1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry
*h
;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type
;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
118 struct mips_got_page_range
120 struct mips_got_page_range
*next
;
121 bfd_signed_vma min_addend
;
122 bfd_signed_vma max_addend
;
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
129 /* The input bfd in which the symbol is defined. */
131 /* The index of the symbol, as stored in the relocation r_info. */
133 /* The ranges for this page entry. */
134 struct mips_got_page_range
*ranges
;
135 /* The maximum number of page entries needed for RANGES. */
139 /* This structure is used to hold .got information when linking. */
143 /* The global symbol in the GOT with the lowest index in the dynamic
145 struct elf_link_hash_entry
*global_gotsym
;
146 /* The number of global .got entries. */
147 unsigned int global_gotno
;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno
;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno
;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno
;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno
;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno
;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno
;
161 /* A hash table holding members of the got. */
162 struct htab
*got_entries
;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab
*got_page_entries
;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab
*bfd2got
;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info
*next
;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset
;
178 /* Map an input bfd to a got in a multi-got link. */
180 struct mips_elf_bfd2got_hash
{
182 struct mips_got_info
*g
;
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
188 struct mips_elf_got_per_bfd_arg
190 /* A hashtable that maps bfds to gots. */
192 /* The output bfd. */
194 /* The link information. */
195 struct bfd_link_info
*info
;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 struct mips_got_info
*primary
;
200 /* A non-primary got we're trying to merge with other input bfd's
202 struct mips_got_info
*current
;
203 /* The maximum number of got entries that can be addressed with a
205 unsigned int max_count
;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages
;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
212 unsigned int global_count
;
215 /* Another structure used to pass arguments for got entries traversal. */
217 struct mips_elf_set_global_got_offset_arg
219 struct mips_got_info
*g
;
221 unsigned int needed_relocs
;
222 struct bfd_link_info
*info
;
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
228 struct mips_elf_count_tls_arg
230 struct bfd_link_info
*info
;
234 struct _mips_elf_section_data
236 struct bfd_elf_section_data elf
;
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
269 #define GGA_RELOC_ONLY 1
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
276 addiu $25,$25,%lo(func)
278 immediately before a PIC function "func". The second is to add:
282 addiu $25,$25,%lo(func)
284 to a separate trampoline section.
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub
{
290 /* The generated section that contains this stub. */
291 asection
*stub_section
;
293 /* The offset of the stub from the start of STUB_SECTION. */
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry
*h
;
301 /* Macros for populating a mips_elf_la25_stub. */
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
310 struct mips_elf_hash_sort_data
312 /* The symbol in the global GOT with the lowest dynamic symbol table
314 struct elf_link_hash_entry
*low
;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx
;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx
;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx
;
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
330 struct mips_elf_link_hash_entry
332 struct elf_link_hash_entry root
;
334 /* External symbol information. */
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub
*la25_stub
;
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
342 unsigned int possibly_dynamic_relocs
;
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection
*call_fp_stub
;
358 #define GOT_TLS_LDM 2
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type
;
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset
;
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area
: 2;
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc
: 1;
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs
: 1;
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub
: 1;
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub
: 1;
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches
: 1;
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub
: 1;
404 /* MIPS ELF linker hash table. */
406 struct mips_elf_link_hash_table
408 struct elf_link_hash_table root
;
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count
;
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size
;
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head
;
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen
;
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs
;
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks
;
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported
;
440 /* Shortcuts to some dynamic sections, or NULL if they are not
451 /* The master GOT information. */
452 struct mips_got_info
*got_info
;
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size
;
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size
;
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count
;
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size
;
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno
