reloc_count;
2302 if (num_rel_hashes < reloc_count)
2303 num_rel_hashes = reloc_count;
2305 /* That allows us to calculate the size of the section. */
2306 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2308 /* The contents field must last into write_object_contents, so we
2309 allocate it with bfd_alloc rather than malloc. Also since we
2310 cannot be sure that the contents will actually be filled in,
2311 we zero the allocated space. */
2312 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2313 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314 return FALSE;
2316 /* We only allocate one set of hash entries, so we only do it the
2317 first time we are called. */
2318 if (elf_section_data (o)->rel_hashes == NULL
2319 && num_rel_hashes)
2321 struct elf_link_hash_entry **p;
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2325 if (p == NULL)
2326 return FALSE;
2328 elf_section_data (o)->rel_hashes = p;
2331 return TRUE;
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2338 bfd_boolean
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 Elf_Internal_Shdr *output_rel_hdr;
2350 asection *output_section;
2351 unsigned int *rel_countp = NULL;
2352 const struct elf_backend_data *bed;
2353 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2355 output_section = input_section->output_section;
2356 output_rel_hdr = NULL;
2358 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2359 == input_rel_hdr->sh_entsize)
2361 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2362 rel_countp = &elf_section_data (output_section)->rel_count;
2364 else if (elf_section_data (output_section)->rel_hdr2
2365 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2366 == input_rel_hdr->sh_entsize))
2368 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2369 rel_countp = &elf_section_data (output_section)->rel_count2;
2371 else
2373 (*_bfd_error_handler)
2374 (_("%B: relocation size mismatch in %B section %A"),
2375 output_bfd, input_section->owner, input_section);
2376 bfd_set_error (bfd_error_wrong_format);
2377 return FALSE;
2380 bed = get_elf_backend_data (output_bfd);
2381 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2382 swap_out = bed->s->swap_reloc_out;
2383 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2384 swap_out = bed->s->swap_reloca_out;
2385 else
2386 abort ();
2388 erel = output_rel_hdr->contents;
2389 erel += *rel_countp * input_rel_hdr->sh_entsize;
2390 irela = internal_relocs;
2391 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2392 * bed->s->int_rels_per_ext_rel);
2393 while (irela < irelaend)
2395 (*swap_out) (output_bfd, irela, erel);
2396 irela += bed->s->int_rels_per_ext_rel;
2397 erel += input_rel_hdr->sh_entsize;
2400 /* Bump the counter, so that we know where to add the next set of
2401 relocations. */
2402 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2404 return TRUE;
2407 /* Make weak undefined symbols in PIE dynamic. */
2409 bfd_boolean
2410 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2411 struct elf_link_hash_entry *h)
2413 if (info->pie
2414 && h->dynindx == -1
2415 && h->root.type == bfd_link_hash_undefweak)
2416 return bfd_elf_link_record_dynamic_symbol (info, h);
2418 return TRUE;
2421 /* Fix up the flags for a symbol. This handles various cases which
2422 can only be fixed after all the input files are seen. This is
2423 currently called by both adjust_dynamic_symbol and
2424 assign_sym_version, which is unnecessary but perhaps more robust in
2425 the face of future changes. */
2427 static bfd_boolean
2428 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2429 struct elf_info_failed *eif)
2431 const struct elf_backend_data *bed;
2433 /* If this symbol was mentioned in a non-ELF file, try to set
2434 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2435 permit a non-ELF file to correctly refer to a symbol defined in
2436 an ELF dynamic object. */
2437 if (h->non_elf)
2439 while (h->root.type == bfd_link_hash_indirect)
2440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2442 if (h->root.type != bfd_link_hash_defined
2443 && h->root.type != bfd_link_hash_defweak)
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2448 else
2450 if (h->root.u.def.section->owner != NULL
2451 && (bfd_get_flavour (h->root.u.def.section->owner)
2452 == bfd_target_elf_flavour))
2454 h->ref_regular = 1;
2455 h->ref_regular_nonweak = 1;
2457 else
2458 h->def_regular = 1;
2461 if (h->dynindx == -1
2462 && (h->def_dynamic
2463 || h->ref_dynamic))
2465 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2467 eif->failed = TRUE;
2468 return FALSE;
2472 else
2474 /* Unfortunately, NON_ELF is only correct if the symbol
2475 was first seen in a non-ELF file. Fortunately, if the symbol
2476 was first seen in an ELF file, we're probably OK unless the
2477 symbol was defined in a non-ELF file. Catch that case here.
2478 FIXME: We're still in trouble if the symbol was first seen in
2479 a dynamic object, and then later in a non-ELF regular object. */
2480 if ((h->root.type == bfd_link_hash_defined
2481 || h->root.type == bfd_link_hash_defweak)
2482 && !h->def_regular
2483 && (h->root.u.def.section->owner != NULL
2484 ? (bfd_get_flavour (h->root.u.def.section->owner)
2485 != bfd_target_elf_flavour)
2486 : (bfd_is_abs_section (h->root.u.def.section)
2487 && !h->def_dynamic)))
2488 h->def_regular = 1;
2491 /* Backend specific symbol fixup. */
2492 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2493 if (bed->elf_backend_fixup_symbol
2494 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2495 return FALSE;
2497 /* If this is a final link, and the symbol was defined as a common
2498 symbol in a regular object file, and there was no definition in
2499 any dynamic object, then the linker will have allocated space for
2500 the symbol in a common section but the DEF_REGULAR
2501 flag will not have been set. */
2502 if (h->root.type == bfd_link_hash_defined
2503 && !h->def_regular
2504 && h->ref_regular
2505 && !h->def_dynamic
2506 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2507 h->def_regular = 1;
2509 /* If -Bsymbolic was used (which means to bind references to global
2510 symbols to the definition within the shared object), and this
2511 symbol was defined in a regular object, then it actually doesn't
2512 need a PLT entry. Likewise, if the symbol has non-default
2513 visibility. If the symbol has hidden or internal visibility, we
2514 will force it local. */
2515 if (h->needs_plt
2516 && eif->info->shared
2517 && is_elf_hash_table (eif->info->hash)
2518 && (SYMBOLIC_BIND (eif->info, h)
2519 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2520 && h->def_regular)
2522 bfd_boolean force_local;
2524 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2525 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2526 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2529 /* If a weak undefined symbol has non-default visibility, we also
2530 hide it from the dynamic linker. */
2531 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2532 && h->root.type == bfd_link_hash_undefweak)
2533 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2535 /* If this is a weak defined symbol in a dynamic object, and we know
2536 the real definition in the dynamic object, copy interesting flags
2537 over to the real definition. */
2538 if (h->u.weakdef != NULL)
2540 struct elf_link_hash_entry *weakdef;
2542 weakdef = h->u.weakdef;
2543 if (h->root.type == bfd_link_hash_indirect)
2544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2546 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2547 || h->root.type == bfd_link_hash_defweak);
2548 BFD_ASSERT (weakdef->def_dynamic);
2550 /* If the real definition is defined by a regular object file,
2551 don't do anything special. See the longer description in
2552 _bfd_elf_adjust_dynamic_symbol, below. */
2553 if (weakdef->def_regular)
2554 h->u.weakdef = NULL;
2555 else
2557 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2558 || weakdef->root.type == bfd_link_hash_defweak);
2559 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2563 return TRUE;
2566 /* Make the backend pick a good value for a dynamic symbol. This is
2567 called via elf_link_hash_traverse, and also calls itself
2568 recursively. */
2570 static bfd_boolean
2571 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2573 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2574 bfd *dynobj;
2575 const struct elf_backend_data *bed;
2577 if (! is_elf_hash_table (eif->info->hash))
2578 return FALSE;
2580 if (h->root.type == bfd_link_hash_warning)
2582 h->got = elf_hash_table (eif->info)->init_got_offset;
2583 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2585 /* When warning symbols are created, they **replace** the "real"
2586 entry in the hash table, thus we never get to see the real
2587 symbol in a hash traversal. So look at it now. */
2588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2591 /* Ignore indirect symbols. These are added by the versioning code. */
2592 if (h->root.type == bfd_link_hash_indirect)
2593 return TRUE;
2595 /* Fix the symbol flags. */
2596 if (! _bfd_elf_fix_symbol_flags (h, eif))
2597 return FALSE;
2599 /* If this symbol does not require a PLT entry, and it is not
2600 defined by a dynamic object, or is not referenced by a regular
2601 object, ignore it. We do have to handle a weak defined symbol,
2602 even if no regular object refers to it, if we decided to add it
2603 to the dynamic symbol table. FIXME: Do we normally need to worry
2604 about symbols which are defined by one dynamic object and
2605 referenced by another one? */
2606 if (!h->needs_plt
2607 && h->type != STT_GNU_IFUNC
2608 && (h->def_regular
2609 || !h->def_dynamic
2610 || (!h->ref_regular
2611 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2613 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2614 return TRUE;
2617 /* If we've already adjusted this symbol, don't do it again. This
2618 can happen via a recursive call. */
2619 if (h->dynamic_adjusted)
2620 return TRUE;
2622 /* Don't look at this symbol again. Note that we must set this
2623 after checking the above conditions, because we may look at a
2624 symbol once, decide not to do anything, and then get called
2625 recursively later after REF_REGULAR is set below. */
2626 h->dynamic_adjusted = 1;
2628 /* If this is a weak definition, and we know a real definition, and
2629 the real symbol is not itself defined by a regular object file,
2630 then get a good value for the real definition. We handle the
2631 real symbol first, for the convenience of the backend routine.
2633 Note that there is a confusing case here. If the real definition
2634 is defined by a regular object file, we don't get the real symbol
2635 from the dynamic object, but we do get the weak symbol. If the
2636 processor backend uses a COPY reloc, then if some routine in the
2637 dynamic object changes the real symbol, we will not see that
2638 change in the corresponding weak symbol. This is the way other
2639 ELF linkers work as well, and seems to be a result of the shared
2640 library model.
2642 I will clarify this issue. Most SVR4 shared libraries define the
2643 variable _timezone and define timezone as a weak synonym. The
2644 tzset call changes _timezone. If you write
2645 extern int timezone;
2646 int _timezone = 5;
2647 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2648 you might expect that, since timezone is a synonym for _timezone,
2649 the same number will print both times. However, if the processor
2650 backend uses a COPY reloc, then actually timezone will be copied
2651 into your process image, and, since you define _timezone
2652 yourself, _timezone will not. Thus timezone and _timezone will
2653 wind up at different memory locations. The tzset call will set
2654 _timezone, leaving timezone unchanged. */
2656 if (h->u.weakdef != NULL)
2658 /* If we get to this point, we know there is an implicit
2659 reference by a regular object file via the weak symbol H.
2660 FIXME: Is this really true? What if the traversal finds
2661 H->U.WEAKDEF before it finds H? */
2662 h->u.weakdef->ref_regular = 1;
2664 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2665 return FALSE;
2668 /* If a symbol has no type and no size and does not require a PLT
2669 entry, then we are probably about to do the wrong thing here: we
2670 are probably going to create a COPY reloc for an empty object.
2671 This case can arise when a shared object is built with assembly
2672 code, and the assembly code fails to set the symbol type. */
2673 if (h->size == 0
2674 && h->type == STT_NOTYPE
2675 && !h->needs_plt)
2676 (*_bfd_error_handler)
2677 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2678 h->root.root.string);
2680 dynobj = elf_hash_table (eif->info)->dynobj;
2681 bed = get_elf_backend_data (dynobj);
2683 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2685 eif->failed = TRUE;
2686 return FALSE;
2689 return TRUE;
2692 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2693 DYNBSS. */
2695 bfd_boolean
2696 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2697 asection *dynbss)
2699 unsigned int power_of_two;
2700 bfd_vma mask;
2701 asection *sec = h->root.u.def.section;
2703 /* The section aligment of definition is the maximum alignment
2704 requirement of symbols defined in the section. Since we don't
2705 know the symbol alignment requirement, we start with the
2706 maximum alignment and check low bits of the symbol address
2707 for the minimum alignment. */
2708 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2709 mask = ((bfd_vma) 1 << power_of_two) - 1;
2710 while ((h->root.u.def.value & mask) != 0)
2712 mask >>= 1;
2713 --power_of_two;
2716 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2717 dynbss))
2719 /* Adjust the section alignment if needed. */
2720 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2721 power_of_two))
2722 return FALSE;
2725 /* We make sure that the symbol will be aligned properly. */
2726 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2728 /* Define the symbol as being at this point in DYNBSS. */
2729 h->root.u.def.section = dynbss;
2730 h->root.u.def.value = dynbss->size;
2732 /* Increment the size of DYNBSS to make room for the symbol. */
2733 dynbss->size += h->size;
2735 return TRUE;
2738 /* Adjust all external symbols pointing into SEC_MERGE sections
2739 to reflect the object merging within the sections. */
2741 static bfd_boolean
2742 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2744 asection *sec;
2746 if (h->root.type == bfd_link_hash_warning)
2747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2749 if ((h->root.type == bfd_link_hash_defined
2750 || h->root.type == bfd_link_hash_defweak)
2751 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2752 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2754 bfd *output_bfd = (bfd *) data;
2756 h->root.u.def.value =
2757 _bfd_merged_section_offset (output_bfd,
2758 &h->root.u.def.section,
2759 elf_section_data (sec)->sec_info,
2760 h->root.u.def.value);
2763 return TRUE;
2766 /* Returns false if the symbol referred to by H should be considered
2767 to resolve local to the current module, and true if it should be
2768 considered to bind dynamically. */
2770 bfd_boolean
2771 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2772 struct bfd_link_info *info,
2773 bfd_boolean ignore_protected)
2775 bfd_boolean binding_stays_local_p;
2776 const struct elf_backend_data *bed;
2777 struct elf_link_hash_table *hash_table;
2779 if (h == NULL)
2780 return FALSE;
2782 while (h->root.type == bfd_link_hash_indirect
2783 || h->root.type == bfd_link_hash_warning)
2784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2786 /* If it was forced local, then clearly it's not dynamic. */
2787 if (h->dynindx == -1)
2788 return FALSE;
2789 if (h->forced_local)
2790 return FALSE;
2792 /* Identify the cases where name binding rules say that a
2793 visible symbol resolves locally. */
2794 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2796 switch (ELF_ST_VISIBILITY (h->other))
2798 case STV_INTERNAL:
2799 case STV_HIDDEN:
2800 return FALSE;
2802 case STV_PROTECTED:
2803 hash_table = elf_hash_table (info);
2804 if (!is_elf_hash_table (hash_table))
2805 return FALSE;
2807 bed = get_elf_backend_data (hash_table->dynobj);
2809 /* Proper resolution for function pointer equality may require
2810 that these symbols perhaps be resolved dynamically, even though
2811 we should be resolving them to the current module. */
2812 if (!ignore_protected || !bed->is_function_type (h->type))
2813 binding_stays_local_p = TRUE;
2814 break;
2816 default:
2817 break;
2820 /* If it isn't defined locally, then clearly it's dynamic. */
2821 if (!h->def_regular)
2822 return TRUE;
2824 /* Otherwise, the symbol is dynamic if binding rules don't tell
2825 us that it remains local. */
2826 return !binding_stays_local_p;
2829 /* Return true if the symbol referred to by H should be considered
2830 to resolve local to the current module, and false otherwise. Differs
2831 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2832 undefined symbols and weak symbols. */
2834 bfd_boolean
2835 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2836 struct bfd_link_info *info,
2837 bfd_boolean local_protected)
2839 const struct elf_backend_data *bed;
2840 struct elf_link_hash_table *hash_table;
2842 /* If it's a local sym, of course we resolve locally. */
2843 if (h == NULL)
2844 return TRUE;
2846 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2847 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2848 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2849 return TRUE;
2851 /* Common symbols that become definitions don't get the DEF_REGULAR
2852 flag set, so test it first, and don't bail out. */
2853 if (ELF_COMMON_DEF_P (h))
2854 /* Do nothing. */;
2855 /* If we don't have a definition in a regular file, then we can't
2856 resolve locally. The sym is either undefined or dynamic. */
2857 else if (!h->def_regular)
2858 return FALSE;
2860 /* Forced local symbols resolve locally. */
2861 if (h->forced_local)
2862 return TRUE;
2864 /* As do non-dynamic symbols. */
2865 if (h->dynindx == -1)
2866 return TRUE;
2868 /* At this point, we know the symbol is defined and dynamic. In an
2869 executable it must resolve locally, likewise when building symbolic
2870 shared libraries. */
2871 if (info->executable || SYMBOLIC_BIND (info, h))
2872 return TRUE;
2874 /* Now deal with defined dynamic symbols in shared libraries. Ones
2875 with default visibility might not resolve locally. */
2876 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2877 return FALSE;
2879 hash_table = elf_hash_table (info);
2880 if (!is_elf_hash_table (hash_table))
2881 return TRUE;
2883 bed = get_elf_backend_data (hash_table->dynobj);
2885 /* STV_PROTECTED non-function symbols are local. */
2886 if (!bed->is_function_type (h->type))
2887 return TRUE;
2889 /* Function pointer equality tests may require that STV_PROTECTED
2890 symbols be treated as dynamic symbols, even when we know that the
2891 dynamic linker will resolve them locally. */
2892 return local_protected;
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 break;
2907 tls = sec;
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2913 elf_hash_table (info)->tls_sec = tls;
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2917 if (tls != NULL)
2918 tls->alignment_power = align;
2920 return tls;
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924 static bfd_boolean
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2928 const struct elf_backend_data *bed;
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2933 return FALSE;
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2938 return FALSE;
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2942 return FALSE;
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2947 return FALSE;
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2959 return FALSE;
2961 return TRUE;
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2967 static bfd_boolean
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2977 bfd_boolean result;
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (abfd == NULL)
2981 return FALSE;
2983 if (! bfd_check_format (abfd, bfd_object))
2984 return FALSE;
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2991 return FALSE;
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2996 else
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3005 extsymcount = symcount;
3006 extsymoff = 0;
3008 else
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3014 if (extsymcount == 0)
3015 return FALSE;
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3019 NULL, NULL, NULL);
3020 if (isymbuf == NULL)
3021 return FALSE;
3023 /* Scan the symbol table looking for SYMDEF. */
3024 result = FALSE;
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3027 const char *name;
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3030 isym->st_name);
3031 if (name == NULL)
3032 break;
3034 if (strcmp (name, symdef->name) == 0)
3036 result = is_global_data_symbol_definition (abfd, isym);
3037 break;
3041 free (isymbuf);
3043 return result;
3046 /* Add an entry to the .dynamic table. */
3048 bfd_boolean
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 bfd_vma tag,
3051 bfd_vma val)
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3055 asection *s;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3062 return FALSE;
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3071 return FALSE;
3073 dyn.d_tag = tag;
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3077 s->size = newsize;
3078 s->contents = newcontents;
3080 return TRUE;
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3087 static int
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3090 const char *soname,
3091 bfd_boolean do_it)
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3098 return -1;
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3104 return -1;
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3108 asection *sdyn;
3109 const struct elf_backend_data *bed;
3110 bfd_byte *extdyn;
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3114 if (sdyn != NULL)
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3119 Elf_Internal_Dyn dyn;
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3126 return 1;
3131 if (do_it)
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3134 return -1;
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 return -1;
3139 else
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3143 return 0;
3146 static bfd_boolean
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3151 return TRUE;
3153 return FALSE;
3156 /* Sort symbol by value and section. */
3157 static int
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3167 if (vdiff != 0)
3168 return vdiff > 0 ? 1 : -1;
3169 else
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3172 if (sdiff != 0)
3173 return sdiff > 0 ? 1 : -1;
3175 return 0;
3178 /* This function is used to adjust offsets into .dynstr for
3179 dynamic symbols. This is called via elf_link_hash_traverse. */
3181 static bfd_boolean
3182 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3184 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3186 if (h->root.type == bfd_link_hash_warning)
3187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3189 if (h->dynindx != -1)
3190 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3191 return TRUE;
3194 /* Assign string offsets in .dynstr, update all structures referencing
3195 them. */
3197 static bfd_boolean
3198 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3200 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3201 struct elf_link_local_dynamic_entry *entry;
3202 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3203 bfd *dynobj = hash_table->dynobj;
3204 asection *sdyn;
3205 bfd_size_type size;
3206 const struct elf_backend_data *bed;
3207 bfd_byte *extdyn;
3209 _bfd_elf_strtab_finalize (dynstr);
3210 size = _bfd_elf_strtab_size (dynstr);
3212 bed = get_elf_backend_data (dynobj);
3213 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3214 BFD_ASSERT (sdyn != NULL);
3216 /* Update all .dynamic entries referencing .dynstr strings. */
3217 for (extdyn = sdyn->contents;
3218 extdyn < sdyn->contents + sdyn->size;
3219 extdyn += bed->s->sizeof_dyn)
3221 Elf_Internal_Dyn dyn;
3223 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3224 switch (dyn.d_tag)
3226 case DT_STRSZ:
3227 dyn.d_un.d_val = size;
3228 break;
3229 case DT_NEEDED:
3230 case DT_SONAME:
3231 case DT_RPATH:
3232 case DT_RUNPATH:
3233 case DT_FILTER:
3234 case DT_AUXILIARY:
3235 case DT_AUDIT:
3236 case DT_DEPAUDIT:
3237 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3238 break;
3239 default:
3240 continue;
3242 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3245 /* Now update local dynamic symbols. */
3246 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3247 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3248 entry->isym.st_name);
3250 /* And the rest of dynamic symbols. */
3251 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3253 /* Adjust version definitions. */
3254 if (elf_tdata (output_bfd)->cverdefs)
3256 asection *s;
3257 bfd_byte *p;
3258 bfd_size_type i;
3259 Elf_Internal_Verdef def;
3260 Elf_Internal_Verdaux defaux;
3262 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3263 p = s->contents;
3266 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3267 &def);
3268 p += sizeof (Elf_External_Verdef);
3269 if (def.vd_aux != sizeof (Elf_External_Verdef))
3270 continue;
3271 for (i = 0; i < def.vd_cnt; ++i)
3273 _bfd_elf_swap_verdaux_in (output_bfd,
3274 (Elf_External_Verdaux *) p, &defaux);
3275 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3276 defaux.vda_name);
3277 _bfd_elf_swap_verdaux_out (output_bfd,
3278 &defaux, (Elf_External_Verdaux *) p);
3279 p += sizeof (Elf_External_Verdaux);
3282 while (def.vd_next);
3285 /* Adjust version references. */
3286 if (elf_tdata (output_bfd)->verref)
3288 asection *s;
3289 bfd_byte *p;
3290 bfd_size_type i;
3291 Elf_Internal_Verneed need;
3292 Elf_Internal_Vernaux needaux;
3294 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3295 p = s->contents;
3298 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3299 &need);
3300 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3301 _bfd_elf_swap_verneed_out (output_bfd, &need,
3302 (Elf_External_Verneed *) p);
3303 p += sizeof (Elf_External_Verneed);
3304 for (i = 0; i < need.vn_cnt; ++i)
3306 _bfd_elf_swap_vernaux_in (output_bfd,
3307 (Elf_External_Vernaux *) p, &needaux);
3308 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3309 needaux.vna_name);
3310 _bfd_elf_swap_vernaux_out (output_bfd,
3311 &needaux,
3312 (Elf_External_Vernaux *) p);
3313 p += sizeof (Elf_External_Vernaux);
3316 while (need.vn_next);
3319 return TRUE;
3322 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3323 The default is to only match when the INPUT and OUTPUT are exactly
3324 the same target. */
3326 bfd_boolean
3327 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3328 const bfd_target *output)
3330 return input == output;
3333 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3334 This version is used when different targets for the same architecture
3335 are virtually identical. */
3337 bfd_boolean
3338 _bfd_elf_relocs_compatible (const bfd_target *input,
3339 const bfd_target *output)
3341 const struct elf_backend_data *obed, *ibed;
3343 if (input == output)
3344 return TRUE;
3346 ibed = xvec_get_elf_backend_data (input);
3347 obed = xvec_get_elf_backend_data (output);
3349 if (ibed->arch != obed->arch)
3350 return FALSE;
3352 /* If both backends are using this function, deem them compatible. */
3353 return ibed->relocs_compatible == obed->relocs_compatible;
3356 /* Add symbols from an ELF object file to the linker hash table. */
3358 static bfd_boolean
3359 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3361 Elf_Internal_Ehdr *ehdr;
3362 Elf_Internal_Shdr *hdr;
3363 bfd_size_type symcount;
3364 bfd_size_type extsymcount;
3365 bfd_size_type extsymoff;
3366 struct elf_link_hash_entry **sym_hash;
3367 bfd_boolean dynamic;
3368 Elf_External_Versym *extversym = NULL;
3369 Elf_External_Versym *ever;
3370 struct elf_link_hash_entry *weaks;
3371 struct elf_link_hash_entry **nondeflt_vers = NULL;
3372 bfd_size_type nondeflt_vers_cnt = 0;
3373 Elf_Internal_Sym *isymbuf = NULL;
3374 Elf_Internal_Sym *isym;
3375 Elf_Internal_Sym *isymend;
3376 const struct elf_backend_data *bed;
3377 bfd_boolean add_needed;
3378 struct elf_link_hash_table *htab;
3379 bfd_size_type amt;
3380 void *alloc_mark = NULL;
3381 struct bfd_hash_entry **old_table = NULL;
3382 unsigned int old_size = 0;
3383 unsigned int old_count = 0;
3384 void *old_tab = NULL;
3385 void *old_hash;
3386 void *old_ent;
3387 struct bfd_link_hash_entry *old_undefs = NULL;
3388 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3389 long old_dynsymcount = 0;
3390 size_t tabsize = 0;
3391 size_t hashsize = 0;
3393 htab = elf_hash_table (info);
3394 bed = get_elf_backend_data (abfd);
3396 if ((abfd->flags & DYNAMIC) == 0)
3397 dynamic = FALSE;
3398 else
3400 dynamic = TRUE;
3402 /* You can't use -r against a dynamic object. Also, there's no
3403 hope of using a dynamic object which does not exactly match
3404 the format of the output file. */
3405 if (info->relocatable
3406 || !is_elf_hash_table (htab)
3407 || info->output_bfd->xvec != abfd->xvec)
3409 if (info->relocatable)
3410 bfd_set_error (bfd_error_invalid_operation);
3411 else
3412 bfd_set_error (bfd_error_wrong_format);
3413 goto error_return;
3417 ehdr = elf_elfheader (abfd);
3418 if (info->warn_alternate_em
3419 && bed->elf_machine_code != ehdr->e_machine
3420 && ((bed->elf_machine_alt1 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt1)
3422 || (bed->elf_machine_alt2 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt2)))
3424 info->callbacks->einfo
3425 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3426 ehdr->e_machine, abfd, bed->elf_machine_code);
3428 /* As a GNU extension, any input sections which are named
3429 .gnu.warning.SYMBOL are treated as warning symbols for the given
3430 symbol. This differs from .gnu.warning sections, which generate
3431 warnings when they are included in an output file. */
3432 if (info->executable)
3434 asection *s;
3436 for (s = abfd->sections; s != NULL; s = s->next)
3438 const char *name;
3440 name = bfd_get_section_name (abfd, s);
3441 if (CONST_STRNEQ (name, ".gnu.warning."))
3443 char *msg;
3444 bfd_size_type sz;
3446 name += sizeof ".gnu.warning." - 1;
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3456 link. */
3457 if (dynamic)
3459 struct elf_link_hash_entry *h;
3461 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3463 /* FIXME: What about bfd_link_hash_common? */
3464 if (h != NULL
3465 && (h->root.type == bfd_link_hash_defined
3466 || h->root.type == bfd_link_hash_defweak))
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
3471 s->size = 0;
3472 continue;
3476 sz = s->size;
3477 msg = (char *) bfd_alloc (abfd, sz + 1);
3478 if (msg == NULL)
3479 goto error_return;
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 goto error_return;
3484 msg[sz] = '\0';
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3489 goto error_return;
3491 if (! info->relocatable)
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3495 s->size = 0;
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3505 add_needed = TRUE;
3506 if (! dynamic)
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3513 if (info->shared
3514 && is_elf_hash_table (htab)
3515 && info->output_bfd->xvec == abfd->xvec
3516 && !htab->dynamic_sections_created)
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3519 goto error_return;
3522 else if (!is_elf_hash_table (htab))
3523 goto error_return;
3524 else
3526 asection *s;
3527 const char *soname = NULL;
3528 char *audit = NULL;
3529 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3530 int ret;
3532 /* ld --just-symbols and dynamic objects don't mix very well.
3533 ld shouldn't allow it. */
3534 if ((s = abfd->sections) != NULL
3535 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3536 abort ();
3538 /* If this dynamic lib was specified on the command line with
3539 --as-needed in effect, then we don't want to add a DT_NEEDED
3540 tag unless the lib is actually used. Similary for libs brought
3541 in by another lib's DT_NEEDED. When --no-add-needed is used
3542 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3543 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 all. */
3545 add_needed = (elf_dyn_lib_class (abfd)
3546 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3547 | DYN_NO_NEEDED)) == 0;
3549 s = bfd_get_section_by_name (abfd, ".dynamic");
3550 if (s != NULL)
3552 bfd_byte *dynbuf;
3553 bfd_byte *extdyn;
3554 unsigned int elfsec;
3555 unsigned long shlink;
3557 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3559 error_free_dyn:
3560 free (dynbuf);
3561 goto error_return;
3564 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3565 if (elfsec == SHN_BAD)
3566 goto error_free_dyn;
3567 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3569 for (extdyn = dynbuf;
3570 extdyn < dynbuf + s->size;
3571 extdyn += bed->s->sizeof_dyn)
3573 Elf_Internal_Dyn dyn;
3575 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3576 if (dyn.d_tag == DT_SONAME)
3578 unsigned int tagv = dyn.d_un.d_val;
3579 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (soname == NULL)
3581 goto error_free_dyn;
3583 if (dyn.d_tag == DT_NEEDED)
3585 struct bfd_link_needed_list *n, **pn;
3586 char *fnm, *anm;
3587 unsigned int tagv = dyn.d_un.d_val;
3589 amt = sizeof (struct bfd_link_needed_list);
3590 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3591 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3592 if (n == NULL || fnm == NULL)
3593 goto error_free_dyn;
3594 amt = strlen (fnm) + 1;
3595 anm = (char *) bfd_alloc (abfd, amt);
3596 if (anm == NULL)
3597 goto error_free_dyn;
3598 memcpy (anm, fnm, amt);
3599 n->name = anm;
3600 n->by = abfd;
3601 n->next = NULL;
3602 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3604 *pn = n;
3606 if (dyn.d_tag == DT_RUNPATH)
3608 struct bfd_link_needed_list *n, **pn;
3609 char *fnm, *anm;
3610 unsigned int tagv = dyn.d_un.d_val;
3612 amt = sizeof (struct bfd_link_needed_list);
3613 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3614 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 if (n == NULL || fnm == NULL)
3616 goto error_free_dyn;
3617 amt = strlen (fnm) + 1;
3618 anm = (char *) bfd_alloc (abfd, amt);
3619 if (anm == NULL)
3620 goto error_free_dyn;
3621 memcpy (anm, fnm, amt);
3622 n->name = anm;
3623 n->by = abfd;
3624 n->next = NULL;
3625 for (pn = & runpath;
3626 *pn != NULL;
3627 pn = &(*pn)->next)
3629 *pn = n;
3631 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3632 if (!runpath && dyn.d_tag == DT_RPATH)
3634 struct bfd_link_needed_list *n, **pn;
3635 char *fnm, *anm;
3636 unsigned int tagv = dyn.d_un.d_val;
3638 amt = sizeof (struct bfd_link_needed_list);
3639 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3640 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 if (n == NULL || fnm == NULL)
3642 goto error_free_dyn;
3643 amt = strlen (fnm) + 1;
3644 anm = (char *) bfd_alloc (abfd, amt);
3645 if (anm == NULL)
3646 goto error_free_dyn;
3647 memcpy (anm, fnm, amt);
3648 n->name = anm;
3649 n->by = abfd;
3650 n->next = NULL;
3651 for (pn = & rpath;
3652 *pn != NULL;
3653 pn = &(*pn)->next)
3655 *pn = n;
3657 if (dyn.d_tag == DT_AUDIT)
3659 unsigned int tagv = dyn.d_un.d_val;
3660 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3664 free (dynbuf);
3667 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3668 frees all more recently bfd_alloc'd blocks as well. */
3669 if (runpath)
3670 rpath = runpath;
3672 if (rpath)
3674 struct bfd_link_needed_list **pn;
3675 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3677 *pn = rpath;
3680 /* We do not want to include any of the sections in a dynamic
3681 object in the output file. We hack by simply clobbering the
3682 list of sections in the BFD. This could be handled more
3683 cleanly by, say, a new section flag; the existing
3684 SEC_NEVER_LOAD flag is not the one we want, because that one
3685 still implies that the section takes up space in the output
3686 file. */
3687 bfd_section_list_clear (abfd);
3689 /* Find the name to use in a DT_NEEDED entry that refers to this
3690 object. If the object has a DT_SONAME entry, we use it.
