daily update
[binutils.git] / gold / layout.cc
blob39008cd46fe2cfc42560fa31b8006dc522537eab
1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "compressed_output.h"
36 #include "layout.h"
38 namespace gold
41 // Layout_task_runner methods.
43 // Lay out the sections. This is called after all the input objects
44 // have been read.
46 void
47 Layout_task_runner::run(Workqueue* workqueue)
49 off_t file_size = this->layout_->finalize(this->input_objects_,
50 this->symtab_);
52 // Now we know the final size of the output file and we know where
53 // each piece of information goes.
54 Output_file* of = new Output_file(this->options_,
55 this->input_objects_->target());
56 of->open(file_size);
58 // Queue up the final set of tasks.
59 gold::queue_final_tasks(this->options_, this->input_objects_,
60 this->symtab_, this->layout_, workqueue, of);
63 // Layout methods.
65 Layout::Layout(const General_options& options)
66 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
67 section_name_map_(), segment_list_(), section_list_(),
68 unattached_section_list_(), special_output_list_(),
69 section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
70 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
71 eh_frame_section_(NULL), output_file_size_(-1),
72 input_requires_executable_stack_(false),
73 input_with_gnu_stack_note_(false),
74 input_without_gnu_stack_note_(false)
76 // Make space for more than enough segments for a typical file.
77 // This is just for efficiency--it's OK if we wind up needing more.
78 this->segment_list_.reserve(12);
80 // We expect two unattached Output_data objects: the file header and
81 // the segment headers.
82 this->special_output_list_.reserve(2);
85 // Hash a key we use to look up an output section mapping.
87 size_t
88 Layout::Hash_key::operator()(const Layout::Key& k) const
90 return k.first + k.second.first + k.second.second;
93 // Return whether PREFIX is a prefix of STR.
95 static inline bool
96 is_prefix_of(const char* prefix, const char* str)
98 return strncmp(prefix, str, strlen(prefix)) == 0;
101 // Returns whether the given section is in the list of
102 // debug-sections-used-by-some-version-of-gdb. Currently,
103 // we've checked versions of gdb up to and including 6.7.1.
105 static const char* gdb_sections[] =
106 { ".debug_abbrev",
107 // ".debug_aranges", // not used by gdb as of 6.7.1
108 ".debug_frame",
109 ".debug_info",
110 ".debug_line",
111 ".debug_loc",
112 ".debug_macinfo",
113 // ".debug_pubnames", // not used by gdb as of 6.7.1
114 ".debug_ranges",
115 ".debug_str",
118 static inline bool
119 is_gdb_debug_section(const char* str)
121 // We can do this faster: binary search or a hashtable. But why bother?
122 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
123 if (strcmp(str, gdb_sections[i]) == 0)
124 return true;
125 return false;
128 // Whether to include this section in the link.
130 template<int size, bool big_endian>
131 bool
132 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
133 const elfcpp::Shdr<size, big_endian>& shdr)
135 // Some section types are never linked. Some are only linked when
136 // doing a relocateable link.
137 switch (shdr.get_sh_type())
139 case elfcpp::SHT_NULL:
140 case elfcpp::SHT_SYMTAB:
141 case elfcpp::SHT_DYNSYM:
142 case elfcpp::SHT_STRTAB:
143 case elfcpp::SHT_HASH:
144 case elfcpp::SHT_DYNAMIC:
145 case elfcpp::SHT_SYMTAB_SHNDX:
146 return false;
148 case elfcpp::SHT_RELA:
149 case elfcpp::SHT_REL:
150 case elfcpp::SHT_GROUP:
151 return parameters->output_is_object();
153 case elfcpp::SHT_PROGBITS:
154 if (parameters->strip_debug()
155 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
157 // Debugging sections can only be recognized by name.
158 if (is_prefix_of(".debug", name)
159 || is_prefix_of(".gnu.linkonce.wi.", name)
160 || is_prefix_of(".line", name)
161 || is_prefix_of(".stab", name))
162 return false;
164 if (parameters->strip_debug_gdb()
165 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
167 // Debugging sections can only be recognized by name.
168 if (is_prefix_of(".debug", name)
169 && !is_gdb_debug_section(name))
170 return false;
172 return true;
174 default:
175 return true;
179 // Return an output section named NAME, or NULL if there is none.
181 Output_section*
182 Layout::find_output_section(const char* name) const
184 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
185 p != this->section_name_map_.end();
186 ++p)
187 if (strcmp(p->second->name(), name) == 0)
188 return p->second;
189 return NULL;
192 // Return an output segment of type TYPE, with segment flags SET set
193 // and segment flags CLEAR clear. Return NULL if there is none.
195 Output_segment*
196 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
197 elfcpp::Elf_Word clear) const
199 for (Segment_list::const_iterator p = this->segment_list_.begin();
200 p != this->segment_list_.end();
201 ++p)
202 if (static_cast<elfcpp::PT>((*p)->type()) == type
203 && ((*p)->flags() & set) == set
204 && ((*p)->flags() & clear) == 0)
205 return *p;
206 return NULL;
209 // Return the output section to use for section NAME with type TYPE
210 // and section flags FLAGS.
212 Output_section*
213 Layout::get_output_section(const char* name, Stringpool::Key name_key,
214 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
216 // We should ignore some flags.
217 flags &= ~ (elfcpp::SHF_INFO_LINK
218 | elfcpp::SHF_LINK_ORDER
219 | elfcpp::SHF_GROUP
220 | elfcpp::SHF_MERGE
221 | elfcpp::SHF_STRINGS);
223 const Key key(name_key, std::make_pair(type, flags));
224 const std::pair<Key, Output_section*> v(key, NULL);
225 std::pair<Section_name_map::iterator, bool> ins(
226 this->section_name_map_.insert(v));
228 if (!ins.second)
229 return ins.first->second;
230 else
232 // This is the first time we've seen this name/type/flags
233 // combination.
234 Output_section* os = this->make_output_section(name, type, flags);
235 ins.first->second = os;
236 return os;
240 // Return the output section to use for input section SHNDX, with name
241 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
242 // index of a relocation section which applies to this section, or 0
243 // if none, or -1U if more than one. RELOC_TYPE is the type of the
244 // relocation section if there is one. Set *OFF to the offset of this
245 // input section without the output section. Return NULL if the
246 // section should be discarded. Set *OFF to -1 if the section
247 // contents should not be written directly to the output file, but
248 // will instead receive special handling.
250 template<int size, bool big_endian>
251 Output_section*
252 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
253 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
254 unsigned int reloc_shndx, unsigned int, off_t* off)
256 if (!this->include_section(object, name, shdr))
257 return NULL;
259 // If we are not doing a relocateable link, choose the name to use
260 // for the output section.
261 size_t len = strlen(name);
262 if (!parameters->output_is_object())
263 name = Layout::output_section_name(name, &len);
265 // FIXME: Handle SHF_OS_NONCONFORMING here.
267 // Canonicalize the section name.
268 Stringpool::Key name_key;
269 name = this->namepool_.add_prefix(name, len, &name_key);
271 // Find the output section. The output section is selected based on
272 // the section name, type, and flags.
273 Output_section* os = this->get_output_section(name, name_key,
274 shdr.get_sh_type(),
275 shdr.get_sh_flags());
277 // FIXME: Handle SHF_LINK_ORDER somewhere.
279 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
281 return os;
284 // Special GNU handling of sections name .eh_frame. They will
285 // normally hold exception frame data as defined by the C++ ABI
286 // (http://codesourcery.com/cxx-abi/).
