1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
213 bfd_elf_gnu_hash (const char *namearg
)
215 const unsigned char *name
= (const unsigned char *) namearg
;
216 unsigned long h
= 5381;
219 while ((ch
= *name
++) != '\0')
220 h
= (h
<< 5) + h
+ ch
;
221 return h
& 0xffffffff;
225 bfd_elf_mkobject (bfd
*abfd
)
227 if (abfd
->tdata
.any
== NULL
)
229 abfd
->tdata
.any
= bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
230 if (abfd
->tdata
.any
== NULL
)
234 elf_tdata (abfd
)->program_header_size
= (bfd_size_type
) -1;
240 bfd_elf_mkcorefile (bfd
*abfd
)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd
);
247 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
249 Elf_Internal_Shdr
**i_shdrp
;
250 bfd_byte
*shstrtab
= NULL
;
252 bfd_size_type shstrtabsize
;
254 i_shdrp
= elf_elfsections (abfd
);
255 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
258 shstrtab
= i_shdrp
[shindex
]->contents
;
259 if (shstrtab
== NULL
)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset
= i_shdrp
[shindex
]->sh_offset
;
263 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize
+ 1 == 0
268 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
269 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
271 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
273 if (bfd_get_error () != bfd_error_system_call
)
274 bfd_set_error (bfd_error_file_truncated
);
278 shstrtab
[shstrtabsize
] = '\0';
279 i_shdrp
[shindex
]->contents
= shstrtab
;
281 return (char *) shstrtab
;
285 bfd_elf_string_from_elf_section (bfd
*abfd
,
286 unsigned int shindex
,
287 unsigned int strindex
)
289 Elf_Internal_Shdr
*hdr
;
294 hdr
= elf_elfsections (abfd
)[shindex
];
296 if (hdr
->contents
== NULL
297 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
300 if (strindex
>= hdr
->sh_size
)
302 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
303 (*_bfd_error_handler
)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
306 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
308 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
312 return ((char *) hdr
->contents
) + strindex
;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
322 bfd_elf_get_elf_syms (bfd
*ibfd
,
323 Elf_Internal_Shdr
*symtab_hdr
,
326 Elf_Internal_Sym
*intsym_buf
,
328 Elf_External_Sym_Shndx
*extshndx_buf
)
330 Elf_Internal_Shdr
*shndx_hdr
;
332 const bfd_byte
*esym
;
333 Elf_External_Sym_Shndx
*alloc_extshndx
;
334 Elf_External_Sym_Shndx
*shndx
;
335 Elf_Internal_Sym
*isym
;
336 Elf_Internal_Sym
*isymend
;
337 const struct elf_backend_data
*bed
;
345 /* Normal syms might have section extension entries. */
347 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
348 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
350 /* Read the symbols. */
352 alloc_extshndx
= NULL
;
353 bed
= get_elf_backend_data (ibfd
);
354 extsym_size
= bed
->s
->sizeof_sym
;
355 amt
= symcount
* extsym_size
;
356 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
357 if (extsym_buf
== NULL
)
359 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
360 extsym_buf
= alloc_ext
;
362 if (extsym_buf
== NULL
363 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
364 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
370 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
374 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
375 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
376 if (extshndx_buf
== NULL
)
378 alloc_extshndx
= bfd_malloc2 (symcount
,
379 sizeof (Elf_External_Sym_Shndx
));
380 extshndx_buf
= alloc_extshndx
;
382 if (extshndx_buf
== NULL
383 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
384 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
391 if (intsym_buf
== NULL
)
393 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
394 if (intsym_buf
== NULL
)
398 /* Convert the symbols to internal form. */
399 isymend
= intsym_buf
+ symcount
;
400 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
402 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
403 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
405 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
406 (*_bfd_error_handler
) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd
, (unsigned long) symoffset
);
414 if (alloc_ext
!= NULL
)
416 if (alloc_extshndx
!= NULL
)
417 free (alloc_extshndx
);
422 /* Look up a symbol name. */
424 bfd_elf_sym_name (bfd
*abfd
,
425 Elf_Internal_Shdr
*symtab_hdr
,
426 Elf_Internal_Sym
*isym
,
430 unsigned int iname
= isym
->st_name
;
431 unsigned int shindex
= symtab_hdr
->sh_link
;
433 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym
->st_shndx
< elf_numsections (abfd
)
436 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
438 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
439 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
442 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
445 else if (sym_sec
&& *name
== '\0')
446 name
= bfd_section_name (abfd
, sym_sec
);
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
455 typedef union elf_internal_group
{
456 Elf_Internal_Shdr
*shdr
;
458 } Elf_Internal_Group
;
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
464 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
466 Elf_Internal_Shdr
*hdr
;
467 unsigned char esym
[sizeof (Elf64_External_Sym
)];
468 Elf_External_Sym_Shndx eshndx
;
469 Elf_Internal_Sym isym
;
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
474 if (hdr
->sh_type
!= SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
478 /* Go read the symbol. */
479 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
480 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
481 &isym
, esym
, &eshndx
) == NULL
)
484 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
490 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
492 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
498 unsigned int i
, shnum
;
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum
= elf_numsections (abfd
);
505 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
506 ( (shdr)->sh_type == SHT_GROUP \
507 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
508 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
509 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
511 for (i
= 0; i
< shnum
; i
++)
513 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
515 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
521 num_group
= (unsigned) -1;
522 elf_tdata (abfd
)->num_group
= num_group
;
526 /* We keep a list of elf section headers for group sections,
527 so we can find them quickly. */
530 elf_tdata (abfd
)->num_group
= num_group
;
531 elf_tdata (abfd
)->group_sect_ptr
532 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
533 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
537 for (i
= 0; i
< shnum
; i
++)
539 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
541 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
544 Elf_Internal_Group
*dest
;
546 /* Add to list of sections. */
547 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
550 /* Read the raw contents. */
551 BFD_ASSERT (sizeof (*dest
) >= 4);
552 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
553 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
555 /* PR binutils/4110: Handle corrupt group headers. */
556 if (shdr
->contents
== NULL
)
559 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
560 bfd_set_error (bfd_error_bad_value
);
564 memset (shdr
->contents
, 0, amt
);
566 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
567 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
571 /* Translate raw contents, a flag word followed by an
572 array of elf section indices all in target byte order,
573 to the flag word followed by an array of elf section
575 src
= shdr
->contents
+ shdr
->sh_size
;
576 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
583 idx
= H_GET_32 (abfd
, src
);
584 if (src
== shdr
->contents
)
587 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
588 shdr
->bfd_section
->flags
589 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
594 ((*_bfd_error_handler
)
595 (_("%B: invalid SHT_GROUP entry"), abfd
));
598 dest
->shdr
= elf_elfsections (abfd
)[idx
];
605 if (num_group
!= (unsigned) -1)
609 for (i
= 0; i
< num_group
; i
++)
611 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
612 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
613 unsigned int n_elt
= shdr
->sh_size
/ 4;
615 /* Look through this group's sections to see if current
616 section is a member. */
618 if ((++idx
)->shdr
== hdr
)
622 /* We are a member of this group. Go looking through
623 other members to see if any others are linked via
625 idx
= (Elf_Internal_Group
*) shdr
->contents
;
626 n_elt
= shdr
->sh_size
/ 4;
628 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
629 && elf_next_in_group (s
) != NULL
)
633 /* Snarf the group name from other member, and
634 insert current section in circular list. */
635 elf_group_name (newsect
) = elf_group_name (s
);
636 elf_next_in_group (newsect
) = elf_next_in_group (s
);
637 elf_next_in_group (s
) = newsect
;
643 gname
= group_signature (abfd
, shdr
);
646 elf_group_name (newsect
) = gname
;
648 /* Start a circular list with one element. */
649 elf_next_in_group (newsect
) = newsect
;
652 /* If the group section has been created, point to the
654 if (shdr
->bfd_section
!= NULL
)
655 elf_next_in_group (shdr
->bfd_section
) = newsect
;
663 if (elf_group_name (newsect
) == NULL
)
665 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
672 _bfd_elf_setup_sections (bfd
*abfd
)
675 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
676 bfd_boolean result
= TRUE
;
679 /* Process SHF_LINK_ORDER. */
680 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
682 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
683 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
685 unsigned int elfsec
= this_hdr
->sh_link
;
686 /* FIXME: The old Intel compiler and old strip/objcopy may
687 not set the sh_link or sh_info fields. Hence we could
688 get the situation where elfsec is 0. */
691 const struct elf_backend_data
*bed
692 = get_elf_backend_data (abfd
);
693 if (bed
->link_order_error_handler
)
694 bed
->link_order_error_handler
695 (_("%B: warning: sh_link not set for section `%A'"),
702 this_hdr
= elf_elfsections (abfd
)[elfsec
];
705 Some strip/objcopy may leave an incorrect value in
706 sh_link. We don't want to proceed. */
707 link
= this_hdr
->bfd_section
;
710 (*_bfd_error_handler
)
711 (_("%B: sh_link [%d] in section `%A' is incorrect"),
712 s
->owner
, s
, elfsec
);
716 elf_linked_to_section (s
) = link
;
721 /* Process section groups. */
722 if (num_group
== (unsigned) -1)
725 for (i
= 0; i
< num_group
; i
++)
727 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
728 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
729 unsigned int n_elt
= shdr
->sh_size
/ 4;
732 if ((++idx
)->shdr
->bfd_section
)
733 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
734 else if (idx
->shdr
->sh_type
== SHT_RELA
735 || idx
->shdr
->sh_type
== SHT_REL
)
736 /* We won't include relocation sections in section groups in
737 output object files. We adjust the group section size here
738 so that relocatable link will work correctly when
739 relocation sections are in section group in input object
741 shdr
->bfd_section
->size
-= 4;
744 /* There are some unknown sections in the group. */
745 (*_bfd_error_handler
)
746 (_("%B: unknown [%d] section `%s' in group [%s]"),
748 (unsigned int) idx
->shdr
->sh_type
,
749 bfd_elf_string_from_elf_section (abfd
,
750 (elf_elfheader (abfd
)
753 shdr
->bfd_section
->name
);
761 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
763 return elf_next_in_group (sec
) != NULL
;
766 /* Make a BFD section from an ELF section. We store a pointer to the
767 BFD section in the bfd_section field of the header. */
770 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
771 Elf_Internal_Shdr
*hdr
,
777 const struct elf_backend_data
*bed
;
779 if (hdr
->bfd_section
!= NULL
)
781 BFD_ASSERT (strcmp (name
,
782 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
786 newsect
= bfd_make_section_anyway (abfd
, name
);
790 hdr
->bfd_section
= newsect
;
791 elf_section_data (newsect
)->this_hdr
= *hdr
;
792 elf_section_data (newsect
)->this_idx
= shindex
;
794 /* Always use the real type/flags. */
795 elf_section_type (newsect
) = hdr
->sh_type
;
796 elf_section_flags (newsect
) = hdr
->sh_flags
;
798 newsect
->filepos
= hdr
->sh_offset
;
800 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
801 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
802 || ! bfd_set_section_alignment (abfd
, newsect
,
803 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
806 flags
= SEC_NO_FLAGS
;
807 if (hdr
->sh_type
!= SHT_NOBITS
)
808 flags
|= SEC_HAS_CONTENTS
;
809 if (hdr
->sh_type
== SHT_GROUP
)
810 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
811 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
814 if (hdr
->sh_type
!= SHT_NOBITS
)
817 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
818 flags
|= SEC_READONLY
;
819 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
821 else if ((flags
& SEC_LOAD
) != 0)
823 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
826 newsect
->entsize
= hdr
->sh_entsize
;
827 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
828 flags
|= SEC_STRINGS
;
830 if (hdr
->sh_flags
& SHF_GROUP
)
831 if (!setup_group (abfd
, hdr
, newsect
))
833 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
834 flags
|= SEC_THREAD_LOCAL
;
836 if ((flags
& SEC_ALLOC
) == 0)
838 /* The debugging sections appear to be recognized only by name,
839 not any sort of flag. Their SEC_ALLOC bits are cleared. */
844 } debug_sections
[] =
846 { STRING_COMMA_LEN ("debug") }, /* 'd' */
847 { NULL
, 0 }, /* 'e' */
848 { NULL
, 0 }, /* 'f' */
849 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
850 { NULL
, 0 }, /* 'h' */
851 { NULL
, 0 }, /* 'i' */
852 { NULL
, 0 }, /* 'j' */
853 { NULL
, 0 }, /* 'k' */
854 { STRING_COMMA_LEN ("line") }, /* 'l' */
855 { NULL
, 0 }, /* 'm' */
856 { NULL
, 0 }, /* 'n' */
857 { NULL
, 0 }, /* 'o' */
858 { NULL
, 0 }, /* 'p' */
859 { NULL
, 0 }, /* 'q' */
860 { NULL
, 0 }, /* 'r' */
861 { STRING_COMMA_LEN ("stab") } /* 's' */
866 int i
= name
[1] - 'd';
868 && i
< (int) ARRAY_SIZE (debug_sections
)
869 && debug_sections
[i
].name
!= NULL
870 && strncmp (&name
[1], debug_sections
[i
].name
,
871 debug_sections
[i
].len
) == 0)
872 flags
|= SEC_DEBUGGING
;
876 /* As a GNU extension, if the name begins with .gnu.linkonce, we
877 only link a single copy of the section. This is used to support
878 g++. g++ will emit each template expansion in its own section.
879 The symbols will be defined as weak, so that multiple definitions
880 are permitted. The GNU linker extension is to actually discard
881 all but one of the sections. */
882 if (CONST_STRNEQ (name
, ".gnu.linkonce")
883 && elf_next_in_group (newsect
) == NULL
)
884 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
886 bed
= get_elf_backend_data (abfd
);
887 if (bed
->elf_backend_section_flags
)
888 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
891 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
894 if ((flags
& SEC_ALLOC
) != 0)
896 Elf_Internal_Phdr
*phdr
;
899 /* Look through the phdrs to see if we need to adjust the lma.
900 If all the p_paddr fields are zero, we ignore them, since
901 some ELF linkers produce such output. */
902 phdr
= elf_tdata (abfd
)->phdr
;
903 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
905 if (phdr
->p_paddr
!= 0)
908 if (i
< elf_elfheader (abfd
)->e_phnum
)
910 phdr
= elf_tdata (abfd
)->phdr
;
911 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
913 /* This section is part of this segment if its file
914 offset plus size lies within the segment's memory
915 span and, if the section is loaded, the extent of the
916 loaded data lies within the extent of the segment.
918 Note - we used to check the p_paddr field as well, and
919 refuse to set the LMA if it was 0. This is wrong
920 though, as a perfectly valid initialised segment can
921 have a p_paddr of zero. Some architectures, eg ARM,
922 place special significance on the address 0 and
923 executables need to be able to have a segment which
924 covers this address. */
925 if (phdr
->p_type
== PT_LOAD
926 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
927 && (hdr
->sh_offset
+ hdr
->sh_size
928 <= phdr
->p_offset
+ phdr
->p_memsz
)
929 && ((flags
& SEC_LOAD
) == 0
930 || (hdr
->sh_offset
+ hdr
->sh_size
931 <= phdr
->p_offset
+ phdr
->p_filesz
)))
933 if ((flags
& SEC_LOAD
) == 0)
934 newsect
->lma
= (phdr
->p_paddr
935 + hdr
->sh_addr
- phdr
->p_vaddr
);
937 /* We used to use the same adjustment for SEC_LOAD
938 sections, but that doesn't work if the segment
939 is packed with code from multiple VMAs.
940 Instead we calculate the section LMA based on
941 the segment LMA. It is assumed that the
942 segment will contain sections with contiguous
943 LMAs, even if the VMAs are not. */
944 newsect
->lma
= (phdr
->p_paddr
945 + hdr
->sh_offset
- phdr
->p_offset
);
947 /* With contiguous segments, we can't tell from file
948 offsets whether a section with zero size should
949 be placed at the end of one segment or the
950 beginning of the next. Decide based on vaddr. */
951 if (hdr
->sh_addr
>= phdr
->p_vaddr
952 && (hdr
->sh_addr
+ hdr
->sh_size
953 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
968 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
971 Helper functions for GDB to locate the string tables.
972 Since BFD hides string tables from callers, GDB needs to use an
973 internal hook to find them. Sun's .stabstr, in particular,
974 isn't even pointed to by the .stab section, so ordinary
975 mechanisms wouldn't work to find it, even if we had some.
978 struct elf_internal_shdr
*
979 bfd_elf_find_section (bfd
*abfd
, char *name
)
981 Elf_Internal_Shdr
**i_shdrp
;
986 i_shdrp
= elf_elfsections (abfd
);
989 shstrtab
= bfd_elf_get_str_section (abfd
,
990 elf_elfheader (abfd
)->e_shstrndx
);
991 if (shstrtab
!= NULL
)
993 max
= elf_numsections (abfd
);
994 for (i
= 1; i
< max
; i
++)
995 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
1002 const char *const bfd_elf_section_type_names
[] = {
1003 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1004 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1005 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1008 /* ELF relocs are against symbols. If we are producing relocatable
1009 output, and the reloc is against an external symbol, and nothing
1010 has given us any additional addend, the resulting reloc will also
1011 be against the same symbol. In such a case, we don't want to
1012 change anything about the way the reloc is handled, since it will
1013 all be done at final link time. Rather than put special case code
1014 into bfd_perform_relocation, all the reloc types use this howto
1015 function. It just short circuits the reloc if producing
1016 relocatable output against an external symbol. */
1018 bfd_reloc_status_type
1019 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1020 arelent
*reloc_entry
,
1022 void *data ATTRIBUTE_UNUSED
,
1023 asection
*input_section
,
1025 char **error_message ATTRIBUTE_UNUSED
)
1027 if (output_bfd
!= NULL
1028 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1029 && (! reloc_entry
->howto
->partial_inplace
1030 || reloc_entry
->addend
== 0))
1032 reloc_entry
->address
+= input_section
->output_offset
;
1033 return bfd_reloc_ok
;
1036 return bfd_reloc_continue
;
1039 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1042 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1045 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1046 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1049 /* Finish SHF_MERGE section merging. */
1052 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1057 if (!is_elf_hash_table (info
->hash
))
1060 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1061 if ((ibfd
->flags
& DYNAMIC
) == 0)
1062 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1063 if ((sec
->flags
& SEC_MERGE
) != 0
1064 && !bfd_is_abs_section (sec
->output_section
))
1066 struct bfd_elf_section_data
*secdata
;
1068 secdata
= elf_section_data (sec
);
1069 if (! _bfd_add_merge_section (abfd
,
1070 &elf_hash_table (info
)->merge_info
,
1071 sec
, &secdata
->sec_info
))
1073 else if (secdata
->sec_info
)
1074 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1077 if (elf_hash_table (info
)->merge_info
!= NULL
)
1078 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1079 merge_sections_remove_hook
);
1084 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1086 sec
->output_section
= bfd_abs_section_ptr
;
1087 sec
->output_offset
= sec
->vma
;
1088 if (!is_elf_hash_table (info
->hash
))
1091 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1094 /* Copy the program header and other data from one object module to
1098 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1100 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1101 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1104 BFD_ASSERT (!elf_flags_init (obfd
)
1105 || (elf_elfheader (obfd
)->e_flags
1106 == elf_elfheader (ibfd
)->e_flags
));
1108 elf_gp (obfd
) = elf_gp (ibfd
);
1109 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1110 elf_flags_init (obfd
) = TRUE
;
1115 get_segment_type (unsigned int p_type
)
1120 case PT_NULL
: pt
= "NULL"; break;
1121 case PT_LOAD
: pt
= "LOAD"; break;
1122 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1123 case PT_INTERP
: pt
= "INTERP"; break;
1124 case PT_NOTE
: pt
= "NOTE"; break;
1125 case PT_SHLIB
: pt
= "SHLIB"; break;
1126 case PT_PHDR
: pt
= "PHDR"; break;
1127 case PT_TLS
: pt
= "TLS"; break;
1128 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1129 case PT_GNU_STACK
: pt
= "STACK"; break;
1130 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1131 default: pt
= NULL
; break;
1136 /* Print out the program headers. */
1139 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1142 Elf_Internal_Phdr
*p
;
1144 bfd_byte
*dynbuf
= NULL
;
1146 p
= elf_tdata (abfd
)->phdr
;
1151 fprintf (f
, _("\nProgram Header:\n"));
1152 c
= elf_elfheader (abfd
)->e_phnum
;
1153 for (i
= 0; i
< c
; i
++, p
++)
1155 const char *pt
= get_segment_type (p
->p_type
);
1160 sprintf (buf
, "0x%lx", p
->p_type
);
1163 fprintf (f
, "%8s off 0x", pt
);
1164 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1165 fprintf (f
, " vaddr 0x");
1166 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1167 fprintf (f
, " paddr 0x");
1168 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1169 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1170 fprintf (f
, " filesz 0x");
1171 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1172 fprintf (f
, " memsz 0x");
1173 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1174 fprintf (f
, " flags %c%c%c",
1175 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1176 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1177 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1178 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1179 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1184 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1188 unsigned long shlink
;
1189 bfd_byte
*extdyn
, *extdynend
;
1191 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1193 fprintf (f
, _("\nDynamic Section:\n"));
1195 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1198 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1201 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1203 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1204 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1207 extdynend
= extdyn
+ s
->size
;
1208 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1210 Elf_Internal_Dyn dyn
;
1213 bfd_boolean stringp
;
1215 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1217 if (dyn
.d_tag
== DT_NULL
)
1224 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1228 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1229 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1230 case DT_PLTGOT
: name
= "PLTGOT"; break;
1231 case DT_HASH
: name
= "HASH"; break;
1232 case DT_STRTAB
: name
= "STRTAB"; break;
1233 case DT_SYMTAB
: name
= "SYMTAB"; break;
1234 case DT_RELA
: name
= "RELA"; break;
1235 case DT_RELASZ
: name
= "RELASZ"; break;
1236 case DT_RELAENT
: name
= "RELAENT"; break;
1237 case DT_STRSZ
: name
= "STRSZ"; break;
1238 case DT_SYMENT
: name
= "SYMENT"; break;
1239 case DT_INIT
: name
= "INIT"; break;
1240 case DT_FINI
: name
= "FINI"; break;
1241 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1242 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1243 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1244 case DT_REL
: name
= "REL"; break;
1245 case DT_RELSZ
: name
= "RELSZ"; break;
1246 case DT_RELENT
: name
= "RELENT"; break;
1247 case DT_PLTREL
: name
= "PLTREL"; break;
1248 case DT_DEBUG
: name
= "DEBUG"; break;
1249 case DT_TEXTREL
: name
= "TEXTREL"; break;
1250 case DT_JMPREL
: name
= "JMPREL"; break;
1251 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1252 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1253 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1254 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1255 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1256 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1257 case DT_FLAGS
: name
= "FLAGS"; break;
1258 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1259 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1260 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1261 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1262 case DT_MOVEENT
: name
= "MOVEENT"; break;
1263 case DT_MOVESZ
: name
= "MOVESZ"; break;
1264 case DT_FEATURE
: name
= "FEATURE"; break;
1265 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1266 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1267 case DT_SYMINENT
: name
= "SYMINENT"; break;
1268 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1269 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1270 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1271 case DT_PLTPAD
: name
= "PLTPAD"; break;
1272 case DT_MOVETAB
: name
= "MOVETAB"; break;
1273 case DT_SYMINFO
: name
= "SYMINFO"; break;
1274 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1275 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1276 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1277 case DT_VERSYM
: name
= "VERSYM"; break;
1278 case DT_VERDEF
: name
= "VERDEF"; break;
1279 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1280 case DT_VERNEED
: name
= "VERNEED"; break;
1281 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1282 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1283 case DT_USED
: name
= "USED"; break;
1284 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1285 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1288 fprintf (f
, " %-11s ", name
);
1290 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1294 unsigned int tagv
= dyn
.d_un
.d_val
;
1296 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1299 fprintf (f
, "%s", string
);
1308 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1309 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1311 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1315 if (elf_dynverdef (abfd
) != 0)
1317 Elf_Internal_Verdef
*t
;
1319 fprintf (f
, _("\nVersion definitions:\n"));
1320 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1322 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1323 t
->vd_flags
, t
->vd_hash
,
1324 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1325 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1327 Elf_Internal_Verdaux
*a
;
1330 for (a
= t
->vd_auxptr
->vda_nextptr
;
1334 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1340 if (elf_dynverref (abfd
) != 0)
1342 Elf_Internal_Verneed
*t
;
1344 fprintf (f
, _("\nVersion References:\n"));
1345 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1347 Elf_Internal_Vernaux
*a
;
1349 fprintf (f
, _(" required from %s:\n"),
1350 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1351 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1352 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1353 a
->vna_flags
, a
->vna_other
,
1354 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1366 /* Display ELF-specific fields of a symbol. */
1369 bfd_elf_print_symbol (bfd
*abfd
,
1372 bfd_print_symbol_type how
)
1377 case bfd_print_symbol_name
:
1378 fprintf (file
, "%s", symbol
->name
);
1380 case bfd_print_symbol_more
:
1381 fprintf (file
, "elf ");
1382 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1383 fprintf (file
, " %lx", (long) symbol
->flags
);
1385 case bfd_print_symbol_all
:
1387 const char *section_name
;
1388 const char *name
= NULL
;
1389 const struct elf_backend_data
*bed
;
1390 unsigned char st_other
;
1393 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1395 bed
= get_elf_backend_data (abfd
);
1396 if (bed
->elf_backend_print_symbol_all
)
1397 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1401 name
= symbol
->name
;
1402 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1405 fprintf (file
, " %s\t", section_name
);
1406 /* Print the "other" value for a symbol. For common symbols,
1407 we've already printed the size; now print the alignment.
