1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
213 bfd_elf_gnu_hash (const char *namearg
)
215 const unsigned char *name
= (const unsigned char *) namearg
;
216 unsigned long h
= 5381;
219 while ((ch
= *name
++) != '\0')
220 h
= (h
<< 5) + h
+ ch
;
221 return h
& 0xffffffff;
225 bfd_elf_mkobject (bfd
*abfd
)
227 if (abfd
->tdata
.any
== NULL
)
229 abfd
->tdata
.any
= bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
230 if (abfd
->tdata
.any
== NULL
)
234 elf_tdata (abfd
)->program_header_size
= (bfd_size_type
) -1;
240 bfd_elf_mkcorefile (bfd
*abfd
)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd
);
247 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
249 Elf_Internal_Shdr
**i_shdrp
;
250 bfd_byte
*shstrtab
= NULL
;
252 bfd_size_type shstrtabsize
;
254 i_shdrp
= elf_elfsections (abfd
);
255 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
258 shstrtab
= i_shdrp
[shindex
]->contents
;
259 if (shstrtab
== NULL
)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset
= i_shdrp
[shindex
]->sh_offset
;
263 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize
+ 1 == 0
268 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
269 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
271 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
273 if (bfd_get_error () != bfd_error_system_call
)
274 bfd_set_error (bfd_error_file_truncated
);
278 shstrtab
[shstrtabsize
] = '\0';
279 i_shdrp
[shindex
]->contents
= shstrtab
;
281 return (char *) shstrtab
;
285 bfd_elf_string_from_elf_section (bfd
*abfd
,
286 unsigned int shindex
,
287 unsigned int strindex
)
289 Elf_Internal_Shdr
*hdr
;
294 hdr
= elf_elfsections (abfd
)[shindex
];
296 if (hdr
->contents
== NULL
297 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
300 if (strindex
>= hdr
->sh_size
)
302 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
303 (*_bfd_error_handler
)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
306 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
308 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
312 return ((char *) hdr
->contents
) + strindex
;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
322 bfd_elf_get_elf_syms (bfd
*ibfd
,
323 Elf_Internal_Shdr
*symtab_hdr
,
326 Elf_Internal_Sym
*intsym_buf
,
328 Elf_External_Sym_Shndx
*extshndx_buf
)
330 Elf_Internal_Shdr
*shndx_hdr
;
332 const bfd_byte
*esym
;
333 Elf_External_Sym_Shndx
*alloc_extshndx
;
334 Elf_External_Sym_Shndx
*shndx
;
335 Elf_Internal_Sym
*isym
;
336 Elf_Internal_Sym
*isymend
;
337 const struct elf_backend_data
*bed
;
345 /* Normal syms might have section extension entries. */
347 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
348 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
350 /* Read the symbols. */
352 alloc_extshndx
= NULL
;
353 bed
= get_elf_backend_data (ibfd
);
354 extsym_size
= bed
->s
->sizeof_sym
;
355 amt
= symcount
* extsym_size
;
356 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
357 if (extsym_buf
== NULL
)
359 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
360 extsym_buf
= alloc_ext
;
362 if (extsym_buf
== NULL
363 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
364 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
370 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
374 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
375 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
376 if (extshndx_buf
== NULL
)
378 alloc_extshndx
= bfd_malloc2 (symcount
,
379 sizeof (Elf_External_Sym_Shndx
));
380 extshndx_buf
= alloc_extshndx
;
382 if (extshndx_buf
== NULL
383 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
384 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
391 if (intsym_buf
== NULL
)
393 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
394 if (intsym_buf
== NULL
)
398 /* Convert the symbols to internal form. */
399 isymend
= intsym_buf
+ symcount
;
400 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
402 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
403 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
405 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
406 (*_bfd_error_handler
) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd
, (unsigned long) symoffset
);
414 if (alloc_ext
!= NULL
)
416 if (alloc_extshndx
!= NULL
)
417 free (alloc_extshndx
);
422 /* Look up a symbol name. */
424 bfd_elf_sym_name (bfd
*abfd
,
425 Elf_Internal_Shdr
*symtab_hdr
,
426 Elf_Internal_Sym
*isym
,
430 unsigned int iname
= isym
->st_name
;
431 unsigned int shindex
= symtab_hdr
->sh_link
;
433 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym
->st_shndx
< elf_numsections (abfd
)
436 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
438 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
439 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
442 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
445 else if (sym_sec
&& *name
== '\0')
446 name
= bfd_section_name (abfd
, sym_sec
);
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
455 typedef union elf_internal_group
{
456 Elf_Internal_Shdr
*shdr
;
458 } Elf_Internal_Group
;
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
464 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
466 Elf_Internal_Shdr
*hdr
;
467 unsigned char esym
[sizeof (Elf64_External_Sym
)];
468 Elf_External_Sym_Shndx eshndx
;
469 Elf_Internal_Sym isym
;
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
474 if (hdr
->sh_type
!= SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
478 /* Go read the symbol. */
479 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
480 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
481 &isym
, esym
, &eshndx
) == NULL
)
484 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
490 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
492 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
498 unsigned int i
, shnum
;
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum
= elf_numsections (abfd
);
504 for (i
= 0; i
< shnum
; i
++)
506 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
507 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
513 num_group
= (unsigned) -1;
514 elf_tdata (abfd
)->num_group
= num_group
;
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
522 elf_tdata (abfd
)->num_group
= num_group
;
523 elf_tdata (abfd
)->group_sect_ptr
524 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
525 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
529 for (i
= 0; i
< shnum
; i
++)
531 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
532 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
535 Elf_Internal_Group
*dest
;
537 /* Add to list of sections. */
538 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest
) >= 4);
543 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
544 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
546 if (shdr
->contents
== NULL
547 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
548 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
556 src
= shdr
->contents
+ shdr
->sh_size
;
557 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
564 idx
= H_GET_32 (abfd
, src
);
565 if (src
== shdr
->contents
)
568 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
569 shdr
->bfd_section
->flags
570 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
575 ((*_bfd_error_handler
)
576 (_("%B: invalid SHT_GROUP entry"), abfd
));
579 dest
->shdr
= elf_elfsections (abfd
)[idx
];
586 if (num_group
!= (unsigned) -1)
590 for (i
= 0; i
< num_group
; i
++)
592 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
593 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
594 unsigned int n_elt
= shdr
->sh_size
/ 4;
596 /* Look through this group's sections to see if current
597 section is a member. */
599 if ((++idx
)->shdr
== hdr
)
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
606 idx
= (Elf_Internal_Group
*) shdr
->contents
;
607 n_elt
= shdr
->sh_size
/ 4;
609 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
610 && elf_next_in_group (s
) != NULL
)
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect
) = elf_group_name (s
);
617 elf_next_in_group (newsect
) = elf_next_in_group (s
);
618 elf_next_in_group (s
) = newsect
;
624 gname
= group_signature (abfd
, shdr
);
627 elf_group_name (newsect
) = gname
;
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect
) = newsect
;
633 /* If the group section has been created, point to the
635 if (shdr
->bfd_section
!= NULL
)
636 elf_next_in_group (shdr
->bfd_section
) = newsect
;
644 if (elf_group_name (newsect
) == NULL
)
646 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
653 _bfd_elf_setup_sections (bfd
*abfd
)
656 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
657 bfd_boolean result
= TRUE
;
660 /* Process SHF_LINK_ORDER. */
661 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
663 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
664 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
666 unsigned int elfsec
= this_hdr
->sh_link
;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
672 const struct elf_backend_data
*bed
673 = get_elf_backend_data (abfd
);
674 if (bed
->link_order_error_handler
)
675 bed
->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
683 this_hdr
= elf_elfsections (abfd
)[elfsec
];
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link
= this_hdr
->bfd_section
;
691 (*_bfd_error_handler
)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s
->owner
, s
, elfsec
);
697 elf_linked_to_section (s
) = link
;
702 /* Process section groups. */
703 if (num_group
== (unsigned) -1)
706 for (i
= 0; i
< num_group
; i
++)
708 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
709 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
710 unsigned int n_elt
= shdr
->sh_size
/ 4;
713 if ((++idx
)->shdr
->bfd_section
)
714 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
715 else if (idx
->shdr
->sh_type
== SHT_RELA
716 || idx
->shdr
->sh_type
== SHT_REL
)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
722 shdr
->bfd_section
->size
-= 4;
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler
)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
729 (unsigned int) idx
->shdr
->sh_type
,
730 bfd_elf_string_from_elf_section (abfd
,
731 (elf_elfheader (abfd
)
734 shdr
->bfd_section
->name
);
742 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
744 return elf_next_in_group (sec
) != NULL
;
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
751 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
752 Elf_Internal_Shdr
*hdr
,
758 const struct elf_backend_data
*bed
;
760 if (hdr
->bfd_section
!= NULL
)
762 BFD_ASSERT (strcmp (name
,
763 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
767 newsect
= bfd_make_section_anyway (abfd
, name
);
771 hdr
->bfd_section
= newsect
;
772 elf_section_data (newsect
)->this_hdr
= *hdr
;
773 elf_section_data (newsect
)->this_idx
= shindex
;
775 /* Always use the real type/flags. */
776 elf_section_type (newsect
) = hdr
->sh_type
;
777 elf_section_flags (newsect
) = hdr
->sh_flags
;
779 newsect
->filepos
= hdr
->sh_offset
;
781 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
782 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
783 || ! bfd_set_section_alignment (abfd
, newsect
,
784 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
787 flags
= SEC_NO_FLAGS
;
788 if (hdr
->sh_type
!= SHT_NOBITS
)
789 flags
|= SEC_HAS_CONTENTS
;
790 if (hdr
->sh_type
== SHT_GROUP
)
791 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
792 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
795 if (hdr
->sh_type
!= SHT_NOBITS
)
798 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
799 flags
|= SEC_READONLY
;
800 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
802 else if ((flags
& SEC_LOAD
) != 0)
804 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
807 newsect
->entsize
= hdr
->sh_entsize
;
808 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
809 flags
|= SEC_STRINGS
;
811 if (hdr
->sh_flags
& SHF_GROUP
)
812 if (!setup_group (abfd
, hdr
, newsect
))
814 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
815 flags
|= SEC_THREAD_LOCAL
;
817 if ((flags
& SEC_ALLOC
) == 0)
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
825 } debug_sections
[] =
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL
, 0 }, /* 'e' */
829 { NULL
, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL
, 0 }, /* 'h' */
832 { NULL
, 0 }, /* 'i' */
833 { NULL
, 0 }, /* 'j' */
834 { NULL
, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL
, 0 }, /* 'm' */
837 { NULL
, 0 }, /* 'n' */
838 { NULL
, 0 }, /* 'o' */
839 { NULL
, 0 }, /* 'p' */
840 { NULL
, 0 }, /* 'q' */
841 { NULL
, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
847 int i
= name
[1] - 'd';
849 && i
< (int) ARRAY_SIZE (debug_sections
)
850 && debug_sections
[i
].name
!= NULL
851 && strncmp (&name
[1], debug_sections
[i
].name
,
852 debug_sections
[i
].len
) == 0)
853 flags
|= SEC_DEBUGGING
;
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name
, ".gnu.linkonce")
864 && elf_next_in_group (newsect
) == NULL
)
865 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
867 bed
= get_elf_backend_data (abfd
);
868 if (bed
->elf_backend_section_flags
)
869 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
872 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
875 if ((flags
& SEC_ALLOC
) != 0)
877 Elf_Internal_Phdr
*phdr
;
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr
= elf_tdata (abfd
)->phdr
;
884 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
886 if (phdr
->p_paddr
!= 0)
889 if (i
< elf_elfheader (abfd
)->e_phnum
)
891 phdr
= elf_tdata (abfd
)->phdr
;
892 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr
->p_type
== PT_LOAD
907 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
908 && (hdr
->sh_offset
+ hdr
->sh_size
909 <= phdr
->p_offset
+ phdr
->p_memsz
)
910 && ((flags
& SEC_LOAD
) == 0
911 || (hdr
->sh_offset
+ hdr
->sh_size
912 <= phdr
->p_offset
+ phdr
->p_filesz
)))
914 if ((flags
& SEC_LOAD
) == 0)
915 newsect
->lma
= (phdr
->p_paddr
916 + hdr
->sh_addr
- phdr
->p_vaddr
);
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect
->lma
= (phdr
->p_paddr
926 + hdr
->sh_offset
- phdr
->p_offset
);
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr
->sh_addr
>= phdr
->p_vaddr
933 && (hdr
->sh_addr
+ hdr
->sh_size
934 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
959 struct elf_internal_shdr
*
960 bfd_elf_find_section (bfd
*abfd
, char *name
)
962 Elf_Internal_Shdr
**i_shdrp
;
967 i_shdrp
= elf_elfsections (abfd
);
970 shstrtab
= bfd_elf_get_str_section (abfd
,
971 elf_elfheader (abfd
)->e_shstrndx
);
972 if (shstrtab
!= NULL
)
974 max
= elf_numsections (abfd
);
975 for (i
= 1; i
< max
; i
++)
976 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
983 const char *const bfd_elf_section_type_names
[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1001 arelent
*reloc_entry
,
1003 void *data ATTRIBUTE_UNUSED
,
1004 asection
*input_section
,
1006 char **error_message ATTRIBUTE_UNUSED
)
1008 if (output_bfd
!= NULL
1009 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1010 && (! reloc_entry
->howto
->partial_inplace
1011 || reloc_entry
->addend
== 0))
1013 reloc_entry
->address
+= input_section
->output_offset
;
1014 return bfd_reloc_ok
;
1017 return bfd_reloc_continue
;
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1023 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1026 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1027 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1030 /* Finish SHF_MERGE section merging. */
1033 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1038 if (!is_elf_hash_table (info
->hash
))
1041 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1042 if ((ibfd
->flags
& DYNAMIC
) == 0)
1043 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1044 if ((sec
->flags
& SEC_MERGE
) != 0
1045 && !bfd_is_abs_section (sec
->output_section
))
1047 struct bfd_elf_section_data
*secdata
;
1049 secdata
= elf_section_data (sec
);
1050 if (! _bfd_add_merge_section (abfd
,
1051 &elf_hash_table (info
)->merge_info
,
1052 sec
, &secdata
->sec_info
))
1054 else if (secdata
->sec_info
)
1055 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1058 if (elf_hash_table (info
)->merge_info
!= NULL
)
1059 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1060 merge_sections_remove_hook
);
1065 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1067 sec
->output_section
= bfd_abs_section_ptr
;
1068 sec
->output_offset
= sec
->vma
;
1069 if (!is_elf_hash_table (info
->hash
))
1072 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1075 /* Copy the program header and other data from one object module to
1079 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1081 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1085 BFD_ASSERT (!elf_flags_init (obfd
)
1086 || (elf_elfheader (obfd
)->e_flags
1087 == elf_elfheader (ibfd
)->e_flags
));
1089 elf_gp (obfd
) = elf_gp (ibfd
);
1090 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1091 elf_flags_init (obfd
) = TRUE
;
1096 get_segment_type (unsigned int p_type
)
1101 case PT_NULL
: pt
= "NULL"; break;
1102 case PT_LOAD
: pt
= "LOAD"; break;
1103 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1104 case PT_INTERP
: pt
= "INTERP"; break;
1105 case PT_NOTE
: pt
= "NOTE"; break;
1106 case PT_SHLIB
: pt
= "SHLIB"; break;
1107 case PT_PHDR
: pt
= "PHDR"; break;
1108 case PT_TLS
: pt
= "TLS"; break;
1109 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1110 case PT_GNU_STACK
: pt
= "STACK"; break;
1111 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1112 default: pt
= NULL
; break;
1117 /* Print out the program headers. */
1120 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1123 Elf_Internal_Phdr
*p
;
1125 bfd_byte
*dynbuf
= NULL
;
1127 p
= elf_tdata (abfd
)->phdr
;
1132 fprintf (f
, _("\nProgram Header:\n"));
1133 c
= elf_elfheader (abfd
)->e_phnum
;
1134 for (i
= 0; i
< c
; i
++, p
++)
1136 const char *pt
= get_segment_type (p
->p_type
);
1141 sprintf (buf
, "0x%lx", p
->p_type
);
1144 fprintf (f
, "%8s off 0x", pt
);
1145 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1146 fprintf (f
, " vaddr 0x");
1147 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1148 fprintf (f
, " paddr 0x");
1149 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1150 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1151 fprintf (f
, " filesz 0x");
1152 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1153 fprintf (f
, " memsz 0x");
1154 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1155 fprintf (f
, " flags %c%c%c",
1156 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1157 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1158 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1159 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1160 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1165 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1169 unsigned long shlink
;
1170 bfd_byte
*extdyn
, *extdynend
;
1172 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1174 fprintf (f
, _("\nDynamic Section:\n"));
1176 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1179 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1182 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1184 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1185 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1188 extdynend
= extdyn
+ s
->size
;
1189 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1191 Elf_Internal_Dyn dyn
;
1194 bfd_boolean stringp
;
1196 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1198 if (dyn
.d_tag
== DT_NULL
)
1205 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1209 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1210 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1211 case DT_PLTGOT
: name
= "PLTGOT"; break;
1212 case DT_HASH
: name
= "HASH"; break;
1213 case DT_STRTAB
: name
= "STRTAB"; break;
1214 case DT_SYMTAB
: name
= "SYMTAB"; break;
1215 case DT_RELA
: name
= "RELA"; break;
1216 case DT_RELASZ
: name
= "RELASZ"; break;
1217 case DT_RELAENT
: name
= "RELAENT"; break;
1218 case DT_STRSZ
: name
= "STRSZ"; break;
1219 case DT_SYMENT
: name
= "SYMENT"; break;
1220 case DT_INIT
: name
= "INIT"; break;
1221 case DT_FINI
: name
= "FINI"; break;
1222 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1223 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1224 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1225 case DT_REL
: name
= "REL"; break;
1226 case DT_RELSZ
: name
= "RELSZ"; break;
1227 case DT_RELENT
: name
= "RELENT"; break;
1228 case DT_PLTREL
: name
= "PLTREL"; break;
1229 case DT_DEBUG
: name
= "DEBUG"; break;
1230 case DT_TEXTREL
: name
= "TEXTREL"; break;
1231 case DT_JMPREL
: name
= "JMPREL"; break;
1232 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1233 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1238 case DT_FLAGS
: name
= "FLAGS"; break;
1239 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1242 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1243 case DT_MOVEENT
: name
= "MOVEENT"; break;
1244 case DT_MOVESZ
: name
= "MOVESZ"; break;
1245 case DT_FEATURE
: name
= "FEATURE"; break;
1246 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1247 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1248 case DT_SYMINENT
: name
= "SYMINENT"; break;
1249 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1250 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1251 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1252 case DT_PLTPAD
: name
= "PLTPAD"; break;
1253 case DT_MOVETAB
: name
= "MOVETAB"; break;
1254 case DT_SYMINFO
: name
= "SYMINFO"; break;
1255 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1256 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1257 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1258 case DT_VERSYM
: name
= "VERSYM"; break;
1259 case DT_VERDEF
: name
= "VERDEF"; break;
1260 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1261 case DT_VERNEED
: name
= "VERNEED"; break;
1262 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1263 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1264 case DT_USED
: name
= "USED"; break;
1265 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1266 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1269 fprintf (f
, " %-11s ", name
);
1271 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1275 unsigned int tagv
= dyn
.d_un
.d_val
;
1277 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1280 fprintf (f
, "%s", string
);
1289 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1290 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1292 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1296 if (elf_dynverdef (abfd
) != 0)
1298 Elf_Internal_Verdef
*t
;
1300 fprintf (f
, _("\nVersion definitions:\n"));
1301 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1303 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1304 t
->vd_flags
, t
->vd_hash
,
1305 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1306 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1308 Elf_Internal_Verdaux
*a
;
1311 for (a
= t
->vd_auxptr
->vda_nextptr
;
1315 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1321 if (elf_dynverref (abfd
) != 0)
1323 Elf_Internal_Verneed
*t
;
1325 fprintf (f
, _("\nVersion References:\n"));
1326 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1328 Elf_Internal_Vernaux
*a
;
1330 fprintf (f
, _(" required from %s:\n"),
1331 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1332 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1333 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1334 a
->vna_flags
, a
->vna_other
,
1335 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1347 /* Display ELF-specific fields of a symbol. */
1350 bfd_elf_print_symbol (bfd
*abfd
,
1353 bfd_print_symbol_type how
)
1358 case bfd_print_symbol_name
:
1359 fprintf (file
, "%s", symbol
->name
);
1361 case bfd_print_symbol_more
:
1362 fprintf (file
, "elf ");
1363 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1364 fprintf (file
, " %lx", (long) symbol
->flags
);
1366 case bfd_print_symbol_all
:
1368 const char *section_name
;
1369 const char *name
= NULL
;
1370 const struct elf_backend_data
*bed
;
1371 unsigned char st_other
;
1374 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1376 bed
= get_elf_backend_data (abfd
);
1377 if (bed
->elf_backend_print_symbol_all
)
1378 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1382 name
= symbol
->name
;
1383 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1386 fprintf (file
, " %s\t", section_name
);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol
->section
))
1392 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1394 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1395 bfd_fprintf_vma (abfd
, file
, val
);
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd
)->dynversym_section
!= 0
1399 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1400 || elf_tdata (abfd
)->dynverref_section
!= 0))
1402 unsigned int vernum
;
1403 const char *version_string
;
1405 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1408 version_string
= "";
1409 else if (vernum
== 1)
1410 version_string
= "Base";
1411 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1413 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1416 Elf_Internal_Verneed
*t
;
1418 version_string
= "";
1419 for (t
= elf_tdata (abfd
)->verref
;
1423 Elf_Internal_Vernaux
*a
;
1425 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1427 if (a
->vna_other
== vernum
)
1429 version_string
= a
->vna_nodename
;
1436 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1437 fprintf (file
, " %-11s", version_string
);
1442 fprintf (file
, " (%s)", version_string
);
1443 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1448 /* If the st_other field is not zero, print it. */
1449 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1454 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1455 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1456 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1458 /* Some other non-defined flags are also present, so print
1460 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1463 fprintf (file
, " %s", name
);
1469 /* Create an entry in an ELF linker hash table. */
1471 struct bfd_hash_entry
*
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1473 struct bfd_hash_table
*table
,
1476 /* Allocate the structure if it has not already been allocated by a
1480 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1485 /* Call the allocation method of the superclass. */
1486 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1489 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1490 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1492 /* Set local fields. */
1495 ret
->got
= htab
->init_got_refcount
;
1496 ret
->plt
= htab
->init_plt_refcount
;
1497 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1498 - offsetof (struct elf_link_hash_entry
, size
)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1514 struct elf_link_hash_entry
*dir
,
1515 struct elf_link_hash_entry
*ind
)
1517 struct elf_link_hash_table
*htab
;
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1522 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1523 dir
->ref_regular
|= ind