3691 Otherwise, if the generic linker stuck something in
3692 elf_dt_name, we use that. Otherwise, we just use the file
3693 name. */
3694 if (soname == NULL || *soname == '\0')
3696 soname = elf_dt_name (abfd);
3697 if (soname == NULL || *soname == '\0')
3698 soname = bfd_get_filename (abfd);
3701 /* Save the SONAME because sometimes the linker emulation code
3702 will need to know it. */
3703 elf_dt_name (abfd) = soname;
3705 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3706 if (ret < 0)
3707 goto error_return;
3709 /* If we have already included this dynamic object in the
3710 link, just ignore it. There is no reason to include a
3711 particular dynamic object more than once. */
3712 if (ret > 0)
3713 return TRUE;
3715 /* Save the DT_AUDIT entry for the linker emulation code. */
3716 elf_dt_audit (abfd) = audit;
3719 /* If this is a dynamic object, we always link against the .dynsym
3720 symbol table, not the .symtab symbol table. The dynamic linker
3721 will only see the .dynsym symbol table, so there is no reason to
3722 look at .symtab for a dynamic object. */
3724 if (! dynamic || elf_dynsymtab (abfd) == 0)
3725 hdr = &elf_tdata (abfd)->symtab_hdr;
3726 else
3727 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3729 symcount = hdr->sh_size / bed->s->sizeof_sym;
3731 /* The sh_info field of the symtab header tells us where the
3732 external symbols start. We don't care about the local symbols at
3733 this point. */
3734 if (elf_bad_symtab (abfd))
3736 extsymcount = symcount;
3737 extsymoff = 0;
3739 else
3741 extsymcount = symcount - hdr->sh_info;
3742 extsymoff = hdr->sh_info;
3745 sym_hash = NULL;
3746 if (extsymcount != 0)
3748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3749 NULL, NULL, NULL);
3750 if (isymbuf == NULL)
3751 goto error_return;
3753 /* We store a pointer to the hash table entry for each external
3754 symbol. */
3755 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3756 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3757 if (sym_hash == NULL)
3758 goto error_free_sym;
3759 elf_sym_hashes (abfd) = sym_hash;
3762 if (dynamic)
3764 /* Read in any version definitions. */
3765 if (!_bfd_elf_slurp_version_tables (abfd,
3766 info->default_imported_symver))
3767 goto error_free_sym;
3769 /* Read in the symbol versions, but don't bother to convert them
3770 to internal format. */
3771 if (elf_dynversym (abfd) != 0)
3773 Elf_Internal_Shdr *versymhdr;
3775 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3776 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3777 if (extversym == NULL)
3778 goto error_free_sym;
3779 amt = versymhdr->sh_size;
3780 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3781 || bfd_bread (extversym, amt, abfd) != amt)
3782 goto error_free_vers;
3786 /* If we are loading an as-needed shared lib, save the symbol table
3787 state before we start adding symbols. If the lib turns out
3788 to be unneeded, restore the state. */
3789 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3791 unsigned int i;
3792 size_t entsize;
3794 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3796 struct bfd_hash_entry *p;
3797 struct elf_link_hash_entry *h;
3799 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3801 h = (struct elf_link_hash_entry *) p;
3802 entsize += htab->root.table.entsize;
3803 if (h->root.type == bfd_link_hash_warning)
3804 entsize += htab->root.table.entsize;
3808 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3809 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3810 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3811 if (old_tab == NULL)
3812 goto error_free_vers;
3814 /* Remember the current objalloc pointer, so that all mem for
3815 symbols added can later be reclaimed. */
3816 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3817 if (alloc_mark == NULL)
3818 goto error_free_vers;
3820 /* Make a special call to the linker "notice" function to
3821 tell it that we are about to handle an as-needed lib. */
3822 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3823 notice_as_needed))
3824 goto error_free_vers;
3826 /* Clone the symbol table and sym hashes. Remember some
3827 pointers into the symbol table, and dynamic symbol count. */
3828 old_hash = (char *) old_tab + tabsize;
3829 old_ent = (char *) old_hash + hashsize;
3830 memcpy (old_tab, htab->root.table.table, tabsize);
3831 memcpy (old_hash, sym_hash, hashsize);
3832 old_undefs = htab->root.undefs;
3833 old_undefs_tail = htab->root.undefs_tail;
3834 old_table = htab->root.table.table;
3835 old_size = htab->root.table.size;
3836 old_count = htab->root.table.count;
3837 old_dynsymcount = htab->dynsymcount;
3839 for (i = 0; i < htab->root.table.size; i++)
3841 struct bfd_hash_entry *p;
3842 struct elf_link_hash_entry *h;
3844 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3846 memcpy (old_ent, p, htab->root.table.entsize);
3847 old_ent = (char *) old_ent + htab->root.table.entsize;
3848 h = (struct elf_link_hash_entry *) p;
3849 if (h->root.type == bfd_link_hash_warning)
3851 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3852 old_ent = (char *) old_ent + htab->root.table.entsize;
3858 weaks = NULL;
3859 ever = extversym != NULL ? extversym + extsymoff : NULL;
3860 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3861 isym < isymend;
3862 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3864 int bind;
3865 bfd_vma value;
3866 asection *sec, *new_sec;
3867 flagword flags;
3868 const char *name;
3869 struct elf_link_hash_entry *h;
3870 bfd_boolean definition;
3871 bfd_boolean size_change_ok;
3872 bfd_boolean type_change_ok;
3873 bfd_boolean new_weakdef;
3874 bfd_boolean override;
3875 bfd_boolean common;
3876 unsigned int old_alignment;
3877 bfd *old_bfd;
3878 bfd * undef_bfd = NULL;
3880 override = FALSE;
3882 flags = BSF_NO_FLAGS;
3883 sec = NULL;
3884 value = isym->st_value;
3885 *sym_hash = NULL;
3886 common = bed->common_definition (isym);
3888 bind = ELF_ST_BIND (isym->st_info);
3889 switch (bind)
3891 case STB_LOCAL:
3892 /* This should be impossible, since ELF requires that all
3893 global symbols follow all local symbols, and that sh_info
3894 point to the first global symbol. Unfortunately, Irix 5
3895 screws this up. */
3896 continue;
3898 case STB_GLOBAL:
3899 if (isym->st_shndx != SHN_UNDEF && !common)
3900 flags = BSF_GLOBAL;
3901 break;
3903 case STB_WEAK:
3904 flags = BSF_WEAK;
3905 break;
3907 case STB_GNU_UNIQUE:
3908 flags = BSF_GNU_UNIQUE;
3909 break;
3911 default:
3912 /* Leave it up to the processor backend. */
3913 break;
3916 if (isym->st_shndx == SHN_UNDEF)
3917 sec = bfd_und_section_ptr;
3918 else if (isym->st_shndx == SHN_ABS)
3919 sec = bfd_abs_section_ptr;
3920 else if (isym->st_shndx == SHN_COMMON)
3922 sec = bfd_com_section_ptr;
3923 /* What ELF calls the size we call the value. What ELF
3924 calls the value we call the alignment. */
3925 value = isym->st_size;
3927 else
3929 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3930 if (sec == NULL)
3931 sec = bfd_abs_section_ptr;
3932 else if (sec->kept_section)
3934 /* Symbols from discarded section are undefined. We keep
3935 its visibility. */
3936 sec = bfd_und_section_ptr;
3937 isym->st_shndx = SHN_UNDEF;
3939 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3940 value -= sec->vma;
3943 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3944 isym->st_name);
3945 if (name == NULL)
3946 goto error_free_vers;
3948 if (isym->st_shndx == SHN_COMMON
3949 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3950 && !info->relocatable)
3952 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3954 if (tcomm == NULL)
3956 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3957 (SEC_ALLOC
3958 | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED
3960 | SEC_THREAD_LOCAL));
3961 if (tcomm == NULL)
3962 goto error_free_vers;
3964 sec = tcomm;
3966 else if (bed->elf_add_symbol_hook)
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
3970 goto error_free_vers;
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3993 old_alignment = 0;
3994 old_bfd = NULL;
3995 new_sec = sec;
3997 if (is_elf_hash_table (htab))
3999 Elf_Internal_Versym iver;
4000 unsigned int vernum = 0;
4001 bfd_boolean skip;
4003 /* If this is a definition of a symbol which was previously
4004 referenced in a non-weak manner then make a note of the bfd
4005 that contained the reference. This is used if we need to
4006 refer to the source of the reference later on. */
4007 if (! bfd_is_und_section (sec))
4009 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4011 if (h != NULL
4012 && h->root.type == bfd_link_hash_undefined
4013 && h->root.u.undef.abfd)
4014 undef_bfd = h->root.u.undef.abfd;
4017 if (ever == NULL)
4019 if (info->default_imported_symver)
4020 /* Use the default symbol version created earlier. */
4021 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4022 else
4023 iver.vs_vers = 0;
4025 else
4026 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4028 vernum = iver.vs_vers & VERSYM_VERSION;
4030 /* If this is a hidden symbol, or if it is not version
4031 1, we append the version name to the symbol name.
4032 However, we do not modify a non-hidden absolute symbol
4033 if it is not a function, because it might be the version
4034 symbol itself. FIXME: What if it isn't? */
4035 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4036 || (vernum > 1
4037 && (!bfd_is_abs_section (sec)
4038 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4040 const char *verstr;
4041 size_t namelen, verlen, newlen;
4042 char *newname, *p;
4044 if (isym->st_shndx != SHN_UNDEF)
4046 if (vernum > elf_tdata (abfd)->cverdefs)
4047 verstr = NULL;
4048 else if (vernum > 1)
4049 verstr =
4050 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4051 else
4052 verstr = "";
4054 if (verstr == NULL)
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid version %u (max %d)"),
4058 abfd, name, vernum,
4059 elf_tdata (abfd)->cverdefs);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4064 else
4066 /* We cannot simply test for the number of
4067 entries in the VERNEED section since the
4068 numbers for the needed versions do not start
4069 at 0. */
4070 Elf_Internal_Verneed *t;
4072 verstr = NULL;
4073 for (t = elf_tdata (abfd)->verref;
4074 t != NULL;
4075 t = t->vn_nextref)
4077 Elf_Internal_Vernaux *a;
4079 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4081 if (a->vna_other == vernum)
4083 verstr = a->vna_nodename;
4084 break;
4087 if (a != NULL)
4088 break;
4090 if (verstr == NULL)
4092 (*_bfd_error_handler)
4093 (_("%B: %s: invalid needed version %d"),
4094 abfd, name, vernum);
4095 bfd_set_error (bfd_error_bad_value);
4096 goto error_free_vers;
4100 namelen = strlen (name);
4101 verlen = strlen (verstr);
4102 newlen = namelen + verlen + 2;
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 ++newlen;
4107 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4108 if (newname == NULL)
4109 goto error_free_vers;
4110 memcpy (newname, name, namelen);
4111 p = newname + namelen;
4112 *p++ = ELF_VER_CHR;
4113 /* If this is a defined non-hidden version symbol,
4114 we add another @ to the name. This indicates the
4115 default version of the symbol. */
4116 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4117 && isym->st_shndx != SHN_UNDEF)
4118 *p++ = ELF_VER_CHR;
4119 memcpy (p, verstr, verlen + 1);
4121 name = newname;
4124 /* If necessary, make a second attempt to locate the bfd
4125 containing an unresolved, non-weak reference to the
4126 current symbol. */
4127 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4129 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4131 if (h != NULL
4132 && h->root.type == bfd_link_hash_undefined
4133 && h->root.u.undef.abfd)
4134 undef_bfd = h->root.u.undef.abfd;
4137 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4138 &value, &old_alignment,
4139 sym_hash, &skip, &override,
4140 &type_change_ok, &size_change_ok))
4141 goto error_free_vers;
4143 if (skip)
4144 continue;
4146 if (override)
4147 definition = FALSE;
4149 h = *sym_hash;
4150 while (h->root.type == bfd_link_hash_indirect
4151 || h->root.type == bfd_link_hash_warning)
4152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154 /* Remember the old alignment if this is a common symbol, so
4155 that we don't reduce the alignment later on. We can't
4156 check later, because _bfd_generic_link_add_one_symbol
4157 will set a default for the alignment which we want to
4158 override. We also remember the old bfd where the existing
4159 definition comes from. */
4160 switch (h->root.type)
4162 default:
4163 break;
4165 case bfd_link_hash_defined:
4166 case bfd_link_hash_defweak:
4167 old_bfd = h->root.u.def.section->owner;
4168 break;
4170 case bfd_link_hash_common:
4171 old_bfd = h->root.u.c.p->section->owner;
4172 old_alignment = h->root.u.c.p->alignment_power;
4173 break;
4176 if (elf_tdata (abfd)->verdef != NULL
4177 && ! override
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4188 h = *sym_hash;
4189 while (h->root.type == bfd_link_hash_indirect
4190 || h->root.type == bfd_link_hash_warning)
4191 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4193 *sym_hash = h;
4194 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4196 new_weakdef = FALSE;
4197 if (dynamic
4198 && definition
4199 && (flags & BSF_WEAK) != 0
4200 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4201 && is_elf_hash_table (htab)
4202 && h->u.weakdef == NULL)
4204 /* Keep a list of all weak defined non function symbols from
4205 a dynamic object, using the weakdef field. Later in this
4206 function we will set the weakdef field to the correct
4207 value. We only put non-function symbols from dynamic
4208 objects on this list, because that happens to be the only
4209 time we need to know the normal symbol corresponding to a
4210 weak symbol, and the information is time consuming to
4211 figure out. If the weakdef field is not already NULL,
4212 then this symbol was already defined by some previous
4213 dynamic object, and we will be using that previous
4214 definition anyhow. */
4216 h->u.weakdef = weaks;
4217 weaks = h;
4218 new_weakdef = TRUE;
4221 /* Set the alignment of a common symbol. */
4222 if ((common || bfd_is_com_section (sec))
4223 && h->root.type == bfd_link_hash_common)
4225 unsigned int align;
4227 if (common)
4228 align = bfd_log2 (isym->st_value);
4229 else
4231 /* The new symbol is a common symbol in a shared object.
4232 We need to get the alignment from the section. */
4233 align = new_sec->alignment_power;
4235 if (align > old_alignment
4236 /* Permit an alignment power of zero if an alignment of one
4237 is specified and no other alignments have been specified. */
4238 || (isym->st_value == 1 && old_alignment == 0))
4239 h->root.u.c.p->alignment_power = align;
4240 else
4241 h->root.u.c.p->alignment_power = old_alignment;
4244 if (is_elf_hash_table (htab))
4246 bfd_boolean dynsym;
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
4253 if ((old_alignment || common)
4254 && h->root.type != bfd_link_hash_common)
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4259 bfd *normal_bfd;
4260 bfd *common_bfd;
4262 symbol_align = ffs (h->root.u.def.value) - 1;
4263 if (h->root.u.def.section->owner != NULL
4264 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4266 normal_align = h->root.u.def.section->alignment_power;
4267 if (normal_align > symbol_align)
4268 normal_align = symbol_align;
4270 else
4271 normal_align = symbol_align;
4273 if (old_alignment)
4275 common_align = old_alignment;
4276 common_bfd = old_bfd;
4277 normal_bfd = abfd;
4279 else
4281 common_align = bfd_log2 (isym->st_value);
4282 common_bfd = abfd;
4283 normal_bfd = old_bfd;
4286 if (normal_align < common_align)
4288 /* PR binutils/2735 */
4289 if (normal_bfd == NULL)
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of common symbol `%s' in %B"
4292 " is greater than the alignment (%u) of its section %A"),
4293 common_bfd, h->root.u.def.section,
4294 1 << common_align, name, 1 << normal_align);
4295 else
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of symbol `%s' in %B"
4298 " is smaller than %u in %B"),
4299 normal_bfd, common_bfd,
4300 1 << normal_align, name, 1 << common_align);
4304 /* Remember the symbol size if it isn't undefined. */
4305 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4306 && (definition || h->size == 0))
4308 if (h->size != 0
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4311 (*_bfd_error_handler)
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4314 old_bfd, abfd,
4315 name, (unsigned long) h->size,
4316 (unsigned long) isym->st_size);
4318 h->size = isym->st_size;
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
4325 covered by --warn-common. Allow changed between different
4326 function types. */
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && (definition || h->type == STT_NOTYPE))
4333 unsigned int type = ELF_ST_TYPE (isym->st_info);
4335 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4336 symbol. */
4337 if (type == STT_GNU_IFUNC
4338 && (abfd->flags & DYNAMIC) != 0)
4339 type = STT_FUNC;
4341 if (h->type != type)
4343 if (h->type != STT_NOTYPE && ! type_change_ok)
4344 (*_bfd_error_handler)
4345 (_("Warning: type of symbol `%s' changed"
4346 " from %d to %d in %B"),
4347 abfd, name, h->type, type);
4349 h->type = type;
4353 /* Merge st_other field. */
4354 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4356 /* Set a flag in the hash table entry indicating the type of
4357 reference or definition we just found. Keep a count of
4358 the number of dynamic symbols we find. A dynamic symbol
4359 is one which is referenced or defined by both a regular
4360 object and a shared object. */
4361 dynsym = FALSE;
4362 if (! dynamic)
4364 if (! definition)
4366 h->ref_regular = 1;
4367 if (bind != STB_WEAK)
4368 h->ref_regular_nonweak = 1;
4370 else
4372 h->def_regular = 1;
4373 if (h->def_dynamic)
4375 h->def_dynamic = 0;
4376 h->ref_dynamic = 1;
4377 h->dynamic_def = 1;
4380 if (! info->executable
4381 || h->def_dynamic
4382 || h->ref_dynamic)
4383 dynsym = TRUE;
4385 else
4387 if (! definition)
4388 h->ref_dynamic = 1;
4389 else
4390 h->def_dynamic = 1;
4391 if (h->def_regular
4392 || h->ref_regular
4393 || (h->u.weakdef != NULL
4394 && ! new_weakdef
4395 && h->u.weakdef->dynindx != -1))
4396 dynsym = TRUE;
4399 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4401 /* We don't want to make debug symbol dynamic. */
4402 dynsym = FALSE;
4405 /* Check to see if we need to add an indirect symbol for
4406 the default name. */
4407 if (definition || h->root.type == bfd_link_hash_common)
4408 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4409 &sec, &value, &dynsym,
4410 override))
4411 goto error_free_vers;
4413 if (definition && !dynamic)
4415 char *p = strchr (name, ELF_VER_CHR);
4416 if (p != NULL && p[1] != ELF_VER_CHR)
4418 /* Queue non-default versions so that .symver x, x@FOO
4419 aliases can be checked. */
4420 if (!nondeflt_vers)
4422 amt = ((isymend - isym + 1)
4423 * sizeof (struct elf_link_hash_entry *));
4424 nondeflt_vers =
4425 (struct elf_link_hash_entry **) bfd_malloc (amt);
4426 if (!nondeflt_vers)
4427 goto error_free_vers;
4429 nondeflt_vers[nondeflt_vers_cnt++] = h;
4433 if (dynsym && h->dynindx == -1)
4435 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4436 goto error_free_vers;
4437 if (h->u.weakdef != NULL
4438 && ! new_weakdef
4439 && h->u.weakdef->dynindx == -1)
4441 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4442 goto error_free_vers;
4445 else if (dynsym && h->dynindx != -1)
4446 /* If the symbol already has a dynamic index, but
4447 visibility says it should not be visible, turn it into
4448 a local symbol. */
4449 switch (ELF_ST_VISIBILITY (h->other))
4451 case STV_INTERNAL:
4452 case STV_HIDDEN:
4453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4454 dynsym = FALSE;
4455 break;
4458 if (!add_needed
4459 && definition
4460 && ((dynsym
4461 && h->ref_regular)
4462 || (h->ref_dynamic
4463 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4464 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4466 int ret;
4467 const char *soname = elf_dt_name (abfd);
4469 /* A symbol from a library loaded via DT_NEEDED of some
4470 other library is referenced by a regular object.
4471 Add a DT_NEEDED entry for it. Issue an error if
4472 --no-add-needed is used and the reference was not
4473 a weak one. */
4474 if (undef_bfd != NULL
4475 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4477 (*_bfd_error_handler)
4478 (_("%B: undefined reference to symbol '%s'"),
4479 undef_bfd, name);
4480 (*_bfd_error_handler)
4481 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4482 abfd, name);
4483 bfd_set_error (bfd_error_invalid_operation);
4484 goto error_free_vers;
4487 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4488 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4490 add_needed = TRUE;
4491 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4492 if (ret < 0)
4493 goto error_free_vers;
4495 BFD_ASSERT (ret == 0);
4500 if (extversym != NULL)
4502 free (extversym);
4503 extversym = NULL;
4506 if (isymbuf != NULL)
4508 free (isymbuf);
4509 isymbuf = NULL;
4512 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4514 unsigned int i;
4516 /* Restore the symbol table. */
4517 if (bed->as_needed_cleanup)
4518 (*bed->as_needed_cleanup) (abfd, info);
4519 old_hash = (char *) old_tab + tabsize;
4520 old_ent = (char *) old_hash + hashsize;
4521 sym_hash = elf_sym_hashes (abfd);
4522 htab->root.table.table = old_table;
4523 htab->root.table.size = old_size;
4524 htab->root.table.count = old_count;
4525 memcpy (htab->root.table.table, old_tab, tabsize);
4526 memcpy (sym_hash, old_hash, hashsize);
4527 htab->root.undefs = old_undefs;
4528 htab->root.undefs_tail = old_undefs_tail;
4529 for (i = 0; i < htab->root.table.size; i++)
4531 struct bfd_hash_entry *p;
4532 struct elf_link_hash_entry *h;
4534 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4536 h = (struct elf_link_hash_entry *) p;
4537 if (h->root.type == bfd_link_hash_warning)
4538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4539 if (h->dynindx >= old_dynsymcount)
4540 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4542 memcpy (p, old_ent, htab->root.table.entsize);
4543 old_ent = (char *) old_ent + htab->root.table.entsize;
4544 h = (struct elf_link_hash_entry *) p;
4545 if (h->root.type == bfd_link_hash_warning)
4547 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4548 old_ent = (char *) old_ent + htab->root.table.entsize;
4553 /* Make a special call to the linker "notice" function to
4554 tell it that symbols added for crefs may need to be removed. */
4555 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4556 notice_not_needed))
4557 goto error_free_vers;
4559 free (old_tab);
4560 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4561 alloc_mark);
4562 if (nondeflt_vers != NULL)
4563 free (nondeflt_vers);
4564 return TRUE;
4567 if (old_tab != NULL)
4569 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4570 notice_needed))
4571 goto error_free_vers;
4572 free (old_tab);
4573 old_tab = NULL;
4576 /* Now that all the symbols from this input file are created, handle
4577 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4578 if (nondeflt_vers != NULL)
4580 bfd_size_type cnt, symidx;
4582 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4584 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4585 char *shortname, *p;
4587 p = strchr (h->root.root.string, ELF_VER_CHR);
4588 if (p == NULL
4589 || (h->root.type != bfd_link_hash_defined
4590 && h->root.type != bfd_link_hash_defweak))
4591 continue;
4593 amt = p - h->root.root.string;
4594 shortname = (char *) bfd_malloc (amt + 1);
4595 if (!shortname)
4596 goto error_free_vers;
4597 memcpy (shortname, h->root.root.string, amt);
4598 shortname[amt] = '\0';
4600 hi = (struct elf_link_hash_entry *)
4601 bfd_link_hash_lookup (&htab->root, shortname,
4602 FALSE, FALSE, FALSE);
4603 if (hi != NULL
4604 && hi->root.type == h->root.type
4605 && hi->root.u.def.value == h->root.u.def.value
4606 && hi->root.u.def.section == h->root.u.def.section)
4608 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4609 hi->root.type = bfd_link_hash_indirect;
4610 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4611 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4612 sym_hash = elf_sym_hashes (abfd);
4613 if (sym_hash)
4614 for (symidx = 0; symidx < extsymcount; ++symidx)
4615 if (sym_hash[symidx] == hi)
4617 sym_hash[symidx] = h;
4618 break;
4621 free (shortname);
4623 free (nondeflt_vers);
4624 nondeflt_vers = NULL;
4627 /* Now set the weakdefs field correctly for all the weak defined
4628 symbols we found. The only way to do this is to search all the
4629 symbols. Since we only need the information for non functions in
4630 dynamic objects, that's the only time we actually put anything on
4631 the list WEAKS. We need this information so that if a regular
4632 object refers to a symbol defined weakly in a dynamic object, the
4633 real symbol in the dynamic object is also put in the dynamic
4634 symbols; we also must arrange for both symbols to point to the
4635 same memory location. We could handle the general case of symbol
4636 aliasing, but a general symbol alias can only be generated in
4637 assembler code, handling it correctly would be very time
4638 consuming, and other ELF linkers don't handle general aliasing
4639 either. */
4640 if (weaks != NULL)
4642 struct elf_link_hash_entry **hpp;
4643 struct elf_link_hash_entry **hppend;
4644 struct elf_link_hash_entry **sorted_sym_hash;
4645 struct elf_link_hash_entry *h;
4646 size_t sym_count;
4648 /* Since we have to search the whole symbol list for each weak
4649 defined symbol, search time for N weak defined symbols will be
4650 O(N^2). Binary search will cut it down to O(NlogN). */
4651 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4652 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4653 if (sorted_sym_hash == NULL)
4654 goto error_return;
4655 sym_hash = sorted_sym_hash;
4656 hpp = elf_sym_hashes (abfd);
4657 hppend = hpp + extsymcount;
4658 sym_count = 0;
4659 for (; hpp < hppend; hpp++)
4661 h = *hpp;
4662 if (h != NULL
4663 && h->root.type == bfd_link_hash_defined
4664 && !bed->is_function_type (h->type))
4666 *sym_hash = h;
4667 sym_hash++;
4668 sym_count++;
4672 qsort (sorted_sym_hash, sym_count,
4673 sizeof (struct elf_link_hash_entry *),
4674 elf_sort_symbol);
4676 while (weaks != NULL)
4678 struct elf_link_hash_entry *hlook;
4679 asection *slook;
4680 bfd_vma vlook;
4681 long ilook;
4682 size_t i, j, idx;
4684 hlook = weaks;
4685 weaks = hlook->u.weakdef;
4686 hlook->u.weakdef = NULL;
4688 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4689 || hlook->root.type == bfd_link_hash_defweak
4690 || hlook->root.type == bfd_link_hash_common
4691 || hlook->root.type == bfd_link_hash_indirect);
4692 slook = hlook->root.u.def.section;
4693 vlook = hlook->root.u.def.value;
4695 ilook = -1;
4696 i = 0;
4697 j = sym_count;
4698 while (i < j)
4700 bfd_signed_vma vdiff;
4701 idx = (i + j) / 2;
4702 h = sorted_sym_hash [idx];
4703 vdiff = vlook - h->root.u.def.value;
4704 if (vdiff < 0)
4705 j = idx;
4706 else if (vdiff > 0)
4707 i = idx + 1;
4708 else
4710 long sdiff = slook->id - h->root.u.def.section->id;
4711 if (sdiff < 0)
4712 j = idx;
4713 else if (sdiff > 0)
4714 i = idx + 1;
4715 else
4717 ilook = idx;
4718 break;
4723 /* We didn't find a value/section match. */
4724 if (ilook == -1)
4725 continue;
4727 for (i = ilook; i < sym_count; i++)
4729 h = sorted_sym_hash [i];
4731 /* Stop if value or section doesn't match. */
4732 if (h->root.u.def.value != vlook
4733 || h->root.u.def.section != slook)
4734 break;
4735 else if (h != hlook)
4737 hlook->u.weakdef = h;
4739 /* If the weak definition is in the list of dynamic
4740 symbols, make sure the real definition is put
4741 there as well. */
4742 if (hlook->dynindx != -1 && h->dynindx == -1)
4744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4746 err_free_sym_hash:
4747 free (sorted_sym_hash);
4748 goto error_return;
4752 /* If the real definition is in the list of dynamic
4753 symbols, make sure the weak definition is put
4754 there as well. If we don't do this, then the
4755 dynamic loader might not merge the entries for the
4756 real definition and the weak definition. */
4757 if (h->dynindx != -1 && hlook->dynindx == -1)
4759 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4760 goto err_free_sym_hash;
4762 break;
4767 free (sorted_sym_hash);
4770 if (bed->check_directives
4771 && !(*bed->check_directives) (abfd, info))
4772 return FALSE;
4774 /* If this object is the same format as the output object, and it is
4775 not a shared library, then let the backend look through the
4776 relocs.
4778 This is required to build global offset table entries and to
4779 arrange for dynamic relocs. It is not required for the
4780 particular common case of linking non PIC code, even when linking
4781 against shared libraries, but unfortunately there is no way of
4782 knowing whether an object file has been compiled PIC or not.
4783 Looking through the relocs is not particularly time consuming.
4784 The problem is that we must either (1) keep the relocs in memory,
4785 which causes the linker to require additional runtime memory or
4786 (2) read the relocs twice from the input file, which wastes time.
4787 This would be a good case for using mmap.
4789 I have no idea how to handle linking PIC code into a file of a
4790 different format. It probably can't be done. */
4791 if (! dynamic
4792 && is_elf_hash_table (htab)
4793 && bed->check_relocs != NULL
4794 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4796 asection *o;
4798 for (o = abfd->sections; o != NULL; o = o->next)
4800 Elf_Internal_Rela *internal_relocs;
4801 bfd_boolean ok;
4803 if ((o->flags & SEC_RELOC) == 0
4804 || o->reloc_count == 0
4805 || ((info->strip == strip_all || info->strip == strip_debugger)
4806 && (o->flags & SEC_DEBUGGING) != 0)
4807 || bfd_is_abs_section (o->output_section))
4808 continue;
4810 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4811 info->keep_memory);
4812 if (internal_relocs == NULL)
4813 goto error_return;
4815 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4817 if (elf_section_data (o)->relocs != internal_relocs)
4818 free (internal_relocs);
4820 if (! ok)
4821 goto error_return;
4825 /* If this is a non-traditional link, try to optimize the handling
4826 of the .stab/.stabstr sections. */
4827 if (! dynamic
4828 && ! info->traditional_format
4829 && is_elf_hash_table (htab)
4830 && (info->strip != strip_all && info->strip != strip_debugger))
4832 asection *stabstr;
4834 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4835 if (stabstr != NULL)
4837 bfd_size_type string_offset = 0;
4838 asection *stab;
4840 for (stab = abfd->sections; stab; stab = stab->next)
4841 if (CONST_STRNEQ (stab->name, ".stab")
4842 && (!stab->name[5] ||
4843 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4844 && (stab->flags & SEC_MERGE) == 0
4845 && !bfd_is_abs_section (stab->output_section))
4847 struct bfd_elf_section_data *secdata;
4849 secdata = elf_section_data (stab);
4850 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4851 stabstr, &secdata->sec_info,
4852 &string_offset))
4853 goto error_return;
4854 if (secdata->sec_info)
4855 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4860 if (is_elf_hash_table (htab) && add_needed)
4862 /* Add this bfd to the loaded list. */
4863 struct elf_link_loaded_list *n;
4865 n = (struct elf_link_loaded_list *)
4866 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4867 if (n == NULL)
4868 goto error_return;
4869 n->abfd = abfd;
4870 n->next = htab->loaded;
4871 htab->loaded = n;
4874 return TRUE;
4876 error_free_vers:
4877 if (old_tab != NULL)
4878 free (old_tab);
4879 if (nondeflt_vers != NULL)
4880 free (nondeflt_vers);
4881 if (extversym != NULL)
4882 free (extversym);
4883 error_free_sym:
4884 if (isymbuf != NULL)
4885 free (isymbuf);
4886 error_return:
4887 return FALSE;
4890 /* Return the linker hash table entry of a symbol that might be
4891 satisfied by an archive symbol. Return -1 on error. */
4893 struct elf_link_hash_entry *
4894 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4895 struct bfd_link_info *info,
4896 const char *name)
4898 struct elf_link_hash_entry *h;
4899 char *p, *copy;
4900 size_t len, first;
4902 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4903 if (h != NULL)
4904 return h;
4906 /* If this is a default version (the name contains @@), look up the
4907 symbol again with only one `@' as well as without the version.
4908 The effect is that references to the symbol with and without the
4909 version will be matched by the default symbol in the archive. */
4911 p = strchr (name, ELF_VER_CHR);
4912 if (p == NULL || p[1] != ELF_VER_CHR)
4913 return h;
4915 /* First check with only one `@'. */
4916 len = strlen (name);
4917 copy = (char *) bfd_alloc (abfd, len);
4918 if (copy == NULL)
4919 return (struct elf_link_hash_entry *) 0 - 1;
4921 first = p - name + 1;
4922 memcpy (copy, name, first);
4923 memcpy (copy + first, name + first + 1, len - first);
4925 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4926 if (h == NULL)
4928 /* We also need to check references to the symbol without the
4929 version. */
4930 copy[first - 1] = '\0';
4931 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4932 FALSE, FALSE, FALSE);
4935 bfd_release (abfd, copy);
4936 return h;
4939 /* Add symbols from an ELF archive file to the linker hash table. We
4940 don't use _bfd_generic_link_add_archive_symbols because of a
4941 problem which arises on UnixWare. The UnixWare libc.so is an
4942 archive which includes an entry libc.so.1 which defines a bunch of
4943 symbols. The libc.so archive also includes a number of other
4944 object files, which also define symbols, some of which are the same
4945 as those defined in libc.so.1. Correct linking requires that we
4946 consider each object file in turn, and include it if it defines any
4947 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4948 this; it looks through the list of undefined symbols, and includes
4949 any object file which defines them. When this algorithm is used on
4950 UnixWare, it winds up pulling in libc.so.1 early and defining a
4951 bunch of symbols. This means that some of the other objects in the
4952 archive are not included in the link, which is incorrect since they
4953 precede libc.so.1 in the archive.
4955 Fortunately, ELF archive handling is simpler than that done by
4956 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4957 oddities. In ELF, if we find a symbol in the archive map, and the
4958 symbol is currently undefined, we know that we must pull in that
4959 object file.
4961 Unfortunately, we do have to make multiple passes over the symbol
4962 table until nothing further is resolved. */
4964 static bfd_boolean
4965 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4967 symindex c;
4968 bfd_boolean *defined = NULL;
4969 bfd_boolean *included = NULL;
4970 carsym *symdefs;
4971 bfd_boolean loop;
4972 bfd_size_type amt;
4973 const struct elf_backend_data *bed;
4974 struct elf_link_hash_entry * (*archive_symbol_lookup)
4975 (bfd *, struct bfd_link_info *, const char *);
4977 if (! bfd_has_map (abfd))
4979 /* An empty archive is a special case. */
4980 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4981 return TRUE;
4982 bfd_set_error (bfd_error_no_armap);
4983 return FALSE;
4986 /* Keep track of all symbols we know to be already defined, and all
4987 files we know to be already included. This is to speed up the
4988 second and subsequent passes. */
4989 c = bfd_ardata (abfd)->symdef_count;
4990 if (c == 0)
4991 return TRUE;
4992 amt = c;
4993 amt *= sizeof (bfd_boolean);
4994 defined = (bfd_boolean *) bfd_zmalloc (amt);
4995 included = (bfd_boolean *) bfd_zmalloc (amt);
4996 if (defined == NULL || included == NULL)
4997 goto error_return;
4999 symdefs = bfd_ardata (abfd)->symdefs;
5000 bed = get_elf_backend_data (abfd);
5001 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5005 file_ptr last;
5006 symindex i;
5007 carsym *symdef;
5008 carsym *symdefend;
5010 loop = FALSE;
5011 last = -1;
5013 symdef = symdefs;
5014 symdefend = symdef + c;
5015 for (i = 0; symdef < symdefend; symdef++, i++)
5017 struct elf_link_hash_entry *h;
5018 bfd *element;
5019 struct bfd_link_hash_entry *undefs_tail;
5020 symindex mark;
5022 if (defined[i] || included[i])
5023 continue;
5024 if (symdef->file_offset == last)
5026 included[i] = TRUE;
5027 continue;
5030 h = archive_symbol_lookup (abfd, info, symdef->name);
5031 if (h == (struct elf_link_hash_entry *) 0 - 1)
5032 goto error_return;
5034 if (h == NULL)
5035 continue;
5037 if (h->root.type == bfd_link_hash_common)
5039 /* We currently have a common symbol. The archive map contains
5040 a reference to this symbol, so we may want to include it. We
5041 only want to include it however, if this archive element
5042 contains a definition of the symbol, not just another common
5043 declaration of it.