1408 For other symbols, we have no specified alignment, and
1409 we've printed the address; now print the size. */
1410 if (bfd_is_com_section (symbol
->section
))
1411 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1413 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1414 bfd_fprintf_vma (abfd
, file
, val
);
1416 /* If we have version information, print it. */
1417 if (elf_tdata (abfd
)->dynversym_section
!= 0
1418 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1419 || elf_tdata (abfd
)->dynverref_section
!= 0))
1421 unsigned int vernum
;
1422 const char *version_string
;
1424 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1427 version_string
= "";
1428 else if (vernum
== 1)
1429 version_string
= "Base";
1430 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1432 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1435 Elf_Internal_Verneed
*t
;
1437 version_string
= "";
1438 for (t
= elf_tdata (abfd
)->verref
;
1442 Elf_Internal_Vernaux
*a
;
1444 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1446 if (a
->vna_other
== vernum
)
1448 version_string
= a
->vna_nodename
;
1455 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1456 fprintf (file
, " %-11s", version_string
);
1461 fprintf (file
, " (%s)", version_string
);
1462 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1467 /* If the st_other field is not zero, print it. */
1468 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1473 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1474 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1475 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1477 /* Some other non-defined flags are also present, so print
1479 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1482 fprintf (file
, " %s", name
);
1488 /* Create an entry in an ELF linker hash table. */
1490 struct bfd_hash_entry
*
1491 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1492 struct bfd_hash_table
*table
,
1495 /* Allocate the structure if it has not already been allocated by a
1499 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1504 /* Call the allocation method of the superclass. */
1505 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1508 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1509 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1511 /* Set local fields. */
1514 ret
->got
= htab
->init_got_refcount
;
1515 ret
->plt
= htab
->init_plt_refcount
;
1516 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1517 - offsetof (struct elf_link_hash_entry
, size
)));
1518 /* Assume that we have been called by a non-ELF symbol reader.
1519 This flag is then reset by the code which reads an ELF input
1520 file. This ensures that a symbol created by a non-ELF symbol
1521 reader will have the flag set correctly. */
1528 /* Copy data from an indirect symbol to its direct symbol, hiding the
1529 old indirect symbol. Also used for copying flags to a weakdef. */
1532 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1533 struct elf_link_hash_entry
*dir
,
1534 struct elf_link_hash_entry
*ind
)
1536 struct elf_link_hash_table
*htab
;
1538 /* Copy down any references that we may have already seen to the
1539 symbol which just became indirect. */
1541 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1542 dir
->ref_regular
|= ind
->ref_regular
;
1543 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1544 dir
->non_got_ref
|= ind
->non_got_ref
;
1545 dir
->needs_plt
|= ind
->needs_plt
;
1546 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1548 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1551 /* Copy over the global and procedure linkage table refcount entries.
1552 These may have been already set up by a check_relocs routine. */
1553 htab
= elf_hash_table (info
);
1554 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1556 if (dir
->got
.refcount
< 0)
1557 dir
->got
.refcount
= 0;
1558 dir
->got
.refcount
+= ind
->got
.refcount
;
1559 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1562 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1564 if (dir
->plt
.refcount
< 0)
1565 dir
->plt
.refcount
= 0;
1566 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1567 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1570 if (ind
->dynindx
!= -1)
1572 if (dir
->dynindx
!= -1)
1573 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1574 dir
->dynindx
= ind
->dynindx
;
1575 dir
->dynstr_index
= ind
->dynstr_index
;
1577 ind
->dynstr_index
= 0;
1582 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1583 struct elf_link_hash_entry
*h
,
1584 bfd_boolean force_local
)
1586 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1590 h
->forced_local
= 1;
1591 if (h
->dynindx
!= -1)
1594 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1600 /* Initialize an ELF linker hash table. */
1603 _bfd_elf_link_hash_table_init
1604 (struct elf_link_hash_table
*table
,
1606 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1607 struct bfd_hash_table
*,
1609 unsigned int entsize
)
1612 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1614 memset (table
, 0, sizeof * table
);
1615 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1616 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1617 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1618 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1619 /* The first dynamic symbol is a dummy. */
1620 table
->dynsymcount
= 1;
1622 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1623 table
->root
.type
= bfd_link_elf_hash_table
;
1628 /* Create an ELF linker hash table. */
1630 struct bfd_link_hash_table
*
1631 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1633 struct elf_link_hash_table
*ret
;
1634 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1636 ret
= bfd_malloc (amt
);
1640 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1641 sizeof (struct elf_link_hash_entry
)))
1650 /* This is a hook for the ELF emulation code in the generic linker to
1651 tell the backend linker what file name to use for the DT_NEEDED
1652 entry for a dynamic object. */
1655 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1657 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1658 && bfd_get_format (abfd
) == bfd_object
)
1659 elf_dt_name (abfd
) = name
;
1663 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1666 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1667 && bfd_get_format (abfd
) == bfd_object
)
1668 lib_class
= elf_dyn_lib_class (abfd
);
1675 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
1677 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1678 && bfd_get_format (abfd
) == bfd_object
)
1679 elf_dyn_lib_class (abfd
) = lib_class
;
1682 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1683 the linker ELF emulation code. */
1685 struct bfd_link_needed_list
*
1686 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1687 struct bfd_link_info
*info
)
1689 if (! is_elf_hash_table (info
->hash
))
1691 return elf_hash_table (info
)->needed
;
1694 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1695 hook for the linker ELF emulation code. */
1697 struct bfd_link_needed_list
*
1698 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1699 struct bfd_link_info
*info
)
1701 if (! is_elf_hash_table (info
->hash
))
1703 return elf_hash_table (info
)->runpath
;
1706 /* Get the name actually used for a dynamic object for a link. This
1707 is the SONAME entry if there is one. Otherwise, it is the string
1708 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1711 bfd_elf_get_dt_soname (bfd
*abfd
)
1713 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1714 && bfd_get_format (abfd
) == bfd_object
)
1715 return elf_dt_name (abfd
);
1719 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1720 the ELF linker emulation code. */
1723 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1724 struct bfd_link_needed_list
**pneeded
)
1727 bfd_byte
*dynbuf
= NULL
;
1729 unsigned long shlink
;
1730 bfd_byte
*extdyn
, *extdynend
;
1732 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1736 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1737 || bfd_get_format (abfd
) != bfd_object
)
1740 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1741 if (s
== NULL
|| s
->size
== 0)
1744 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1747 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1751 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1753 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1754 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1757 extdynend
= extdyn
+ s
->size
;
1758 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1760 Elf_Internal_Dyn dyn
;
1762 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1764 if (dyn
.d_tag
== DT_NULL
)
1767 if (dyn
.d_tag
== DT_NEEDED
)
1770 struct bfd_link_needed_list
*l
;
1771 unsigned int tagv
= dyn
.d_un
.d_val
;
1774 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1779 l
= bfd_alloc (abfd
, amt
);
1800 /* Allocate an ELF string table--force the first byte to be zero. */
1802 struct bfd_strtab_hash
*
1803 _bfd_elf_stringtab_init (void)
1805 struct bfd_strtab_hash
*ret
;
1807 ret
= _bfd_stringtab_init ();
1812 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1813 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1814 if (loc
== (bfd_size_type
) -1)
1816 _bfd_stringtab_free (ret
);
1823 /* ELF .o/exec file reading */
1825 /* Create a new bfd section from an ELF section header. */
1828 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1830 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1831 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1832 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1835 name
= bfd_elf_string_from_elf_section (abfd
,
1836 elf_elfheader (abfd
)->e_shstrndx
,
1841 switch (hdr
->sh_type
)
1844 /* Inactive section. Throw it away. */
1847 case SHT_PROGBITS
: /* Normal section with contents. */
1848 case SHT_NOBITS
: /* .bss section. */
1849 case SHT_HASH
: /* .hash section. */
1850 case SHT_NOTE
: /* .note section. */
1851 case SHT_INIT_ARRAY
: /* .init_array section. */
1852 case SHT_FINI_ARRAY
: /* .fini_array section. */
1853 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1854 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1855 case SHT_GNU_HASH
: /* .gnu.hash section. */
1856 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1858 case SHT_DYNAMIC
: /* Dynamic linking information. */
1859 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1861 if (hdr
->sh_link
> elf_numsections (abfd
)
1862 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1864 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1866 Elf_Internal_Shdr
*dynsymhdr
;
1868 /* The shared libraries distributed with hpux11 have a bogus
1869 sh_link field for the ".dynamic" section. Find the
1870 string table for the ".dynsym" section instead. */
1871 if (elf_dynsymtab (abfd
) != 0)
1873 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1874 hdr
->sh_link
= dynsymhdr
->sh_link
;
1878 unsigned int i
, num_sec
;
1880 num_sec
= elf_numsections (abfd
);
1881 for (i
= 1; i
< num_sec
; i
++)
1883 dynsymhdr
= elf_elfsections (abfd
)[i
];
1884 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1886 hdr
->sh_link
= dynsymhdr
->sh_link
;
1894 case SHT_SYMTAB
: /* A symbol table */
1895 if (elf_onesymtab (abfd
) == shindex
)
1898 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1900 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1901 elf_onesymtab (abfd
) = shindex
;
1902 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1903 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1904 abfd
->flags
|= HAS_SYMS
;
1906 /* Sometimes a shared object will map in the symbol table. If
1907 SHF_ALLOC is set, and this is a shared object, then we also
1908 treat this section as a BFD section. We can not base the
1909 decision purely on SHF_ALLOC, because that flag is sometimes
1910 set in a relocatable object file, which would confuse the
1912 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1913 && (abfd
->flags
& DYNAMIC
) != 0
1914 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1918 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1919 can't read symbols without that section loaded as well. It
1920 is most likely specified by the next section header. */
1921 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1923 unsigned int i
, num_sec
;
1925 num_sec
= elf_numsections (abfd
);
1926 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1928 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1929 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1930 && hdr2
->sh_link
== shindex
)
1934 for (i
= 1; i
< shindex
; i
++)
1936 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1937 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1938 && hdr2
->sh_link
== shindex
)
1942 return bfd_section_from_shdr (abfd
, i
);
1946 case SHT_DYNSYM
: /* A dynamic symbol table */
1947 if (elf_dynsymtab (abfd
) == shindex
)
1950 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1952 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1953 elf_dynsymtab (abfd
) = shindex
;
1954 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1955 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1956 abfd
->flags
|= HAS_SYMS
;
1958 /* Besides being a symbol table, we also treat this as a regular
1959 section, so that objcopy can handle it. */
1960 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1962 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1963 if (elf_symtab_shndx (abfd
) == shindex
)
1966 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1967 elf_symtab_shndx (abfd
) = shindex
;
1968 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1969 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1972 case SHT_STRTAB
: /* A string table */
1973 if (hdr
->bfd_section
!= NULL
)
1975 if (ehdr
->e_shstrndx
== shindex
)
1977 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1978 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1981 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1984 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1985 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1988 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1991 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1992 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1993 elf_elfsections (abfd
)[shindex
] = hdr
;
1994 /* We also treat this as a regular section, so that objcopy
1996 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2000 /* If the string table isn't one of the above, then treat it as a
2001 regular section. We need to scan all the headers to be sure,
2002 just in case this strtab section appeared before the above. */
2003 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
2005 unsigned int i
, num_sec
;
2007 num_sec
= elf_numsections (abfd
);
2008 for (i
= 1; i
< num_sec
; i
++)
2010 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
2011 if (hdr2
->sh_link
== shindex
)
2013 /* Prevent endless recursion on broken objects. */
2016 if (! bfd_section_from_shdr (abfd
, i
))
2018 if (elf_onesymtab (abfd
) == i
)
2020 if (elf_dynsymtab (abfd
) == i
)
2021 goto dynsymtab_strtab
;
2025 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2029 /* *These* do a lot of work -- but build no sections! */
2031 asection
*target_sect
;
2032 Elf_Internal_Shdr
*hdr2
;
2033 unsigned int num_sec
= elf_numsections (abfd
);
2036 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2037 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2040 /* Check for a bogus link to avoid crashing. */
2041 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2042 || hdr
->sh_link
>= num_sec
)
2044 ((*_bfd_error_handler
)
2045 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2046 abfd
, hdr
->sh_link
, name
, shindex
));
2047 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2051 /* For some incomprehensible reason Oracle distributes
2052 libraries for Solaris in which some of the objects have
2053 bogus sh_link fields. It would be nice if we could just
2054 reject them, but, unfortunately, some people need to use
2055 them. We scan through the section headers; if we find only
2056 one suitable symbol table, we clobber the sh_link to point
2057 to it. I hope this doesn't break anything. */
2058 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2059 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2065 for (scan
= 1; scan
< num_sec
; scan
++)
2067 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2068 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2079 hdr
->sh_link
= found
;
2082 /* Get the symbol table. */
2083 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2084 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2085 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2088 /* If this reloc section does not use the main symbol table we
2089 don't treat it as a reloc section. BFD can't adequately
2090 represent such a section, so at least for now, we don't
2091 try. We just present it as a normal section. We also
2092 can't use it as a reloc section if it points to the null
2093 section, an invalid section, or another reloc section. */
2094 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2095 || hdr
->sh_info
== SHN_UNDEF
2096 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2097 || hdr
->sh_info
>= num_sec
2098 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2099 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2100 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2103 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2105 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2106 if (target_sect
== NULL
)
2109 if ((target_sect
->flags
& SEC_RELOC
) == 0
2110 || target_sect
->reloc_count
== 0)
2111 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2115 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2116 amt
= sizeof (*hdr2
);
2117 hdr2
= bfd_alloc (abfd
, amt
);
2118 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2121 elf_elfsections (abfd
)[shindex
] = hdr2
;
2122 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2123 target_sect
->flags
|= SEC_RELOC
;
2124 target_sect
->relocation
= NULL
;
2125 target_sect
->rel_filepos
= hdr
->sh_offset
;
2126 /* In the section to which the relocations apply, mark whether
2127 its relocations are of the REL or RELA variety. */
2128 if (hdr
->sh_size
!= 0)
2129 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2130 abfd
->flags
|= HAS_RELOC
;
2134 case SHT_GNU_verdef
:
2135 elf_dynverdef (abfd
) = shindex
;
2136 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2137 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2139 case SHT_GNU_versym
:
2140 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2142 elf_dynversym (abfd
) = shindex
;
2143 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2144 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2146 case SHT_GNU_verneed
:
2147 elf_dynverref (abfd
) = shindex
;
2148 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2149 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2155 /* We need a BFD section for objcopy and relocatable linking,
2156 and it's handy to have the signature available as the section
2158 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
2160 name
= group_signature (abfd
, hdr
);
2163 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2165 if (hdr
->contents
!= NULL
)
2167 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2168 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
2171 if (idx
->flags
& GRP_COMDAT
)
2172 hdr
->bfd_section
->flags
2173 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2175 /* We try to keep the same section order as it comes in. */
2177 while (--n_elt
!= 0)
2181 if (idx
->shdr
!= NULL
2182 && (s
= idx
->shdr
->bfd_section
) != NULL
2183 && elf_next_in_group (s
) != NULL
)
2185 elf_next_in_group (hdr
->bfd_section
) = s
;
2193 /* Check for any processor-specific section types. */
2194 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2197 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2199 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2200 /* FIXME: How to properly handle allocated section reserved
2201 for applications? */
2202 (*_bfd_error_handler
)
2203 (_("%B: don't know how to handle allocated, application "
2204 "specific section `%s' [0x%8x]"),
2205 abfd
, name
, hdr
->sh_type
);
2207 /* Allow sections reserved for applications. */
2208 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2211 else if (hdr
->sh_type
>= SHT_LOPROC
2212 && hdr
->sh_type
<= SHT_HIPROC
)
2213 /* FIXME: We should handle this section. */
2214 (*_bfd_error_handler
)
2215 (_("%B: don't know how to handle processor specific section "
2217 abfd
, name
, hdr
->sh_type
);
2218 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2220 /* Unrecognised OS-specific sections. */
2221 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
2222 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2223 required to correctly process the section and the file should
2224 be rejected with an error message. */
2225 (*_bfd_error_handler
)
2226 (_("%B: don't know how to handle OS specific section "
2228 abfd
, name
, hdr
->sh_type
);
2230 /* Otherwise it should be processed. */
2231 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2234 /* FIXME: We should handle this section. */
2235 (*_bfd_error_handler
)
2236 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2237 abfd
, name
, hdr
->sh_type
);
2245 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2246 Return SEC for sections that have no elf section, and NULL on error. */
2249 bfd_section_from_r_symndx (bfd
*abfd
,
2250 struct sym_sec_cache
*cache
,
2252 unsigned long r_symndx
)
2254 Elf_Internal_Shdr
*symtab_hdr
;
2255 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2256 Elf_External_Sym_Shndx eshndx
;
2257 Elf_Internal_Sym isym
;
2258 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2260 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2261 return cache
->sec
[ent
];
2263 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2264 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2265 &isym
, esym
, &eshndx
) == NULL
)
2268 if (cache
->abfd
!= abfd
)
2270 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2273 cache
->indx
[ent
] = r_symndx
;
2274 cache
->sec
[ent
] = sec
;
2275 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2276 || isym
.st_shndx
> SHN_HIRESERVE
)
2279 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2281 cache
->sec
[ent
] = s
;
2283 return cache
->sec
[ent
];
2286 /* Given an ELF section number, retrieve the corresponding BFD
2290 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2292 if (index
>= elf_numsections (abfd
))
2294 return elf_elfsections (abfd
)[index
]->bfd_section
;
2297 static const struct bfd_elf_special_section special_sections_b
[] =
2299 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2300 { NULL
, 0, 0, 0, 0 }
2303 static const struct bfd_elf_special_section special_sections_c
[] =
2305 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2306 { NULL
, 0, 0, 0, 0 }
2309 static const struct bfd_elf_special_section special_sections_d
[] =
2311 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2312 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2313 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2314 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2315 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2316 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2317 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2318 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2319 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2320 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2321 { NULL
, 0, 0, 0, 0 }
2324 static const struct bfd_elf_special_section special_sections_f
[] =
2326 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2327 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2328 { NULL
, 0, 0, 0, 0 }
2331 static const struct bfd_elf_special_section special_sections_g
[] =
2333 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2334 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2335 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2336 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2337 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2338 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2339 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2340 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2341 { NULL
, 0, 0, 0, 0 }
2344 static const struct bfd_elf_special_section special_sections_h
[] =
2346 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2347 { NULL
, 0, 0, 0, 0 }
2350 static const struct bfd_elf_special_section special_sections_i
[] =
2352 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2353 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2354 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2355 { NULL
, 0, 0, 0, 0 }
2358 static const struct bfd_elf_special_section special_sections_l
[] =
2360 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2361 { NULL
, 0, 0, 0, 0 }
2364 static const struct bfd_elf_special_section special_sections_n
[] =
2366 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2367 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2368 { NULL
, 0, 0, 0, 0 }
2371 static const struct bfd_elf_special_section special_sections_p
[] =
2373 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2374 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2375 { NULL
, 0, 0, 0, 0 }
2378 static const struct bfd_elf_special_section special_sections_r
[] =
2380 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2381 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2382 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2383 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2384 { NULL
, 0, 0, 0, 0 }
2387 static const struct bfd_elf_special_section special_sections_s
[] =
2389 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2390 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2391 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2392 /* See struct bfd_elf_special_section declaration for the semantics of
2393 this special case where .prefix_length != strlen (.prefix). */
2394 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2395 { NULL
, 0, 0, 0, 0 }
2398 static const struct bfd_elf_special_section special_sections_t
[] =
2400 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2401 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2402 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2403 { NULL
, 0, 0, 0, 0 }
2406 static const struct bfd_elf_special_section
*special_sections
[] =
2408 special_sections_b
, /* 'b' */
2409 special_sections_c
, /* 'b' */
2410 special_sections_d
, /* 'd' */
2412 special_sections_f
, /* 'f' */
2413 special_sections_g
, /* 'g' */
2414 special_sections_h
, /* 'h' */
2415 special_sections_i
, /* 'i' */
2418 special_sections_l
, /* 'l' */
2420 special_sections_n
, /* 'n' */
2422 special_sections_p
, /* 'p' */
2424 special_sections_r
, /* 'r' */
2425 special_sections_s
, /* 's' */
2426 special_sections_t
, /* 't' */
2429 const struct bfd_elf_special_section
*
2430 _bfd_elf_get_special_section (const char *name
,
2431 const struct bfd_elf_special_section
*spec
,
2437 len
= strlen (name
);
2439 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2442 int prefix_len
= spec
[i
].prefix_length
;
2444 if (len
< prefix_len
)
2446 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2449 suffix_len
= spec
[i
].suffix_length
;
2450 if (suffix_len
<= 0)
2452 if (name
[prefix_len
] != 0)
2454 if (suffix_len
== 0)
2456 if (name
[prefix_len
] != '.'