->ref_regular
;
1524 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1525 dir
->non_got_ref
|= ind
->non_got_ref
;
1526 dir
->needs_plt
|= ind
->needs_plt
;
1527 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1529 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab
= elf_hash_table (info
);
1535 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1537 if (dir
->got
.refcount
< 0)
1538 dir
->got
.refcount
= 0;
1539 dir
->got
.refcount
+= ind
->got
.refcount
;
1540 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1543 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1545 if (dir
->plt
.refcount
< 0)
1546 dir
->plt
.refcount
= 0;
1547 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1548 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1551 if (ind
->dynindx
!= -1)
1553 if (dir
->dynindx
!= -1)
1554 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1555 dir
->dynindx
= ind
->dynindx
;
1556 dir
->dynstr_index
= ind
->dynstr_index
;
1558 ind
->dynstr_index
= 0;
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1564 struct elf_link_hash_entry
*h
,
1565 bfd_boolean force_local
)
1567 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1571 h
->forced_local
= 1;
1572 if (h
->dynindx
!= -1)
1575 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1581 /* Initialize an ELF linker hash table. */
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table
*table
,
1587 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1588 struct bfd_hash_table
*,
1590 unsigned int entsize
)
1593 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1595 table
->dynamic_sections_created
= FALSE
;
1596 table
->dynobj
= NULL
;
1597 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1598 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1599 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1600 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1601 /* The first dynamic symbol is a dummy. */
1602 table
->dynsymcount
= 1;
1603 table
->dynstr
= NULL
;
1604 table
->bucketcount
= 0;
1605 table
->needed
= NULL
;
1608 table
->merge_info
= NULL
;
1609 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1610 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1611 table
->dynlocal
= NULL
;
1612 table
->runpath
= NULL
;
1613 table
->tls_sec
= NULL
;
1614 table
->tls_size
= 0;
1615 table
->loaded
= NULL
;
1616 table
->is_relocatable_executable
= FALSE
;
1618 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1619 table
->root
.type
= bfd_link_elf_hash_table
;
1624 /* Create an ELF linker hash table. */
1626 struct bfd_link_hash_table
*
1627 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1629 struct elf_link_hash_table
*ret
;
1630 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1632 ret
= bfd_malloc (amt
);
1636 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1637 sizeof (struct elf_link_hash_entry
)))
1646 /* This is a hook for the ELF emulation code in the generic linker to
1647 tell the backend linker what file name to use for the DT_NEEDED
1648 entry for a dynamic object. */
1651 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1653 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1654 && bfd_get_format (abfd
) == bfd_object
)
1655 elf_dt_name (abfd
) = name
;
1659 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1662 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1663 && bfd_get_format (abfd
) == bfd_object
)
1664 lib_class
= elf_dyn_lib_class (abfd
);
1671 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
1673 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1674 && bfd_get_format (abfd
) == bfd_object
)
1675 elf_dyn_lib_class (abfd
) = lib_class
;
1678 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1679 the linker ELF emulation code. */
1681 struct bfd_link_needed_list
*
1682 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1683 struct bfd_link_info
*info
)
1685 if (! is_elf_hash_table (info
->hash
))
1687 return elf_hash_table (info
)->needed
;
1690 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1691 hook for the linker ELF emulation code. */
1693 struct bfd_link_needed_list
*
1694 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1695 struct bfd_link_info
*info
)
1697 if (! is_elf_hash_table (info
->hash
))
1699 return elf_hash_table (info
)->runpath
;
1702 /* Get the name actually used for a dynamic object for a link. This
1703 is the SONAME entry if there is one. Otherwise, it is the string
1704 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1707 bfd_elf_get_dt_soname (bfd
*abfd
)
1709 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1710 && bfd_get_format (abfd
) == bfd_object
)
1711 return elf_dt_name (abfd
);
1715 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1716 the ELF linker emulation code. */
1719 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1720 struct bfd_link_needed_list
**pneeded
)
1723 bfd_byte
*dynbuf
= NULL
;
1725 unsigned long shlink
;
1726 bfd_byte
*extdyn
, *extdynend
;
1728 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1732 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1733 || bfd_get_format (abfd
) != bfd_object
)
1736 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1737 if (s
== NULL
|| s
->size
== 0)
1740 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1743 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1747 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1749 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1750 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1753 extdynend
= extdyn
+ s
->size
;
1754 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1756 Elf_Internal_Dyn dyn
;
1758 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1760 if (dyn
.d_tag
== DT_NULL
)
1763 if (dyn
.d_tag
== DT_NEEDED
)
1766 struct bfd_link_needed_list
*l
;
1767 unsigned int tagv
= dyn
.d_un
.d_val
;
1770 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1775 l
= bfd_alloc (abfd
, amt
);
1796 /* Allocate an ELF string table--force the first byte to be zero. */
1798 struct bfd_strtab_hash
*
1799 _bfd_elf_stringtab_init (void)
1801 struct bfd_strtab_hash
*ret
;
1803 ret
= _bfd_stringtab_init ();
1808 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1809 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1810 if (loc
== (bfd_size_type
) -1)
1812 _bfd_stringtab_free (ret
);
1819 /* ELF .o/exec file reading */
1821 /* Create a new bfd section from an ELF section header. */
1824 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1826 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1827 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1828 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1831 name
= bfd_elf_string_from_elf_section (abfd
,
1832 elf_elfheader (abfd
)->e_shstrndx
,
1837 switch (hdr
->sh_type
)
1840 /* Inactive section. Throw it away. */
1843 case SHT_PROGBITS
: /* Normal section with contents. */
1844 case SHT_NOBITS
: /* .bss section. */
1845 case SHT_HASH
: /* .hash section. */
1846 case SHT_NOTE
: /* .note section. */
1847 case SHT_INIT_ARRAY
: /* .init_array section. */
1848 case SHT_FINI_ARRAY
: /* .fini_array section. */
1849 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1850 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1851 case SHT_GNU_HASH
: /* .gnu.hash section. */
1852 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1854 case SHT_DYNAMIC
: /* Dynamic linking information. */
1855 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1857 if (hdr
->sh_link
> elf_numsections (abfd
)
1858 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1860 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1862 Elf_Internal_Shdr
*dynsymhdr
;
1864 /* The shared libraries distributed with hpux11 have a bogus
1865 sh_link field for the ".dynamic" section. Find the
1866 string table for the ".dynsym" section instead. */
1867 if (elf_dynsymtab (abfd
) != 0)
1869 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1870 hdr
->sh_link
= dynsymhdr
->sh_link
;
1874 unsigned int i
, num_sec
;
1876 num_sec
= elf_numsections (abfd
);
1877 for (i
= 1; i
< num_sec
; i
++)
1879 dynsymhdr
= elf_elfsections (abfd
)[i
];
1880 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1882 hdr
->sh_link
= dynsymhdr
->sh_link
;
1890 case SHT_SYMTAB
: /* A symbol table */
1891 if (elf_onesymtab (abfd
) == shindex
)
1894 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1896 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1897 elf_onesymtab (abfd
) = shindex
;
1898 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1899 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1900 abfd
->flags
|= HAS_SYMS
;
1902 /* Sometimes a shared object will map in the symbol table. If
1903 SHF_ALLOC is set, and this is a shared object, then we also
1904 treat this section as a BFD section. We can not base the
1905 decision purely on SHF_ALLOC, because that flag is sometimes
1906 set in a relocatable object file, which would confuse the
1908 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1909 && (abfd
->flags
& DYNAMIC
) != 0
1910 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1914 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1915 can't read symbols without that section loaded as well. It
1916 is most likely specified by the next section header. */
1917 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1919 unsigned int i
, num_sec
;
1921 num_sec
= elf_numsections (abfd
);
1922 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1924 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1925 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1926 && hdr2
->sh_link
== shindex
)
1930 for (i
= 1; i
< shindex
; i
++)
1932 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1933 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1934 && hdr2
->sh_link
== shindex
)
1938 return bfd_section_from_shdr (abfd
, i
);
1942 case SHT_DYNSYM
: /* A dynamic symbol table */
1943 if (elf_dynsymtab (abfd
) == shindex
)
1946 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1948 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1949 elf_dynsymtab (abfd
) = shindex
;
1950 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1951 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1952 abfd
->flags
|= HAS_SYMS
;
1954 /* Besides being a symbol table, we also treat this as a regular
1955 section, so that objcopy can handle it. */
1956 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1958 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1959 if (elf_symtab_shndx (abfd
) == shindex
)
1962 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1963 elf_symtab_shndx (abfd
) = shindex
;
1964 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1965 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1968 case SHT_STRTAB
: /* A string table */
1969 if (hdr
->bfd_section
!= NULL
)
1971 if (ehdr
->e_shstrndx
== shindex
)
1973 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1974 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1977 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1980 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1981 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1984 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1987 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1988 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1989 elf_elfsections (abfd
)[shindex
] = hdr
;
1990 /* We also treat this as a regular section, so that objcopy
1992 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1996 /* If the string table isn't one of the above, then treat it as a
1997 regular section. We need to scan all the headers to be sure,
1998 just in case this strtab section appeared before the above. */
1999 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
2001 unsigned int i
, num_sec
;
2003 num_sec
= elf_numsections (abfd
);
2004 for (i
= 1; i
< num_sec
; i
++)
2006 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
2007 if (hdr2
->sh_link
== shindex
)
2009 /* Prevent endless recursion on broken objects. */
2012 if (! bfd_section_from_shdr (abfd
, i
))
2014 if (elf_onesymtab (abfd
) == i
)
2016 if (elf_dynsymtab (abfd
) == i
)
2017 goto dynsymtab_strtab
;
2021 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2025 /* *These* do a lot of work -- but build no sections! */
2027 asection
*target_sect
;
2028 Elf_Internal_Shdr
*hdr2
;
2029 unsigned int num_sec
= elf_numsections (abfd
);
2032 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2033 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2036 /* Check for a bogus link to avoid crashing. */
2037 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2038 || hdr
->sh_link
>= num_sec
)
2040 ((*_bfd_error_handler
)
2041 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2042 abfd
, hdr
->sh_link
, name
, shindex
));
2043 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2047 /* For some incomprehensible reason Oracle distributes
2048 libraries for Solaris in which some of the objects have
2049 bogus sh_link fields. It would be nice if we could just
2050 reject them, but, unfortunately, some people need to use
2051 them. We scan through the section headers; if we find only
2052 one suitable symbol table, we clobber the sh_link to point
2053 to it. I hope this doesn't break anything. */
2054 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2055 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2061 for (scan
= 1; scan
< num_sec
; scan
++)
2063 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2064 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2075 hdr
->sh_link
= found
;
2078 /* Get the symbol table. */
2079 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2080 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2081 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2084 /* If this reloc section does not use the main symbol table we
2085 don't treat it as a reloc section. BFD can't adequately
2086 represent such a section, so at least for now, we don't
2087 try. We just present it as a normal section. We also
2088 can't use it as a reloc section if it points to the null
2089 section, an invalid section, or another reloc section. */
2090 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2091 || hdr
->sh_info
== SHN_UNDEF
2092 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2093 || hdr
->sh_info
>= num_sec
2094 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2095 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2096 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2099 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2101 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2102 if (target_sect
== NULL
)
2105 if ((target_sect
->flags
& SEC_RELOC
) == 0
2106 || target_sect
->reloc_count
== 0)
2107 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2111 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2112 amt
= sizeof (*hdr2
);
2113 hdr2
= bfd_alloc (abfd
, amt
);
2114 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2117 elf_elfsections (abfd
)[shindex
] = hdr2
;
2118 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2119 target_sect
->flags
|= SEC_RELOC
;
2120 target_sect
->relocation
= NULL
;
2121 target_sect
->rel_filepos
= hdr
->sh_offset
;
2122 /* In the section to which the relocations apply, mark whether
2123 its relocations are of the REL or RELA variety. */
2124 if (hdr
->sh_size
!= 0)
2125 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2126 abfd
->flags
|= HAS_RELOC
;
2130 case SHT_GNU_verdef
:
2131 elf_dynverdef (abfd
) = shindex
;
2132 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2133 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2135 case SHT_GNU_versym
:
2136 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2138 elf_dynversym (abfd
) = shindex
;
2139 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2140 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2142 case SHT_GNU_verneed
:
2143 elf_dynverref (abfd
) = shindex
;
2144 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2145 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2151 /* We need a BFD section for objcopy and relocatable linking,
2152 and it's handy to have the signature available as the section
2154 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2156 name
= group_signature (abfd
, hdr
);
2159 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2161 if (hdr
->contents
!= NULL
)
2163 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2164 unsigned int n_elt
= hdr
->sh_size
/ 4;
2167 if (idx
->flags
& GRP_COMDAT
)
2168 hdr
->bfd_section
->flags
2169 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2171 /* We try to keep the same section order as it comes in. */
2173 while (--n_elt
!= 0)
2174 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2175 && elf_next_in_group (s
) != NULL
)
2177 elf_next_in_group (hdr
->bfd_section
) = s
;
2184 /* Check for any processor-specific section types. */
2185 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2188 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2190 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2191 /* FIXME: How to properly handle allocated section reserved
2192 for applications? */
2193 (*_bfd_error_handler
)
2194 (_("%B: don't know how to handle allocated, application "
2195 "specific section `%s' [0x%8x]"),
2196 abfd
, name
, hdr
->sh_type
);
2198 /* Allow sections reserved for applications. */
2199 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2202 else if (hdr
->sh_type
>= SHT_LOPROC
2203 && hdr
->sh_type
<= SHT_HIPROC
)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler
)
2206 (_("%B: don't know how to handle processor specific section "
2208 abfd
, name
, hdr
->sh_type
);
2209 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2211 /* Unrecognised OS-specific sections. */
2212 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
2213 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2214 required to correctly process the section and the file should
2215 be rejected with an error message. */
2216 (*_bfd_error_handler
)
2217 (_("%B: don't know how to handle OS specific section "
2219 abfd
, name
, hdr
->sh_type
);
2221 /* Otherwise it should be processed. */
2222 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2225 /* FIXME: We should handle this section. */
2226 (*_bfd_error_handler
)
2227 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2228 abfd
, name
, hdr
->sh_type
);
2236 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2237 Return SEC for sections that have no elf section, and NULL on error. */
2240 bfd_section_from_r_symndx (bfd
*abfd
,
2241 struct sym_sec_cache
*cache
,
2243 unsigned long r_symndx
)
2245 Elf_Internal_Shdr
*symtab_hdr
;
2246 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2247 Elf_External_Sym_Shndx eshndx
;
2248 Elf_Internal_Sym isym
;
2249 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2251 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2252 return cache
->sec
[ent
];
2254 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2255 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2256 &isym
, esym
, &eshndx
) == NULL
)
2259 if (cache
->abfd
!= abfd
)
2261 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2264 cache
->indx
[ent
] = r_symndx
;
2265 cache
->sec
[ent
] = sec
;
2266 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2267 || isym
.st_shndx
> SHN_HIRESERVE
)
2270 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2272 cache
->sec
[ent
] = s
;
2274 return cache
->sec
[ent
];
2277 /* Given an ELF section number, retrieve the corresponding BFD
2281 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2283 if (index
>= elf_numsections (abfd
))
2285 return elf_elfsections (abfd
)[index
]->bfd_section
;
2288 static const struct bfd_elf_special_section special_sections_b
[] =
2290 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2291 { NULL
, 0, 0, 0, 0 }
2294 static const struct bfd_elf_special_section special_sections_c
[] =
2296 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2297 { NULL
, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_d
[] =
2302 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2303 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2304 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2305 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2306 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2307 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2308 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2309 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2310 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2311 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2312 { NULL
, 0, 0, 0, 0 }
2315 static const struct bfd_elf_special_section special_sections_f
[] =
2317 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2318 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2319 { NULL
, 0, 0, 0, 0 }
2322 static const struct bfd_elf_special_section special_sections_g
[] =
2324 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2325 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2326 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2327 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2328 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2329 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2330 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2331 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2332 { NULL
, 0, 0, 0, 0 }
2335 static const struct bfd_elf_special_section special_sections_h
[] =
2337 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2338 { NULL
, 0, 0, 0, 0 }
2341 static const struct bfd_elf_special_section special_sections_i
[] =
2343 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2344 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2345 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2346 { NULL
, 0, 0, 0, 0 }
2349 static const struct bfd_elf_special_section special_sections_l
[] =
2351 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2352 { NULL
, 0, 0, 0, 0 }
2355 static const struct bfd_elf_special_section special_sections_n
[] =
2357 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2358 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2359 { NULL
, 0, 0, 0, 0 }
2362 static const struct bfd_elf_special_section special_sections_p
[] =
2364 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2365 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2366 { NULL
, 0, 0, 0, 0 }
2369 static const struct bfd_elf_special_section special_sections_r
[] =
2371 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2372 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2373 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2374 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2375 { NULL
, 0, 0, 0, 0 }
2378 static const struct bfd_elf_special_section special_sections_s
[] =
2380 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2381 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2382 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2383 /* See struct bfd_elf_special_section declaration for the semantics of
2384 this special case where .prefix_length != strlen (.prefix). */
2385 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2386 { NULL
, 0, 0, 0, 0 }
2389 static const struct bfd_elf_special_section special_sections_t
[] =
2391 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2392 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2393 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2394 { NULL
, 0, 0, 0, 0 }
2397 static const struct bfd_elf_special_section
*special_sections
[] =
2399 special_sections_b
, /* 'b' */
2400 special_sections_c
, /* 'b' */
2401 special_sections_d
, /* 'd' */
2403 special_sections_f
, /* 'f' */
2404 special_sections_g
, /* 'g' */
2405 special_sections_h
, /* 'h' */
2406 special_sections_i
, /* 'i' */
2409 special_sections_l
, /* 'l' */
2411 special_sections_n
, /* 'n' */
2413 special_sections_p
, /* 'p' */
2415 special_sections_r
, /* 'r' */
2416 special_sections_s
, /* 's' */
2417 special_sections_t
, /* 't' */
2420 const struct bfd_elf_special_section
*
2421 _bfd_elf_get_special_section (const char *name
,
2422 const struct bfd_elf_special_section
*spec
,
2428 len
= strlen (name
);
2430 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2433 int prefix_len
= spec
[i
].prefix_length
;
2435 if (len
< prefix_len
)
2437 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2440 suffix_len
= spec
[i
].suffix_length
;
2441 if (suffix_len
<= 0)
2443 if (name
[prefix_len
] != 0)
2445 if (suffix_len
== 0)
2447 if (name
[prefix_len
] != '.'
2448 && (suffix_len
== -2
2449 || (rela
&& spec
[i
].type
== SHT_REL
)))
2455 if (len
< prefix_len
+ suffix_len
)
2457 if (memcmp (name
+ len
- suffix_len
,
2458 spec
[i
].prefix
+ prefix_len
,
2468 const struct bfd_elf_special_section
*
2469 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2472 const struct bfd_elf_special_section
*spec
;
2473 const struct elf_backend_data
*bed
;
2475 /* See if this is one of the special sections. */
2476 if (sec
->name
== NULL
)
2479 bed
= get_elf_backend_data (abfd
);
2480 spec
= bed
->special_sections
;
2483 spec
= _bfd_elf_get_special_section (sec
->name
,
2484 bed
->special_sections
,
2490 if (sec
->name
[0] != '.')
2493 i
= sec
->name
[1] - 'b';
2494 if (i
< 0 || i
> 't' - 'b')
2497 spec
= special_sections
[i
];
2502 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2506 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2508 struct bfd_elf_section_data
*sdata
;
2509 const struct elf_backend_data
*bed
;
2510 const struct bfd_elf_special_section
*ssect
;
2512 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2515 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2518 sec
->used_by_bfd
= sdata
;
2521 /* Indicate whether or not this section should use RELA relocations. */
2522 bed
= get_elf_backend_data (abfd
);
2523 sec
->use_rela_p
= bed
->default_use_rela_p
;
2525 /* When we read a file, we don't need to set ELF section type and
2526 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2527 anyway. We will set ELF section type and flags for all linker
2528 created sections. If user specifies BFD section flags, we will
2529 set ELF section type and flags based on BFD section flags in
2530 elf_fake_sections. */
2531 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2532 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2534 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2537 elf_section_type (sec
) = ssect
->type
;
2538 elf_section_flags (sec
) = ssect
->attr
;
2542 return _bfd_generic_new_section_hook (abfd
, sec
);
2545 /* Create a new bfd section from an ELF program header.
2547 Since program segments have no names, we generate a synthetic name
2548 of the form segment<NUM>, where NUM is generally the index in the
2549 program header table. For segments that are split (see below) we
2550 generate the names segment<NUM>a and segment<NUM>b.
2552 Note that some program segments may have a file size that is different than
2553 (less than) the memory size. All this means is that at execution the
2554 system must allocate the amount of memory specified by the memory size,
2555 but only initialize it with the first "file size" bytes read from the
2556 file. This would occur for example, with program segments consisting
2557 of combined data+bss.