;
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection
*strampoline
;
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
482 The function returns the new section on success, otherwise it
484 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info
{
489 /* The usual link-wide information. */
490 struct bfd_link_info
*info
;
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
512 /* Structure used to pass information to mips_elf_output_extsym. */
517 struct bfd_link_info
*info
;
518 struct ecoff_debug_info
*debug
;
519 const struct ecoff_debug_swap
*swap
;
523 /* The names of the runtime procedure table symbols used on IRIX5. */
525 static const char * const mips_elf_dynsym_rtproc_names
[] =
528 "_procedure_string_table",
529 "_procedure_table_size",
533 /* These structures are used to generate the .compact_rel section on
538 unsigned long id1
; /* Always one? */
539 unsigned long num
; /* Number of compact relocation entries. */
540 unsigned long id2
; /* Always two? */
541 unsigned long offset
; /* The file offset of the first relocation. */
542 unsigned long reserved0
; /* Zero? */
543 unsigned long reserved1
; /* Zero? */
552 bfd_byte reserved0
[4];
553 bfd_byte reserved1
[4];
554 } Elf32_External_compact_rel
;
558 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype
: 4; /* Relocation types. See below. */
560 unsigned int dist2to
: 8;
561 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst
; /* KONST field. See below. */
563 unsigned long vaddr
; /* VADDR to be relocated. */
568 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype
: 4; /* Relocation types. See below. */
570 unsigned int dist2to
: 8;
571 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst
; /* KONST field. See below. */
580 } Elf32_External_crinfo
;
586 } Elf32_External_crinfo2
;
588 /* These are the constants used to swap the bitfields in a crinfo. */
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
628 typedef struct runtime_pdr
{
629 bfd_vma adr
; /* Memory address of start of procedure. */
630 long regmask
; /* Save register mask. */
631 long regoffset
; /* Save register offset. */
632 long fregmask
; /* Save floating point register mask. */
633 long fregoffset
; /* Save floating point register offset. */
634 long frameoffset
; /* Frame size. */
635 short framereg
; /* Frame pointer register. */
636 short pcreg
; /* Offset or reg of return pc. */
637 long irpss
; /* Index into the runtime string table. */
639 struct exception_info
*exception_info
;/* Pointer to exception array. */
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
644 static struct mips_got_entry
*mips_elf_create_local_got_entry
645 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
646 struct mips_elf_link_hash_entry
*, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry
*, void *);
649 static bfd_vma mips_elf_high
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
653 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
654 bfd_vma
*, asection
*);
655 static hashval_t mips_elf_got_entry_hash
657 static bfd_vma mips_elf_adjust_gp
658 (bfd
*, struct mips_got_info
*, bfd
*);
659 static struct mips_got_info
*mips_elf_got_for_ibfd
660 (struct mips_got_info
*, bfd
*);
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd
*reldyn_sorting_bfd
;
665 /* True if ABFD is for CPUs with load interlocking that include
666 non-MIPS1 CPUs and R3900. */
667 #define LOAD_INTERLOCKS_P(abfd) \
668 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
669 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
671 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
672 This should be safe for all architectures. We enable this predicate
673 for RM9000 for now. */
674 #define JAL_TO_BAL_P(abfd) \
675 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
677 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
678 This should be safe for all architectures. We enable this predicate for
680 #define JALR_TO_BAL_P(abfd) 1
682 /* True if ABFD is a PIC object. */
683 #define PIC_OBJECT_P(abfd) \
684 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
686 /* Nonzero if ABFD is using the N32 ABI. */
687 #define ABI_N32_P(abfd) \
688 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
690 /* Nonzero if ABFD is using the N64 ABI. */
691 #define ABI_64_P(abfd) \
692 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
694 /* Nonzero if ABFD is using NewABI conventions. */
695 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
697 /* The IRIX compatibility level we are striving for. */
698 #define IRIX_COMPAT(abfd) \
699 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
701 /* Whether we are trying to be compatible with IRIX at all. */
702 #define SGI_COMPAT(abfd) \
703 (IRIX_COMPAT (abfd) != ict_none)
705 /* The name of the options section. */
706 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
707 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
709 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
710 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
711 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
712 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
714 /* Whether the section is readonly. */
715 #define MIPS_ELF_READONLY_SECTION(sec) \
716 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
717 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
719 /* The name of the stub section. */
720 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
722 /* The size of an external REL relocation. */
723 #define MIPS_ELF_REL_SIZE(abfd) \
724 (get_elf_backend_data (abfd)->s->sizeof_rel)
726 /* The size of an external RELA relocation. */
727 #define MIPS_ELF_RELA_SIZE(abfd) \
728 (get_elf_backend_data (abfd)->s->sizeof_rela)