2457 && (suffix_len
== -2
2458 || (rela
&& spec
[i
].type
== SHT_REL
)))
2464 if (len
< prefix_len
+ suffix_len
)
2466 if (memcmp (name
+ len
- suffix_len
,
2467 spec
[i
].prefix
+ prefix_len
,
2477 const struct bfd_elf_special_section
*
2478 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2481 const struct bfd_elf_special_section
*spec
;
2482 const struct elf_backend_data
*bed
;
2484 /* See if this is one of the special sections. */
2485 if (sec
->name
== NULL
)
2488 bed
= get_elf_backend_data (abfd
);
2489 spec
= bed
->special_sections
;
2492 spec
= _bfd_elf_get_special_section (sec
->name
,
2493 bed
->special_sections
,
2499 if (sec
->name
[0] != '.')
2502 i
= sec
->name
[1] - 'b';
2503 if (i
< 0 || i
> 't' - 'b')
2506 spec
= special_sections
[i
];
2511 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2515 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2517 struct bfd_elf_section_data
*sdata
;
2518 const struct elf_backend_data
*bed
;
2519 const struct bfd_elf_special_section
*ssect
;
2521 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2524 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2527 sec
->used_by_bfd
= sdata
;
2530 /* Indicate whether or not this section should use RELA relocations. */
2531 bed
= get_elf_backend_data (abfd
);
2532 sec
->use_rela_p
= bed
->default_use_rela_p
;
2534 /* When we read a file, we don't need to set ELF section type and
2535 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2536 anyway. We will set ELF section type and flags for all linker
2537 created sections. If user specifies BFD section flags, we will
2538 set ELF section type and flags based on BFD section flags in
2539 elf_fake_sections. */
2540 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2541 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2543 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2546 elf_section_type (sec
) = ssect
->type
;
2547 elf_section_flags (sec
) = ssect
->attr
;
2551 return _bfd_generic_new_section_hook (abfd
, sec
);
2554 /* Create a new bfd section from an ELF program header.
2556 Since program segments have no names, we generate a synthetic name
2557 of the form segment<NUM>, where NUM is generally the index in the
2558 program header table. For segments that are split (see below) we
2559 generate the names segment<NUM>a and segment<NUM>b.
2561 Note that some program segments may have a file size that is different than
2562 (less than) the memory size. All this means is that at execution the
2563 system must allocate the amount of memory specified by the memory size,
2564 but only initialize it with the first "file size" bytes read from the
2565 file. This would occur for example, with program segments consisting
2566 of combined data+bss.
2568 To handle the above situation, this routine generates TWO bfd sections
2569 for the single program segment. The first has the length specified by
2570 the file size of the segment, and the second has the length specified
2571 by the difference between the two sizes. In effect, the segment is split
2572 into it's initialized and uninitialized parts.
2577 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2578 Elf_Internal_Phdr
*hdr
,
2580 const char *typename
)
2588 split
= ((hdr
->p_memsz
> 0)
2589 && (hdr
->p_filesz
> 0)
2590 && (hdr
->p_memsz
> hdr
->p_filesz
));
2591 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2592 len
= strlen (namebuf
) + 1;
2593 name
= bfd_alloc (abfd
, len
);
2596 memcpy (name
, namebuf
, len
);
2597 newsect
= bfd_make_section (abfd
, name
);
2598 if (newsect
== NULL
)
2600 newsect
->vma
= hdr
->p_vaddr
;
2601 newsect
->lma
= hdr
->p_paddr
;
2602 newsect
->size
= hdr
->p_filesz
;
2603 newsect
->filepos
= hdr
->p_offset
;
2604 newsect
->flags
|= SEC_HAS_CONTENTS
;
2605 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2606 if (hdr
->p_type
== PT_LOAD
)
2608 newsect
->flags
|= SEC_ALLOC
;
2609 newsect
->flags
|= SEC_LOAD
;
2610 if (hdr
->p_flags
& PF_X
)
2612 /* FIXME: all we known is that it has execute PERMISSION,
2614 newsect
->flags
|= SEC_CODE
;
2617 if (!(hdr
->p_flags
& PF_W
))
2619 newsect
->flags
|= SEC_READONLY
;
2624 sprintf (namebuf
, "%s%db", typename
, index
);
2625 len
= strlen (namebuf
) + 1;
2626 name
= bfd_alloc (abfd
, len
);
2629 memcpy (name
, namebuf
, len
);
2630 newsect
= bfd_make_section (abfd
, name
);
2631 if (newsect
== NULL
)
2633 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2634 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2635 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2636 if (hdr
->p_type
== PT_LOAD
)
2638 newsect
->flags
|= SEC_ALLOC
;
2639 if (hdr
->p_flags
& PF_X
)
2640 newsect
->flags
|= SEC_CODE
;
2642 if (!(hdr
->p_flags
& PF_W
))
2643 newsect
->flags
|= SEC_READONLY
;
2650 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2652 const struct elf_backend_data
*bed
;
2654 switch (hdr
->p_type
)
2657 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2660 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2663 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2666 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2669 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2671 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2676 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2679 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2681 case PT_GNU_EH_FRAME
:
2682 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2686 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2689 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2692 /* Check for any processor-specific program segment types. */
2693 bed
= get_elf_backend_data (abfd
);
2694 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2698 /* Initialize REL_HDR, the section-header for new section, containing
2699 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2700 relocations; otherwise, we use REL relocations. */
2703 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2704 Elf_Internal_Shdr
*rel_hdr
,
2706 bfd_boolean use_rela_p
)
2709 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2710 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2712 name
= bfd_alloc (abfd
, amt
);
2715 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2717 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2719 if (rel_hdr
->sh_name
== (unsigned int) -1)
2721 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2722 rel_hdr
->sh_entsize
= (use_rela_p
2723 ? bed
->s
->sizeof_rela
2724 : bed
->s
->sizeof_rel
);
2725 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2726 rel_hdr
->sh_flags
= 0;
2727 rel_hdr
->sh_addr
= 0;
2728 rel_hdr
->sh_size
= 0;
2729 rel_hdr
->sh_offset
= 0;
2734 /* Set up an ELF internal section header for a section. */
2737 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2739 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2740 bfd_boolean
*failedptr
= failedptrarg
;
2741 Elf_Internal_Shdr
*this_hdr
;
2745 /* We already failed; just get out of the bfd_map_over_sections
2750 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2752 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2753 asect
->name
, FALSE
);
2754 if (this_hdr
->sh_name
== (unsigned int) -1)
2760 /* Don't clear sh_flags. Assembler may set additional bits. */
2762 if ((asect
->flags
& SEC_ALLOC
) != 0
2763 || asect
->user_set_vma
)
2764 this_hdr
->sh_addr
= asect
->vma
;
2766 this_hdr
->sh_addr
= 0;
2768 this_hdr
->sh_offset
= 0;
2769 this_hdr
->sh_size
= asect
->size
;
2770 this_hdr
->sh_link
= 0;
2771 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2772 /* The sh_entsize and sh_info fields may have been set already by
2773 copy_private_section_data. */
2775 this_hdr
->bfd_section
= asect
;
2776 this_hdr
->contents
= NULL
;
2778 /* If the section type is unspecified, we set it based on
2780 if (this_hdr
->sh_type
== SHT_NULL
)
2782 if ((asect
->flags
& SEC_GROUP
) != 0)
2783 this_hdr
->sh_type
= SHT_GROUP
;
2784 else if ((asect
->flags
& SEC_ALLOC
) != 0
2785 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2786 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2787 this_hdr
->sh_type
= SHT_NOBITS
;
2789 this_hdr
->sh_type
= SHT_PROGBITS
;
2792 switch (this_hdr
->sh_type
)
2798 case SHT_INIT_ARRAY
:
2799 case SHT_FINI_ARRAY
:
2800 case SHT_PREINIT_ARRAY
:
2807 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2811 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2815 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2819 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2820 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2824 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2825 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2828 case SHT_GNU_versym
:
2829 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2832 case SHT_GNU_verdef
:
2833 this_hdr
->sh_entsize
= 0;
2834 /* objcopy or strip will copy over sh_info, but may not set
2835 cverdefs. The linker will set cverdefs, but sh_info will be
2837 if (this_hdr
->sh_info
== 0)
2838 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2840 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2841 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2844 case SHT_GNU_verneed
:
2845 this_hdr
->sh_entsize
= 0;
2846 /* objcopy or strip will copy over sh_info, but may not set
2847 cverrefs. The linker will set cverrefs, but sh_info will be
2849 if (this_hdr
->sh_info
== 0)
2850 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2852 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2853 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2857 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2861 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2865 if ((asect
->flags
& SEC_ALLOC
) != 0)
2866 this_hdr
->sh_flags
|= SHF_ALLOC
;
2867 if ((asect
->flags
& SEC_READONLY
) == 0)
2868 this_hdr
->sh_flags
|= SHF_WRITE
;
2869 if ((asect
->flags
& SEC_CODE
) != 0)
2870 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2871 if ((asect
->flags
& SEC_MERGE
) != 0)
2873 this_hdr
->sh_flags
|= SHF_MERGE
;
2874 this_hdr
->sh_entsize
= asect
->entsize
;
2875 if ((asect
->flags
& SEC_STRINGS
) != 0)
2876 this_hdr
->sh_flags
|= SHF_STRINGS
;
2878 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2879 this_hdr
->sh_flags
|= SHF_GROUP
;
2880 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2882 this_hdr
->sh_flags
|= SHF_TLS
;
2883 if (asect
->size
== 0
2884 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2886 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2888 this_hdr
->sh_size
= 0;
2891 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2892 if (this_hdr
->sh_size
!= 0)
2893 this_hdr
->sh_type
= SHT_NOBITS
;
2898 /* Check for processor-specific section types. */
2899 if (bed
->elf_backend_fake_sections
2900 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2903 /* If the section has relocs, set up a section header for the
2904 SHT_REL[A] section. If two relocation sections are required for
2905 this section, it is up to the processor-specific back-end to
2906 create the other. */
2907 if ((asect
->flags
& SEC_RELOC
) != 0
2908 && !_bfd_elf_init_reloc_shdr (abfd
,
2909 &elf_section_data (asect
)->rel_hdr
,
2915 /* Fill in the contents of a SHT_GROUP section. */
2918 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2920 bfd_boolean
*failedptr
= failedptrarg
;
2921 unsigned long symindx
;
2922 asection
*elt
, *first
;
2926 /* Ignore linker created group section. See elfNN_ia64_object_p in
2928 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2933 if (elf_group_id (sec
) != NULL
)
2934 symindx
= elf_group_id (sec
)->udata
.i
;
2938 /* If called from the assembler, swap_out_syms will have set up
2939 elf_section_syms; If called for "ld -r", use target_index. */
2940 if (elf_section_syms (abfd
) != NULL
)
2941 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2943 symindx
= sec
->target_index
;
2945 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2947 /* The contents won't be allocated for "ld -r" or objcopy. */
2949 if (sec
->contents
== NULL
)
2952 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2954 /* Arrange for the section to be written out. */
2955 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2956 if (sec
->contents
== NULL
)
2963 loc
= sec
->contents
+ sec
->size
;
2965 /* Get the pointer to the first section in the group that gas
2966 squirreled away here. objcopy arranges for this to be set to the
2967 start of the input section group. */
2968 first
= elt
= elf_next_in_group (sec
);
2970 /* First element is a flag word. Rest of section is elf section
2971 indices for all the sections of the group. Write them backwards
2972 just to keep the group in the same order as given in .section
2973 directives, not that it matters. */
2982 s
= s
->output_section
;
2985 idx
= elf_section_data (s
)->this_idx
;
2986 H_PUT_32 (abfd
, idx
, loc
);
2987 elt
= elf_next_in_group (elt
);
2992 if ((loc
-= 4) != sec
->contents
)
2995 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2998 /* Assign all ELF section numbers. The dummy first section is handled here
2999 too. The link/info pointers for the standard section types are filled
3000 in here too, while we're at it. */
3003 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
3005 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
3007 unsigned int section_number
, secn
;
3008 Elf_Internal_Shdr
**i_shdrp
;
3009 struct bfd_elf_section_data
*d
;
3013 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
3015 /* SHT_GROUP sections are in relocatable files only. */
3016 if (link_info
== NULL
|| link_info
->relocatable
)
3018 /* Put SHT_GROUP sections first. */
3019 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3021 d
= elf_section_data (sec
);
3023 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
3025 if (sec
->flags
& SEC_LINKER_CREATED
)
3027 /* Remove the linker created SHT_GROUP sections. */
3028 bfd_section_list_remove (abfd
, sec
);
3029 abfd
->section_count
--;
3033 if (section_number
== SHN_LORESERVE
)
3034 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3035 d
->this_idx
= section_number
++;
3041 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3043 d
= elf_section_data (sec
);
3045 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
3047 if (section_number
== SHN_LORESERVE
)
3048 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3049 d
->this_idx
= section_number
++;
3051 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3052 if ((sec
->flags
& SEC_RELOC
) == 0)
3056 if (section_number
== SHN_LORESERVE
)
3057 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3058 d
->rel_idx
= section_number
++;
3059 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3064 if (section_number
== SHN_LORESERVE
)
3065 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3066 d
->rel_idx2
= section_number
++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3073 if (section_number
== SHN_LORESERVE
)
3074 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3075 t
->shstrtab_section
= section_number
++;
3076 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3077 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3079 if (bfd_get_symcount (abfd
) > 0)
3081 if (section_number
== SHN_LORESERVE
)
3082 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3083 t
->symtab_section
= section_number
++;
3084 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3085 if (section_number
> SHN_LORESERVE
- 2)
3087 if (section_number
== SHN_LORESERVE
)
3088 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3089 t
->symtab_shndx_section
= section_number
++;
3090 t
->symtab_shndx_hdr
.sh_name
3091 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3092 ".symtab_shndx", FALSE
);
3093 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3096 if (section_number
== SHN_LORESERVE
)
3097 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3098 t
->strtab_section
= section_number
++;
3099 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3102 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3103 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3105 elf_numsections (abfd
) = section_number
;
3106 elf_elfheader (abfd
)->e_shnum
= section_number
;
3107 if (section_number
> SHN_LORESERVE
)
3108 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3110 /* Set up the list of section header pointers, in agreement with the
3112 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3113 if (i_shdrp
== NULL
)
3116 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3117 if (i_shdrp
[0] == NULL
)
3119 bfd_release (abfd
, i_shdrp
);
3123 elf_elfsections (abfd
) = i_shdrp
;
3125 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3126 if (bfd_get_symcount (abfd
) > 0)
3128 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3129 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3131 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3132 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3134 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3135 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3138 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3140 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3144 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3145 if (d
->rel_idx
!= 0)
3146 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3147 if (d
->rel_idx2
!= 0)
3148 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3150 /* Fill in the sh_link and sh_info fields while we're at it. */
3152 /* sh_link of a reloc section is the section index of the symbol
3153 table. sh_info is the section index of the section to which
3154 the relocation entries apply. */
3155 if (d
->rel_idx
!= 0)
3157 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3158 d
->rel_hdr
.sh_info
= d
->this_idx
;
3160 if (d
->rel_idx2
!= 0)
3162 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3163 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3166 /* We need to set up sh_link for SHF_LINK_ORDER. */
3167 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3169 s
= elf_linked_to_section (sec
);
3172 /* elf_linked_to_section points to the input section. */
3173 if (link_info
!= NULL
)
3175 /* Check discarded linkonce section. */
3176 if (elf_discarded_section (s
))
3179 (*_bfd_error_handler
)
3180 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3181 abfd
, d
->this_hdr
.bfd_section
,
3183 /* Point to the kept section if it has the same
3184 size as the discarded one. */
3185 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3188 bfd_set_error (bfd_error_bad_value
);
3194 s
= s
->output_section
;
3195 BFD_ASSERT (s
!= NULL
);
3199 /* Handle objcopy. */
3200 if (s
->output_section
== NULL
)
3202 (*_bfd_error_handler
)
3203 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3204 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3205 bfd_set_error (bfd_error_bad_value
);
3208 s
= s
->output_section
;
3210 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3215 The Intel C compiler generates SHT_IA_64_UNWIND with
3216 SHF_LINK_ORDER. But it doesn't set the sh_link or
3217 sh_info fields. Hence we could get the situation
3219 const struct elf_backend_data
*bed
3220 = get_elf_backend_data (abfd
);
3221 if (bed
->link_order_error_handler
)
3222 bed
->link_order_error_handler
3223 (_("%B: warning: sh_link not set for section `%A'"),
3228 switch (d
->this_hdr
.sh_type
)
3232 /* A reloc section which we are treating as a normal BFD
3233 section. sh_link is the section index of the symbol
3234 table. sh_info is the section index of the section to
3235 which the relocation entries apply. We assume that an
3236 allocated reloc section uses the dynamic symbol table.