2559 To handle the above situation, this routine generates TWO bfd sections
2560 for the single program segment. The first has the length specified by
2561 the file size of the segment, and the second has the length specified
2562 by the difference between the two sizes. In effect, the segment is split
2563 into it's initialized and uninitialized parts.
2568 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2569 Elf_Internal_Phdr
*hdr
,
2571 const char *typename
)
2579 split
= ((hdr
->p_memsz
> 0)
2580 && (hdr
->p_filesz
> 0)
2581 && (hdr
->p_memsz
> hdr
->p_filesz
));
2582 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2583 len
= strlen (namebuf
) + 1;
2584 name
= bfd_alloc (abfd
, len
);
2587 memcpy (name
, namebuf
, len
);
2588 newsect
= bfd_make_section (abfd
, name
);
2589 if (newsect
== NULL
)
2591 newsect
->vma
= hdr
->p_vaddr
;
2592 newsect
->lma
= hdr
->p_paddr
;
2593 newsect
->size
= hdr
->p_filesz
;
2594 newsect
->filepos
= hdr
->p_offset
;
2595 newsect
->flags
|= SEC_HAS_CONTENTS
;
2596 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2597 if (hdr
->p_type
== PT_LOAD
)
2599 newsect
->flags
|= SEC_ALLOC
;
2600 newsect
->flags
|= SEC_LOAD
;
2601 if (hdr
->p_flags
& PF_X
)
2603 /* FIXME: all we known is that it has execute PERMISSION,
2605 newsect
->flags
|= SEC_CODE
;
2608 if (!(hdr
->p_flags
& PF_W
))
2610 newsect
->flags
|= SEC_READONLY
;
2615 sprintf (namebuf
, "%s%db", typename
, index
);
2616 len
= strlen (namebuf
) + 1;
2617 name
= bfd_alloc (abfd
, len
);
2620 memcpy (name
, namebuf
, len
);
2621 newsect
= bfd_make_section (abfd
, name
);
2622 if (newsect
== NULL
)
2624 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2625 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2626 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2627 if (hdr
->p_type
== PT_LOAD
)
2629 newsect
->flags
|= SEC_ALLOC
;
2630 if (hdr
->p_flags
& PF_X
)
2631 newsect
->flags
|= SEC_CODE
;
2633 if (!(hdr
->p_flags
& PF_W
))
2634 newsect
->flags
|= SEC_READONLY
;
2641 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2643 const struct elf_backend_data
*bed
;
2645 switch (hdr
->p_type
)
2648 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2651 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2654 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2657 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2660 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2662 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2667 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2670 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2672 case PT_GNU_EH_FRAME
:
2673 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2677 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2680 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2683 /* Check for any processor-specific program segment types. */
2684 bed
= get_elf_backend_data (abfd
);
2685 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2689 /* Initialize REL_HDR, the section-header for new section, containing
2690 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2691 relocations; otherwise, we use REL relocations. */
2694 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2695 Elf_Internal_Shdr
*rel_hdr
,
2697 bfd_boolean use_rela_p
)
2700 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2701 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2703 name
= bfd_alloc (abfd
, amt
);
2706 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2708 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2710 if (rel_hdr
->sh_name
== (unsigned int) -1)
2712 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2713 rel_hdr
->sh_entsize
= (use_rela_p
2714 ? bed
->s
->sizeof_rela
2715 : bed
->s
->sizeof_rel
);
2716 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2717 rel_hdr
->sh_flags
= 0;
2718 rel_hdr
->sh_addr
= 0;
2719 rel_hdr
->sh_size
= 0;
2720 rel_hdr
->sh_offset
= 0;
2725 /* Set up an ELF internal section header for a section. */
2728 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2730 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2731 bfd_boolean
*failedptr
= failedptrarg
;
2732 Elf_Internal_Shdr
*this_hdr
;
2736 /* We already failed; just get out of the bfd_map_over_sections
2741 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2743 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2744 asect
->name
, FALSE
);
2745 if (this_hdr
->sh_name
== (unsigned int) -1)
2751 /* Don't clear sh_flags. Assembler may set additional bits. */
2753 if ((asect
->flags
& SEC_ALLOC
) != 0
2754 || asect
->user_set_vma
)
2755 this_hdr
->sh_addr
= asect
->vma
;
2757 this_hdr
->sh_addr
= 0;
2759 this_hdr
->sh_offset
= 0;
2760 this_hdr
->sh_size
= asect
->size
;
2761 this_hdr
->sh_link
= 0;
2762 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2763 /* The sh_entsize and sh_info fields may have been set already by
2764 copy_private_section_data. */
2766 this_hdr
->bfd_section
= asect
;
2767 this_hdr
->contents
= NULL
;
2769 /* If the section type is unspecified, we set it based on
2771 if (this_hdr
->sh_type
== SHT_NULL
)
2773 if ((asect
->flags
& SEC_GROUP
) != 0)
2774 this_hdr
->sh_type
= SHT_GROUP
;
2775 else if ((asect
->flags
& SEC_ALLOC
) != 0
2776 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2777 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2778 this_hdr
->sh_type
= SHT_NOBITS
;
2780 this_hdr
->sh_type
= SHT_PROGBITS
;
2783 switch (this_hdr
->sh_type
)
2789 case SHT_INIT_ARRAY
:
2790 case SHT_FINI_ARRAY
:
2791 case SHT_PREINIT_ARRAY
:
2798 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2802 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2806 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2810 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2811 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2815 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2816 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2819 case SHT_GNU_versym
:
2820 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2823 case SHT_GNU_verdef
:
2824 this_hdr
->sh_entsize
= 0;
2825 /* objcopy or strip will copy over sh_info, but may not set
2826 cverdefs. The linker will set cverdefs, but sh_info will be
2828 if (this_hdr
->sh_info
== 0)
2829 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2831 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2832 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2835 case SHT_GNU_verneed
:
2836 this_hdr
->sh_entsize
= 0;
2837 /* objcopy or strip will copy over sh_info, but may not set
2838 cverrefs. The linker will set cverrefs, but sh_info will be
2840 if (this_hdr
->sh_info
== 0)
2841 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2843 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2844 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2848 this_hdr
->sh_entsize
= 4;
2852 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2856 if ((asect
->flags
& SEC_ALLOC
) != 0)
2857 this_hdr
->sh_flags
|= SHF_ALLOC
;
2858 if ((asect
->flags
& SEC_READONLY
) == 0)
2859 this_hdr
->sh_flags
|= SHF_WRITE
;
2860 if ((asect
->flags
& SEC_CODE
) != 0)
2861 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2862 if ((asect
->flags
& SEC_MERGE
) != 0)
2864 this_hdr
->sh_flags
|= SHF_MERGE
;
2865 this_hdr
->sh_entsize
= asect
->entsize
;
2866 if ((asect
->flags
& SEC_STRINGS
) != 0)
2867 this_hdr
->sh_flags
|= SHF_STRINGS
;
2869 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2870 this_hdr
->sh_flags
|= SHF_GROUP
;
2871 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2873 this_hdr
->sh_flags
|= SHF_TLS
;
2874 if (asect
->size
== 0
2875 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2877 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2879 this_hdr
->sh_size
= 0;
2882 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2883 if (this_hdr
->sh_size
!= 0)
2884 this_hdr
->sh_type
= SHT_NOBITS
;
2889 /* Check for processor-specific section types. */
2890 if (bed
->elf_backend_fake_sections
2891 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2894 /* If the section has relocs, set up a section header for the
2895 SHT_REL[A] section. If two relocation sections are required for
2896 this section, it is up to the processor-specific back-end to
2897 create the other. */
2898 if ((asect
->flags
& SEC_RELOC
) != 0
2899 && !_bfd_elf_init_reloc_shdr (abfd
,
2900 &elf_section_data (asect
)->rel_hdr
,
2906 /* Fill in the contents of a SHT_GROUP section. */
2909 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2911 bfd_boolean
*failedptr
= failedptrarg
;
2912 unsigned long symindx
;
2913 asection
*elt
, *first
;
2917 /* Ignore linker created group section. See elfNN_ia64_object_p in
2919 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2924 if (elf_group_id (sec
) != NULL
)
2925 symindx
= elf_group_id (sec
)->udata
.i
;
2929 /* If called from the assembler, swap_out_syms will have set up
2930 elf_section_syms; If called for "ld -r", use target_index. */
2931 if (elf_section_syms (abfd
) != NULL
)
2932 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2934 symindx
= sec
->target_index
;
2936 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2938 /* The contents won't be allocated for "ld -r" or objcopy. */
2940 if (sec
->contents
== NULL
)
2943 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2945 /* Arrange for the section to be written out. */
2946 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2947 if (sec
->contents
== NULL
)
2954 loc
= sec
->contents
+ sec
->size
;
2956 /* Get the pointer to the first section in the group that gas
2957 squirreled away here. objcopy arranges for this to be set to the
2958 start of the input section group. */
2959 first
= elt
= elf_next_in_group (sec
);
2961 /* First element is a flag word. Rest of section is elf section
2962 indices for all the sections of the group. Write them backwards
2963 just to keep the group in the same order as given in .section
2964 directives, not that it matters. */
2973 s
= s
->output_section
;
2976 idx
= elf_section_data (s
)->this_idx
;
2977 H_PUT_32 (abfd
, idx
, loc
);
2978 elt
= elf_next_in_group (elt
);
2983 if ((loc
-= 4) != sec
->contents
)
2986 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2989 /* Assign all ELF section numbers. The dummy first section is handled here
2990 too. The link/info pointers for the standard section types are filled
2991 in here too, while we're at it. */
2994 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2996 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2998 unsigned int section_number
, secn
;
2999 Elf_Internal_Shdr
**i_shdrp
;
3000 struct bfd_elf_section_data
*d
;
3004 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
3006 /* SHT_GROUP sections are in relocatable files only. */
3007 if (link_info
== NULL
|| link_info
->relocatable
)
3009 /* Put SHT_GROUP sections first. */
3010 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3012 d
= elf_section_data (sec
);
3014 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
3016 if (sec
->flags
& SEC_LINKER_CREATED
)
3018 /* Remove the linker created SHT_GROUP sections. */
3019 bfd_section_list_remove (abfd
, sec
);
3020 abfd
->section_count
--;
3024 if (section_number
== SHN_LORESERVE
)
3025 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3026 d
->this_idx
= section_number
++;
3032 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3034 d
= elf_section_data (sec
);
3036 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
3038 if (section_number
== SHN_LORESERVE
)
3039 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3040 d
->this_idx
= section_number
++;
3042 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3043 if ((sec
->flags
& SEC_RELOC
) == 0)
3047 if (section_number
== SHN_LORESERVE
)
3048 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3049 d
->rel_idx
= section_number
++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3055 if (section_number
== SHN_LORESERVE
)
3056 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3057 d
->rel_idx2
= section_number
++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3064 if (section_number
== SHN_LORESERVE
)
3065 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3066 t
->shstrtab_section
= section_number
++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3068 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3070 if (bfd_get_symcount (abfd
) > 0)
3072 if (section_number
== SHN_LORESERVE
)
3073 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3074 t
->symtab_section
= section_number
++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3076 if (section_number
> SHN_LORESERVE
- 2)
3078 if (section_number
== SHN_LORESERVE
)
3079 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3080 t
->symtab_shndx_section
= section_number
++;
3081 t
->symtab_shndx_hdr
.sh_name
3082 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3083 ".symtab_shndx", FALSE
);
3084 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3087 if (section_number
== SHN_LORESERVE
)
3088 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3089 t
->strtab_section
= section_number
++;
3090 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3093 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3094 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3096 elf_numsections (abfd
) = section_number
;
3097 elf_elfheader (abfd
)->e_shnum
= section_number
;
3098 if (section_number
> SHN_LORESERVE
)
3099 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3101 /* Set up the list of section header pointers, in agreement with the
3103 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3104 if (i_shdrp
== NULL
)
3107 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3108 if (i_shdrp
[0] == NULL
)
3110 bfd_release (abfd
, i_shdrp
);
3114 elf_elfsections (abfd
) = i_shdrp
;
3116 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3117 if (bfd_get_symcount (abfd
) > 0)
3119 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3120 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3122 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3123 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3125 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3126 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3129 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3131 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3135 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3136 if (d
->rel_idx
!= 0)
3137 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3138 if (d
->rel_idx2
!= 0)
3139 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3141 /* Fill in the sh_link and sh_info fields while we're at it. */
3143 /* sh_link of a reloc section is the section index of the symbol
3144 table. sh_info is the section index of the section to which
3145 the relocation entries apply. */
3146 if (d
->rel_idx
!= 0)
3148 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3149 d
->rel_hdr
.sh_info
= d
->this_idx
;
3151 if (d
->rel_idx2
!= 0)
3153 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3154 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3157 /* We need to set up sh_link for SHF_LINK_ORDER. */
3158 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3160 s
= elf_linked_to_section (sec
);
3163 /* elf_linked_to_section points to the input section. */
3164 if (link_info
!= NULL
)
3166 /* Check discarded linkonce section. */
3167 if (elf_discarded_section (s
))
3170 (*_bfd_error_handler
)
3171 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3172 abfd
, d
->this_hdr
.bfd_section
,
3174 /* Point to the kept section if it has the same
3175 size as the discarded one. */
3176 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3179 bfd_set_error (bfd_error_bad_value
);
3185 s
= s
->output_section
;
3186 BFD_ASSERT (s
!= NULL
);
3190 /* Handle objcopy. */
3191 if (s
->output_section
== NULL
)
3193 (*_bfd_error_handler
)
3194 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3195 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3196 bfd_set_error (bfd_error_bad_value
);
3199 s
= s
->output_section
;
3201 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3206 The Intel C compiler generates SHT_IA_64_UNWIND with
3207 SHF_LINK_ORDER. But it doesn't set the sh_link or
3208 sh_info fields. Hence we could get the situation
3210 const struct elf_backend_data
*bed
3211 = get_elf_backend_data (abfd
);
3212 if (bed
->link_order_error_handler
)
3213 bed
->link_order_error_handler
3214 (_("%B: warning: sh_link not set for section `%A'"),
3219 switch (d
->this_hdr
.sh_type
)
3223 /* A reloc section which we are treating as a normal BFD
3224 section. sh_link is the section index of the symbol
3225 table. sh_info is the section index of the section to
3226 which the relocation entries apply. We assume that an
3227 allocated reloc section uses the dynamic symbol table.
3228 FIXME: How can we be sure? */
3229 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3231 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3233 /* We look up the section the relocs apply to by name. */
3235 if (d
->this_hdr
.sh_type
== SHT_REL
)
3239 s
= bfd_get_section_by_name (abfd
, name
);
3241 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3245 /* We assume that a section named .stab*str is a stabs
3246 string section. We look for a section with the same name
3247 but without the trailing ``str'', and set its sh_link
3248 field to point to this section. */
3249 if (CONST_STRNEQ (sec
->name
, ".stab")
3250 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3255 len
= strlen (sec
->name
);
3256 alc
= bfd_malloc (len
- 2);
3259 memcpy (alc
, sec
->name
, len
- 3);
3260 alc
[len
- 3] = '\0';
3261 s
= bfd_get_section_by_name (abfd
, alc
);
3265 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3267 /* This is a .stab section. */
3268 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3269 elf_section_data (s
)->this_hdr
.sh_entsize
3270 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3277 case SHT_GNU_verneed
:
3278 case SHT_GNU_verdef
:
3279 /* sh_link is the section header index of the string table
3280 used for the dynamic entries, or the symbol table, or the
3282 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3284 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3287 case SHT_GNU_LIBLIST
:
3288 /* sh_link is the section header index of the prelink library
3290 used for the dynamic entries, or the symbol table, or the
3292 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3293 ? ".dynstr" : ".gnu.libstr");
3295 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3300 case SHT_GNU_versym
:
3301 /* sh_link is the section header index of the symbol table
3302 this hash table or version table is for. */
3303 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3305 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3309 d
->this_hdr
.sh_link
= t
->symtab_section
;
3313 for (secn
= 1; secn
< section_number
; ++secn
)
3314 if (i_shdrp
[secn
] == NULL
)
3315 i_shdrp
[secn
] = i_shdrp
[0];
3317 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3318 i_shdrp
[secn
]->sh_name
);
3322 /* Map symbol from it's internal number to the external number, moving
3323 all local symbols to be at the head of the list. */
3326 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3328 /* If the backend has a special mapping, use it. */
3329 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3330 if (bed
->elf_backend_sym_is_global
)
3331 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3333 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3334 || bfd_is_und_section (bfd_get_section (sym
))
3335 || bfd_is_com_section (bfd_get_section (sym
)));
3338 /* Don't output section symbols for sections that are not going to be
3339 output. Also, don't output section symbols for reloc and other
3340 special sections. */
3343 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3345 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3347 || (sym
->section
->owner
!= abfd
3348 && (sym
->section
->output_section
->owner
!= abfd
3349 || sym
->section
->output_offset
!= 0))));
3353 elf_map_symbols (bfd
*abfd
)
3355 unsigned int symcount
= bfd_get_symcount (abfd
);
3356 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3357 asymbol
**sect_syms
;
3358 unsigned int num_locals
= 0;
3359 unsigned int num_globals
= 0;
3360 unsigned int num_locals2
= 0;
3361 unsigned int num_globals2
= 0;
3368 fprintf (stderr
, "elf_map_symbols\n");
3372 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3374 if (max_index
< asect
->index
)
3375 max_index
= asect
->index
;
3379 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3380 if (sect_syms
== NULL
)
3382 elf_section_syms (abfd
) = sect_syms
;
3383 elf_num_section_syms (abfd
) = max_index
;
3385 /* Init sect_syms entries for any section symbols we have already
3386 decided to output. */
3387 for (idx
= 0; idx
< symcount
; idx
++)
3389 asymbol
*sym
= syms
[idx
];
3391 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3392 && !ignore_section_sym (abfd
, sym
))
3394 asection
*sec
= sym
->section
;
3396 if (sec
->owner
!= abfd
)
3397 sec
= sec
->output_section
;
3399 sect_syms
[sec
->index
] = syms
[idx
];
3403 /* Classify all of the symbols. */
3404 for (idx
= 0; idx
< symcount
; idx
++)
3406 if (ignore_section_sym (abfd
, syms
[idx
]))
3408 if (!sym_is_global (abfd
, syms
[idx
]))
3414 /* We will be adding a section symbol for each normal BFD section. Most
3415 sections will already have a section symbol in outsymbols, but
3416 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3417 at least in that case. */
3418 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3420 if (sect_syms
[asect
->index
] == NULL
)
3422 if (!sym_is_global (abfd
, asect
->symbol
))
3429 /* Now sort the symbols so the local symbols are first. */
3430 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3432 if (new_syms
== NULL
)
3435 for (idx
= 0; idx
< symcount
; idx
++)
3437 asymbol
*sym
= syms
[idx
];
3440 if (ignore_section_sym (abfd
, sym
))
3442 if (!sym_is_global (abfd
, sym
))
3445 i
= num_locals
+ num_globals2
++;
3447 sym
->udata
.i
= i
+ 1;
3449 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3451 if (sect_syms
[asect
->index
] == NULL
)
3453 asymbol
*sym
= asect
->symbol
;
3456 sect_syms
[asect
->index
] = sym
;
3457 if (!sym_is_global (abfd
, sym
))
3460 i
= num_locals
+ num_globals2
++;
3462 sym
->udata
.i
= i
+ 1;
3466 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3468 elf_num_locals (abfd
) = num_locals
;
3469 elf_num_globals (abfd
) = num_globals
;
3473 /* Align to the maximum file alignment that could be required for any
3474 ELF data structure. */
3476 static inline file_ptr
3477 align_file_position (file_ptr off
, int align
)
3479 return (off
+ align
- 1) & ~(align
- 1);
3482 /* Assign a file position to a section, optionally aligning to the
3483 required section alignment. */
3486 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3494 al
= i_shdrp
->sh_addralign
;
3496 offset
= BFD_ALIGN (offset
, al
);
3498 i_shdrp
->sh_offset
= offset
;
3499 if (i_shdrp
->bfd_section
!= NULL
)
3500 i_shdrp
->bfd_section
->filepos
= offset
;
3501 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3502 offset
+= i_shdrp
->sh_size
;
3506 /* Compute the file positions we are going to put the sections at, and
3507 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3508 is not NULL, this is being called by the ELF backend linker. */
3511 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3512 struct bfd_link_info
*link_info
)
3514 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3516 struct bfd_strtab_hash
*strtab
= NULL
;
3517 Elf_Internal_Shdr
*shstrtab_hdr
;
3519 if (abfd
->output_has_begun
)
3522 /* Do any elf backend specific processing first. */
3523 if (bed
->elf_backend_begin_write_processing
)
3524 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3526 if (! prep_headers (abfd
))
3529 /* Post process the headers if necessary. */
3530 if (bed
->elf_backend_post_process_headers
)
3531 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3534 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3538 if (!assign_section_numbers (abfd
, link_info
))
3541 /* The backend linker builds symbol table information itself. */
3542 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3544 /* Non-zero if doing a relocatable link. */
3545 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3547 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3551 if (link_info
== NULL
)
3553 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3558 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3559 /* sh_name was set in prep_headers. */
3560 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3561 shstrtab_hdr
->sh_flags
= 0;
3562 shstrtab_hdr
->sh_addr
= 0;
3563 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3564 shstrtab_hdr
->sh_entsize
= 0;
3565 shstrtab_hdr
->sh_link
= 0;
3566 shstrtab_hdr
->sh_info
= 0;
3567 /* sh_offset is set in assign_file_positions_except_relocs. */
3568 shstrtab_hdr
->sh_addralign
= 1;
3570 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3573 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3576 Elf_Internal_Shdr
*hdr
;
3578 off
= elf_tdata (abfd
)->next_file_pos
;
3580 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3581 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3583 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3584 if (hdr
->sh_size
!= 0)
3585 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3587 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3588 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3590 elf_tdata (abfd
)->next_file_pos
= off
;
3592 /* Now that we know where the .strtab section goes, write it
3594 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3595 || ! _bfd_stringtab_emit (abfd
, strtab
))
3597 _bfd_stringtab_free (strtab
);
3600 abfd
->output_has_begun
= TRUE
;
3605 /* Make an initial estimate of the size of the program header. If we
3606 get the number wrong here, we'll redo section placement. */
3608 static bfd_size_type
3609 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3613 const struct elf_backend_data
*bed
;
3615 /* Assume we will need exactly two PT_LOAD segments: one for text
3616 and one for data. */
3619 s
= bfd_get_section_by_name (abfd
, ".interp");
3620 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3622 /* If we have a loadable interpreter section, we need a
3623 PT_INTERP segment. In this case, assume we also need a
3624 PT_PHDR segment, although that may not be true for all
3629 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3631 /* We need a PT_DYNAMIC segment. */
3634 if (elf_tdata (abfd
)->relro
)
3636 /* We need a PT_GNU_RELRO segment only when there is a
3637 PT_DYNAMIC segment. */
3642 if (elf_tdata (abfd
)->eh_frame_hdr
)
3644 /* We need a PT_GNU_EH_FRAME segment. */
3648 if (elf_tdata (abfd
)->stack_flags
)
3650 /* We need a PT_GNU_STACK segment. */
3654 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3656 if ((s
->flags
& SEC_LOAD
) != 0
3657 && CONST_STRNEQ (s
->name
, ".note"))
3659 /* We need a PT_NOTE segment. */
3664 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3666 if (s
->flags
& SEC_THREAD_LOCAL
)
3668 /* We need a PT_TLS segment. */
3674 /* Let the backend count up any program headers it might need. */
3675 bed
= get_elf_backend_data (abfd
);
3676 if (bed
->elf_backend_additional_program_headers
)
3680 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3686 return segs
* bed
->s
->sizeof_phdr
;
3689 /* Create a mapping from a set of sections to a program segment. */
3691 static struct elf_segment_map
*
3692 make_mapping (bfd
*abfd
,
3693 asection
**sections
,
3698 struct elf_segment_map
*m
;
3703 amt
= sizeof (struct elf_segment_map
);
3704 amt
+= (to
- from
- 1) * sizeof (asection
*);
3705 m
= bfd_zalloc (abfd
, amt
);
3709 m
->p_type
= PT_LOAD
;
3710 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3711 m
->sections
[i
- from
] = *hdrpp
;
3712 m
->count
= to
- from
;
3714 if (from
== 0 && phdr
)
3716 /* Include the headers in the first PT_LOAD segment. */
3717 m
->includes_filehdr
= 1;
3718 m
->includes_phdrs
= 1;
3724 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3727 struct elf_segment_map
*
3728 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3730 struct elf_segment_map
*m
;
3732 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3736 m
->p_type
= PT_DYNAMIC
;
3738 m
->sections
[0] = dynsec
;
3743 /* Possibly add or remove segments from the segment map. */
3746 elf_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
3748 struct elf_segment_map
**m
;
3749 const struct elf_backend_data
*bed
;
3751 /* The placement algorithm assumes that non allocated sections are
3752 not in PT_LOAD segments. We ensure this here by removing such
3753 sections from the segment map. We also remove excluded
3754 sections. Finally, any PT_LOAD segment without sections is
3756 m
= &elf_tdata (abfd
)->segment_map
;
3759 unsigned int i
, new_count
;
3761 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3763 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3764 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3765 || (*m
)->p_type
!= PT_LOAD
))
3767 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3771 (*m
)->count
= new_count
;
3773 if ((*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3779 bed
= get_elf_backend_data (abfd
);
3780 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3782 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3789 /* Set up a mapping from BFD sections to program segments. */
3792 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3795 struct elf_segment_map
*m
;
3796 asection
**sections
= NULL
;
3797 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3799 if (elf_tdata (abfd
)->segment_map
== NULL
3800 && bfd_count_sections (abfd
) != 0)
3804 struct elf_segment_map
*mfirst
;
3805 struct elf_segment_map
**pm
;
3808 unsigned int phdr_index
;
3809 bfd_vma maxpagesize
;
3811 bfd_boolean phdr_in_segment
= TRUE
;
3812 bfd_boolean writable
;
3814 asection
*first_tls
= NULL
;
3815 asection
*dynsec
, *eh_frame_hdr
;
3818 /* Select the allocated sections, and sort them. */
3820 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3821 if (sections
== NULL
)
3825 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3827 if ((s
->flags
& SEC_ALLOC
) != 0)
3833 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3836 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3838 /* Build the mapping. */
3843 /* If we have a .interp section, then create a PT_PHDR segment for
3844 the program headers and a PT_INTERP segment for the .interp
3846 s
= bfd_get_section_by_name (abfd
, ".interp");
3847 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3849 amt
= sizeof (struct elf_segment_map
);
3850 m
= bfd_zalloc (abfd
, amt
);
3854 m
->p_type
= PT_PHDR
;
3855 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3856 m
->p_flags
= PF_R
| PF_X
;
3857 m
->p_flags_valid
= 1;
3858 m
->includes_phdrs
= 1;
3863 amt
= sizeof (struct elf_segment_map
);
3864 m
= bfd_zalloc (abfd
, amt
);
3868 m
->p_type
= PT_INTERP
;
3876 /* Look through the sections. We put sections in the same program
3877 segment when the start of the second section can be placed within
3878 a few bytes of the end of the first section. */
3882 maxpagesize
= bed
->maxpagesize
;
3884 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3886 && (dynsec
->flags
& SEC_LOAD
) == 0)
3889 /* Deal with -Ttext or something similar such that the first section
3890 is not adjacent to the program headers. This is an
3891 approximation, since at this point we don't know exactly how many
3892 program headers we will need. */
3895 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3897 if (phdr_size
== (bfd_size_type
) -1)
3898 phdr_size
= get_program_header_size (abfd
, info
);
3899 if ((abfd
->flags
& D_PAGED
) == 0
3900 || sections
[0]->lma
< phdr_size
3901 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3902 phdr_in_segment
= FALSE
;
3905 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3908 bfd_boolean new_segment
;
3912 /* See if this section and the last one will fit in the same
3915 if (last_hdr
== NULL
)
3917 /* If we don't have a segment yet, then we don't need a new
3918 one (we build the last one after this loop). */
3919 new_segment
= FALSE
;
3921 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3923 /* If this section has a different relation between the
3924 virtual address and the load address, then we need a new
3928 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3929 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3931 /* If putting this section in this segment would force us to
3932 skip a page in the segment, then we need a new segment. */
3935 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3936 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3938 /* We don't want to put a loadable section after a
3939 nonloadable section in the same segment.