5045 Unfortunately some archivers (including GNU ar) will put
5046 declarations of common symbols into their archive maps, as
5047 well as real definitions, so we cannot just go by the archive
5048 map alone. Instead we must read in the element's symbol
5049 table and check that to see what kind of symbol definition
5050 this is. */
5051 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5052 continue;
5054 else if (h->root.type != bfd_link_hash_undefined)
5056 if (h->root.type != bfd_link_hash_undefweak)
5057 defined[i] = TRUE;
5058 continue;
5061 /* We need to include this archive member. */
5062 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5063 if (element == NULL)
5064 goto error_return;
5066 if (! bfd_check_format (element, bfd_object))
5067 goto error_return;
5069 /* Doublecheck that we have not included this object
5070 already--it should be impossible, but there may be
5071 something wrong with the archive. */
5072 if (element->archive_pass != 0)
5074 bfd_set_error (bfd_error_bad_value);
5075 goto error_return;
5077 element->archive_pass = 1;
5079 undefs_tail = info->hash->undefs_tail;
5081 if (! (*info->callbacks->add_archive_element) (info, element,
5082 symdef->name))
5083 goto error_return;
5084 if (! bfd_link_add_symbols (element, info))
5085 goto error_return;
5087 /* If there are any new undefined symbols, we need to make
5088 another pass through the archive in order to see whether
5089 they can be defined. FIXME: This isn't perfect, because
5090 common symbols wind up on undefs_tail and because an
5091 undefined symbol which is defined later on in this pass
5092 does not require another pass. This isn't a bug, but it
5093 does make the code less efficient than it could be. */
5094 if (undefs_tail != info->hash->undefs_tail)
5095 loop = TRUE;
5097 /* Look backward to mark all symbols from this object file
5098 which we have already seen in this pass. */
5099 mark = i;
5102 included[mark] = TRUE;
5103 if (mark == 0)
5104 break;
5105 --mark;
5107 while (symdefs[mark].file_offset == symdef->file_offset);
5109 /* We mark subsequent symbols from this object file as we go
5110 on through the loop. */
5111 last = symdef->file_offset;
5114 while (loop);
5116 free (defined);
5117 free (included);
5119 return TRUE;
5121 error_return:
5122 if (defined != NULL)
5123 free (defined);
5124 if (included != NULL)
5125 free (included);
5126 return FALSE;
5129 /* Given an ELF BFD, add symbols to the global hash table as
5130 appropriate. */
5132 bfd_boolean
5133 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5135 switch (bfd_get_format (abfd))
5137 case bfd_object:
5138 return elf_link_add_object_symbols (abfd, info);
5139 case bfd_archive:
5140 return elf_link_add_archive_symbols (abfd, info);
5141 default:
5142 bfd_set_error (bfd_error_wrong_format);
5143 return FALSE;
5147 struct hash_codes_info
5149 unsigned long *hashcodes;
5150 bfd_boolean error;
5153 /* This function will be called though elf_link_hash_traverse to store
5154 all hash value of the exported symbols in an array. */
5156 static bfd_boolean
5157 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5159 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5160 const char *name;
5161 char *p;
5162 unsigned long ha;
5163 char *alc = NULL;
5165 if (h->root.type == bfd_link_hash_warning)
5166 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5168 /* Ignore indirect symbols. These are added by the versioning code. */
5169 if (h->dynindx == -1)
5170 return TRUE;
5172 name = h->root.root.string;
5173 p = strchr (name, ELF_VER_CHR);
5174 if (p != NULL)
5176 alc = (char *) bfd_malloc (p - name + 1);
5177 if (alc == NULL)
5179 inf->error = TRUE;
5180 return FALSE;
5182 memcpy (alc, name, p - name);
5183 alc[p - name] = '\0';
5184 name = alc;
5187 /* Compute the hash value. */
5188 ha = bfd_elf_hash (name);
5190 /* Store the found hash value in the array given as the argument. */
5191 *(inf->hashcodes)++ = ha;
5193 /* And store it in the struct so that we can put it in the hash table
5194 later. */
5195 h->u.elf_hash_value = ha;
5197 if (alc != NULL)
5198 free (alc);
5200 return TRUE;
5203 struct collect_gnu_hash_codes
5205 bfd *output_bfd;
5206 const struct elf_backend_data *bed;
5207 unsigned long int nsyms;
5208 unsigned long int maskbits;
5209 unsigned long int *hashcodes;
5210 unsigned long int *hashval;
5211 unsigned long int *indx;
5212 unsigned long int *counts;
5213 bfd_vma *bitmask;
5214 bfd_byte *contents;
5215 long int min_dynindx;
5216 unsigned long int bucketcount;
5217 unsigned long int symindx;
5218 long int local_indx;
5219 long int shift1, shift2;
5220 unsigned long int mask;
5221 bfd_boolean error;
5224 /* This function will be called though elf_link_hash_traverse to store
5225 all hash value of the exported symbols in an array. */
5227 static bfd_boolean
5228 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5230 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5231 const char *name;
5232 char *p;
5233 unsigned long ha;
5234 char *alc = NULL;
5236 if (h->root.type == bfd_link_hash_warning)
5237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5239 /* Ignore indirect symbols. These are added by the versioning code. */
5240 if (h->dynindx == -1)
5241 return TRUE;
5243 /* Ignore also local symbols and undefined symbols. */
5244 if (! (*s->bed->elf_hash_symbol) (h))
5245 return TRUE;
5247 name = h->root.root.string;
5248 p = strchr (name, ELF_VER_CHR);
5249 if (p != NULL)
5251 alc = (char *) bfd_malloc (p - name + 1);
5252 if (alc == NULL)
5254 s->error = TRUE;
5255 return FALSE;
5257 memcpy (alc, name, p - name);
5258 alc[p - name] = '\0';
5259 name = alc;
5262 /* Compute the hash value. */
5263 ha = bfd_elf_gnu_hash (name);
5265 /* Store the found hash value in the array for compute_bucket_count,
5266 and also for .dynsym reordering purposes. */
5267 s->hashcodes[s->nsyms] = ha;
5268 s->hashval[h->dynindx] = ha;
5269 ++s->nsyms;
5270 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5271 s->min_dynindx = h->dynindx;
5273 if (alc != NULL)
5274 free (alc);
5276 return TRUE;
5279 /* This function will be called though elf_link_hash_traverse to do
5280 final dynaminc symbol renumbering. */
5282 static bfd_boolean
5283 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5285 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5286 unsigned long int bucket;
5287 unsigned long int val;
5289 if (h->root.type == bfd_link_hash_warning)
5290 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5292 /* Ignore indirect symbols. */
5293 if (h->dynindx == -1)
5294 return TRUE;
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s->bed->elf_hash_symbol) (h))
5299 if (h->dynindx >= s->min_dynindx)
5300 h->dynindx = s->local_indx++;
5301 return TRUE;
5304 bucket = s->hashval[h->dynindx] % s->bucketcount;
5305 val = (s->hashval[h->dynindx] >> s->shift1)
5306 & ((s->maskbits >> s->shift1) - 1);
5307 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5308 s->bitmask[val]
5309 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5310 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5311 if (s->counts[bucket] == 1)
5312 /* Last element terminates the chain. */
5313 val |= 1;
5314 bfd_put_32 (s->output_bfd, val,
5315 s->contents + (s->indx[bucket] - s->symindx) * 4);
5316 --s->counts[bucket];
5317 h->dynindx = s->indx[bucket]++;
5318 return TRUE;
5321 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5323 bfd_boolean
5324 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5326 return !(h->forced_local
5327 || h->root.type == bfd_link_hash_undefined
5328 || h->root.type == bfd_link_hash_undefweak
5329 || ((h->root.type == bfd_link_hash_defined
5330 || h->root.type == bfd_link_hash_defweak)
5331 && h->root.u.def.section->output_section == NULL));
5334 /* Array used to determine the number of hash table buckets to use
5335 based on the number of symbols there are. If there are fewer than
5336 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5337 fewer than 37 we use 17 buckets, and so forth. We never use more
5338 than 32771 buckets. */
5340 static const size_t elf_buckets[] =
5342 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5343 16411, 32771, 0
5346 /* Compute bucket count for hashing table. We do not use a static set
5347 of possible tables sizes anymore. Instead we determine for all
5348 possible reasonable sizes of the table the outcome (i.e., the
5349 number of collisions etc) and choose the best solution. The
5350 weighting functions are not too simple to allow the table to grow
5351 without bounds. Instead one of the weighting factors is the size.
5352 Therefore the result is always a good payoff between few collisions
5353 (= short chain lengths) and table size. */
5354 static size_t
5355 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5356 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5357 unsigned long int nsyms,
5358 int gnu_hash)
5360 size_t best_size = 0;
5361 unsigned long int i;
5363 /* We have a problem here. The following code to optimize the table
5364 size requires an integer type with more the 32 bits. If
5365 BFD_HOST_U_64_BIT is set we know about such a type. */
5366 #ifdef BFD_HOST_U_64_BIT
5367 if (info->optimize)
5369 size_t minsize;
5370 size_t maxsize;
5371 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5372 bfd *dynobj = elf_hash_table (info)->dynobj;
5373 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5374 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5375 unsigned long int *counts;
5376 bfd_size_type amt;
5377 unsigned int no_improvement_count = 0;
5379 /* Possible optimization parameters: if we have NSYMS symbols we say
5380 that the hashing table must at least have NSYMS/4 and at most
5381 2*NSYMS buckets. */
5382 minsize = nsyms / 4;
5383 if (minsize == 0)
5384 minsize = 1;
5385 best_size = maxsize = nsyms * 2;
5386 if (gnu_hash)
5388 if (minsize < 2)
5389 minsize = 2;
5390 if ((best_size & 31) == 0)
5391 ++best_size;
5394 /* Create array where we count the collisions in. We must use bfd_malloc
5395 since the size could be large. */
5396 amt = maxsize;
5397 amt *= sizeof (unsigned long int);
5398 counts = (unsigned long int *) bfd_malloc (amt);
5399 if (counts == NULL)
5400 return 0;
5402 /* Compute the "optimal" size for the hash table. The criteria is a
5403 minimal chain length. The minor criteria is (of course) the size
5404 of the table. */
5405 for (i = minsize; i < maxsize; ++i)
5407 /* Walk through the array of hashcodes and count the collisions. */
5408 BFD_HOST_U_64_BIT max;
5409 unsigned long int j;
5410 unsigned long int fact;
5412 if (gnu_hash && (i & 31) == 0)
5413 continue;
5415 memset (counts, '\0', i * sizeof (unsigned long int));
5417 /* Determine how often each hash bucket is used. */
5418 for (j = 0; j < nsyms; ++j)
5419 ++counts[hashcodes[j] % i];
5421 /* For the weight function we need some information about the
5422 pagesize on the target. This is information need not be 100%
5423 accurate. Since this information is not available (so far) we
5424 define it here to a reasonable default value. If it is crucial
5425 to have a better value some day simply define this value. */
5426 # ifndef BFD_TARGET_PAGESIZE
5427 # define BFD_TARGET_PAGESIZE (4096)
5428 # endif
5430 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5431 and the chains. */
5432 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5434 # if 1
5435 /* Variant 1: optimize for short chains. We add the squares
5436 of all the chain lengths (which favors many small chain
5437 over a few long chains). */
5438 for (j = 0; j < i; ++j)
5439 max += counts[j] * counts[j];
5441 /* This adds penalties for the overall size of the table. */
5442 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5443 max *= fact * fact;
5444 # else
5445 /* Variant 2: Optimize a lot more for small table. Here we
5446 also add squares of the size but we also add penalties for
5447 empty slots (the +1 term). */
5448 for (j = 0; j < i; ++j)
5449 max += (1 + counts[j]) * (1 + counts[j]);
5451 /* The overall size of the table is considered, but not as
5452 strong as in variant 1, where it is squared. */
5453 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5454 max *= fact;
5455 # endif
5457 /* Compare with current best results. */
5458 if (max < best_chlen)
5460 best_chlen = max;
5461 best_size = i;
5462 no_improvement_count = 0;
5464 /* PR 11843: Avoid futile long searches for the best bucket size
5465 when there are a large number of symbols. */
5466 else if (++no_improvement_count == 100)
5467 break;
5470 free (counts);
5472 else
5473 #endif /* defined (BFD_HOST_U_64_BIT) */
5475 /* This is the fallback solution if no 64bit type is available or if we
5476 are not supposed to spend much time on optimizations. We select the
5477 bucket count using a fixed set of numbers. */
5478 for (i = 0; elf_buckets[i] != 0; i++)
5480 best_size = elf_buckets[i];
5481 if (nsyms < elf_buckets[i + 1])
5482 break;
5484 if (gnu_hash && best_size < 2)
5485 best_size = 2;
5488 return best_size;
5491 /* Size any SHT_GROUP section for ld -r. */
5493 bfd_boolean
5494 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5496 bfd *ibfd;
5498 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5499 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5500 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5501 return FALSE;
5502 return TRUE;
5505 /* Set up the sizes and contents of the ELF dynamic sections. This is
5506 called by the ELF linker emulation before_allocation routine. We
5507 must set the sizes of the sections before the linker sets the
5508 addresses of the various sections. */
5510 bfd_boolean
5511 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5512 const char *soname,
5513 const char *rpath,
5514 const char *filter_shlib,
5515 const char *audit,
5516 const char *depaudit,
5517 const char * const *auxiliary_filters,
5518 struct bfd_link_info *info,
5519 asection **sinterpptr,
5520 struct bfd_elf_version_tree *verdefs)
5522 bfd_size_type soname_indx;
5523 bfd *dynobj;
5524 const struct elf_backend_data *bed;
5525 struct elf_info_failed asvinfo;
5527 *sinterpptr = NULL;
5529 soname_indx = (bfd_size_type) -1;
5531 if (!is_elf_hash_table (info->hash))
5532 return TRUE;
5534 bed = get_elf_backend_data (output_bfd);
5535 if (info->execstack)
5536 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5537 else if (info->noexecstack)
5538 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5539 else
5541 bfd *inputobj;
5542 asection *notesec = NULL;
5543 int exec = 0;
5545 for (inputobj = info->input_bfds;
5546 inputobj;
5547 inputobj = inputobj->link_next)
5549 asection *s;
5551 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5552 continue;
5553 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5554 if (s)
5556 if (s->flags & SEC_CODE)
5557 exec = PF_X;
5558 notesec = s;
5560 else if (bed->default_execstack)
5561 exec = PF_X;
5563 if (notesec)
5565 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5566 if (exec && info->relocatable
5567 && notesec->output_section != bfd_abs_section_ptr)
5568 notesec->output_section->flags |= SEC_CODE;
5572 /* Any syms created from now on start with -1 in
5573 got.refcount/offset and plt.refcount/offset. */
5574 elf_hash_table (info)->init_got_refcount
5575 = elf_hash_table (info)->init_got_offset;
5576 elf_hash_table (info)->init_plt_refcount
5577 = elf_hash_table (info)->init_plt_offset;
5579 if (info->relocatable
5580 && !_bfd_elf_size_group_sections (info))
5581 return FALSE;
5583 /* The backend may have to create some sections regardless of whether
5584 we're dynamic or not. */
5585 if (bed->elf_backend_always_size_sections
5586 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5587 return FALSE;
5589 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5590 return FALSE;
5592 dynobj = elf_hash_table (info)->dynobj;
5594 /* If there were no dynamic objects in the link, there is nothing to
5595 do here. */
5596 if (dynobj == NULL)
5597 return TRUE;
5599 if (elf_hash_table (info)->dynamic_sections_created)
5601 struct elf_info_failed eif;
5602 struct elf_link_hash_entry *h;
5603 asection *dynstr;
5604 struct bfd_elf_version_tree *t;
5605 struct bfd_elf_version_expr *d;
5606 asection *s;
5607 bfd_boolean all_defined;
5609 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5610 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5612 if (soname != NULL)
5614 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5615 soname, TRUE);
5616 if (soname_indx == (bfd_size_type) -1
5617 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5618 return FALSE;
5621 if (info->symbolic)
5623 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5624 return FALSE;
5625 info->flags |= DF_SYMBOLIC;
5628 if (rpath != NULL)
5630 bfd_size_type indx;
5632 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5633 TRUE);
5634 if (indx == (bfd_size_type) -1
5635 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5636 return FALSE;
5638 if (info->new_dtags)
5640 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5641 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5642 return FALSE;
5646 if (filter_shlib != NULL)
5648 bfd_size_type indx;
5650 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5651 filter_shlib, TRUE);
5652 if (indx == (bfd_size_type) -1
5653 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5654 return FALSE;
5657 if (auxiliary_filters != NULL)
5659 const char * const *p;
5661 for (p = auxiliary_filters; *p != NULL; p++)
5663 bfd_size_type indx;
5665 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5666 *p, TRUE);
5667 if (indx == (bfd_size_type) -1
5668 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5669 return FALSE;
5673 if (audit != NULL)
5675 bfd_size_type indx;
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5678 TRUE);
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5681 return FALSE;
5684 if (depaudit != NULL)
5686 bfd_size_type indx;
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5689 TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5692 return FALSE;
5695 eif.info = info;
5696 eif.verdefs = verdefs;
5697 eif.failed = FALSE;
5699 /* If we are supposed to export all symbols into the dynamic symbol
5700 table (this is not the normal case), then do so. */
5701 if (info->export_dynamic
5702 || (info->executable && info->dynamic))
5704 elf_link_hash_traverse (elf_hash_table (info),
5705 _bfd_elf_export_symbol,
5706 &eif);
5707 if (eif.failed)
5708 return FALSE;
5711 /* Make all global versions with definition. */
5712 for (t = verdefs; t != NULL; t = t->next)
5713 for (d = t->globals.list; d != NULL; d = d->next)
5714 if (!d->symver && d->literal)
5716 const char *verstr, *name;
5717 size_t namelen, verlen, newlen;
5718 char *newname, *p;
5719 struct elf_link_hash_entry *newh;
5721 name = d->pattern;
5722 namelen = strlen (name);
5723 verstr = t->name;
5724 verlen = strlen (verstr);
5725 newlen = namelen + verlen + 3;
5727 newname = (char *) bfd_malloc (newlen);
5728 if (newname == NULL)
5729 return FALSE;
5730 memcpy (newname, name, namelen);
5732 /* Check the hidden versioned definition. */
5733 p = newname + namelen;
5734 *p++ = ELF_VER_CHR;
5735 memcpy (p, verstr, verlen + 1);
5736 newh = elf_link_hash_lookup (elf_hash_table (info),
5737 newname, FALSE, FALSE,
5738 FALSE);
5739 if (newh == NULL
5740 || (newh->root.type != bfd_link_hash_defined
5741 && newh->root.type != bfd_link_hash_defweak))
5743 /* Check the default versioned definition. */
5744 *p++ = ELF_VER_CHR;
5745 memcpy (p, verstr, verlen + 1);
5746 newh = elf_link_hash_lookup (elf_hash_table (info),
5747 newname, FALSE, FALSE,
5748 FALSE);
5750 free (newname);
5752 /* Mark this version if there is a definition and it is
5753 not defined in a shared object. */
5754 if (newh != NULL
5755 && !newh->def_dynamic
5756 && (newh->root.type == bfd_link_hash_defined
5757 || newh->root.type == bfd_link_hash_defweak))
5758 d->symver = 1;
5761 /* Attach all the symbols to their version information. */
5762 asvinfo.info = info;
5763 asvinfo.verdefs = verdefs;
5764 asvinfo.failed = FALSE;
5766 elf_link_hash_traverse (elf_hash_table (info),
5767 _bfd_elf_link_assign_sym_version,
5768 &asvinfo);
5769 if (asvinfo.failed)
5770 return FALSE;
5772 if (!info->allow_undefined_version)
5774 /* Check if all global versions have a definition. */
5775 all_defined = TRUE;
5776 for (t = verdefs; t != NULL; t = t->next)
5777 for (d = t->globals.list; d != NULL; d = d->next)
5778 if (d->literal && !d->symver && !d->script)
5780 (*_bfd_error_handler)
5781 (_("%s: undefined version: %s"),
5782 d->pattern, t->name);
5783 all_defined = FALSE;
5786 if (!all_defined)
5788 bfd_set_error (bfd_error_bad_value);
5789 return FALSE;
5793 /* Find all symbols which were defined in a dynamic object and make
5794 the backend pick a reasonable value for them. */
5795 elf_link_hash_traverse (elf_hash_table (info),
5796 _bfd_elf_adjust_dynamic_symbol,
5797 &eif);
5798 if (eif.failed)
5799 return FALSE;
5801 /* Add some entries to the .dynamic section. We fill in some of the
5802 values later, in bfd_elf_final_link, but we must add the entries
5803 now so that we know the final size of the .dynamic section. */
5805 /* If there are initialization and/or finalization functions to
5806 call then add the corresponding DT_INIT/DT_FINI entries. */
5807 h = (info->init_function
5808 ? elf_link_hash_lookup (elf_hash_table (info),
5809 info->init_function, FALSE,
5810 FALSE, FALSE)
5811 : NULL);
5812 if (h != NULL
5813 && (h->ref_regular
5814 || h->def_regular))
5816 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5817 return FALSE;
5819 h = (info->fini_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->fini_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5829 return FALSE;
5832 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5833 if (s != NULL && s->linker_has_input)
5835 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5836 if (! info->executable)
5838 bfd *sub;
5839 asection *o;
5841 for (sub = info->input_bfds; sub != NULL;
5842 sub = sub->link_next)
5843 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5844 for (o = sub->sections; o != NULL; o = o->next)
5845 if (elf_section_data (o)->this_hdr.sh_type
5846 == SHT_PREINIT_ARRAY)
5848 (*_bfd_error_handler)
5849 (_("%B: .preinit_array section is not allowed in DSO"),
5850 sub);
5851 break;
5854 bfd_set_error (bfd_error_nonrepresentable_section);
5855 return FALSE;
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5859 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5860 return FALSE;
5862 s = bfd_get_section_by_name (output_bfd, ".init_array");
5863 if (s != NULL && s->linker_has_input)
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5867 return FALSE;
5869 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5870 if (s != NULL && s->linker_has_input)
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5874 return FALSE;
5877 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5878 /* If .dynstr is excluded from the link, we don't want any of
5879 these tags. Strictly, we should be checking each section
5880 individually; This quick check covers for the case where
5881 someone does a /DISCARD/ : { *(*) }. */
5882 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5884 bfd_size_type strsize;
5886 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5887 if ((info->emit_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5889 || (info->emit_gnu_hash
5890 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5894 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5895 bed->s->sizeof_sym))
5896 return FALSE;
5900 /* The backend must work out the sizes of all the other dynamic
5901 sections. */
5902 if (bed->elf_backend_size_dynamic_sections
5903 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5904 return FALSE;
5906 if (elf_hash_table (info)->dynamic_sections_created)
5908 unsigned long section_sym_count;
5909 asection *s;
5911 /* Set up the version definition section. */
5912 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5913 BFD_ASSERT (s != NULL);
5915 /* We may have created additional version definitions if we are
5916 just linking a regular application. */
5917 verdefs = asvinfo.verdefs;
5919 /* Skip anonymous version tag. */
5920 if (verdefs != NULL && verdefs->vernum == 0)
5921 verdefs = verdefs->next;
5923 if (verdefs == NULL && !info->create_default_symver)
5924 s->flags |= SEC_EXCLUDE;
5925 else
5927 unsigned int cdefs;
5928 bfd_size_type size;
5929 struct bfd_elf_version_tree *t;
5930 bfd_byte *p;
5931 Elf_Internal_Verdef def;
5932 Elf_Internal_Verdaux defaux;
5933 struct bfd_link_hash_entry *bh;
5934 struct elf_link_hash_entry *h;
5935 const char *name;
5937 cdefs = 0;
5938 size = 0;
5940 /* Make space for the base version. */
5941 size += sizeof (Elf_External_Verdef);
5942 size += sizeof (Elf_External_Verdaux);
5943 ++cdefs;
5945 /* Make space for the default version. */
5946 if (info->create_default_symver)
5948 size += sizeof (Elf_External_Verdef);
5949 ++cdefs;
5952 for (t = verdefs; t != NULL; t = t->next)
5954 struct bfd_elf_version_deps *n;
5956 /* Don't emit base version twice. */
5957 if (t->vernum == 0)
5958 continue;
5960 size += sizeof (Elf_External_Verdef);
5961 size += sizeof (Elf_External_Verdaux);
5962 ++cdefs;
5964 for (n = t->deps; n != NULL; n = n->next)
5965 size += sizeof (Elf_External_Verdaux);
5968 s->size = size;
5969 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5970 if (s->contents == NULL && s->size != 0)
5971 return FALSE;
5973 /* Fill in the version definition section. */
5975 p = s->contents;
5977 def.vd_version = VER_DEF_CURRENT;
5978 def.vd_flags = VER_FLG_BASE;
5979 def.vd_ndx = 1;
5980 def.vd_cnt = 1;
5981 if (info->create_default_symver)
5983 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5984 def.vd_next = sizeof (Elf_External_Verdef);
5986 else
5988 def.vd_aux = sizeof (Elf_External_Verdef);
5989 def.vd_next = (sizeof (Elf_External_Verdef)
5990 + sizeof (Elf_External_Verdaux));
5993 if (soname_indx != (bfd_size_type) -1)
5995 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5996 soname_indx);
5997 def.vd_hash = bfd_elf_hash (soname);
5998 defaux.vda_name = soname_indx;
5999 name = soname;
6001 else
6003 bfd_size_type indx;
6005 name = lbasename (output_bfd->filename);
6006 def.vd_hash = bfd_elf_hash (name);
6007 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6008 name, FALSE);
6009 if (indx == (bfd_size_type) -1)
6010 return FALSE;
6011 defaux.vda_name = indx;
6013 defaux.vda_next = 0;
6015 _bfd_elf_swap_verdef_out (output_bfd, &def,
6016 (Elf_External_Verdef *) p);
6017 p += sizeof (Elf_External_Verdef);
6018 if (info->create_default_symver)
6020 /* Add a symbol representing this version. */
6021 bh = NULL;
6022 if (! (_bfd_generic_link_add_one_symbol
6023 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6024 0, NULL, FALSE,
6025 get_elf_backend_data (dynobj)->collect, &bh)))
6026 return FALSE;
6027 h = (struct elf_link_hash_entry *) bh;
6028 h->non_elf = 0;
6029 h->def_regular = 1;
6030 h->type = STT_OBJECT;
6031 h->verinfo.vertree = NULL;
6033 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6034 return FALSE;
6036 /* Create a duplicate of the base version with the same
6037 aux block, but different flags. */
6038 def.vd_flags = 0;
6039 def.vd_ndx = 2;
6040 def.vd_aux = sizeof (Elf_External_Verdef);
6041 if (verdefs)
6042 def.vd_next = (sizeof (Elf_External_Verdef)
6043 + sizeof (Elf_External_Verdaux));
6044 else
6045 def.vd_next = 0;
6046 _bfd_elf_swap_verdef_out (output_bfd, &def,
6047 (Elf_External_Verdef *) p);
6048 p += sizeof (Elf_External_Verdef);
6050 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6051 (Elf_External_Verdaux *) p);
6052 p += sizeof (Elf_External_Verdaux);
6054 for (t = verdefs; t != NULL; t = t->next)
6056 unsigned int cdeps;
6057 struct bfd_elf_version_deps *n;
6059 /* Don't emit the base version twice. */
6060 if (t->vernum == 0)
6061 continue;
6063 cdeps = 0;
6064 for (n = t->deps; n != NULL; n = n->next)
6065 ++cdeps;
6067 /* Add a symbol representing this version. */
6068 bh = NULL;
6069 if (! (_bfd_generic_link_add_one_symbol
6070 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6071 0, NULL, FALSE,
6072 get_elf_backend_data (dynobj)->collect, &bh)))
6073 return FALSE;
6074 h = (struct elf_link_hash_entry *) bh;
6075 h->non_elf = 0;
6076 h->def_regular = 1;
6077 h->type = STT_OBJECT;
6078 h->verinfo.vertree = t;
6080 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6081 return FALSE;
6083 def.vd_version = VER_DEF_CURRENT;
6084 def.vd_flags = 0;
6085 if (t->globals.list == NULL
6086 && t->locals.list == NULL
6087 && ! t->used)
6088 def.vd_flags |= VER_FLG_WEAK;
6089 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6090 def.vd_cnt = cdeps + 1;
6091 def.vd_hash = bfd_elf_hash (t->name);
6092 def.vd_aux = sizeof (Elf_External_Verdef);
6093 def.vd_next = 0;
6095 /* If a basever node is next, it *must* be the last node in
6096 the chain, otherwise Verdef construction breaks. */
6097 if (t->next != NULL && t->next->vernum == 0)
6098 BFD_ASSERT (t->next->next == NULL);
6100 if (t->next != NULL && t->next->vernum != 0)
6101 def.vd_next = (sizeof (Elf_External_Verdef)
6102 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6104 _bfd_elf_swap_verdef_out (output_bfd, &def,
6105 (Elf_External_Verdef *) p);
6106 p += sizeof (Elf_External_Verdef);
6108 defaux.vda_name = h->dynstr_index;
6109 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6110 h->dynstr_index);
6111 defaux.vda_next = 0;
6112 if (t->deps != NULL)
6113 defaux.vda_next = sizeof (Elf_External_Verdaux);
6114 t->name_indx = defaux.vda_name;
6116 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6117 (Elf_External_Verdaux *) p);
6118 p += sizeof (Elf_External_Verdaux);
6120 for (n = t->deps; n != NULL; n = n->next)
6122 if (n->version_needed == NULL)
6124 /* This can happen if there was an error in the
6125 version script. */
6126 defaux.vda_name = 0;
6128 else
6130 defaux.vda_name = n->version_needed->name_indx;
6131 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6132 defaux.vda_name);
6134 if (n->next == NULL)
6135 defaux.vda_next = 0;
6136 else
6137 defaux.vda_next = sizeof (Elf_External_Verdaux);
6139 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6140 (Elf_External_Verdaux *) p);
6141 p += sizeof (Elf_External_Verdaux);
6145 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6146 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6147 return FALSE;
6149 elf_tdata (output_bfd)->cverdefs = cdefs;
6152 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6155 return FALSE;
6157 else if (info->flags & DF_BIND_NOW)
6159 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6160 return FALSE;
6163 if (info->flags_1)
6165 if (info->executable)
6166 info->flags_1 &= ~ (DF_1_INITFIRST
6167 | DF_1_NODELETE
6168 | DF_1_NOOPEN);
6169 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6170 return FALSE;
6173 /* Work out the size of the version reference section. */
6175 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6176 BFD_ASSERT (s != NULL);
6178 struct elf_find_verdep_info sinfo;
6180 sinfo.info = info;
6181 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6182 if (sinfo.vers == 0)
6183 sinfo.vers = 1;
6184 sinfo.failed = FALSE;
6186 elf_link_hash_traverse (elf_hash_table (info),
6187 _bfd_elf_link_find_version_dependencies,
6188 &sinfo);
6189 if (sinfo.failed)
6190 return FALSE;
6192 if (elf_tdata (output_bfd)->verref == NULL)
6193 s->flags |= SEC_EXCLUDE;
6194 else
6196 Elf_Internal_Verneed *t;
6197 unsigned int size;
6198 unsigned int crefs;
6199 bfd_byte *p;
6201 /* Build the version dependency section. */
6202 size = 0;
6203 crefs = 0;
6204 for (t = elf_tdata (output_bfd)->verref;
6205 t != NULL;
6206 t = t->vn_nextref)
6208 Elf_Internal_Vernaux *a;
6210 size += sizeof (Elf_External_Verneed);
6211 ++crefs;
6212 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6213 size += sizeof (Elf_External_Vernaux);
6216 s->size = size;
6217 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6218 if (s->contents == NULL)
6219 return FALSE;
6221 p = s->contents;
6222 for (t = elf_tdata (output_bfd)->verref;
6223 t != NULL;
6224 t = t->vn_nextref)
6226 unsigned int caux;
6227 Elf_Internal_Vernaux *a;
6228 bfd_size_type indx;
6230 caux = 0;
6231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6232 ++caux;
6234 t->vn_version = VER_NEED_CURRENT;
6235 t->vn_cnt = caux;
6236 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6237 elf_dt_name (t->vn_bfd) != NULL
6238 ? elf_dt_name (t->vn_bfd)
6239 : lbasename (t->vn_bfd->filename),
6240 FALSE);
6241 if (indx == (bfd_size_type) -1)
6242 return FALSE;
6243 t->vn_file = indx;
6244 t->vn_aux = sizeof (Elf_External_Verneed);
6245 if (t->vn_nextref == NULL)
6246 t->vn_next = 0;
6247 else
6248 t->vn_next = (sizeof (Elf_External_Verneed)
6249 + caux * sizeof (Elf_External_Vernaux));
6251 _bfd_elf_swap_verneed_out (output_bfd, t,
6252 (Elf_External_Verneed *) p);
6253 p += sizeof (Elf_External_Verneed);
6255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6257 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6258 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6259 a->vna_nodename, FALSE);
6260 if (indx == (bfd_size_type) -1)
6261 return FALSE;
6262 a->vna_name = indx;
6263 if (a->vna_nextptr == NULL)
6264 a->vna_next = 0;
6265 else
6266 a->vna_next = sizeof (Elf_External_Vernaux);
6268 _bfd_elf_swap_vernaux_out (output_bfd, a,
6269 (Elf_External_Vernaux *) p);
6270 p += sizeof (Elf_External_Vernaux);
6274 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6275 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6276 return FALSE;
6278 elf_tdata (output_bfd)->cverrefs = crefs;
6282 if ((elf_tdata (output_bfd)->cverrefs == 0
6283 && elf_tdata (output_bfd)->cverdefs == 0)
6284 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6285 &section_sym_count) == 0)
6287 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6288 s->flags |= SEC_EXCLUDE;
6291 return TRUE;
6294 /* Find the first non-excluded output section. We'll use its
6295 section symbol for some emitted relocs. */
6296 void
6297 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6299 asection *s;
6301 for (s = output_bfd->sections; s != NULL; s = s->next)
6302 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6303 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6305 elf_hash_table (info)->text_index_section = s;
6306 break;
6310 /* Find two non-excluded output sections, one for code, one for data.