3237 FIXME: How can we be sure? */
3238 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3240 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3242 /* We look up the section the relocs apply to by name. */
3244 if (d
->this_hdr
.sh_type
== SHT_REL
)
3248 s
= bfd_get_section_by_name (abfd
, name
);
3250 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3254 /* We assume that a section named .stab*str is a stabs
3255 string section. We look for a section with the same name
3256 but without the trailing ``str'', and set its sh_link
3257 field to point to this section. */
3258 if (CONST_STRNEQ (sec
->name
, ".stab")
3259 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3264 len
= strlen (sec
->name
);
3265 alc
= bfd_malloc (len
- 2);
3268 memcpy (alc
, sec
->name
, len
- 3);
3269 alc
[len
- 3] = '\0';
3270 s
= bfd_get_section_by_name (abfd
, alc
);
3274 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3276 /* This is a .stab section. */
3277 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3278 elf_section_data (s
)->this_hdr
.sh_entsize
3279 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3286 case SHT_GNU_verneed
:
3287 case SHT_GNU_verdef
:
3288 /* sh_link is the section header index of the string table
3289 used for the dynamic entries, or the symbol table, or the
3291 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3293 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3296 case SHT_GNU_LIBLIST
:
3297 /* sh_link is the section header index of the prelink library
3299 used for the dynamic entries, or the symbol table, or the
3301 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3302 ? ".dynstr" : ".gnu.libstr");
3304 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3309 case SHT_GNU_versym
:
3310 /* sh_link is the section header index of the symbol table
3311 this hash table or version table is for. */
3312 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3314 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3318 d
->this_hdr
.sh_link
= t
->symtab_section
;
3322 for (secn
= 1; secn
< section_number
; ++secn
)
3323 if (i_shdrp
[secn
] == NULL
)
3324 i_shdrp
[secn
] = i_shdrp
[0];
3326 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3327 i_shdrp
[secn
]->sh_name
);
3331 /* Map symbol from it's internal number to the external number, moving
3332 all local symbols to be at the head of the list. */
3335 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3337 /* If the backend has a special mapping, use it. */
3338 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3339 if (bed
->elf_backend_sym_is_global
)
3340 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3342 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3343 || bfd_is_und_section (bfd_get_section (sym
))
3344 || bfd_is_com_section (bfd_get_section (sym
)));
3347 /* Don't output section symbols for sections that are not going to be
3348 output. Also, don't output section symbols for reloc and other
3349 special sections. */
3352 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3354 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3356 || (sym
->section
->owner
!= abfd
3357 && (sym
->section
->output_section
->owner
!= abfd
3358 || sym
->section
->output_offset
!= 0))));
3362 elf_map_symbols (bfd
*abfd
)
3364 unsigned int symcount
= bfd_get_symcount (abfd
);
3365 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3366 asymbol
**sect_syms
;
3367 unsigned int num_locals
= 0;
3368 unsigned int num_globals
= 0;
3369 unsigned int num_locals2
= 0;
3370 unsigned int num_globals2
= 0;
3377 fprintf (stderr
, "elf_map_symbols\n");
3381 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3383 if (max_index
< asect
->index
)
3384 max_index
= asect
->index
;
3388 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3389 if (sect_syms
== NULL
)
3391 elf_section_syms (abfd
) = sect_syms
;
3392 elf_num_section_syms (abfd
) = max_index
;
3394 /* Init sect_syms entries for any section symbols we have already
3395 decided to output. */
3396 for (idx
= 0; idx
< symcount
; idx
++)
3398 asymbol
*sym
= syms
[idx
];
3400 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3401 && !ignore_section_sym (abfd
, sym
))
3403 asection
*sec
= sym
->section
;
3405 if (sec
->owner
!= abfd
)
3406 sec
= sec
->output_section
;
3408 sect_syms
[sec
->index
] = syms
[idx
];
3412 /* Classify all of the symbols. */
3413 for (idx
= 0; idx
< symcount
; idx
++)
3415 if (ignore_section_sym (abfd
, syms
[idx
]))
3417 if (!sym_is_global (abfd
, syms
[idx
]))
3423 /* We will be adding a section symbol for each normal BFD section. Most
3424 sections will already have a section symbol in outsymbols, but
3425 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3426 at least in that case. */
3427 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3429 if (sect_syms
[asect
->index
] == NULL
)
3431 if (!sym_is_global (abfd
, asect
->symbol
))
3438 /* Now sort the symbols so the local symbols are first. */
3439 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3441 if (new_syms
== NULL
)
3444 for (idx
= 0; idx
< symcount
; idx
++)
3446 asymbol
*sym
= syms
[idx
];
3449 if (ignore_section_sym (abfd
, sym
))
3451 if (!sym_is_global (abfd
, sym
))
3454 i
= num_locals
+ num_globals2
++;
3456 sym
->udata
.i
= i
+ 1;
3458 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3460 if (sect_syms
[asect
->index
] == NULL
)
3462 asymbol
*sym
= asect
->symbol
;
3465 sect_syms
[asect
->index
] = sym
;
3466 if (!sym_is_global (abfd
, sym
))
3469 i
= num_locals
+ num_globals2
++;
3471 sym
->udata
.i
= i
+ 1;
3475 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3477 elf_num_locals (abfd
) = num_locals
;
3478 elf_num_globals (abfd
) = num_globals
;
3482 /* Align to the maximum file alignment that could be required for any
3483 ELF data structure. */
3485 static inline file_ptr
3486 align_file_position (file_ptr off
, int align
)
3488 return (off
+ align
- 1) & ~(align
- 1);
3491 /* Assign a file position to a section, optionally aligning to the
3492 required section alignment. */
3495 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3503 al
= i_shdrp
->sh_addralign
;
3505 offset
= BFD_ALIGN (offset
, al
);
3507 i_shdrp
->sh_offset
= offset
;
3508 if (i_shdrp
->bfd_section
!= NULL
)
3509 i_shdrp
->bfd_section
->filepos
= offset
;
3510 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3511 offset
+= i_shdrp
->sh_size
;
3515 /* Compute the file positions we are going to put the sections at, and
3516 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3517 is not NULL, this is being called by the ELF backend linker. */
3520 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3521 struct bfd_link_info
*link_info
)
3523 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3525 struct bfd_strtab_hash
*strtab
= NULL
;
3526 Elf_Internal_Shdr
*shstrtab_hdr
;
3528 if (abfd
->output_has_begun
)
3531 /* Do any elf backend specific processing first. */
3532 if (bed
->elf_backend_begin_write_processing
)
3533 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3535 if (! prep_headers (abfd
))
3538 /* Post process the headers if necessary. */
3539 if (bed
->elf_backend_post_process_headers
)
3540 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3543 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3547 if (!assign_section_numbers (abfd
, link_info
))
3550 /* The backend linker builds symbol table information itself. */
3551 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3553 /* Non-zero if doing a relocatable link. */
3554 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3556 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3560 if (link_info
== NULL
)
3562 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3567 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3568 /* sh_name was set in prep_headers. */
3569 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3570 shstrtab_hdr
->sh_flags
= 0;
3571 shstrtab_hdr
->sh_addr
= 0;
3572 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3573 shstrtab_hdr
->sh_entsize
= 0;
3574 shstrtab_hdr
->sh_link
= 0;
3575 shstrtab_hdr
->sh_info
= 0;
3576 /* sh_offset is set in assign_file_positions_except_relocs. */
3577 shstrtab_hdr
->sh_addralign
= 1;
3579 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3582 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3585 Elf_Internal_Shdr
*hdr
;
3587 off
= elf_tdata (abfd
)->next_file_pos
;
3589 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3590 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3592 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3593 if (hdr
->sh_size
!= 0)
3594 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3596 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3597 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3599 elf_tdata (abfd
)->next_file_pos
= off
;
3601 /* Now that we know where the .strtab section goes, write it
3603 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3604 || ! _bfd_stringtab_emit (abfd
, strtab
))
3606 _bfd_stringtab_free (strtab
);
3609 abfd
->output_has_begun
= TRUE
;
3614 /* Make an initial estimate of the size of the program header. If we
3615 get the number wrong here, we'll redo section placement. */
3617 static bfd_size_type
3618 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3622 const struct elf_backend_data
*bed
;
3624 /* Assume we will need exactly two PT_LOAD segments: one for text
3625 and one for data. */
3628 s
= bfd_get_section_by_name (abfd
, ".interp");
3629 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3631 /* If we have a loadable interpreter section, we need a
3632 PT_INTERP segment. In this case, assume we also need a
3633 PT_PHDR segment, although that may not be true for all
3638 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3640 /* We need a PT_DYNAMIC segment. */
3643 if (elf_tdata (abfd
)->relro
)
3645 /* We need a PT_GNU_RELRO segment only when there is a
3646 PT_DYNAMIC segment. */
3651 if (elf_tdata (abfd
)->eh_frame_hdr
)
3653 /* We need a PT_GNU_EH_FRAME segment. */
3657 if (elf_tdata (abfd
)->stack_flags
)
3659 /* We need a PT_GNU_STACK segment. */
3663 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3665 if ((s
->flags
& SEC_LOAD
) != 0
3666 && CONST_STRNEQ (s
->name
, ".note"))
3668 /* We need a PT_NOTE segment. */
3673 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3675 if (s
->flags
& SEC_THREAD_LOCAL
)
3677 /* We need a PT_TLS segment. */
3683 /* Let the backend count up any program headers it might need. */
3684 bed
= get_elf_backend_data (abfd
);
3685 if (bed
->elf_backend_additional_program_headers
)
3689 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3695 return segs
* bed
->s
->sizeof_phdr
;
3698 /* Create a mapping from a set of sections to a program segment. */
3700 static struct elf_segment_map
*
3701 make_mapping (bfd
*abfd
,
3702 asection
**sections
,
3707 struct elf_segment_map
*m
;
3712 amt
= sizeof (struct elf_segment_map
);
3713 amt
+= (to
- from
- 1) * sizeof (asection
*);
3714 m
= bfd_zalloc (abfd
, amt
);
3718 m
->p_type
= PT_LOAD
;
3719 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3720 m
->sections
[i
- from
] = *hdrpp
;
3721 m
->count
= to
- from
;
3723 if (from
== 0 && phdr
)
3725 /* Include the headers in the first PT_LOAD segment. */
3726 m
->includes_filehdr
= 1;
3727 m
->includes_phdrs
= 1;
3733 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3736 struct elf_segment_map
*
3737 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3739 struct elf_segment_map
*m
;
3741 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3745 m
->p_type
= PT_DYNAMIC
;
3747 m
->sections
[0] = dynsec
;
3752 /* Possibly add or remove segments from the segment map. */
3755 elf_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
3757 struct elf_segment_map
**m
;
3758 const struct elf_backend_data
*bed
;
3760 /* The placement algorithm assumes that non allocated sections are
3761 not in PT_LOAD segments. We ensure this here by removing such
3762 sections from the segment map. We also remove excluded
3763 sections. Finally, any PT_LOAD segment without sections is
3765 m
= &elf_tdata (abfd
)->segment_map
;
3768 unsigned int i
, new_count
;
3770 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3772 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3773 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3774 || (*m
)->p_type
!= PT_LOAD
))
3776 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3780 (*m
)->count
= new_count
;
3782 if ((*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3788 bed
= get_elf_backend_data (abfd
);
3789 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3791 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3798 /* Set up a mapping from BFD sections to program segments. */
3801 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3804 struct elf_segment_map
*m
;
3805 asection
**sections
= NULL
;
3806 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3808 if (elf_tdata (abfd
)->segment_map
== NULL
3809 && bfd_count_sections (abfd
) != 0)
3813 struct elf_segment_map
*mfirst
;
3814 struct elf_segment_map
**pm
;
3817 unsigned int phdr_index
;
3818 bfd_vma maxpagesize
;
3820 bfd_boolean phdr_in_segment
= TRUE
;
3821 bfd_boolean writable
;
3823 asection
*first_tls
= NULL
;
3824 asection
*dynsec
, *eh_frame_hdr
;
3827 /* Select the allocated sections, and sort them. */
3829 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3830 if (sections
== NULL
)
3834 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3836 if ((s
->flags
& SEC_ALLOC
) != 0)
3842 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3845 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3847 /* Build the mapping. */
3852 /* If we have a .interp section, then create a PT_PHDR segment for
3853 the program headers and a PT_INTERP segment for the .interp
3855 s
= bfd_get_section_by_name (abfd
, ".interp");
3856 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3858 amt
= sizeof (struct elf_segment_map
);
3859 m
= bfd_zalloc (abfd
, amt
);
3863 m
->p_type
= PT_PHDR
;
3864 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3865 m
->p_flags
= PF_R
| PF_X
;
3866 m
->p_flags_valid
= 1;
3867 m
->includes_phdrs
= 1;
3872 amt
= sizeof (struct elf_segment_map
);
3873 m
= bfd_zalloc (abfd
, amt
);
3877 m
->p_type
= PT_INTERP
;
3885 /* Look through the sections. We put sections in the same program
3886 segment when the start of the second section can be placed within
3887 a few bytes of the end of the first section. */
3891 maxpagesize
= bed
->maxpagesize
;
3893 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3895 && (dynsec
->flags
& SEC_LOAD
) == 0)
3898 /* Deal with -Ttext or something similar such that the first section
3899 is not adjacent to the program headers. This is an
3900 approximation, since at this point we don't know exactly how many
3901 program headers we will need. */
3904 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3906 if (phdr_size
== (bfd_size_type
) -1)
3907 phdr_size
= get_program_header_size (abfd
, info
);
3908 if ((abfd
->flags
& D_PAGED
) == 0
3909 || sections
[0]->lma
< phdr_size
3910 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3911 phdr_in_segment
= FALSE
;
3914 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3917 bfd_boolean new_segment
;
3921 /* See if this section and the last one will fit in the same
3924 if (last_hdr
== NULL
)
3926 /* If we don't have a segment yet, then we don't need a new
3927 one (we build the last one after this loop). */
3928 new_segment
= FALSE
;
3930 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3932 /* If this section has a different relation between the
3933 virtual address and the load address, then we need a new
3937 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3938 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3940 /* If putting this section in this segment would force us to
3941 skip a page in the segment, then we need a new segment. */
3944 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3945 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3947 /* We don't want to put a loadable section after a
3948 nonloadable section in the same segment.
3949 Consider .tbss sections as loadable for this purpose. */
3952 else if ((abfd
->flags
& D_PAGED
) == 0)
3954 /* If the file is not demand paged, which means that we
3955 don't require the sections to be correctly aligned in the
3956 file, then there is no other reason for a new segment. */
3957 new_segment
= FALSE
;
3960 && (hdr
->flags
& SEC_READONLY
) == 0
3961 && (((last_hdr
->lma
+ last_size
- 1)
3962 & ~(maxpagesize
- 1))
3963 != (hdr
->lma
& ~(maxpagesize
- 1))))
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3976 /* Otherwise, we can use the same segment. */
3977 new_segment
= FALSE
;
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr
&& info
->callbacks
->override_segment_assignment
)
3982 new_segment
= info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
, last_hdr
, new_segment
);
3986 if ((hdr
->flags
& SEC_READONLY
) == 0)
3989 /* .tbss sections effectively have zero size. */
3990 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3991 != SEC_THREAD_LOCAL
)
3992 last_size
= hdr
->size
;
3998 /* We need a new program segment. We must create a new program
3999 header holding all the sections from phdr_index until hdr. */
4001 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4008 if ((hdr
->flags
& SEC_READONLY
) == 0)
4014 /* .tbss sections effectively have zero size. */
4015 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
4016 last_size
= hdr
->size
;
4020 phdr_in_segment
= FALSE
;
4023 /* Create a final PT_LOAD program segment. */
4024 if (last_hdr
!= NULL
)
4026 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4034 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4037 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4044 /* For each loadable .note section, add a PT_NOTE segment. We don't
4045 use bfd_get_section_by_name, because if we link together
4046 nonloadable .note sections and loadable .note sections, we will
4047 generate two .note sections in the output file. FIXME: Using
4048 names for section types is bogus anyhow. */
4049 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4051 if ((s
->flags
& SEC_LOAD
) != 0
4052 && CONST_STRNEQ (s
->name
, ".note"))
4054 amt
= sizeof (struct elf_segment_map
);
4055 m
= bfd_zalloc (abfd
, amt
);
4059 m
->p_type
= PT_NOTE
;
4066 if (s
->flags
& SEC_THREAD_LOCAL
)
4074 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4079 amt
= sizeof (struct elf_segment_map
);
4080 amt
+= (tls_count
- 1) * sizeof (asection
*);
4081 m
= bfd_zalloc (abfd
, amt
);
4086 m
->count
= tls_count
;
4087 /* Mandated PF_R. */
4089 m
->p_flags_valid
= 1;
4090 for (i
= 0; i
< tls_count
; ++i
)
4092 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4093 m
->sections
[i
] = first_tls
;
4094 first_tls
= first_tls
->next
;
4101 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4103 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4104 if (eh_frame_hdr
!= NULL
4105 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4107 amt
= sizeof (struct elf_segment_map
);
4108 m
= bfd_zalloc (abfd
, amt
);
4112 m
->p_type
= PT_GNU_EH_FRAME
;
4114 m
->sections
[0] = eh_frame_hdr
->output_section
;
4120 if (elf_tdata (abfd
)->stack_flags
)
4122 amt
= sizeof (struct elf_segment_map
);
4123 m
= bfd_zalloc (abfd
, amt
);
4127 m
->p_type
= PT_GNU_STACK
;
4128 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4129 m
->p_flags_valid
= 1;
4135 if (dynsec
!= NULL
&& elf_tdata (abfd
)->relro
)
4137 /* We make a PT_GNU_RELRO segment only when there is a
4138 PT_DYNAMIC segment. */
4139 amt
= sizeof (struct elf_segment_map
);
4140 m
= bfd_zalloc (abfd
, amt
);
4144 m
->p_type
= PT_GNU_RELRO
;
4146 m
->p_flags_valid
= 1;
4153 elf_tdata (abfd
)->segment_map
= mfirst
;
4156 if (!elf_modify_segment_map (abfd
, info
))
4159 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4161 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4166 if (sections
!= NULL
)
4171 /* Sort sections by address. */
4174 elf_sort_sections (const void *arg1
, const void *arg2
)
4176 const asection
*sec1
= *(const asection
**) arg1
;
4177 const asection
*sec2
= *(const asection
**) arg2
;
4178 bfd_size_type size1
, size2
;
4180 /* Sort by LMA first, since this is the address used to
4181 place the section into a segment. */
4182 if (sec1
->lma
< sec2
->lma
)
4184 else if (sec1
->lma
> sec2
->lma
)
4187 /* Then sort by VMA. Normally the LMA and the VMA will be
4188 the same, and this will do nothing. */
4189 if (sec1
->vma
< sec2
->vma
)
4191 else if (sec1
->vma
> sec2
->vma
)
4194 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4196 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4202 /* If the indicies are the same, do not return 0
4203 here, but continue to try the next comparison. */
4204 if (sec1
->target_index
- sec2
->target_index
!= 0)
4205 return sec1
->target_index
- sec2
->target_index
;
4210 else if (TOEND (sec2
))
4215 /* Sort by size, to put zero sized sections
4216 before others at the same address. */
4218 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4219 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4226 return sec1
->target_index
- sec2
->target_index
;
4229 /* Ian Lance Taylor writes:
4231 We shouldn't be using % with a negative signed number. That's just
4232 not good. We have to make sure either that the number is not
4233 negative, or that the number has an unsigned type. When the types
4234 are all the same size they wind up as unsigned. When file_ptr is a
4235 larger signed type, the arithmetic winds up as signed long long,
4238 What we're trying to say here is something like ``increase OFF by
4239 the least amount that will cause it to be equal to the VMA modulo
4241 /* In other words, something like:
4243 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4244 off_offset = off % bed->maxpagesize;
4245 if (vma_offset < off_offset)
4246 adjustment = vma_offset + bed->maxpagesize - off_offset;
4248 adjustment = vma_offset - off_offset;
4250 which can can be collapsed into the expression below. */
4253 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4255 return ((vma
- off
) % maxpagesize
);
4258 /* Assign file positions to the sections based on the mapping from
4259 sections to segments. This function also sets up some fields in
4263 assign_file_positions_for_load_sections (bfd
*abfd
,
4264 struct bfd_link_info
*link_info
)
4266 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4267 struct elf_segment_map
*m
;
4268 Elf_Internal_Phdr
*phdrs
;
4269 Elf_Internal_Phdr
*p
;
4271 bfd_size_type maxpagesize
;
4275 if (link_info
== NULL
4276 && !elf_modify_segment_map (abfd
, link_info
))
4280 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4283 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4284 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4285 elf_elfheader (abfd
)->e_phnum
= alloc
;
4287 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4288 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4290 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4291 >= alloc
* bed
->s
->sizeof_phdr
);
4295 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4299 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4300 elf_tdata (abfd
)->phdr
= phdrs
;
4305 if ((abfd
->flags
& D_PAGED
) != 0)
4306 maxpagesize
= bed
->maxpagesize
;
4308 off
= bed
->s
->sizeof_ehdr
;
4309 off
+= alloc
* bed
->s
->sizeof_phdr
;
4311 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4313 m
= m
->next
, p
++, j
++)
4317 /* If elf_segment_map is not from map_sections_to_segments, the
4318 sections may not be correctly ordered. NOTE: sorting should
4319 not be done to the PT_NOTE section of a corefile, which may
4320 contain several pseudo-sections artificially created by bfd.
4321 Sorting these pseudo-sections breaks things badly. */
4323 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4324 && m
->p_type
== PT_NOTE
))
4325 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4328 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4329 number of sections with contents contributing to both p_filesz
4330 and p_memsz, followed by a number of sections with no contents
4331 that just contribute to p_memsz. In this loop, OFF tracks next
4332 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4333 an adjustment we use for segments that have no file contents
4334 but need zero filled memory allocation. */
4336 p
->p_type
= m
->p_type
;
4337 p
->p_flags
= m
->p_flags
;
4342 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4344 if (m
->p_paddr_valid
)
4345 p
->p_paddr
= m
->p_paddr
;
4346 else if (m
->count
== 0)
4349 p
->p_paddr
= m
->sections
[0]->lma
;
4351 if (p
->p_type
== PT_LOAD
4352 && (abfd
->flags
& D_PAGED
) != 0)
4354 /* p_align in demand paged PT_LOAD segments effectively stores
4355 the maximum page size. When copying an executable with
4356 objcopy, we set m->p_align from the input file. Use this
4357 value for maxpagesize rather than bed->maxpagesize, which
4358 may be different. Note that we use maxpagesize for PT_TLS
4359 segment alignment later in this function, so we are relying
4360 on at least one PT_LOAD segment appearing before a PT_TLS
4362 if (m
->p_align_valid
)
4363 maxpagesize
= m
->p_align
;
4365 p
->p_align
= maxpagesize
;
4367 else if (m
->count
== 0)
4368 p
->p_align
= 1 << bed
->s
->log_file_align
;
4369 else if (m
->p_align_valid
)
4370 p
->p_align
= m
->p_align
;
4374 if (p
->p_type
== PT_LOAD
4377 bfd_size_type align
;
4379 unsigned int align_power
= 0;
4381 if (m
->p_align_valid
)
4385 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4387 unsigned int secalign
;
4389 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4390 if (secalign
> align_power
)
4391 align_power
= secalign
;
4393 align
= (bfd_size_type
) 1 << align_power
;
4394 if (align
< maxpagesize
)
4395 align
= maxpagesize
;
4398 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4401 && !m
->includes_filehdr
4402 && !m
->includes_phdrs
4403 && (ufile_ptr
) off
>= align
)
4405 /* If the first section isn't loadable, the same holds for
4406 any other sections. Since the segment won't need file
4407 space, we can make p_offset overlap some prior segment.
4408 However, .tbss is special. If a segment starts with
4409 .tbss, we need to look at the next section to decide
4410 whether the segment has any loadable sections. */
4412 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0
4413 && (m
->sections
[i
]->flags
& SEC_HAS_CONTENTS
) == 0)
4415 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4419 voff
= adjust
- align
;
4425 /* Make sure the .dynamic section is the first section in the
4426 PT_DYNAMIC segment. */
4427 else if (p
->p_type
== PT_DYNAMIC
4429 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4432 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4434 bfd_set_error (bfd_error_bad_value
);
4442 if (m
->includes_filehdr
)
4444 if (! m
->p_flags_valid
)
4446 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4447 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4450 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4452 if (p
->p_vaddr
< (bfd_vma
) off
)
4454 (*_bfd_error_handler
)
4455 (_("%B: Not enough room for program headers, try linking with -N"),
4457 bfd_set_error (bfd_error_bad_value
);
4462 if (! m
->p_paddr_valid
)
4467 if (m
->includes_phdrs
)
4469 if (! m
->p_flags_valid
)
4472 if (!m
->includes_filehdr
)
4474 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4478 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4479 p
->p_vaddr
-= off
- p
->p_offset
;
4480 if (! m
->p_paddr_valid
)
4481 p
->p_paddr
-= off
- p
->p_offset
;
4485 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4486 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4489 if (p
->p_type
== PT_LOAD
4490 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4492 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4493 p
->p_offset
= off
+ voff
;
4498 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4499 p
->p_filesz
+= adjust
;
4500 p
->p_memsz
+= adjust
;
4504 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4505 maps. Set filepos for sections in PT_LOAD segments, and in
4506 core files, for sections in PT_NOTE segments.
4507 assign_file_positions_for_non_load_sections will set filepos
4508 for other sections and update p_filesz for other segments. */
4509 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4513 bfd_size_type align
;
4517 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4519 if (p
->p_type
== PT_LOAD
4520 || p
->p_type
== PT_TLS
)
4522 bfd_signed_vma adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4524 if ((flags
& SEC_LOAD
) != 0
4525 || ((flags
& SEC_ALLOC
) != 0
4526 && ((flags
& SEC_THREAD_LOCAL
) == 0
4527 || p
->p_type
== PT_TLS
)))
4531 (*_bfd_error_handler
)
4532 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4533 abfd
, sec
, (unsigned long) sec
->lma
);
4536 p
->p_memsz
+= adjust
;
4538 if ((flags
& SEC_LOAD
) != 0)
4541 p
->p_filesz
+= adjust
;
4546 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4548 /* The section at i == 0 is the one that actually contains
4554 p
->p_filesz
= sec
->size
;
4560 /* The rest are fake sections that shouldn't be written. */
4569 if (p
->p_type
== PT_LOAD
)
4571 sec
->filepos
= off
+ voff
;
4572 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4573 1997, and the exact reason for it isn't clear. One
4574 plausible explanation is that it is to work around
4575 a problem we have with linker scripts using data
4576 statements in NOLOAD sections. I don't think it
4577 makes a great deal of sense to have such a section
4578 assigned to a PT_LOAD segment, but apparently
4579 people do this. The data statement results in a
4580 bfd_data_link_order being built, and these need
4581 section contents to write into. Eventually, we get
4582 to _bfd_elf_write_object_contents which writes any
4583 section with contents to the output. Make room
4584 here for the write, so that following segments are
4586 if ((flags
& SEC_LOAD
) != 0
4587 || (flags
& SEC_HAS_CONTENTS
) != 0)
4591 if ((flags
& SEC_LOAD
) != 0)
4593 p
->p_filesz
+= sec
->size
;
4594 p
->p_memsz
+= sec
->size
;
4597 /* .tbss is special. It doesn't contribute to p_memsz of
4599 else if ((flags
& SEC_ALLOC
) != 0
4600 && ((flags
& SEC_THREAD_LOCAL
) == 0
4601 || p
->p_type
== PT_TLS
))
4602 p
->p_memsz
+= sec
->size
;
4604 if (p
->p_type
== PT_TLS
4606 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4608 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4610 p
->p_memsz
+= o
->offset
+ o
->size
;
4613 if (p
->p_type
== PT_GNU_RELRO
)
4615 else if (align
> p
->p_align
4616 && !m
->p_align_valid
4617 && (p
->p_type
!= PT_LOAD
4618 || (abfd
->flags
& D_PAGED
) == 0))
4622 if (! m
->p_flags_valid
)
4625 if ((flags
& SEC_CODE
) != 0)
4627 if ((flags
& SEC_READONLY
) == 0)
4632 /* Check if all sections are in the segment. Skip PT_GNU_RELRO
4633 and PT_NOTE segments since they will be processed by
4634 assign_file_positions_for_non_load_sections later. */
4635 if (p
->p_type
!= PT_GNU_RELRO
4636 && p
->p_type
!= PT_NOTE
)
4637 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4639 Elf_Internal_Shdr
*this_hdr
;
4643 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4644 if (this_hdr
->sh_size
!= 0
4645 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4647 (*_bfd_error_handler
)
4648 (_("%B: section `%A' can't be allocated in segment %d"),
4650 bfd_set_error (bfd_error_bad_value
);
4656 elf_tdata (abfd
)->next_file_pos
= off
;
4660 /* Assign file positions for the other sections. */
4663 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4664 struct bfd_link_info
*link_info
)
4666 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4667 Elf_Internal_Shdr
**i_shdrpp
;
4668 Elf_Internal_Shdr
**hdrpp
;
4669 Elf_Internal_Phdr
*phdrs
;
4670 Elf_Internal_Phdr
*p
;
4671 struct elf_segment_map
*m
;
4672 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4673 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4675 unsigned int num_sec
;
4679 i_shdrpp
= elf_elfsections (abfd
);
4680 num_sec
= elf_numsections (abfd
);
4681 off
= elf_tdata (abfd
)->next_file_pos
;
4682 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4684 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4685 Elf_Internal_Shdr
*hdr
;
4688 if (hdr
->bfd_section
!= NULL
4689 && (hdr
->bfd_section
->filepos
!= 0
4690 || (hdr
->sh_type
== SHT_NOBITS
4691 && hdr
->contents
== NULL
)))
4692 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4693 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4695 if (hdr
->sh_size
!= 0)
4696 ((*_bfd_error_handler
)
4697 (_("%B: warning: allocated section `%s' not in segment"),
4699 (hdr
->bfd_section
== NULL
4701 : hdr
->bfd_section
->name
)));
4702 /* We don't need to page align empty sections. */
4703 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4704 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4707 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4709 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4712 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4713 && hdr
->bfd_section
== NULL
)
4714 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4715 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4716 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4717 hdr
->sh_offset
= -1;
4719 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4721 if (i
== SHN_LORESERVE
- 1)
4723 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4724 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4728 /* Now that we have set the section file positions, we can set up
4729 the file positions for the non PT_LOAD segments. */
4733 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4735 phdrs
= elf_tdata (abfd
)->phdr
;
4736 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4741 if (p
->p_type
!= PT_LOAD
)
4744 if (m
->includes_filehdr
)
4746 filehdr_vaddr
= p
->p_vaddr
;
4747 filehdr_paddr
= p
->p_paddr
;
4749 if (m
->includes_phdrs
)
4751 phdrs_vaddr
= p
->p_vaddr
;
4752 phdrs_paddr
= p
->p_paddr
;
4753 if (m
->includes_filehdr
)
4755 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4756 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4761 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4767 if (p
->p_type
!= PT_LOAD
4768 && (p
->p_type
!= PT_NOTE
|| bfd_get_format (abfd
) != bfd_core
))
4770 Elf_Internal_Shdr
*hdr
;
4771 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4773 hdr
= &elf_section_data (m
->sections
[m
->count
- 1])->this_hdr
;
4774 p
->p_filesz
= (m
->sections
[m
->count
- 1]->filepos
4775 - m
->sections
[0]->filepos
);
4776 if (hdr
->sh_type
!= SHT_NOBITS
)
4777 p
->p_filesz
+= hdr
->sh_size
;
4779 p
->p_offset
= m
->sections
[0]->filepos
;
4784 if (m
->includes_filehdr
)
4786 p
->p_vaddr
= filehdr_vaddr
;
4787 if (! m
->p_paddr_valid
)
4788 p
->p_paddr
= filehdr_paddr
;
4790 else if (m
->includes_phdrs
)
4792 p
->p_vaddr
= phdrs_vaddr
;
4793 if (! m
->p_paddr_valid
)
4794 p
->p_paddr
= phdrs_paddr
;
4796 else if (p
->p_type
== PT_GNU_RELRO
)
4798 Elf_Internal_Phdr
*lp
;
4800 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4802 if (lp
->p_type
== PT_LOAD
4803 && lp
->p_vaddr
<= link_info
->relro_end
4804 && lp
->p_vaddr
>= link_info
->relro_start
4805 && (lp
->p_vaddr
+ lp
->p_filesz
4806 >= link_info
->relro_end
))
4810 if (lp
< phdrs
+ count
4811 && link_info
->relro_end
> lp
->p_vaddr
)
4813 p
->p_vaddr
= lp
->p_vaddr
;
4814 p
->p_paddr
= lp
->p_paddr
;
4815 p
->p_offset
= lp
->p_offset
;
4816 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4817 p
->p_memsz
= p
->p_filesz
;
4819 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4823 memset (p
, 0, sizeof *p
);
4824 p
->p_type
= PT_NULL
;
4830 elf_tdata (abfd
)->next_file_pos
= off
;