730 /* The size of an external dynamic table entry. */
731 #define MIPS_ELF_DYN_SIZE(abfd) \
732 (get_elf_backend_data (abfd)->s->sizeof_dyn)
734 /* The size of a GOT entry. */
735 #define MIPS_ELF_GOT_SIZE(abfd) \
736 (get_elf_backend_data (abfd)->s->arch_size / 8)
738 /* The size of a symbol-table entry. */
739 #define MIPS_ELF_SYM_SIZE(abfd) \
740 (get_elf_backend_data (abfd)->s->sizeof_sym)
742 /* The default alignment for sections, as a power of two. */
743 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
744 (get_elf_backend_data (abfd)->s->log_file_align)
746 /* Get word-sized data. */
747 #define MIPS_ELF_GET_WORD(abfd, ptr) \
748 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
750 /* Put out word-sized data. */
751 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
753 ? bfd_put_64 (abfd, val, ptr) \
754 : bfd_put_32 (abfd, val, ptr))
756 /* The opcode for word-sized loads (LW or LD). */
757 #define MIPS_ELF_LOAD_WORD(abfd) \
758 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
760 /* Add a dynamic symbol table-entry. */
761 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
762 _bfd_elf_add_dynamic_entry (info, tag, val)
764 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
765 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
767 /* Determine whether the internal relocation of index REL_IDX is REL
768 (zero) or RELA (non-zero). The assumption is that, if there are
769 two relocation sections for this section, one of them is REL and
770 the other is RELA. If the index of the relocation we're testing is
771 in range for the first relocation section, check that the external
772 relocation size is that for RELA. It is also assumed that, if
773 rel_idx is not in range for the first section, and this first
774 section contains REL relocs, then the relocation is in the second
775 section, that is RELA. */
776 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
777 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
778 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
779 > (bfd_vma)(rel_idx)) \
780 == (elf_section_data (sec)->rel_hdr.sh_entsize \
781 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
782 : sizeof (Elf32_External_Rela))))
784 /* The name of the dynamic relocation section. */
785 #define MIPS_ELF_REL_DYN_NAME(INFO) \
786 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
788 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
789 from smaller values. Start with zero, widen, *then* decrement. */
790 #define MINUS_ONE (((bfd_vma)0) - 1)
791 #define MINUS_TWO (((bfd_vma)0) - 2)
793 /* The value to write into got[1] for SVR4 targets, to identify it is
794 a GNU object. The dynamic linker can then use got[1] to store the
796 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
797 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
799 /* The offset of $gp from the beginning of the .got section. */
800 #define ELF_MIPS_GP_OFFSET(INFO) \
801 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
803 /* The maximum size of the GOT for it to be addressable using 16-bit
805 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
807 /* Instructions which appear in a stub. */
808 #define STUB_LW(abfd) \
810 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
811 : 0x8f998010)) /* lw t9,0x8010(gp) */
812 #define STUB_MOVE(abfd) \
814 ? 0x03e0782d /* daddu t7,ra */ \
815 : 0x03e07821)) /* addu t7,ra */
816 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
817 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
818 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
819 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
820 #define STUB_LI16S(abfd, VAL) \
822 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
823 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
825 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
826 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
828 /* The name of the dynamic interpreter. This is put in the .interp
831 #define ELF_DYNAMIC_INTERPRETER(abfd) \
832 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
833 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
834 : "/usr/lib/libc.so.1")
837 #define MNAME(bfd,pre,pos) \
838 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
839 #define ELF_R_SYM(bfd, i) \
840 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
841 #define ELF_R_TYPE(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
843 #define ELF_R_INFO(bfd, s, t) \
844 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
846 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
847 #define ELF_R_SYM(bfd, i) \
849 #define ELF_R_TYPE(bfd, i) \
851 #define ELF_R_INFO(bfd, s, t) \
852 (ELF32_R_INFO (s, t))
855 /* The mips16 compiler uses a couple of special sections to handle
856 floating point arguments.
858 Section names that look like .mips16.fn.FNNAME contain stubs that
859 copy floating point arguments from the fp regs to the gp regs and
860 then jump to FNNAME. If any 32 bit function calls FNNAME, the
861 call should be redirected to the stub instead. If no 32 bit
862 function calls FNNAME, the stub should be discarded. We need to
863 consider any reference to the function, not just a call, because
864 if the address of the function is taken we will need the stub,
865 since the address might be passed to a 32 bit function.
867 Section names that look like .mips16.call.FNNAME contain stubs
868 that copy floating point arguments from the gp regs to the fp
869 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
870 then any 16 bit function that calls FNNAME should be redirected
871 to the stub instead. If FNNAME is not a 32 bit function, the
872 stub should be discarded.