6311 We'll use their section symbols for some emitted relocs. */
6312 void
6313 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6315 asection *s;
6317 /* Data first, since setting text_index_section changes
6318 _bfd_elf_link_omit_section_dynsym. */
6319 for (s = output_bfd->sections; s != NULL; s = s->next)
6320 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6321 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6323 elf_hash_table (info)->data_index_section = s;
6324 break;
6327 for (s = output_bfd->sections; s != NULL; s = s->next)
6328 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6329 == (SEC_ALLOC | SEC_READONLY))
6330 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6332 elf_hash_table (info)->text_index_section = s;
6333 break;
6336 if (elf_hash_table (info)->text_index_section == NULL)
6337 elf_hash_table (info)->text_index_section
6338 = elf_hash_table (info)->data_index_section;
6341 bfd_boolean
6342 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6344 const struct elf_backend_data *bed;
6346 if (!is_elf_hash_table (info->hash))
6347 return TRUE;
6349 bed = get_elf_backend_data (output_bfd);
6350 (*bed->elf_backend_init_index_section) (output_bfd, info);
6352 if (elf_hash_table (info)->dynamic_sections_created)
6354 bfd *dynobj;
6355 asection *s;
6356 bfd_size_type dynsymcount;
6357 unsigned long section_sym_count;
6358 unsigned int dtagcount;
6360 dynobj = elf_hash_table (info)->dynobj;
6362 /* Assign dynsym indicies. In a shared library we generate a
6363 section symbol for each output section, which come first.
6364 Next come all of the back-end allocated local dynamic syms,
6365 followed by the rest of the global symbols. */
6367 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6368 &section_sym_count);
6370 /* Work out the size of the symbol version section. */
6371 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6372 BFD_ASSERT (s != NULL);
6373 if (dynsymcount != 0
6374 && (s->flags & SEC_EXCLUDE) == 0)
6376 s->size = dynsymcount * sizeof (Elf_External_Versym);
6377 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6378 if (s->contents == NULL)
6379 return FALSE;
6381 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6382 return FALSE;
6385 /* Set the size of the .dynsym and .hash sections. We counted
6386 the number of dynamic symbols in elf_link_add_object_symbols.
6387 We will build the contents of .dynsym and .hash when we build
6388 the final symbol table, because until then we do not know the
6389 correct value to give the symbols. We built the .dynstr
6390 section as we went along in elf_link_add_object_symbols. */
6391 s = bfd_get_section_by_name (dynobj, ".dynsym");
6392 BFD_ASSERT (s != NULL);
6393 s->size = dynsymcount * bed->s->sizeof_sym;
6395 if (dynsymcount != 0)
6397 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6398 if (s->contents == NULL)
6399 return FALSE;
6401 /* The first entry in .dynsym is a dummy symbol.
6402 Clear all the section syms, in case we don't output them all. */
6403 ++section_sym_count;
6404 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6407 elf_hash_table (info)->bucketcount = 0;
6409 /* Compute the size of the hashing table. As a side effect this
6410 computes the hash values for all the names we export. */
6411 if (info->emit_hash)
6413 unsigned long int *hashcodes;
6414 struct hash_codes_info hashinf;
6415 bfd_size_type amt;
6416 unsigned long int nsyms;
6417 size_t bucketcount;
6418 size_t hash_entry_size;
6420 /* Compute the hash values for all exported symbols. At the same
6421 time store the values in an array so that we could use them for
6422 optimizations. */
6423 amt = dynsymcount * sizeof (unsigned long int);
6424 hashcodes = (unsigned long int *) bfd_malloc (amt);
6425 if (hashcodes == NULL)
6426 return FALSE;
6427 hashinf.hashcodes = hashcodes;
6428 hashinf.error = FALSE;
6430 /* Put all hash values in HASHCODES. */
6431 elf_link_hash_traverse (elf_hash_table (info),
6432 elf_collect_hash_codes, &hashinf);
6433 if (hashinf.error)
6435 free (hashcodes);
6436 return FALSE;
6439 nsyms = hashinf.hashcodes - hashcodes;
6440 bucketcount
6441 = compute_bucket_count (info, hashcodes, nsyms, 0);
6442 free (hashcodes);
6444 if (bucketcount == 0)
6445 return FALSE;
6447 elf_hash_table (info)->bucketcount = bucketcount;
6449 s = bfd_get_section_by_name (dynobj, ".hash");
6450 BFD_ASSERT (s != NULL);
6451 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6452 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6453 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6454 if (s->contents == NULL)
6455 return FALSE;
6457 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6458 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6459 s->contents + hash_entry_size);
6462 if (info->emit_gnu_hash)
6464 size_t i, cnt;
6465 unsigned char *contents;
6466 struct collect_gnu_hash_codes cinfo;
6467 bfd_size_type amt;
6468 size_t bucketcount;
6470 memset (&cinfo, 0, sizeof (cinfo));
6472 /* Compute the hash values for all exported symbols. At the same
6473 time store the values in an array so that we could use them for
6474 optimizations. */
6475 amt = dynsymcount * 2 * sizeof (unsigned long int);
6476 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6477 if (cinfo.hashcodes == NULL)
6478 return FALSE;
6480 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6481 cinfo.min_dynindx = -1;
6482 cinfo.output_bfd = output_bfd;
6483 cinfo.bed = bed;
6485 /* Put all hash values in HASHCODES. */
6486 elf_link_hash_traverse (elf_hash_table (info),
6487 elf_collect_gnu_hash_codes, &cinfo);
6488 if (cinfo.error)
6490 free (cinfo.hashcodes);
6491 return FALSE;
6494 bucketcount
6495 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6497 if (bucketcount == 0)
6499 free (cinfo.hashcodes);
6500 return FALSE;
6503 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6504 BFD_ASSERT (s != NULL);
6506 if (cinfo.nsyms == 0)
6508 /* Empty .gnu.hash section is special. */
6509 BFD_ASSERT (cinfo.min_dynindx == -1);
6510 free (cinfo.hashcodes);
6511 s->size = 5 * 4 + bed->s->arch_size / 8;
6512 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6513 if (contents == NULL)
6514 return FALSE;
6515 s->contents = contents;
6516 /* 1 empty bucket. */
6517 bfd_put_32 (output_bfd, 1, contents);
6518 /* SYMIDX above the special symbol 0. */
6519 bfd_put_32 (output_bfd, 1, contents + 4);
6520 /* Just one word for bitmask. */
6521 bfd_put_32 (output_bfd, 1, contents + 8);
6522 /* Only hash fn bloom filter. */
6523 bfd_put_32 (output_bfd, 0, contents + 12);
6524 /* No hashes are valid - empty bitmask. */
6525 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6526 /* No hashes in the only bucket. */
6527 bfd_put_32 (output_bfd, 0,
6528 contents + 16 + bed->s->arch_size / 8);
6530 else
6532 unsigned long int maskwords, maskbitslog2;
6533 BFD_ASSERT (cinfo.min_dynindx != -1);
6535 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6536 if (maskbitslog2 < 3)
6537 maskbitslog2 = 5;
6538 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6539 maskbitslog2 = maskbitslog2 + 3;
6540 else
6541 maskbitslog2 = maskbitslog2 + 2;
6542 if (bed->s->arch_size == 64)
6544 if (maskbitslog2 == 5)
6545 maskbitslog2 = 6;
6546 cinfo.shift1 = 6;
6548 else
6549 cinfo.shift1 = 5;
6550 cinfo.mask = (1 << cinfo.shift1) - 1;
6551 cinfo.shift2 = maskbitslog2;
6552 cinfo.maskbits = 1 << maskbitslog2;
6553 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6554 amt = bucketcount * sizeof (unsigned long int) * 2;
6555 amt += maskwords * sizeof (bfd_vma);
6556 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6557 if (cinfo.bitmask == NULL)
6559 free (cinfo.hashcodes);
6560 return FALSE;
6563 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6564 cinfo.indx = cinfo.counts + bucketcount;
6565 cinfo.symindx = dynsymcount - cinfo.nsyms;
6566 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6568 /* Determine how often each hash bucket is used. */
6569 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6570 for (i = 0; i < cinfo.nsyms; ++i)
6571 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6573 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6574 if (cinfo.counts[i] != 0)
6576 cinfo.indx[i] = cnt;
6577 cnt += cinfo.counts[i];
6579 BFD_ASSERT (cnt == dynsymcount);
6580 cinfo.bucketcount = bucketcount;
6581 cinfo.local_indx = cinfo.min_dynindx;
6583 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6584 s->size += cinfo.maskbits / 8;
6585 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6586 if (contents == NULL)
6588 free (cinfo.bitmask);
6589 free (cinfo.hashcodes);
6590 return FALSE;
6593 s->contents = contents;
6594 bfd_put_32 (output_bfd, bucketcount, contents);
6595 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6596 bfd_put_32 (output_bfd, maskwords, contents + 8);
6597 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6598 contents += 16 + cinfo.maskbits / 8;
6600 for (i = 0; i < bucketcount; ++i)
6602 if (cinfo.counts[i] == 0)
6603 bfd_put_32 (output_bfd, 0, contents);
6604 else
6605 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6606 contents += 4;
6609 cinfo.contents = contents;
6611 /* Renumber dynamic symbols, populate .gnu.hash section. */
6612 elf_link_hash_traverse (elf_hash_table (info),
6613 elf_renumber_gnu_hash_syms, &cinfo);
6615 contents = s->contents + 16;
6616 for (i = 0; i < maskwords; ++i)
6618 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6619 contents);
6620 contents += bed->s->arch_size / 8;
6623 free (cinfo.bitmask);
6624 free (cinfo.hashcodes);
6628 s = bfd_get_section_by_name (dynobj, ".dynstr");
6629 BFD_ASSERT (s != NULL);
6631 elf_finalize_dynstr (output_bfd, info);
6633 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6635 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6636 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6637 return FALSE;
6640 return TRUE;
6643 /* Indicate that we are only retrieving symbol values from this
6644 section. */
6646 void
6647 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6649 if (is_elf_hash_table (info->hash))
6650 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6651 _bfd_generic_link_just_syms (sec, info);
6654 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6656 static void
6657 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6658 asection *sec)
6660 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6661 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6664 /* Finish SHF_MERGE section merging. */
6666 bfd_boolean
6667 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6669 bfd *ibfd;
6670 asection *sec;
6672 if (!is_elf_hash_table (info->hash))
6673 return FALSE;
6675 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6676 if ((ibfd->flags & DYNAMIC) == 0)
6677 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6678 if ((sec->flags & SEC_MERGE) != 0
6679 && !bfd_is_abs_section (sec->output_section))
6681 struct bfd_elf_section_data *secdata;
6683 secdata = elf_section_data (sec);
6684 if (! _bfd_add_merge_section (abfd,
6685 &elf_hash_table (info)->merge_info,
6686 sec, &secdata->sec_info))
6687 return FALSE;
6688 else if (secdata->sec_info)
6689 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6692 if (elf_hash_table (info)->merge_info != NULL)
6693 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6694 merge_sections_remove_hook);
6695 return TRUE;
6698 /* Create an entry in an ELF linker hash table. */
6700 struct bfd_hash_entry *
6701 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6702 struct bfd_hash_table *table,
6703 const char *string)
6705 /* Allocate the structure if it has not already been allocated by a
6706 subclass. */
6707 if (entry == NULL)
6709 entry = (struct bfd_hash_entry *)
6710 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6711 if (entry == NULL)
6712 return entry;
6715 /* Call the allocation method of the superclass. */
6716 entry = _bfd_link_hash_newfunc (entry, table, string);
6717 if (entry != NULL)
6719 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6720 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6722 /* Set local fields. */
6723 ret->indx = -1;
6724 ret->dynindx = -1;
6725 ret->got = htab->init_got_refcount;
6726 ret->plt = htab->init_plt_refcount;
6727 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6728 - offsetof (struct elf_link_hash_entry, size)));
6729 /* Assume that we have been called by a non-ELF symbol reader.
6730 This flag is then reset by the code which reads an ELF input
6731 file. This ensures that a symbol created by a non-ELF symbol
6732 reader will have the flag set correctly. */
6733 ret->non_elf = 1;
6736 return entry;
6739 /* Copy data from an indirect symbol to its direct symbol, hiding the
6740 old indirect symbol. Also used for copying flags to a weakdef. */
6742 void
6743 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6744 struct elf_link_hash_entry *dir,
6745 struct elf_link_hash_entry *ind)
6747 struct elf_link_hash_table *htab;
6749 /* Copy down any references that we may have already seen to the
6750 symbol which just became indirect. */
6752 dir->ref_dynamic |= ind->ref_dynamic;
6753 dir->ref_regular |= ind->ref_regular;
6754 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6755 dir->non_got_ref |= ind->non_got_ref;
6756 dir->needs_plt |= ind->needs_plt;
6757 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6759 if (ind->root.type != bfd_link_hash_indirect)
6760 return;
6762 /* Copy over the global and procedure linkage table refcount entries.
6763 These may have been already set up by a check_relocs routine. */
6764 htab = elf_hash_table (info);
6765 if (ind->got.refcount > htab->init_got_refcount.refcount)
6767 if (dir->got.refcount < 0)
6768 dir->got.refcount = 0;
6769 dir->got.refcount += ind->got.refcount;
6770 ind->got.refcount = htab->init_got_refcount.refcount;
6773 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6775 if (dir->plt.refcount < 0)
6776 dir->plt.refcount = 0;
6777 dir->plt.refcount += ind->plt.refcount;
6778 ind->plt.refcount = htab->init_plt_refcount.refcount;
6781 if (ind->dynindx != -1)
6783 if (dir->dynindx != -1)
6784 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6785 dir->dynindx = ind->dynindx;
6786 dir->dynstr_index = ind->dynstr_index;
6787 ind->dynindx = -1;
6788 ind->dynstr_index = 0;
6792 void
6793 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6794 struct elf_link_hash_entry *h,
6795 bfd_boolean force_local)
6797 /* STT_GNU_IFUNC symbol must go through PLT. */
6798 if (h->type != STT_GNU_IFUNC)
6800 h->plt = elf_hash_table (info)->init_plt_offset;
6801 h->needs_plt = 0;
6803 if (force_local)
6805 h->forced_local = 1;
6806 if (h->dynindx != -1)
6808 h->dynindx = -1;
6809 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6810 h->dynstr_index);
6815 /* Initialize an ELF linker hash table. */
6817 bfd_boolean
6818 _bfd_elf_link_hash_table_init
6819 (struct elf_link_hash_table *table,
6820 bfd *abfd,
6821 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6822 struct bfd_hash_table *,
6823 const char *),
6824 unsigned int entsize,
6825 enum elf_target_id target_id)
6827 bfd_boolean ret;
6828 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6830 memset (table, 0, sizeof * table);
6831 table->init_got_refcount.refcount = can_refcount - 1;
6832 table->init_plt_refcount.refcount = can_refcount - 1;
6833 table->init_got_offset.offset = -(bfd_vma) 1;
6834 table->init_plt_offset.offset = -(bfd_vma) 1;
6835 /* The first dynamic symbol is a dummy. */
6836 table->dynsymcount = 1;
6838 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6840 table->root.type = bfd_link_elf_hash_table;
6841 table->hash_table_id = target_id;
6843 return ret;
6846 /* Create an ELF linker hash table. */
6848 struct bfd_link_hash_table *
6849 _bfd_elf_link_hash_table_create (bfd *abfd)
6851 struct elf_link_hash_table *ret;
6852 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6854 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6855 if (ret == NULL)
6856 return NULL;
6858 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6859 sizeof (struct elf_link_hash_entry),
6860 GENERIC_ELF_DATA))
6862 free (ret);
6863 return NULL;
6866 return &ret->root;
6869 /* This is a hook for the ELF emulation code in the generic linker to
6870 tell the backend linker what file name to use for the DT_NEEDED
6871 entry for a dynamic object. */
6873 void
6874 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6876 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6877 && bfd_get_format (abfd) == bfd_object)
6878 elf_dt_name (abfd) = name;
6882 bfd_elf_get_dyn_lib_class (bfd *abfd)
6884 int lib_class;
6885 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6886 && bfd_get_format (abfd) == bfd_object)
6887 lib_class = elf_dyn_lib_class (abfd);
6888 else
6889 lib_class = 0;
6890 return lib_class;
6893 void
6894 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6896 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6897 && bfd_get_format (abfd) == bfd_object)
6898 elf_dyn_lib_class (abfd) = lib_class;
6901 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6902 the linker ELF emulation code. */
6904 struct bfd_link_needed_list *
6905 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6906 struct bfd_link_info *info)
6908 if (! is_elf_hash_table (info->hash))
6909 return NULL;
6910 return elf_hash_table (info)->needed;
6913 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6914 hook for the linker ELF emulation code. */
6916 struct bfd_link_needed_list *
6917 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6918 struct bfd_link_info *info)
6920 if (! is_elf_hash_table (info->hash))
6921 return NULL;
6922 return elf_hash_table (info)->runpath;
6925 /* Get the name actually used for a dynamic object for a link. This
6926 is the SONAME entry if there is one. Otherwise, it is the string
6927 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6929 const char *
6930 bfd_elf_get_dt_soname (bfd *abfd)
6932 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6933 && bfd_get_format (abfd) == bfd_object)
6934 return elf_dt_name (abfd);
6935 return NULL;
6938 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6939 the ELF linker emulation code. */
6941 bfd_boolean
6942 bfd_elf_get_bfd_needed_list (bfd *abfd,
6943 struct bfd_link_needed_list **pneeded)
6945 asection *s;
6946 bfd_byte *dynbuf = NULL;
6947 unsigned int elfsec;
6948 unsigned long shlink;
6949 bfd_byte *extdyn, *extdynend;
6950 size_t extdynsize;
6951 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6953 *pneeded = NULL;
6955 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6956 || bfd_get_format (abfd) != bfd_object)
6957 return TRUE;
6959 s = bfd_get_section_by_name (abfd, ".dynamic");
6960 if (s == NULL || s->size == 0)
6961 return TRUE;
6963 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6964 goto error_return;
6966 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6967 if (elfsec == SHN_BAD)
6968 goto error_return;
6970 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6972 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6973 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6975 extdyn = dynbuf;
6976 extdynend = extdyn + s->size;
6977 for (; extdyn < extdynend; extdyn += extdynsize)
6979 Elf_Internal_Dyn dyn;
6981 (*swap_dyn_in) (abfd, extdyn, &dyn);
6983 if (dyn.d_tag == DT_NULL)
6984 break;
6986 if (dyn.d_tag == DT_NEEDED)
6988 const char *string;
6989 struct bfd_link_needed_list *l;
6990 unsigned int tagv = dyn.d_un.d_val;
6991 bfd_size_type amt;
6993 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6994 if (string == NULL)
6995 goto error_return;
6997 amt = sizeof *l;
6998 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6999 if (l == NULL)
7000 goto error_return;
7002 l->by = abfd;
7003 l->name = string;
7004 l->next = *pneeded;
7005 *pneeded = l;
7009 free (dynbuf);
7011 return TRUE;
7013 error_return:
7014 if (dynbuf != NULL)
7015 free (dynbuf);
7016 return FALSE;
7019 struct elf_symbuf_symbol
7021 unsigned long st_name; /* Symbol name, index in string tbl */
7022 unsigned char st_info; /* Type and binding attributes */
7023 unsigned char st_other; /* Visibilty, and target specific */
7026 struct elf_symbuf_head
7028 struct elf_symbuf_symbol *ssym;
7029 bfd_size_type count;
7030 unsigned int st_shndx;
7033 struct elf_symbol
7035 union
7037 Elf_Internal_Sym *isym;
7038 struct elf_symbuf_symbol *ssym;
7039 } u;
7040 const char *name;
7043 /* Sort references to symbols by ascending section number. */
7045 static int
7046 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7048 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7049 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7051 return s1->st_shndx - s2->st_shndx;
7054 static int
7055 elf_sym_name_compare (const void *arg1, const void *arg2)
7057 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7058 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7059 return strcmp (s1->name, s2->name);
7062 static struct elf_symbuf_head *
7063 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7065 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7066 struct elf_symbuf_symbol *ssym;
7067 struct elf_symbuf_head *ssymbuf, *ssymhead;
7068 bfd_size_type i, shndx_count, total_size;
7070 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7071 if (indbuf == NULL)
7072 return NULL;
7074 for (ind = indbuf, i = 0; i < symcount; i++)
7075 if (isymbuf[i].st_shndx != SHN_UNDEF)
7076 *ind++ = &isymbuf[i];
7077 indbufend = ind;
7079 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7080 elf_sort_elf_symbol);
7082 shndx_count = 0;
7083 if (indbufend > indbuf)
7084 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7085 if (ind[0]->st_shndx != ind[1]->st_shndx)
7086 shndx_count++;
7088 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7089 + (indbufend - indbuf) * sizeof (*ssym));
7090 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7091 if (ssymbuf == NULL)
7093 free (indbuf);
7094 return NULL;
7097 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7098 ssymbuf->ssym = NULL;
7099 ssymbuf->count = shndx_count;
7100 ssymbuf->st_shndx = 0;
7101 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7103 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7105 ssymhead++;
7106 ssymhead->ssym = ssym;
7107 ssymhead->count = 0;
7108 ssymhead->st_shndx = (*ind)->st_shndx;
7110 ssym->st_name = (*ind)->st_name;
7111 ssym->st_info = (*ind)->st_info;
7112 ssym->st_other = (*ind)->st_other;
7113 ssymhead->count++;
7115 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7116 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7117 == total_size));
7119 free (indbuf);
7120 return ssymbuf;
7123 /* Check if 2 sections define the same set of local and global
7124 symbols. */
7126 static bfd_boolean
7127 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7128 struct bfd_link_info *info)
7130 bfd *bfd1, *bfd2;
7131 const struct elf_backend_data *bed1, *bed2;
7132 Elf_Internal_Shdr *hdr1, *hdr2;
7133 bfd_size_type symcount1, symcount2;
7134 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7135 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7136 Elf_Internal_Sym *isym, *isymend;
7137 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7138 bfd_size_type count1, count2, i;
7139 unsigned int shndx1, shndx2;
7140 bfd_boolean result;
7142 bfd1 = sec1->owner;
7143 bfd2 = sec2->owner;
7145 /* Both sections have to be in ELF. */
7146 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7147 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7148 return FALSE;
7150 if (elf_section_type (sec1) != elf_section_type (sec2))
7151 return FALSE;
7153 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7154 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7155 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7156 return FALSE;
7158 bed1 = get_elf_backend_data (bfd1);
7159 bed2 = get_elf_backend_data (bfd2);
7160 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7161 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7162 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7163 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7165 if (symcount1 == 0 || symcount2 == 0)
7166 return FALSE;
7168 result = FALSE;
7169 isymbuf1 = NULL;
7170 isymbuf2 = NULL;
7171 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7172 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7174 if (ssymbuf1 == NULL)
7176 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7177 NULL, NULL, NULL);
7178 if (isymbuf1 == NULL)
7179 goto done;
7181 if (!info->reduce_memory_overheads)
7182 elf_tdata (bfd1)->symbuf = ssymbuf1
7183 = elf_create_symbuf (symcount1, isymbuf1);
7186 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7188 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7189 NULL, NULL, NULL);
7190 if (isymbuf2 == NULL)
7191 goto done;
7193 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7194 elf_tdata (bfd2)->symbuf = ssymbuf2
7195 = elf_create_symbuf (symcount2, isymbuf2);
7198 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7200 /* Optimized faster version. */
7201 bfd_size_type lo, hi, mid;
7202 struct elf_symbol *symp;
7203 struct elf_symbuf_symbol *ssym, *ssymend;
7205 lo = 0;
7206 hi = ssymbuf1->count;
7207 ssymbuf1++;
7208 count1 = 0;
7209 while (lo < hi)
7211 mid = (lo + hi) / 2;
7212 if (shndx1 < ssymbuf1[mid].st_shndx)
7213 hi = mid;
7214 else if (shndx1 > ssymbuf1[mid].st_shndx)
7215 lo = mid + 1;
7216 else
7218 count1 = ssymbuf1[mid].count;
7219 ssymbuf1 += mid;
7220 break;
7224 lo = 0;
7225 hi = ssymbuf2->count;
7226 ssymbuf2++;
7227 count2 = 0;
7228 while (lo < hi)
7230 mid = (lo + hi) / 2;
7231 if (shndx2 < ssymbuf2[mid].st_shndx)
7232 hi = mid;
7233 else if (shndx2 > ssymbuf2[mid].st_shndx)
7234 lo = mid + 1;
7235 else
7237 count2 = ssymbuf2[mid].count;
7238 ssymbuf2 += mid;
7239 break;
7243 if (count1 == 0 || count2 == 0 || count1 != count2)
7244 goto done;
7246 symtable1 = (struct elf_symbol *)
7247 bfd_malloc (count1 * sizeof (struct elf_symbol));
7248 symtable2 = (struct elf_symbol *)
7249 bfd_malloc (count2 * sizeof (struct elf_symbol));
7250 if (symtable1 == NULL || symtable2 == NULL)
7251 goto done;
7253 symp = symtable1;
7254 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7255 ssym < ssymend; ssym++, symp++)
7257 symp->u.ssym = ssym;
7258 symp->name = bfd_elf_string_from_elf_section (bfd1,
7259 hdr1->sh_link,
7260 ssym->st_name);
7263 symp = symtable2;
7264 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7265 ssym < ssymend; ssym++, symp++)
7267 symp->u.ssym = ssym;
7268 symp->name = bfd_elf_string_from_elf_section (bfd2,
7269 hdr2->sh_link,
7270 ssym->st_name);
7273 /* Sort symbol by name. */
7274 qsort (symtable1, count1, sizeof (struct elf_symbol),
7275 elf_sym_name_compare);
7276 qsort (symtable2, count1, sizeof (struct elf_symbol),
7277 elf_sym_name_compare);
7279 for (i = 0; i < count1; i++)
7280 /* Two symbols must have the same binding, type and name. */
7281 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7282 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7283 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7284 goto done;
7286 result = TRUE;
7287 goto done;
7290 symtable1 = (struct elf_symbol *)
7291 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7292 symtable2 = (struct elf_symbol *)
7293 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7294 if (symtable1 == NULL || symtable2 == NULL)
7295 goto done;
7297 /* Count definitions in the section. */
7298 count1 = 0;
7299 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7300 if (isym->st_shndx == shndx1)
7301 symtable1[count1++].u.isym = isym;
7303 count2 = 0;
7304 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7305 if (isym->st_shndx == shndx2)
7306 symtable2[count2++].u.isym = isym;
7308 if (count1 == 0 || count2 == 0 || count1 != count2)
7309 goto done;
7311 for (i = 0; i < count1; i++)
7312 symtable1[i].name
7313 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7314 symtable1[i].u.isym->st_name);
7316 for (i = 0; i < count2; i++)
7317 symtable2[i].name
7318 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7319 symtable2[i].u.isym->st_name);
7321 /* Sort symbol by name. */
7322 qsort (symtable1, count1, sizeof (struct elf_symbol),
7323 elf_sym_name_compare);
7324 qsort (symtable2, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7327 for (i = 0; i < count1; i++)
7328 /* Two symbols must have the same binding, type and name. */
7329 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7330 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7331 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7332 goto done;
7334 result = TRUE;
7336 done:
7337 if (symtable1)
7338 free (symtable1);
7339 if (symtable2)
7340 free (symtable2);
7341 if (isymbuf1)
7342 free (isymbuf1);
7343 if (isymbuf2)
7344 free (isymbuf2);
7346 return result;
7349 /* Return TRUE if 2 section types are compatible. */
7351 bfd_boolean
7352 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7353 bfd *bbfd, const asection *bsec)
7355 if (asec == NULL
7356 || bsec == NULL
7357 || abfd->xvec->flavour != bfd_target_elf_flavour
7358 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7359 return TRUE;
7361 return elf_section_type (asec) == elf_section_type (bsec);
7364 /* Final phase of ELF linker. */
7366 /* A structure we use to avoid passing large numbers of arguments. */
7368 struct elf_final_link_info
7370 /* General link information. */
7371 struct bfd_link_info *info;
7372 /* Output BFD. */
7373 bfd *output_bfd;
7374 /* Symbol string table. */
7375 struct bfd_strtab_hash *symstrtab;
7376 /* .dynsym section. */
7377 asection *dynsym_sec;
7378 /* .hash section. */
7379 asection *hash_sec;
7380 /* symbol version section (.gnu.version). */
7381 asection *symver_sec;
7382 /* Buffer large enough to hold contents of any section. */
7383 bfd_byte *contents;
7384 /* Buffer large enough to hold external relocs of any section. */
7385 void *external_relocs;
7386 /* Buffer large enough to hold internal relocs of any section. */
7387 Elf_Internal_Rela *internal_relocs;
7388 /* Buffer large enough to hold external local symbols of any input
7389 BFD. */
7390 bfd_byte *external_syms;
7391 /* And a buffer for symbol section indices. */
7392 Elf_External_Sym_Shndx *locsym_shndx;
7393 /* Buffer large enough to hold internal local symbols of any input
7394 BFD. */
7395 Elf_Internal_Sym *internal_syms;
7396 /* Array large enough to hold a symbol index for each local symbol
7397 of any input BFD. */
7398 long *indices;
7399 /* Array large enough to hold a section pointer for each local
7400 symbol of any input BFD. */
7401 asection **sections;
7402 /* Buffer to hold swapped out symbols. */
7403 bfd_byte *symbuf;
7404 /* And one for symbol section indices. */
7405 Elf_External_Sym_Shndx *symshndxbuf;
7406 /* Number of swapped out symbols in buffer. */
7407 size_t symbuf_count;
7408 /* Number of symbols which fit in symbuf. */
7409 size_t symbuf_size;
7410 /* And same for symshndxbuf. */
7411 size_t shndxbuf_size;
7414 /* This struct is used to pass information to elf_link_output_extsym. */
7416 struct elf_outext_info
7418 bfd_boolean failed;
7419 bfd_boolean localsyms;
7420 struct elf_final_link_info *finfo;
7424 /* Support for evaluating a complex relocation.
7426 Complex relocations are generalized, self-describing relocations. The
7427 implementation of them consists of two parts: complex symbols, and the
7428 relocations themselves.
7430 The relocations are use a reserved elf-wide relocation type code (R_RELC
7431 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7432 information (start bit, end bit, word width, etc) into the addend. This
7433 information is extracted from CGEN-generated operand tables within gas.