288 template<int size, bool big_endian>
289 Output_section*
290 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
291 const unsigned char* symbols,
292 off_t symbols_size,
293 const unsigned char* symbol_names,
294 off_t symbol_names_size,
295 unsigned int shndx,
296 const elfcpp::Shdr<size, big_endian>& shdr,
297 unsigned int reloc_shndx, unsigned int reloc_type,
298 off_t* off)
300 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
301 gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
303 Stringpool::Key name_key;
304 const char* name = this->namepool_.add(".eh_frame", false, &name_key);
306 Output_section* os = this->get_output_section(name, name_key,
307 elfcpp::SHT_PROGBITS,
308 elfcpp::SHF_ALLOC);
310 if (this->eh_frame_section_ == NULL)
312 this->eh_frame_section_ = os;
313 this->eh_frame_data_ = new Eh_frame();
314 os->add_output_section_data(this->eh_frame_data_);
316 if (this->options_.create_eh_frame_hdr())
318 Stringpool::Key hdr_name_key;
319 const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
320 false,
321 &hdr_name_key);
322 Output_section* hdr_os =
323 this->get_output_section(hdr_name, hdr_name_key,
324 elfcpp::SHT_PROGBITS,
325 elfcpp::SHF_ALLOC);
327 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
328 hdr_os->add_output_section_data(hdr_posd);
330 hdr_os->set_after_input_sections();
332 Output_segment* hdr_oseg =
333 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
334 this->segment_list_.push_back(hdr_oseg);
335 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
337 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
341 gold_assert(this->eh_frame_section_ == os);
343 if (this->eh_frame_data_->add_ehframe_input_section(object,
344 symbols,
345 symbols_size,
346 symbol_names,
347 symbol_names_size,
348 shndx,
349 reloc_shndx,
350 reloc_type))
351 *off = -1;
352 else
354 // We couldn't handle this .eh_frame section for some reason.
355 // Add it as a normal section.
356 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
359 return os;
362 // Add POSD to an output section using NAME, TYPE, and FLAGS.
364 void
365 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
366 elfcpp::Elf_Xword flags,
367 Output_section_data* posd)
369 // Canonicalize the name.
370 Stringpool::Key name_key;
371 name = this->namepool_.add(name, true, &name_key);
373 Output_section* os = this->get_output_section(name, name_key, type, flags);
374 os->add_output_section_data(posd);
377 // Map section flags to segment flags.
379 elfcpp::Elf_Word
380 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
382 elfcpp::Elf_Word ret = elfcpp::PF_R;
383 if ((flags & elfcpp::SHF_WRITE) != 0)
384 ret |= elfcpp::PF_W;
385 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
386 ret |= elfcpp::PF_X;
387 return ret;
390 // Sometimes we compress sections. This is typically done for
391 // sections that are not part of normal program execution (such as
392 // .debug_* sections), and where the readers of these sections know
393 // how to deal with compressed sections. (To make it easier for them,
394 // we will rename the ouput section in such cases from .foo to
395 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
396 // doesn't say for certain whether we'll compress -- it depends on
397 // commandline options as well -- just whether this section is a
398 // candidate for compression.
400 static bool
401 is_compressible_debug_section(const char* secname)
403 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
406 // Make a new Output_section, and attach it to segments as
407 // appropriate.
409 Output_section*
410 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
411 elfcpp::Elf_Xword flags)
413 Output_section* os;
414 if ((flags & elfcpp::SHF_ALLOC) == 0
415 && this->options_.compress_debug_sections()
416 && is_compressible_debug_section(name))
417 os = new Output_compressed_section(&this->options_, name, type, flags);
418 else
419 os = new Output_section(name, type, flags);
421 this->section_list_.push_back(os);
423 if ((flags & elfcpp::SHF_ALLOC) == 0)
424 this->unattached_section_list_.push_back(os);
425 else
427 // This output section goes into a PT_LOAD segment.
429 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
431 // The only thing we really care about for PT_LOAD segments is
432 // whether or not they are writable, so that is how we search
433 // for them. People who need segments sorted on some other
434 // basis will have to wait until we implement a mechanism for
435 // them to describe the segments they want.
437 Segment_list::const_iterator p;
438 for (p = this->segment_list_.begin();
439 p != this->segment_list_.end();
440 ++p)
442 if ((*p)->type() == elfcpp::PT_LOAD
443 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
445 (*p)->add_output_section(os, seg_flags);
446 break;
450 if (p == this->segment_list_.end())
452 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
453 seg_flags);
454 this->segment_list_.push_back(oseg);
455 oseg->add_output_section(os, seg_flags);
458 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
459 // segment.
460 if (type == elfcpp::SHT_NOTE)
462 // See if we already have an equivalent PT_NOTE segment.
463 for (p = this->segment_list_.begin();
464 p != segment_list_.end();
465 ++p)
467 if ((*p)->type() == elfcpp::PT_NOTE
468 && (((*p)->flags() & elfcpp::PF_W)
469 == (seg_flags & elfcpp::PF_W)))
471 (*p)->add_output_section(os, seg_flags);
472 break;
476 if (p == this->segment_list_.end())
478 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
479 seg_flags);
480 this->segment_list_.push_back(oseg);
481 oseg->add_output_section(os, seg_flags);
485 // If we see a loadable SHF_TLS section, we create a PT_TLS
486 // segment. There can only be one such segment.
487 if ((flags & elfcpp::SHF_TLS) != 0)
489 if (this->tls_segment_ == NULL)
491 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
492 seg_flags);
493 this->segment_list_.push_back(this->tls_segment_);
495 this->tls_segment_->add_output_section(os, seg_flags);
499 return os;
502 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
503 // is whether we saw a .note.GNU-stack section in the object file.
504 // GNU_STACK_FLAGS is the section flags. The flags give the
505 // protection required for stack memory. We record this in an
506 // executable as a PT_GNU_STACK segment. If an object file does not
507 // have a .note.GNU-stack segment, we must assume that it is an old
508 // object. On some targets that will force an executable stack.
510 void
511 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
513 if (!seen_gnu_stack)
514 this->input_without_gnu_stack_note_ = true;
515 else
517 this->input_with_gnu_stack_note_ = true;
518 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
519 this->input_requires_executable_stack_ = true;
523 // Create the dynamic sections which are needed before we read the
524 // relocs.
526 void
527 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
528 Symbol_table* symtab)
530 if (parameters->doing_static_link())
531 return;
533 const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
534 this->dynamic_section_ = this->make_output_section(dynamic_name,
535 elfcpp::SHT_DYNAMIC,
536 (elfcpp::SHF_ALLOC
537 | elfcpp::SHF_WRITE));
539 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
540 this->dynamic_section_, 0, 0,
541 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
542 elfcpp::STV_HIDDEN, 0, false, false);
544 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
546 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
549 // For each output section whose name can be represented as C symbol,
550 // define __start and __stop symbols for the section. This is a GNU
551 // extension.
553 void
554 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
556 for (Section_list::const_iterator p = this->section_list_.begin();
557 p != this->section_list_.end();
558 ++p)
560 const char* const name = (*p)->name();
561 if (name[strspn(name,
562 ("0123456789"
563 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
564 "abcdefghijklmnopqrstuvwxyz"
565 "_"))]
566 == '\0')
568 const std::string name_string(name);
569 const std::string start_name("__start_" + name_string);
570 const std::string stop_name("__stop_" + name_string);
572 symtab->define_in_output_data(target,
573 start_name.c_str(),
574 NULL, // version
576 0, // value
577 0, // symsize
578 elfcpp::STT_NOTYPE,
579 elfcpp::STB_GLOBAL,
580 elfcpp::STV_DEFAULT,
581 0, // nonvis
582 false, // offset_is_from_end
583 false); // only_if_ref
585 symtab->define_in_output_data(target,
586 stop_name.c_str(),
587 NULL, // version
589 0, // value
590 0, // symsize
591 elfcpp::STT_NOTYPE,
592 elfcpp::STB_GLOBAL,
593 elfcpp::STV_DEFAULT,
594 0, // nonvis
595 true, // offset_is_from_end
596 false); // only_if_ref
601 // Find the first read-only PT_LOAD segment, creating one if
602 // necessary.