874 .mips16.call.fp.FNNAME sections are similar, but contain stubs
875 which call FNNAME and then copy the return value from the fp regs
876 to the gp regs. These stubs store the return value in $18 while
877 calling FNNAME; any function which might call one of these stubs
878 must arrange to save $18 around the call. (This case is not
879 needed for 32 bit functions that call 16 bit functions, because
880 16 bit functions always return floating point values in both
883 Note that in all cases FNNAME might be defined statically.
884 Therefore, FNNAME is not used literally. Instead, the relocation
885 information will indicate which symbol the section is for.
887 We record any stubs that we find in the symbol table. */
889 #define FN_STUB ".mips16.fn."
890 #define CALL_STUB ".mips16.call."
891 #define CALL_FP_STUB ".mips16.call.fp."
893 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
894 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
895 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
897 /* The format of the first PLT entry in an O32 executable. */
898 static const bfd_vma mips_o32_exec_plt0_entry
[] =
900 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
901 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
902 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
903 0x031cc023, /* subu $24, $24, $28 */
904 0x03e07821, /* move $15, $31 */
905 0x0018c082, /* srl $24, $24, 2 */
906 0x0320f809, /* jalr $25 */
907 0x2718fffe /* subu $24, $24, 2 */
910 /* The format of the first PLT entry in an N32 executable. Different
911 because gp ($28) is not available; we use t2 ($14) instead. */
912 static const bfd_vma mips_n32_exec_plt0_entry
[] =
914 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
915 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
916 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
917 0x030ec023, /* subu $24, $24, $14 */
918 0x03e07821, /* move $15, $31 */
919 0x0018c082, /* srl $24, $24, 2 */
920 0x0320f809, /* jalr $25 */
921 0x2718fffe /* subu $24, $24, 2 */
924 /* The format of the first PLT entry in an N64 executable. Different
925 from N32 because of the increased size of GOT entries. */
926 static const bfd_vma mips_n64_exec_plt0_entry
[] =
928 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
929 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
930 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
931 0x030ec023, /* subu $24, $24, $14 */
932 0x03e07821, /* move $15, $31 */
933 0x0018c0c2, /* srl $24, $24, 3 */
934 0x0320f809, /* jalr $25 */
935 0x2718fffe /* subu $24, $24, 2 */
938 /* The format of subsequent PLT entries. */
939 static const bfd_vma mips_exec_plt_entry
[] =
941 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
942 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
943 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
944 0x03200008 /* jr $25 */
947 /* The format of the first PLT entry in a VxWorks executable. */
948 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
950 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
951 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
952 0x8f390008, /* lw t9, 8(t9) */
953 0x00000000, /* nop */
954 0x03200008, /* jr t9 */
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
961 0x10000000, /* b .PLT_resolver */
962 0x24180000, /* li t8, <pltindex> */
963 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
964 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
965 0x8f390000, /* lw t9, 0(t9) */
966 0x00000000, /* nop */
967 0x03200008, /* jr t9 */
971 /* The format of the first PLT entry in a VxWorks shared object. */
972 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
974 0x8f990008, /* lw t9, 8(gp) */
975 0x00000000, /* nop */
976 0x03200008, /* jr t9 */
977 0x00000000, /* nop */
978 0x00000000, /* nop */
982 /* The format of subsequent PLT entries. */
983 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
985 0x10000000, /* b .PLT_resolver */
986 0x24180000 /* li t8, <pltindex> */
989 /* Look up an entry in a MIPS ELF linker hash table. */
991 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
992 ((struct mips_elf_link_hash_entry *) \
993 elf_link_hash_lookup (&(table)->root, (string), (create), \
996 /* Traverse a MIPS ELF linker hash table. */
998 #define mips_elf_link_hash_traverse(table, func, info) \
999 (elf_link_hash_traverse \
1001 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1004 /* Get the MIPS ELF linker hash table from a link_info structure. */
1006 #define mips_elf_hash_table(p) \
1007 ((struct mips_elf_link_hash_table *) ((p)->hash))
1009 /* Find the base offsets for thread-local storage in this object,
1010 for GD/LD and IE/LE respectively. */
1012 #define TP_OFFSET 0x7000
1013 #define DTP_OFFSET 0x8000
1016 dtprel_base (struct bfd_link_info
*info
)