3940 Consider .tbss sections as loadable for this purpose. */
3943 else if ((abfd
->flags
& D_PAGED
) == 0)
3945 /* If the file is not demand paged, which means that we
3946 don't require the sections to be correctly aligned in the
3947 file, then there is no other reason for a new segment. */
3948 new_segment
= FALSE
;
3951 && (hdr
->flags
& SEC_READONLY
) == 0
3952 && (((last_hdr
->lma
+ last_size
- 1)
3953 & ~(maxpagesize
- 1))
3954 != (hdr
->lma
& ~(maxpagesize
- 1))))
3956 /* We don't want to put a writable section in a read only
3957 segment, unless they are on the same page in memory
3958 anyhow. We already know that the last section does not
3959 bring us past the current section on the page, so the
3960 only case in which the new section is not on the same
3961 page as the previous section is when the previous section
3962 ends precisely on a page boundary. */
3967 /* Otherwise, we can use the same segment. */
3968 new_segment
= FALSE
;
3973 if ((hdr
->flags
& SEC_READONLY
) == 0)
3976 /* .tbss sections effectively have zero size. */
3977 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3978 != SEC_THREAD_LOCAL
)
3979 last_size
= hdr
->size
;
3985 /* We need a new program segment. We must create a new program
3986 header holding all the sections from phdr_index until hdr. */
3988 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3995 if ((hdr
->flags
& SEC_READONLY
) == 0)
4001 /* .tbss sections effectively have zero size. */
4002 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
4003 last_size
= hdr
->size
;
4007 phdr_in_segment
= FALSE
;
4010 /* Create a final PT_LOAD program segment. */
4011 if (last_hdr
!= NULL
)
4013 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4021 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4024 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4031 /* For each loadable .note section, add a PT_NOTE segment. We don't
4032 use bfd_get_section_by_name, because if we link together
4033 nonloadable .note sections and loadable .note sections, we will
4034 generate two .note sections in the output file. FIXME: Using
4035 names for section types is bogus anyhow. */
4036 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4038 if ((s
->flags
& SEC_LOAD
) != 0
4039 && CONST_STRNEQ (s
->name
, ".note"))
4041 amt
= sizeof (struct elf_segment_map
);
4042 m
= bfd_zalloc (abfd
, amt
);
4046 m
->p_type
= PT_NOTE
;
4053 if (s
->flags
& SEC_THREAD_LOCAL
)
4061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4066 amt
= sizeof (struct elf_segment_map
);
4067 amt
+= (tls_count
- 1) * sizeof (asection
*);
4068 m
= bfd_zalloc (abfd
, amt
);
4073 m
->count
= tls_count
;
4074 /* Mandated PF_R. */
4076 m
->p_flags_valid
= 1;
4077 for (i
= 0; i
< tls_count
; ++i
)
4079 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4080 m
->sections
[i
] = first_tls
;
4081 first_tls
= first_tls
->next
;
4088 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4090 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4091 if (eh_frame_hdr
!= NULL
4092 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4094 amt
= sizeof (struct elf_segment_map
);
4095 m
= bfd_zalloc (abfd
, amt
);
4099 m
->p_type
= PT_GNU_EH_FRAME
;
4101 m
->sections
[0] = eh_frame_hdr
->output_section
;
4107 if (elf_tdata (abfd
)->stack_flags
)
4109 amt
= sizeof (struct elf_segment_map
);
4110 m
= bfd_zalloc (abfd
, amt
);
4114 m
->p_type
= PT_GNU_STACK
;
4115 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4116 m
->p_flags_valid
= 1;
4122 if (dynsec
!= NULL
&& elf_tdata (abfd
)->relro
)
4124 /* We make a PT_GNU_RELRO segment only when there is a
4125 PT_DYNAMIC segment. */
4126 amt
= sizeof (struct elf_segment_map
);
4127 m
= bfd_zalloc (abfd
, amt
);
4131 m
->p_type
= PT_GNU_RELRO
;
4133 m
->p_flags_valid
= 1;
4140 elf_tdata (abfd
)->segment_map
= mfirst
;
4143 if (!elf_modify_segment_map (abfd
, info
))
4146 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4148 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4153 if (sections
!= NULL
)
4158 /* Sort sections by address. */
4161 elf_sort_sections (const void *arg1
, const void *arg2
)
4163 const asection
*sec1
= *(const asection
**) arg1
;
4164 const asection
*sec2
= *(const asection
**) arg2
;
4165 bfd_size_type size1
, size2
;
4167 /* Sort by LMA first, since this is the address used to
4168 place the section into a segment. */
4169 if (sec1
->lma
< sec2
->lma
)
4171 else if (sec1
->lma
> sec2
->lma
)
4174 /* Then sort by VMA. Normally the LMA and the VMA will be
4175 the same, and this will do nothing. */
4176 if (sec1
->vma
< sec2
->vma
)
4178 else if (sec1
->vma
> sec2
->vma
)
4181 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4183 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4189 /* If the indicies are the same, do not return 0
4190 here, but continue to try the next comparison. */
4191 if (sec1
->target_index
- sec2
->target_index
!= 0)
4192 return sec1
->target_index
- sec2
->target_index
;
4197 else if (TOEND (sec2
))
4202 /* Sort by size, to put zero sized sections
4203 before others at the same address. */
4205 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4206 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4213 return sec1
->target_index
- sec2
->target_index
;
4216 /* Ian Lance Taylor writes:
4218 We shouldn't be using % with a negative signed number. That's just
4219 not good. We have to make sure either that the number is not
4220 negative, or that the number has an unsigned type. When the types
4221 are all the same size they wind up as unsigned. When file_ptr is a
4222 larger signed type, the arithmetic winds up as signed long long,
4225 What we're trying to say here is something like ``increase OFF by
4226 the least amount that will cause it to be equal to the VMA modulo
4228 /* In other words, something like:
4230 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4231 off_offset = off % bed->maxpagesize;
4232 if (vma_offset < off_offset)
4233 adjustment = vma_offset + bed->maxpagesize - off_offset;
4235 adjustment = vma_offset - off_offset;
4237 which can can be collapsed into the expression below. */
4240 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4242 return ((vma
- off
) % maxpagesize
);
4245 /* Assign file positions to the sections based on the mapping from
4246 sections to segments. This function also sets up some fields in
4250 assign_file_positions_for_load_sections (bfd
*abfd
,
4251 struct bfd_link_info
*link_info
)
4253 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4254 struct elf_segment_map
*m
;
4255 Elf_Internal_Phdr
*phdrs
;
4256 Elf_Internal_Phdr
*p
;
4258 bfd_size_type maxpagesize
;
4262 if (link_info
== NULL
4263 && !elf_modify_segment_map (abfd
, link_info
))
4267 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4270 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4271 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4272 elf_elfheader (abfd
)->e_phnum
= alloc
;
4274 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4275 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4277 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4278 == alloc
* bed
->s
->sizeof_phdr
);
4282 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4286 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4287 elf_tdata (abfd
)->phdr
= phdrs
;
4292 if ((abfd
->flags
& D_PAGED
) != 0)
4293 maxpagesize
= bed
->maxpagesize
;
4295 off
= bed
->s
->sizeof_ehdr
;
4296 off
+= alloc
* bed
->s
->sizeof_phdr
;
4298 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4304 /* If elf_segment_map is not from map_sections_to_segments, the
4305 sections may not be correctly ordered. NOTE: sorting should
4306 not be done to the PT_NOTE section of a corefile, which may
4307 contain several pseudo-sections artificially created by bfd.
4308 Sorting these pseudo-sections breaks things badly. */
4310 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4311 && m
->p_type
== PT_NOTE
))
4312 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4315 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4316 number of sections with contents contributing to both p_filesz
4317 and p_memsz, followed by a number of sections with no contents
4318 that just contribute to p_memsz. In this loop, OFF tracks next
4319 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4320 an adjustment we use for segments that have no file contents
4321 but need zero filled memory allocation. */
4323 p
->p_type
= m
->p_type
;
4324 p
->p_flags
= m
->p_flags
;
4329 p
->p_vaddr
= m
->sections
[0]->vma
;
4331 if (m
->p_paddr_valid
)
4332 p
->p_paddr
= m
->p_paddr
;
4333 else if (m
->count
== 0)
4336 p
->p_paddr
= m
->sections
[0]->lma
;
4338 if (p
->p_type
== PT_LOAD
4339 && (abfd
->flags
& D_PAGED
) != 0)
4341 /* p_align in demand paged PT_LOAD segments effectively stores
4342 the maximum page size. When copying an executable with
4343 objcopy, we set m->p_align from the input file. Use this
4344 value for maxpagesize rather than bed->maxpagesize, which
4345 may be different. Note that we use maxpagesize for PT_TLS
4346 segment alignment later in this function, so we are relying
4347 on at least one PT_LOAD segment appearing before a PT_TLS
4349 if (m
->p_align_valid
)
4350 maxpagesize
= m
->p_align
;
4352 p
->p_align
= maxpagesize
;
4354 else if (m
->count
== 0)
4355 p
->p_align
= 1 << bed
->s
->log_file_align
;
4359 if (p
->p_type
== PT_LOAD
4362 bfd_size_type align
;
4364 unsigned int align_power
= 0;
4366 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4368 unsigned int secalign
;
4370 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4371 if (secalign
> align_power
)
4372 align_power
= secalign
;
4374 align
= (bfd_size_type
) 1 << align_power
;
4376 if (align
< maxpagesize
)
4377 align
= maxpagesize
;
4379 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4382 && !m
->includes_filehdr
4383 && !m
->includes_phdrs
4384 && (ufile_ptr
) off
>= align
)
4386 /* If the first section isn't loadable, the same holds for
4387 any other sections. Since the segment won't need file
4388 space, we can make p_offset overlap some prior segment.
4389 However, .tbss is special. If a segment starts with
4390 .tbss, we need to look at the next section to decide
4391 whether the segment has any loadable sections. */
4393 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0
4394 && (m
->sections
[i
]->flags
& SEC_HAS_CONTENTS
) == 0)
4396 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4400 voff
= adjust
- align
;
4406 /* Make sure the .dynamic section is the first section in the
4407 PT_DYNAMIC segment. */
4408 else if (p
->p_type
== PT_DYNAMIC
4410 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4413 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4415 bfd_set_error (bfd_error_bad_value
);
4423 if (m
->includes_filehdr
)
4425 if (! m
->p_flags_valid
)
4428 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4429 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4432 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4434 if (p
->p_vaddr
< (bfd_vma
) off
)
4436 (*_bfd_error_handler
)
4437 (_("%B: Not enough room for program headers, try linking with -N"),
4439 bfd_set_error (bfd_error_bad_value
);
4444 if (! m
->p_paddr_valid
)
4449 if (m
->includes_phdrs
)
4451 if (! m
->p_flags_valid
)
4454 if (!m
->includes_filehdr
)
4456 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4460 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4461 p
->p_vaddr
-= off
- p
->p_offset
;
4462 if (! m
->p_paddr_valid
)
4463 p
->p_paddr
-= off
- p
->p_offset
;
4467 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4468 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4471 if (p
->p_type
== PT_LOAD
4472 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4474 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4475 p
->p_offset
= off
+ voff
;
4480 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4481 p
->p_filesz
+= adjust
;
4482 p
->p_memsz
+= adjust
;
4486 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4487 maps. Set filepos for sections in PT_LOAD segments, and in
4488 core files, for sections in PT_NOTE segments.
4489 assign_file_positions_for_non_load_sections will set filepos
4490 for other sections and update p_filesz for other segments. */
4491 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4495 bfd_size_type align
;
4499 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4501 if (p
->p_type
== PT_LOAD
4502 || p
->p_type
== PT_TLS
)
4504 bfd_signed_vma adjust
;
4506 if ((flags
& SEC_LOAD
) != 0)
4508 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4511 (*_bfd_error_handler
)
4512 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4513 abfd
, sec
, (unsigned long) sec
->lma
);
4517 p
->p_filesz
+= adjust
;
4518 p
->p_memsz
+= adjust
;
4520 /* .tbss is special. It doesn't contribute to p_memsz of
4522 else if ((flags
& SEC_ALLOC
) != 0
4523 && ((flags
& SEC_THREAD_LOCAL
) == 0
4524 || p
->p_type
== PT_TLS
))
4526 /* The section VMA must equal the file position
4527 modulo the page size. */
4528 bfd_size_type page
= align
;
4529 if (page
< maxpagesize
)
4531 adjust
= vma_page_aligned_bias (sec
->vma
,
4532 p
->p_vaddr
+ p
->p_memsz
,
4534 p
->p_memsz
+= adjust
;
4538 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4540 /* The section at i == 0 is the one that actually contains
4546 p
->p_filesz
= sec
->size
;
4552 /* The rest are fake sections that shouldn't be written. */
4561 if (p
->p_type
== PT_LOAD
)
4563 sec
->filepos
= off
+ voff
;
4564 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4565 1997, and the exact reason for it isn't clear. One
4566 plausible explanation is that it is to work around
4567 a problem we have with linker scripts using data
4568 statements in NOLOAD sections. I don't think it
4569 makes a great deal of sense to have such a section
4570 assigned to a PT_LOAD segment, but apparently
4571 people do this. The data statement results in a
4572 bfd_data_link_order being built, and these need
4573 section contents to write into. Eventually, we get
4574 to _bfd_elf_write_object_contents which writes any
4575 section with contents to the output. Make room
4576 here for the write, so that following segments are
4578 if ((flags
& SEC_LOAD
) != 0
4579 || (flags
& SEC_HAS_CONTENTS
) != 0)
4583 if ((flags
& SEC_LOAD
) != 0)
4585 p
->p_filesz
+= sec
->size
;
4586 p
->p_memsz
+= sec
->size
;
4589 /* .tbss is special. It doesn't contribute to p_memsz of
4591 else if ((flags
& SEC_ALLOC
) != 0
4592 && ((flags
& SEC_THREAD_LOCAL
) == 0
4593 || p
->p_type
== PT_TLS
))
4594 p
->p_memsz
+= sec
->size
;
4596 if (p
->p_type
== PT_TLS
4598 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4600 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4602 p
->p_memsz
+= o
->offset
+ o
->size
;
4605 if (p
->p_type
== PT_GNU_RELRO
)
4607 else if (align
> p
->p_align
4608 && (p
->p_type
!= PT_LOAD
4609 || (abfd
->flags
& D_PAGED
) == 0))
4613 if (! m
->p_flags_valid
)
4616 if ((flags
& SEC_CODE
) != 0)
4618 if ((flags
& SEC_READONLY
) == 0)
4624 elf_tdata (abfd
)->next_file_pos
= off
;
4628 /* Assign file positions for the other sections. */
4631 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4632 struct bfd_link_info
*link_info
)
4634 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4635 Elf_Internal_Shdr
**i_shdrpp
;
4636 Elf_Internal_Shdr
**hdrpp
;
4637 Elf_Internal_Phdr
*phdrs
;
4638 Elf_Internal_Phdr
*p
;
4639 struct elf_segment_map
*m
;
4640 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4641 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4643 unsigned int num_sec
;
4647 i_shdrpp
= elf_elfsections (abfd
);
4648 num_sec
= elf_numsections (abfd
);
4649 off
= elf_tdata (abfd
)->next_file_pos
;
4650 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4652 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4653 Elf_Internal_Shdr
*hdr
;
4656 if (hdr
->bfd_section
!= NULL
4657 && (hdr
->bfd_section
->filepos
!= 0
4658 || (hdr
->sh_type
== SHT_NOBITS
4659 && hdr
->contents
== NULL
)))
4660 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4661 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4663 if (hdr
->sh_size
!= 0)
4664 ((*_bfd_error_handler
)
4665 (_("%B: warning: allocated section `%s' not in segment"),
4667 (hdr
->bfd_section
== NULL
4669 : hdr
->bfd_section
->name
)));
4670 /* We don't need to page align empty sections. */
4671 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4672 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4675 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4677 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4680 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4681 && hdr
->bfd_section
== NULL
)
4682 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4683 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4684 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4685 hdr
->sh_offset
= -1;
4687 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4689 if (i
== SHN_LORESERVE
- 1)
4691 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4692 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4696 /* Now that we have set the section file positions, we can set up
4697 the file positions for the non PT_LOAD segments. */
4701 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4703 phdrs
= elf_tdata (abfd
)->phdr
;
4704 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4709 if (p
->p_type
!= PT_LOAD
)
4712 if (m
->includes_filehdr
)
4714 filehdr_vaddr
= p
->p_vaddr
;
4715 filehdr_paddr
= p
->p_paddr
;
4717 if (m
->includes_phdrs
)
4719 phdrs_vaddr
= p
->p_vaddr
;
4720 phdrs_paddr
= p
->p_paddr
;
4721 if (m
->includes_filehdr
)
4723 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4724 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4729 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4735 if (p
->p_type
!= PT_LOAD
4736 && (p
->p_type
!= PT_NOTE
|| bfd_get_format (abfd
) != bfd_core
))
4738 Elf_Internal_Shdr
*hdr
;
4739 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4741 hdr
= &elf_section_data (m
->sections
[m
->count
- 1])->this_hdr
;
4742 p
->p_filesz
= (m
->sections
[m
->count
- 1]->filepos
4743 - m
->sections
[0]->filepos
);
4744 if (hdr
->sh_type
!= SHT_NOBITS
)
4745 p
->p_filesz
+= hdr
->sh_size
;
4747 p
->p_offset
= m
->sections
[0]->filepos
;
4752 if (m
->includes_filehdr
)
4754 p
->p_vaddr
= filehdr_vaddr
;
4755 if (! m
->p_paddr_valid
)
4756 p
->p_paddr
= filehdr_paddr
;
4758 else if (m
->includes_phdrs
)
4760 p
->p_vaddr
= phdrs_vaddr
;
4761 if (! m
->p_paddr_valid
)
4762 p
->p_paddr
= phdrs_paddr
;
4764 else if (p
->p_type
== PT_GNU_RELRO
)
4766 Elf_Internal_Phdr
*lp
;
4768 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4770 if (lp
->p_type
== PT_LOAD
4771 && lp
->p_vaddr
<= link_info
->relro_end
4772 && lp
->p_vaddr
>= link_info
->relro_start
4773 && (lp
->p_vaddr
+ lp
->p_filesz
4774 >= link_info
->relro_end
))
4778 if (lp
< phdrs
+ count
4779 && link_info
->relro_end
> lp
->p_vaddr
)
4781 p
->p_vaddr
= lp
->p_vaddr
;
4782 p
->p_paddr
= lp
->p_paddr
;
4783 p
->p_offset
= lp
->p_offset
;
4784 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4785 p
->p_memsz
= p
->p_filesz
;
4787 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4791 memset (p
, 0, sizeof *p
);
4792 p
->p_type
= PT_NULL
;
4798 elf_tdata (abfd
)->next_file_pos
= off
;