604 Output_segment*
605 Layout::find_first_load_seg()
607 for (Segment_list::const_iterator p = this->segment_list_.begin();
608 p != this->segment_list_.end();
609 ++p)
611 if ((*p)->type() == elfcpp::PT_LOAD
612 && ((*p)->flags() & elfcpp::PF_R) != 0
613 && ((*p)->flags() & elfcpp::PF_W) == 0)
614 return *p;
617 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
618 this->segment_list_.push_back(load_seg);
619 return load_seg;
622 // Finalize the layout. When this is called, we have created all the
623 // output sections and all the output segments which are based on
624 // input sections. We have several things to do, and we have to do
625 // them in the right order, so that we get the right results correctly
626 // and efficiently.
628 // 1) Finalize the list of output segments and create the segment
629 // table header.
631 // 2) Finalize the dynamic symbol table and associated sections.
633 // 3) Determine the final file offset of all the output segments.
635 // 4) Determine the final file offset of all the SHF_ALLOC output
636 // sections.
638 // 5) Create the symbol table sections and the section name table
639 // section.
641 // 6) Finalize the symbol table: set symbol values to their final
642 // value and make a final determination of which symbols are going
643 // into the output symbol table.
645 // 7) Create the section table header.
647 // 8) Determine the final file offset of all the output sections which
648 // are not SHF_ALLOC, including the section table header.
650 // 9) Finalize the ELF file header.
652 // This function returns the size of the output file.
654 off_t
655 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
657 Target* const target = input_objects->target();
659 target->finalize_sections(this);
661 this->create_gold_note();
662 this->create_executable_stack_info(target);
664 Output_segment* phdr_seg = NULL;
665 if (!parameters->doing_static_link())
667 // There was a dynamic object in the link. We need to create
668 // some information for the dynamic linker.
670 // Create the PT_PHDR segment which will hold the program
671 // headers.
672 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
673 this->segment_list_.push_back(phdr_seg);
675 // Create the dynamic symbol table, including the hash table.
676 Output_section* dynstr;
677 std::vector<Symbol*> dynamic_symbols;
678 unsigned int local_dynamic_count;
679 Versions versions;
680 this->create_dynamic_symtab(target, symtab, &dynstr,
681 &local_dynamic_count, &dynamic_symbols,
682 &versions);
684 // Create the .interp section to hold the name of the
685 // interpreter, and put it in a PT_INTERP segment.
686 if (!parameters->output_is_shared())
687 this->create_interp(target);
689 // Finish the .dynamic section to hold the dynamic data, and put
690 // it in a PT_DYNAMIC segment.
691 this->finish_dynamic_section(input_objects, symtab);
693 // We should have added everything we need to the dynamic string
694 // table.
695 this->dynpool_.set_string_offsets();
697 // Create the version sections. We can't do this until the
698 // dynamic string table is complete.
699 this->create_version_sections(&versions, symtab, local_dynamic_count,
700 dynamic_symbols, dynstr);
703 // FIXME: Handle PT_GNU_STACK.
705 Output_segment* load_seg = this->find_first_load_seg();
707 // Lay out the segment headers.
708 Output_segment_headers* segment_headers;
709 segment_headers = new Output_segment_headers(this->segment_list_);
710 load_seg->add_initial_output_data(segment_headers);
711 this->special_output_list_.push_back(segment_headers);
712 if (phdr_seg != NULL)
713 phdr_seg->add_initial_output_data(segment_headers);
715 // Lay out the file header.
716 Output_file_header* file_header;
717 file_header = new Output_file_header(target, symtab, segment_headers);
718 load_seg->add_initial_output_data(file_header);
719 this->special_output_list_.push_back(file_header);
721 // We set the output section indexes in set_segment_offsets and
722 // set_section_indexes.
723 unsigned int shndx = 1;
725 // Set the file offsets of all the segments, and all the sections
726 // they contain.
727 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
729 // Create the symbol table sections.
730 this->create_symtab_sections(input_objects, symtab, &off);
732 // Create the .shstrtab section.
733 Output_section* shstrtab_section = this->create_shstrtab();
735 // Set the file offsets of all the non-data sections which don't
736 // have to wait for the input sections.
737 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
739 // Now that all sections have been created, set the section indexes.
740 shndx = this->set_section_indexes(shndx);
742 // Create the section table header.
743 this->create_shdrs(&off);
745 file_header->set_section_info(this->section_headers_, shstrtab_section);
747 // Now we know exactly where everything goes in the output file
748 // (except for non-allocated sections which require postprocessing).
749 Output_data::layout_complete();
751 this->output_file_size_ = off;
753 return off;
756 // Create a .note section for an executable or shared library. This
757 // records the version of gold used to create the binary.
759 void
760 Layout::create_gold_note()
762 if (parameters->output_is_object())
763 return;
765 // Authorities all agree that the values in a .note field should
766 // be aligned on 4-byte boundaries for 32-bit binaries. However,
767 // they differ on what the alignment is for 64-bit binaries.
768 // The GABI says unambiguously they take 8-byte alignment:
769 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
770 // Other documentation says alignment should always be 4 bytes:
771 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
772 // GNU ld and GNU readelf both support the latter (at least as of
773 // version 2.16.91), and glibc always generates the latter for
774 // .note.ABI-tag (as of version 1.6), so that's the one we go with
775 // here.
776 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
777 const int size = parameters->get_size();
778 #else
779 const int size = 32;
780 #endif
782 // The contents of the .note section.
783 const char* name = "GNU";
784 std::string desc(std::string("gold ") + gold::get_version_string());
785 size_t namesz = strlen(name) + 1;
786 size_t aligned_namesz = align_address(namesz, size / 8);
787 size_t descsz = desc.length() + 1;
788 size_t aligned_descsz = align_address(descsz, size / 8);
789 const int note_type = 4;
791 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
793 unsigned char buffer[128];
794 gold_assert(sizeof buffer >= notesz);
795 memset(buffer, 0, notesz);
797 bool is_big_endian = parameters->is_big_endian();
799 if (size == 32)
801 if (!is_big_endian)
803 elfcpp::Swap<32, false>::writeval(buffer, namesz);
804 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
805 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
807 else
809 elfcpp::Swap<32, true>::writeval(buffer, namesz);
810 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
811 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
814 else if (size == 64)
816 if (!is_big_endian)
818 elfcpp::Swap<64, false>::writeval(buffer, namesz);
819 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
820 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
822 else
824 elfcpp::Swap<64, true>::writeval(buffer, namesz);
825 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
826 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
829 else
830 gold_unreachable();
832 memcpy(buffer + 3 * (size / 8), name, namesz);
833 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
835 const char* note_name = this->namepool_.add(".note", false, NULL);
836 Output_section* os = this->make_output_section(note_name,
837 elfcpp::SHT_NOTE,
839 Output_section_data* posd = new Output_data_const(buffer, notesz,
840 size / 8);
841 os->add_output_section_data(posd);
844 // Record whether the stack should be executable. This can be set
845 // from the command line using the -z execstack or -z noexecstack
846 // options. Otherwise, if any input file has a .note.GNU-stack
847 // section with the SHF_EXECINSTR flag set, the stack should be
848 // executable. Otherwise, if at least one input file a
849 // .note.GNU-stack section, and some input file has no .note.GNU-stack
850 // section, we use the target default for whether the stack should be
851 // executable. Otherwise, we don't generate a stack note. When
852 // generating a object file, we create a .note.GNU-stack section with
853 // the appropriate marking. When generating an executable or shared
854 // library, we create a PT_GNU_STACK segment.