7435 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7436 internal) representing prefix-notation expressions, including but not
7437 limited to those sorts of expressions normally encoded as addends in the
7438 addend field. The symbol mangling format is:
7440 <node> := <literal>
7441 | <unary-operator> ':' <node>
7442 | <binary-operator> ':' <node> ':' <node>
7445 <literal> := 's' <digits=N> ':' <N character symbol name>
7446 | 'S' <digits=N> ':' <N character section name>
7447 | '#' <hexdigits>
7450 <binary-operator> := as in C
7451 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7453 static void
7454 set_symbol_value (bfd *bfd_with_globals,
7455 Elf_Internal_Sym *isymbuf,
7456 size_t locsymcount,
7457 size_t symidx,
7458 bfd_vma val)
7460 struct elf_link_hash_entry **sym_hashes;
7461 struct elf_link_hash_entry *h;
7462 size_t extsymoff = locsymcount;
7464 if (symidx < locsymcount)
7466 Elf_Internal_Sym *sym;
7468 sym = isymbuf + symidx;
7469 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7471 /* It is a local symbol: move it to the
7472 "absolute" section and give it a value. */
7473 sym->st_shndx = SHN_ABS;
7474 sym->st_value = val;
7475 return;
7477 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7478 extsymoff = 0;
7481 /* It is a global symbol: set its link type
7482 to "defined" and give it a value. */
7484 sym_hashes = elf_sym_hashes (bfd_with_globals);
7485 h = sym_hashes [symidx - extsymoff];
7486 while (h->root.type == bfd_link_hash_indirect
7487 || h->root.type == bfd_link_hash_warning)
7488 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7489 h->root.type = bfd_link_hash_defined;
7490 h->root.u.def.value = val;
7491 h->root.u.def.section = bfd_abs_section_ptr;
7494 static bfd_boolean
7495 resolve_symbol (const char *name,
7496 bfd *input_bfd,
7497 struct elf_final_link_info *finfo,
7498 bfd_vma *result,
7499 Elf_Internal_Sym *isymbuf,
7500 size_t locsymcount)
7502 Elf_Internal_Sym *sym;
7503 struct bfd_link_hash_entry *global_entry;
7504 const char *candidate = NULL;
7505 Elf_Internal_Shdr *symtab_hdr;
7506 size_t i;
7508 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7510 for (i = 0; i < locsymcount; ++ i)
7512 sym = isymbuf + i;
7514 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7515 continue;
7517 candidate = bfd_elf_string_from_elf_section (input_bfd,
7518 symtab_hdr->sh_link,
7519 sym->st_name);
7520 #ifdef DEBUG
7521 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7522 name, candidate, (unsigned long) sym->st_value);
7523 #endif
7524 if (candidate && strcmp (candidate, name) == 0)
7526 asection *sec = finfo->sections [i];
7528 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7529 *result += sec->output_offset + sec->output_section->vma;
7530 #ifdef DEBUG
7531 printf ("Found symbol with value %8.8lx\n",
7532 (unsigned long) *result);
7533 #endif
7534 return TRUE;
7538 /* Hmm, haven't found it yet. perhaps it is a global. */
7539 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7540 FALSE, FALSE, TRUE);
7541 if (!global_entry)
7542 return FALSE;
7544 if (global_entry->type == bfd_link_hash_defined
7545 || global_entry->type == bfd_link_hash_defweak)
7547 *result = (global_entry->u.def.value
7548 + global_entry->u.def.section->output_section->vma
7549 + global_entry->u.def.section->output_offset);
7550 #ifdef DEBUG
7551 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7552 global_entry->root.string, (unsigned long) *result);
7553 #endif
7554 return TRUE;
7557 return FALSE;
7560 static bfd_boolean
7561 resolve_section (const char *name,
7562 asection *sections,
7563 bfd_vma *result)
7565 asection *curr;
7566 unsigned int len;
7568 for (curr = sections; curr; curr = curr->next)
7569 if (strcmp (curr->name, name) == 0)
7571 *result = curr->vma;
7572 return TRUE;
7575 /* Hmm. still haven't found it. try pseudo-section names. */
7576 for (curr = sections; curr; curr = curr->next)
7578 len = strlen (curr->name);
7579 if (len > strlen (name))
7580 continue;
7582 if (strncmp (curr->name, name, len) == 0)
7584 if (strncmp (".end", name + len, 4) == 0)
7586 *result = curr->vma + curr->size;
7587 return TRUE;
7590 /* Insert more pseudo-section names here, if you like. */
7594 return FALSE;
7597 static void
7598 undefined_reference (const char *reftype, const char *name)
7600 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7601 reftype, name);
7604 static bfd_boolean
7605 eval_symbol (bfd_vma *result,
7606 const char **symp,
7607 bfd *input_bfd,
7608 struct elf_final_link_info *finfo,
7609 bfd_vma dot,
7610 Elf_Internal_Sym *isymbuf,
7611 size_t locsymcount,
7612 int signed_p)
7614 size_t len;
7615 size_t symlen;
7616 bfd_vma a;
7617 bfd_vma b;
7618 char symbuf[4096];
7619 const char *sym = *symp;
7620 const char *symend;
7621 bfd_boolean symbol_is_section = FALSE;
7623 len = strlen (sym);
7624 symend = sym + len;
7626 if (len < 1 || len > sizeof (symbuf))
7628 bfd_set_error (bfd_error_invalid_operation);
7629 return FALSE;
7632 switch (* sym)
7634 case '.':
7635 *result = dot;
7636 *symp = sym + 1;
7637 return TRUE;
7639 case '#':
7640 ++sym;
7641 *result = strtoul (sym, (char **) symp, 16);
7642 return TRUE;
7644 case 'S':
7645 symbol_is_section = TRUE;
7646 case 's':
7647 ++sym;
7648 symlen = strtol (sym, (char **) symp, 10);
7649 sym = *symp + 1; /* Skip the trailing ':'. */
7651 if (symend < sym || symlen + 1 > sizeof (symbuf))
7653 bfd_set_error (bfd_error_invalid_operation);
7654 return FALSE;
7657 memcpy (symbuf, sym, symlen);
7658 symbuf[symlen] = '\0';
7659 *symp = sym + symlen;
7661 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7662 the symbol as a section, or vice-versa. so we're pretty liberal in our
7663 interpretation here; section means "try section first", not "must be a
7664 section", and likewise with symbol. */
7666 if (symbol_is_section)
7668 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7669 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7670 isymbuf, locsymcount))
7672 undefined_reference ("section", symbuf);
7673 return FALSE;
7676 else
7678 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7679 isymbuf, locsymcount)
7680 && !resolve_section (symbuf, finfo->output_bfd->sections,
7681 result))
7683 undefined_reference ("symbol", symbuf);
7684 return FALSE;
7688 return TRUE;
7690 /* All that remains are operators. */
7692 #define UNARY_OP(op) \
7693 if (strncmp (sym, #op, strlen (#op)) == 0) \
7695 sym += strlen (#op); \
7696 if (*sym == ':') \
7697 ++sym; \
7698 *symp = sym; \
7699 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7700 isymbuf, locsymcount, signed_p)) \
7701 return FALSE; \
7702 if (signed_p) \
7703 *result = op ((bfd_signed_vma) a); \
7704 else \
7705 *result = op a; \
7706 return TRUE; \
7709 #define BINARY_OP(op) \
7710 if (strncmp (sym, #op, strlen (#op)) == 0) \
7712 sym += strlen (#op); \
7713 if (*sym == ':') \
7714 ++sym; \
7715 *symp = sym; \
7716 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7717 isymbuf, locsymcount, signed_p)) \
7718 return FALSE; \
7719 ++*symp; \
7720 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7721 isymbuf, locsymcount, signed_p)) \
7722 return FALSE; \
7723 if (signed_p) \
7724 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7725 else \
7726 *result = a op b; \
7727 return TRUE; \
7730 default:
7731 UNARY_OP (0-);
7732 BINARY_OP (<<);
7733 BINARY_OP (>>);
7734 BINARY_OP (==);
7735 BINARY_OP (!=);
7736 BINARY_OP (<=);
7737 BINARY_OP (>=);
7738 BINARY_OP (&&);
7739 BINARY_OP (||);
7740 UNARY_OP (~);
7741 UNARY_OP (!);
7742 BINARY_OP (*);
7743 BINARY_OP (/);
7744 BINARY_OP (%);
7745 BINARY_OP (^);
7746 BINARY_OP (|);
7747 BINARY_OP (&);
7748 BINARY_OP (+);
7749 BINARY_OP (-);
7750 BINARY_OP (<);
7751 BINARY_OP (>);
7752 #undef UNARY_OP
7753 #undef BINARY_OP
7754 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7755 bfd_set_error (bfd_error_invalid_operation);
7756 return FALSE;
7760 static void
7761 put_value (bfd_vma size,
7762 unsigned long chunksz,
7763 bfd *input_bfd,
7764 bfd_vma x,
7765 bfd_byte *location)
7767 location += (size - chunksz);
7769 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7771 switch (chunksz)
7773 default:
7774 case 0:
7775 abort ();
7776 case 1:
7777 bfd_put_8 (input_bfd, x, location);
7778 break;
7779 case 2:
7780 bfd_put_16 (input_bfd, x, location);
7781 break;
7782 case 4:
7783 bfd_put_32 (input_bfd, x, location);
7784 break;
7785 case 8:
7786 #ifdef BFD64
7787 bfd_put_64 (input_bfd, x, location);
7788 #else
7789 abort ();
7790 #endif
7791 break;
7796 static bfd_vma
7797 get_value (bfd_vma size,
7798 unsigned long chunksz,
7799 bfd *input_bfd,
7800 bfd_byte *location)
7802 bfd_vma x = 0;
7804 for (; size; size -= chunksz, location += chunksz)
7806 switch (chunksz)
7808 default:
7809 case 0:
7810 abort ();
7811 case 1:
7812 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7813 break;
7814 case 2:
7815 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7816 break;
7817 case 4:
7818 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7819 break;
7820 case 8:
7821 #ifdef BFD64
7822 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7823 #else
7824 abort ();
7825 #endif
7826 break;
7829 return x;
7832 static void
7833 decode_complex_addend (unsigned long *start, /* in bits */
7834 unsigned long *oplen, /* in bits */
7835 unsigned long *len, /* in bits */
7836 unsigned long *wordsz, /* in bytes */
7837 unsigned long *chunksz, /* in bytes */
7838 unsigned long *lsb0_p,
7839 unsigned long *signed_p,
7840 unsigned long *trunc_p,
7841 unsigned long encoded)
7843 * start = encoded & 0x3F;
7844 * len = (encoded >> 6) & 0x3F;
7845 * oplen = (encoded >> 12) & 0x3F;
7846 * wordsz = (encoded >> 18) & 0xF;
7847 * chunksz = (encoded >> 22) & 0xF;
7848 * lsb0_p = (encoded >> 27) & 1;
7849 * signed_p = (encoded >> 28) & 1;
7850 * trunc_p = (encoded >> 29) & 1;
7853 bfd_reloc_status_type
7854 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7855 asection *input_section ATTRIBUTE_UNUSED,
7856 bfd_byte *contents,
7857 Elf_Internal_Rela *rel,
7858 bfd_vma relocation)
7860 bfd_vma shift, x, mask;
7861 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7862 bfd_reloc_status_type r;
7864 /* Perform this reloc, since it is complex.
7865 (this is not to say that it necessarily refers to a complex
7866 symbol; merely that it is a self-describing CGEN based reloc.
7867 i.e. the addend has the complete reloc information (bit start, end,
7868 word size, etc) encoded within it.). */
7870 decode_complex_addend (&start, &oplen, &len, &wordsz,
7871 &chunksz, &lsb0_p, &signed_p,
7872 &trunc_p, rel->r_addend);
7874 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7876 if (lsb0_p)
7877 shift = (start + 1) - len;
7878 else
7879 shift = (8 * wordsz) - (start + len);
7881 /* FIXME: octets_per_byte. */
7882 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7884 #ifdef DEBUG
7885 printf ("Doing complex reloc: "
7886 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7887 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7888 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7889 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7890 oplen, x, mask, relocation);
7891 #endif
7893 r = bfd_reloc_ok;
7894 if (! trunc_p)
7895 /* Now do an overflow check. */
7896 r = bfd_check_overflow ((signed_p
7897 ? complain_overflow_signed
7898 : complain_overflow_unsigned),
7899 len, 0, (8 * wordsz),
7900 relocation);
7902 /* Do the deed. */
7903 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7905 #ifdef DEBUG
7906 printf (" relocation: %8.8lx\n"
7907 " shifted mask: %8.8lx\n"
7908 " shifted/masked reloc: %8.8lx\n"
7909 " result: %8.8lx\n",
7910 relocation, (mask << shift),
7911 ((relocation & mask) << shift), x);
7912 #endif
7913 /* FIXME: octets_per_byte. */
7914 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7915 return r;
7918 /* When performing a relocatable link, the input relocations are
7919 preserved. But, if they reference global symbols, the indices
7920 referenced must be updated. Update all the relocations in
7921 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7923 static void
7924 elf_link_adjust_relocs (bfd *abfd,
7925 Elf_Internal_Shdr *rel_hdr,
7926 unsigned int count,
7927 struct elf_link_hash_entry **rel_hash)
7929 unsigned int i;
7930 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7931 bfd_byte *erela;
7932 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7933 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7934 bfd_vma r_type_mask;
7935 int r_sym_shift;
7937 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7939 swap_in = bed->s->swap_reloc_in;
7940 swap_out = bed->s->swap_reloc_out;
7942 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7944 swap_in = bed->s->swap_reloca_in;
7945 swap_out = bed->s->swap_reloca_out;
7947 else
7948 abort ();
7950 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7951 abort ();
7953 if (bed->s->arch_size == 32)
7955 r_type_mask = 0xff;
7956 r_sym_shift = 8;
7958 else
7960 r_type_mask = 0xffffffff;
7961 r_sym_shift = 32;
7964 erela = rel_hdr->contents;
7965 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7967 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7968 unsigned int j;
7970 if (*rel_hash == NULL)
7971 continue;
7973 BFD_ASSERT ((*rel_hash)->indx >= 0);
7975 (*swap_in) (abfd, erela, irela);
7976 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7977 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7978 | (irela[j].r_info & r_type_mask));
7979 (*swap_out) (abfd, irela, erela);
7983 struct elf_link_sort_rela
7985 union {
7986 bfd_vma offset;
7987 bfd_vma sym_mask;
7988 } u;
7989 enum elf_reloc_type_class type;
7990 /* We use this as an array of size int_rels_per_ext_rel. */
7991 Elf_Internal_Rela rela[1];
7994 static int
7995 elf_link_sort_cmp1 (const void *A, const void *B)
7997 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7998 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7999 int relativea, relativeb;
8001 relativea = a->type == reloc_class_relative;
8002 relativeb = b->type == reloc_class_relative;
8004 if (relativea < relativeb)
8005 return 1;
8006 if (relativea > relativeb)
8007 return -1;
8008 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8009 return -1;
8010 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8011 return 1;
8012 if (a->rela->r_offset < b->rela->r_offset)
8013 return -1;
8014 if (a->rela->r_offset > b->rela->r_offset)
8015 return 1;
8016 return 0;
8019 static int
8020 elf_link_sort_cmp2 (const void *A, const void *B)
8022 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8023 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8024 int copya, copyb;
8026 if (a->u.offset < b->u.offset)
8027 return -1;
8028 if (a->u.offset > b->u.offset)
8029 return 1;
8030 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8031 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8032 if (copya < copyb)
8033 return -1;
8034 if (copya > copyb)
8035 return 1;
8036 if (a->rela->r_offset < b->rela->r_offset)
8037 return -1;
8038 if (a->rela->r_offset > b->rela->r_offset)
8039 return 1;
8040 return 0;
8043 static size_t
8044 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8046 asection *dynamic_relocs;
8047 asection *rela_dyn;
8048 asection *rel_dyn;
8049 bfd_size_type count, size;
8050 size_t i, ret, sort_elt, ext_size;
8051 bfd_byte *sort, *s_non_relative, *p;
8052 struct elf_link_sort_rela *sq;
8053 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8054 int i2e = bed->s->int_rels_per_ext_rel;
8055 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8056 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8057 struct bfd_link_order *lo;
8058 bfd_vma r_sym_mask;
8059 bfd_boolean use_rela;
8061 /* Find a dynamic reloc section. */
8062 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8063 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8064 if (rela_dyn != NULL && rela_dyn->size > 0
8065 && rel_dyn != NULL && rel_dyn->size > 0)
8067 bfd_boolean use_rela_initialised = FALSE;
8069 /* This is just here to stop gcc from complaining.
8070 It's initialization checking code is not perfect. */
8071 use_rela = TRUE;
8073 /* Both sections are present. Examine the sizes
8074 of the indirect sections to help us choose. */
8075 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8076 if (lo->type == bfd_indirect_link_order)
8078 asection *o = lo->u.indirect.section;
8080 if ((o->size % bed->s->sizeof_rela) == 0)
8082 if ((o->size % bed->s->sizeof_rel) == 0)
8083 /* Section size is divisible by both rel and rela sizes.
8084 It is of no help to us. */
8086 else
8088 /* Section size is only divisible by rela. */
8089 if (use_rela_initialised && (use_rela == FALSE))
8091 _bfd_error_handler
8092 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8093 bfd_set_error (bfd_error_invalid_operation);
8094 return 0;
8096 else
8098 use_rela = TRUE;
8099 use_rela_initialised = TRUE;
8103 else if ((o->size % bed->s->sizeof_rel) == 0)
8105 /* Section size is only divisible by rel. */
8106 if (use_rela_initialised && (use_rela == TRUE))
8108 _bfd_error_handler
8109 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8110 bfd_set_error (bfd_error_invalid_operation);
8111 return 0;
8113 else
8115 use_rela = FALSE;
8116 use_rela_initialised = TRUE;
8119 else
8121 /* The section size is not divisible by either - something is wrong. */
8122 _bfd_error_handler
8123 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8124 bfd_set_error (bfd_error_invalid_operation);
8125 return 0;
8129 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8130 if (lo->type == bfd_indirect_link_order)
8132 asection *o = lo->u.indirect.section;
8134 if ((o->size % bed->s->sizeof_rela) == 0)
8136 if ((o->size % bed->s->sizeof_rel) == 0)
8137 /* Section size is divisible by both rel and rela sizes.
8138 It is of no help to us. */
8140 else
8142 /* Section size is only divisible by rela. */
8143 if (use_rela_initialised && (use_rela == FALSE))
8145 _bfd_error_handler
8146 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8147 bfd_set_error (bfd_error_invalid_operation);
8148 return 0;
8150 else
8152 use_rela = TRUE;
8153 use_rela_initialised = TRUE;
8157 else if ((o->size % bed->s->sizeof_rel) == 0)
8159 /* Section size is only divisible by rel. */
8160 if (use_rela_initialised && (use_rela == TRUE))
8162 _bfd_error_handler
8163 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8164 bfd_set_error (bfd_error_invalid_operation);
8165 return 0;
8167 else
8169 use_rela = FALSE;
8170 use_rela_initialised = TRUE;
8173 else
8175 /* The section size is not divisible by either - something is wrong. */
8176 _bfd_error_handler
8177 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8178 bfd_set_error (bfd_error_invalid_operation);
8179 return 0;
8183 if (! use_rela_initialised)
8184 /* Make a guess. */
8185 use_rela = TRUE;
8187 else if (rela_dyn != NULL && rela_dyn->size > 0)
8188 use_rela = TRUE;
8189 else if (rel_dyn != NULL && rel_dyn->size > 0)
8190 use_rela = FALSE;
8191 else
8192 return 0;
8194 if (use_rela)
8196 dynamic_relocs = rela_dyn;
8197 ext_size = bed->s->sizeof_rela;
8198 swap_in = bed->s->swap_reloca_in;
8199 swap_out = bed->s->swap_reloca_out;
8201 else
8203 dynamic_relocs = rel_dyn;
8204 ext_size = bed->s->sizeof_rel;
8205 swap_in = bed->s->swap_reloc_in;
8206 swap_out = bed->s->swap_reloc_out;
8209 size = 0;
8210 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8211 if (lo->type == bfd_indirect_link_order)
8212 size += lo->u.indirect.section->size;
8214 if (size != dynamic_relocs->size)
8215 return 0;
8217 sort_elt = (sizeof (struct elf_link_sort_rela)
8218 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8220 count = dynamic_relocs->size / ext_size;
8221 if (count == 0)
8222 return 0;
8223 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8225 if (sort == NULL)
8227 (*info->callbacks->warning)
8228 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8229 return 0;
8232 if (bed->s->arch_size == 32)
8233 r_sym_mask = ~(bfd_vma) 0xff;
8234 else
8235 r_sym_mask = ~(bfd_vma) 0xffffffff;
8237 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8238 if (lo->type == bfd_indirect_link_order)
8240 bfd_byte *erel, *erelend;
8241 asection *o = lo->u.indirect.section;
8243 if (o->contents == NULL && o->size != 0)
8245 /* This is a reloc section that is being handled as a normal
8246 section. See bfd_section_from_shdr. We can't combine
8247 relocs in this case. */
8248 free (sort);
8249 return 0;
8251 erel = o->contents;
8252 erelend = o->contents + o->size;
8253 /* FIXME: octets_per_byte. */
8254 p = sort + o->output_offset / ext_size * sort_elt;
8256 while (erel < erelend)
8258 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8260 (*swap_in) (abfd, erel, s->rela);
8261 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8262 s->u.sym_mask = r_sym_mask;
8263 p += sort_elt;
8264 erel += ext_size;
8268 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8270 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8272 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8273 if (s->type != reloc_class_relative)
8274 break;
8276 ret = i;
8277 s_non_relative = p;
8279 sq = (struct elf_link_sort_rela *) s_non_relative;
8280 for (; i < count; i++, p += sort_elt)
8282 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8283 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8284 sq = sp;
8285 sp->u.offset = sq->rela->r_offset;
8288 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8290 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8291 if (lo->type == bfd_indirect_link_order)
8293 bfd_byte *erel, *erelend;
8294 asection *o = lo->u.indirect.section;
8296 erel = o->contents;
8297 erelend = o->contents + o->size;
8298 /* FIXME: octets_per_byte. */
8299 p = sort + o->output_offset / ext_size * sort_elt;
8300 while (erel < erelend)
8302 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8303 (*swap_out) (abfd, s->rela, erel);
8304 p += sort_elt;
8305 erel += ext_size;
8309 free (sort);
8310 *psec = dynamic_relocs;
8311 return ret;
8314 /* Flush the output symbols to the file. */
8316 static bfd_boolean
8317 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8318 const struct elf_backend_data *bed)
8320 if (finfo->symbuf_count > 0)
8322 Elf_Internal_Shdr *hdr;
8323 file_ptr pos;
8324 bfd_size_type amt;
8326 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8327 pos = hdr->sh_offset + hdr->sh_size;
8328 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8329 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8330 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8331 return FALSE;
8333 hdr->sh_size += amt;
8334 finfo->symbuf_count = 0;
8337 return TRUE;
8340 /* Add a symbol to the output symbol table. */
8342 static int
8343 elf_link_output_sym (struct elf_final_link_info *finfo,
8344 const char *name,
8345 Elf_Internal_Sym *elfsym,
8346 asection *input_sec,
8347 struct elf_link_hash_entry *h)
8349 bfd_byte *dest;
8350 Elf_External_Sym_Shndx *destshndx;
8351 int (*output_symbol_hook)
8352 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8353 struct elf_link_hash_entry *);
8354 const struct elf_backend_data *bed;
8356 bed = get_elf_backend_data (finfo->output_bfd);
8357 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8358 if (output_symbol_hook != NULL)
8360 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8361 if (ret != 1)
8362 return ret;
8365 if (name == NULL || *name == '\0')
8366 elfsym->st_name = 0;
8367 else if (input_sec->flags & SEC_EXCLUDE)
8368 elfsym->st_name = 0;
8369 else
8371 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8372 name, TRUE, FALSE);
8373 if (elfsym->st_name == (unsigned long) -1)
8374 return 0;
8377 if (finfo->symbuf_count >= finfo->symbuf_size)
8379 if (! elf_link_flush_output_syms (finfo, bed))
8380 return 0;
8383 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8384 destshndx = finfo->symshndxbuf;
8385 if (destshndx != NULL)
8387 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8389 bfd_size_type amt;
8391 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8392 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8393 amt * 2);
8394 if (destshndx == NULL)
8395 return 0;
8396 finfo->symshndxbuf = destshndx;
8397 memset ((char *) destshndx + amt, 0, amt);
8398 finfo->shndxbuf_size *= 2;
8400 destshndx += bfd_get_symcount (finfo->output_bfd);
8403 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8404 finfo->symbuf_count += 1;
8405 bfd_get_symcount (finfo->output_bfd) += 1;
8407 return 1;
8410 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8412 static bfd_boolean
8413 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8415 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8416 && sym->st_shndx < SHN_LORESERVE)
8418 /* The gABI doesn't support dynamic symbols in output sections
8419 beyond 64k. */
8420 (*_bfd_error_handler)
8421 (_("%B: Too many sections: %d (>= %d)"),
8422 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8423 bfd_set_error (bfd_error_nonrepresentable_section);
8424 return FALSE;
8426 return TRUE;
8429 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8430 allowing an unsatisfied unversioned symbol in the DSO to match a
8431 versioned symbol that would normally require an explicit version.
8432 We also handle the case that a DSO references a hidden symbol
8433 which may be satisfied by a versioned symbol in another DSO. */
8435 static bfd_boolean
8436 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8437 const struct elf_backend_data *bed,
8438 struct elf_link_hash_entry *h)
8440 bfd *abfd;
8441 struct elf_link_loaded_list *loaded;
8443 if (!is_elf_hash_table (info->hash))
8444 return FALSE;
8446 switch (h->root.type)
8448 default:
8449 abfd = NULL;
8450 break;
8452 case bfd_link_hash_undefined:
8453 case bfd_link_hash_undefweak:
8454 abfd = h->root.u.undef.abfd;
8455 if ((abfd->flags & DYNAMIC) == 0
8456 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8457 return FALSE;
8458 break;
8460 case bfd_link_hash_defined:
8461 case bfd_link_hash_defweak:
8462 abfd = h->root.u.def.section->owner;
8463 break;
8465 case bfd_link_hash_common:
8466 abfd = h->root.u.c.p->section->owner;
8467 break;
8469 BFD_ASSERT (abfd != NULL);
8471 for (loaded = elf_hash_table (info)->loaded;
8472 loaded != NULL;
8473 loaded = loaded->next)
8475 bfd *input;
8476 Elf_Internal_Shdr *hdr;
8477 bfd_size_type symcount;
8478 bfd_size_type extsymcount;
8479 bfd_size_type extsymoff;
8480 Elf_Internal_Shdr *versymhdr;
8481 Elf_Internal_Sym *isym;
8482 Elf_Internal_Sym *isymend;
8483 Elf_Internal_Sym *isymbuf;
8484 Elf_External_Versym *ever;
8485 Elf_External_Versym *extversym;
8487 input = loaded->abfd;
8489 /* We check each DSO for a possible hidden versioned definition. */
8490 if (input == abfd
8491 || (input->flags & DYNAMIC) == 0
8492 || elf_dynversym (input) == 0)
8493 continue;
8495 hdr = &elf_tdata (input)->dynsymtab_hdr;
8497 symcount = hdr->sh_size / bed->s->sizeof_sym;
8498 if (elf_bad_symtab (input))
8500 extsymcount = symcount;
8501 extsymoff = 0;
8503 else
8505 extsymcount = symcount - hdr->sh_info;
8506 extsymoff = hdr->sh_info;
8509 if (extsymcount == 0)
8510 continue;
8512 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8513 NULL, NULL, NULL);
8514 if (isymbuf == NULL)
8515 return FALSE;
8517 /* Read in any version definitions. */
8518 versymhdr = &elf_tdata (input)->dynversym_hdr;
8519 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8520 if (extversym == NULL)
8521 goto error_ret;
8523 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8524 || (bfd_bread (extversym, versymhdr->sh_size, input)
8525 != versymhdr->sh_size))
8527 free (extversym);
8528 error_ret:
8529 free (isymbuf);
8530 return FALSE;
8533 ever = extversym + extsymoff;
8534 isymend = isymbuf + extsymcount;
8535 for (isym = isymbuf; isym < isymend; isym++, ever++)
8537 const char *name;
8538 Elf_Internal_Versym iver;
8539 unsigned short version_index;
8541 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8542 || isym->st_shndx == SHN_UNDEF)
8543 continue;
8545 name = bfd_elf_string_from_elf_section (input,
8546 hdr->sh_link,
8547 isym->st_name);
8548 if (strcmp (name, h->root.root.string) != 0)
8549 continue;
8551 _bfd_elf_swap_versym_in (input, ever, &iver);
8553 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8554 && !(h->def_regular
8555 && h->forced_local))
8557 /* If we have a non-hidden versioned sym, then it should
8558 have provided a definition for the undefined sym unless
8559 it is defined in a non-shared object and forced local.
8561 abort ();
8564 version_index = iver.vs_vers & VERSYM_VERSION;
8565 if (version_index == 1 || version_index == 2)
8567 /* This is the base or first version. We can use it. */
8568 free (extversym);
8569 free (isymbuf);
8570 return TRUE;
8574 free (extversym);
8575 free (isymbuf);
8578 return FALSE;
8581 /* Add an external symbol to the symbol table. This is called from
8582 the hash table traversal routine. When generating a shared object,
8583 we go through the symbol table twice. The first time we output
8584 anything that might have been forced to local scope in a version
8585 script. The second time we output the symbols that are still
8586 global symbols. */
8588 static bfd_boolean
8589 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8591 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8592 struct elf_final_link_info *finfo = eoinfo->finfo;
8593 bfd_boolean strip;
8594 Elf_Internal_Sym sym;
8595 asection *input_sec;
8596 const struct elf_backend_data *bed;
8597 long indx;
8598 int ret;
8600 if (h->root.type == bfd_link_hash_warning)
8602 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8603 if (h->root.type == bfd_link_hash_new)
8604 return TRUE;
8607 /* Decide whether to output this symbol in this pass. */
8608 if (eoinfo->localsyms)
8610 if (!h->forced_local)
8611 return TRUE;
8613 else
8615 if (h->forced_local)
8616 return TRUE;
8619 bed = get_elf_backend_data (finfo->output_bfd);
8621 if (h->root.type == bfd_link_hash_undefined)
8623 /* If we have an undefined symbol reference here then it must have
8624 come from a shared library that is being linked in. (Undefined
8625 references in regular files have already been handled unless
8626 they are in unreferenced sections which are removed by garbage
8627 collection). */
8628 bfd_boolean ignore_undef = FALSE;
8630 /* Some symbols may be special in that the fact that they're
8631 undefined can be safely ignored - let backend determine that. */
8632 if (bed->elf_backend_ignore_undef_symbol)
8633 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8635 /* If we are reporting errors for this situation then do so now. */
8636 if (ignore_undef == FALSE
8637 && h->ref_dynamic
8638 && (!h->ref_regular || finfo->info->gc_sections)
8639 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8640 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8642 if (! (finfo->info->callbacks->undefined_symbol
8643 (finfo->info, h->root.root.string,
8644 h->ref_regular ? NULL : h->root.u.undef.abfd,
8645 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8647 eoinfo->failed = TRUE;
8648 return FALSE;
8653 /* We should also warn if a forced local symbol is referenced from
8654 shared libraries. */
8655 if (! finfo->info->relocatable
8656 && (! finfo->info->shared)
8657 && h->forced_local
8658 && h->ref_dynamic
8659 && !h->dynamic_def
8660 && !h->dynamic_weak
8661 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8663 (*_bfd_error_handler)
8664 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8665 finfo->output_bfd,
8666 h->root.u.def.section == bfd_abs_section_ptr
8667 ? finfo->output_bfd : h->root.u.def.section->owner,
8668 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8669 ? "internal"
8670 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8671 ? "hidden" : "local",
8672 h->root.root.string);
8673 eoinfo->failed = TRUE;
8674 return FALSE;
8677 /* We don't want to output symbols that have never been mentioned by
8678 a regular file, or that we have been told to strip. However, if
8679 h->indx is set to -2, the symbol is used by a reloc and we must
8680 output it. */
8681 if (h->indx == -2)
8682 strip = FALSE;
8683 else if ((h->def_dynamic
8684 || h->ref_dynamic
8685 || h->root.type == bfd_link_hash_new)
8686 && !h->def_regular
8687 && !h->ref_regular)
8688 strip = TRUE;
8689 else if (finfo->info->strip == strip_all)
8690 strip = TRUE;
8691 else if (finfo->info->strip == strip_some
8692 && bfd_hash_lookup (finfo->info->keep_hash,
8693 h->root.root.string, FALSE, FALSE) == NULL)
8694 strip = TRUE;
8695 else if (finfo->info->strip_discarded
8696 && (h->root.type == bfd_link_hash_defined
8697 || h->root.type == bfd_link_hash_defweak)
8698 && elf_discarded_section (h->root.u.def.section))
8699 strip = TRUE;
8700 else
8701 strip = FALSE;
8703 /* If we're stripping it, and it's not a dynamic symbol, there's
8704 nothing else to do unless it is a forced local symbol or a
8705 STT_GNU_IFUNC symbol. */
8706 if (strip
8707 && h->dynindx == -1
8708 && h->type != STT_GNU_IFUNC
8709 && !h->forced_local)
8710 return TRUE;
8712 sym.st_value = 0;
8713 sym.st_size = h->size;
8714 sym.st_other = h->other;
8715 if (h->forced_local)
8717 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8718 /* Turn off visibility on local symbol. */
8719 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8721 else if (h->unique_global)
8722 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8723 else if (h->root.type == bfd_link_hash_undefweak
8724 || h->root.type == bfd_link_hash_defweak)
8725 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8726 else
8727 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8729 switch (h->root.type)
8731 default:
8732 case bfd_link_hash_new:
8733 case bfd_link_hash_warning:
8734 abort ();
8735 return FALSE;
8737 case bfd_link_hash_undefined:
8738 case bfd_link_hash_undefweak:
8739 input_sec = bfd_und_section_ptr;
8740 sym.st_shndx = SHN_UNDEF;
8741 break;
8743 case bfd_link_hash_defined:
8744 case bfd_link_hash_defweak:
8746 input_sec = h->root.u.def.section;
8747 if (input_sec->output_section != NULL)
8749 sym.st_shndx =
8750 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8751 input_sec->output_section);
8752 if (sym.st_shndx == SHN_BAD)
8754 (*_bfd_error_handler)
8755 (_("%B: could not find output section %A for input section %A"),
8756 finfo->output_bfd, input_sec->output_section, input_sec);
8757 eoinfo->failed = TRUE;
8758 return FALSE;
8761 /* ELF symbols in relocatable files are section relative,
8762 but in nonrelocatable files they are virtual
8763 addresses. */
8764 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8765 if (! finfo->info->relocatable)
8767 sym.st_value += input_sec->output_section->vma;
8768 if (h->type == STT_TLS)
8770 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8771 if (tls_sec != NULL)
8772 sym.st_value -= tls_sec->vma;
8773 else
8775 /* The TLS section may have been garbage collected. */
8776 BFD_ASSERT (finfo->info->gc_sections
8777 && !input_sec->gc_mark);
8782 else
8784 BFD_ASSERT (input_sec->owner == NULL
8785 || (input_sec->owner->flags & DYNAMIC) != 0);
8786 sym.st_shndx = SHN_UNDEF;
8787 input_sec = bfd_und_section_ptr;
8790 break;
8792 case bfd_link_hash_common:
8793 input_sec = h->root.u.c.p->section;
8794 sym.st_shndx = bed->common_section_index (input_sec);
8795 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8796 break;
8798 case bfd_link_hash_indirect:
8799 /* These symbols are created by symbol versioning. They point
8800 to the decorated version of the name. For example, if the
8801 symbol foo@@GNU_1.2 is the default, which should be used when
8802 foo is used with no version, then we add an indirect symbol
8803 foo which points to foo@@GNU_1.2. We ignore these symbols,
8804 since the indirected symbol is already in the hash table. */
8805 return TRUE;
8808 /* Give the processor backend a chance to tweak the symbol value,
8809 and also to finish up anything that needs to be done for this
8810 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8811 forced local syms when non-shared is due to a historical quirk.