4803 /* Work out the file positions of all the sections. This is called by
4804 _bfd_elf_compute_section_file_positions. All the section sizes and
4805 VMAs must be known before this is called.
4807 Reloc sections come in two flavours: Those processed specially as
4808 "side-channel" data attached to a section to which they apply, and
4809 those that bfd doesn't process as relocations. The latter sort are
4810 stored in a normal bfd section by bfd_section_from_shdr. We don't
4811 consider the former sort here, unless they form part of the loadable
4812 image. Reloc sections not assigned here will be handled later by
4813 assign_file_positions_for_relocs.
4815 We also don't set the positions of the .symtab and .strtab here. */
4818 assign_file_positions_except_relocs (bfd
*abfd
,
4819 struct bfd_link_info
*link_info
)
4821 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4822 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4824 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4826 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4827 && bfd_get_format (abfd
) != bfd_core
)
4829 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4830 unsigned int num_sec
= elf_numsections (abfd
);
4831 Elf_Internal_Shdr
**hdrpp
;
4834 /* Start after the ELF header. */
4835 off
= i_ehdrp
->e_ehsize
;
4837 /* We are not creating an executable, which means that we are
4838 not creating a program header, and that the actual order of
4839 the sections in the file is unimportant. */
4840 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4842 Elf_Internal_Shdr
*hdr
;
4845 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4846 && hdr
->bfd_section
== NULL
)
4847 || i
== tdata
->symtab_section
4848 || i
== tdata
->symtab_shndx_section
4849 || i
== tdata
->strtab_section
)
4851 hdr
->sh_offset
= -1;
4854 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4856 if (i
== SHN_LORESERVE
- 1)
4858 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4859 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4867 /* Assign file positions for the loaded sections based on the
4868 assignment of sections to segments. */
4869 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4872 /* And for non-load sections. */
4873 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4876 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4878 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4882 /* Write out the program headers. */
4883 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4884 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4885 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4888 off
= tdata
->next_file_pos
;
4891 /* Place the section headers. */
4892 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4893 i_ehdrp
->e_shoff
= off
;
4894 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4896 tdata
->next_file_pos
= off
;
4902 prep_headers (bfd
*abfd
)
4904 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4905 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4906 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4907 struct elf_strtab_hash
*shstrtab
;
4908 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4910 i_ehdrp
= elf_elfheader (abfd
);
4911 i_shdrp
= elf_elfsections (abfd
);
4913 shstrtab
= _bfd_elf_strtab_init ();
4914 if (shstrtab
== NULL
)
4917 elf_shstrtab (abfd
) = shstrtab
;
4919 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4920 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4921 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4922 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4924 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4925 i_ehdrp
->e_ident
[EI_DATA
] =
4926 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4927 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4929 if ((abfd
->flags
& DYNAMIC
) != 0)
4930 i_ehdrp
->e_type
= ET_DYN
;
4931 else if ((abfd
->flags
& EXEC_P
) != 0)
4932 i_ehdrp
->e_type
= ET_EXEC
;
4933 else if (bfd_get_format (abfd
) == bfd_core
)
4934 i_ehdrp
->e_type
= ET_CORE
;
4936 i_ehdrp
->e_type
= ET_REL
;
4938 switch (bfd_get_arch (abfd
))
4940 case bfd_arch_unknown
:
4941 i_ehdrp
->e_machine
= EM_NONE
;
4944 /* There used to be a long list of cases here, each one setting
4945 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4946 in the corresponding bfd definition. To avoid duplication,
4947 the switch was removed. Machines that need special handling
4948 can generally do it in elf_backend_final_write_processing(),
4949 unless they need the information earlier than the final write.
4950 Such need can generally be supplied by replacing the tests for
4951 e_machine with the conditions used to determine it. */
4953 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4956 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4957 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4959 /* No program header, for now. */
4960 i_ehdrp
->e_phoff
= 0;
4961 i_ehdrp
->e_phentsize
= 0;
4962 i_ehdrp
->e_phnum
= 0;
4964 /* Each bfd section is section header entry. */
4965 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4966 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4968 /* If we're building an executable, we'll need a program header table. */
4969 if (abfd
->flags
& EXEC_P
)
4970 /* It all happens later. */
4974 i_ehdrp
->e_phentsize
= 0;
4976 i_ehdrp
->e_phoff
= 0;
4979 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4980 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4981 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4983 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4984 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4985 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4986 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4987 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4993 /* Assign file positions for all the reloc sections which are not part
4994 of the loadable file image. */
4997 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
5000 unsigned int i
, num_sec
;
5001 Elf_Internal_Shdr
**shdrpp
;
5003 off
= elf_tdata (abfd
)->next_file_pos
;
5005 num_sec
= elf_numsections (abfd
);
5006 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5008 Elf_Internal_Shdr
*shdrp
;
5011 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5012 && shdrp
->sh_offset
== -1)
5013 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5016 elf_tdata (abfd
)->next_file_pos
= off
;
5020 _bfd_elf_write_object_contents (bfd
*abfd
)
5022 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5023 Elf_Internal_Ehdr
*i_ehdrp
;
5024 Elf_Internal_Shdr
**i_shdrp
;
5026 unsigned int count
, num_sec
;
5028 if (! abfd
->output_has_begun
5029 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5032 i_shdrp
= elf_elfsections (abfd
);
5033 i_ehdrp
= elf_elfheader (abfd
);
5036 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5040 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5042 /* After writing the headers, we need to write the sections too... */
5043 num_sec
= elf_numsections (abfd
);
5044 for (count
= 1; count
< num_sec
; count
++)
5046 if (bed
->elf_backend_section_processing
)
5047 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5048 if (i_shdrp
[count
]->contents
)
5050 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5052 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5053 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5056 if (count
== SHN_LORESERVE
- 1)
5057 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5060 /* Write out the section header names. */
5061 if (elf_shstrtab (abfd
) != NULL
5062 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5063 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5066 if (bed
->elf_backend_final_write_processing
)
5067 (*bed
->elf_backend_final_write_processing
) (abfd
,
5068 elf_tdata (abfd
)->linker
);
5070 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5074 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5076 /* Hopefully this can be done just like an object file. */
5077 return _bfd_elf_write_object_contents (abfd
);
5080 /* Given a section, search the header to find them. */
5083 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5085 const struct elf_backend_data
*bed
;
5088 if (elf_section_data (asect
) != NULL
5089 && elf_section_data (asect
)->this_idx
!= 0)
5090 return elf_section_data (asect
)->this_idx
;
5092 if (bfd_is_abs_section (asect
))
5094 else if (bfd_is_com_section (asect
))
5096 else if (bfd_is_und_section (asect
))
5101 bed
= get_elf_backend_data (abfd
);
5102 if (bed
->elf_backend_section_from_bfd_section
)
5106 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5111 bfd_set_error (bfd_error_nonrepresentable_section
);
5116 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5120 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5122 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5124 flagword flags
= asym_ptr
->flags
;
5126 /* When gas creates relocations against local labels, it creates its
5127 own symbol for the section, but does put the symbol into the
5128 symbol chain, so udata is 0. When the linker is generating
5129 relocatable output, this section symbol may be for one of the
5130 input sections rather than the output section. */
5131 if (asym_ptr
->udata
.i
== 0
5132 && (flags
& BSF_SECTION_SYM
)
5133 && asym_ptr
->section
)
5138 sec
= asym_ptr
->section
;
5139 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5140 sec
= sec
->output_section
;
5141 if (sec
->owner
== abfd
5142 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5143 && elf_section_syms (abfd
)[indx
] != NULL
)
5144 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5147 idx
= asym_ptr
->udata
.i
;
5151 /* This case can occur when using --strip-symbol on a symbol
5152 which is used in a relocation entry. */
5153 (*_bfd_error_handler
)
5154 (_("%B: symbol `%s' required but not present"),
5155 abfd
, bfd_asymbol_name (asym_ptr
));
5156 bfd_set_error (bfd_error_no_symbols
);
5163 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5164 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5165 elf_symbol_flags (flags
));
5173 /* Rewrite program header information. */
5176 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5178 Elf_Internal_Ehdr
*iehdr
;
5179 struct elf_segment_map
*map
;
5180 struct elf_segment_map
*map_first
;
5181 struct elf_segment_map
**pointer_to_map
;
5182 Elf_Internal_Phdr
*segment
;
5185 unsigned int num_segments
;
5186 bfd_boolean phdr_included
= FALSE
;
5187 bfd_vma maxpagesize
;
5188 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5189 unsigned int phdr_adjust_num
= 0;
5190 const struct elf_backend_data
*bed
;
5192 bed
= get_elf_backend_data (ibfd
);
5193 iehdr
= elf_elfheader (ibfd
);
5196 pointer_to_map
= &map_first
;
5198 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5199 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5201 /* Returns the end address of the segment + 1. */
5202 #define SEGMENT_END(segment, start) \
5203 (start + (segment->p_memsz > segment->p_filesz \
5204 ? segment->p_memsz : segment->p_filesz))
5206 #define SECTION_SIZE(section, segment) \
5207 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5208 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5209 ? section->size : 0)
5211 /* Returns TRUE if the given section is contained within
5212 the given segment. VMA addresses are compared. */
5213 #define IS_CONTAINED_BY_VMA(section, segment) \
5214 (section->vma >= segment->p_vaddr \
5215 && (section->vma + SECTION_SIZE (section, segment) \
5216 <= (SEGMENT_END (segment, segment->p_vaddr))))
5218 /* Returns TRUE if the given section is contained within
5219 the given segment. LMA addresses are compared. */
5220 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5221 (section->lma >= base \
5222 && (section->lma + SECTION_SIZE (section, segment) \
5223 <= SEGMENT_END (segment, base)))
5225 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5226 #define IS_COREFILE_NOTE(p, s) \
5227 (p->p_type == PT_NOTE \
5228 && bfd_get_format (ibfd) == bfd_core \
5229 && s->vma == 0 && s->lma == 0 \
5230 && (bfd_vma) s->filepos >= p->p_offset \
5231 && ((bfd_vma) s->filepos + s->size \
5232 <= p->p_offset + p->p_filesz))
5234 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5235 linker, which generates a PT_INTERP section with p_vaddr and
5236 p_memsz set to 0. */
5237 #define IS_SOLARIS_PT_INTERP(p, s) \
5239 && p->p_paddr == 0 \
5240 && p->p_memsz == 0 \
5241 && p->p_filesz > 0 \
5242 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5244 && (bfd_vma) s->filepos >= p->p_offset \
5245 && ((bfd_vma) s->filepos + s->size \
5246 <= p->p_offset + p->p_filesz))
5248 /* Decide if the given section should be included in the given segment.
5249 A section will be included if:
5250 1. It is within the address space of the segment -- we use the LMA
5251 if that is set for the segment and the VMA otherwise,
5252 2. It is an allocated segment,
5253 3. There is an output section associated with it,
5254 4. The section has not already been allocated to a previous segment.
5255 5. PT_GNU_STACK segments do not include any sections.
5256 6. PT_TLS segment includes only SHF_TLS sections.
5257 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5258 8. PT_DYNAMIC should not contain empty sections at the beginning
5259 (with the possible exception of .dynamic). */
5260 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5261 ((((segment->p_paddr \
5262 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5263 : IS_CONTAINED_BY_VMA (section, segment)) \
5264 && (section->flags & SEC_ALLOC) != 0) \
5265 || IS_COREFILE_NOTE (segment, section)) \
5266 && segment->p_type != PT_GNU_STACK \
5267 && (segment->p_type != PT_TLS \
5268 || (section->flags & SEC_THREAD_LOCAL)) \
5269 && (segment->p_type == PT_LOAD \
5270 || segment->p_type == PT_TLS \
5271 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5272 && (segment->p_type != PT_DYNAMIC \
5273 || SECTION_SIZE (section, segment) > 0 \
5274 || (segment->p_paddr \
5275 ? segment->p_paddr != section->lma \
5276 : segment->p_vaddr != section->vma) \
5277 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5279 && ! section->segment_mark)
5281 /* If the output section of a section in the input segment is NULL,
5282 it is removed from the corresponding output segment. */
5283 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5284 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5285 && section->output_section != NULL)
5287 /* Returns TRUE iff seg1 starts after the end of seg2. */
5288 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5289 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5291 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5292 their VMA address ranges and their LMA address ranges overlap.
5293 It is possible to have overlapping VMA ranges without overlapping LMA
5294 ranges. RedBoot images for example can have both .data and .bss mapped
5295 to the same VMA range, but with the .data section mapped to a different
5297 #define SEGMENT_OVERLAPS(seg1, seg2) \
5298 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5299 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5300 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5301 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5303 /* Initialise the segment mark field. */
5304 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5305 section
->segment_mark
= FALSE
;
5307 /* Scan through the segments specified in the program header
5308 of the input BFD. For this first scan we look for overlaps
5309 in the loadable segments. These can be created by weird
5310 parameters to objcopy. Also, fix some solaris weirdness. */
5311 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5316 Elf_Internal_Phdr
*segment2
;
5318 if (segment
->p_type
== PT_INTERP
)
5319 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5320 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5322 /* Mininal change so that the normal section to segment
5323 assignment code will work. */
5324 segment
->p_vaddr
= section
->vma
;
5328 if (segment
->p_type
!= PT_LOAD
)
5331 /* Determine if this segment overlaps any previous segments. */
5332 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5334 bfd_signed_vma extra_length
;
5336 if (segment2
->p_type
!= PT_LOAD
5337 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5340 /* Merge the two segments together. */
5341 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5343 /* Extend SEGMENT2 to include SEGMENT and then delete
5346 SEGMENT_END (segment
, segment
->p_vaddr
)
5347 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5349 if (extra_length
> 0)
5351 segment2
->p_memsz
+= extra_length
;
5352 segment2
->p_filesz
+= extra_length
;
5355 segment
->p_type
= PT_NULL
;
5357 /* Since we have deleted P we must restart the outer loop. */
5359 segment
= elf_tdata (ibfd
)->phdr
;
5364 /* Extend SEGMENT to include SEGMENT2 and then delete
5367 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5368 - SEGMENT_END (segment
, segment
->p_vaddr
);
5370 if (extra_length
> 0)
5372 segment
->p_memsz
+= extra_length
;
5373 segment
->p_filesz
+= extra_length
;
5376 segment2
->p_type
= PT_NULL
;
5381 /* The second scan attempts to assign sections to segments. */
5382 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5386 unsigned int section_count
;
5387 asection
** sections
;
5388 asection
* output_section
;
5390 bfd_vma matching_lma
;
5391 bfd_vma suggested_lma
;
5394 asection
* first_section
;
5396 if (segment
->p_type
== PT_NULL
)
5399 first_section
= NULL
;
5400 /* Compute how many sections might be placed into this segment. */
5401 for (section
= ibfd
->sections
, section_count
= 0;
5403 section
= section
->next
)
5405 /* Find the first section in the input segment, which may be
5406 removed from the corresponding output segment. */
5407 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5409 if (first_section
== NULL
)
5410 first_section
= section
;
5411 if (section
->output_section
!= NULL
)
5416 /* Allocate a segment map big enough to contain
5417 all of the sections we have selected. */
5418 amt
= sizeof (struct elf_segment_map
);
5419 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5420 map
= bfd_zalloc (obfd
, amt
);
5424 /* Initialise the fields of the segment map. Default to
5425 using the physical address of the segment in the input BFD. */
5427 map
->p_type
= segment
->p_type
;
5428 map
->p_flags
= segment
->p_flags
;
5429 map
->p_flags_valid
= 1;
5431 /* If the first section in the input segment is removed, there is
5432 no need to preserve segment physical address in the corresponding
5434 if (!first_section
|| first_section
->output_section
!= NULL
)
5436 map
->p_paddr
= segment
->p_paddr
;
5437 map
->p_paddr_valid
= 1;
5440 /* Determine if this segment contains the ELF file header
5441 and if it contains the program headers themselves. */
5442 map
->includes_filehdr
= (segment
->p_offset
== 0
5443 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5445 map
->includes_phdrs
= 0;
5447 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5449 map
->includes_phdrs
=
5450 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5451 && (segment
->p_offset
+ segment
->p_filesz
5452 >= ((bfd_vma
) iehdr
->e_phoff
5453 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5455 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5456 phdr_included
= TRUE
;
5459 if (section_count
== 0)
5461 /* Special segments, such as the PT_PHDR segment, may contain
5462 no sections, but ordinary, loadable segments should contain
5463 something. They are allowed by the ELF spec however, so only
5464 a warning is produced. */
5465 if (segment
->p_type
== PT_LOAD
)
5466 (*_bfd_error_handler
)
5467 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5471 *pointer_to_map
= map
;
5472 pointer_to_map
= &map
->next
;
5477 /* Now scan the sections in the input BFD again and attempt
5478 to add their corresponding output sections to the segment map.
5479 The problem here is how to handle an output section which has
5480 been moved (ie had its LMA changed). There are four possibilities:
5482 1. None of the sections have been moved.
5483 In this case we can continue to use the segment LMA from the
5486 2. All of the sections have been moved by the same amount.
5487 In this case we can change the segment's LMA to match the LMA
5488 of the first section.
5490 3. Some of the sections have been moved, others have not.
5491 In this case those sections which have not been moved can be
5492 placed in the current segment which will have to have its size,
5493 and possibly its LMA changed, and a new segment or segments will
5494 have to be created to contain the other sections.
5496 4. The sections have been moved, but not by the same amount.
5497 In this case we can change the segment's LMA to match the LMA
5498 of the first section and we will have to create a new segment
5499 or segments to contain the other sections.
5501 In order to save time, we allocate an array to hold the section
5502 pointers that we are interested in. As these sections get assigned
5503 to a segment, they are removed from this array. */
5505 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5506 to work around this long long bug. */
5507 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5508 if (sections
== NULL
)
5511 /* Step One: Scan for segment vs section LMA conflicts.
5512 Also add the sections to the section array allocated above.
5513 Also add the sections to the current segment. In the common
5514 case, where the sections have not been moved, this means that
5515 we have completely filled the segment, and there is nothing
5521 for (j
= 0, section
= ibfd
->sections
;
5523 section
= section
->next
)
5525 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5527 output_section
= section
->output_section
;
5529 sections
[j
++] = section
;
5531 /* The Solaris native linker always sets p_paddr to 0.