856 void
857 Layout::create_executable_stack_info(const Target* target)
859 bool is_stack_executable;
860 if (this->options_.is_execstack_set())
861 is_stack_executable = this->options_.is_stack_executable();
862 else if (!this->input_with_gnu_stack_note_)
863 return;
864 else
866 if (this->input_requires_executable_stack_)
867 is_stack_executable = true;
868 else if (this->input_without_gnu_stack_note_)
869 is_stack_executable = target->is_default_stack_executable();
870 else
871 is_stack_executable = false;
874 if (parameters->output_is_object())
876 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
877 elfcpp::Elf_Xword flags = 0;
878 if (is_stack_executable)
879 flags |= elfcpp::SHF_EXECINSTR;
880 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
882 else
884 int flags = elfcpp::PF_R | elfcpp::PF_W;
885 if (is_stack_executable)
886 flags |= elfcpp::PF_X;
887 Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
888 this->segment_list_.push_back(oseg);
892 // Return whether SEG1 should be before SEG2 in the output file. This
893 // is based entirely on the segment type and flags. When this is
894 // called the segment addresses has normally not yet been set.
896 bool
897 Layout::segment_precedes(const Output_segment* seg1,
898 const Output_segment* seg2)
900 elfcpp::Elf_Word type1 = seg1->type();
901 elfcpp::Elf_Word type2 = seg2->type();
903 // The single PT_PHDR segment is required to precede any loadable
904 // segment. We simply make it always first.
905 if (type1 == elfcpp::PT_PHDR)
907 gold_assert(type2 != elfcpp::PT_PHDR);
908 return true;
910 if (type2 == elfcpp::PT_PHDR)
911 return false;
913 // The single PT_INTERP segment is required to precede any loadable
914 // segment. We simply make it always second.
915 if (type1 == elfcpp::PT_INTERP)
917 gold_assert(type2 != elfcpp::PT_INTERP);
918 return true;
920 if (type2 == elfcpp::PT_INTERP)
921 return false;
923 // We then put PT_LOAD segments before any other segments.
924 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
925 return true;
926 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
927 return false;
929 // We put the PT_TLS segment last, because that is where the dynamic
930 // linker expects to find it (this is just for efficiency; other
931 // positions would also work correctly).
932 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
933 return false;
934 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
935 return true;
937 const elfcpp::Elf_Word flags1 = seg1->flags();
938 const elfcpp::Elf_Word flags2 = seg2->flags();
940 // The order of non-PT_LOAD segments is unimportant. We simply sort
941 // by the numeric segment type and flags values. There should not
942 // be more than one segment with the same type and flags.
943 if (type1 != elfcpp::PT_LOAD)
945 if (type1 != type2)
946 return type1 < type2;
947 gold_assert(flags1 != flags2);
948 return flags1 < flags2;
951 // We sort PT_LOAD segments based on the flags. Readonly segments
952 // come before writable segments. Then executable segments come
953 // before non-executable segments. Then the unlikely case of a
954 // non-readable segment comes before the normal case of a readable
955 // segment. If there are multiple segments with the same type and
956 // flags, we require that the address be set, and we sort by
957 // virtual address and then physical address.
958 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
959 return (flags1 & elfcpp::PF_W) == 0;
960 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
961 return (flags1 & elfcpp::PF_X) != 0;
962 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
963 return (flags1 & elfcpp::PF_R) == 0;
965 uint64_t vaddr1 = seg1->vaddr();
966 uint64_t vaddr2 = seg2->vaddr();
967 if (vaddr1 != vaddr2)
968 return vaddr1 < vaddr2;
970 uint64_t paddr1 = seg1->paddr();
971 uint64_t paddr2 = seg2->paddr();
972 gold_assert(paddr1 != paddr2);
973 return paddr1 < paddr2;
976 // Set the file offsets of all the segments, and all the sections they
977 // contain. They have all been created. LOAD_SEG must be be laid out
978 // first. Return the offset of the data to follow.
980 off_t
981 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
982 unsigned int *pshndx)
984 // Sort them into the final order.
985 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
986 Layout::Compare_segments());
988 // Find the PT_LOAD segments, and set their addresses and offsets
989 // and their section's addresses and offsets.
990 uint64_t addr;
991 if (options_.user_set_text_segment_address())
992 addr = options_.text_segment_address();
993 else
994 addr = target->default_text_segment_address();
995 off_t off = 0;
996 bool was_readonly = false;
997 for (Segment_list::iterator p = this->segment_list_.begin();
998 p != this->segment_list_.end();
999 ++p)
1001 if ((*p)->type() == elfcpp::PT_LOAD)
1003 if (load_seg != NULL && load_seg != *p)
1004 gold_unreachable();
1005 load_seg = NULL;
1007 // If the last segment was readonly, and this one is not,
1008 // then skip the address forward one page, maintaining the
1009 // same position within the page. This lets us store both
1010 // segments overlapping on a single page in the file, but
1011 // the loader will put them on different pages in memory.
1013 uint64_t orig_addr = addr;
1014 uint64_t orig_off = off;
1016 uint64_t aligned_addr = addr;
1017 uint64_t abi_pagesize = target->abi_pagesize();
1019 // FIXME: This should depend on the -n and -N options.
1020 (*p)->set_minimum_addralign(target->common_pagesize());
1022 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1024 uint64_t align = (*p)->addralign();
1026 addr = align_address(addr, align);
1027 aligned_addr = addr;
1028 if ((addr & (abi_pagesize - 1)) != 0)
1029 addr = addr + abi_pagesize;
1032 unsigned int shndx_hold = *pshndx;
1033 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1034 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1036 // Now that we know the size of this segment, we may be able
1037 // to save a page in memory, at the cost of wasting some
1038 // file space, by instead aligning to the start of a new
1039 // page. Here we use the real machine page size rather than
1040 // the ABI mandated page size.
1042 if (aligned_addr != addr)
1044 uint64_t common_pagesize = target->common_pagesize();
1045 uint64_t first_off = (common_pagesize
1046 - (aligned_addr
1047 & (common_pagesize - 1)));
1048 uint64_t last_off = new_addr & (common_pagesize - 1);
1049 if (first_off > 0
1050 && last_off > 0
1051 && ((aligned_addr & ~ (common_pagesize - 1))
1052 != (new_addr & ~ (common_pagesize - 1)))
1053 && first_off + last_off <= common_pagesize)
1055 *pshndx = shndx_hold;
1056 addr = align_address(aligned_addr, common_pagesize);
1057 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1058 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
1062 addr = new_addr;
1064 if (((*p)->flags() & elfcpp::PF_W) == 0)
1065 was_readonly = true;
1069 // Handle the non-PT_LOAD segments, setting their offsets from their
1070 // section's offsets.
1071 for (Segment_list::iterator p = this->segment_list_.begin();
1072 p != this->segment_list_.end();
1073 ++p)
1075 if ((*p)->type() != elfcpp::PT_LOAD)
1076 (*p)->set_offset();
1079 return off;
1082 // Set the file offset of all the sections not associated with a
1083 // segment.
1085 off_t
1086 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1088 for (Section_list::iterator p = this->unattached_section_list_.begin();
1089 p != this->unattached_section_list_.end();
1090 ++p)
1092 // The symtab section is handled in create_symtab_sections.