8812 STT_GNU_IFUNC symbol must go through PLT. */
8813 if ((h->type == STT_GNU_IFUNC
8814 && h->def_regular
8815 && !finfo->info->relocatable)
8816 || ((h->dynindx != -1
8817 || h->forced_local)
8818 && ((finfo->info->shared
8819 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8820 || h->root.type != bfd_link_hash_undefweak))
8821 || !h->forced_local)
8822 && elf_hash_table (finfo->info)->dynamic_sections_created))
8824 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8825 (finfo->output_bfd, finfo->info, h, &sym)))
8827 eoinfo->failed = TRUE;
8828 return FALSE;
8832 /* If we are marking the symbol as undefined, and there are no
8833 non-weak references to this symbol from a regular object, then
8834 mark the symbol as weak undefined; if there are non-weak
8835 references, mark the symbol as strong. We can't do this earlier,
8836 because it might not be marked as undefined until the
8837 finish_dynamic_symbol routine gets through with it. */
8838 if (sym.st_shndx == SHN_UNDEF
8839 && h->ref_regular
8840 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8841 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8843 int bindtype;
8844 unsigned int type = ELF_ST_TYPE (sym.st_info);
8846 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8847 if (type == STT_GNU_IFUNC)
8848 type = STT_FUNC;
8850 if (h->ref_regular_nonweak)
8851 bindtype = STB_GLOBAL;
8852 else
8853 bindtype = STB_WEAK;
8854 sym.st_info = ELF_ST_INFO (bindtype, type);
8857 /* If this is a symbol defined in a dynamic library, don't use the
8858 symbol size from the dynamic library. Relinking an executable
8859 against a new library may introduce gratuitous changes in the
8860 executable's symbols if we keep the size. */
8861 if (sym.st_shndx == SHN_UNDEF
8862 && !h->def_regular
8863 && h->def_dynamic)
8864 sym.st_size = 0;
8866 /* If a non-weak symbol with non-default visibility is not defined
8867 locally, it is a fatal error. */
8868 if (! finfo->info->relocatable
8869 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8870 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8871 && h->root.type == bfd_link_hash_undefined
8872 && !h->def_regular)
8874 (*_bfd_error_handler)
8875 (_("%B: %s symbol `%s' isn't defined"),
8876 finfo->output_bfd,
8877 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8878 ? "protected"
8879 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8880 ? "internal" : "hidden",
8881 h->root.root.string);
8882 eoinfo->failed = TRUE;
8883 return FALSE;
8886 /* If this symbol should be put in the .dynsym section, then put it
8887 there now. We already know the symbol index. We also fill in
8888 the entry in the .hash section. */
8889 if (h->dynindx != -1
8890 && elf_hash_table (finfo->info)->dynamic_sections_created)
8892 bfd_byte *esym;
8894 sym.st_name = h->dynstr_index;
8895 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8896 if (! check_dynsym (finfo->output_bfd, &sym))
8898 eoinfo->failed = TRUE;
8899 return FALSE;
8901 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8903 if (finfo->hash_sec != NULL)
8905 size_t hash_entry_size;
8906 bfd_byte *bucketpos;
8907 bfd_vma chain;
8908 size_t bucketcount;
8909 size_t bucket;
8911 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8912 bucket = h->u.elf_hash_value % bucketcount;
8914 hash_entry_size
8915 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8916 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8917 + (bucket + 2) * hash_entry_size);
8918 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8919 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8920 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8921 ((bfd_byte *) finfo->hash_sec->contents
8922 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8925 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8927 Elf_Internal_Versym iversym;
8928 Elf_External_Versym *eversym;
8930 if (!h->def_regular)
8932 if (h->verinfo.verdef == NULL)
8933 iversym.vs_vers = 0;
8934 else
8935 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8937 else
8939 if (h->verinfo.vertree == NULL)
8940 iversym.vs_vers = 1;
8941 else
8942 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8943 if (finfo->info->create_default_symver)
8944 iversym.vs_vers++;
8947 if (h->hidden)
8948 iversym.vs_vers |= VERSYM_HIDDEN;
8950 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8951 eversym += h->dynindx;
8952 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8956 /* If we're stripping it, then it was just a dynamic symbol, and
8957 there's nothing else to do. */
8958 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8959 return TRUE;
8961 indx = bfd_get_symcount (finfo->output_bfd);
8962 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8963 if (ret == 0)
8965 eoinfo->failed = TRUE;
8966 return FALSE;
8968 else if (ret == 1)
8969 h->indx = indx;
8970 else if (h->indx == -2)
8971 abort();
8973 return TRUE;
8976 /* Return TRUE if special handling is done for relocs in SEC against
8977 symbols defined in discarded sections. */
8979 static bfd_boolean
8980 elf_section_ignore_discarded_relocs (asection *sec)
8982 const struct elf_backend_data *bed;
8984 switch (sec->sec_info_type)
8986 case ELF_INFO_TYPE_STABS:
8987 case ELF_INFO_TYPE_EH_FRAME:
8988 return TRUE;
8989 default:
8990 break;
8993 bed = get_elf_backend_data (sec->owner);
8994 if (bed->elf_backend_ignore_discarded_relocs != NULL
8995 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8996 return TRUE;
8998 return FALSE;
9001 /* Return a mask saying how ld should treat relocations in SEC against
9002 symbols defined in discarded sections. If this function returns
9003 COMPLAIN set, ld will issue a warning message. If this function
9004 returns PRETEND set, and the discarded section was link-once and the
9005 same size as the kept link-once section, ld will pretend that the
9006 symbol was actually defined in the kept section. Otherwise ld will
9007 zero the reloc (at least that is the intent, but some cooperation by
9008 the target dependent code is needed, particularly for REL targets). */
9010 unsigned int
9011 _bfd_elf_default_action_discarded (asection *sec)
9013 if (sec->flags & SEC_DEBUGGING)
9014 return PRETEND;
9016 if (strcmp (".eh_frame", sec->name) == 0)
9017 return 0;
9019 if (strcmp (".gcc_except_table", sec->name) == 0)
9020 return 0;
9022 return COMPLAIN | PRETEND;
9025 /* Find a match between a section and a member of a section group. */
9027 static asection *
9028 match_group_member (asection *sec, asection *group,
9029 struct bfd_link_info *info)
9031 asection *first = elf_next_in_group (group);
9032 asection *s = first;
9034 while (s != NULL)
9036 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9037 return s;
9039 s = elf_next_in_group (s);
9040 if (s == first)
9041 break;
9044 return NULL;
9047 /* Check if the kept section of a discarded section SEC can be used
9048 to replace it. Return the replacement if it is OK. Otherwise return
9049 NULL. */
9051 asection *
9052 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9054 asection *kept;
9056 kept = sec->kept_section;
9057 if (kept != NULL)
9059 if ((kept->flags & SEC_GROUP) != 0)
9060 kept = match_group_member (sec, kept, info);
9061 if (kept != NULL
9062 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9063 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9064 kept = NULL;
9065 sec->kept_section = kept;
9067 return kept;
9070 /* Link an input file into the linker output file. This function
9071 handles all the sections and relocations of the input file at once.
9072 This is so that we only have to read the local symbols once, and
9073 don't have to keep them in memory. */
9075 static bfd_boolean
9076 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9078 int (*relocate_section)
9079 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9080 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9081 bfd *output_bfd;
9082 Elf_Internal_Shdr *symtab_hdr;
9083 size_t locsymcount;
9084 size_t extsymoff;
9085 Elf_Internal_Sym *isymbuf;
9086 Elf_Internal_Sym *isym;
9087 Elf_Internal_Sym *isymend;
9088 long *pindex;
9089 asection **ppsection;
9090 asection *o;
9091 const struct elf_backend_data *bed;
9092 struct elf_link_hash_entry **sym_hashes;
9094 output_bfd = finfo->output_bfd;
9095 bed = get_elf_backend_data (output_bfd);
9096 relocate_section = bed->elf_backend_relocate_section;
9098 /* If this is a dynamic object, we don't want to do anything here:
9099 we don't want the local symbols, and we don't want the section
9100 contents. */
9101 if ((input_bfd->flags & DYNAMIC) != 0)
9102 return TRUE;
9104 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9105 if (elf_bad_symtab (input_bfd))
9107 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9108 extsymoff = 0;
9110 else
9112 locsymcount = symtab_hdr->sh_info;
9113 extsymoff = symtab_hdr->sh_info;
9116 /* Read the local symbols. */
9117 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9118 if (isymbuf == NULL && locsymcount != 0)
9120 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9121 finfo->internal_syms,
9122 finfo->external_syms,
9123 finfo->locsym_shndx);
9124 if (isymbuf == NULL)
9125 return FALSE;
9128 /* Find local symbol sections and adjust values of symbols in
9129 SEC_MERGE sections. Write out those local symbols we know are
9130 going into the output file. */
9131 isymend = isymbuf + locsymcount;
9132 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9133 isym < isymend;
9134 isym++, pindex++, ppsection++)
9136 asection *isec;
9137 const char *name;
9138 Elf_Internal_Sym osym;
9139 long indx;
9140 int ret;
9142 *pindex = -1;
9144 if (elf_bad_symtab (input_bfd))
9146 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9148 *ppsection = NULL;
9149 continue;
9153 if (isym->st_shndx == SHN_UNDEF)
9154 isec = bfd_und_section_ptr;
9155 else if (isym->st_shndx == SHN_ABS)
9156 isec = bfd_abs_section_ptr;
9157 else if (isym->st_shndx == SHN_COMMON)
9158 isec = bfd_com_section_ptr;
9159 else
9161 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9162 if (isec == NULL)
9164 /* Don't attempt to output symbols with st_shnx in the
9165 reserved range other than SHN_ABS and SHN_COMMON. */
9166 *ppsection = NULL;
9167 continue;
9169 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9170 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9171 isym->st_value =
9172 _bfd_merged_section_offset (output_bfd, &isec,
9173 elf_section_data (isec)->sec_info,
9174 isym->st_value);
9177 *ppsection = isec;
9179 /* Don't output the first, undefined, symbol. */
9180 if (ppsection == finfo->sections)
9181 continue;
9183 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9185 /* We never output section symbols. Instead, we use the
9186 section symbol of the corresponding section in the output
9187 file. */
9188 continue;
9191 /* If we are stripping all symbols, we don't want to output this
9192 one. */
9193 if (finfo->info->strip == strip_all)
9194 continue;
9196 /* If we are discarding all local symbols, we don't want to
9197 output this one. If we are generating a relocatable output
9198 file, then some of the local symbols may be required by
9199 relocs; we output them below as we discover that they are
9200 needed. */
9201 if (finfo->info->discard == discard_all)
9202 continue;
9204 /* If this symbol is defined in a section which we are
9205 discarding, we don't need to keep it. */
9206 if (isym->st_shndx != SHN_UNDEF
9207 && isym->st_shndx < SHN_LORESERVE
9208 && bfd_section_removed_from_list (output_bfd,
9209 isec->output_section))
9210 continue;
9212 /* Get the name of the symbol. */
9213 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9214 isym->st_name);
9215 if (name == NULL)
9216 return FALSE;
9218 /* See if we are discarding symbols with this name. */
9219 if ((finfo->info->strip == strip_some
9220 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9221 == NULL))
9222 || (((finfo->info->discard == discard_sec_merge
9223 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9224 || finfo->info->discard == discard_l)
9225 && bfd_is_local_label_name (input_bfd, name)))
9226 continue;
9228 osym = *isym;
9230 /* Adjust the section index for the output file. */
9231 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9232 isec->output_section);
9233 if (osym.st_shndx == SHN_BAD)
9234 return FALSE;
9236 /* ELF symbols in relocatable files are section relative, but
9237 in executable files they are virtual addresses. Note that
9238 this code assumes that all ELF sections have an associated
9239 BFD section with a reasonable value for output_offset; below
9240 we assume that they also have a reasonable value for
9241 output_section. Any special sections must be set up to meet
9242 these requirements. */
9243 osym.st_value += isec->output_offset;
9244 if (! finfo->info->relocatable)
9246 osym.st_value += isec->output_section->vma;
9247 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9249 /* STT_TLS symbols are relative to PT_TLS segment base. */
9250 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9251 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9255 indx = bfd_get_symcount (output_bfd);
9256 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9257 if (ret == 0)
9258 return FALSE;
9259 else if (ret == 1)
9260 *pindex = indx;
9263 /* Relocate the contents of each section. */
9264 sym_hashes = elf_sym_hashes (input_bfd);
9265 for (o = input_bfd->sections; o != NULL; o = o->next)
9267 bfd_byte *contents;
9269 if (! o->linker_mark)
9271 /* This section was omitted from the link. */
9272 continue;
9275 if (finfo->info->relocatable
9276 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9278 /* Deal with the group signature symbol. */
9279 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9280 unsigned long symndx = sec_data->this_hdr.sh_info;
9281 asection *osec = o->output_section;
9283 if (symndx >= locsymcount
9284 || (elf_bad_symtab (input_bfd)
9285 && finfo->sections[symndx] == NULL))
9287 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9288 while (h->root.type == bfd_link_hash_indirect
9289 || h->root.type == bfd_link_hash_warning)
9290 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9291 /* Arrange for symbol to be output. */
9292 h->indx = -2;
9293 elf_section_data (osec)->this_hdr.sh_info = -2;
9295 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9297 /* We'll use the output section target_index. */
9298 asection *sec = finfo->sections[symndx]->output_section;
9299 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9301 else
9303 if (finfo->indices[symndx] == -1)
9305 /* Otherwise output the local symbol now. */
9306 Elf_Internal_Sym sym = isymbuf[symndx];
9307 asection *sec = finfo->sections[symndx]->output_section;
9308 const char *name;
9309 long indx;
9310 int ret;
9312 name = bfd_elf_string_from_elf_section (input_bfd,
9313 symtab_hdr->sh_link,
9314 sym.st_name);
9315 if (name == NULL)
9316 return FALSE;
9318 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9319 sec);
9320 if (sym.st_shndx == SHN_BAD)
9321 return FALSE;
9323 sym.st_value += o->output_offset;
9325 indx = bfd_get_symcount (output_bfd);
9326 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9327 if (ret == 0)
9328 return FALSE;
9329 else if (ret == 1)
9330 finfo->indices[symndx] = indx;
9331 else
9332 abort ();
9334 elf_section_data (osec)->this_hdr.sh_info
9335 = finfo->indices[symndx];
9339 if ((o->flags & SEC_HAS_CONTENTS) == 0
9340 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9341 continue;
9343 if ((o->flags & SEC_LINKER_CREATED) != 0)
9345 /* Section was created by _bfd_elf_link_create_dynamic_sections
9346 or somesuch. */
9347 continue;
9350 /* Get the contents of the section. They have been cached by a
9351 relaxation routine. Note that o is a section in an input
9352 file, so the contents field will not have been set by any of
9353 the routines which work on output files. */
9354 if (elf_section_data (o)->this_hdr.contents != NULL)
9355 contents = elf_section_data (o)->this_hdr.contents;
9356 else
9358 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9360 contents = finfo->contents;
9361 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9362 return FALSE;
9365 if ((o->flags & SEC_RELOC) != 0)
9367 Elf_Internal_Rela *internal_relocs;
9368 Elf_Internal_Rela *rel, *relend;
9369 bfd_vma r_type_mask;
9370 int r_sym_shift;
9371 int action_discarded;
9372 int ret;
9374 /* Get the swapped relocs. */
9375 internal_relocs
9376 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9377 finfo->internal_relocs, FALSE);
9378 if (internal_relocs == NULL
9379 && o->reloc_count > 0)
9380 return FALSE;
9382 if (bed->s->arch_size == 32)
9384 r_type_mask = 0xff;
9385 r_sym_shift = 8;
9387 else
9389 r_type_mask = 0xffffffff;
9390 r_sym_shift = 32;
9393 action_discarded = -1;
9394 if (!elf_section_ignore_discarded_relocs (o))
9395 action_discarded = (*bed->action_discarded) (o);
9397 /* Run through the relocs evaluating complex reloc symbols and
9398 looking for relocs against symbols from discarded sections
9399 or section symbols from removed link-once sections.
9400 Complain about relocs against discarded sections. Zero
9401 relocs against removed link-once sections. */
9403 rel = internal_relocs;
9404 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9405 for ( ; rel < relend; rel++)
9407 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9408 unsigned int s_type;
9409 asection **ps, *sec;
9410 struct elf_link_hash_entry *h = NULL;
9411 const char *sym_name;
9413 if (r_symndx == STN_UNDEF)
9414 continue;
9416 if (r_symndx >= locsymcount
9417 || (elf_bad_symtab (input_bfd)
9418 && finfo->sections[r_symndx] == NULL))
9420 h = sym_hashes[r_symndx - extsymoff];
9422 /* Badly formatted input files can contain relocs that
9423 reference non-existant symbols. Check here so that
9424 we do not seg fault. */
9425 if (h == NULL)
9427 char buffer [32];
9429 sprintf_vma (buffer, rel->r_info);
9430 (*_bfd_error_handler)
9431 (_("error: %B contains a reloc (0x%s) for section %A "
9432 "that references a non-existent global symbol"),
9433 input_bfd, o, buffer);
9434 bfd_set_error (bfd_error_bad_value);
9435 return FALSE;
9438 while (h->root.type == bfd_link_hash_indirect
9439 || h->root.type == bfd_link_hash_warning)
9440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9442 s_type = h->type;
9444 ps = NULL;
9445 if (h->root.type == bfd_link_hash_defined
9446 || h->root.type == bfd_link_hash_defweak)
9447 ps = &h->root.u.def.section;
9449 sym_name = h->root.root.string;
9451 else
9453 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9455 s_type = ELF_ST_TYPE (sym->st_info);
9456 ps = &finfo->sections[r_symndx];
9457 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9458 sym, *ps);
9461 if ((s_type == STT_RELC || s_type == STT_SRELC)
9462 && !finfo->info->relocatable)
9464 bfd_vma val;
9465 bfd_vma dot = (rel->r_offset
9466 + o->output_offset + o->output_section->vma);
9467 #ifdef DEBUG
9468 printf ("Encountered a complex symbol!");
9469 printf (" (input_bfd %s, section %s, reloc %ld\n",
9470 input_bfd->filename, o->name, rel - internal_relocs);
9471 printf (" symbol: idx %8.8lx, name %s\n",
9472 r_symndx, sym_name);
9473 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9474 (unsigned long) rel->r_info,
9475 (unsigned long) rel->r_offset);
9476 #endif
9477 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9478 isymbuf, locsymcount, s_type == STT_SRELC))
9479 return FALSE;
9481 /* Symbol evaluated OK. Update to absolute value. */
9482 set_symbol_value (input_bfd, isymbuf, locsymcount,
9483 r_symndx, val);
9484 continue;
9487 if (action_discarded != -1 && ps != NULL)
9489 /* Complain if the definition comes from a
9490 discarded section. */
9491 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9493 BFD_ASSERT (r_symndx != 0);
9494 if (action_discarded & COMPLAIN)
9495 (*finfo->info->callbacks->einfo)
9496 (_("%X`%s' referenced in section `%A' of %B: "
9497 "defined in discarded section `%A' of %B\n"),
9498 sym_name, o, input_bfd, sec, sec->owner);
9500 /* Try to do the best we can to support buggy old
9501 versions of gcc. Pretend that the symbol is
9502 really defined in the kept linkonce section.
9503 FIXME: This is quite broken. Modifying the
9504 symbol here means we will be changing all later
9505 uses of the symbol, not just in this section. */
9506 if (action_discarded & PRETEND)
9508 asection *kept;
9510 kept = _bfd_elf_check_kept_section (sec,
9511 finfo->info);
9512 if (kept != NULL)
9514 *ps = kept;
9515 continue;
9522 /* Relocate the section by invoking a back end routine.
9524 The back end routine is responsible for adjusting the
9525 section contents as necessary, and (if using Rela relocs
9526 and generating a relocatable output file) adjusting the
9527 reloc addend as necessary.
9529 The back end routine does not have to worry about setting
9530 the reloc address or the reloc symbol index.
9532 The back end routine is given a pointer to the swapped in
9533 internal symbols, and can access the hash table entries
9534 for the external symbols via elf_sym_hashes (input_bfd).
9536 When generating relocatable output, the back end routine
9537 must handle STB_LOCAL/STT_SECTION symbols specially. The
9538 output symbol is going to be a section symbol
9539 corresponding to the output section, which will require
9540 the addend to be adjusted. */
9542 ret = (*relocate_section) (output_bfd, finfo->info,
9543 input_bfd, o, contents,
9544 internal_relocs,
9545 isymbuf,
9546 finfo->sections);
9547 if (!ret)
9548 return FALSE;
9550 if (ret == 2
9551 || finfo->info->relocatable
9552 || finfo->info->emitrelocations)
9554 Elf_Internal_Rela *irela;
9555 Elf_Internal_Rela *irelaend;
9556 bfd_vma last_offset;
9557 struct elf_link_hash_entry **rel_hash;
9558 struct elf_link_hash_entry **rel_hash_list;
9559 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9560 unsigned int next_erel;
9561 bfd_boolean rela_normal;
9563 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9564 rela_normal = (bed->rela_normal
9565 && (input_rel_hdr->sh_entsize
9566 == bed->s->sizeof_rela));
9568 /* Adjust the reloc addresses and symbol indices. */
9570 irela = internal_relocs;
9571 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9572 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9573 + elf_section_data (o->output_section)->rel_count
9574 + elf_section_data (o->output_section)->rel_count2);
9575 rel_hash_list = rel_hash;
9576 last_offset = o->output_offset;
9577 if (!finfo->info->relocatable)
9578 last_offset += o->output_section->vma;
9579 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9581 unsigned long r_symndx;
9582 asection *sec;
9583 Elf_Internal_Sym sym;
9585 if (next_erel == bed->s->int_rels_per_ext_rel)
9587 rel_hash++;
9588 next_erel = 0;
9591 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9592 finfo->info, o,
9593 irela->r_offset);
9594 if (irela->r_offset >= (bfd_vma) -2)
9596 /* This is a reloc for a deleted entry or somesuch.
9597 Turn it into an R_*_NONE reloc, at the same
9598 offset as the last reloc. elf_eh_frame.c and
9599 bfd_elf_discard_info rely on reloc offsets
9600 being ordered. */
9601 irela->r_offset = last_offset;
9602 irela->r_info = 0;
9603 irela->r_addend = 0;
9604 continue;
9607 irela->r_offset += o->output_offset;
9609 /* Relocs in an executable have to be virtual addresses. */
9610 if (!finfo->info->relocatable)
9611 irela->r_offset += o->output_section->vma;
9613 last_offset = irela->r_offset;
9615 r_symndx = irela->r_info >> r_sym_shift;
9616 if (r_symndx == STN_UNDEF)
9617 continue;
9619 if (r_symndx >= locsymcount
9620 || (elf_bad_symtab (input_bfd)
9621 && finfo->sections[r_symndx] == NULL))
9623 struct elf_link_hash_entry *rh;
9624 unsigned long indx;
9626 /* This is a reloc against a global symbol. We
9627 have not yet output all the local symbols, so
9628 we do not know the symbol index of any global
9629 symbol. We set the rel_hash entry for this
9630 reloc to point to the global hash table entry
9631 for this symbol. The symbol index is then
9632 set at the end of bfd_elf_final_link. */
9633 indx = r_symndx - extsymoff;
9634 rh = elf_sym_hashes (input_bfd)[indx];
9635 while (rh->root.type == bfd_link_hash_indirect
9636 || rh->root.type == bfd_link_hash_warning)
9637 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9639 /* Setting the index to -2 tells
9640 elf_link_output_extsym that this symbol is
9641 used by a reloc. */
9642 BFD_ASSERT (rh->indx < 0);
9643 rh->indx = -2;
9645 *rel_hash = rh;
9647 continue;
9650 /* This is a reloc against a local symbol. */
9652 *rel_hash = NULL;
9653 sym = isymbuf[r_symndx];
9654 sec = finfo->sections[r_symndx];
9655 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9657 /* I suppose the backend ought to fill in the
9658 section of any STT_SECTION symbol against a
9659 processor specific section. */
9660 r_symndx = 0;
9661 if (bfd_is_abs_section (sec))
9663 else if (sec == NULL || sec->owner == NULL)
9665 bfd_set_error (bfd_error_bad_value);
9666 return FALSE;
9668 else
9670 asection *osec = sec->output_section;
9672 /* If we have discarded a section, the output
9673 section will be the absolute section. In
9674 case of discarded SEC_MERGE sections, use
9675 the kept section. relocate_section should
9676 have already handled discarded linkonce
9677 sections. */
9678 if (bfd_is_abs_section (osec)
9679 && sec->kept_section != NULL
9680 && sec->kept_section->output_section != NULL)
9682 osec = sec->kept_section->output_section;
9683 irela->r_addend -= osec->vma;
9686 if (!bfd_is_abs_section (osec))
9688 r_symndx = osec->target_index;
9689 if (r_symndx == 0)
9691 struct elf_link_hash_table *htab;
9692 asection *oi;
9694 htab = elf_hash_table (finfo->info);
9695 oi = htab->text_index_section;
9696 if ((osec->flags & SEC_READONLY) == 0
9697 && htab->data_index_section != NULL)
9698 oi = htab->data_index_section;
9700 if (oi != NULL)
9702 irela->r_addend += osec->vma - oi->vma;
9703 r_symndx = oi->target_index;
9707 BFD_ASSERT (r_symndx != 0);
9711 /* Adjust the addend according to where the
9712 section winds up in the output section. */
9713 if (rela_normal)
9714 irela->r_addend += sec->output_offset;
9716 else
9718 if (finfo->indices[r_symndx] == -1)
9720 unsigned long shlink;
9721 const char *name;
9722 asection *osec;
9723 long indx;
9725 if (finfo->info->strip == strip_all)
9727 /* You can't do ld -r -s. */
9728 bfd_set_error (bfd_error_invalid_operation);
9729 return FALSE;
9732 /* This symbol was skipped earlier, but
9733 since it is needed by a reloc, we
9734 must output it now. */
9735 shlink = symtab_hdr->sh_link;
9736 name = (bfd_elf_string_from_elf_section
9737 (input_bfd, shlink, sym.st_name));
9738 if (name == NULL)
9739 return FALSE;
9741 osec = sec->output_section;
9742 sym.st_shndx =
9743 _bfd_elf_section_from_bfd_section (output_bfd,
9744 osec);
9745 if (sym.st_shndx == SHN_BAD)
9746 return FALSE;
9748 sym.st_value += sec->output_offset;
9749 if (! finfo->info->relocatable)
9751 sym.st_value += osec->vma;
9752 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9754 /* STT_TLS symbols are relative to PT_TLS
9755 segment base. */
9756 BFD_ASSERT (elf_hash_table (finfo->info)
9757 ->tls_sec != NULL);
9758 sym.st_value -= (elf_hash_table (finfo->info)
9759 ->tls_sec->vma);
9763 indx = bfd_get_symcount (output_bfd);
9764 ret = elf_link_output_sym (finfo, name, &sym, sec,
9765 NULL);
9766 if (ret == 0)
9767 return FALSE;
9768 else if (ret == 1)
9769 finfo->indices[r_symndx] = indx;
9770 else
9771 abort ();
9774 r_symndx = finfo->indices[r_symndx];
9777 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9778 | (irela->r_info & r_type_mask));
9781 /* Swap out the relocs. */
9782 if (input_rel_hdr->sh_size != 0
9783 && !bed->elf_backend_emit_relocs (output_bfd, o,
9784 input_rel_hdr,
9785 internal_relocs,
9786 rel_hash_list))
9787 return FALSE;
9789 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9790 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9792 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9793 * bed->s->int_rels_per_ext_rel);
9794 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9795 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9796 input_rel_hdr2,
9797 internal_relocs,
9798 rel_hash_list))
9799 return FALSE;
9804 /* Write out the modified section contents. */
9805 if (bed->elf_backend_write_section
9806 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9807 contents))
9809 /* Section written out. */
9811 else switch (o->sec_info_type)
9813 case ELF_INFO_TYPE_STABS:
9814 if (! (_bfd_write_section_stabs
9815 (output_bfd,
9816 &elf_hash_table (finfo->info)->stab_info,
9817 o, &elf_section_data (o)->sec_info, contents)))
9818 return FALSE;
9819 break;
9820 case ELF_INFO_TYPE_MERGE:
9821 if (! _bfd_write_merged_section (output_bfd, o,
9822 elf_section_data (o)->sec_info))
9823 return FALSE;
9824 break;
9825 case ELF_INFO_TYPE_EH_FRAME:
9827 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9828 o, contents))
9829 return FALSE;
9831 break;
9832 default:
9834 /* FIXME: octets_per_byte. */
9835 if (! (o->flags & SEC_EXCLUDE)
9836 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9837 && ! bfd_set_section_contents (output_bfd, o->output_section,
9838 contents,
9839 (file_ptr) o->output_offset,
9840 o->size))
9841 return FALSE;
9843 break;
9847 return TRUE;
9850 /* Generate a reloc when linking an ELF file. This is a reloc
9851 requested by the linker, and does not come from any input file. This
9852 is used to build constructor and destructor tables when linking
9853 with -Ur. */
9855 static bfd_boolean
9856 elf_reloc_link_order (bfd *output_bfd,
9857 struct bfd_link_info *info,
9858 asection *output_section,
9859 struct bfd_link_order *link_order)
9861 reloc_howto_type *howto;
9862 long indx;
9863 bfd_vma offset;
9864 bfd_vma addend;
9865 struct elf_link_hash_entry **rel_hash_ptr;
9866 Elf_Internal_Shdr *rel_hdr;
9867 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9868 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9869 bfd_byte *erel;
9870 unsigned int i;
9872 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9873 if (howto == NULL)
9875 bfd_set_error (bfd_error_bad_value);
9876 return FALSE;
9879 addend = link_order->u.reloc.p->addend;
9881 /* Figure out the symbol index. */
9882 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9883 + elf_section_data (output_section)->rel_count
9884 + elf_section_data (output_section)->rel_count2);
9885 if (link_order->type == bfd_section_reloc_link_order)
9887 indx = link_order->u.reloc.p->u.section->target_index;
9888 BFD_ASSERT (indx != 0);
9889 *rel_hash_ptr = NULL;
9891 else
9893 struct elf_link_hash_entry *h;
9895 /* Treat a reloc against a defined symbol as though it were
9896 actually against the section. */
9897 h = ((struct elf_link_hash_entry *)
9898 bfd_wrapped_link_hash_lookup (output_bfd, info,
9899 link_order->u.reloc.p->u.name,
9900 FALSE, FALSE, TRUE));
9901 if (h != NULL
9902 && (h->root.type == bfd_link_hash_defined
9903 || h->root.type == bfd_link_hash_defweak))
9905 asection *section;
9907 section = h->root.u.def.section;
9908 indx = section->output_section->target_index;
9909 *rel_hash_ptr = NULL;
9910 /* It seems that we ought to add the symbol value to the
9911 addend here, but in practice it has already been added
9912 because it was passed to constructor_callback. */
9913 addend += section->output_section->vma + section->output_offset;
9915 else if (h != NULL)
9917 /* Setting the index to -2 tells elf_link_output_extsym that
9918 this symbol is used by a reloc. */
9919 h->indx = -2;
9920 *rel_hash_ptr = h;
9921 indx = 0;
9923 else
9925 if (! ((*info->callbacks->unattached_reloc)
9926 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9927 return FALSE;
9928 indx = 0;
9932 /* If this is an inplace reloc, we must write the addend into the
9933 object file. */
9934 if (howto->partial_inplace && addend != 0)
9936 bfd_size_type size;
9937 bfd_reloc_status_type rstat;
9938 bfd_byte *buf;
9939 bfd_boolean ok;
9940 const char *sym_name;
9942 size = (bfd_size_type) bfd_get_reloc_size (howto);
9943 buf = (bfd_byte *) bfd_zmalloc (size);
9944 if (buf == NULL)
9945 return FALSE;
9946 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9947 switch (rstat)
9949 case bfd_reloc_ok:
9950 break;
9952 default:
9953 case bfd_reloc_outofrange:
9954 abort ();
9956 case bfd_reloc_overflow:
9957 if (link_order->type == bfd_section_reloc_link_order)
9958 sym_name = bfd_section_name (output_bfd,
9959 link_order->u.reloc.p->u.section);
9960 else
9961 sym_name = link_order->u.reloc.p->u.name;
9962 if (! ((*info->callbacks->reloc_overflow)
9963 (info, NULL, sym_name, howto->name, addend, NULL,
9964 NULL, (bfd_vma) 0)))
9966 free (buf);
9967 return FALSE;
9969 break;
9971 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9972 link_order->offset, size);
9973 free (buf);
9974 if (! ok)
9975 return FALSE;
9978 /* The address of a reloc is relative to the section in a
9979 relocatable file, and is a virtual address in an executable
9980 file. */
9981 offset = link_order->offset;
9982 if (! info->relocatable)
9983 offset += output_section->vma;
9985 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9987 irel[i].r_offset = offset;
9988 irel[i].r_info = 0;
9989 irel[i].r_addend = 0;
9991 if (bed->s->arch_size == 32)
9992 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9993 else
9994 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9996 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9997 erel = rel_hdr->contents;
9998 if (rel_hdr->sh_type == SHT_REL)
10000 erel += (elf_section_data (output_section)->rel_count
10001 * bed->s->sizeof_rel);
10002 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10004 else
10006 irel[0].r_addend = addend;
10007 erel += (elf_section_data (output_section)->rel_count
10008 * bed->s->sizeof_rela);
10009 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10012 ++elf_section_data (output_section)->rel_count;
10014 return TRUE;
10018 /* Get the output vma of the section pointed to by the sh_link field. */
10020 static bfd_vma
10021 elf_get_linked_section_vma (struct bfd_link_order *p)
10023 Elf_Internal_Shdr **elf_shdrp;
10024 asection *s;
10025 int elfsec;
10027 s = p->u.indirect.section;
10028 elf_shdrp = elf_elfsections (s->owner);
10029 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10030 elfsec = elf_shdrp[elfsec]->sh_link;
10031 /* PR 290:
10032 The Intel C compiler generates SHT_IA_64_UNWIND with
10033 SHF_LINK_ORDER. But it doesn't set the sh_link or
10034 sh_info fields. Hence we could get the situation
10035 where elfsec is 0. */
10036 if (elfsec == 0)
10038 const struct elf_backend_data *bed
10039 = get_elf_backend_data (s->owner);
10040 if (bed->link_order_error_handler)
10041 bed->link_order_error_handler
10042 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10043 return 0;
10045 else
10047 s = elf_shdrp[elfsec]->bfd_section;
10048 return s->output_section->vma + s->output_offset;
10053 /* Compare two sections based on the locations of the sections they are
10054 linked to. Used by elf_fixup_link_order. */
10056 static int
10057 compare_link_order (const void * a, const void * b)
10059 bfd_vma apos;
10060 bfd_vma bpos;
10062 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10063 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10064 if (apos < bpos)
10065 return -1;
10066 return apos > bpos;
10070 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10071 order as their linked sections. Returns false if this could not be done
10072 because an output section includes both ordered and unordered
10073 sections. Ideally we'd do this in the linker proper. */
10075 static bfd_boolean
10076 elf_fixup_link_order (bfd *abfd, asection *o)
10078 int seen_linkorder;
10079 int seen_other;
10080 int n;
10081 struct bfd_link_order *p;
10082 bfd *sub;
10083 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10084 unsigned elfsec;
10085 struct bfd_link_order **sections;
10086 asection *s, *other_sec, *linkorder_sec;
10087 bfd_vma offset;
10089 other_sec = NULL;
10090 linkorder_sec = NULL;
10091 seen_other = 0;
10092 seen_linkorder = 0;
10093 for (p = o->map_head.link_order; p != NULL; p = p->next)
10095 if (p->type == bfd_indirect_link_order)
10097 s = p->u.indirect.section;
10098 sub = s->owner;
10099 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10100 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10101 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10102 && elfsec < elf_numsections (sub)
10103 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10104 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10106 seen_linkorder++;
10107 linkorder_sec = s;
10109 else
10111 seen_other++;
10112 other_sec = s;
10115 else
10116 seen_other++;
10118 if (seen_other && seen_linkorder)
10120 if (other_sec && linkorder_sec)
10121 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10122 o, linkorder_sec,
10123 linkorder_sec->owner, other_sec,
10124 other_sec->owner);
10125 else
10126 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10128 bfd_set_error (bfd_error_bad_value);
10129 return FALSE;
10133 if (!seen_linkorder)
10134 return TRUE;
10136 sections = (struct bfd_link_order **)
10137 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10138 if (sections == NULL)
10139 return FALSE;
10140 seen_linkorder = 0;
10142 for (p = o->map_head.link_order; p != NULL; p = p->next)
10144 sections[seen_linkorder++] = p;
10146 /* Sort the input sections in the order of their linked section. */
10147 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10148 compare_link_order);
10150 /* Change the offsets of the sections. */
10151 offset = 0;
10152 for (n = 0; n < seen_linkorder; n++)
10154 s = sections[n]->u.indirect.section;
10155 offset &= ~(bfd_vma) 0 << s->alignment_power;
10156 s->output_offset = offset;
10157 sections[n]->offset = offset;
10158 /* FIXME: octets_per_byte. */
10159 offset += sections[n]->size;
10162 free (sections);
10163 return TRUE;
10167 /* Do the final step of an ELF link. */
10169 bfd_boolean
10170 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10172 bfd_boolean dynamic;
10173 bfd_boolean emit_relocs;
10174 bfd *dynobj;
10175 struct elf_final_link_info finfo;
10176 asection *o;
10177 struct bfd_link_order *p;
10178 bfd *sub;
10179 bfd_size_type max_contents_size;
10180 bfd_size_type max_external_reloc_size;
10181 bfd_size_type max_internal_reloc_count;
10182 bfd_size_type max_sym_count;
10183 bfd_size_type max_sym_shndx_count;
10184 file_ptr off;
10185 Elf_Internal_Sym elfsym;
10186 unsigned int i;
10187 Elf_Internal_Shdr *symtab_hdr;
10188 Elf_Internal_Shdr *symtab_shndx_hdr;
10189 Elf_Internal_Shdr *symstrtab_hdr;
10190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10191 struct elf_outext_info eoinfo;
10192 bfd_boolean merged;
10193 size_t relativecount = 0;
10194 asection *reldyn = 0;
10195 bfd_size_type amt;
10196 asection *attr_section = NULL;
10197 bfd_vma attr_size = 0;
10198 const char *std_attrs_section;
10200 if (! is_elf_hash_table (info->hash))
10201 return FALSE;
10203 if (info->shared)
10204 abfd->flags |= DYNAMIC;
10206 dynamic = elf_hash_table (info)->dynamic_sections_created;
10207 dynobj = elf_hash_table (info)->dynobj;
10209 emit_relocs = (info->relocatable
10210 || info->emitrelocations);
10212 finfo.info = info;
10213 finfo.output_bfd = abfd;
10214 finfo.symstrtab = _bfd_elf_stringtab_init ();
10215 if (finfo.symstrtab == NULL)
10216 return FALSE;
10218 if (! dynamic)
10220 finfo.dynsym_sec = NULL;
10221 finfo.hash_sec = NULL;
10222 finfo.symver_sec = NULL;
10224 else
10226 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10227 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10228 BFD_ASSERT (finfo.dynsym_sec != NULL);
10229 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10230 /* Note that it is OK if symver_sec is NULL. */
10233 finfo.contents = NULL;
10234 finfo.external_relocs = NULL;
10235 finfo.internal_relocs = NULL;
10236 finfo.external_syms = NULL;
10237 finfo.locsym_shndx = NULL;
10238 finfo.internal_syms = NULL;
10239 finfo.indices = NULL;
10240 finfo.sections = NULL;
10241 finfo.symbuf = NULL;
10242 finfo.symshndxbuf = NULL;
10243 finfo.symbuf_count = 0;
10244 finfo.shndxbuf_size = 0;
10246 /* The object attributes have been merged. Remove the input
10247 sections from the link, and set the contents of the output
10248 secton. */
10249 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10250 for (o = abfd->sections; o != NULL; o = o->next)
10252 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10253 || strcmp (o->name, ".gnu.attributes") == 0)
10255 for (p = o->map_head.link_order; p != NULL; p = p->next)
10257 asection *input_section;
10259 if (p->type != bfd_indirect_link_order)
10260 continue;
10261 input_section = p->u.indirect.section;
10262 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10263 elf_link_input_bfd ignores this section. */
10264 input_section->flags &= ~SEC_HAS_CONTENTS;
10267 attr_size = bfd_elf_obj_attr_size (abfd);
10268 if (attr_size)
10270 bfd_set_section_size (abfd, o, attr_size);
10271 attr_section = o;
10272 /* Skip this section later on. */
10273 o->map_head.link_order = NULL;
10275 else
10276 o->flags |= SEC_EXCLUDE;
10280 /* Count up the number of relocations we will output for each output
10281 section, so that we know the sizes of the reloc sections. We
10282 also figure out some maximum sizes. */
10283 max_contents_size = 0;
10284 max_external_reloc_size = 0;
10285 max_internal_reloc_count = 0;
10286 max_sym_count = 0;
10287 max_sym_shndx_count = 0;
10288 merged = FALSE;
10289 for (o = abfd->sections; o != NULL; o = o->next)
10291 struct bfd_elf_section_data *esdo = elf_section_data (o);
10292 o->reloc_count = 0;
10294 for (p = o->map_head.link_order; p != NULL; p = p->next)
10296 unsigned int reloc_count = 0;
10297 struct bfd_elf_section_data *esdi = NULL;
10298 unsigned int *rel_count1;
10300 if (p->type == bfd_section_reloc_link_order
10301 || p->type == bfd_symbol_reloc_link_order)
10302 reloc_count = 1;
10303 else if (p->type == bfd_indirect_link_order)
10305 asection *sec;
10307 sec = p->u.indirect.section;
10308 esdi = elf_section_data (sec);
10310 /* Mark all sections which are to be included in the
10311 link. This will normally be every section. We need
10312 to do this so that we can identify any sections which
10313 the linker has decided to not include. */
10314 sec->linker_mark = TRUE;
10316 if (sec->flags & SEC_MERGE)
10317 merged = TRUE;
10319 if (info->relocatable || info->emitrelocations)
10320 reloc_count = sec->reloc_count;
10321 else if (bed->elf_backend_count_relocs)
10322 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10324 if (sec->rawsize > max_contents_size)
10325 max_contents_size = sec->rawsize;
10326 if (sec->size > max_contents_size)
10327 max_contents_size = sec->size;
10329 /* We are interested in just local symbols, not all
10330 symbols. */
10331 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10332 && (sec->owner->flags & DYNAMIC) == 0)
10334 size_t sym_count;
10336 if (elf_bad_symtab (sec->owner))
10337 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10338 / bed->s->sizeof_sym);
10339 else
10340 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10342 if (sym_count > max_sym_count)
10343 max_sym_count = sym_count;
10345 if (sym_count > max_sym_shndx_count
10346 && elf_symtab_shndx (sec->owner) != 0)
10347 max_sym_shndx_count = sym_count;
10349 if ((sec->flags & SEC_RELOC) != 0)
10351 size_t ext_size;
10353 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10354 if (ext_size > max_external_reloc_size)
10355 max_external_reloc_size = ext_size;
10356 if (sec->reloc_count > max_internal_reloc_count)
10357 max_internal_reloc_count = sec->reloc_count;
10362 if (reloc_count == 0)
10363 continue;
10365 o->reloc_count += reloc_count;
10367 /* MIPS may have a mix of REL and RELA relocs on sections.