5532 We try to catch that case here, and set it to the
5533 correct value. Note - some backends require that
5534 p_paddr be left as zero. */
5535 if (segment
->p_paddr
== 0
5536 && segment
->p_vaddr
!= 0
5537 && (! bed
->want_p_paddr_set_to_zero
)
5539 && output_section
->lma
!= 0
5540 && (output_section
->vma
== (segment
->p_vaddr
5541 + (map
->includes_filehdr
5544 + (map
->includes_phdrs
5546 * iehdr
->e_phentsize
)
5548 map
->p_paddr
= segment
->p_vaddr
;
5550 /* Match up the physical address of the segment with the
5551 LMA address of the output section. */
5552 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5553 || IS_COREFILE_NOTE (segment
, section
)
5554 || (bed
->want_p_paddr_set_to_zero
&&
5555 IS_CONTAINED_BY_VMA (output_section
, segment
))
5558 if (matching_lma
== 0)
5559 matching_lma
= output_section
->lma
;
5561 /* We assume that if the section fits within the segment
5562 then it does not overlap any other section within that
5564 map
->sections
[isec
++] = output_section
;
5566 else if (suggested_lma
== 0)
5567 suggested_lma
= output_section
->lma
;
5571 BFD_ASSERT (j
== section_count
);
5573 /* Step Two: Adjust the physical address of the current segment,
5575 if (isec
== section_count
)
5577 /* All of the sections fitted within the segment as currently
5578 specified. This is the default case. Add the segment to
5579 the list of built segments and carry on to process the next
5580 program header in the input BFD. */
5581 map
->count
= section_count
;
5582 *pointer_to_map
= map
;
5583 pointer_to_map
= &map
->next
;
5590 if (matching_lma
!= 0)
5592 /* At least one section fits inside the current segment.
5593 Keep it, but modify its physical address to match the
5594 LMA of the first section that fitted. */
5595 map
->p_paddr
= matching_lma
;
5599 /* None of the sections fitted inside the current segment.
5600 Change the current segment's physical address to match
5601 the LMA of the first section. */
5602 map
->p_paddr
= suggested_lma
;
5605 /* Offset the segment physical address from the lma
5606 to allow for space taken up by elf headers. */
5607 if (map
->includes_filehdr
)
5608 map
->p_paddr
-= iehdr
->e_ehsize
;
5610 if (map
->includes_phdrs
)
5612 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5614 /* iehdr->e_phnum is just an estimate of the number
5615 of program headers that we will need. Make a note
5616 here of the number we used and the segment we chose
5617 to hold these headers, so that we can adjust the
5618 offset when we know the correct value. */
5619 phdr_adjust_num
= iehdr
->e_phnum
;
5620 phdr_adjust_seg
= map
;
5624 /* Step Three: Loop over the sections again, this time assigning
5625 those that fit to the current segment and removing them from the
5626 sections array; but making sure not to leave large gaps. Once all
5627 possible sections have been assigned to the current segment it is
5628 added to the list of built segments and if sections still remain
5629 to be assigned, a new segment is constructed before repeating
5637 /* Fill the current segment with sections that fit. */
5638 for (j
= 0; j
< section_count
; j
++)
5640 section
= sections
[j
];
5642 if (section
== NULL
)
5645 output_section
= section
->output_section
;
5647 BFD_ASSERT (output_section
!= NULL
);
5649 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5650 || IS_COREFILE_NOTE (segment
, section
))
5652 if (map
->count
== 0)
5654 /* If the first section in a segment does not start at
5655 the beginning of the segment, then something is
5657 if (output_section
->lma
!=
5659 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5660 + (map
->includes_phdrs
5661 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5667 asection
* prev_sec
;
5669 prev_sec
= map
->sections
[map
->count
- 1];
5671 /* If the gap between the end of the previous section
5672 and the start of this section is more than
5673 maxpagesize then we need to start a new segment. */
5674 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5676 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5677 || ((prev_sec
->lma
+ prev_sec
->size
)
5678 > output_section
->lma
))
5680 if (suggested_lma
== 0)
5681 suggested_lma
= output_section
->lma
;
5687 map
->sections
[map
->count
++] = output_section
;
5690 section
->segment_mark
= TRUE
;
5692 else if (suggested_lma
== 0)
5693 suggested_lma
= output_section
->lma
;
5696 BFD_ASSERT (map
->count
> 0);
5698 /* Add the current segment to the list of built segments. */
5699 *pointer_to_map
= map
;
5700 pointer_to_map
= &map
->next
;
5702 if (isec
< section_count
)
5704 /* We still have not allocated all of the sections to
5705 segments. Create a new segment here, initialise it
5706 and carry on looping. */
5707 amt
= sizeof (struct elf_segment_map
);
5708 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5709 map
= bfd_alloc (obfd
, amt
);
5716 /* Initialise the fields of the segment map. Set the physical
5717 physical address to the LMA of the first section that has
5718 not yet been assigned. */
5720 map
->p_type
= segment
->p_type
;
5721 map
->p_flags
= segment
->p_flags
;
5722 map
->p_flags_valid
= 1;
5723 map
->p_paddr
= suggested_lma
;
5724 map
->p_paddr_valid
= 1;
5725 map
->includes_filehdr
= 0;
5726 map
->includes_phdrs
= 0;
5729 while (isec
< section_count
);
5734 /* The Solaris linker creates program headers in which all the
5735 p_paddr fields are zero. When we try to objcopy or strip such a
5736 file, we get confused. Check for this case, and if we find it
5737 reset the p_paddr_valid fields. */
5738 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5739 if (map
->p_paddr
!= 0)
5742 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5743 map
->p_paddr_valid
= 0;
5745 elf_tdata (obfd
)->segment_map
= map_first
;
5747 /* If we had to estimate the number of program headers that were
5748 going to be needed, then check our estimate now and adjust
5749 the offset if necessary. */
5750 if (phdr_adjust_seg
!= NULL
)
5754 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5757 if (count
> phdr_adjust_num
)
5758 phdr_adjust_seg
->p_paddr
5759 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5764 #undef IS_CONTAINED_BY_VMA
5765 #undef IS_CONTAINED_BY_LMA
5766 #undef IS_COREFILE_NOTE
5767 #undef IS_SOLARIS_PT_INTERP
5768 #undef IS_SECTION_IN_INPUT_SEGMENT
5769 #undef INCLUDE_SECTION_IN_SEGMENT
5770 #undef SEGMENT_AFTER_SEGMENT
5771 #undef SEGMENT_OVERLAPS
5775 /* Copy ELF program header information. */
5778 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5780 Elf_Internal_Ehdr
*iehdr
;
5781 struct elf_segment_map
*map
;
5782 struct elf_segment_map
*map_first
;
5783 struct elf_segment_map
**pointer_to_map
;
5784 Elf_Internal_Phdr
*segment
;
5786 unsigned int num_segments
;
5787 bfd_boolean phdr_included
= FALSE
;
5789 iehdr
= elf_elfheader (ibfd
);
5792 pointer_to_map
= &map_first
;
5794 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5795 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5800 unsigned int section_count
;
5802 Elf_Internal_Shdr
*this_hdr
;
5804 /* FIXME: Do we need to copy PT_NULL segment? */
5805 if (segment
->p_type
== PT_NULL
)
5808 /* Compute how many sections are in this segment. */
5809 for (section
= ibfd
->sections
, section_count
= 0;
5811 section
= section
->next
)
5813 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5814 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5818 /* Allocate a segment map big enough to contain
5819 all of the sections we have selected. */
5820 amt
= sizeof (struct elf_segment_map
);
5821 if (section_count
!= 0)
5822 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5823 map
= bfd_zalloc (obfd
, amt
);
5827 /* Initialize the fields of the output segment map with the
5830 map
->p_type
= segment
->p_type
;
5831 map
->p_flags
= segment
->p_flags
;
5832 map
->p_flags_valid
= 1;
5833 map
->p_paddr
= segment
->p_paddr
;
5834 map
->p_paddr_valid
= 1;
5835 map
->p_align
= segment
->p_align
;
5836 map
->p_align_valid
= 1;
5838 /* Determine if this segment contains the ELF file header
5839 and if it contains the program headers themselves. */
5840 map
->includes_filehdr
= (segment
->p_offset
== 0
5841 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5843 map
->includes_phdrs
= 0;
5844 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5846 map
->includes_phdrs
=
5847 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5848 && (segment
->p_offset
+ segment
->p_filesz
5849 >= ((bfd_vma
) iehdr
->e_phoff
5850 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5852 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5853 phdr_included
= TRUE
;
5856 if (section_count
!= 0)
5858 unsigned int isec
= 0;
5860 for (section
= ibfd
->sections
;
5862 section
= section
->next
)
5864 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5865 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5866 map
->sections
[isec
++] = section
->output_section
;
5870 map
->count
= section_count
;
5871 *pointer_to_map
= map
;
5872 pointer_to_map
= &map
->next
;
5875 elf_tdata (obfd
)->segment_map
= map_first
;
5879 /* Copy private BFD data. This copies or rewrites ELF program header
5883 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5885 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5886 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5889 if (elf_tdata (ibfd
)->phdr
== NULL
)
5892 if (ibfd
->xvec
== obfd
->xvec
)
5894 /* Check if any sections in the input BFD covered by ELF program
5895 header are changed. */
5896 Elf_Internal_Phdr
*segment
;
5897 asection
*section
, *osec
;
5898 unsigned int i
, num_segments
;
5899 Elf_Internal_Shdr
*this_hdr
;
5901 /* Initialize the segment mark field. */
5902 for (section
= obfd
->sections
; section
!= NULL
;
5903 section
= section
->next
)
5904 section
->segment_mark
= FALSE
;
5906 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5907 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5911 for (section
= ibfd
->sections
;
5912 section
!= NULL
; section
= section
->next
)
5914 /* We mark the output section so that we know it comes
5915 from the input BFD. */
5916 osec
= section
->output_section
;
5918 osec
->segment_mark
= TRUE
;
5920 /* Check if this section is covered by the segment. */
5921 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5922 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5924 /* FIXME: Check if its output section is changed or
5925 removed. What else do we need to check? */
5927 || section
->flags
!= osec
->flags
5928 || section
->lma
!= osec
->lma
5929 || section
->vma
!= osec
->vma
5930 || section
->size
!= osec
->size
5931 || section
->rawsize
!= osec
->rawsize
5932 || section
->alignment_power
!= osec
->alignment_power
)
5938 /* Check to see if any output section doesn't come from the
5940 for (section
= obfd
->sections
; section
!= NULL
;
5941 section
= section
->next
)
5943 if (section
->segment_mark
== FALSE
)
5946 section
->segment_mark
= FALSE
;
5949 return copy_elf_program_header (ibfd
, obfd
);
5953 return rewrite_elf_program_header (ibfd
, obfd
);
5956 /* Initialize private output section information from input section. */
5959 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5963 struct bfd_link_info
*link_info
)
5966 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5967 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5969 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5970 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5973 /* Don't copy the output ELF section type from input if the
5974 output BFD section flags have been set to something different.
5975 elf_fake_sections will set ELF section type based on BFD
5977 if (osec
->flags
== isec
->flags
|| !osec
->flags
)
5979 BFD_ASSERT (osec
->flags
== isec
->flags
5981 && elf_section_type (osec
) == SHT_NULL
));
5982 elf_section_type (osec
) = elf_section_type (isec
);
5985 /* FIXME: Is this correct for all OS/PROC specific flags? */
5986 elf_section_flags (osec
) |= (elf_section_flags (isec
)
5987 & (SHF_MASKOS
| SHF_MASKPROC
));
5989 /* Set things up for objcopy and relocatable link. The output
5990 SHT_GROUP section will have its elf_next_in_group pointing back
5991 to the input group members. Ignore linker created group section.
5992 See elfNN_ia64_object_p in elfxx-ia64.c. */
5995 if (elf_sec_group (isec
) == NULL
5996 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5998 if (elf_section_flags (isec
) & SHF_GROUP
)
5999 elf_section_flags (osec
) |= SHF_GROUP
;
6000 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6001 elf_group_name (osec
) = elf_group_name (isec
);
6005 ihdr
= &elf_section_data (isec
)->this_hdr
;
6007 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6008 don't use the output section of the linked-to section since it
6009 may be NULL at this point. */
6010 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6012 ohdr
= &elf_section_data (osec
)->this_hdr
;
6013 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6014 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6017 osec
->use_rela_p
= isec
->use_rela_p
;
6022 /* Copy private section information. This copies over the entsize
6023 field, and sometimes the info field. */
6026 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6031 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6033 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6034 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6037 ihdr
= &elf_section_data (isec
)->this_hdr
;
6038 ohdr
= &elf_section_data (osec
)->this_hdr
;
6040 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6042 if (ihdr
->sh_type
== SHT_SYMTAB
6043 || ihdr
->sh_type
== SHT_DYNSYM
6044 || ihdr
->sh_type
== SHT_GNU_verneed
6045 || ihdr
->sh_type
== SHT_GNU_verdef
)
6046 ohdr
->sh_info
= ihdr
->sh_info
;
6048 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6052 /* Copy private header information. */
6055 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6059 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6060 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6063 /* Copy over private BFD data if it has not already been copied.
6064 This must be done here, rather than in the copy_private_bfd_data
6065 entry point, because the latter is called after the section
6066 contents have been set, which means that the program headers have
6067 already been worked out. */
6068 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6070 if (! copy_private_bfd_data (ibfd
, obfd
))
6074 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6075 but this might be wrong if we deleted the group section. */
6076 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6077 if (elf_section_type (isec
) == SHT_GROUP
6078 && isec
->output_section
== NULL
)
6080 asection
*first
= elf_next_in_group (isec
);
6081 asection
*s
= first
;
6084 if (s
->output_section
!= NULL
)
6086 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6087 elf_group_name (s
->output_section
) = NULL
;
6089 s
= elf_next_in_group (s
);
6098 /* Copy private symbol information. If this symbol is in a section
6099 which we did not map into a BFD section, try to map the section
6100 index correctly. We use special macro definitions for the mapped
6101 section indices; these definitions are interpreted by the
6102 swap_out_syms function. */
6104 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6105 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6106 #define MAP_STRTAB (SHN_HIOS + 3)
6107 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6108 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6111 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6116 elf_symbol_type
*isym
, *osym
;
6118 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6119 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6122 isym
= elf_symbol_from (ibfd
, isymarg
);
6123 osym
= elf_symbol_from (obfd
, osymarg
);
6127 && bfd_is_abs_section (isym
->symbol
.section
))
6131 shndx
= isym
->internal_elf_sym
.st_shndx
;
6132 if (shndx
== elf_onesymtab (ibfd
))
6133 shndx
= MAP_ONESYMTAB
;
6134 else if (shndx
== elf_dynsymtab (ibfd
))
6135 shndx
= MAP_DYNSYMTAB
;
6136 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6138 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6139 shndx
= MAP_SHSTRTAB
;
6140 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6141 shndx
= MAP_SYM_SHNDX
;
6142 osym
->internal_elf_sym
.st_shndx
= shndx
;
6148 /* Swap out the symbols. */
6151 swap_out_syms (bfd
*abfd
,
6152 struct bfd_strtab_hash
**sttp
,
6155 const struct elf_backend_data
*bed
;
6158 struct bfd_strtab_hash
*stt
;
6159 Elf_Internal_Shdr
*symtab_hdr
;
6160 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6161 Elf_Internal_Shdr
*symstrtab_hdr
;
6162 bfd_byte
*outbound_syms
;
6163 bfd_byte
*outbound_shndx
;
6166 bfd_boolean name_local_sections
;
6168 if (!elf_map_symbols (abfd
))
6171 /* Dump out the symtabs. */
6172 stt
= _bfd_elf_stringtab_init ();
6176 bed
= get_elf_backend_data (abfd
);
6177 symcount
= bfd_get_symcount (abfd
);
6178 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6179 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6180 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6181 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6182 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6183 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6185 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6186 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6188 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6189 if (outbound_syms
== NULL
)
6191 _bfd_stringtab_free (stt
);
6194 symtab_hdr
->contents
= outbound_syms
;
6196 outbound_shndx
= NULL
;
6197 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6198 if (symtab_shndx_hdr
->sh_name
!= 0)
6200 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6201 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6202 sizeof (Elf_External_Sym_Shndx
));
6203 if (outbound_shndx
== NULL
)
6205 _bfd_stringtab_free (stt
);
6209 symtab_shndx_hdr
->contents
= outbound_shndx
;
6210 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6211 symtab_shndx_hdr
->sh_size
= amt
;
6212 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6213 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6216 /* Now generate the data (for "contents"). */
6218 /* Fill in zeroth symbol and swap it out. */
6219 Elf_Internal_Sym sym
;
6225 sym
.st_shndx
= SHN_UNDEF
;
6226 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6227 outbound_syms
+= bed
->s
->sizeof_sym
;
6228 if (outbound_shndx
!= NULL
)
6229 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6233 = (bed
->elf_backend_name_local_section_symbols
6234 && bed
->elf_backend_name_local_section_symbols (abfd
));
6236 syms
= bfd_get_outsymbols (abfd
);
6237 for (idx
= 0; idx
< symcount
; idx
++)
6239 Elf_Internal_Sym sym
;
6240 bfd_vma value
= syms
[idx
]->value
;
6241 elf_symbol_type
*type_ptr
;
6242 flagword flags
= syms
[idx
]->flags
;
6245 if (!name_local_sections
6246 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6248 /* Local section symbols have no name. */
6253 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6256 if (sym
.st_name
== (unsigned long) -1)
6258 _bfd_stringtab_free (stt
);
6263 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6265 if ((flags
& BSF_SECTION_SYM
) == 0
6266 && bfd_is_com_section (syms
[idx
]->section
))
6268 /* ELF common symbols put the alignment into the `value' field,
6269 and the size into the `size' field. This is backwards from
6270 how BFD handles it, so reverse it here. */
6271 sym
.st_size
= value
;
6272 if (type_ptr
== NULL
6273 || type_ptr
->internal_elf_sym
.st_value
== 0)
6274 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6276 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6277 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6278 (abfd
, syms
[idx
]->section
);
6282 asection
*sec
= syms
[idx
]->section
;
6285 if (sec
->output_section
)
6287 value
+= sec
->output_offset
;
6288 sec
= sec
->output_section
;
6291 /* Don't add in the section vma for relocatable output. */
6292 if (! relocatable_p
)
6294 sym
.st_value
= value
;
6295 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6297 if (bfd_is_abs_section (sec
)
6299 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6301 /* This symbol is in a real ELF section which we did
6302 not create as a BFD section. Undo the mapping done
6303 by copy_private_symbol_data. */
6304 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6308 shndx
= elf_onesymtab (abfd
);
6311 shndx
= elf_dynsymtab (abfd
);
6314 shndx
= elf_tdata (abfd
)->strtab_section
;
6317 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6320 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6328 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6334 /* Writing this would be a hell of a lot easier if
6335 we had some decent documentation on bfd, and
6336 knew what to expect of the library, and what to
6337 demand of applications. For example, it
6338 appears that `objcopy' might not set the
6339 section of a symbol to be a section that is
6340 actually in the output file. */
6341 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6344 _bfd_error_handler (_("\
6345 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6346 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6348 bfd_set_error (bfd_error_invalid_operation
);
6349 _bfd_stringtab_free (stt
);
6353 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6354 BFD_ASSERT (shndx
!= -1);
6358 sym
.st_shndx
= shndx
;
6361 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6363 else if ((flags
& BSF_FUNCTION
) != 0)
6365 else if ((flags
& BSF_OBJECT
) != 0)
6370 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6373 /* Processor-specific types. */
6374 if (type_ptr
!= NULL
6375 && bed
->elf_backend_get_symbol_type
)
6376 type
= ((*bed
->elf_backend_get_symbol_type
)
6377 (&type_ptr
->internal_elf_sym
, type
));
6379 if (flags
& BSF_SECTION_SYM
)
6381 if (flags
& BSF_GLOBAL
)
6382 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6384 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6386 else if (bfd_is_com_section (syms
[idx
]->section
))
6387 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6388 else if (bfd_is_und_section (syms
[idx
]->section
))
6389 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6393 else if (flags
& BSF_FILE
)
6394 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6397 int bind
= STB_LOCAL
;
6399 if (flags
& BSF_LOCAL
)
6401 else if (flags
& BSF_WEAK
)
6403 else if (flags
& BSF_GLOBAL
)
6406 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6409 if (type_ptr
!= NULL
)
6410 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6414 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6415 outbound_syms
+= bed
->s
->sizeof_sym
;
6416 if (outbound_shndx
!= NULL
)
6417 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6421 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6422 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6424 symstrtab_hdr
->sh_flags
= 0;
6425 symstrtab_hdr
->sh_addr
= 0;
6426 symstrtab_hdr
->sh_entsize
= 0;
6427 symstrtab_hdr
->sh_link
= 0;
6428 symstrtab_hdr
->sh_info
= 0;
6429 symstrtab_hdr
->sh_addralign
= 1;
6434 /* Return the number of bytes required to hold the symtab vector.