1093 if (*p == this->symtab_section_)
1094 continue;
1096 if (pass == BEFORE_INPUT_SECTIONS_PASS
1097 && (*p)->requires_postprocessing())
1098 (*p)->create_postprocessing_buffer();
1100 if (pass == BEFORE_INPUT_SECTIONS_PASS
1101 && (*p)->after_input_sections())
1102 continue;
1103 else if (pass == AFTER_INPUT_SECTIONS_PASS
1104 && (!(*p)->after_input_sections()
1105 || (*p)->type() == elfcpp::SHT_STRTAB))
1106 continue;
1107 else if (pass == STRTAB_AFTER_INPUT_SECTIONS_PASS
1108 && (!(*p)->after_input_sections()
1109 || (*p)->type() != elfcpp::SHT_STRTAB))
1110 continue;
1112 off = align_address(off, (*p)->addralign());
1113 (*p)->set_file_offset(off);
1114 (*p)->finalize_data_size();
1115 off += (*p)->data_size();
1117 // At this point the name must be set.
1118 if (pass != STRTAB_AFTER_INPUT_SECTIONS_PASS)
1119 this->namepool_.add((*p)->name(), false, NULL);
1121 return off;
1124 // Set the section indexes of all the sections not associated with a
1125 // segment.
1127 unsigned int
1128 Layout::set_section_indexes(unsigned int shndx)
1130 for (Section_list::iterator p = this->unattached_section_list_.begin();
1131 p != this->unattached_section_list_.end();
1132 ++p)
1134 (*p)->set_out_shndx(shndx);
1135 ++shndx;
1137 return shndx;
1140 // Create the symbol table sections. Here we also set the final
1141 // values of the symbols. At this point all the loadable sections are
1142 // fully laid out.
1144 void
1145 Layout::create_symtab_sections(const Input_objects* input_objects,
1146 Symbol_table* symtab,
1147 off_t* poff)
1149 int symsize;
1150 unsigned int align;
1151 if (parameters->get_size() == 32)
1153 symsize = elfcpp::Elf_sizes<32>::sym_size;
1154 align = 4;
1156 else if (parameters->get_size() == 64)
1158 symsize = elfcpp::Elf_sizes<64>::sym_size;
1159 align = 8;
1161 else
1162 gold_unreachable();
1164 off_t off = *poff;
1165 off = align_address(off, align);
1166 off_t startoff = off;
1168 // Save space for the dummy symbol at the start of the section. We
1169 // never bother to write this out--it will just be left as zero.
1170 off += symsize;
1171 unsigned int local_symbol_index = 1;
1173 // Add STT_SECTION symbols for each Output section which needs one.
1174 for (Section_list::iterator p = this->section_list_.begin();
1175 p != this->section_list_.end();
1176 ++p)
1178 if (!(*p)->needs_symtab_index())
1179 (*p)->set_symtab_index(-1U);
1180 else
1182 (*p)->set_symtab_index(local_symbol_index);
1183 ++local_symbol_index;
1184 off += symsize;
1188 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1189 p != input_objects->relobj_end();
1190 ++p)
1192 Task_lock_obj<Object> tlo(**p);
1193 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1194 off,
1195 &this->sympool_);
1196 off += (index - local_symbol_index) * symsize;
1197 local_symbol_index = index;
1200 unsigned int local_symcount = local_symbol_index;
1201 gold_assert(local_symcount * symsize == off - startoff);
1203 off_t dynoff;
1204 size_t dyn_global_index;
1205 size_t dyncount;
1206 if (this->dynsym_section_ == NULL)
1208 dynoff = 0;
1209 dyn_global_index = 0;
1210 dyncount = 0;
1212 else
1214 dyn_global_index = this->dynsym_section_->info();
1215 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1216 dynoff = this->dynsym_section_->offset() + locsize;
1217 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1218 gold_assert(static_cast<off_t>(dyncount * symsize)
1219 == this->dynsym_section_->data_size() - locsize);
1222 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1223 dyncount, &this->sympool_);
1225 if (!parameters->strip_all())
1227 this->sympool_.set_string_offsets();
1229 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1230 Output_section* osymtab = this->make_output_section(symtab_name,
1231 elfcpp::SHT_SYMTAB,
1233 this->symtab_section_ = osymtab;
1235 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1236 align);
1237 osymtab->add_output_section_data(pos);
1239 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1240 Output_section* ostrtab = this->make_output_section(strtab_name,
1241 elfcpp::SHT_STRTAB,
1244 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1245 ostrtab->add_output_section_data(pstr);
1247 osymtab->set_file_offset(startoff);
1248 osymtab->finalize_data_size();
1249 osymtab->set_link_section(ostrtab);
1250 osymtab->set_info(local_symcount);
1251 osymtab->set_entsize(symsize);
1253 *poff = off;
1257 // Create the .shstrtab section, which holds the names of the
1258 // sections. At the time this is called, we have created all the
1259 // output sections except .shstrtab itself.
1261 Output_section*
1262 Layout::create_shstrtab()
1264 // FIXME: We don't need to create a .shstrtab section if we are
1265 // stripping everything.
1267 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1269 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1271 // We can't write out this section until we've set all the section
1272 // names, and we don't set the names of compressed output sections
1273 // until relocations are complete.
1274 os->set_after_input_sections();
1276 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1277 os->add_output_section_data(posd);
1279 return os;
1282 // Create the section headers. SIZE is 32 or 64. OFF is the file
1283 // offset.
1285 void
1286 Layout::create_shdrs(off_t* poff)
1288 Output_section_headers* oshdrs;
1289 oshdrs = new Output_section_headers(this,
1290 &this->segment_list_,
1291 &this->unattached_section_list_,
1292 &this->namepool_);
1293 off_t off = align_address(*poff, oshdrs->addralign());
1294 oshdrs->set_address_and_file_offset(0, off);
1295 off += oshdrs->data_size();
1296 *poff = off;
1297 this->section_headers_ = oshdrs;
1300 // Create the dynamic symbol table.
1302 void
1303 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1304 Output_section **pdynstr,
1305 unsigned int* plocal_dynamic_count,
1306 std::vector<Symbol*>* pdynamic_symbols,
1307 Versions* pversions)
1309 // Count all the symbols in the dynamic symbol table, and set the
1310 // dynamic symbol indexes.
1312 // Skip symbol 0, which is always all zeroes.
1313 unsigned int index = 1;
1315 // Add STT_SECTION symbols for each Output section which needs one.
1316 for (Section_list::iterator p = this->section_list_.begin();
1317 p != this->section_list_.end();
1318 ++p)
1320 if (!(*p)->needs_dynsym_index())
1321 (*p)->set_dynsym_index(-1U);
1322 else
1324 (*p)->set_dynsym_index(index);
1325 ++index;
1329 // FIXME: Some targets apparently require local symbols in the
1330 // dynamic symbol table. Here is where we will have to count them,
1331 // and set the dynamic symbol indexes, and add the names to
1332 // this->dynpool_.
1334 unsigned int local_symcount = index;
1335 *plocal_dynamic_count = local_symcount;
1337 // FIXME: We have to tell set_dynsym_indexes whether the
1338 // -E/--export-dynamic option was used.
1339 index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1340 &this->dynpool_, pversions);
1342 int symsize;
1343 unsigned int align;
1344 const int size = parameters->get_size();
1345 if (size == 32)
1347 symsize = elfcpp::Elf_sizes<32>::sym_size;
1348 align = 4;
1350 else if (size == 64)
1352 symsize = elfcpp::Elf_sizes<64>::sym_size;
1353 align = 8;
1355 else
1356 gold_unreachable();
1358 // Create the dynamic symbol table section.
1360 const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1361 Output_section* dynsym = this->make_output_section(dynsym_name,
1362 elfcpp::SHT_DYNSYM,
1363 elfcpp::SHF_ALLOC);
1365 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1366 align);
1367 dynsym->add_output_section_data(odata);
1369 dynsym->set_info(local_symcount);
1370 dynsym->set_entsize(symsize);
1371 dynsym->set_addralign(align);
1373 this->dynsym_section_ = dynsym;
1375 Output_data_dynamic* const odyn = this->dynamic_data_;
1376 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1377 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1379 // Create the dynamic string table section.