4835 /* Work out the file positions of all the sections. This is called by
4836 _bfd_elf_compute_section_file_positions. All the section sizes and
4837 VMAs must be known before this is called.
4839 Reloc sections come in two flavours: Those processed specially as
4840 "side-channel" data attached to a section to which they apply, and
4841 those that bfd doesn't process as relocations. The latter sort are
4842 stored in a normal bfd section by bfd_section_from_shdr. We don't
4843 consider the former sort here, unless they form part of the loadable
4844 image. Reloc sections not assigned here will be handled later by
4845 assign_file_positions_for_relocs.
4847 We also don't set the positions of the .symtab and .strtab here. */
4850 assign_file_positions_except_relocs (bfd
*abfd
,
4851 struct bfd_link_info
*link_info
)
4853 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4854 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4856 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4858 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4859 && bfd_get_format (abfd
) != bfd_core
)
4861 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4862 unsigned int num_sec
= elf_numsections (abfd
);
4863 Elf_Internal_Shdr
**hdrpp
;
4866 /* Start after the ELF header. */
4867 off
= i_ehdrp
->e_ehsize
;
4869 /* We are not creating an executable, which means that we are
4870 not creating a program header, and that the actual order of
4871 the sections in the file is unimportant. */
4872 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4874 Elf_Internal_Shdr
*hdr
;
4877 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4878 && hdr
->bfd_section
== NULL
)
4879 || i
== tdata
->symtab_section
4880 || i
== tdata
->symtab_shndx_section
4881 || i
== tdata
->strtab_section
)
4883 hdr
->sh_offset
= -1;
4886 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4888 if (i
== SHN_LORESERVE
- 1)
4890 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4891 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4899 /* Assign file positions for the loaded sections based on the
4900 assignment of sections to segments. */
4901 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4904 /* And for non-load sections. */
4905 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4908 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4910 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4914 /* Write out the program headers. */
4915 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4916 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4917 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4920 off
= tdata
->next_file_pos
;
4923 /* Place the section headers. */
4924 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4925 i_ehdrp
->e_shoff
= off
;
4926 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4928 tdata
->next_file_pos
= off
;
4934 prep_headers (bfd
*abfd
)
4936 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4937 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4938 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4939 struct elf_strtab_hash
*shstrtab
;
4940 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4942 i_ehdrp
= elf_elfheader (abfd
);
4943 i_shdrp
= elf_elfsections (abfd
);
4945 shstrtab
= _bfd_elf_strtab_init ();
4946 if (shstrtab
== NULL
)
4949 elf_shstrtab (abfd
) = shstrtab
;
4951 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4952 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4953 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4954 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4956 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4957 i_ehdrp
->e_ident
[EI_DATA
] =
4958 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4959 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4961 if ((abfd
->flags
& DYNAMIC
) != 0)
4962 i_ehdrp
->e_type
= ET_DYN
;
4963 else if ((abfd
->flags
& EXEC_P
) != 0)
4964 i_ehdrp
->e_type
= ET_EXEC
;
4965 else if (bfd_get_format (abfd
) == bfd_core
)
4966 i_ehdrp
->e_type
= ET_CORE
;
4968 i_ehdrp
->e_type
= ET_REL
;
4970 switch (bfd_get_arch (abfd
))
4972 case bfd_arch_unknown
:
4973 i_ehdrp
->e_machine
= EM_NONE
;
4976 /* There used to be a long list of cases here, each one setting
4977 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4978 in the corresponding bfd definition. To avoid duplication,
4979 the switch was removed. Machines that need special handling
4980 can generally do it in elf_backend_final_write_processing(),
4981 unless they need the information earlier than the final write.
4982 Such need can generally be supplied by replacing the tests for
4983 e_machine with the conditions used to determine it. */
4985 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4988 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4989 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4991 /* No program header, for now. */
4992 i_ehdrp
->e_phoff
= 0;
4993 i_ehdrp
->e_phentsize
= 0;
4994 i_ehdrp
->e_phnum
= 0;
4996 /* Each bfd section is section header entry. */
4997 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4998 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
5000 /* If we're building an executable, we'll need a program header table. */
5001 if (abfd
->flags
& EXEC_P
)
5002 /* It all happens later. */
5006 i_ehdrp
->e_phentsize
= 0;
5008 i_ehdrp
->e_phoff
= 0;
5011 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
5012 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
5013 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
5014 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
5015 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
5016 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
5017 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5018 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5019 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
5025 /* Assign file positions for all the reloc sections which are not part
5026 of the loadable file image. */
5029 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
5032 unsigned int i
, num_sec
;
5033 Elf_Internal_Shdr
**shdrpp
;
5035 off
= elf_tdata (abfd
)->next_file_pos
;
5037 num_sec
= elf_numsections (abfd
);
5038 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5040 Elf_Internal_Shdr
*shdrp
;
5043 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5044 && shdrp
->sh_offset
== -1)
5045 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5048 elf_tdata (abfd
)->next_file_pos
= off
;
5052 _bfd_elf_write_object_contents (bfd
*abfd
)
5054 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5055 Elf_Internal_Ehdr
*i_ehdrp
;
5056 Elf_Internal_Shdr
**i_shdrp
;
5058 unsigned int count
, num_sec
;
5060 if (! abfd
->output_has_begun
5061 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5064 i_shdrp
= elf_elfsections (abfd
);
5065 i_ehdrp
= elf_elfheader (abfd
);
5068 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5072 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5074 /* After writing the headers, we need to write the sections too... */
5075 num_sec
= elf_numsections (abfd
);
5076 for (count
= 1; count
< num_sec
; count
++)
5078 if (bed
->elf_backend_section_processing
)
5079 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5080 if (i_shdrp
[count
]->contents
)
5082 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5084 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5085 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5088 if (count
== SHN_LORESERVE
- 1)
5089 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5092 /* Write out the section header names. */
5093 if (elf_shstrtab (abfd
) != NULL
5094 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5095 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5098 if (bed
->elf_backend_final_write_processing
)
5099 (*bed
->elf_backend_final_write_processing
) (abfd
,
5100 elf_tdata (abfd
)->linker
);
5102 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5106 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5108 /* Hopefully this can be done just like an object file. */
5109 return _bfd_elf_write_object_contents (abfd
);
5112 /* Given a section, search the header to find them. */
5115 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5117 const struct elf_backend_data
*bed
;
5120 if (elf_section_data (asect
) != NULL
5121 && elf_section_data (asect
)->this_idx
!= 0)
5122 return elf_section_data (asect
)->this_idx
;
5124 if (bfd_is_abs_section (asect
))
5126 else if (bfd_is_com_section (asect
))
5128 else if (bfd_is_und_section (asect
))
5133 bed
= get_elf_backend_data (abfd
);
5134 if (bed
->elf_backend_section_from_bfd_section
)
5138 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5143 bfd_set_error (bfd_error_nonrepresentable_section
);
5148 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5152 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5154 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5156 flagword flags
= asym_ptr
->flags
;
5158 /* When gas creates relocations against local labels, it creates its
5159 own symbol for the section, but does put the symbol into the
5160 symbol chain, so udata is 0. When the linker is generating
5161 relocatable output, this section symbol may be for one of the
5162 input sections rather than the output section. */
5163 if (asym_ptr
->udata
.i
== 0
5164 && (flags
& BSF_SECTION_SYM
)
5165 && asym_ptr
->section
)
5170 sec
= asym_ptr
->section
;
5171 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5172 sec
= sec
->output_section
;
5173 if (sec
->owner
== abfd
5174 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5175 && elf_section_syms (abfd
)[indx
] != NULL
)
5176 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5179 idx
= asym_ptr
->udata
.i
;
5183 /* This case can occur when using --strip-symbol on a symbol
5184 which is used in a relocation entry. */
5185 (*_bfd_error_handler
)
5186 (_("%B: symbol `%s' required but not present"),
5187 abfd
, bfd_asymbol_name (asym_ptr
));
5188 bfd_set_error (bfd_error_no_symbols
);
5195 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5196 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5197 elf_symbol_flags (flags
));
5205 /* Rewrite program header information. */
5208 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5210 Elf_Internal_Ehdr
*iehdr
;
5211 struct elf_segment_map
*map
;
5212 struct elf_segment_map
*map_first
;
5213 struct elf_segment_map
**pointer_to_map
;
5214 Elf_Internal_Phdr
*segment
;
5217 unsigned int num_segments
;
5218 bfd_boolean phdr_included
= FALSE
;
5219 bfd_vma maxpagesize
;
5220 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5221 unsigned int phdr_adjust_num
= 0;
5222 const struct elf_backend_data
*bed
;
5224 bed
= get_elf_backend_data (ibfd
);
5225 iehdr
= elf_elfheader (ibfd
);
5228 pointer_to_map
= &map_first
;
5230 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5231 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5233 /* Returns the end address of the segment + 1. */
5234 #define SEGMENT_END(segment, start) \
5235 (start + (segment->p_memsz > segment->p_filesz \
5236 ? segment->p_memsz : segment->p_filesz))
5238 #define SECTION_SIZE(section, segment) \
5239 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5240 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5241 ? section->size : 0)
5243 /* Returns TRUE if the given section is contained within
5244 the given segment. VMA addresses are compared. */
5245 #define IS_CONTAINED_BY_VMA(section, segment) \
5246 (section->vma >= segment->p_vaddr \
5247 && (section->vma + SECTION_SIZE (section, segment) \
5248 <= (SEGMENT_END (segment, segment->p_vaddr))))
5250 /* Returns TRUE if the given section is contained within
5251 the given segment. LMA addresses are compared. */
5252 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5253 (section->lma >= base \
5254 && (section->lma + SECTION_SIZE (section, segment) \
5255 <= SEGMENT_END (segment, base)))
5257 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5258 #define IS_COREFILE_NOTE(p, s) \
5259 (p->p_type == PT_NOTE \
5260 && bfd_get_format (ibfd) == bfd_core \
5261 && s->vma == 0 && s->lma == 0 \
5262 && (bfd_vma) s->filepos >= p->p_offset \
5263 && ((bfd_vma) s->filepos + s->size \
5264 <= p->p_offset + p->p_filesz))
5266 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5267 linker, which generates a PT_INTERP section with p_vaddr and
5268 p_memsz set to 0. */
5269 #define IS_SOLARIS_PT_INTERP(p, s) \
5271 && p->p_paddr == 0 \
5272 && p->p_memsz == 0 \
5273 && p->p_filesz > 0 \
5274 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5276 && (bfd_vma) s->filepos >= p->p_offset \
5277 && ((bfd_vma) s->filepos + s->size \
5278 <= p->p_offset + p->p_filesz))
5280 /* Decide if the given section should be included in the given segment.
5281 A section will be included if:
5282 1. It is within the address space of the segment -- we use the LMA
5283 if that is set for the segment and the VMA otherwise,
5284 2. It is an allocated segment,
5285 3. There is an output section associated with it,
5286 4. The section has not already been allocated to a previous segment.
5287 5. PT_GNU_STACK segments do not include any sections.
5288 6. PT_TLS segment includes only SHF_TLS sections.
5289 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5290 8. PT_DYNAMIC should not contain empty sections at the beginning
5291 (with the possible exception of .dynamic). */
5292 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5293 ((((segment->p_paddr \
5294 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5295 : IS_CONTAINED_BY_VMA (section, segment)) \
5296 && (section->flags & SEC_ALLOC) != 0) \
5297 || IS_COREFILE_NOTE (segment, section)) \
5298 && segment->p_type != PT_GNU_STACK \
5299 && (segment->p_type != PT_TLS \
5300 || (section->flags & SEC_THREAD_LOCAL)) \
5301 && (segment->p_type == PT_LOAD \
5302 || segment->p_type == PT_TLS \
5303 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5304 && (segment->p_type != PT_DYNAMIC \
5305 || SECTION_SIZE (section, segment) > 0 \
5306 || (segment->p_paddr \
5307 ? segment->p_paddr != section->lma \
5308 : segment->p_vaddr != section->vma) \
5309 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5311 && ! section->segment_mark)
5313 /* If the output section of a section in the input segment is NULL,
5314 it is removed from the corresponding output segment. */
5315 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5316 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5317 && section->output_section != NULL)
5319 /* Returns TRUE iff seg1 starts after the end of seg2. */
5320 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5321 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5323 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5324 their VMA address ranges and their LMA address ranges overlap.
5325 It is possible to have overlapping VMA ranges without overlapping LMA
5326 ranges. RedBoot images for example can have both .data and .bss mapped
5327 to the same VMA range, but with the .data section mapped to a different
5329 #define SEGMENT_OVERLAPS(seg1, seg2) \
5330 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5331 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5332 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5333 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5335 /* Initialise the segment mark field. */
5336 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5337 section
->segment_mark
= FALSE
;
5339 /* Scan through the segments specified in the program header
5340 of the input BFD. For this first scan we look for overlaps
5341 in the loadable segments. These can be created by weird
5342 parameters to objcopy. Also, fix some solaris weirdness. */
5343 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5348 Elf_Internal_Phdr
*segment2
;
5350 if (segment
->p_type
== PT_INTERP
)
5351 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5352 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5354 /* Mininal change so that the normal section to segment
5355 assignment code will work. */
5356 segment
->p_vaddr
= section
->vma
;
5360 if (segment
->p_type
!= PT_LOAD
)
5363 /* Determine if this segment overlaps any previous segments. */
5364 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5366 bfd_signed_vma extra_length
;
5368 if (segment2
->p_type
!= PT_LOAD
5369 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5372 /* Merge the two segments together. */
5373 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5375 /* Extend SEGMENT2 to include SEGMENT and then delete
5378 SEGMENT_END (segment
, segment
->p_vaddr
)
5379 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5381 if (extra_length
> 0)
5383 segment2
->p_memsz
+= extra_length
;
5384 segment2
->p_filesz
+= extra_length
;
5387 segment
->p_type
= PT_NULL
;
5389 /* Since we have deleted P we must restart the outer loop. */
5391 segment
= elf_tdata (ibfd
)->phdr
;
5396 /* Extend SEGMENT to include SEGMENT2 and then delete
5399 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5400 - SEGMENT_END (segment
, segment
->p_vaddr
);
5402 if (extra_length
> 0)
5404 segment
->p_memsz
+= extra_length
;
5405 segment
->p_filesz
+= extra_length
;
5408 segment2
->p_type
= PT_NULL
;
5413 /* The second scan attempts to assign sections to segments. */
5414 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5418 unsigned int section_count
;
5419 asection
** sections
;
5420 asection
* output_section
;
5422 bfd_vma matching_lma
;
5423 bfd_vma suggested_lma
;
5426 asection
* first_section
;
5428 if (segment
->p_type
== PT_NULL
)
5431 first_section
= NULL
;
5432 /* Compute how many sections might be placed into this segment. */
5433 for (section
= ibfd
->sections
, section_count
= 0;
5435 section
= section
->next
)
5437 /* Find the first section in the input segment, which may be
5438 removed from the corresponding output segment. */
5439 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5441 if (first_section
== NULL
)
5442 first_section
= section
;
5443 if (section
->output_section
!= NULL
)
5448 /* Allocate a segment map big enough to contain
5449 all of the sections we have selected. */
5450 amt
= sizeof (struct elf_segment_map
);
5451 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5452 map
= bfd_zalloc (obfd
, amt
);
5456 /* Initialise the fields of the segment map. Default to
5457 using the physical address of the segment in the input BFD. */
5459 map
->p_type
= segment
->p_type
;
5460 map
->p_flags
= segment
->p_flags
;
5461 map
->p_flags_valid
= 1;
5463 /* If the first section in the input segment is removed, there is
5464 no need to preserve segment physical address in the corresponding
5466 if (!first_section
|| first_section
->output_section
!= NULL
)
5468 map
->p_paddr
= segment
->p_paddr
;
5469 map
->p_paddr_valid
= 1;
5472 /* Determine if this segment contains the ELF file header
5473 and if it contains the program headers themselves. */
5474 map
->includes_filehdr
= (segment
->p_offset
== 0
5475 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5477 map
->includes_phdrs
= 0;
5479 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5481 map
->includes_phdrs
=
5482 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5483 && (segment
->p_offset
+ segment
->p_filesz
5484 >= ((bfd_vma
) iehdr
->e_phoff
5485 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5487 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5488 phdr_included
= TRUE
;
5491 if (section_count
== 0)
5493 /* Special segments, such as the PT_PHDR segment, may contain
5494 no sections, but ordinary, loadable segments should contain
5495 something. They are allowed by the ELF spec however, so only
5496 a warning is produced. */
5497 if (segment
->p_type
== PT_LOAD
)
5498 (*_bfd_error_handler
)
5499 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5503 *pointer_to_map
= map
;
5504 pointer_to_map
= &map
->next
;
5509 /* Now scan the sections in the input BFD again and attempt
5510 to add their corresponding output sections to the segment map.
5511 The problem here is how to handle an output section which has
5512 been moved (ie had its LMA changed). There are four possibilities:
5514 1. None of the sections have been moved.
5515 In this case we can continue to use the segment LMA from the
5518 2. All of the sections have been moved by the same amount.
5519 In this case we can change the segment's LMA to match the LMA
5520 of the first section.
5522 3. Some of the sections have been moved, others have not.
5523 In this case those sections which have not been moved can be
5524 placed in the current segment which will have to have its size,
5525 and possibly its LMA changed, and a new segment or segments will
5526 have to be created to contain the other sections.
5528 4. The sections have been moved, but not by the same amount.
5529 In this case we can change the segment's LMA to match the LMA
5530 of the first section and we will have to create a new segment
5531 or segments to contain the other sections.
5533 In order to save time, we allocate an array to hold the section
5534 pointers that we are interested in. As these sections get assigned
5535 to a segment, they are removed from this array. */
5537 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5538 to work around this long long bug. */
5539 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5540 if (sections
== NULL
)
5543 /* Step One: Scan for segment vs section LMA conflicts.
5544 Also add the sections to the section array allocated above.
5545 Also add the sections to the current segment. In the common
5546 case, where the sections have not been moved, this means that
5547 we have completely filled the segment, and there is nothing
5553 for (j
= 0, section
= ibfd
->sections
;
5555 section
= section
->next
)
5557 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5559 output_section
= section
->output_section
;
5561 sections
[j
++] = section
;
5563 /* The Solaris native linker always sets p_paddr to 0.
5564 We try to catch that case here, and set it to the
5565 correct value. Note - some backends require that
5566 p_paddr be left as zero. */
5567 if (segment
->p_paddr
== 0
5568 && segment
->p_vaddr
!= 0
5569 && (! bed
->want_p_paddr_set_to_zero
)
5571 && output_section
->lma
!= 0
5572 && (output_section
->vma
== (segment
->p_vaddr
5573 + (map
->includes_filehdr
5576 + (map
->includes_phdrs
5578 * iehdr
->e_phentsize
)
5580 map
->p_paddr
= segment
->p_vaddr
;
5582 /* Match up the physical address of the segment with the
5583 LMA address of the output section. */
5584 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5585 || IS_COREFILE_NOTE (segment
, section
)
5586 || (bed
->want_p_paddr_set_to_zero
&&
5587 IS_CONTAINED_BY_VMA (output_section
, segment
))
5590 if (matching_lma
== 0)
5591 matching_lma
= output_section
->lma
;
5593 /* We assume that if the section fits within the segment
5594 then it does not overlap any other section within that
5596 map
->sections
[isec
++] = output_section
;
5598 else if (suggested_lma
== 0)
5599 suggested_lma
= output_section
->lma
;
5603 BFD_ASSERT (j
== section_count
);
5605 /* Step Two: Adjust the physical address of the current segment,
5607 if (isec
== section_count
)
5609 /* All of the sections fitted within the segment as currently
5610 specified. This is the default case. Add the segment to
5611 the list of built segments and carry on to process the next
5612 program header in the input BFD. */
5613 map
->count
= section_count
;
5614 *pointer_to_map
= map
;
5615 pointer_to_map
= &map
->next
;
5617 if (matching_lma
!= map
->p_paddr
5618 && !map
->includes_filehdr
&& !map
->includes_phdrs
)
5619 /* There is some padding before the first section in the
5620 segment. So, we must account for that in the output
5622 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5629 if (matching_lma
!= 0)
5631 /* At least one section fits inside the current segment.