10368 To support this curious ABI we keep reloc counts in
10369 elf_section_data too. We must be careful to add the
10370 relocations from the input section to the right output
10371 count. FIXME: Get rid of one count. We have
10372 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10373 rel_count1 = &esdo->rel_count;
10374 if (esdi != NULL)
10376 bfd_boolean same_size;
10377 bfd_size_type entsize1;
10379 entsize1 = esdi->rel_hdr.sh_entsize;
10380 /* PR 9827: If the header size has not been set yet then
10381 assume that it will match the output section's reloc type. */
10382 if (entsize1 == 0)
10383 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10384 else
10385 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10386 || entsize1 == bed->s->sizeof_rela);
10387 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10389 if (!same_size)
10390 rel_count1 = &esdo->rel_count2;
10392 if (esdi->rel_hdr2 != NULL)
10394 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10395 unsigned int alt_count;
10396 unsigned int *rel_count2;
10398 BFD_ASSERT (entsize2 != entsize1
10399 && (entsize2 == bed->s->sizeof_rel
10400 || entsize2 == bed->s->sizeof_rela));
10402 rel_count2 = &esdo->rel_count2;
10403 if (!same_size)
10404 rel_count2 = &esdo->rel_count;
10406 /* The following is probably too simplistic if the
10407 backend counts output relocs unusually. */
10408 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10409 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10410 *rel_count2 += alt_count;
10411 reloc_count -= alt_count;
10414 *rel_count1 += reloc_count;
10417 if (o->reloc_count > 0)
10418 o->flags |= SEC_RELOC;
10419 else
10421 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10422 set it (this is probably a bug) and if it is set
10423 assign_section_numbers will create a reloc section. */
10424 o->flags &=~ SEC_RELOC;
10427 /* If the SEC_ALLOC flag is not set, force the section VMA to
10428 zero. This is done in elf_fake_sections as well, but forcing
10429 the VMA to 0 here will ensure that relocs against these
10430 sections are handled correctly. */
10431 if ((o->flags & SEC_ALLOC) == 0
10432 && ! o->user_set_vma)
10433 o->vma = 0;
10436 if (! info->relocatable && merged)
10437 elf_link_hash_traverse (elf_hash_table (info),
10438 _bfd_elf_link_sec_merge_syms, abfd);
10440 /* Figure out the file positions for everything but the symbol table
10441 and the relocs. We set symcount to force assign_section_numbers
10442 to create a symbol table. */
10443 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10444 BFD_ASSERT (! abfd->output_has_begun);
10445 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10446 goto error_return;
10448 /* Set sizes, and assign file positions for reloc sections. */
10449 for (o = abfd->sections; o != NULL; o = o->next)
10451 if ((o->flags & SEC_RELOC) != 0)
10453 if (!(_bfd_elf_link_size_reloc_section
10454 (abfd, &elf_section_data (o)->rel_hdr, o)))
10455 goto error_return;
10457 if (elf_section_data (o)->rel_hdr2
10458 && !(_bfd_elf_link_size_reloc_section
10459 (abfd, elf_section_data (o)->rel_hdr2, o)))
10460 goto error_return;
10463 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10464 to count upwards while actually outputting the relocations. */
10465 elf_section_data (o)->rel_count = 0;
10466 elf_section_data (o)->rel_count2 = 0;
10469 _bfd_elf_assign_file_positions_for_relocs (abfd);
10471 /* We have now assigned file positions for all the sections except
10472 .symtab and .strtab. We start the .symtab section at the current
10473 file position, and write directly to it. We build the .strtab
10474 section in memory. */
10475 bfd_get_symcount (abfd) = 0;
10476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10477 /* sh_name is set in prep_headers. */
10478 symtab_hdr->sh_type = SHT_SYMTAB;
10479 /* sh_flags, sh_addr and sh_size all start off zero. */
10480 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10481 /* sh_link is set in assign_section_numbers. */
10482 /* sh_info is set below. */
10483 /* sh_offset is set just below. */
10484 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10486 off = elf_tdata (abfd)->next_file_pos;
10487 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10489 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10490 incorrect. We do not yet know the size of the .symtab section.
10491 We correct next_file_pos below, after we do know the size. */
10493 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10494 continuously seeking to the right position in the file. */
10495 if (! info->keep_memory || max_sym_count < 20)
10496 finfo.symbuf_size = 20;
10497 else
10498 finfo.symbuf_size = max_sym_count;
10499 amt = finfo.symbuf_size;
10500 amt *= bed->s->sizeof_sym;
10501 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10502 if (finfo.symbuf == NULL)
10503 goto error_return;
10504 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10506 /* Wild guess at number of output symbols. realloc'd as needed. */
10507 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10508 finfo.shndxbuf_size = amt;
10509 amt *= sizeof (Elf_External_Sym_Shndx);
10510 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10511 if (finfo.symshndxbuf == NULL)
10512 goto error_return;
10515 /* Start writing out the symbol table. The first symbol is always a
10516 dummy symbol. */
10517 if (info->strip != strip_all
10518 || emit_relocs)
10520 elfsym.st_value = 0;
10521 elfsym.st_size = 0;
10522 elfsym.st_info = 0;
10523 elfsym.st_other = 0;
10524 elfsym.st_shndx = SHN_UNDEF;
10525 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10526 NULL) != 1)
10527 goto error_return;
10530 /* Output a symbol for each section. We output these even if we are
10531 discarding local symbols, since they are used for relocs. These
10532 symbols have no names. We store the index of each one in the
10533 index field of the section, so that we can find it again when
10534 outputting relocs. */
10535 if (info->strip != strip_all
10536 || emit_relocs)
10538 elfsym.st_size = 0;
10539 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10540 elfsym.st_other = 0;
10541 elfsym.st_value = 0;
10542 for (i = 1; i < elf_numsections (abfd); i++)
10544 o = bfd_section_from_elf_index (abfd, i);
10545 if (o != NULL)
10547 o->target_index = bfd_get_symcount (abfd);
10548 elfsym.st_shndx = i;
10549 if (!info->relocatable)
10550 elfsym.st_value = o->vma;
10551 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10552 goto error_return;
10557 /* Allocate some memory to hold information read in from the input
10558 files. */
10559 if (max_contents_size != 0)
10561 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10562 if (finfo.contents == NULL)
10563 goto error_return;
10566 if (max_external_reloc_size != 0)
10568 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10569 if (finfo.external_relocs == NULL)
10570 goto error_return;
10573 if (max_internal_reloc_count != 0)
10575 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10576 amt *= sizeof (Elf_Internal_Rela);
10577 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10578 if (finfo.internal_relocs == NULL)
10579 goto error_return;
10582 if (max_sym_count != 0)
10584 amt = max_sym_count * bed->s->sizeof_sym;
10585 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10586 if (finfo.external_syms == NULL)
10587 goto error_return;
10589 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10590 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10591 if (finfo.internal_syms == NULL)
10592 goto error_return;
10594 amt = max_sym_count * sizeof (long);
10595 finfo.indices = (long int *) bfd_malloc (amt);
10596 if (finfo.indices == NULL)
10597 goto error_return;
10599 amt = max_sym_count * sizeof (asection *);
10600 finfo.sections = (asection **) bfd_malloc (amt);
10601 if (finfo.sections == NULL)
10602 goto error_return;
10605 if (max_sym_shndx_count != 0)
10607 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10608 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10609 if (finfo.locsym_shndx == NULL)
10610 goto error_return;
10613 if (elf_hash_table (info)->tls_sec)
10615 bfd_vma base, end = 0;
10616 asection *sec;
10618 for (sec = elf_hash_table (info)->tls_sec;
10619 sec && (sec->flags & SEC_THREAD_LOCAL);
10620 sec = sec->next)
10622 bfd_size_type size = sec->size;
10624 if (size == 0
10625 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10627 struct bfd_link_order *ord = sec->map_tail.link_order;
10629 if (ord != NULL)
10630 size = ord->offset + ord->size;
10632 end = sec->vma + size;
10634 base = elf_hash_table (info)->tls_sec->vma;
10635 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10636 elf_hash_table (info)->tls_size = end - base;
10639 /* Reorder SHF_LINK_ORDER sections. */
10640 for (o = abfd->sections; o != NULL; o = o->next)
10642 if (!elf_fixup_link_order (abfd, o))
10643 return FALSE;
10646 /* Since ELF permits relocations to be against local symbols, we
10647 must have the local symbols available when we do the relocations.
10648 Since we would rather only read the local symbols once, and we
10649 would rather not keep them in memory, we handle all the
10650 relocations for a single input file at the same time.
10652 Unfortunately, there is no way to know the total number of local
10653 symbols until we have seen all of them, and the local symbol
10654 indices precede the global symbol indices. This means that when
10655 we are generating relocatable output, and we see a reloc against
10656 a global symbol, we can not know the symbol index until we have
10657 finished examining all the local symbols to see which ones we are
10658 going to output. To deal with this, we keep the relocations in
10659 memory, and don't output them until the end of the link. This is
10660 an unfortunate waste of memory, but I don't see a good way around
10661 it. Fortunately, it only happens when performing a relocatable
10662 link, which is not the common case. FIXME: If keep_memory is set
10663 we could write the relocs out and then read them again; I don't
10664 know how bad the memory loss will be. */
10666 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10667 sub->output_has_begun = FALSE;
10668 for (o = abfd->sections; o != NULL; o = o->next)
10670 for (p = o->map_head.link_order; p != NULL; p = p->next)
10672 if (p->type == bfd_indirect_link_order
10673 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10674 == bfd_target_elf_flavour)
10675 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10677 if (! sub->output_has_begun)
10679 if (! elf_link_input_bfd (&finfo, sub))
10680 goto error_return;
10681 sub->output_has_begun = TRUE;
10684 else if (p->type == bfd_section_reloc_link_order
10685 || p->type == bfd_symbol_reloc_link_order)
10687 if (! elf_reloc_link_order (abfd, info, o, p))
10688 goto error_return;
10690 else
10692 if (! _bfd_default_link_order (abfd, info, o, p))
10693 goto error_return;
10698 /* Free symbol buffer if needed. */
10699 if (!info->reduce_memory_overheads)
10701 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10702 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10703 && elf_tdata (sub)->symbuf)
10705 free (elf_tdata (sub)->symbuf);
10706 elf_tdata (sub)->symbuf = NULL;
10710 /* Output any global symbols that got converted to local in a
10711 version script or due to symbol visibility. We do this in a
10712 separate step since ELF requires all local symbols to appear
10713 prior to any global symbols. FIXME: We should only do this if
10714 some global symbols were, in fact, converted to become local.
10715 FIXME: Will this work correctly with the Irix 5 linker? */
10716 eoinfo.failed = FALSE;
10717 eoinfo.finfo = &finfo;
10718 eoinfo.localsyms = TRUE;
10719 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10720 &eoinfo);
10721 if (eoinfo.failed)
10722 return FALSE;
10724 /* If backend needs to output some local symbols not present in the hash
10725 table, do it now. */
10726 if (bed->elf_backend_output_arch_local_syms)
10728 typedef int (*out_sym_func)
10729 (void *, const char *, Elf_Internal_Sym *, asection *,
10730 struct elf_link_hash_entry *);
10732 if (! ((*bed->elf_backend_output_arch_local_syms)
10733 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10734 return FALSE;
10737 /* That wrote out all the local symbols. Finish up the symbol table
10738 with the global symbols. Even if we want to strip everything we
10739 can, we still need to deal with those global symbols that got
10740 converted to local in a version script. */
10742 /* The sh_info field records the index of the first non local symbol. */
10743 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10745 if (dynamic
10746 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10748 Elf_Internal_Sym sym;
10749 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10750 long last_local = 0;
10752 /* Write out the section symbols for the output sections. */
10753 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10755 asection *s;
10757 sym.st_size = 0;
10758 sym.st_name = 0;
10759 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10760 sym.st_other = 0;
10762 for (s = abfd->sections; s != NULL; s = s->next)
10764 int indx;
10765 bfd_byte *dest;
10766 long dynindx;
10768 dynindx = elf_section_data (s)->dynindx;
10769 if (dynindx <= 0)
10770 continue;
10771 indx = elf_section_data (s)->this_idx;
10772 BFD_ASSERT (indx > 0);
10773 sym.st_shndx = indx;
10774 if (! check_dynsym (abfd, &sym))
10775 return FALSE;
10776 sym.st_value = s->vma;
10777 dest = dynsym + dynindx * bed->s->sizeof_sym;
10778 if (last_local < dynindx)
10779 last_local = dynindx;
10780 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10784 /* Write out the local dynsyms. */
10785 if (elf_hash_table (info)->dynlocal)
10787 struct elf_link_local_dynamic_entry *e;
10788 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10790 asection *s;
10791 bfd_byte *dest;
10793 /* Copy the internal symbol and turn off visibility.
10794 Note that we saved a word of storage and overwrote
10795 the original st_name with the dynstr_index. */
10796 sym = e->isym;
10797 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10799 s = bfd_section_from_elf_index (e->input_bfd,
10800 e->isym.st_shndx);
10801 if (s != NULL)
10803 sym.st_shndx =
10804 elf_section_data (s->output_section)->this_idx;
10805 if (! check_dynsym (abfd, &sym))
10806 return FALSE;
10807 sym.st_value = (s->output_section->vma
10808 + s->output_offset
10809 + e->isym.st_value);
10812 if (last_local < e->dynindx)
10813 last_local = e->dynindx;
10815 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10816 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10820 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10821 last_local + 1;
10824 /* We get the global symbols from the hash table. */
10825 eoinfo.failed = FALSE;
10826 eoinfo.localsyms = FALSE;
10827 eoinfo.finfo = &finfo;
10828 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10829 &eoinfo);
10830 if (eoinfo.failed)
10831 return FALSE;
10833 /* If backend needs to output some symbols not present in the hash
10834 table, do it now. */
10835 if (bed->elf_backend_output_arch_syms)
10837 typedef int (*out_sym_func)
10838 (void *, const char *, Elf_Internal_Sym *, asection *,
10839 struct elf_link_hash_entry *);
10841 if (! ((*bed->elf_backend_output_arch_syms)
10842 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10843 return FALSE;
10846 /* Flush all symbols to the file. */
10847 if (! elf_link_flush_output_syms (&finfo, bed))
10848 return FALSE;
10850 /* Now we know the size of the symtab section. */
10851 off += symtab_hdr->sh_size;
10853 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10854 if (symtab_shndx_hdr->sh_name != 0)
10856 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10857 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10858 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10859 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10860 symtab_shndx_hdr->sh_size = amt;
10862 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10863 off, TRUE);
10865 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10866 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10867 return FALSE;
10871 /* Finish up and write out the symbol string table (.strtab)
10872 section. */
10873 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10874 /* sh_name was set in prep_headers. */
10875 symstrtab_hdr->sh_type = SHT_STRTAB;
10876 symstrtab_hdr->sh_flags = 0;
10877 symstrtab_hdr->sh_addr = 0;
10878 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10879 symstrtab_hdr->sh_entsize = 0;
10880 symstrtab_hdr->sh_link = 0;
10881 symstrtab_hdr->sh_info = 0;
10882 /* sh_offset is set just below. */
10883 symstrtab_hdr->sh_addralign = 1;
10885 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10886 elf_tdata (abfd)->next_file_pos = off;
10888 if (bfd_get_symcount (abfd) > 0)
10890 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10891 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10892 return FALSE;
10895 /* Adjust the relocs to have the correct symbol indices. */
10896 for (o = abfd->sections; o != NULL; o = o->next)
10898 if ((o->flags & SEC_RELOC) == 0)
10899 continue;
10901 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10902 elf_section_data (o)->rel_count,
10903 elf_section_data (o)->rel_hashes);
10904 if (elf_section_data (o)->rel_hdr2 != NULL)
10905 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10906 elf_section_data (o)->rel_count2,
10907 (elf_section_data (o)->rel_hashes
10908 + elf_section_data (o)->rel_count));
10910 /* Set the reloc_count field to 0 to prevent write_relocs from
10911 trying to swap the relocs out itself. */
10912 o->reloc_count = 0;
10915 if (dynamic && info->combreloc && dynobj != NULL)
10916 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10918 /* If we are linking against a dynamic object, or generating a
10919 shared library, finish up the dynamic linking information. */
10920 if (dynamic)
10922 bfd_byte *dyncon, *dynconend;
10924 /* Fix up .dynamic entries. */
10925 o = bfd_get_section_by_name (dynobj, ".dynamic");
10926 BFD_ASSERT (o != NULL);
10928 dyncon = o->contents;
10929 dynconend = o->contents + o->size;
10930 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10932 Elf_Internal_Dyn dyn;
10933 const char *name;
10934 unsigned int type;
10936 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10938 switch (dyn.d_tag)
10940 default:
10941 continue;
10942 case DT_NULL:
10943 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10945 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10947 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10948 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10949 default: continue;
10951 dyn.d_un.d_val = relativecount;
10952 relativecount = 0;
10953 break;
10955 continue;
10957 case DT_INIT:
10958 name = info->init_function;
10959 goto get_sym;
10960 case DT_FINI:
10961 name = info->fini_function;
10962 get_sym:
10964 struct elf_link_hash_entry *h;
10966 h = elf_link_hash_lookup (elf_hash_table (info), name,
10967 FALSE, FALSE, TRUE);
10968 if (h != NULL
10969 && (h->root.type == bfd_link_hash_defined
10970 || h->root.type == bfd_link_hash_defweak))
10972 dyn.d_un.d_ptr = h->root.u.def.value;
10973 o = h->root.u.def.section;
10974 if (o->output_section != NULL)
10975 dyn.d_un.d_ptr += (o->output_section->vma
10976 + o->output_offset);
10977 else
10979 /* The symbol is imported from another shared
10980 library and does not apply to this one. */
10981 dyn.d_un.d_ptr = 0;
10983 break;
10986 continue;
10988 case DT_PREINIT_ARRAYSZ:
10989 name = ".preinit_array";
10990 goto get_size;
10991 case DT_INIT_ARRAYSZ:
10992 name = ".init_array";
10993 goto get_size;
10994 case DT_FINI_ARRAYSZ:
10995 name = ".fini_array";
10996 get_size:
10997 o = bfd_get_section_by_name (abfd, name);
10998 if (o == NULL)
11000 (*_bfd_error_handler)
11001 (_("%B: could not find output section %s"), abfd, name);
11002 goto error_return;
11004 if (o->size == 0)
11005 (*_bfd_error_handler)
11006 (_("warning: %s section has zero size"), name);
11007 dyn.d_un.d_val = o->size;
11008 break;
11010 case DT_PREINIT_ARRAY:
11011 name = ".preinit_array";
11012 goto get_vma;
11013 case DT_INIT_ARRAY:
11014 name = ".init_array";
11015 goto get_vma;
11016 case DT_FINI_ARRAY:
11017 name = ".fini_array";
11018 goto get_vma;
11020 case DT_HASH:
11021 name = ".hash";
11022 goto get_vma;
11023 case DT_GNU_HASH:
11024 name = ".gnu.hash";
11025 goto get_vma;
11026 case DT_STRTAB:
11027 name = ".dynstr";
11028 goto get_vma;
11029 case DT_SYMTAB:
11030 name = ".dynsym";
11031 goto get_vma;
11032 case DT_VERDEF:
11033 name = ".gnu.version_d";
11034 goto get_vma;
11035 case DT_VERNEED:
11036 name = ".gnu.version_r";
11037 goto get_vma;
11038 case DT_VERSYM:
11039 name = ".gnu.version";
11040 get_vma:
11041 o = bfd_get_section_by_name (abfd, name);
11042 if (o == NULL)
11044 (*_bfd_error_handler)
11045 (_("%B: could not find output section %s"), abfd, name);
11046 goto error_return;
11048 dyn.d_un.d_ptr = o->vma;
11049 break;
11051 case DT_REL:
11052 case DT_RELA:
11053 case DT_RELSZ:
11054 case DT_RELASZ:
11055 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11056 type = SHT_REL;
11057 else
11058 type = SHT_RELA;
11059 dyn.d_un.d_val = 0;
11060 dyn.d_un.d_ptr = 0;
11061 for (i = 1; i < elf_numsections (abfd); i++)
11063 Elf_Internal_Shdr *hdr;
11065 hdr = elf_elfsections (abfd)[i];
11066 if (hdr->sh_type == type
11067 && (hdr->sh_flags & SHF_ALLOC) != 0)
11069 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11070 dyn.d_un.d_val += hdr->sh_size;
11071 else
11073 if (dyn.d_un.d_ptr == 0
11074 || hdr->sh_addr < dyn.d_un.d_ptr)
11075 dyn.d_un.d_ptr = hdr->sh_addr;
11079 break;
11081 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11085 /* If we have created any dynamic sections, then output them. */
11086 if (dynobj != NULL)
11088 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11089 goto error_return;
11091 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11092 if (info->warn_shared_textrel && info->shared)
11094 bfd_byte *dyncon, *dynconend;
11096 /* Fix up .dynamic entries. */
11097 o = bfd_get_section_by_name (dynobj, ".dynamic");
11098 BFD_ASSERT (o != NULL);
11100 dyncon = o->contents;
11101 dynconend = o->contents + o->size;
11102 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11104 Elf_Internal_Dyn dyn;
11106 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11108 if (dyn.d_tag == DT_TEXTREL)
11110 info->callbacks->einfo
11111 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11112 break;
11117 for (o = dynobj->sections; o != NULL; o = o->next)
11119 if ((o->flags & SEC_HAS_CONTENTS) == 0
11120 || o->size == 0
11121 || o->output_section == bfd_abs_section_ptr)
11122 continue;
11123 if ((o->flags & SEC_LINKER_CREATED) == 0)
11125 /* At this point, we are only interested in sections
11126 created by _bfd_elf_link_create_dynamic_sections. */
11127 continue;
11129 if (elf_hash_table (info)->stab_info.stabstr == o)
11130 continue;
11131 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11132 continue;
11133 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11134 != SHT_STRTAB)
11135 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11137 /* FIXME: octets_per_byte. */
11138 if (! bfd_set_section_contents (abfd, o->output_section,
11139 o->contents,
11140 (file_ptr) o->output_offset,
11141 o->size))
11142 goto error_return;
11144 else
11146 /* The contents of the .dynstr section are actually in a
11147 stringtab. */
11148 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11149 if (bfd_seek (abfd, off, SEEK_SET) != 0
11150 || ! _bfd_elf_strtab_emit (abfd,
11151 elf_hash_table (info)->dynstr))
11152 goto error_return;
11157 if (info->relocatable)
11159 bfd_boolean failed = FALSE;
11161 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11162 if (failed)
11163 goto error_return;
11166 /* If we have optimized stabs strings, output them. */
11167 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11169 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11170 goto error_return;
11173 if (info->eh_frame_hdr)
11175 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11176 goto error_return;
11179 if (finfo.symstrtab != NULL)
11180 _bfd_stringtab_free (finfo.symstrtab);
11181 if (finfo.contents != NULL)
11182 free (finfo.contents);
11183 if (finfo.external_relocs != NULL)
11184 free (finfo.external_relocs);
11185 if (finfo.internal_relocs != NULL)
11186 free (finfo.internal_relocs);
11187 if (finfo.external_syms != NULL)
11188 free (finfo.external_syms);
11189 if (finfo.locsym_shndx != NULL)
11190 free (finfo.locsym_shndx);
11191 if (finfo.internal_syms != NULL)
11192 free (finfo.internal_syms);
11193 if (finfo.indices != NULL)
11194 free (finfo.indices);
11195 if (finfo.sections != NULL)
11196 free (finfo.sections);
11197 if (finfo.symbuf != NULL)
11198 free (finfo.symbuf);
11199 if (finfo.symshndxbuf != NULL)
11200 free (finfo.symshndxbuf);
11201 for (o = abfd->sections; o != NULL; o = o->next)
11203 if ((o->flags & SEC_RELOC) != 0
11204 && elf_section_data (o)->rel_hashes != NULL)
11205 free (elf_section_data (o)->rel_hashes);
11208 elf_tdata (abfd)->linker = TRUE;
11210 if (attr_section)
11212 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11213 if (contents == NULL)
11214 return FALSE; /* Bail out and fail. */
11215 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11216 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11217 free (contents);
11220 return TRUE;
11222 error_return:
11223 if (finfo.symstrtab != NULL)
11224 _bfd_stringtab_free (finfo.symstrtab);
11225 if (finfo.contents != NULL)
11226 free (finfo.contents);
11227 if (finfo.external_relocs != NULL)
11228 free (finfo.external_relocs);
11229 if (finfo.internal_relocs != NULL)
11230 free (finfo.internal_relocs);
11231 if (finfo.external_syms != NULL)
11232 free (finfo.external_syms);
11233 if (finfo.locsym_shndx != NULL)
11234 free (finfo.locsym_shndx);
11235 if (finfo.internal_syms != NULL)
11236 free (finfo.internal_syms);
11237 if (finfo.indices != NULL)
11238 free (finfo.indices);
11239 if (finfo.sections != NULL)
11240 free (finfo.sections);
11241 if (finfo.symbuf != NULL)
11242 free (finfo.symbuf);
11243 if (finfo.symshndxbuf != NULL)
11244 free (finfo.symshndxbuf);
11245 for (o = abfd->sections; o != NULL; o = o->next)
11247 if ((o->flags & SEC_RELOC) != 0
11248 && elf_section_data (o)->rel_hashes != NULL)
11249 free (elf_section_data (o)->rel_hashes);
11252 return FALSE;
11255 /* Initialize COOKIE for input bfd ABFD. */
11257 static bfd_boolean
11258 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11259 struct bfd_link_info *info, bfd *abfd)
11261 Elf_Internal_Shdr *symtab_hdr;
11262 const struct elf_backend_data *bed;
11264 bed = get_elf_backend_data (abfd);
11265 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11267 cookie->abfd = abfd;
11268 cookie->sym_hashes = elf_sym_hashes (abfd);
11269 cookie->bad_symtab = elf_bad_symtab (abfd);
11270 if (cookie->bad_symtab)
11272 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11273 cookie->extsymoff = 0;
11275 else
11277 cookie->locsymcount = symtab_hdr->sh_info;
11278 cookie->extsymoff = symtab_hdr->sh_info;
11281 if (bed->s->arch_size == 32)
11282 cookie->r_sym_shift = 8;
11283 else
11284 cookie->r_sym_shift = 32;
11286 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11287 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11289 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11290 cookie->locsymcount, 0,
11291 NULL, NULL, NULL);
11292 if (cookie->locsyms == NULL)
11294 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11295 return FALSE;
11297 if (info->keep_memory)
11298 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11300 return TRUE;
11303 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11305 static void
11306 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11308 Elf_Internal_Shdr *symtab_hdr;
11310 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11311 if (cookie->locsyms != NULL
11312 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11313 free (cookie->locsyms);
11316 /* Initialize the relocation information in COOKIE for input section SEC
11317 of input bfd ABFD. */
11319 static bfd_boolean
11320 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11321 struct bfd_link_info *info, bfd *abfd,
11322 asection *sec)
11324 const struct elf_backend_data *bed;
11326 if (sec->reloc_count == 0)
11328 cookie->rels = NULL;
11329 cookie->relend = NULL;
11331 else
11333 bed = get_elf_backend_data (abfd);
11335 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11336 info->keep_memory);
11337 if (cookie->rels == NULL)
11338 return FALSE;
11339 cookie->rel = cookie->rels;
11340 cookie->relend = (cookie->rels
11341 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11343 cookie->rel = cookie->rels;
11344 return TRUE;
11347 /* Free the memory allocated by init_reloc_cookie_rels,
11348 if appropriate. */
11350 static void
11351 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11352 asection *sec)
11354 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11355 free (cookie->rels);
11358 /* Initialize the whole of COOKIE for input section SEC. */
11360 static bfd_boolean
11361 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11362 struct bfd_link_info *info,
11363 asection *sec)
11365 if (!init_reloc_cookie (cookie, info, sec->owner))
11366 goto error1;
11367 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11368 goto error2;
11369 return TRUE;
11371 error2:
11372 fini_reloc_cookie (cookie, sec->owner);
11373 error1:
11374 return FALSE;
11377 /* Free the memory allocated by init_reloc_cookie_for_section,
11378 if appropriate. */
11380 static void
11381 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11382 asection *sec)
11384 fini_reloc_cookie_rels (cookie, sec);
11385 fini_reloc_cookie (cookie, sec->owner);
11388 /* Garbage collect unused sections. */
11390 /* Default gc_mark_hook. */
11392 asection *
11393 _bfd_elf_gc_mark_hook (asection *sec,
11394 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11395 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11396 struct elf_link_hash_entry *h,
11397 Elf_Internal_Sym *sym)
11399 const char *sec_name;
11401 if (h != NULL)
11403 switch (h->root.type)
11405 case bfd_link_hash_defined:
11406 case bfd_link_hash_defweak:
11407 return h->root.u.def.section;
11409 case bfd_link_hash_common:
11410 return h->root.u.c.p->section;
11412 case bfd_link_hash_undefined:
11413 case bfd_link_hash_undefweak:
11414 /* To work around a glibc bug, keep all XXX input sections
11415 when there is an as yet undefined reference to __start_XXX
11416 or __stop_XXX symbols. The linker will later define such
11417 symbols for orphan input sections that have a name
11418 representable as a C identifier. */
11419 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11420 sec_name = h->root.root.string + 8;
11421 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11422 sec_name = h->root.root.string + 7;
11423 else
11424 sec_name = NULL;
11426 if (sec_name && *sec_name != '\0')
11428 bfd *i;
11430 for (i = info->input_bfds; i; i = i->link_next)
11432 sec = bfd_get_section_by_name (i, sec_name);
11433 if (sec)
11434 sec->flags |= SEC_KEEP;
11437 break;
11439 default:
11440 break;
11443 else
11444 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11446 return NULL;
11449 /* COOKIE->rel describes a relocation against section SEC, which is
11450 a section we've decided to keep. Return the section that contains
11451 the relocation symbol, or NULL if no section contains it. */
11453 asection *
11454 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11455 elf_gc_mark_hook_fn gc_mark_hook,
11456 struct elf_reloc_cookie *cookie)
11458 unsigned long r_symndx;
11459 struct elf_link_hash_entry *h;
11461 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11462 if (r_symndx == 0)
11463 return NULL;
11465 if (r_symndx >= cookie->locsymcount
11466 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11468 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11469 while (h->root.type == bfd_link_hash_indirect
11470 || h->root.type == bfd_link_hash_warning)
11471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11472 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11475 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11476 &cookie->locsyms[r_symndx]);
11479 /* COOKIE->rel describes a relocation against section SEC, which is
11480 a section we've decided to keep. Mark the section that contains
11481 the relocation symbol. */
11483 bfd_boolean
11484 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11485 asection *sec,
11486 elf_gc_mark_hook_fn gc_mark_hook,
11487 struct elf_reloc_cookie *cookie)
11489 asection *rsec;
11491 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11492 if (rsec && !rsec->gc_mark)
11494 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11495 rsec->gc_mark = 1;
11496 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11497 return FALSE;
11499 return TRUE;
11502 /* The mark phase of garbage collection. For a given section, mark
11503 it and any sections in this section's group, and all the sections
11504 which define symbols to which it refers. */
11506 bfd_boolean
11507 _bfd_elf_gc_mark (struct bfd_link_info *info,
11508 asection *sec,
11509 elf_gc_mark_hook_fn gc_mark_hook)
11511 bfd_boolean ret;
11512 asection *group_sec, *eh_frame;
11514 sec->gc_mark = 1;
11516 /* Mark all the sections in the group. */
11517 group_sec = elf_section_data (sec)->next_in_group;
11518 if (group_sec && !group_sec->gc_mark)