1381 const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1382 Output_section* dynstr = this->make_output_section(dynstr_name,
1383 elfcpp::SHT_STRTAB,
1384 elfcpp::SHF_ALLOC);
1386 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1387 dynstr->add_output_section_data(strdata);
1389 dynsym->set_link_section(dynstr);
1390 this->dynamic_section_->set_link_section(dynstr);
1392 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1393 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1395 *pdynstr = dynstr;
1397 // Create the hash tables.
1399 // FIXME: We need an option to create a GNU hash table.
1401 unsigned char* phash;
1402 unsigned int hashlen;
1403 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1404 &phash, &hashlen);
1406 const char* hash_name = this->namepool_.add(".hash", false, NULL);
1407 Output_section* hashsec = this->make_output_section(hash_name,
1408 elfcpp::SHT_HASH,
1409 elfcpp::SHF_ALLOC);
1411 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1412 hashlen,
1413 align);
1414 hashsec->add_output_section_data(hashdata);
1416 hashsec->set_link_section(dynsym);
1417 hashsec->set_entsize(4);
1419 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1422 // Create the version sections.
1424 void
1425 Layout::create_version_sections(const Versions* versions,
1426 const Symbol_table* symtab,
1427 unsigned int local_symcount,
1428 const std::vector<Symbol*>& dynamic_symbols,
1429 const Output_section* dynstr)
1431 if (!versions->any_defs() && !versions->any_needs())
1432 return;
1434 if (parameters->get_size() == 32)
1436 if (parameters->is_big_endian())
1438 #ifdef HAVE_TARGET_32_BIG
1439 this->sized_create_version_sections
1440 SELECT_SIZE_ENDIAN_NAME(32, true)(
1441 versions, symtab, local_symcount, dynamic_symbols, dynstr
1442 SELECT_SIZE_ENDIAN(32, true));
1443 #else
1444 gold_unreachable();
1445 #endif
1447 else
1449 #ifdef HAVE_TARGET_32_LITTLE
1450 this->sized_create_version_sections
1451 SELECT_SIZE_ENDIAN_NAME(32, false)(
1452 versions, symtab, local_symcount, dynamic_symbols, dynstr
1453 SELECT_SIZE_ENDIAN(32, false));
1454 #else
1455 gold_unreachable();
1456 #endif
1459 else if (parameters->get_size() == 64)
1461 if (parameters->is_big_endian())
1463 #ifdef HAVE_TARGET_64_BIG
1464 this->sized_create_version_sections
1465 SELECT_SIZE_ENDIAN_NAME(64, true)(
1466 versions, symtab, local_symcount, dynamic_symbols, dynstr
1467 SELECT_SIZE_ENDIAN(64, true));
1468 #else
1469 gold_unreachable();
1470 #endif
1472 else
1474 #ifdef HAVE_TARGET_64_LITTLE
1475 this->sized_create_version_sections
1476 SELECT_SIZE_ENDIAN_NAME(64, false)(
1477 versions, symtab, local_symcount, dynamic_symbols, dynstr
1478 SELECT_SIZE_ENDIAN(64, false));
1479 #else
1480 gold_unreachable();
1481 #endif
1484 else
1485 gold_unreachable();
1488 // Create the version sections, sized version.
1490 template<int size, bool big_endian>
1491 void
1492 Layout::sized_create_version_sections(
1493 const Versions* versions,
1494 const Symbol_table* symtab,
1495 unsigned int local_symcount,
1496 const std::vector<Symbol*>& dynamic_symbols,
1497 const Output_section* dynstr
1498 ACCEPT_SIZE_ENDIAN)
1500 const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1501 Output_section* vsec = this->make_output_section(vname,
1502 elfcpp::SHT_GNU_versym,
1503 elfcpp::SHF_ALLOC);
1505 unsigned char* vbuf;
1506 unsigned int vsize;
1507 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1508 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1509 SELECT_SIZE_ENDIAN(size, big_endian));
1511 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1513 vsec->add_output_section_data(vdata);
1514 vsec->set_entsize(2);
1515 vsec->set_link_section(this->dynsym_section_);
1517 Output_data_dynamic* const odyn = this->dynamic_data_;
1518 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1520 if (versions->any_defs())
1522 const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1523 Output_section *vdsec;
1524 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1525 elfcpp::SHF_ALLOC);
1527 unsigned char* vdbuf;
1528 unsigned int vdsize;
1529 unsigned int vdentries;
1530 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1531 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1532 SELECT_SIZE_ENDIAN(size, big_endian));
1534 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1535 vdsize,
1538 vdsec->add_output_section_data(vddata);
1539 vdsec->set_link_section(dynstr);
1540 vdsec->set_info(vdentries);
1542 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1543 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1546 if (versions->any_needs())
1548 const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1549 Output_section* vnsec;
1550 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1551 elfcpp::SHF_ALLOC);
1553 unsigned char* vnbuf;
1554 unsigned int vnsize;
1555 unsigned int vnentries;
1556 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1557 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1558 SELECT_SIZE_ENDIAN(size, big_endian));
1560 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1561 vnsize,
1564 vnsec->add_output_section_data(vndata);
1565 vnsec->set_link_section(dynstr);
1566 vnsec->set_info(vnentries);
1568 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1569 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1573 // Create the .interp section and PT_INTERP segment.
1575 void
1576 Layout::create_interp(const Target* target)
1578 const char* interp = this->options_.dynamic_linker();
1579 if (interp == NULL)
1581 interp = target->dynamic_linker();
1582 gold_assert(interp != NULL);
1585 size_t len = strlen(interp) + 1;
1587 Output_section_data* odata = new Output_data_const(interp, len, 1);
1589 const char* interp_name = this->namepool_.add(".interp", false, NULL);
1590 Output_section* osec = this->make_output_section(interp_name,
1591 elfcpp::SHT_PROGBITS,
1592 elfcpp::SHF_ALLOC);
1593 osec->add_output_section_data(odata);
1595 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1596 this->segment_list_.push_back(oseg);
1597 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1600 // Finish the .dynamic section and PT_DYNAMIC segment.
1602 void
1603 Layout::finish_dynamic_section(const Input_objects* input_objects,
1604 const Symbol_table* symtab)
1606 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1607 elfcpp::PF_R | elfcpp::PF_W);
1608 this->segment_list_.push_back(oseg);
1609 oseg->add_initial_output_section(this->dynamic_section_,
1610 elfcpp::PF_R | elfcpp::PF_W);
1612 Output_data_dynamic* const odyn = this->dynamic_data_;
1614 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1615 p != input_objects->dynobj_end();
1616 ++p)
1618 // FIXME: Handle --as-needed.
1619 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1622 // FIXME: Support --init and --fini.
1623 Symbol* sym = symtab->lookup("_init");
1624 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1625 odyn->add_symbol(elfcpp::DT_INIT, sym);
1627 sym = symtab->lookup("_fini");
1628 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1629 odyn->add_symbol(elfcpp::DT_FINI, sym);
1631 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1633 // Add a DT_RPATH entry if needed.
1634 const General_options::Dir_list& rpath(this->options_.rpath());
1635 if (!rpath.empty())
1637 std::string rpath_val;
1638 for (General_options::Dir_list::const_iterator p = rpath.begin();
1639 p != rpath.end();
1640 ++p)
1642 if (rpath_val.empty())
1643 rpath_val = p->name();
1644 else
1646 // Eliminate duplicates.