5632 Keep it, but modify its physical address to match the
5633 LMA of the first section that fitted. */
5634 map
->p_paddr
= matching_lma
;
5638 /* None of the sections fitted inside the current segment.
5639 Change the current segment's physical address to match
5640 the LMA of the first section. */
5641 map
->p_paddr
= suggested_lma
;
5644 /* Offset the segment physical address from the lma
5645 to allow for space taken up by elf headers. */
5646 if (map
->includes_filehdr
)
5647 map
->p_paddr
-= iehdr
->e_ehsize
;
5649 if (map
->includes_phdrs
)
5651 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5653 /* iehdr->e_phnum is just an estimate of the number
5654 of program headers that we will need. Make a note
5655 here of the number we used and the segment we chose
5656 to hold these headers, so that we can adjust the
5657 offset when we know the correct value. */
5658 phdr_adjust_num
= iehdr
->e_phnum
;
5659 phdr_adjust_seg
= map
;
5663 /* Step Three: Loop over the sections again, this time assigning
5664 those that fit to the current segment and removing them from the
5665 sections array; but making sure not to leave large gaps. Once all
5666 possible sections have been assigned to the current segment it is
5667 added to the list of built segments and if sections still remain
5668 to be assigned, a new segment is constructed before repeating
5676 /* Fill the current segment with sections that fit. */
5677 for (j
= 0; j
< section_count
; j
++)
5679 section
= sections
[j
];
5681 if (section
== NULL
)
5684 output_section
= section
->output_section
;
5686 BFD_ASSERT (output_section
!= NULL
);
5688 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5689 || IS_COREFILE_NOTE (segment
, section
))
5691 if (map
->count
== 0)
5693 /* If the first section in a segment does not start at
5694 the beginning of the segment, then something is
5696 if (output_section
->lma
!=
5698 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5699 + (map
->includes_phdrs
5700 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5706 asection
* prev_sec
;
5708 prev_sec
= map
->sections
[map
->count
- 1];
5710 /* If the gap between the end of the previous section
5711 and the start of this section is more than
5712 maxpagesize then we need to start a new segment. */
5713 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5715 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5716 || ((prev_sec
->lma
+ prev_sec
->size
)
5717 > output_section
->lma
))
5719 if (suggested_lma
== 0)
5720 suggested_lma
= output_section
->lma
;
5726 map
->sections
[map
->count
++] = output_section
;
5729 section
->segment_mark
= TRUE
;
5731 else if (suggested_lma
== 0)
5732 suggested_lma
= output_section
->lma
;
5735 BFD_ASSERT (map
->count
> 0);
5737 /* Add the current segment to the list of built segments. */
5738 *pointer_to_map
= map
;
5739 pointer_to_map
= &map
->next
;
5741 if (isec
< section_count
)
5743 /* We still have not allocated all of the sections to
5744 segments. Create a new segment here, initialise it
5745 and carry on looping. */
5746 amt
= sizeof (struct elf_segment_map
);
5747 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5748 map
= bfd_alloc (obfd
, amt
);
5755 /* Initialise the fields of the segment map. Set the physical
5756 physical address to the LMA of the first section that has
5757 not yet been assigned. */
5759 map
->p_type
= segment
->p_type
;
5760 map
->p_flags
= segment
->p_flags
;
5761 map
->p_flags_valid
= 1;
5762 map
->p_paddr
= suggested_lma
;
5763 map
->p_paddr_valid
= 1;
5764 map
->includes_filehdr
= 0;
5765 map
->includes_phdrs
= 0;
5768 while (isec
< section_count
);
5773 /* The Solaris linker creates program headers in which all the
5774 p_paddr fields are zero. When we try to objcopy or strip such a
5775 file, we get confused. Check for this case, and if we find it
5776 reset the p_paddr_valid fields. */
5777 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5778 if (map
->p_paddr
!= 0)
5781 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5782 map
->p_paddr_valid
= 0;
5784 elf_tdata (obfd
)->segment_map
= map_first
;
5786 /* If we had to estimate the number of program headers that were
5787 going to be needed, then check our estimate now and adjust
5788 the offset if necessary. */
5789 if (phdr_adjust_seg
!= NULL
)
5793 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5796 if (count
> phdr_adjust_num
)
5797 phdr_adjust_seg
->p_paddr
5798 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5803 #undef IS_CONTAINED_BY_VMA
5804 #undef IS_CONTAINED_BY_LMA
5805 #undef IS_COREFILE_NOTE
5806 #undef IS_SOLARIS_PT_INTERP
5807 #undef IS_SECTION_IN_INPUT_SEGMENT
5808 #undef INCLUDE_SECTION_IN_SEGMENT
5809 #undef SEGMENT_AFTER_SEGMENT
5810 #undef SEGMENT_OVERLAPS
5814 /* Copy ELF program header information. */
5817 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5819 Elf_Internal_Ehdr
*iehdr
;
5820 struct elf_segment_map
*map
;
5821 struct elf_segment_map
*map_first
;
5822 struct elf_segment_map
**pointer_to_map
;
5823 Elf_Internal_Phdr
*segment
;
5825 unsigned int num_segments
;
5826 bfd_boolean phdr_included
= FALSE
;
5828 iehdr
= elf_elfheader (ibfd
);
5831 pointer_to_map
= &map_first
;
5833 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5834 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5839 unsigned int section_count
;
5841 Elf_Internal_Shdr
*this_hdr
;
5842 asection
*first_section
= NULL
;
5844 /* FIXME: Do we need to copy PT_NULL segment? */
5845 if (segment
->p_type
== PT_NULL
)
5848 /* Compute how many sections are in this segment. */
5849 for (section
= ibfd
->sections
, section_count
= 0;
5851 section
= section
->next
)
5853 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5854 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5857 first_section
= section
;
5862 /* Allocate a segment map big enough to contain
5863 all of the sections we have selected. */
5864 amt
= sizeof (struct elf_segment_map
);
5865 if (section_count
!= 0)
5866 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5867 map
= bfd_zalloc (obfd
, amt
);
5871 /* Initialize the fields of the output segment map with the
5874 map
->p_type
= segment
->p_type
;
5875 map
->p_flags
= segment
->p_flags
;
5876 map
->p_flags_valid
= 1;
5877 map
->p_paddr
= segment
->p_paddr
;
5878 map
->p_paddr_valid
= 1;
5879 map
->p_align
= segment
->p_align
;
5880 map
->p_align_valid
= 1;
5881 map
->p_vaddr_offset
= 0;
5883 /* Determine if this segment contains the ELF file header
5884 and if it contains the program headers themselves. */
5885 map
->includes_filehdr
= (segment
->p_offset
== 0
5886 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5888 map
->includes_phdrs
= 0;
5889 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5891 map
->includes_phdrs
=
5892 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5893 && (segment
->p_offset
+ segment
->p_filesz
5894 >= ((bfd_vma
) iehdr
->e_phoff
5895 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5897 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5898 phdr_included
= TRUE
;
5901 if (!map
->includes_phdrs
&& !map
->includes_filehdr
)
5902 /* There is some other padding before the first section. */
5903 map
->p_vaddr_offset
= ((first_section
? first_section
->lma
: 0)
5904 - segment
->p_paddr
);
5906 if (section_count
!= 0)
5908 unsigned int isec
= 0;
5910 for (section
= first_section
;
5912 section
= section
->next
)
5914 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5915 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5917 map
->sections
[isec
++] = section
->output_section
;
5918 if (isec
== section_count
)
5924 map
->count
= section_count
;
5925 *pointer_to_map
= map
;
5926 pointer_to_map
= &map
->next
;
5929 elf_tdata (obfd
)->segment_map
= map_first
;
5933 /* Copy private BFD data. This copies or rewrites ELF program header
5937 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5939 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5940 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5943 if (elf_tdata (ibfd
)->phdr
== NULL
)
5946 if (ibfd
->xvec
== obfd
->xvec
)
5948 /* Check to see if any sections in the input BFD
5949 covered by ELF program header have changed. */
5950 Elf_Internal_Phdr
*segment
;
5951 asection
*section
, *osec
;
5952 unsigned int i
, num_segments
;
5953 Elf_Internal_Shdr
*this_hdr
;
5955 /* Initialize the segment mark field. */
5956 for (section
= obfd
->sections
; section
!= NULL
;
5957 section
= section
->next
)
5958 section
->segment_mark
= FALSE
;
5960 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5961 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5965 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5966 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5967 which severly confuses things, so always regenerate the segment
5968 map in this case. */
5969 if (segment
->p_paddr
== 0
5970 && segment
->p_memsz
== 0
5971 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5974 for (section
= ibfd
->sections
;
5975 section
!= NULL
; section
= section
->next
)
5977 /* We mark the output section so that we know it comes
5978 from the input BFD. */
5979 osec
= section
->output_section
;
5981 osec
->segment_mark
= TRUE
;
5983 /* Check if this section is covered by the segment. */
5984 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5985 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5987 /* FIXME: Check if its output section is changed or
5988 removed. What else do we need to check? */
5990 || section
->flags
!= osec
->flags
5991 || section
->lma
!= osec
->lma
5992 || section
->vma
!= osec
->vma
5993 || section
->size
!= osec
->size
5994 || section
->rawsize
!= osec
->rawsize
5995 || section
->alignment_power
!= osec
->alignment_power
)
6001 /* Check to see if any output section do not come from the
6003 for (section
= obfd
->sections
; section
!= NULL
;
6004 section
= section
->next
)
6006 if (section
->segment_mark
== FALSE
)
6009 section
->segment_mark
= FALSE
;
6012 return copy_elf_program_header (ibfd
, obfd
);
6016 return rewrite_elf_program_header (ibfd
, obfd
);
6019 /* Initialize private output section information from input section. */
6022 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6026 struct bfd_link_info
*link_info
)
6029 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6030 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6032 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6033 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6036 /* Don't copy the output ELF section type from input if the
6037 output BFD section flags have been set to something different.
6038 elf_fake_sections will set ELF section type based on BFD
6040 if (osec
->flags
== isec
->flags
|| !osec
->flags
)
6042 BFD_ASSERT (osec
->flags
== isec
->flags
6044 && elf_section_type (osec
) == SHT_NULL
));
6045 elf_section_type (osec
) = elf_section_type (isec
);
6048 /* FIXME: Is this correct for all OS/PROC specific flags? */
6049 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6050 & (SHF_MASKOS
| SHF_MASKPROC
));
6052 /* Set things up for objcopy and relocatable link. The output
6053 SHT_GROUP section will have its elf_next_in_group pointing back
6054 to the input group members. Ignore linker created group section.
6055 See elfNN_ia64_object_p in elfxx-ia64.c. */
6058 if (elf_sec_group (isec
) == NULL
6059 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6061 if (elf_section_flags (isec
) & SHF_GROUP
)
6062 elf_section_flags (osec
) |= SHF_GROUP
;
6063 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6064 elf_group_name (osec
) = elf_group_name (isec
);
6068 ihdr
= &elf_section_data (isec
)->this_hdr
;
6070 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6071 don't use the output section of the linked-to section since it
6072 may be NULL at this point. */
6073 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6075 ohdr
= &elf_section_data (osec
)->this_hdr
;
6076 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6077 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6080 osec
->use_rela_p
= isec
->use_rela_p
;
6085 /* Copy private section information. This copies over the entsize
6086 field, and sometimes the info field. */
6089 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6094 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6096 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6097 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6100 ihdr
= &elf_section_data (isec
)->this_hdr
;
6101 ohdr
= &elf_section_data (osec
)->this_hdr
;
6103 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6105 if (ihdr
->sh_type
== SHT_SYMTAB
6106 || ihdr
->sh_type
== SHT_DYNSYM
6107 || ihdr
->sh_type
== SHT_GNU_verneed
6108 || ihdr
->sh_type
== SHT_GNU_verdef
)
6109 ohdr
->sh_info
= ihdr
->sh_info
;
6111 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6115 /* Copy private header information. */
6118 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6122 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6123 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6126 /* Copy over private BFD data if it has not already been copied.
6127 This must be done here, rather than in the copy_private_bfd_data
6128 entry point, because the latter is called after the section
6129 contents have been set, which means that the program headers have
6130 already been worked out. */
6131 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6133 if (! copy_private_bfd_data (ibfd
, obfd
))
6137 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6138 but this might be wrong if we deleted the group section. */
6139 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6140 if (elf_section_type (isec
) == SHT_GROUP
6141 && isec
->output_section
== NULL
)
6143 asection
*first
= elf_next_in_group (isec
);
6144 asection
*s
= first
;
6147 if (s
->output_section
!= NULL
)
6149 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6150 elf_group_name (s
->output_section
) = NULL
;
6152 s
= elf_next_in_group (s
);
6161 /* Copy private symbol information. If this symbol is in a section
6162 which we did not map into a BFD section, try to map the section
6163 index correctly. We use special macro definitions for the mapped
6164 section indices; these definitions are interpreted by the
6165 swap_out_syms function. */
6167 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6168 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6169 #define MAP_STRTAB (SHN_HIOS + 3)
6170 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6171 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6174 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6179 elf_symbol_type
*isym
, *osym
;
6181 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6182 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6185 isym
= elf_symbol_from (ibfd
, isymarg
);
6186 osym
= elf_symbol_from (obfd
, osymarg
);
6190 && bfd_is_abs_section (isym
->symbol
.section
))
6194 shndx
= isym
->internal_elf_sym
.st_shndx
;
6195 if (shndx
== elf_onesymtab (ibfd
))
6196 shndx
= MAP_ONESYMTAB
;
6197 else if (shndx
== elf_dynsymtab (ibfd
))
6198 shndx
= MAP_DYNSYMTAB
;
6199 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6201 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6202 shndx
= MAP_SHSTRTAB
;
6203 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6204 shndx
= MAP_SYM_SHNDX
;
6205 osym
->internal_elf_sym
.st_shndx
= shndx
;
6211 /* Swap out the symbols. */
6214 swap_out_syms (bfd
*abfd
,
6215 struct bfd_strtab_hash
**sttp
,
6218 const struct elf_backend_data
*bed
;
6221 struct bfd_strtab_hash
*stt
;
6222 Elf_Internal_Shdr
*symtab_hdr
;
6223 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6224 Elf_Internal_Shdr
*symstrtab_hdr
;
6225 bfd_byte
*outbound_syms
;
6226 bfd_byte
*outbound_shndx
;
6229 bfd_boolean name_local_sections
;
6231 if (!elf_map_symbols (abfd
))
6234 /* Dump out the symtabs. */
6235 stt
= _bfd_elf_stringtab_init ();
6239 bed
= get_elf_backend_data (abfd
);
6240 symcount
= bfd_get_symcount (abfd
);
6241 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6242 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6243 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6244 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6245 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6246 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6248 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6249 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6251 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6252 if (outbound_syms
== NULL
)
6254 _bfd_stringtab_free (stt
);
6257 symtab_hdr
->contents
= outbound_syms
;
6259 outbound_shndx
= NULL
;
6260 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6261 if (symtab_shndx_hdr
->sh_name
!= 0)
6263 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6264 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6265 sizeof (Elf_External_Sym_Shndx
));
6266 if (outbound_shndx
== NULL
)
6268 _bfd_stringtab_free (stt
);
6272 symtab_shndx_hdr
->contents
= outbound_shndx
;
6273 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6274 symtab_shndx_hdr
->sh_size
= amt
;
6275 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6276 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6279 /* Now generate the data (for "contents"). */
6281 /* Fill in zeroth symbol and swap it out. */
6282 Elf_Internal_Sym sym
;
6288 sym
.st_shndx
= SHN_UNDEF
;
6289 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6290 outbound_syms
+= bed
->s
->sizeof_sym
;
6291 if (outbound_shndx
!= NULL
)
6292 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6296 = (bed
->elf_backend_name_local_section_symbols
6297 && bed
->elf_backend_name_local_section_symbols (abfd
));
6299 syms
= bfd_get_outsymbols (abfd
);
6300 for (idx
= 0; idx
< symcount
; idx
++)
6302 Elf_Internal_Sym sym
;
6303 bfd_vma value
= syms
[idx
]->value
;
6304 elf_symbol_type
*type_ptr
;
6305 flagword flags
= syms
[idx
]->flags
;
6308 if (!name_local_sections
6309 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6311 /* Local section symbols have no name. */
6316 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6319 if (sym
.st_name
== (unsigned long) -1)
6321 _bfd_stringtab_free (stt
);
6326 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6328 if ((flags
& BSF_SECTION_SYM
) == 0
6329 && bfd_is_com_section (syms
[idx
]->section
))
6331 /* ELF common symbols put the alignment into the `value' field,
6332 and the size into the `size' field. This is backwards from
6333 how BFD handles it, so reverse it here. */
6334 sym
.st_size
= value
;
6335 if (type_ptr
== NULL
6336 || type_ptr
->internal_elf_sym
.st_value
== 0)
6337 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6339 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6340 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6341 (abfd
, syms
[idx
]->section
);
6345 asection
*sec
= syms
[idx
]->section
;
6348 if (sec
->output_section
)
6350 value
+= sec
->output_offset
;
6351 sec
= sec
->output_section
;
6354 /* Don't add in the section vma for relocatable output. */
6355 if (! relocatable_p
)
6357 sym
.st_value
= value
;
6358 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6360 if (bfd_is_abs_section (sec
)
6362 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6364 /* This symbol is in a real ELF section which we did
6365 not create as a BFD section. Undo the mapping done
6366 by copy_private_symbol_data. */
6367 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6371 shndx
= elf_onesymtab (abfd
);
6374 shndx
= elf_dynsymtab (abfd
);
6377 shndx
= elf_tdata (abfd
)->strtab_section
;
6380 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6383 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6391 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6397 /* Writing this would be a hell of a lot easier if
6398 we had some decent documentation on bfd, and
6399 knew what to expect of the library, and what to
6400 demand of applications. For example, it
6401 appears that `objcopy' might not set the
6402 section of a symbol to be a section that is
6403 actually in the output file. */
6404 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6407 _bfd_error_handler (_("\
6408 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6409 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6411 bfd_set_error (bfd_error_invalid_operation
);
6412 _bfd_stringtab_free (stt
);
6416 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6417 BFD_ASSERT (shndx
!= -1);
6421 sym
.st_shndx
= shndx
;
6424 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6426 else if ((flags
& BSF_FUNCTION
) != 0)
6428 else if ((flags
& BSF_OBJECT
) != 0)
6430 else if ((flags
& BSF_RELC
) != 0)
6432 else if ((flags
& BSF_SRELC
) != 0)
6437 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6440 /* Processor-specific types. */
6441 if (type_ptr
!= NULL
6442 && bed
->elf_backend_get_symbol_type
)
6443 type
= ((*bed
->elf_backend_get_symbol_type
)
6444 (&type_ptr
->internal_elf_sym
, type
));
6446 if (flags
& BSF_SECTION_SYM
)
6448 if (flags
& BSF_GLOBAL
)
6449 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6451 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6453 else if (bfd_is_com_section (syms
[idx
]->section
))
6454 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6455 else if (bfd_is_und_section (syms
[idx
]->section
))
6456 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6460 else if (flags
& BSF_FILE
)
6461 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6464 int bind
= STB_LOCAL
;
6466 if (flags
& BSF_LOCAL
)
6468 else if (flags
& BSF_WEAK
)
6470 else if (flags
& BSF_GLOBAL
)
6473 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6476 if (type_ptr
!= NULL
)
6477 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6481 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6482 outbound_syms
+= bed
->s
->sizeof_sym
;
6483 if (outbound_shndx
!= NULL
)
6484 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6488 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6489 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6491 symstrtab_hdr
->sh_flags
= 0;
6492 symstrtab_hdr
->sh_addr
= 0;
6493 symstrtab_hdr
->sh_entsize
= 0;
6494 symstrtab_hdr
->sh_link
= 0;
6495 symstrtab_hdr
->sh_info
= 0;
6496 symstrtab_hdr
->sh_addralign
= 1;
6501 /* Return the number of bytes required to hold the symtab vector.