1018 /* If tls_sec is NULL, we should have signalled an error already. */
1019 if (elf_hash_table (info
)->tls_sec
== NULL
)
1021 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1025 tprel_base (struct bfd_link_info
*info
)
1027 /* If tls_sec is NULL, we should have signalled an error already. */
1028 if (elf_hash_table (info
)->tls_sec
== NULL
)
1030 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1033 /* Create an entry in a MIPS ELF linker hash table. */
1035 static struct bfd_hash_entry
*
1036 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1037 struct bfd_hash_table
*table
, const char *string
)
1039 struct mips_elf_link_hash_entry
*ret
=
1040 (struct mips_elf_link_hash_entry
*) entry
;
1042 /* Allocate the structure if it has not already been allocated by a
1045 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1047 return (struct bfd_hash_entry
*) ret
;
1049 /* Call the allocation method of the superclass. */
1050 ret
= ((struct mips_elf_link_hash_entry
*)
1051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1055 /* Set local fields. */
1056 memset (&ret
->esym
, 0, sizeof (EXTR
));
1057 /* We use -2 as a marker to indicate that the information has
1058 not been set. -1 means there is no associated ifd. */
1061 ret
->possibly_dynamic_relocs
= 0;
1062 ret
->fn_stub
= NULL
;
1063 ret
->call_stub
= NULL
;
1064 ret
->call_fp_stub
= NULL
;
1065 ret
->tls_type
= GOT_NORMAL
;
1066 ret
->global_got_area
= GGA_NONE
;
1067 ret
->readonly_reloc
= FALSE
;
1068 ret
->has_static_relocs
= FALSE
;
1069 ret
->no_fn_stub
= FALSE
;
1070 ret
->need_fn_stub
= FALSE
;
1071 ret
->has_nonpic_branches
= FALSE
;
1072 ret
->needs_lazy_stub
= FALSE
;
1075 return (struct bfd_hash_entry
*) ret
;
1079 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1081 if (!sec
->used_by_bfd
)
1083 struct _mips_elf_section_data
*sdata
;
1084 bfd_size_type amt
= sizeof (*sdata
);
1086 sdata
= bfd_zalloc (abfd
, amt
);
1089 sec
->used_by_bfd
= sdata
;
1092 return _bfd_elf_new_section_hook (abfd
, sec
);
1095 /* Read ECOFF debugging information from a .mdebug section into a
1096 ecoff_debug_info structure. */
1099 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1100 struct ecoff_debug_info
*debug
)
1103 const struct ecoff_debug_swap
*swap
;
1106 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1107 memset (debug
, 0, sizeof (*debug
));
1109 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1110 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1113 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1114 swap
->external_hdr_size
))
1117 symhdr
= &debug
->symbolic_header
;
1118 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1120 /* The symbolic header contains absolute file offsets and sizes to
1122 #define READ(ptr, offset, count, size, type) \
1123 if (symhdr->count == 0) \
1124 debug->ptr = NULL; \
1127 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1128 debug->ptr = bfd_malloc (amt); \
1129 if (debug->ptr == NULL) \
1130 goto error_return; \
1131 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1132 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1133 goto error_return; \
1136 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1137 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1138 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1139 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1140 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1141 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1143 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1144 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1145 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1146 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1147 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1155 if (ext_hdr
!= NULL
)
1157 if (debug
->line
!= NULL
)
1159 if (debug
->external_dnr
!= NULL
)
1160 free (debug
->external_dnr
);
1161 if (debug
->external_pdr
!= NULL
)
1162 free (debug
->external_pdr
);
1163 if (debug
->external_sym
!= NULL
)
1164 free (debug
->external_sym
);
1165 if (debug
->external_opt
!= NULL
)
1166 free (debug
->external_opt
);
1167 if (debug
->external_aux
!= NULL
)
1168 free (debug
->external_aux
);
1169 if (debug
->ss
!= NULL
)
1171 if (debug
->ssext
!= NULL
)
1172 free (debug
->ssext
);
1173 if (debug
->external_fdr
!= NULL
)
1174 free (debug
->external_fdr
);
1175 if (debug
->external_rfd
!= NULL
)
1176 free (debug
->external_rfd
);
1177 if (debug
->external_ext
!= NULL
)
1178 free (debug
->external_ext
);
1182 /* Swap RPDR (runtime procedure table entry) for output. */