6436 Note that we base it on the count plus 1, since we will null terminate
6437 the vector allocated based on this size. However, the ELF symbol table
6438 always has a dummy entry as symbol #0, so it ends up even. */
6441 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6445 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6447 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6448 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6450 symtab_size
-= sizeof (asymbol
*);
6456 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6460 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6462 if (elf_dynsymtab (abfd
) == 0)
6464 bfd_set_error (bfd_error_invalid_operation
);
6468 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6469 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6471 symtab_size
-= sizeof (asymbol
*);
6477 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6480 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6483 /* Canonicalize the relocs. */
6486 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6493 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6495 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6498 tblptr
= section
->relocation
;
6499 for (i
= 0; i
< section
->reloc_count
; i
++)
6500 *relptr
++ = tblptr
++;
6504 return section
->reloc_count
;
6508 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6510 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6511 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6514 bfd_get_symcount (abfd
) = symcount
;
6519 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6520 asymbol
**allocation
)
6522 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6523 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6526 bfd_get_dynamic_symcount (abfd
) = symcount
;
6530 /* Return the size required for the dynamic reloc entries. Any loadable
6531 section that was actually installed in the BFD, and has type SHT_REL
6532 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6533 dynamic reloc section. */
6536 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6541 if (elf_dynsymtab (abfd
) == 0)
6543 bfd_set_error (bfd_error_invalid_operation
);
6547 ret
= sizeof (arelent
*);
6548 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6549 if ((s
->flags
& SEC_LOAD
) != 0
6550 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6551 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6552 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6553 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6554 * sizeof (arelent
*));
6559 /* Canonicalize the dynamic relocation entries. Note that we return the
6560 dynamic relocations as a single block, although they are actually
6561 associated with particular sections; the interface, which was
6562 designed for SunOS style shared libraries, expects that there is only
6563 one set of dynamic relocs. Any loadable section that was actually
6564 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6565 dynamic symbol table, is considered to be a dynamic reloc section. */
6568 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6572 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6576 if (elf_dynsymtab (abfd
) == 0)
6578 bfd_set_error (bfd_error_invalid_operation
);
6582 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6584 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6586 if ((s
->flags
& SEC_LOAD
) != 0
6587 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6588 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6589 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6594 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6596 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6598 for (i
= 0; i
< count
; i
++)
6609 /* Read in the version information. */
6612 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6614 bfd_byte
*contents
= NULL
;
6615 unsigned int freeidx
= 0;
6617 if (elf_dynverref (abfd
) != 0)
6619 Elf_Internal_Shdr
*hdr
;
6620 Elf_External_Verneed
*everneed
;
6621 Elf_Internal_Verneed
*iverneed
;
6623 bfd_byte
*contents_end
;
6625 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6627 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6628 sizeof (Elf_Internal_Verneed
));
6629 if (elf_tdata (abfd
)->verref
== NULL
)
6632 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6634 contents
= bfd_malloc (hdr
->sh_size
);
6635 if (contents
== NULL
)
6637 error_return_verref
:
6638 elf_tdata (abfd
)->verref
= NULL
;
6639 elf_tdata (abfd
)->cverrefs
= 0;
6642 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6643 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6644 goto error_return_verref
;
6646 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6647 goto error_return_verref
;
6649 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6650 == sizeof (Elf_External_Vernaux
));
6651 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6652 everneed
= (Elf_External_Verneed
*) contents
;
6653 iverneed
= elf_tdata (abfd
)->verref
;
6654 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6656 Elf_External_Vernaux
*evernaux
;
6657 Elf_Internal_Vernaux
*ivernaux
;
6660 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6662 iverneed
->vn_bfd
= abfd
;
6664 iverneed
->vn_filename
=
6665 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6667 if (iverneed
->vn_filename
== NULL
)
6668 goto error_return_verref
;
6670 if (iverneed
->vn_cnt
== 0)
6671 iverneed
->vn_auxptr
= NULL
;
6674 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6675 sizeof (Elf_Internal_Vernaux
));
6676 if (iverneed
->vn_auxptr
== NULL
)
6677 goto error_return_verref
;
6680 if (iverneed
->vn_aux
6681 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6682 goto error_return_verref
;
6684 evernaux
= ((Elf_External_Vernaux
*)
6685 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6686 ivernaux
= iverneed
->vn_auxptr
;
6687 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6689 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6691 ivernaux
->vna_nodename
=
6692 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6693 ivernaux
->vna_name
);
6694 if (ivernaux
->vna_nodename
== NULL
)
6695 goto error_return_verref
;
6697 if (j
+ 1 < iverneed
->vn_cnt
)
6698 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6700 ivernaux
->vna_nextptr
= NULL
;
6702 if (ivernaux
->vna_next
6703 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6704 goto error_return_verref
;
6706 evernaux
= ((Elf_External_Vernaux
*)
6707 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6709 if (ivernaux
->vna_other
> freeidx
)
6710 freeidx
= ivernaux
->vna_other
;
6713 if (i
+ 1 < hdr
->sh_info
)
6714 iverneed
->vn_nextref
= iverneed
+ 1;
6716 iverneed
->vn_nextref
= NULL
;
6718 if (iverneed
->vn_next
6719 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6720 goto error_return_verref
;
6722 everneed
= ((Elf_External_Verneed
*)
6723 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6730 if (elf_dynverdef (abfd
) != 0)
6732 Elf_Internal_Shdr
*hdr
;
6733 Elf_External_Verdef
*everdef
;
6734 Elf_Internal_Verdef
*iverdef
;
6735 Elf_Internal_Verdef
*iverdefarr
;
6736 Elf_Internal_Verdef iverdefmem
;
6738 unsigned int maxidx
;
6739 bfd_byte
*contents_end_def
, *contents_end_aux
;
6741 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6743 contents
= bfd_malloc (hdr
->sh_size
);
6744 if (contents
== NULL
)
6746 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6747 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6750 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6753 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6754 >= sizeof (Elf_External_Verdaux
));
6755 contents_end_def
= contents
+ hdr
->sh_size
6756 - sizeof (Elf_External_Verdef
);
6757 contents_end_aux
= contents
+ hdr
->sh_size
6758 - sizeof (Elf_External_Verdaux
);
6760 /* We know the number of entries in the section but not the maximum
6761 index. Therefore we have to run through all entries and find
6763 everdef
= (Elf_External_Verdef
*) contents
;
6765 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6767 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6769 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6770 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6772 if (iverdefmem
.vd_next
6773 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6776 everdef
= ((Elf_External_Verdef
*)
6777 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6780 if (default_imported_symver
)
6782 if (freeidx
> maxidx
)
6787 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6788 sizeof (Elf_Internal_Verdef
));
6789 if (elf_tdata (abfd
)->verdef
== NULL
)
6792 elf_tdata (abfd
)->cverdefs
= maxidx
;
6794 everdef
= (Elf_External_Verdef
*) contents
;
6795 iverdefarr
= elf_tdata (abfd
)->verdef
;
6796 for (i
= 0; i
< hdr
->sh_info
; i
++)
6798 Elf_External_Verdaux
*everdaux
;
6799 Elf_Internal_Verdaux
*iverdaux
;
6802 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6804 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6806 error_return_verdef
:
6807 elf_tdata (abfd
)->verdef
= NULL
;
6808 elf_tdata (abfd
)->cverdefs
= 0;
6812 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6813 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6815 iverdef
->vd_bfd
= abfd
;
6817 if (iverdef
->vd_cnt
== 0)
6818 iverdef
->vd_auxptr
= NULL
;
6821 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6822 sizeof (Elf_Internal_Verdaux
));
6823 if (iverdef
->vd_auxptr
== NULL
)
6824 goto error_return_verdef
;
6828 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6829 goto error_return_verdef
;
6831 everdaux
= ((Elf_External_Verdaux
*)
6832 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6833 iverdaux
= iverdef
->vd_auxptr
;
6834 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6836 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6838 iverdaux
->vda_nodename
=
6839 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6840 iverdaux
->vda_name
);
6841 if (iverdaux
->vda_nodename
== NULL
)
6842 goto error_return_verdef
;
6844 if (j
+ 1 < iverdef
->vd_cnt
)
6845 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6847 iverdaux
->vda_nextptr
= NULL
;
6849 if (iverdaux
->vda_next
6850 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6851 goto error_return_verdef
;
6853 everdaux
= ((Elf_External_Verdaux
*)
6854 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6857 if (iverdef
->vd_cnt
)
6858 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6860 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6861 iverdef
->vd_nextdef
= iverdef
+ 1;
6863 iverdef
->vd_nextdef
= NULL
;
6865 everdef
= ((Elf_External_Verdef
*)
6866 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6872 else if (default_imported_symver
)
6879 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6880 sizeof (Elf_Internal_Verdef
));
6881 if (elf_tdata (abfd
)->verdef
== NULL
)
6884 elf_tdata (abfd
)->cverdefs
= freeidx
;
6887 /* Create a default version based on the soname. */
6888 if (default_imported_symver
)
6890 Elf_Internal_Verdef
*iverdef
;
6891 Elf_Internal_Verdaux
*iverdaux
;
6893 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6895 iverdef
->vd_version
= VER_DEF_CURRENT
;
6896 iverdef
->vd_flags
= 0;
6897 iverdef
->vd_ndx
= freeidx
;
6898 iverdef
->vd_cnt
= 1;
6900 iverdef
->vd_bfd
= abfd
;
6902 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6903 if (iverdef
->vd_nodename
== NULL
)
6904 goto error_return_verdef
;
6905 iverdef
->vd_nextdef
= NULL
;
6906 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6907 if (iverdef
->vd_auxptr
== NULL
)
6908 goto error_return_verdef
;
6910 iverdaux
= iverdef
->vd_auxptr
;
6911 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6912 iverdaux
->vda_nextptr
= NULL
;
6918 if (contents
!= NULL
)
6924 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6926 elf_symbol_type
*newsym
;
6927 bfd_size_type amt
= sizeof (elf_symbol_type
);
6929 newsym
= bfd_zalloc (abfd
, amt
);
6934 newsym
->symbol
.the_bfd
= abfd
;
6935 return &newsym
->symbol
;
6940 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6944 bfd_symbol_info (symbol
, ret
);
6947 /* Return whether a symbol name implies a local symbol. Most targets
6948 use this function for the is_local_label_name entry point, but some
6952 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6955 /* Normal local symbols start with ``.L''. */
6956 if (name
[0] == '.' && name
[1] == 'L')
6959 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6960 DWARF debugging symbols starting with ``..''. */
6961 if (name
[0] == '.' && name
[1] == '.')
6964 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6965 emitting DWARF debugging output. I suspect this is actually a
6966 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6967 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6968 underscore to be emitted on some ELF targets). For ease of use,
6969 we treat such symbols as local. */
6970 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6977 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6978 asymbol
*symbol ATTRIBUTE_UNUSED
)
6985 _bfd_elf_set_arch_mach (bfd
*abfd
,
6986 enum bfd_architecture arch
,
6987 unsigned long machine
)
6989 /* If this isn't the right architecture for this backend, and this
6990 isn't the generic backend, fail. */
6991 if (arch
!= get_elf_backend_data (abfd
)->arch
6992 && arch
!= bfd_arch_unknown
6993 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6996 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6999 /* Find the function to a particular section and offset,
7000 for error reporting. */
7003 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7007 const char **filename_ptr
,
7008 const char **functionname_ptr
)
7010 const char *filename
;
7011 asymbol
*func
, *file
;
7014 /* ??? Given multiple file symbols, it is impossible to reliably
7015 choose the right file name for global symbols. File symbols are
7016 local symbols, and thus all file symbols must sort before any
7017 global symbols. The ELF spec may be interpreted to say that a
7018 file symbol must sort before other local symbols, but currently
7019 ld -r doesn't do this. So, for ld -r output, it is possible to
7020 make a better choice of file name for local symbols by ignoring
7021 file symbols appearing after a given local symbol. */
7022 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7028 state
= nothing_seen
;
7030 for (p
= symbols
; *p
!= NULL
; p
++)
7034 q
= (elf_symbol_type
*) *p
;
7036 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7042 if (state
== symbol_seen
)
7043 state
= file_after_symbol_seen
;
7047 if (bfd_get_section (&q
->symbol
) == section
7048 && q
->symbol
.value
>= low_func
7049 && q
->symbol
.value
<= offset
)
7051 func
= (asymbol
*) q
;
7052 low_func
= q
->symbol
.value
;
7055 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7056 || state
!= file_after_symbol_seen
))
7057 filename
= bfd_asymbol_name (file
);
7061 if (state
== nothing_seen
)
7062 state
= symbol_seen
;
7069 *filename_ptr
= filename
;
7070 if (functionname_ptr
)
7071 *functionname_ptr
= bfd_asymbol_name (func
);
7076 /* Find the nearest line to a particular section and offset,
7077 for error reporting. */
7080 _bfd_elf_find_nearest_line (bfd
*abfd
,
7084 const char **filename_ptr
,
7085 const char **functionname_ptr
,
7086 unsigned int *line_ptr
)
7090 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7091 filename_ptr
, functionname_ptr
,
7094 if (!*functionname_ptr
)
7095 elf_find_function (abfd
, section
, symbols
, offset
,
7096 *filename_ptr
? NULL
: filename_ptr
,
7102 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7103 filename_ptr
, functionname_ptr
,
7105 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7107 if (!*functionname_ptr
)
7108 elf_find_function (abfd
, section
, symbols
, offset
,
7109 *filename_ptr
? NULL
: filename_ptr
,
7115 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7116 &found
, filename_ptr
,
7117 functionname_ptr
, line_ptr
,
7118 &elf_tdata (abfd
)->line_info
))
7120 if (found
&& (*functionname_ptr
|| *line_ptr
))
7123 if (symbols
== NULL
)
7126 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7127 filename_ptr
, functionname_ptr
))
7134 /* Find the line for a symbol. */
7137 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7138 const char **filename_ptr
, unsigned int *line_ptr
)
7140 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7141 filename_ptr
, line_ptr
, 0,
7142 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7145 /* After a call to bfd_find_nearest_line, successive calls to
7146 bfd_find_inliner_info can be used to get source information about
7147 each level of function inlining that terminated at the address
7148 passed to bfd_find_nearest_line. Currently this is only supported
7149 for DWARF2 with appropriate DWARF3 extensions. */
7152 _bfd_elf_find_inliner_info (bfd
*abfd
,
7153 const char **filename_ptr
,
7154 const char **functionname_ptr
,
7155 unsigned int *line_ptr
)
7158 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7159 functionname_ptr
, line_ptr
,
7160 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7165 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7167 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7168 int ret
= bed
->s
->sizeof_ehdr
;
7170 if (!info
->relocatable
)
7172 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7174 if (phdr_size
== (bfd_size_type
) -1)
7176 struct elf_segment_map
*m
;
7179 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7180 phdr_size
+= bed
->s
->sizeof_phdr
;
7183 phdr_size
= get_program_header_size (abfd
, info
);
7186 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7194 _bfd_elf_set_section_contents (bfd
*abfd
,
7196 const void *location
,
7198 bfd_size_type count
)
7200 Elf_Internal_Shdr
*hdr
;
7203 if (! abfd
->output_has_begun
7204 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7207 hdr
= &elf_section_data (section
)->this_hdr
;
7208 pos
= hdr
->sh_offset
+ offset
;
7209 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7210 || bfd_bwrite (location
, count
, abfd
) != count
)
7217 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7218 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7219 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7224 /* Try to convert a non-ELF reloc into an ELF one. */
7227 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7229 /* Check whether we really have an ELF howto. */
7231 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7233 bfd_reloc_code_real_type code
;
7234 reloc_howto_type
*howto
;
7236 /* Alien reloc: Try to determine its type to replace it with an
7237 equivalent ELF reloc. */
7239 if (areloc
->howto
->pc_relative
)
7241 switch (areloc
->howto
->bitsize
)
7244 code
= BFD_RELOC_8_PCREL
;
7247 code
= BFD_RELOC_12_PCREL
;
7250 code
= BFD_RELOC_16_PCREL
;
7253 code
= BFD_RELOC_24_PCREL
;
7256 code
= BFD_RELOC_32_PCREL
;
7259 code
= BFD_RELOC_64_PCREL
;
7265 howto
= bfd_reloc_type_lookup (abfd
, code
);
7267 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7269 if (howto
->pcrel_offset
)
7270 areloc
->addend
+= areloc
->address
;
7272 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7277 switch (areloc
->howto
->bitsize
)
7283 code
= BFD_RELOC_14
;
7286 code
= BFD_RELOC_16
;
7289 code
= BFD_RELOC_26
;
7292 code
= BFD_RELOC_32
;
7295 code
= BFD_RELOC_64
;
7301 howto
= bfd_reloc_type_lookup (abfd
, code
);
7305 areloc
->howto
= howto
;
7313 (*_bfd_error_handler
)
7314 (_("%B: unsupported relocation type %s"),
7315 abfd
, areloc
->howto
->name
);
7316 bfd_set_error (bfd_error_bad_value
);
7321 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7323 if (bfd_get_format (abfd
) == bfd_object
)
7325 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7326 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7327 _bfd_dwarf2_cleanup_debug_info (abfd
);
7330 return _bfd_generic_close_and_cleanup (abfd
);
7333 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7334 in the relocation's offset. Thus we cannot allow any sort of sanity
7335 range-checking to interfere. There is nothing else to do in processing
7338 bfd_reloc_status_type
7339 _bfd_elf_rel_vtable_reloc_fn
7340 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7341 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7342 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7343 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7345 return bfd_reloc_ok
;
7348 /* Elf core file support. Much of this only works on native
7349 toolchains, since we rely on knowing the
7350 machine-dependent procfs structure in order to pick
7351 out details about the corefile. */
7353 #ifdef HAVE_SYS_PROCFS_H
7354 # include <sys/procfs.h>
7357 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7360 elfcore_make_pid (bfd
*abfd
)
7362 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7363 + (elf_tdata (abfd
)->core_pid
));
7366 /* If there isn't a section called NAME, make one, using
7367 data from SECT. Note, this function will generate a
7368 reference to NAME, so you shouldn't deallocate or
7372 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7376 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7379 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7383 sect2
->size
= sect
->size
;
7384 sect2
->filepos
= sect
->filepos
;
7385 sect2
->alignment_power
= sect
->alignment_power
;
7389 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7390 actually creates up to two pseudosections:
7391 - For the single-threaded case, a section named NAME, unless
7392 such a section already exists.
7393 - For the multi-threaded case, a section named "NAME/PID", where
7394 PID is elfcore_make_pid (abfd).
7395 Both pseudosections have identical contents. */
7397 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7403 char *threaded_name
;
7407 /* Build the section name. */
7409 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7410 len
= strlen (buf
) + 1;
7411 threaded_name
= bfd_alloc (abfd
, len
);
7412 if (threaded_name
== NULL
)
7414 memcpy (threaded_name
, buf
, len
);
7416 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7421 sect
->filepos
= filepos
;
7422 sect
->alignment_power
= 2;
7424 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7427 /* prstatus_t exists on:
7429 linux 2.[01] + glibc
7433 #if defined (HAVE_PRSTATUS_T)
7436 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7441 if (note
->descsz
== sizeof (prstatus_t
))
7445 size
= sizeof (prstat
.pr_reg
);
7446 offset
= offsetof (prstatus_t
, pr_reg
);
7447 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7449 /* Do not overwrite the core signal if it
7450 has already been set by another thread. */
7451 if (elf_tdata (abfd
)->core_signal
== 0)
7452 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7453 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7455 /* pr_who exists on:
7458 pr_who doesn't exist on:
7461 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7462 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7465 #if defined (HAVE_PRSTATUS32_T)
7466 else if (note
->descsz
== sizeof (prstatus32_t
))
7468 /* 64-bit host, 32-bit corefile */
7469 prstatus32_t prstat
;
7471 size
= sizeof (prstat
.pr_reg
);
7472 offset
= offsetof (prstatus32_t
, pr_reg
);
7473 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7475 /* Do not overwrite the core signal if it
7476 has already been set by another thread. */
7477 if (elf_tdata (abfd
)->core_signal
== 0)
7478 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7479 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7481 /* pr_who exists on:
7484 pr_who doesn't exist on:
7487 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7488 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7491 #endif /* HAVE_PRSTATUS32_T */
7494 /* Fail - we don't know how to handle any other
7495 note size (ie. data object type). */
7499 /* Make a ".reg/999" section and a ".reg" section. */
7500 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7501 size
, note
->descpos
+ offset
);
7503 #endif /* defined (HAVE_PRSTATUS_T) */
7505 /* Create a pseudosection containing the exact contents of NOTE. */
7507 elfcore_make_note_pseudosection (bfd
*abfd
,
7509 Elf_Internal_Note
*note
)
7511 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7512 note
->descsz
, note
->descpos
);
7515 /* There isn't a consistent prfpregset_t across platforms,
7516 but it doesn't matter, because we don't have to pick this
7517 data structure apart. */
7520 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7522 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7525 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7526 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7530 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7532 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7535 #if defined (HAVE_PRPSINFO_T)
7536 typedef prpsinfo_t elfcore_psinfo_t
;
7537 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7538 typedef prpsinfo32_t elfcore_psinfo32_t
;
7542 #if defined (HAVE_PSINFO_T)
7543 typedef psinfo_t elfcore_psinfo_t
;
7544 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7545 typedef psinfo32_t elfcore_psinfo32_t
;
7549 /* return a malloc'ed copy of a string at START which is at
7550 most MAX bytes long, possibly without a terminating '\0'.