6503 Note that we base it on the count plus 1, since we will null terminate
6504 the vector allocated based on this size. However, the ELF symbol table
6505 always has a dummy entry as symbol #0, so it ends up even. */
6508 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6512 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6514 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6515 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6517 symtab_size
-= sizeof (asymbol
*);
6523 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6527 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6529 if (elf_dynsymtab (abfd
) == 0)
6531 bfd_set_error (bfd_error_invalid_operation
);
6535 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6536 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6538 symtab_size
-= sizeof (asymbol
*);
6544 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6547 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6550 /* Canonicalize the relocs. */
6553 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6560 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6562 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6565 tblptr
= section
->relocation
;
6566 for (i
= 0; i
< section
->reloc_count
; i
++)
6567 *relptr
++ = tblptr
++;
6571 return section
->reloc_count
;
6575 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6577 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6578 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6581 bfd_get_symcount (abfd
) = symcount
;
6586 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6587 asymbol
**allocation
)
6589 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6590 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6593 bfd_get_dynamic_symcount (abfd
) = symcount
;
6597 /* Return the size required for the dynamic reloc entries. Any loadable
6598 section that was actually installed in the BFD, and has type SHT_REL
6599 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6600 dynamic reloc section. */
6603 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6608 if (elf_dynsymtab (abfd
) == 0)
6610 bfd_set_error (bfd_error_invalid_operation
);
6614 ret
= sizeof (arelent
*);
6615 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6616 if ((s
->flags
& SEC_LOAD
) != 0
6617 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6618 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6619 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6620 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6621 * sizeof (arelent
*));
6626 /* Canonicalize the dynamic relocation entries. Note that we return the
6627 dynamic relocations as a single block, although they are actually
6628 associated with particular sections; the interface, which was
6629 designed for SunOS style shared libraries, expects that there is only
6630 one set of dynamic relocs. Any loadable section that was actually
6631 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6632 dynamic symbol table, is considered to be a dynamic reloc section. */
6635 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6639 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6643 if (elf_dynsymtab (abfd
) == 0)
6645 bfd_set_error (bfd_error_invalid_operation
);
6649 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6651 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6653 if ((s
->flags
& SEC_LOAD
) != 0
6654 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6655 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6656 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6661 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6663 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6665 for (i
= 0; i
< count
; i
++)
6676 /* Read in the version information. */
6679 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6681 bfd_byte
*contents
= NULL
;
6682 unsigned int freeidx
= 0;
6684 if (elf_dynverref (abfd
) != 0)
6686 Elf_Internal_Shdr
*hdr
;
6687 Elf_External_Verneed
*everneed
;
6688 Elf_Internal_Verneed
*iverneed
;
6690 bfd_byte
*contents_end
;
6692 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6694 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6695 sizeof (Elf_Internal_Verneed
));
6696 if (elf_tdata (abfd
)->verref
== NULL
)
6699 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6701 contents
= bfd_malloc (hdr
->sh_size
);
6702 if (contents
== NULL
)
6704 error_return_verref
:
6705 elf_tdata (abfd
)->verref
= NULL
;
6706 elf_tdata (abfd
)->cverrefs
= 0;
6709 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6710 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6711 goto error_return_verref
;
6713 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6714 goto error_return_verref
;
6716 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6717 == sizeof (Elf_External_Vernaux
));
6718 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6719 everneed
= (Elf_External_Verneed
*) contents
;
6720 iverneed
= elf_tdata (abfd
)->verref
;
6721 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6723 Elf_External_Vernaux
*evernaux
;
6724 Elf_Internal_Vernaux
*ivernaux
;
6727 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6729 iverneed
->vn_bfd
= abfd
;
6731 iverneed
->vn_filename
=
6732 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6734 if (iverneed
->vn_filename
== NULL
)
6735 goto error_return_verref
;
6737 if (iverneed
->vn_cnt
== 0)
6738 iverneed
->vn_auxptr
= NULL
;
6741 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6742 sizeof (Elf_Internal_Vernaux
));
6743 if (iverneed
->vn_auxptr
== NULL
)
6744 goto error_return_verref
;
6747 if (iverneed
->vn_aux
6748 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6749 goto error_return_verref
;
6751 evernaux
= ((Elf_External_Vernaux
*)
6752 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6753 ivernaux
= iverneed
->vn_auxptr
;
6754 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6756 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6758 ivernaux
->vna_nodename
=
6759 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6760 ivernaux
->vna_name
);
6761 if (ivernaux
->vna_nodename
== NULL
)
6762 goto error_return_verref
;
6764 if (j
+ 1 < iverneed
->vn_cnt
)
6765 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6767 ivernaux
->vna_nextptr
= NULL
;
6769 if (ivernaux
->vna_next
6770 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6771 goto error_return_verref
;
6773 evernaux
= ((Elf_External_Vernaux
*)
6774 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6776 if (ivernaux
->vna_other
> freeidx
)
6777 freeidx
= ivernaux
->vna_other
;
6780 if (i
+ 1 < hdr
->sh_info
)
6781 iverneed
->vn_nextref
= iverneed
+ 1;
6783 iverneed
->vn_nextref
= NULL
;
6785 if (iverneed
->vn_next
6786 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6787 goto error_return_verref
;
6789 everneed
= ((Elf_External_Verneed
*)
6790 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6797 if (elf_dynverdef (abfd
) != 0)
6799 Elf_Internal_Shdr
*hdr
;
6800 Elf_External_Verdef
*everdef
;
6801 Elf_Internal_Verdef
*iverdef
;
6802 Elf_Internal_Verdef
*iverdefarr
;
6803 Elf_Internal_Verdef iverdefmem
;
6805 unsigned int maxidx
;
6806 bfd_byte
*contents_end_def
, *contents_end_aux
;
6808 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6810 contents
= bfd_malloc (hdr
->sh_size
);
6811 if (contents
== NULL
)
6813 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6814 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6817 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6820 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6821 >= sizeof (Elf_External_Verdaux
));
6822 contents_end_def
= contents
+ hdr
->sh_size
6823 - sizeof (Elf_External_Verdef
);
6824 contents_end_aux
= contents
+ hdr
->sh_size
6825 - sizeof (Elf_External_Verdaux
);
6827 /* We know the number of entries in the section but not the maximum
6828 index. Therefore we have to run through all entries and find
6830 everdef
= (Elf_External_Verdef
*) contents
;
6832 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6834 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6836 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6837 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6839 if (iverdefmem
.vd_next
6840 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6843 everdef
= ((Elf_External_Verdef
*)
6844 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6847 if (default_imported_symver
)
6849 if (freeidx
> maxidx
)
6854 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6855 sizeof (Elf_Internal_Verdef
));
6856 if (elf_tdata (abfd
)->verdef
== NULL
)
6859 elf_tdata (abfd
)->cverdefs
= maxidx
;
6861 everdef
= (Elf_External_Verdef
*) contents
;
6862 iverdefarr
= elf_tdata (abfd
)->verdef
;
6863 for (i
= 0; i
< hdr
->sh_info
; i
++)
6865 Elf_External_Verdaux
*everdaux
;
6866 Elf_Internal_Verdaux
*iverdaux
;
6869 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6871 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6873 error_return_verdef
:
6874 elf_tdata (abfd
)->verdef
= NULL
;
6875 elf_tdata (abfd
)->cverdefs
= 0;
6879 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6880 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6882 iverdef
->vd_bfd
= abfd
;
6884 if (iverdef
->vd_cnt
== 0)
6885 iverdef
->vd_auxptr
= NULL
;
6888 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6889 sizeof (Elf_Internal_Verdaux
));
6890 if (iverdef
->vd_auxptr
== NULL
)
6891 goto error_return_verdef
;
6895 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6896 goto error_return_verdef
;
6898 everdaux
= ((Elf_External_Verdaux
*)
6899 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6900 iverdaux
= iverdef
->vd_auxptr
;
6901 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6903 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6905 iverdaux
->vda_nodename
=
6906 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6907 iverdaux
->vda_name
);
6908 if (iverdaux
->vda_nodename
== NULL
)
6909 goto error_return_verdef
;
6911 if (j
+ 1 < iverdef
->vd_cnt
)
6912 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6914 iverdaux
->vda_nextptr
= NULL
;
6916 if (iverdaux
->vda_next
6917 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6918 goto error_return_verdef
;
6920 everdaux
= ((Elf_External_Verdaux
*)
6921 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6924 if (iverdef
->vd_cnt
)
6925 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6927 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6928 iverdef
->vd_nextdef
= iverdef
+ 1;
6930 iverdef
->vd_nextdef
= NULL
;
6932 everdef
= ((Elf_External_Verdef
*)
6933 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6939 else if (default_imported_symver
)
6946 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6947 sizeof (Elf_Internal_Verdef
));
6948 if (elf_tdata (abfd
)->verdef
== NULL
)
6951 elf_tdata (abfd
)->cverdefs
= freeidx
;
6954 /* Create a default version based on the soname. */
6955 if (default_imported_symver
)
6957 Elf_Internal_Verdef
*iverdef
;
6958 Elf_Internal_Verdaux
*iverdaux
;
6960 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6962 iverdef
->vd_version
= VER_DEF_CURRENT
;
6963 iverdef
->vd_flags
= 0;
6964 iverdef
->vd_ndx
= freeidx
;
6965 iverdef
->vd_cnt
= 1;
6967 iverdef
->vd_bfd
= abfd
;
6969 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6970 if (iverdef
->vd_nodename
== NULL
)
6971 goto error_return_verdef
;
6972 iverdef
->vd_nextdef
= NULL
;
6973 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6974 if (iverdef
->vd_auxptr
== NULL
)
6975 goto error_return_verdef
;
6977 iverdaux
= iverdef
->vd_auxptr
;
6978 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6979 iverdaux
->vda_nextptr
= NULL
;
6985 if (contents
!= NULL
)
6991 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6993 elf_symbol_type
*newsym
;
6994 bfd_size_type amt
= sizeof (elf_symbol_type
);
6996 newsym
= bfd_zalloc (abfd
, amt
);
7001 newsym
->symbol
.the_bfd
= abfd
;
7002 return &newsym
->symbol
;
7007 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7011 bfd_symbol_info (symbol
, ret
);
7014 /* Return whether a symbol name implies a local symbol. Most targets
7015 use this function for the is_local_label_name entry point, but some
7019 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7022 /* Normal local symbols start with ``.L''. */
7023 if (name
[0] == '.' && name
[1] == 'L')
7026 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7027 DWARF debugging symbols starting with ``..''. */
7028 if (name
[0] == '.' && name
[1] == '.')
7031 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7032 emitting DWARF debugging output. I suspect this is actually a
7033 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7034 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7035 underscore to be emitted on some ELF targets). For ease of use,
7036 we treat such symbols as local. */
7037 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7044 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7045 asymbol
*symbol ATTRIBUTE_UNUSED
)
7052 _bfd_elf_set_arch_mach (bfd
*abfd
,
7053 enum bfd_architecture arch
,
7054 unsigned long machine
)
7056 /* If this isn't the right architecture for this backend, and this
7057 isn't the generic backend, fail. */
7058 if (arch
!= get_elf_backend_data (abfd
)->arch
7059 && arch
!= bfd_arch_unknown
7060 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7063 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7066 /* Find the function to a particular section and offset,
7067 for error reporting. */
7070 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7074 const char **filename_ptr
,
7075 const char **functionname_ptr
)
7077 const char *filename
;
7078 asymbol
*func
, *file
;
7081 /* ??? Given multiple file symbols, it is impossible to reliably
7082 choose the right file name for global symbols. File symbols are
7083 local symbols, and thus all file symbols must sort before any
7084 global symbols. The ELF spec may be interpreted to say that a
7085 file symbol must sort before other local symbols, but currently
7086 ld -r doesn't do this. So, for ld -r output, it is possible to
7087 make a better choice of file name for local symbols by ignoring
7088 file symbols appearing after a given local symbol. */
7089 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7095 state
= nothing_seen
;
7097 for (p
= symbols
; *p
!= NULL
; p
++)
7101 q
= (elf_symbol_type
*) *p
;
7103 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7109 if (state
== symbol_seen
)
7110 state
= file_after_symbol_seen
;
7114 if (bfd_get_section (&q
->symbol
) == section
7115 && q
->symbol
.value
>= low_func
7116 && q
->symbol
.value
<= offset
)
7118 func
= (asymbol
*) q
;
7119 low_func
= q
->symbol
.value
;
7122 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7123 || state
!= file_after_symbol_seen
))
7124 filename
= bfd_asymbol_name (file
);
7128 if (state
== nothing_seen
)
7129 state
= symbol_seen
;
7136 *filename_ptr
= filename
;
7137 if (functionname_ptr
)
7138 *functionname_ptr
= bfd_asymbol_name (func
);
7143 /* Find the nearest line to a particular section and offset,
7144 for error reporting. */
7147 _bfd_elf_find_nearest_line (bfd
*abfd
,
7151 const char **filename_ptr
,
7152 const char **functionname_ptr
,
7153 unsigned int *line_ptr
)
7157 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7158 filename_ptr
, functionname_ptr
,
7161 if (!*functionname_ptr
)
7162 elf_find_function (abfd
, section
, symbols
, offset
,
7163 *filename_ptr
? NULL
: filename_ptr
,
7169 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7170 filename_ptr
, functionname_ptr
,
7172 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7174 if (!*functionname_ptr
)
7175 elf_find_function (abfd
, section
, symbols
, offset
,
7176 *filename_ptr
? NULL
: filename_ptr
,
7182 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7183 &found
, filename_ptr
,
7184 functionname_ptr
, line_ptr
,
7185 &elf_tdata (abfd
)->line_info
))
7187 if (found
&& (*functionname_ptr
|| *line_ptr
))
7190 if (symbols
== NULL
)
7193 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7194 filename_ptr
, functionname_ptr
))
7201 /* Find the line for a symbol. */
7204 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7205 const char **filename_ptr
, unsigned int *line_ptr
)
7207 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7208 filename_ptr
, line_ptr
, 0,
7209 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7212 /* After a call to bfd_find_nearest_line, successive calls to
7213 bfd_find_inliner_info can be used to get source information about
7214 each level of function inlining that terminated at the address
7215 passed to bfd_find_nearest_line. Currently this is only supported
7216 for DWARF2 with appropriate DWARF3 extensions. */
7219 _bfd_elf_find_inliner_info (bfd
*abfd
,
7220 const char **filename_ptr
,
7221 const char **functionname_ptr
,
7222 unsigned int *line_ptr
)
7225 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7226 functionname_ptr
, line_ptr
,
7227 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7232 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7234 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7235 int ret
= bed
->s
->sizeof_ehdr
;
7237 if (!info
->relocatable
)
7239 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7241 if (phdr_size
== (bfd_size_type
) -1)
7243 struct elf_segment_map
*m
;
7246 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7247 phdr_size
+= bed
->s
->sizeof_phdr
;
7250 phdr_size
= get_program_header_size (abfd
, info
);
7253 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7261 _bfd_elf_set_section_contents (bfd
*abfd
,
7263 const void *location
,
7265 bfd_size_type count
)
7267 Elf_Internal_Shdr
*hdr
;
7270 if (! abfd
->output_has_begun
7271 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7274 hdr
= &elf_section_data (section
)->this_hdr
;
7275 pos
= hdr
->sh_offset
+ offset
;
7276 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7277 || bfd_bwrite (location
, count
, abfd
) != count
)
7284 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7285 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7286 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7291 /* Try to convert a non-ELF reloc into an ELF one. */
7294 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7296 /* Check whether we really have an ELF howto. */
7298 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7300 bfd_reloc_code_real_type code
;
7301 reloc_howto_type
*howto
;
7303 /* Alien reloc: Try to determine its type to replace it with an
7304 equivalent ELF reloc. */
7306 if (areloc
->howto
->pc_relative
)
7308 switch (areloc
->howto
->bitsize
)
7311 code
= BFD_RELOC_8_PCREL
;
7314 code
= BFD_RELOC_12_PCREL
;
7317 code
= BFD_RELOC_16_PCREL
;
7320 code
= BFD_RELOC_24_PCREL
;
7323 code
= BFD_RELOC_32_PCREL
;
7326 code
= BFD_RELOC_64_PCREL
;
7332 howto
= bfd_reloc_type_lookup (abfd
, code
);
7334 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7336 if (howto
->pcrel_offset
)
7337 areloc
->addend
+= areloc
->address
;
7339 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7344 switch (areloc
->howto
->bitsize
)
7350 code
= BFD_RELOC_14
;
7353 code
= BFD_RELOC_16
;
7356 code
= BFD_RELOC_26
;
7359 code
= BFD_RELOC_32
;
7362 code
= BFD_RELOC_64
;
7368 howto
= bfd_reloc_type_lookup (abfd
, code
);
7372 areloc
->howto
= howto
;
7380 (*_bfd_error_handler
)
7381 (_("%B: unsupported relocation type %s"),
7382 abfd
, areloc
->howto
->name
);
7383 bfd_set_error (bfd_error_bad_value
);
7388 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7390 if (bfd_get_format (abfd
) == bfd_object
)
7392 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7393 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7394 _bfd_dwarf2_cleanup_debug_info (abfd
);
7397 return _bfd_generic_close_and_cleanup (abfd
);
7400 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7401 in the relocation's offset. Thus we cannot allow any sort of sanity
7402 range-checking to interfere. There is nothing else to do in processing
7405 bfd_reloc_status_type
7406 _bfd_elf_rel_vtable_reloc_fn
7407 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7408 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7409 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7410 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7412 return bfd_reloc_ok
;
7415 /* Elf core file support. Much of this only works on native
7416 toolchains, since we rely on knowing the
7417 machine-dependent procfs structure in order to pick
7418 out details about the corefile. */
7420 #ifdef HAVE_SYS_PROCFS_H
7421 # include <sys/procfs.h>
7424 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7427 elfcore_make_pid (bfd
*abfd
)
7429 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7430 + (elf_tdata (abfd
)->core_pid
));
7433 /* If there isn't a section called NAME, make one, using
7434 data from SECT. Note, this function will generate a
7435 reference to NAME, so you shouldn't deallocate or
7439 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7443 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7446 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7450 sect2
->size
= sect
->size
;
7451 sect2
->filepos
= sect
->filepos
;
7452 sect2
->alignment_power
= sect
->alignment_power
;
7456 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7457 actually creates up to two pseudosections:
7458 - For the single-threaded case, a section named NAME, unless
7459 such a section already exists.
7460 - For the multi-threaded case, a section named "NAME/PID", where
7461 PID is elfcore_make_pid (abfd).
7462 Both pseudosections have identical contents. */
7464 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7470 char *threaded_name
;
7474 /* Build the section name. */
7476 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7477 len
= strlen (buf
) + 1;
7478 threaded_name
= bfd_alloc (abfd
, len
);
7479 if (threaded_name
== NULL
)
7481 memcpy (threaded_name
, buf
, len
);
7483 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7488 sect
->filepos
= filepos
;
7489 sect
->alignment_power
= 2;
7491 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7494 /* prstatus_t exists on:
7496 linux 2.[01] + glibc
7500 #if defined (HAVE_PRSTATUS_T)
7503 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7508 if (note
->descsz
== sizeof (prstatus_t
))
7512 size
= sizeof (prstat
.pr_reg
);
7513 offset
= offsetof (prstatus_t
, pr_reg
);
7514 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7516 /* Do not overwrite the core signal if it
7517 has already been set by another thread. */
7518 if (elf_tdata (abfd
)->core_signal
== 0)
7519 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7520 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7522 /* pr_who exists on:
7525 pr_who doesn't exist on:
7528 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7529 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7532 #if defined (HAVE_PRSTATUS32_T)
7533 else if (note
->descsz
== sizeof (prstatus32_t
))
7535 /* 64-bit host, 32-bit corefile */
7536 prstatus32_t prstat
;
7538 size
= sizeof (prstat
.pr_reg
);
7539 offset
= offsetof (prstatus32_t
, pr_reg
);
7540 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7542 /* Do not overwrite the core signal if it
7543 has already been set by another thread. */
7544 if (elf_tdata (abfd
)->core_signal
== 0)
7545 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7546 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7548 /* pr_who exists on:
7551 pr_who doesn't exist on:
7554 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7555 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7558 #endif /* HAVE_PRSTATUS32_T */
7561 /* Fail - we don't know how to handle any other
7562 note size (ie. data object type). */
7566 /* Make a ".reg/999" section and a ".reg" section. */
7567 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7568 size
, note
->descpos
+ offset
);
7570 #endif /* defined (HAVE_PRSTATUS_T) */
7572 /* Create a pseudosection containing the exact contents of NOTE. */
7574 elfcore_make_note_pseudosection (bfd
*abfd
,
7576 Elf_Internal_Note
*note
)
7578 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7579 note
->descsz
, note
->descpos
);
7582 /* There isn't a consistent prfpregset_t across platforms,
7583 but it doesn't matter, because we don't have to pick this
7584 data structure apart. */
7587 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7589 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7592 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7593 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7597 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7599 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7602 #if defined (HAVE_PRPSINFO_T)
7603 typedef prpsinfo_t elfcore_psinfo_t
;
7604 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7605 typedef prpsinfo32_t elfcore_psinfo32_t
;
7609 #if defined (HAVE_PSINFO_T)
7610 typedef psinfo_t elfcore_psinfo_t
;
7611 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7612 typedef psinfo32_t elfcore_psinfo32_t
;
7616 /* return a malloc'ed copy of a string at START which is at
7617 most MAX bytes long, possibly without a terminating '\0'.