1185 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1187 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1188 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1189 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1190 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1191 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1192 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1194 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1195 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1197 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1200 /* Create a runtime procedure table from the .mdebug section. */
1203 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1204 struct bfd_link_info
*info
, asection
*s
,
1205 struct ecoff_debug_info
*debug
)
1207 const struct ecoff_debug_swap
*swap
;
1208 HDRR
*hdr
= &debug
->symbolic_header
;
1210 struct rpdr_ext
*erp
;
1212 struct pdr_ext
*epdr
;
1213 struct sym_ext
*esym
;
1217 bfd_size_type count
;
1218 unsigned long sindex
;
1222 const char *no_name_func
= _("static procedure (no name)");
1230 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1232 sindex
= strlen (no_name_func
) + 1;
1233 count
= hdr
->ipdMax
;
1236 size
= swap
->external_pdr_size
;
1238 epdr
= bfd_malloc (size
* count
);
1242 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1245 size
= sizeof (RPDR
);
1246 rp
= rpdr
= bfd_malloc (size
* count
);
1250 size
= sizeof (char *);
1251 sv
= bfd_malloc (size
* count
);
1255 count
= hdr
->isymMax
;
1256 size
= swap
->external_sym_size
;
1257 esym
= bfd_malloc (size
* count
);
1261 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1264 count
= hdr
->issMax
;
1265 ss
= bfd_malloc (count
);
1268 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1271 count
= hdr
->ipdMax
;
1272 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1274 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1275 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1276 rp
->adr
= sym
.value
;
1277 rp
->regmask
= pdr
.regmask
;
1278 rp
->regoffset
= pdr
.regoffset
;
1279 rp
->fregmask
= pdr
.fregmask
;
1280 rp
->fregoffset
= pdr
.fregoffset
;
1281 rp
->frameoffset
= pdr
.frameoffset
;
1282 rp
->framereg
= pdr
.framereg
;
1283 rp
->pcreg
= pdr
.pcreg
;
1285 sv
[i
] = ss
+ sym
.iss
;
1286 sindex
+= strlen (sv
[i
]) + 1;
1290 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1291 size
= BFD_ALIGN (size
, 16);
1292 rtproc
= bfd_alloc (abfd
, size
);
1295 mips_elf_hash_table (info
)->procedure_count
= 0;
1299 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1302 memset (erp
, 0, sizeof (struct rpdr_ext
));
1304 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1305 strcpy (str
, no_name_func
);
1306 str
+= strlen (no_name_func
) + 1;
1307 for (i
= 0; i
< count
; i
++)
1309 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1310 strcpy (str
, sv
[i
]);
1311 str
+= strlen (sv
[i
]) + 1;
1313 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1315 /* Set the size and contents of .rtproc section. */
1317 s
->contents
= rtproc
;
1319 /* Skip this section later on (I don't think this currently
1320 matters, but someday it might). */
1321 s
->map_head
.link_order
= NULL
;
1350 /* We're going to create a stub for H. Create a symbol for the stub's
1351 value and size, to help make the disassembly easier to read. */
1354 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1355 struct mips_elf_link_hash_entry
*h
,
1356 const char *prefix
, asection
*s
, bfd_vma value
,
1359 struct bfd_link_hash_entry
*bh
;
1360 struct elf_link_hash_entry
*elfh
;
1363 /* Create a new symbol. */
1364 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1366 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1367 BSF_LOCAL
, s
, value
, NULL
,
1371 /* Make it a local function. */
1372 elfh
= (struct elf_link_hash_entry
*) bh
;
1373 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1375 elfh
->forced_local
= 1;
1379 /* We're about to redefine H. Create a symbol to represent H's
1380 current value and size, to help make the disassembly easier
1384 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1385 struct mips_elf_link_hash_entry
*h
,
1388 struct bfd_link_hash_entry
*bh
;
1389 struct elf_link_hash_entry
*elfh
;
1394 /* Read the symbol's value. */
1395 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1396 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1397 s
= h
->root
.root
.u
.def
.section
;
1398 value
= h
->root
.root
.u
.def
.value
;
1400 /* Create a new symbol. */
1401 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1403 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1404 BSF_LOCAL
, s
, value
, NULL
,
1408 /* Make it local and copy the other attributes from H. */
1409 elfh
= (struct elf_link_hash_entry
*) bh
;
1410 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1411 elfh
->other
= h
->root
.other
;
1412 elfh
->size
= h
->root
.size
;
1413 elfh
->forced_local
= 1;
1417 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1418 function rather than to a hard-float stub. */
1421 section_allows_mips16_refs_p (asection
*section
)
1425 name
= bfd_get_section_name (section