7551 the copy will always have a terminating '\0'. */
7554 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7557 char *end
= memchr (start
, '\0', max
);
7565 dups
= bfd_alloc (abfd
, len
+ 1);
7569 memcpy (dups
, start
, len
);
7575 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7577 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7579 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7581 elfcore_psinfo_t psinfo
;
7583 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7585 elf_tdata (abfd
)->core_program
7586 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7587 sizeof (psinfo
.pr_fname
));
7589 elf_tdata (abfd
)->core_command
7590 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7591 sizeof (psinfo
.pr_psargs
));
7593 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7594 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7596 /* 64-bit host, 32-bit corefile */
7597 elfcore_psinfo32_t psinfo
;
7599 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7601 elf_tdata (abfd
)->core_program
7602 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7603 sizeof (psinfo
.pr_fname
));
7605 elf_tdata (abfd
)->core_command
7606 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7607 sizeof (psinfo
.pr_psargs
));
7613 /* Fail - we don't know how to handle any other
7614 note size (ie. data object type). */
7618 /* Note that for some reason, a spurious space is tacked
7619 onto the end of the args in some (at least one anyway)
7620 implementations, so strip it off if it exists. */
7623 char *command
= elf_tdata (abfd
)->core_command
;
7624 int n
= strlen (command
);
7626 if (0 < n
&& command
[n
- 1] == ' ')
7627 command
[n
- 1] = '\0';
7632 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7634 #if defined (HAVE_PSTATUS_T)
7636 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7638 if (note
->descsz
== sizeof (pstatus_t
)
7639 #if defined (HAVE_PXSTATUS_T)
7640 || note
->descsz
== sizeof (pxstatus_t
)
7646 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7648 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7650 #if defined (HAVE_PSTATUS32_T)
7651 else if (note
->descsz
== sizeof (pstatus32_t
))
7653 /* 64-bit host, 32-bit corefile */
7656 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7658 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7661 /* Could grab some more details from the "representative"
7662 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7663 NT_LWPSTATUS note, presumably. */
7667 #endif /* defined (HAVE_PSTATUS_T) */
7669 #if defined (HAVE_LWPSTATUS_T)
7671 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7673 lwpstatus_t lwpstat
;
7679 if (note
->descsz
!= sizeof (lwpstat
)
7680 #if defined (HAVE_LWPXSTATUS_T)
7681 && note
->descsz
!= sizeof (lwpxstatus_t
)
7686 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7688 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7689 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7691 /* Make a ".reg/999" section. */
7693 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7694 len
= strlen (buf
) + 1;
7695 name
= bfd_alloc (abfd
, len
);
7698 memcpy (name
, buf
, len
);
7700 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7704 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7705 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7706 sect
->filepos
= note
->descpos
7707 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7710 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7711 sect
->size
= sizeof (lwpstat
.pr_reg
);
7712 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7715 sect
->alignment_power
= 2;
7717 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7720 /* Make a ".reg2/999" section */
7722 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7723 len
= strlen (buf
) + 1;
7724 name
= bfd_alloc (abfd
, len
);
7727 memcpy (name
, buf
, len
);
7729 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7733 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7734 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7735 sect
->filepos
= note
->descpos
7736 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7739 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7740 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7741 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7744 sect
->alignment_power
= 2;
7746 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7748 #endif /* defined (HAVE_LWPSTATUS_T) */
7750 #if defined (HAVE_WIN32_PSTATUS_T)
7752 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7758 win32_pstatus_t pstatus
;
7760 if (note
->descsz
< sizeof (pstatus
))
7763 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7765 switch (pstatus
.data_type
)
7767 case NOTE_INFO_PROCESS
:
7768 /* FIXME: need to add ->core_command. */
7769 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7770 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7773 case NOTE_INFO_THREAD
:
7774 /* Make a ".reg/999" section. */
7775 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7777 len
= strlen (buf
) + 1;
7778 name
= bfd_alloc (abfd
, len
);
7782 memcpy (name
, buf
, len
);
7784 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7788 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7789 sect
->filepos
= (note
->descpos
7790 + offsetof (struct win32_pstatus
,
7791 data
.thread_info
.thread_context
));
7792 sect
->alignment_power
= 2;
7794 if (pstatus
.data
.thread_info
.is_active_thread
)
7795 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7799 case NOTE_INFO_MODULE
:
7800 /* Make a ".module/xxxxxxxx" section. */
7801 sprintf (buf
, ".module/%08lx",
7802 (long) pstatus
.data
.module_info
.base_address
);
7804 len
= strlen (buf
) + 1;
7805 name
= bfd_alloc (abfd
, len
);
7809 memcpy (name
, buf
, len
);
7811 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7816 sect
->size
= note
->descsz
;
7817 sect
->filepos
= note
->descpos
;
7818 sect
->alignment_power
= 2;
7827 #endif /* HAVE_WIN32_PSTATUS_T */
7830 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7832 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7840 if (bed
->elf_backend_grok_prstatus
)
7841 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7843 #if defined (HAVE_PRSTATUS_T)
7844 return elfcore_grok_prstatus (abfd
, note
);
7849 #if defined (HAVE_PSTATUS_T)
7851 return elfcore_grok_pstatus (abfd
, note
);
7854 #if defined (HAVE_LWPSTATUS_T)
7856 return elfcore_grok_lwpstatus (abfd
, note
);
7859 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7860 return elfcore_grok_prfpreg (abfd
, note
);
7862 #if defined (HAVE_WIN32_PSTATUS_T)
7863 case NT_WIN32PSTATUS
:
7864 return elfcore_grok_win32pstatus (abfd
, note
);
7867 case NT_PRXFPREG
: /* Linux SSE extension */
7868 if (note
->namesz
== 6
7869 && strcmp (note
->namedata
, "LINUX") == 0)
7870 return elfcore_grok_prxfpreg (abfd
, note
);
7876 if (bed
->elf_backend_grok_psinfo
)
7877 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7879 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7880 return elfcore_grok_psinfo (abfd
, note
);
7887 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7892 sect
->size
= note
->descsz
;
7893 sect
->filepos
= note
->descpos
;
7894 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7902 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7906 cp
= strchr (note
->namedata
, '@');
7909 *lwpidp
= atoi(cp
+ 1);
7916 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7919 /* Signal number at offset 0x08. */
7920 elf_tdata (abfd
)->core_signal
7921 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7923 /* Process ID at offset 0x50. */
7924 elf_tdata (abfd
)->core_pid
7925 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7927 /* Command name at 0x7c (max 32 bytes, including nul). */
7928 elf_tdata (abfd
)->core_command
7929 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7931 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7936 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7940 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7941 elf_tdata (abfd
)->core_lwpid
= lwp
;
7943 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7945 /* NetBSD-specific core "procinfo". Note that we expect to
7946 find this note before any of the others, which is fine,
7947 since the kernel writes this note out first when it
7948 creates a core file. */
7950 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7953 /* As of Jan 2002 there are no other machine-independent notes
7954 defined for NetBSD core files. If the note type is less
7955 than the start of the machine-dependent note types, we don't
7958 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7962 switch (bfd_get_arch (abfd
))
7964 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7965 PT_GETFPREGS == mach+2. */
7967 case bfd_arch_alpha
:
7968 case bfd_arch_sparc
:
7971 case NT_NETBSDCORE_FIRSTMACH
+0:
7972 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7974 case NT_NETBSDCORE_FIRSTMACH
+2:
7975 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7981 /* On all other arch's, PT_GETREGS == mach+1 and
7982 PT_GETFPREGS == mach+3. */
7987 case NT_NETBSDCORE_FIRSTMACH
+1:
7988 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7990 case NT_NETBSDCORE_FIRSTMACH
+3:
7991 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8001 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8003 void *ddata
= note
->descdata
;
8010 /* nto_procfs_status 'pid' field is at offset 0. */
8011 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8013 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8014 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8016 /* nto_procfs_status 'flags' field is at offset 8. */
8017 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8019 /* nto_procfs_status 'what' field is at offset 14. */
8020 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8022 elf_tdata (abfd
)->core_signal
= sig
;
8023 elf_tdata (abfd
)->core_lwpid
= *tid
;
8026 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8027 do not come from signals so we make sure we set the current
8028 thread just in case. */
8029 if (flags
& 0x00000080)
8030 elf_tdata (abfd
)->core_lwpid
= *tid
;
8032 /* Make a ".qnx_core_status/%d" section. */
8033 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8035 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8040 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8044 sect
->size
= note
->descsz
;
8045 sect
->filepos
= note
->descpos
;
8046 sect
->alignment_power
= 2;
8048 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8052 elfcore_grok_nto_regs (bfd
*abfd
,
8053 Elf_Internal_Note
*note
,
8061 /* Make a "(base)/%d" section. */
8062 sprintf (buf
, "%s/%ld", base
, tid
);
8064 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8069 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8073 sect
->size
= note
->descsz
;
8074 sect
->filepos
= note
->descpos
;
8075 sect
->alignment_power
= 2;
8077 /* This is the current thread. */
8078 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8079 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8084 #define BFD_QNT_CORE_INFO 7
8085 #define BFD_QNT_CORE_STATUS 8
8086 #define BFD_QNT_CORE_GREG 9
8087 #define BFD_QNT_CORE_FPREG 10
8090 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8092 /* Every GREG section has a STATUS section before it. Store the
8093 tid from the previous call to pass down to the next gregs
8095 static long tid
= 1;
8099 case BFD_QNT_CORE_INFO
:
8100 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8101 case BFD_QNT_CORE_STATUS
:
8102 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8103 case BFD_QNT_CORE_GREG
:
8104 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8105 case BFD_QNT_CORE_FPREG
:
8106 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8112 /* Function: elfcore_write_note
8115 buffer to hold note, and current size of buffer
8119 size of data for note
8121 Writes note to end of buffer. ELF64 notes are written exactly as
8122 for ELF32, despite the current (as of 2006) ELF gabi specifying
8123 that they ought to have 8-byte namesz and descsz field, and have
8124 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8127 Pointer to realloc'd buffer, *BUFSIZ updated. */
8130 elfcore_write_note (bfd
*abfd
,
8138 Elf_External_Note
*xnp
;
8145 namesz
= strlen (name
) + 1;
8147 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8149 buf
= realloc (buf
, *bufsiz
+ newspace
);
8150 dest
= buf
+ *bufsiz
;
8151 *bufsiz
+= newspace
;
8152 xnp
= (Elf_External_Note
*) dest
;
8153 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8154 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8155 H_PUT_32 (abfd
, type
, xnp
->type
);
8159 memcpy (dest
, name
, namesz
);
8167 memcpy (dest
, input
, size
);
8177 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8179 elfcore_write_prpsinfo (bfd
*abfd
,
8186 char *note_name
= "CORE";
8188 #if defined (HAVE_PSINFO_T)
8190 note_type
= NT_PSINFO
;
8193 note_type
= NT_PRPSINFO
;
8196 memset (&data
, 0, sizeof (data
));
8197 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8198 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8199 return elfcore_write_note (abfd
, buf
, bufsiz
,
8200 note_name
, note_type
, &data
, sizeof (data
));
8202 #endif /* PSINFO_T or PRPSINFO_T */
8204 #if defined (HAVE_PRSTATUS_T)
8206 elfcore_write_prstatus (bfd
*abfd
,
8214 char *note_name
= "CORE";
8216 memset (&prstat
, 0, sizeof (prstat
));
8217 prstat
.pr_pid
= pid
;
8218 prstat
.pr_cursig
= cursig
;
8219 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8220 return elfcore_write_note (abfd
, buf
, bufsiz
,
8221 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8223 #endif /* HAVE_PRSTATUS_T */
8225 #if defined (HAVE_LWPSTATUS_T)
8227 elfcore_write_lwpstatus (bfd
*abfd
,
8234 lwpstatus_t lwpstat
;
8235 char *note_name
= "CORE";
8237 memset (&lwpstat
, 0, sizeof (lwpstat
));
8238 lwpstat
.pr_lwpid
= pid
>> 16;
8239 lwpstat
.pr_cursig
= cursig
;
8240 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8241 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8242 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8244 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8245 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8247 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8248 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8251 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8252 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8254 #endif /* HAVE_LWPSTATUS_T */
8256 #if defined (HAVE_PSTATUS_T)
8258 elfcore_write_pstatus (bfd
*abfd
,
8262 int cursig ATTRIBUTE_UNUSED
,
8263 const void *gregs ATTRIBUTE_UNUSED
)
8266 char *note_name
= "CORE";
8268 memset (&pstat
, 0, sizeof (pstat
));
8269 pstat
.pr_pid
= pid
& 0xffff;
8270 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8271 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8274 #endif /* HAVE_PSTATUS_T */
8277 elfcore_write_prfpreg (bfd
*abfd
,
8283 char *note_name
= "CORE";
8284 return elfcore_write_note (abfd
, buf
, bufsiz
,
8285 note_name
, NT_FPREGSET
, fpregs
, size
);
8289 elfcore_write_prxfpreg (bfd
*abfd
,
8292 const void *xfpregs
,
8295 char *note_name
= "LINUX";
8296 return elfcore_write_note (abfd
, buf
, bufsiz
,
8297 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8301 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8309 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8312 buf
= bfd_malloc (size
);
8316 if (bfd_bread (buf
, size
, abfd
) != size
)
8324 while (p
< buf
+ size
)
8326 /* FIXME: bad alignment assumption. */
8327 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8328 Elf_Internal_Note in
;
8330 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8332 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8333 in
.namedata
= xnp
->name
;
8335 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8336 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8337 in
.descpos
= offset
+ (in
.descdata
- buf
);
8339 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8341 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8344 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8346 if (! elfcore_grok_nto_note (abfd
, &in
))
8351 if (! elfcore_grok_note (abfd
, &in
))
8355 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8362 /* Providing external access to the ELF program header table. */
8364 /* Return an upper bound on the number of bytes required to store a
8365 copy of ABFD's program header table entries. Return -1 if an error
8366 occurs; bfd_get_error will return an appropriate code. */
8369 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8371 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8373 bfd_set_error (bfd_error_wrong_format
);
8377 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8380 /* Copy ABFD's program header table entries to *PHDRS. The entries
8381 will be stored as an array of Elf_Internal_Phdr structures, as
8382 defined in include/elf/internal.h. To find out how large the
8383 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8385 Return the number of program header table entries read, or -1 if an
8386 error occurs; bfd_get_error will return an appropriate code. */
8389 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8393 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8395 bfd_set_error (bfd_error_wrong_format
);
8399 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8400 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8401 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8407 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8410 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8412 i_ehdrp
= elf_elfheader (abfd
);
8413 if (i_ehdrp
== NULL
)
8414 sprintf_vma (buf
, value
);
8417 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8419 #if BFD_HOST_64BIT_LONG
8420 sprintf (buf
, "%016lx", value
);
8422 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8423 _bfd_int64_low (value
));
8427 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8430 sprintf_vma (buf
, value
);
8435 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8438 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8440 i_ehdrp
= elf_elfheader (abfd
);
8441 if (i_ehdrp
== NULL
)
8442 fprintf_vma ((FILE *) stream
, value
);
8445 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8447 #if BFD_HOST_64BIT_LONG
8448 fprintf ((FILE *) stream
, "%016lx", value
);
8450 fprintf ((FILE *) stream
, "%08lx%08lx",
8451 _bfd_int64_high (value
), _bfd_int64_low (value
));
8455 fprintf ((FILE *) stream
, "%08lx",
8456 (unsigned long) (value
& 0xffffffff));
8459 fprintf_vma ((FILE *) stream
, value
);
8463 enum elf_reloc_type_class
8464 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8466 return reloc_class_normal
;
8469 /* For RELA architectures, return the relocation value for a
8470 relocation against a local symbol. */
8473 _bfd_elf_rela_local_sym (bfd
*abfd
,
8474 Elf_Internal_Sym
*sym
,
8476 Elf_Internal_Rela
*rel
)
8478 asection
*sec
= *psec
;
8481 relocation
= (sec
->output_section
->vma
8482 + sec
->output_offset
8484 if ((sec
->flags
& SEC_MERGE
)
8485 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8486 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8489 _bfd_merged_section_offset (abfd
, psec
,
8490 elf_section_data (sec
)->sec_info
,
8491 sym
->st_value
+ rel
->r_addend
);
8494 /* If we have changed the section, and our original section is
8495 marked with SEC_EXCLUDE, it means that the original
8496 SEC_MERGE section has been completely subsumed in some
8497 other SEC_MERGE section. In this case, we need to leave
8498 some info around for --emit-relocs. */
8499 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8500 sec
->kept_section
= *psec
;
8503 rel
->r_addend
-= relocation
;
8504 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8510 _bfd_elf_rel_local_sym (bfd
*abfd
,
8511 Elf_Internal_Sym
*sym
,
8515 asection
*sec
= *psec
;
8517 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8518 return sym
->st_value
+ addend
;
8520 return _bfd_merged_section_offset (abfd
, psec
,
8521 elf_section_data (sec
)->sec_info
,
8522 sym
->st_value
+ addend
);
8526 _bfd_elf_section_offset (bfd
*abfd
,
8527 struct bfd_link_info
*info
,
8531 switch (sec
->sec_info_type
)
8533 case ELF_INFO_TYPE_STABS
:
8534 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8536 case ELF_INFO_TYPE_EH_FRAME
:
8537 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8543 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8544 reconstruct an ELF file by reading the segments out of remote memory
8545 based on the ELF file header at EHDR_VMA and the ELF program headers it
8546 points to. If not null, *LOADBASEP is filled in with the difference
8547 between the VMAs from which the segments were read, and the VMAs the
8548 file headers (and hence BFD's idea of each section's VMA) put them at.
8550 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8551 remote memory at target address VMA into the local buffer at MYADDR; it
8552 should return zero on success or an `errno' code on failure. TEMPL must
8553 be a BFD for an ELF target with the word size and byte order found in
8554 the remote memory. */
8557 bfd_elf_bfd_from_remote_memory
8561 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8563 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8564 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8568 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8569 long symcount ATTRIBUTE_UNUSED
,
8570 asymbol
**syms ATTRIBUTE_UNUSED
,
8575 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8578 const char *relplt_name
;
8579 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8583 Elf_Internal_Shdr
*hdr
;
8589 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8592 if (dynsymcount
<= 0)
8595 if (!bed
->plt_sym_val
)
8598 relplt_name
= bed
->relplt_name
;
8599 if (relplt_name
== NULL
)
8600 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8601 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8605 hdr
= &elf_section_data (relplt
)->this_hdr
;
8606 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8607 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8610 plt
= bfd_get_section_by_name (abfd
, ".plt");
8614 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8615 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8618 count
= relplt
->size
/ hdr
->sh_entsize
;
8619 size
= count
* sizeof (asymbol
);
8620 p
= relplt
->relocation
;
8621 for (i
= 0; i
< count
; i
++, s
++, p
++)
8622 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8624 s
= *ret
= bfd_malloc (size
);
8628 names
= (char *) (s
+ count
);
8629 p
= relplt
->relocation
;
8631 for (i
= 0; i
< count
; i
++, s
++, p
++)
8636 addr
= bed
->plt_sym_val (i
, plt
, p
);
8637 if (addr
== (bfd_vma
) -1)
8640 *s
= **p
->sym_ptr_ptr
;
8641 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8642 we are defining a symbol, ensure one of them is set. */
8643 if ((s
->flags
& BSF_LOCAL
) == 0)
8644 s
->flags
|= BSF_GLOBAL
;
8646 s
->value
= addr
- plt
->vma
;
8648 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8649 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8651 memcpy (names
, "@plt", sizeof ("@plt"));
8652 names
+= sizeof ("@plt");
8659 /* Sort symbol by binding and section. We want to put definitions
8660 sorted by section at the beginning. */
8663 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8665 const Elf_Internal_Sym
*s1
;
8666 const Elf_Internal_Sym
*s2
;
8669 /* Make sure that undefined symbols are at the end. */
8670 s1
= (const Elf_Internal_Sym
*) arg1
;
8671 if (s1
->st_shndx
== SHN_UNDEF
)
8673 s2
= (const Elf_Internal_Sym
*) arg2
;
8674 if (s2
->st_shndx
== SHN_UNDEF
)
8677 /* Sorted by section index. */
8678 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8682 /* Sorted by binding. */
8683 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8688 Elf_Internal_Sym
*sym
;
8693 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8695 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8696 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8697 return strcmp (s1
->name
, s2
->name
);
8700 /* Check if 2 sections define the same set of local and global
8704 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
8705 struct bfd_link_info
*info
)
8708 const struct elf_backend_data
*bed1
, *bed2
;
8709 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8710 bfd_size_type symcount1
, symcount2
;
8711 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8712 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8713 Elf_Internal_Sym
*isymend
;
8714 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8715 bfd_size_type count1
, count2
, i
;
8722 /* If both are .gnu.linkonce sections, they have to have the same
8724 if (CONST_STRNEQ (sec1
->name
, ".gnu.linkonce")
8725 && CONST_STRNEQ (sec2
->name
, ".gnu.linkonce"))
8726 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8727 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8729 /* Both sections have to be in ELF. */
8730 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8731 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8734 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8737 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8738 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8740 /* If both are members of section groups, they have to have the
8742 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8746 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8747 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8748 if (shndx1
== -1 || shndx2
== -1)
8751 bed1
= get_elf_backend_data (bfd1
);
8752 bed2
= get_elf_backend_data (bfd2
);
8753 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8754 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8755 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8756 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8758 if (symcount1
== 0 || symcount2
== 0)
8762 isymbuf1
= elf_tdata (bfd1
)->symbuf
;
8763 isymbuf2
= elf_tdata (bfd2
)->symbuf
;
8765 if (isymbuf1
== NULL
)
8767 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8769 if (isymbuf1
== NULL
)
8771 /* Sort symbols by binding and section. Global definitions are at
8773 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8774 elf_sort_elf_symbol
);
8775 if (!info
->reduce_memory_overheads
)
8776 elf_tdata (bfd1
)->symbuf
= isymbuf1
;
8779 if (isymbuf2
== NULL
)
8781 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8783 if (isymbuf2
== NULL
)
8785 /* Sort symbols by binding and section. Global definitions are at
8787 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8788 elf_sort_elf_symbol
);
8789 if (!info
->reduce_memory_overheads
)
8790 elf_tdata (bfd2
)->symbuf
= isymbuf2
;
8793 /* Count definitions in the section. */
8795 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8796 isym
< isymend
; isym
++)
8798 if (isym
->st_shndx
== (unsigned int) shndx1
)
8805 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8810 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8811 isym
< isymend
; isym
++)
8813 if (isym
->st_shndx
== (unsigned int) shndx2
)
8820 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8824 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8827 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8828 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8830 if (symtable1
== NULL
|| symtable2
== NULL
)
8834 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8835 isym
< isymend
; isym
++)
8838 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8845 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8846 isym
< isymend
; isym
++)
8849 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8855 /* Sort symbol by name. */
8856 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8857 elf_sym_name_compare
);
8858 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8859 elf_sym_name_compare
);
8861 for (i
= 0; i
< count1
; i
++)
8862 /* Two symbols must have the same binding, type and name. */
8863 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8864 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8865 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8875 if (info
->reduce_memory_overheads
)
8886 /* It is only used by x86-64 so far. */
8887 asection _bfd_elf_large_com_section
8888 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8889 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8891 /* Return TRUE if 2 section types are compatible. */
8894 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8895 bfd
*bbfd
, const asection
*bsec
)
8899 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8900 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8903 return elf_section_type (asec
) == elf_section_type (bsec
);