7618 the copy will always have a terminating '\0'. */
7621 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7624 char *end
= memchr (start
, '\0', max
);
7632 dups
= bfd_alloc (abfd
, len
+ 1);
7636 memcpy (dups
, start
, len
);
7642 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7644 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7646 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7648 elfcore_psinfo_t psinfo
;
7650 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7652 elf_tdata (abfd
)->core_program
7653 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7654 sizeof (psinfo
.pr_fname
));
7656 elf_tdata (abfd
)->core_command
7657 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7658 sizeof (psinfo
.pr_psargs
));
7660 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7661 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7663 /* 64-bit host, 32-bit corefile */
7664 elfcore_psinfo32_t psinfo
;
7666 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7668 elf_tdata (abfd
)->core_program
7669 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7670 sizeof (psinfo
.pr_fname
));
7672 elf_tdata (abfd
)->core_command
7673 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7674 sizeof (psinfo
.pr_psargs
));
7680 /* Fail - we don't know how to handle any other
7681 note size (ie. data object type). */
7685 /* Note that for some reason, a spurious space is tacked
7686 onto the end of the args in some (at least one anyway)
7687 implementations, so strip it off if it exists. */
7690 char *command
= elf_tdata (abfd
)->core_command
;
7691 int n
= strlen (command
);
7693 if (0 < n
&& command
[n
- 1] == ' ')
7694 command
[n
- 1] = '\0';
7699 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7701 #if defined (HAVE_PSTATUS_T)
7703 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7705 if (note
->descsz
== sizeof (pstatus_t
)
7706 #if defined (HAVE_PXSTATUS_T)
7707 || note
->descsz
== sizeof (pxstatus_t
)
7713 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7715 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7717 #if defined (HAVE_PSTATUS32_T)
7718 else if (note
->descsz
== sizeof (pstatus32_t
))
7720 /* 64-bit host, 32-bit corefile */
7723 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7725 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7728 /* Could grab some more details from the "representative"
7729 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7730 NT_LWPSTATUS note, presumably. */
7734 #endif /* defined (HAVE_PSTATUS_T) */
7736 #if defined (HAVE_LWPSTATUS_T)
7738 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7740 lwpstatus_t lwpstat
;
7746 if (note
->descsz
!= sizeof (lwpstat
)
7747 #if defined (HAVE_LWPXSTATUS_T)
7748 && note
->descsz
!= sizeof (lwpxstatus_t
)
7753 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7755 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7756 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7758 /* Make a ".reg/999" section. */
7760 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7761 len
= strlen (buf
) + 1;
7762 name
= bfd_alloc (abfd
, len
);
7765 memcpy (name
, buf
, len
);
7767 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7771 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7772 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7773 sect
->filepos
= note
->descpos
7774 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7777 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7778 sect
->size
= sizeof (lwpstat
.pr_reg
);
7779 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7782 sect
->alignment_power
= 2;
7784 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7787 /* Make a ".reg2/999" section */
7789 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7790 len
= strlen (buf
) + 1;
7791 name
= bfd_alloc (abfd
, len
);
7794 memcpy (name
, buf
, len
);
7796 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7800 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7801 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7802 sect
->filepos
= note
->descpos
7803 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7806 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7807 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7808 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7811 sect
->alignment_power
= 2;
7813 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7815 #endif /* defined (HAVE_LWPSTATUS_T) */
7817 #if defined (HAVE_WIN32_PSTATUS_T)
7819 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7825 win32_pstatus_t pstatus
;
7827 if (note
->descsz
< sizeof (pstatus
))
7830 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7832 switch (pstatus
.data_type
)
7834 case NOTE_INFO_PROCESS
:
7835 /* FIXME: need to add ->core_command. */
7836 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7837 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7840 case NOTE_INFO_THREAD
:
7841 /* Make a ".reg/999" section. */
7842 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7844 len
= strlen (buf
) + 1;
7845 name
= bfd_alloc (abfd
, len
);
7849 memcpy (name
, buf
, len
);
7851 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7855 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7856 sect
->filepos
= (note
->descpos
7857 + offsetof (struct win32_pstatus
,
7858 data
.thread_info
.thread_context
));
7859 sect
->alignment_power
= 2;
7861 if (pstatus
.data
.thread_info
.is_active_thread
)
7862 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7866 case NOTE_INFO_MODULE
:
7867 /* Make a ".module/xxxxxxxx" section. */
7868 sprintf (buf
, ".module/%08lx",
7869 (long) pstatus
.data
.module_info
.base_address
);
7871 len
= strlen (buf
) + 1;
7872 name
= bfd_alloc (abfd
, len
);
7876 memcpy (name
, buf
, len
);
7878 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7883 sect
->size
= note
->descsz
;
7884 sect
->filepos
= note
->descpos
;
7885 sect
->alignment_power
= 2;
7894 #endif /* HAVE_WIN32_PSTATUS_T */
7897 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7899 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7907 if (bed
->elf_backend_grok_prstatus
)
7908 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7910 #if defined (HAVE_PRSTATUS_T)
7911 return elfcore_grok_prstatus (abfd
, note
);
7916 #if defined (HAVE_PSTATUS_T)
7918 return elfcore_grok_pstatus (abfd
, note
);
7921 #if defined (HAVE_LWPSTATUS_T)
7923 return elfcore_grok_lwpstatus (abfd
, note
);
7926 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7927 return elfcore_grok_prfpreg (abfd
, note
);
7929 #if defined (HAVE_WIN32_PSTATUS_T)
7930 case NT_WIN32PSTATUS
:
7931 return elfcore_grok_win32pstatus (abfd
, note
);
7934 case NT_PRXFPREG
: /* Linux SSE extension */
7935 if (note
->namesz
== 6
7936 && strcmp (note
->namedata
, "LINUX") == 0)
7937 return elfcore_grok_prxfpreg (abfd
, note
);
7943 if (bed
->elf_backend_grok_psinfo
)
7944 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7946 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7947 return elfcore_grok_psinfo (abfd
, note
);
7954 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7959 sect
->size
= note
->descsz
;
7960 sect
->filepos
= note
->descpos
;
7961 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7969 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7973 cp
= strchr (note
->namedata
, '@');
7976 *lwpidp
= atoi(cp
+ 1);
7983 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7986 /* Signal number at offset 0x08. */
7987 elf_tdata (abfd
)->core_signal
7988 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7990 /* Process ID at offset 0x50. */
7991 elf_tdata (abfd
)->core_pid
7992 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7994 /* Command name at 0x7c (max 32 bytes, including nul). */
7995 elf_tdata (abfd
)->core_command
7996 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7998 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8003 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8007 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8008 elf_tdata (abfd
)->core_lwpid
= lwp
;
8010 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8012 /* NetBSD-specific core "procinfo". Note that we expect to
8013 find this note before any of the others, which is fine,
8014 since the kernel writes this note out first when it
8015 creates a core file. */
8017 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8020 /* As of Jan 2002 there are no other machine-independent notes
8021 defined for NetBSD core files. If the note type is less
8022 than the start of the machine-dependent note types, we don't
8025 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8029 switch (bfd_get_arch (abfd
))
8031 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8032 PT_GETFPREGS == mach+2. */
8034 case bfd_arch_alpha
:
8035 case bfd_arch_sparc
:
8038 case NT_NETBSDCORE_FIRSTMACH
+0:
8039 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8041 case NT_NETBSDCORE_FIRSTMACH
+2:
8042 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8048 /* On all other arch's, PT_GETREGS == mach+1 and
8049 PT_GETFPREGS == mach+3. */
8054 case NT_NETBSDCORE_FIRSTMACH
+1:
8055 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8057 case NT_NETBSDCORE_FIRSTMACH
+3:
8058 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8068 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8070 void *ddata
= note
->descdata
;
8077 /* nto_procfs_status 'pid' field is at offset 0. */
8078 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8080 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8081 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8083 /* nto_procfs_status 'flags' field is at offset 8. */
8084 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8086 /* nto_procfs_status 'what' field is at offset 14. */
8087 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8089 elf_tdata (abfd
)->core_signal
= sig
;
8090 elf_tdata (abfd
)->core_lwpid
= *tid
;
8093 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8094 do not come from signals so we make sure we set the current
8095 thread just in case. */
8096 if (flags
& 0x00000080)
8097 elf_tdata (abfd
)->core_lwpid
= *tid
;
8099 /* Make a ".qnx_core_status/%d" section. */
8100 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8102 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8107 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8111 sect
->size
= note
->descsz
;
8112 sect
->filepos
= note
->descpos
;
8113 sect
->alignment_power
= 2;
8115 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8119 elfcore_grok_nto_regs (bfd
*abfd
,
8120 Elf_Internal_Note
*note
,
8128 /* Make a "(base)/%d" section. */
8129 sprintf (buf
, "%s/%ld", base
, tid
);
8131 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8136 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8140 sect
->size
= note
->descsz
;
8141 sect
->filepos
= note
->descpos
;
8142 sect
->alignment_power
= 2;
8144 /* This is the current thread. */
8145 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8146 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8151 #define BFD_QNT_CORE_INFO 7
8152 #define BFD_QNT_CORE_STATUS 8
8153 #define BFD_QNT_CORE_GREG 9
8154 #define BFD_QNT_CORE_FPREG 10
8157 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8159 /* Every GREG section has a STATUS section before it. Store the
8160 tid from the previous call to pass down to the next gregs
8162 static long tid
= 1;
8166 case BFD_QNT_CORE_INFO
:
8167 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8168 case BFD_QNT_CORE_STATUS
:
8169 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8170 case BFD_QNT_CORE_GREG
:
8171 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8172 case BFD_QNT_CORE_FPREG
:
8173 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8179 /* Function: elfcore_write_note
8182 buffer to hold note, and current size of buffer
8186 size of data for note
8188 Writes note to end of buffer. ELF64 notes are written exactly as
8189 for ELF32, despite the current (as of 2006) ELF gabi specifying
8190 that they ought to have 8-byte namesz and descsz field, and have
8191 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8194 Pointer to realloc'd buffer, *BUFSIZ updated. */
8197 elfcore_write_note (bfd
*abfd
,
8205 Elf_External_Note
*xnp
;
8212 namesz
= strlen (name
) + 1;
8214 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8216 buf
= realloc (buf
, *bufsiz
+ newspace
);
8217 dest
= buf
+ *bufsiz
;
8218 *bufsiz
+= newspace
;
8219 xnp
= (Elf_External_Note
*) dest
;
8220 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8221 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8222 H_PUT_32 (abfd
, type
, xnp
->type
);
8226 memcpy (dest
, name
, namesz
);
8234 memcpy (dest
, input
, size
);
8244 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8246 elfcore_write_prpsinfo (bfd
*abfd
,
8252 const char *note_name
= "CORE";
8253 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8255 if (bed
->elf_backend_write_core_note
!= NULL
)
8258 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8259 NT_PRPSINFO
, fname
, psargs
);
8264 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8265 if (bed
->s
->elfclass
== ELFCLASS32
)
8267 #if defined (HAVE_PSINFO32_T)
8269 int note_type
= NT_PSINFO
;
8272 int note_type
= NT_PRPSINFO
;
8275 memset (&data
, 0, sizeof (data
));
8276 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8277 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8278 return elfcore_write_note (abfd
, buf
, bufsiz
,
8279 note_name
, note_type
, &data
, sizeof (data
));
8284 #if defined (HAVE_PSINFO_T)
8286 int note_type
= NT_PSINFO
;
8289 int note_type
= NT_PRPSINFO
;
8292 memset (&data
, 0, sizeof (data
));
8293 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8294 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8295 return elfcore_write_note (abfd
, buf
, bufsiz
,
8296 note_name
, note_type
, &data
, sizeof (data
));
8299 #endif /* PSINFO_T or PRPSINFO_T */
8301 #if defined (HAVE_PRSTATUS_T)
8303 elfcore_write_prstatus (bfd
*abfd
,
8310 const char *note_name
= "CORE";
8311 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8313 if (bed
->elf_backend_write_core_note
!= NULL
)
8316 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8318 pid
, cursig
, gregs
);
8323 #if defined (HAVE_PRSTATUS32_T)
8324 if (bed
->s
->elfclass
== ELFCLASS32
)
8326 prstatus32_t prstat
;
8328 memset (&prstat
, 0, sizeof (prstat
));
8329 prstat
.pr_pid
= pid
;
8330 prstat
.pr_cursig
= cursig
;
8331 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8332 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8333 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8340 memset (&prstat
, 0, sizeof (prstat
));
8341 prstat
.pr_pid
= pid
;
8342 prstat
.pr_cursig
= cursig
;
8343 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8344 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8345 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8348 #endif /* HAVE_PRSTATUS_T */
8350 #if defined (HAVE_LWPSTATUS_T)
8352 elfcore_write_lwpstatus (bfd
*abfd
,
8359 lwpstatus_t lwpstat
;
8360 const char *note_name
= "CORE";
8362 memset (&lwpstat
, 0, sizeof (lwpstat
));
8363 lwpstat
.pr_lwpid
= pid
>> 16;
8364 lwpstat
.pr_cursig
= cursig
;
8365 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8366 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8367 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8369 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8370 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8372 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8373 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8376 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8377 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8379 #endif /* HAVE_LWPSTATUS_T */
8381 #if defined (HAVE_PSTATUS_T)
8383 elfcore_write_pstatus (bfd
*abfd
,
8387 int cursig ATTRIBUTE_UNUSED
,
8388 const void *gregs ATTRIBUTE_UNUSED
)
8390 const char *note_name
= "CORE";
8391 #if defined (HAVE_PSTATUS32_T)
8392 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8394 if (bed
->s
->elfclass
== ELFCLASS32
)
8398 memset (&pstat
, 0, sizeof (pstat
));
8399 pstat
.pr_pid
= pid
& 0xffff;
8400 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8401 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8409 memset (&pstat
, 0, sizeof (pstat
));
8410 pstat
.pr_pid
= pid
& 0xffff;
8411 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8412 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8416 #endif /* HAVE_PSTATUS_T */
8419 elfcore_write_prfpreg (bfd
*abfd
,
8425 const char *note_name
= "CORE";
8426 return elfcore_write_note (abfd
, buf
, bufsiz
,
8427 note_name
, NT_FPREGSET
, fpregs
, size
);
8431 elfcore_write_prxfpreg (bfd
*abfd
,
8434 const void *xfpregs
,
8437 char *note_name
= "LINUX";
8438 return elfcore_write_note (abfd
, buf
, bufsiz
,
8439 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8443 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8451 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8454 buf
= bfd_malloc (size
);
8458 if (bfd_bread (buf
, size
, abfd
) != size
)
8466 while (p
< buf
+ size
)
8468 /* FIXME: bad alignment assumption. */
8469 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8470 Elf_Internal_Note in
;
8472 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8474 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8475 in
.namedata
= xnp
->name
;
8477 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8478 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8479 in
.descpos
= offset
+ (in
.descdata
- buf
);
8481 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8483 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8486 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8488 if (! elfcore_grok_nto_note (abfd
, &in
))
8493 if (! elfcore_grok_note (abfd
, &in
))
8497 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8504 /* Providing external access to the ELF program header table. */
8506 /* Return an upper bound on the number of bytes required to store a
8507 copy of ABFD's program header table entries. Return -1 if an error
8508 occurs; bfd_get_error will return an appropriate code. */
8511 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8513 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8515 bfd_set_error (bfd_error_wrong_format
);
8519 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8522 /* Copy ABFD's program header table entries to *PHDRS. The entries
8523 will be stored as an array of Elf_Internal_Phdr structures, as
8524 defined in include/elf/internal.h. To find out how large the
8525 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8527 Return the number of program header table entries read, or -1 if an
8528 error occurs; bfd_get_error will return an appropriate code. */
8531 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8535 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8537 bfd_set_error (bfd_error_wrong_format
);
8541 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8542 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8543 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8549 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8552 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8554 i_ehdrp
= elf_elfheader (abfd
);
8555 if (i_ehdrp
== NULL
)
8556 sprintf_vma (buf
, value
);
8559 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8561 #if BFD_HOST_64BIT_LONG
8562 sprintf (buf
, "%016lx", value
);
8564 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8565 _bfd_int64_low (value
));
8569 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8572 sprintf_vma (buf
, value
);
8577 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8580 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8582 i_ehdrp
= elf_elfheader (abfd
);
8583 if (i_ehdrp
== NULL
)
8584 fprintf_vma ((FILE *) stream
, value
);
8587 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8589 #if BFD_HOST_64BIT_LONG
8590 fprintf ((FILE *) stream
, "%016lx", value
);
8592 fprintf ((FILE *) stream
, "%08lx%08lx",
8593 _bfd_int64_high (value
), _bfd_int64_low (value
));
8597 fprintf ((FILE *) stream
, "%08lx",
8598 (unsigned long) (value
& 0xffffffff));
8601 fprintf_vma ((FILE *) stream
, value
);
8605 enum elf_reloc_type_class
8606 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8608 return reloc_class_normal
;
8611 /* For RELA architectures, return the relocation value for a
8612 relocation against a local symbol. */
8615 _bfd_elf_rela_local_sym (bfd
*abfd
,
8616 Elf_Internal_Sym
*sym
,
8618 Elf_Internal_Rela
*rel
)
8620 asection
*sec
= *psec
;
8623 relocation
= (sec
->output_section
->vma
8624 + sec
->output_offset
8626 if ((sec
->flags
& SEC_MERGE
)
8627 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8628 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8631 _bfd_merged_section_offset (abfd
, psec
,
8632 elf_section_data (sec
)->sec_info
,
8633 sym
->st_value
+ rel
->r_addend
);
8636 /* If we have changed the section, and our original section is
8637 marked with SEC_EXCLUDE, it means that the original
8638 SEC_MERGE section has been completely subsumed in some
8639 other SEC_MERGE section. In this case, we need to leave
8640 some info around for --emit-relocs. */
8641 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8642 sec
->kept_section
= *psec
;
8645 rel
->r_addend
-= relocation
;
8646 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8652 _bfd_elf_rel_local_sym (bfd
*abfd
,
8653 Elf_Internal_Sym
*sym
,
8657 asection
*sec
= *psec
;
8659 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8660 return sym
->st_value
+ addend
;
8662 return _bfd_merged_section_offset (abfd
, psec
,
8663 elf_section_data (sec
)->sec_info
,
8664 sym
->st_value
+ addend
);
8668 _bfd_elf_section_offset (bfd
*abfd
,
8669 struct bfd_link_info
*info
,
8673 switch (sec
->sec_info_type
)
8675 case ELF_INFO_TYPE_STABS
:
8676 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8678 case ELF_INFO_TYPE_EH_FRAME
:
8679 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8685 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8686 reconstruct an ELF file by reading the segments out of remote memory
8687 based on the ELF file header at EHDR_VMA and the ELF program headers it
8688 points to. If not null, *LOADBASEP is filled in with the difference
8689 between the VMAs from which the segments were read, and the VMAs the
8690 file headers (and hence BFD's idea of each section's VMA) put them at.
8692 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8693 remote memory at target address VMA into the local buffer at MYADDR; it
8694 should return zero on success or an `errno' code on failure. TEMPL must
8695 be a BFD for an ELF target with the word size and byte order found in
8696 the remote memory. */
8699 bfd_elf_bfd_from_remote_memory
8703 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8705 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8706 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8710 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8711 long symcount ATTRIBUTE_UNUSED
,
8712 asymbol
**syms ATTRIBUTE_UNUSED
,
8717 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8720 const char *relplt_name
;
8721 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8725 Elf_Internal_Shdr
*hdr
;
8731 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8734 if (dynsymcount
<= 0)
8737 if (!bed
->plt_sym_val
)
8740 relplt_name
= bed
->relplt_name
;
8741 if (relplt_name
== NULL
)
8742 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8743 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8747 hdr
= &elf_section_data (relplt
)->this_hdr
;
8748 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8749 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8752 plt
= bfd_get_section_by_name (abfd
, ".plt");
8756 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8757 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8760 count
= relplt
->size
/ hdr
->sh_entsize
;
8761 size
= count
* sizeof (asymbol
);
8762 p
= relplt
->relocation
;
8763 for (i
= 0; i
< count
; i
++, s
++, p
++)
8764 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8766 s
= *ret
= bfd_malloc (size
);
8770 names
= (char *) (s
+ count
);
8771 p
= relplt
->relocation
;
8773 for (i
= 0; i
< count
; i
++, s
++, p
++)
8778 addr
= bed
->plt_sym_val (i
, plt
, p
);
8779 if (addr
== (bfd_vma
) -1)
8782 *s
= **p
->sym_ptr_ptr
;
8783 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8784 we are defining a symbol, ensure one of them is set. */
8785 if ((s
->flags
& BSF_LOCAL
) == 0)
8786 s
->flags
|= BSF_GLOBAL
;
8788 s
->value
= addr
- plt
->vma
;
8790 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8791 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8793 memcpy (names
, "@plt", sizeof ("@plt"));
8794 names
+= sizeof ("@plt");
8801 struct elf_symbuf_symbol
8803 unsigned long st_name
; /* Symbol name, index in string tbl */
8804 unsigned char st_info
; /* Type and binding attributes */
8805 unsigned char st_other
; /* Visibilty, and target specific */
8808 struct elf_symbuf_head
8810 struct elf_symbuf_symbol
*ssym
;
8811 bfd_size_type count
;
8812 unsigned int st_shndx
;
8819 Elf_Internal_Sym
*isym
;
8820 struct elf_symbuf_symbol
*ssym
;
8825 /* Sort references to symbols by ascending section number. */
8828 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8830 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
8831 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
8833 return s1
->st_shndx
- s2
->st_shndx
;
8837 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8839 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8840 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8841 return strcmp (s1
->name
, s2
->name
);
8844 static struct elf_symbuf_head
*
8845 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
8847 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
8848 = bfd_malloc2 (symcount
, sizeof (*indbuf
));
8849 struct elf_symbuf_symbol
*ssym
;
8850 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
8851 bfd_size_type i
, shndx_count
;
8856 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
8857 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
8858 *ind
++ = &isymbuf
[i
];
8861 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
8862 elf_sort_elf_symbol
);
8865 if (indbufend
> indbuf
)
8866 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
8867 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
8870 ssymbuf
= bfd_malloc ((shndx_count
+ 1) * sizeof (*ssymbuf
)
8871 + (indbufend
- indbuf
) * sizeof (*ssymbuf
));
8872 if (ssymbuf
== NULL
)
8878 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
);
8879 ssymbuf
->ssym
= NULL
;
8880 ssymbuf
->count
= shndx_count
;
8881 ssymbuf
->st_shndx
= 0;
8882 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
8884 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
8887 ssymhead
->ssym
= ssym
;
8888 ssymhead
->count
= 0;
8889 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
8891 ssym
->st_name
= (*ind
)->st_name
;
8892 ssym
->st_info
= (*ind
)->st_info
;
8893 ssym
->st_other
= (*ind
)->st_other
;
8896 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
);
8902 /* Check if 2 sections define the same set of local and global
8906 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
8907 struct bfd_link_info
*info
)
8910 const struct elf_backend_data
*bed1
, *bed2
;
8911 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8912 bfd_size_type symcount1
, symcount2
;
8913 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8914 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
8915 Elf_Internal_Sym
*isym
, *isymend
;
8916 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
8917 bfd_size_type count1
, count2
, i
;
8924 /* If both are .gnu.linkonce sections, they have to have the same
8926 if (CONST_STRNEQ (sec1
->name
, ".gnu.linkonce")
8927 && CONST_STRNEQ (sec2
->name
, ".gnu.linkonce"))
8928 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8929 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8931 /* Both sections have to be in ELF. */
8932 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8933 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8936 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8939 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8940 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8942 /* If both are members of section groups, they have to have the
8944 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8948 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8949 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8950 if (shndx1
== -1 || shndx2
== -1)
8953 bed1
= get_elf_backend_data (bfd1
);
8954 bed2
= get_elf_backend_data (bfd2
);
8955 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8956 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8957 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8958 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8960 if (symcount1
== 0 || symcount2
== 0)
8966 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
8967 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
8969 if (ssymbuf1
== NULL
)
8971 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8973 if (isymbuf1
== NULL
)
8976 if (!info
->reduce_memory_overheads
)
8977 elf_tdata (bfd1
)->symbuf
= ssymbuf1
8978 = elf_create_symbuf (symcount1
, isymbuf1
);
8981 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
8983 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8985 if (isymbuf2
== NULL
)
8988 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
8989 elf_tdata (bfd2
)->symbuf
= ssymbuf2
8990 = elf_create_symbuf (symcount2
, isymbuf2
);
8993 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
8995 /* Optimized faster version. */
8996 bfd_size_type lo
, hi
, mid
;
8997 struct elf_symbol
*symp
;
8998 struct elf_symbuf_symbol
*ssym
, *ssymend
;
9001 hi
= ssymbuf1
->count
;
9006 mid
= (lo
+ hi
) / 2;
9007 if ((unsigned int) shndx1
< ssymbuf1
[mid
].st_shndx
)
9009 else if ((unsigned int) shndx1
> ssymbuf1
[mid
].st_shndx
)
9013 count1
= ssymbuf1
[mid
].count
;
9020 hi
= ssymbuf2
->count
;
9025 mid
= (lo
+ hi
) / 2;
9026 if ((unsigned int) shndx2
< ssymbuf2
[mid
].st_shndx
)
9028 else if ((unsigned int) shndx2
> ssymbuf2
[mid
].st_shndx
)
9032 count2
= ssymbuf2
[mid
].count
;
9038 if (count1
== 0 || count2
== 0 || count1
!= count2
)
9041 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
9042 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
9043 if (symtable1
== NULL
|| symtable2
== NULL
)
9047 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
9048 ssym
< ssymend
; ssym
++, symp
++)
9050 symp
->u
.ssym
= ssym
;
9051 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
9057 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
9058 ssym
< ssymend
; ssym
++, symp
++)
9060 symp
->u
.ssym
= ssym
;
9061 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
9066 /* Sort symbol by name. */
9067 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
9068 elf_sym_name_compare
);
9069 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
9070 elf_sym_name_compare
);
9072 for (i
= 0; i
< count1
; i
++)
9073 /* Two symbols must have the same binding, type and name. */
9074 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
9075 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
9076 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
9083 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
9084 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
9085 if (symtable1
== NULL
|| symtable2
== NULL
)
9088 /* Count definitions in the section. */
9090 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
9091 if (isym
->st_shndx
== (unsigned int) shndx1
)
9092 symtable1
[count1
++].u
.isym
= isym
;
9095 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
9096 if (isym
->st_shndx
== (unsigned int) shndx2
)
9097 symtable2
[count2
++].u
.isym
= isym
;
9099 if (count1
== 0 || count2
== 0 || count1
!= count2
)
9102 for (i
= 0; i
< count1
; i
++)
9104 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
9105 symtable1
[i
].u
.isym
->st_name
);
9107 for (i
= 0; i
< count2
; i
++)
9109 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
9110 symtable2
[i
].u
.isym
->st_name
);
9112 /* Sort symbol by name. */
9113 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
9114 elf_sym_name_compare
);
9115 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
9116 elf_sym_name_compare
);
9118 for (i
= 0; i
< count1
; i
++)
9119 /* Two symbols must have the same binding, type and name. */
9120 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
9121 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
9122 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
9140 /* It is only used by x86-64 so far. */
9141 asection _bfd_elf_large_com_section
9142 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9143 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9145 /* Return TRUE if 2 section types are compatible. */
9148 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
9149 bfd
*bbfd
, const asection
*bsec
)
9153 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
9154 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9157 return elf_section_type (asec
) == elf_section_type (bsec
);
9161 _bfd_elf_set_osabi (bfd
* abfd
,
9162 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9164 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9166 i_ehdrp
= elf_elfheader (abfd
);
9168 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;