1647 General_options::Dir_list::const_iterator q;
1648 for (q = rpath.begin(); q != p; ++q)
1649 if (q->name() == p->name())
1650 break;
1651 if (q == p)
1653 rpath_val += ':';
1654 rpath_val += p->name();
1659 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1662 // Look for text segments that have dynamic relocations.
1663 bool have_textrel = false;
1664 for (Segment_list::const_iterator p = this->segment_list_.begin();
1665 p != this->segment_list_.end();
1666 ++p)
1668 if (((*p)->flags() & elfcpp::PF_W) == 0
1669 && (*p)->dynamic_reloc_count() > 0)
1671 have_textrel = true;
1672 break;
1676 // Add a DT_FLAGS entry. We add it even if no flags are set so that
1677 // post-link tools can easily modify these flags if desired.
1678 unsigned int flags = 0;
1679 if (have_textrel)
1680 flags |= elfcpp::DF_TEXTREL;
1681 odyn->add_constant(elfcpp::DT_FLAGS, flags);
1684 // The mapping of .gnu.linkonce section names to real section names.
1686 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1687 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1689 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1690 MAPPING_INIT("t", ".text"),
1691 MAPPING_INIT("r", ".rodata"),
1692 MAPPING_INIT("d", ".data"),
1693 MAPPING_INIT("b", ".bss"),
1694 MAPPING_INIT("s", ".sdata"),
1695 MAPPING_INIT("sb", ".sbss"),
1696 MAPPING_INIT("s2", ".sdata2"),
1697 MAPPING_INIT("sb2", ".sbss2"),
1698 MAPPING_INIT("wi", ".debug_info"),
1699 MAPPING_INIT("td", ".tdata"),
1700 MAPPING_INIT("tb", ".tbss"),
1701 MAPPING_INIT("lr", ".lrodata"),
1702 MAPPING_INIT("l", ".ldata"),
1703 MAPPING_INIT("lb", ".lbss"),
1705 #undef MAPPING_INIT
1707 const int Layout::linkonce_mapping_count =
1708 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1710 // Return the name of the output section to use for a .gnu.linkonce
1711 // section. This is based on the default ELF linker script of the old
1712 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1713 // to ".text". Set *PLEN to the length of the name. *PLEN is
1714 // initialized to the length of NAME.
1716 const char*
1717 Layout::linkonce_output_name(const char* name, size_t *plen)
1719 const char* s = name + sizeof(".gnu.linkonce") - 1;
1720 if (*s != '.')
1721 return name;
1722 ++s;
1723 const Linkonce_mapping* plm = linkonce_mapping;
1724 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1726 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1728 *plen = plm->tolen;
1729 return plm->to;
1732 return name;
1735 // Choose the output section name to use given an input section name.
1736 // Set *PLEN to the length of the name. *PLEN is initialized to the
1737 // length of NAME.
1739 const char*
1740 Layout::output_section_name(const char* name, size_t* plen)
1742 if (Layout::is_linkonce(name))
1744 // .gnu.linkonce sections are laid out as though they were named
1745 // for the sections are placed into.
1746 return Layout::linkonce_output_name(name, plen);
1749 // gcc 4.3 generates the following sorts of section names when it
1750 // needs a section name specific to a function:
1751 // .text.FN
1752 // .rodata.FN
1753 // .sdata2.FN
1754 // .data.FN
1755 // .data.rel.FN
1756 // .data.rel.local.FN
1757 // .data.rel.ro.FN
1758 // .data.rel.ro.local.FN
1759 // .sdata.FN
1760 // .bss.FN
1761 // .sbss.FN
1762 // .tdata.FN
1763 // .tbss.FN
1765 // The GNU linker maps all of those to the part before the .FN,
1766 // except that .data.rel.local.FN is mapped to .data, and
1767 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
1768 // beginning with .data.rel.ro.local are grouped together.
1770 // For an anonymous namespace, the string FN can contain a '.'.
1772 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1773 // GNU linker maps to .rodata.
1775 // The .data.rel.ro sections enable a security feature triggered by
1776 // the -z relro option. Section which need to be relocated at
1777 // program startup time but which may be readonly after startup are
1778 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
1779 // segment. The dynamic linker will make that segment writable,
1780 // perform relocations, and then make it read-only. FIXME: We do
1781 // not yet implement this optimization.
1783 // It is hard to handle this in a principled way.
1785 // These are the rules we follow:
1787 // If the section name has no initial '.', or no dot other than an
1788 // initial '.', we use the name unchanged (i.e., "mysection" and
1789 // ".text" are unchanged).
1791 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1793 // Otherwise, we drop the second '.' and everything that comes after
1794 // it (i.e., ".text.XXX" becomes ".text").
1796 const char* s = name;
1797 if (*s != '.')
1798 return name;
1799 ++s;
1800 const char* sdot = strchr(s, '.');
1801 if (sdot == NULL)
1802 return name;
1804 const char* const data_rel_ro = ".data.rel.ro";
1805 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1807 *plen = strlen(data_rel_ro);
1808 return data_rel_ro;
1811 *plen = sdot - name;
1812 return name;
1815 // Record the signature of a comdat section, and return whether to
1816 // include it in the link. If GROUP is true, this is a regular
1817 // section group. If GROUP is false, this is a group signature
1818 // derived from the name of a linkonce section. We want linkonce
1819 // signatures and group signatures to block each other, but we don't
1820 // want a linkonce signature to block another linkonce signature.
1822 bool
1823 Layout::add_comdat(const char* signature, bool group)
1825 std::string sig(signature);
1826 std::pair<Signatures::iterator, bool> ins(
1827 this->signatures_.insert(std::make_pair(sig, group)));
1829 if (ins.second)
1831 // This is the first time we've seen this signature.
1832 return true;
1835 if (ins.first->second)
1837 // We've already seen a real section group with this signature.
1838 return false;
1840 else if (group)
1842 // This is a real section group, and we've already seen a
1843 // linkonce section with this signature. Record that we've seen
1844 // a section group, and don't include this section group.
1845 ins.first->second = true;
1846 return false;
1848 else
1850 // We've already seen a linkonce section and this is a linkonce
1851 // section. These don't block each other--this may be the same
1852 // symbol name with different section types.
1853 return true;
1857 // Write out the Output_sections. Most won't have anything to write,
1858 // since most of the data will come from input sections which are
1859 // handled elsewhere. But some Output_sections do have Output_data.
1861 void
1862 Layout::write_output_sections(Output_file* of) const
1864 for (Section_list::const_iterator p = this->section_list_.begin();
1865 p != this->section_list_.end();
1866 ++p)
1868 if (!(*p)->after_input_sections())
1869 (*p)->write(of);
1873 // Write out data not associated with a section or the symbol table.
1875 void
1876 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1878 if (!parameters->strip_all())
1880 const Output_section* symtab_section = this->symtab_section_;
1881 for (Section_list::const_iterator p = this->section_list_.begin();
1882 p != this->section_list_.end();
1883 ++p)
1885 if ((*p)->needs_symtab_index())
1887 gold_assert(symtab_section != NULL);
1888 unsigned int index = (*p)->symtab_index();
1889 gold_assert(index > 0 && index != -1U);
1890 off_t off = (symtab_section->offset()
1891 + index * symtab_section->entsize());
1892 symtab->write_section_symbol(*p, of, off);
1897 const Output_section* dynsym_section = this->dynsym_section_;
1898 for (Section_list::const_iterator p = this->section_list_.begin();
1899 p != this->section_list_.end();
1900 ++p)
1902 if ((*p)->needs_dynsym_index())
1904 gold_assert(dynsym_section != NULL);
1905 unsigned int index = (*p)->dynsym_index();
1906 gold_assert(index > 0 && index != -1U);
1907 off_t off = (dynsym_section->offset()
1908 + index * dynsym_section->entsize());
1909 symtab->write_section_symbol(*p, of, off);
1913 // Write out the Output_data which are not in an Output_section.