11519 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11520 return FALSE;
11522 /* Look through the section relocs. */
11523 ret = TRUE;
11524 eh_frame = elf_eh_frame_section (sec->owner);
11525 if ((sec->flags & SEC_RELOC) != 0
11526 && sec->reloc_count > 0
11527 && sec != eh_frame)
11529 struct elf_reloc_cookie cookie;
11531 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11532 ret = FALSE;
11533 else
11535 for (; cookie.rel < cookie.relend; cookie.rel++)
11536 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11538 ret = FALSE;
11539 break;
11541 fini_reloc_cookie_for_section (&cookie, sec);
11545 if (ret && eh_frame && elf_fde_list (sec))
11547 struct elf_reloc_cookie cookie;
11549 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11550 ret = FALSE;
11551 else
11553 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11554 gc_mark_hook, &cookie))
11555 ret = FALSE;
11556 fini_reloc_cookie_for_section (&cookie, eh_frame);
11560 return ret;
11563 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11565 struct elf_gc_sweep_symbol_info
11567 struct bfd_link_info *info;
11568 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11569 bfd_boolean);
11572 static bfd_boolean
11573 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11575 if (h->root.type == bfd_link_hash_warning)
11576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11578 if ((h->root.type == bfd_link_hash_defined
11579 || h->root.type == bfd_link_hash_defweak)
11580 && !h->root.u.def.section->gc_mark
11581 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11583 struct elf_gc_sweep_symbol_info *inf =
11584 (struct elf_gc_sweep_symbol_info *) data;
11585 (*inf->hide_symbol) (inf->info, h, TRUE);
11588 return TRUE;
11591 /* The sweep phase of garbage collection. Remove all garbage sections. */
11593 typedef bfd_boolean (*gc_sweep_hook_fn)
11594 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11596 static bfd_boolean
11597 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11599 bfd *sub;
11600 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11601 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11602 unsigned long section_sym_count;
11603 struct elf_gc_sweep_symbol_info sweep_info;
11605 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11607 asection *o;
11609 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11610 continue;
11612 for (o = sub->sections; o != NULL; o = o->next)
11614 /* When any section in a section group is kept, we keep all
11615 sections in the section group. If the first member of
11616 the section group is excluded, we will also exclude the
11617 group section. */
11618 if (o->flags & SEC_GROUP)
11620 asection *first = elf_next_in_group (o);
11621 o->gc_mark = first->gc_mark;
11623 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11624 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11625 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11627 /* Keep debug, special and SHT_NOTE sections. */
11628 o->gc_mark = 1;
11631 if (o->gc_mark)
11632 continue;
11634 /* Skip sweeping sections already excluded. */
11635 if (o->flags & SEC_EXCLUDE)
11636 continue;
11638 /* Since this is early in the link process, it is simple
11639 to remove a section from the output. */
11640 o->flags |= SEC_EXCLUDE;
11642 if (info->print_gc_sections && o->size != 0)
11643 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11645 /* But we also have to update some of the relocation
11646 info we collected before. */
11647 if (gc_sweep_hook
11648 && (o->flags & SEC_RELOC) != 0
11649 && o->reloc_count > 0
11650 && !bfd_is_abs_section (o->output_section))
11652 Elf_Internal_Rela *internal_relocs;
11653 bfd_boolean r;
11655 internal_relocs
11656 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11657 info->keep_memory);
11658 if (internal_relocs == NULL)
11659 return FALSE;
11661 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11663 if (elf_section_data (o)->relocs != internal_relocs)
11664 free (internal_relocs);
11666 if (!r)
11667 return FALSE;
11672 /* Remove the symbols that were in the swept sections from the dynamic
11673 symbol table. GCFIXME: Anyone know how to get them out of the
11674 static symbol table as well? */
11675 sweep_info.info = info;
11676 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11677 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11678 &sweep_info);
11680 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11681 return TRUE;
11684 /* Propagate collected vtable information. This is called through
11685 elf_link_hash_traverse. */
11687 static bfd_boolean
11688 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11690 if (h->root.type == bfd_link_hash_warning)
11691 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11693 /* Those that are not vtables. */
11694 if (h->vtable == NULL || h->vtable->parent == NULL)
11695 return TRUE;
11697 /* Those vtables that do not have parents, we cannot merge. */
11698 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11699 return TRUE;
11701 /* If we've already been done, exit. */
11702 if (h->vtable->used && h->vtable->used[-1])
11703 return TRUE;
11705 /* Make sure the parent's table is up to date. */
11706 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11708 if (h->vtable->used == NULL)
11710 /* None of this table's entries were referenced. Re-use the
11711 parent's table. */
11712 h->vtable->used = h->vtable->parent->vtable->used;
11713 h->vtable->size = h->vtable->parent->vtable->size;
11715 else
11717 size_t n;
11718 bfd_boolean *cu, *pu;
11720 /* Or the parent's entries into ours. */
11721 cu = h->vtable->used;
11722 cu[-1] = TRUE;
11723 pu = h->vtable->parent->vtable->used;
11724 if (pu != NULL)
11726 const struct elf_backend_data *bed;
11727 unsigned int log_file_align;
11729 bed = get_elf_backend_data (h->root.u.def.section->owner);
11730 log_file_align = bed->s->log_file_align;
11731 n = h->vtable->parent->vtable->size >> log_file_align;
11732 while (n--)
11734 if (*pu)
11735 *cu = TRUE;
11736 pu++;
11737 cu++;
11742 return TRUE;
11745 static bfd_boolean
11746 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11748 asection *sec;
11749 bfd_vma hstart, hend;
11750 Elf_Internal_Rela *relstart, *relend, *rel;
11751 const struct elf_backend_data *bed;
11752 unsigned int log_file_align;
11754 if (h->root.type == bfd_link_hash_warning)
11755 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11757 /* Take care of both those symbols that do not describe vtables as
11758 well as those that are not loaded. */
11759 if (h->vtable == NULL || h->vtable->parent == NULL)
11760 return TRUE;
11762 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11763 || h->root.type == bfd_link_hash_defweak);
11765 sec = h->root.u.def.section;
11766 hstart = h->root.u.def.value;
11767 hend = hstart + h->size;
11769 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11770 if (!relstart)
11771 return *(bfd_boolean *) okp = FALSE;
11772 bed = get_elf_backend_data (sec->owner);
11773 log_file_align = bed->s->log_file_align;
11775 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11777 for (rel = relstart; rel < relend; ++rel)
11778 if (rel->r_offset >= hstart && rel->r_offset < hend)
11780 /* If the entry is in use, do nothing. */
11781 if (h->vtable->used
11782 && (rel->r_offset - hstart) < h->vtable->size)
11784 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11785 if (h->vtable->used[entry])
11786 continue;
11788 /* Otherwise, kill it. */
11789 rel->r_offset = rel->r_info = rel->r_addend = 0;
11792 return TRUE;
11795 /* Mark sections containing dynamically referenced symbols. When
11796 building shared libraries, we must assume that any visible symbol is
11797 referenced. */
11799 bfd_boolean
11800 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11802 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11804 if (h->root.type == bfd_link_hash_warning)
11805 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11807 if ((h->root.type == bfd_link_hash_defined
11808 || h->root.type == bfd_link_hash_defweak)
11809 && (h->ref_dynamic
11810 || (!info->executable
11811 && h->def_regular
11812 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11813 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11814 h->root.u.def.section->flags |= SEC_KEEP;
11816 return TRUE;
11819 /* Keep all sections containing symbols undefined on the command-line,
11820 and the section containing the entry symbol. */
11822 void
11823 _bfd_elf_gc_keep (struct bfd_link_info *info)
11825 struct bfd_sym_chain *sym;
11827 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11829 struct elf_link_hash_entry *h;
11831 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11832 FALSE, FALSE, FALSE);
11834 if (h != NULL
11835 && (h->root.type == bfd_link_hash_defined
11836 || h->root.type == bfd_link_hash_defweak)
11837 && !bfd_is_abs_section (h->root.u.def.section))
11838 h->root.u.def.section->flags |= SEC_KEEP;
11842 /* Do mark and sweep of unused sections. */
11844 bfd_boolean
11845 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11847 bfd_boolean ok = TRUE;
11848 bfd *sub;
11849 elf_gc_mark_hook_fn gc_mark_hook;
11850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11852 if (!bed->can_gc_sections
11853 || !is_elf_hash_table (info->hash))
11855 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11856 return TRUE;
11859 bed->gc_keep (info);
11861 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11862 at the .eh_frame section if we can mark the FDEs individually. */
11863 _bfd_elf_begin_eh_frame_parsing (info);
11864 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11866 asection *sec;
11867 struct elf_reloc_cookie cookie;
11869 sec = bfd_get_section_by_name (sub, ".eh_frame");
11870 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11872 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11873 if (elf_section_data (sec)->sec_info)
11874 elf_eh_frame_section (sub) = sec;
11875 fini_reloc_cookie_for_section (&cookie, sec);
11878 _bfd_elf_end_eh_frame_parsing (info);
11880 /* Apply transitive closure to the vtable entry usage info. */
11881 elf_link_hash_traverse (elf_hash_table (info),
11882 elf_gc_propagate_vtable_entries_used,
11883 &ok);
11884 if (!ok)
11885 return FALSE;
11887 /* Kill the vtable relocations that were not used. */
11888 elf_link_hash_traverse (elf_hash_table (info),
11889 elf_gc_smash_unused_vtentry_relocs,
11890 &ok);
11891 if (!ok)
11892 return FALSE;
11894 /* Mark dynamically referenced symbols. */
11895 if (elf_hash_table (info)->dynamic_sections_created)
11896 elf_link_hash_traverse (elf_hash_table (info),
11897 bed->gc_mark_dynamic_ref,
11898 info);
11900 /* Grovel through relocs to find out who stays ... */
11901 gc_mark_hook = bed->gc_mark_hook;
11902 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11904 asection *o;
11906 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11907 continue;
11909 for (o = sub->sections; o != NULL; o = o->next)
11910 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11911 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11912 return FALSE;
11915 /* Allow the backend to mark additional target specific sections. */
11916 if (bed->gc_mark_extra_sections)
11917 bed->gc_mark_extra_sections (info, gc_mark_hook);
11919 /* ... and mark SEC_EXCLUDE for those that go. */
11920 return elf_gc_sweep (abfd, info);
11923 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11925 bfd_boolean
11926 bfd_elf_gc_record_vtinherit (bfd *abfd,
11927 asection *sec,
11928 struct elf_link_hash_entry *h,
11929 bfd_vma offset)
11931 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11932 struct elf_link_hash_entry **search, *child;
11933 bfd_size_type extsymcount;
11934 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11936 /* The sh_info field of the symtab header tells us where the
11937 external symbols start. We don't care about the local symbols at
11938 this point. */
11939 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11940 if (!elf_bad_symtab (abfd))
11941 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11943 sym_hashes = elf_sym_hashes (abfd);
11944 sym_hashes_end = sym_hashes + extsymcount;
11946 /* Hunt down the child symbol, which is in this section at the same
11947 offset as the relocation. */
11948 for (search = sym_hashes; search != sym_hashes_end; ++search)
11950 if ((child = *search) != NULL
11951 && (child->root.type == bfd_link_hash_defined
11952 || child->root.type == bfd_link_hash_defweak)
11953 && child->root.u.def.section == sec
11954 && child->root.u.def.value == offset)
11955 goto win;
11958 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11959 abfd, sec, (unsigned long) offset);
11960 bfd_set_error (bfd_error_invalid_operation);
11961 return FALSE;
11963 win:
11964 if (!child->vtable)
11966 child->vtable = (struct elf_link_virtual_table_entry *)
11967 bfd_zalloc (abfd, sizeof (*child->vtable));
11968 if (!child->vtable)
11969 return FALSE;
11971 if (!h)
11973 /* This *should* only be the absolute section. It could potentially
11974 be that someone has defined a non-global vtable though, which
11975 would be bad. It isn't worth paging in the local symbols to be
11976 sure though; that case should simply be handled by the assembler. */
11978 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11980 else
11981 child->vtable->parent = h;
11983 return TRUE;
11986 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11988 bfd_boolean
11989 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11990 asection *sec ATTRIBUTE_UNUSED,
11991 struct elf_link_hash_entry *h,
11992 bfd_vma addend)
11994 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11995 unsigned int log_file_align = bed->s->log_file_align;
11997 if (!h->vtable)
11999 h->vtable = (struct elf_link_virtual_table_entry *)
12000 bfd_zalloc (abfd, sizeof (*h->vtable));
12001 if (!h->vtable)
12002 return FALSE;
12005 if (addend >= h->vtable->size)
12007 size_t size, bytes, file_align;
12008 bfd_boolean *ptr = h->vtable->used;
12010 /* While the symbol is undefined, we have to be prepared to handle
12011 a zero size. */
12012 file_align = 1 << log_file_align;
12013 if (h->root.type == bfd_link_hash_undefined)
12014 size = addend + file_align;
12015 else
12017 size = h->size;
12018 if (addend >= size)
12020 /* Oops! We've got a reference past the defined end of
12021 the table. This is probably a bug -- shall we warn? */
12022 size = addend + file_align;
12025 size = (size + file_align - 1) & -file_align;
12027 /* Allocate one extra entry for use as a "done" flag for the
12028 consolidation pass. */
12029 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12031 if (ptr)
12033 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12035 if (ptr != NULL)
12037 size_t oldbytes;
12039 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12040 * sizeof (bfd_boolean));
12041 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12044 else
12045 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12047 if (ptr == NULL)
12048 return FALSE;
12050 /* And arrange for that done flag to be at index -1. */
12051 h->vtable->used = ptr + 1;
12052 h->vtable->size = size;
12055 h->vtable->used[addend >> log_file_align] = TRUE;
12057 return TRUE;
12060 struct alloc_got_off_arg {
12061 bfd_vma gotoff;
12062 struct bfd_link_info *info;
12065 /* We need a special top-level link routine to convert got reference counts
12066 to real got offsets. */
12068 static bfd_boolean
12069 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12071 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12072 bfd *obfd = gofarg->info->output_bfd;
12073 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12075 if (h->root.type == bfd_link_hash_warning)
12076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12078 if (h->got.refcount > 0)
12080 h->got.offset = gofarg->gotoff;
12081 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12083 else
12084 h->got.offset = (bfd_vma) -1;
12086 return TRUE;
12089 /* And an accompanying bit to work out final got entry offsets once
12090 we're done. Should be called from final_link. */
12092 bfd_boolean
12093 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12094 struct bfd_link_info *info)
12096 bfd *i;
12097 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12098 bfd_vma gotoff;
12099 struct alloc_got_off_arg gofarg;
12101 BFD_ASSERT (abfd == info->output_bfd);
12103 if (! is_elf_hash_table (info->hash))
12104 return FALSE;
12106 /* The GOT offset is relative to the .got section, but the GOT header is
12107 put into the .got.plt section, if the backend uses it. */
12108 if (bed->want_got_plt)
12109 gotoff = 0;
12110 else
12111 gotoff = bed->got_header_size;
12113 /* Do the local .got entries first. */
12114 for (i = info->input_bfds; i; i = i->link_next)
12116 bfd_signed_vma *local_got;
12117 bfd_size_type j, locsymcount;
12118 Elf_Internal_Shdr *symtab_hdr;
12120 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12121 continue;
12123 local_got = elf_local_got_refcounts (i);
12124 if (!local_got)
12125 continue;
12127 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12128 if (elf_bad_symtab (i))
12129 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12130 else
12131 locsymcount = symtab_hdr->sh_info;
12133 for (j = 0; j < locsymcount; ++j)
12135 if (local_got[j] > 0)
12137 local_got[j] = gotoff;
12138 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12140 else
12141 local_got[j] = (bfd_vma) -1;
12145 /* Then the global .got entries. .plt refcounts are handled by
12146 adjust_dynamic_symbol */
12147 gofarg.gotoff = gotoff;
12148 gofarg.info = info;
12149 elf_link_hash_traverse (elf_hash_table (info),
12150 elf_gc_allocate_got_offsets,
12151 &gofarg);
12152 return TRUE;
12155 /* Many folk need no more in the way of final link than this, once
12156 got entry reference counting is enabled. */
12158 bfd_boolean
12159 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12161 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12162 return FALSE;
12164 /* Invoke the regular ELF backend linker to do all the work. */
12165 return bfd_elf_final_link (abfd, info);
12168 bfd_boolean
12169 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12171 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12173 if (rcookie->bad_symtab)
12174 rcookie->rel = rcookie->rels;
12176 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12178 unsigned long r_symndx;
12180 if (! rcookie->bad_symtab)
12181 if (rcookie->rel->r_offset > offset)
12182 return FALSE;
12183 if (rcookie->rel->r_offset != offset)
12184 continue;
12186 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12187 if (r_symndx == SHN_UNDEF)
12188 return TRUE;
12190 if (r_symndx >= rcookie->locsymcount
12191 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12193 struct elf_link_hash_entry *h;
12195 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12197 while (h->root.type == bfd_link_hash_indirect
12198 || h->root.type == bfd_link_hash_warning)
12199 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12201 if ((h->root.type == bfd_link_hash_defined
12202 || h->root.type == bfd_link_hash_defweak)
12203 && elf_discarded_section (h->root.u.def.section))
12204 return TRUE;
12205 else
12206 return FALSE;
12208 else
12210 /* It's not a relocation against a global symbol,
12211 but it could be a relocation against a local
12212 symbol for a discarded section. */
12213 asection *isec;
12214 Elf_Internal_Sym *isym;
12216 /* Need to: get the symbol; get the section. */
12217 isym = &rcookie->locsyms[r_symndx];
12218 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12219 if (isec != NULL && elf_discarded_section (isec))
12220 return TRUE;
12222 return FALSE;
12224 return FALSE;
12227 /* Discard unneeded references to discarded sections.
12228 Returns TRUE if any section's size was changed. */
12229 /* This function assumes that the relocations are in sorted order,
12230 which is true for all known assemblers. */
12232 bfd_boolean
12233 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12235 struct elf_reloc_cookie cookie;
12236 asection *stab, *eh;
12237 const struct elf_backend_data *bed;
12238 bfd *abfd;
12239 bfd_boolean ret = FALSE;
12241 if (info->traditional_format
12242 || !is_elf_hash_table (info->hash))
12243 return FALSE;
12245 _bfd_elf_begin_eh_frame_parsing (info);
12246 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12248 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12249 continue;
12251 bed = get_elf_backend_data (abfd);
12253 if ((abfd->flags & DYNAMIC) != 0)
12254 continue;
12256 eh = NULL;
12257 if (!info->relocatable)
12259 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12260 if (eh != NULL
12261 && (eh->size == 0
12262 || bfd_is_abs_section (eh->output_section)))
12263 eh = NULL;
12266 stab = bfd_get_section_by_name (abfd, ".stab");
12267 if (stab != NULL
12268 && (stab->size == 0
12269 || bfd_is_abs_section (stab->output_section)
12270 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12271 stab = NULL;
12273 if (stab == NULL
12274 && eh == NULL
12275 && bed->elf_backend_discard_info == NULL)
12276 continue;
12278 if (!init_reloc_cookie (&cookie, info, abfd))
12279 return FALSE;
12281 if (stab != NULL
12282 && stab->reloc_count > 0
12283 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12285 if (_bfd_discard_section_stabs (abfd, stab,
12286 elf_section_data (stab)->sec_info,
12287 bfd_elf_reloc_symbol_deleted_p,
12288 &cookie))
12289 ret = TRUE;
12290 fini_reloc_cookie_rels (&cookie, stab);
12293 if (eh != NULL
12294 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12296 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12297 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12298 bfd_elf_reloc_symbol_deleted_p,
12299 &cookie))
12300 ret = TRUE;
12301 fini_reloc_cookie_rels (&cookie, eh);
12304 if (bed->elf_backend_discard_info != NULL
12305 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12306 ret = TRUE;
12308 fini_reloc_cookie (&cookie, abfd);
12310 _bfd_elf_end_eh_frame_parsing (info);
12312 if (info->eh_frame_hdr
12313 && !info->relocatable
12314 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12315 ret = TRUE;
12317 return ret;
12320 /* For a SHT_GROUP section, return the group signature. For other
12321 sections, return the normal section name. */
12323 static const char *
12324 section_signature (asection *sec)
12326 if ((sec->flags & SEC_GROUP) != 0
12327 && elf_next_in_group (sec) != NULL
12328 && elf_group_name (elf_next_in_group (sec)) != NULL)
12329 return elf_group_name (elf_next_in_group (sec));
12330 return sec->name;
12333 void
12334 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12335 struct bfd_link_info *info)
12337 flagword flags;
12338 const char *name, *p;
12339 struct bfd_section_already_linked *l;
12340 struct bfd_section_already_linked_hash_entry *already_linked_list;
12342 if (sec->output_section == bfd_abs_section_ptr)
12343 return;
12345 flags = sec->flags;
12347 /* Return if it isn't a linkonce section. A comdat group section
12348 also has SEC_LINK_ONCE set. */
12349 if ((flags & SEC_LINK_ONCE) == 0)
12350 return;
12352 /* Don't put group member sections on our list of already linked
12353 sections. They are handled as a group via their group section. */
12354 if (elf_sec_group (sec) != NULL)
12355 return;
12357 /* FIXME: When doing a relocatable link, we may have trouble
12358 copying relocations in other sections that refer to local symbols
12359 in the section being discarded. Those relocations will have to
12360 be converted somehow; as of this writing I'm not sure that any of
12361 the backends handle that correctly.
12363 It is tempting to instead not discard link once sections when
12364 doing a relocatable link (technically, they should be discarded
12365 whenever we are building constructors). However, that fails,
12366 because the linker winds up combining all the link once sections
12367 into a single large link once section, which defeats the purpose
12368 of having link once sections in the first place.
12370 Also, not merging link once sections in a relocatable link
12371 causes trouble for MIPS ELF, which relies on link once semantics
12372 to handle the .reginfo section correctly. */
12374 name = section_signature (sec);
12376 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12377 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12378 p++;
12379 else
12380 p = name;
12382 already_linked_list = bfd_section_already_linked_table_lookup (p);
12384 for (l = already_linked_list->entry; l != NULL; l = l->next)
12386 /* We may have 2 different types of sections on the list: group
12387 sections and linkonce sections. Match like sections. */
12388 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12389 && strcmp (name, section_signature (l->sec)) == 0
12390 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12392 /* The section has already been linked. See if we should
12393 issue a warning. */
12394 switch (flags & SEC_LINK_DUPLICATES)
12396 default:
12397 abort ();
12399 case SEC_LINK_DUPLICATES_DISCARD:
12400 break;
12402 case SEC_LINK_DUPLICATES_ONE_ONLY:
12403 (*_bfd_error_handler)
12404 (_("%B: ignoring duplicate section `%A'"),
12405 abfd, sec);
12406 break;
12408 case SEC_LINK_DUPLICATES_SAME_SIZE:
12409 if (sec->size != l->sec->size)
12410 (*_bfd_error_handler)
12411 (_("%B: duplicate section `%A' has different size"),
12412 abfd, sec);
12413 break;
12415 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12416 if (sec->size != l->sec->size)
12417 (*_bfd_error_handler)
12418 (_("%B: duplicate section `%A' has different size"),
12419 abfd, sec);
12420 else if (sec->size != 0)
12422 bfd_byte *sec_contents, *l_sec_contents;
12424 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12425 (*_bfd_error_handler)
12426 (_("%B: warning: could not read contents of section `%A'"),
12427 abfd, sec);
12428 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12429 &l_sec_contents))
12430 (*_bfd_error_handler)
12431 (_("%B: warning: could not read contents of section `%A'"),
12432 l->sec->owner, l->sec);
12433 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12434 (*_bfd_error_handler)
12435 (_("%B: warning: duplicate section `%A' has different contents"),
12436 abfd, sec);
12438 if (sec_contents)
12439 free (sec_contents);
12440 if (l_sec_contents)
12441 free (l_sec_contents);
12443 break;
12446 /* Set the output_section field so that lang_add_section
12447 does not create a lang_input_section structure for this
12448 section. Since there might be a symbol in the section
12449 being discarded, we must retain a pointer to the section
12450 which we are really going to use. */
12451 sec->output_section = bfd_abs_section_ptr;
12452 sec->kept_section = l->sec;
12454 if (flags & SEC_GROUP)
12456 asection *first = elf_next_in_group (sec);
12457 asection *s = first;
12459 while (s != NULL)
12461 s->output_section = bfd_abs_section_ptr;
12462 /* Record which group discards it. */
12463 s->kept_section = l->sec;
12464 s = elf_next_in_group (s);
12465 /* These lists are circular. */
12466 if (s == first)
12467 break;
12471 return;
12475 /* A single member comdat group section may be discarded by a
12476 linkonce section and vice versa. */
12478 if ((flags & SEC_GROUP) != 0)
12480 asection *first = elf_next_in_group (sec);
12482 if (first != NULL && elf_next_in_group (first) == first)
12483 /* Check this single member group against linkonce sections. */
12484 for (l = already_linked_list->entry; l != NULL; l = l->next)
12485 if ((l->sec->flags & SEC_GROUP) == 0
12486 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12487 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12489 first->output_section = bfd_abs_section_ptr;
12490 first->kept_section = l->sec;
12491 sec->output_section = bfd_abs_section_ptr;
12492 break;
12495 else
12496 /* Check this linkonce section against single member groups. */
12497 for (l = already_linked_list->entry; l != NULL; l = l->next)
12498 if (l->sec->flags & SEC_GROUP)
12500 asection *first = elf_next_in_group (l->sec);
12502 if (first != NULL
12503 && elf_next_in_group (first) == first
12504 && bfd_elf_match_symbols_in_sections (first, sec, info))
12506 sec->output_section = bfd_abs_section_ptr;
12507 sec->kept_section = first;
12508 break;
12512 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12513 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12514 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12515 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12516 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12517 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12518 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12519 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12520 The reverse order cannot happen as there is never a bfd with only the
12521 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12522 matter as here were are looking only for cross-bfd sections. */
12524 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12525 for (l = already_linked_list->entry; l != NULL; l = l->next)
12526 if ((l->sec->flags & SEC_GROUP) == 0
12527 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12529 if (abfd != l->sec->owner)
12530 sec->output_section = bfd_abs_section_ptr;
12531 break;
12534 /* This is the first section with this name. Record it. */
12535 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12536 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12539 bfd_boolean
12540 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12542 return sym->st_shndx == SHN_COMMON;
12545 unsigned int
12546 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12548 return SHN_COMMON;
12551 asection *
12552 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12554 return bfd_com_section_ptr;
12557 bfd_vma
12558 _bfd_elf_default_got_elt_size (bfd *abfd,
12559 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12560 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12561 bfd *ibfd ATTRIBUTE_UNUSED,
12562 unsigned long symndx ATTRIBUTE_UNUSED)
12564 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12565 return bed->s->arch_size / 8;
12568 /* Routines to support the creation of dynamic relocs. */
12570 /* Return true if NAME is a name of a relocation
12571 section associated with section S. */
12573 static bfd_boolean
12574 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12576 if (rela)
12577 return CONST_STRNEQ (name, ".rela")
12578 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12580 return CONST_STRNEQ (name, ".rel")
12581 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12584 /* Returns the name of the dynamic reloc section associated with SEC. */
12586 static const char *
12587 get_dynamic_reloc_section_name (bfd * abfd,
12588 asection * sec,
12589 bfd_boolean is_rela)
12591 const char * name;
12592 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12593 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12595 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12596 if (name == NULL)
12597 return NULL;
12599 if (! is_reloc_section (is_rela, name, sec))
12601 static bfd_boolean complained = FALSE;
12603 if (! complained)
12605 (*_bfd_error_handler)
12606 (_("%B: bad relocation section name `%s\'"), abfd, name);
12607 complained = TRUE;
12609 name = NULL;
12612 return name;
12615 /* Returns the dynamic reloc section associated with SEC.
12616 If necessary compute the name of the dynamic reloc section based
12617 on SEC's name (looked up in ABFD's string table) and the setting
12618 of IS_RELA. */
12620 asection *
12621 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12622 asection * sec,
12623 bfd_boolean is_rela)
12625 asection * reloc_sec = elf_section_data (sec)->sreloc;
12627 if (reloc_sec == NULL)
12629 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12631 if (name != NULL)
12633 reloc_sec = bfd_get_section_by_name (abfd, name);
12635 if (reloc_sec != NULL)
12636 elf_section_data (sec)->sreloc = reloc_sec;
12640 return reloc_sec;
12643 /* Returns the dynamic reloc section associated with SEC. If the
12644 section does not exist it is created and attached to the DYNOBJ
12645 bfd and stored in the SRELOC field of SEC's elf_section_data
12646 structure.
12648 ALIGNMENT is the alignment for the newly created section and
12649 IS_RELA defines whether the name should be .rela.<SEC's name>
12650 or .rel.<SEC's name>. The section name is looked up in the
12651 string table associated with ABFD. */
12653 asection *
12654 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12655 bfd * dynobj,
12656 unsigned int alignment,
12657 bfd * abfd,
12658 bfd_boolean is_rela)
12660 asection * reloc_sec = elf_section_data (sec)->sreloc;
12662 if (reloc_sec == NULL)
12664 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12666 if (name == NULL)
12667 return NULL;
12669 reloc_sec = bfd_get_section_by_name (dynobj, name);
12671 if (reloc_sec == NULL)
12673 flagword flags;
12675 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12676 if ((sec->flags & SEC_ALLOC) != 0)
12677 flags |= SEC_ALLOC | SEC_LOAD;
12679 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12680 if (reloc_sec != NULL)
12682 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12683 reloc_sec = NULL;
12687 elf_section_data (sec)->sreloc = reloc_sec;
12690 return reloc_sec;
12693 /* Copy the ELF symbol type associated with a linker hash entry. */
12694 void
12695 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12696 struct bfd_link_hash_entry * hdest,
12697 struct bfd_link_hash_entry * hsrc)
12699 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12700 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12702 ehdest->type = ehsrc->type;