1914 for (Data_list::const_iterator p = this->special_output_list_.begin();
1915 p != this->special_output_list_.end();
1916 ++p)
1917 (*p)->write(of);
1920 // Write out the Output_sections which can only be written after the
1921 // input sections are complete.
1923 void
1924 Layout::write_sections_after_input_sections(Output_file* of)
1926 // Determine the final section offsets, and thus the final output
1927 // file size. Note we finalize the .shstrab last, to allow the
1928 // after_input_section sections to modify their section-names before
1929 // writing.
1930 off_t off = this->output_file_size_;
1931 off = this->set_section_offsets(off, AFTER_INPUT_SECTIONS_PASS);
1933 // Now that we've finalized the names, we can finalize the shstrab.
1934 off = this->set_section_offsets(off, STRTAB_AFTER_INPUT_SECTIONS_PASS);
1936 if (off > this->output_file_size_)
1938 of->resize(off);
1939 this->output_file_size_ = off;
1942 for (Section_list::const_iterator p = this->section_list_.begin();
1943 p != this->section_list_.end();
1944 ++p)
1946 if ((*p)->after_input_sections())
1947 (*p)->write(of);
1950 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
1951 p != this->unattached_section_list_.end();
1952 ++p)
1954 if ((*p)->after_input_sections())
1955 (*p)->write(of);
1958 this->section_headers_->write(of);
1961 // Write_sections_task methods.
1963 // We can always run this task.
1965 Task::Is_runnable_type
1966 Write_sections_task::is_runnable(Workqueue*)
1968 return IS_RUNNABLE;
1971 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
1972 // when finished.
1974 class Write_sections_task::Write_sections_locker : public Task_locker
1976 public:
1977 Write_sections_locker(Task_token& output_sections_blocker,
1978 Task_token& final_blocker,
1979 Workqueue* workqueue)
1980 : output_sections_block_(output_sections_blocker, workqueue),
1981 final_block_(final_blocker, workqueue)
1984 private:
1985 Task_block_token output_sections_block_;
1986 Task_block_token final_block_;
1989 Task_locker*
1990 Write_sections_task::locks(Workqueue* workqueue)
1992 return new Write_sections_locker(*this->output_sections_blocker_,
1993 *this->final_blocker_,
1994 workqueue);
1997 // Run the task--write out the data.
1999 void
2000 Write_sections_task::run(Workqueue*)
2002 this->layout_->write_output_sections(this->of_);
2005 // Write_data_task methods.
2007 // We can always run this task.
2009 Task::Is_runnable_type
2010 Write_data_task::is_runnable(Workqueue*)
2012 return IS_RUNNABLE;
2015 // We need to unlock FINAL_BLOCKER when finished.
2017 Task_locker*
2018 Write_data_task::locks(Workqueue* workqueue)
2020 return new Task_locker_block(*this->final_blocker_, workqueue);
2023 // Run the task--write out the data.
2025 void
2026 Write_data_task::run(Workqueue*)
2028 this->layout_->write_data(this->symtab_, this->of_);
2031 // Write_symbols_task methods.
2033 // We can always run this task.
2035 Task::Is_runnable_type
2036 Write_symbols_task::is_runnable(Workqueue*)
2038 return IS_RUNNABLE;
2041 // We need to unlock FINAL_BLOCKER when finished.
2043 Task_locker*
2044 Write_symbols_task::locks(Workqueue* workqueue)
2046 return new Task_locker_block(*this->final_blocker_, workqueue);
2049 // Run the task--write out the symbols.
2051 void
2052 Write_symbols_task::run(Workqueue*)
2054 this->symtab_->write_globals(this->input_objects_, this->sympool_,
2055 this->dynpool_, this->of_);
2058 // Write_after_input_sections_task methods.
2060 // We can only run this task after the input sections have completed.
2062 Task::Is_runnable_type
2063 Write_after_input_sections_task::is_runnable(Workqueue*)
2065 if (this->input_sections_blocker_->is_blocked())
2066 return IS_BLOCKED;
2067 return IS_RUNNABLE;
2070 // We need to unlock FINAL_BLOCKER when finished.
2072 Task_locker*
2073 Write_after_input_sections_task::locks(Workqueue* workqueue)
2075 return new Task_locker_block(*this->final_blocker_, workqueue);
2078 // Run the task.
2080 void
2081 Write_after_input_sections_task::run(Workqueue*)
2083 this->layout_->write_sections_after_input_sections(this->of_);
2086 // Close_task_runner methods.
2088 // Run the task--close the file.
2090 void
2091 Close_task_runner::run(Workqueue*)
2093 this->of_->close();
2096 // Instantiate the templates we need. We could use the configure
2097 // script to restrict this to only the ones for implemented targets.
2099 #ifdef HAVE_TARGET_32_LITTLE
2100 template
2101 Output_section*
2102 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2103 const char* name,
2104 const elfcpp::Shdr<32, false>& shdr,
2105 unsigned int, unsigned int, off_t*);
2106 #endif
2108 #ifdef HAVE_TARGET_32_BIG
2109 template
2110 Output_section*
2111 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2112 const char* name,
2113 const elfcpp::Shdr<32, true>& shdr,
2114 unsigned int, unsigned int, off_t*);
2115 #endif
2117 #ifdef HAVE_TARGET_64_LITTLE
2118 template
2119 Output_section*
2120 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2121 const char* name,
2122 const elfcpp::Shdr<64, false>& shdr,
2123 unsigned int, unsigned int, off_t*);
2124 #endif
2126 #ifdef HAVE_TARGET_64_BIG
2127 template
2128 Output_section*
2129 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2130 const char* name,
2131 const elfcpp::Shdr<64, true>& shdr,
2132 unsigned int, unsigned int, off_t*);
2133 #endif
2135 #ifdef HAVE_TARGET_32_LITTLE
2136 template
2137 Output_section*
2138 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2139 const unsigned char* symbols,
2140 off_t symbols_size,
2141 const unsigned char* symbol_names,
2142 off_t symbol_names_size,
2143 unsigned int shndx,
2144 const elfcpp::Shdr<32, false>& shdr,
2145 unsigned int reloc_shndx,
2146 unsigned int reloc_type,
2147 off_t* off);
2148 #endif
2150 #ifdef HAVE_TARGET_32_BIG
2151 template
2152 Output_section*
2153 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2154 const unsigned char* symbols,
2155 off_t symbols_size,
2156 const unsigned char* symbol_names,
2157 off_t symbol_names_size,
2158 unsigned int shndx,
2159 const elfcpp::Shdr<32, true>& shdr,
2160 unsigned int reloc_shndx,
2161 unsigned int reloc_type,
2162 off_t* off);
2163 #endif
2165 #ifdef HAVE_TARGET_64_LITTLE
2166 template
2167 Output_section*
2168 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2169 const unsigned char* symbols,
2170 off_t symbols_size,
2171 const unsigned char* symbol_names,
2172 off_t symbol_names_size,
2173 unsigned int shndx,
2174 const elfcpp::Shdr<64, false>& shdr,
2175 unsigned int reloc_shndx,
2176 unsigned int reloc_type,
2177 off_t* off);
2178 #endif
2180 #ifdef HAVE_TARGET_64_BIG
2181 template
2182 Output_section*
2183 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2184 const unsigned char* symbols,
2185 off_t symbols_size,
2186 const unsigned char* symbol_names,
2187 off_t symbol_names_size,
2188 unsigned int shndx,
2189 const elfcpp::Shdr<64, true>& shdr,
2190 unsigned int reloc_shndx,
2191 unsigned int reloc_type,
2192 off_t* off);
2193 #endif
2195 } // End namespace gold.