->owner
, section
);
1426 return (FN_STUB_P (name
)
1427 || CALL_STUB_P (name
)
1428 || CALL_FP_STUB_P (name
)
1429 || strcmp (name
, ".pdr") == 0);
1432 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1433 stub section of some kind. Return the R_SYMNDX of the target
1434 function, or 0 if we can't decide which function that is. */
1436 static unsigned long
1437 mips16_stub_symndx (asection
*sec ATTRIBUTE_UNUSED
,
1438 const Elf_Internal_Rela
*relocs
,
1439 const Elf_Internal_Rela
*relend
)
1441 const Elf_Internal_Rela
*rel
;
1443 /* Trust the first R_MIPS_NONE relocation, if any. */
1444 for (rel
= relocs
; rel
< relend
; rel
++)
1445 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1446 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1448 /* Otherwise trust the first relocation, whatever its kind. This is
1449 the traditional behavior. */
1450 if (relocs
< relend
)
1451 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1456 /* Check the mips16 stubs for a particular symbol, and see if we can
1460 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1461 struct mips_elf_link_hash_entry
*h
)
1463 /* Dynamic symbols must use the standard call interface, in case other
1464 objects try to call them. */
1465 if (h
->fn_stub
!= NULL
1466 && h
->root
.dynindx
!= -1)
1468 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1469 h
->need_fn_stub
= TRUE
;
1472 if (h
->fn_stub
!= NULL
1473 && ! h
->need_fn_stub
)
1475 /* We don't need the fn_stub; the only references to this symbol
1476 are 16 bit calls. Clobber the size to 0 to prevent it from
1477 being included in the link. */
1478 h
->fn_stub
->size
= 0;
1479 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1480 h
->fn_stub
->reloc_count
= 0;
1481 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1484 if (h
->call_stub
!= NULL
1485 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1487 /* We don't need the call_stub; this is a 16 bit function, so
1488 calls from other 16 bit functions are OK. Clobber the size
1489 to 0 to prevent it from being included in the link. */
1490 h
->call_stub
->size
= 0;
1491 h
->call_stub
->flags
&= ~SEC_RELOC
;
1492 h
->call_stub
->reloc_count
= 0;
1493 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1496 if (h
->call_fp_stub
!= NULL
1497 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1499 /* We don't need the call_stub; this is a 16 bit function, so
1500 calls from other 16 bit functions are OK. Clobber the size
1501 to 0 to prevent it from being included in the link. */
1502 h
->call_fp_stub
->size
= 0;
1503 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1504 h
->call_fp_stub
->reloc_count
= 0;
1505 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1509 /* Hashtable callbacks for mips_elf_la25_stubs. */
1512 mips_elf_la25_stub_hash (const void *entry_
)
1514 const struct mips_elf_la25_stub
*entry
;
1516 entry
= (struct mips_elf_la25_stub
*) entry_
;
1517 return entry
->h
->root
.root
.u
.def
.section
->id
1518 + entry
->h
->root
.root
.u
.def
.value
;
1522 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1524 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1526 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1527 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1528 return ((entry1
->h
->root
.root
.u
.def
.section
1529 == entry2
->h
->root
.root
.u
.def
.section
)
1530 && (entry1
->h
->root
.root
.u
.def
.value
1531 == entry2
->h
->root
.root
.u
.def
.value
));
1534 /* Called by the linker to set up the la25 stub-creation code. FN is
1535 the linker's implementation of add_stub_function. Return true on
1539 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1540 asection
*(*fn
) (const char *, asection
*,
1543 struct mips_elf_link_hash_table
*htab
;
1545 htab
= mips_elf_hash_table (info
);
1546 htab
->add_stub_section
= fn
;
1547 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1548 mips_elf_la25_stub_eq
, NULL
);
1549 if (htab
->la25_stubs
== NULL
)
1555 /* Return true if H is a locally-defined PIC function, in the sense
1556 that it might need $25 to be valid on entry. Note that MIPS16
1557 functions never need $25 to be valid on entry; they set up $gp
1558 using PC-relative instructions instead. */
1561 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1563 return ((h
->root
.root
.type
== bfd_link_hash_defined
1564 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1565 && h
->root
.def_regular
1566 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1567 && !ELF_ST_IS_MIPS16 (h
->root
.other
)
1568 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1569 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1572 /* STUB describes an la25 stub that we have decided to implement
1573 by inserting an LUI/ADDIU pair before the target function.
1574 Create the section and redirect the function symbol to it. */
1577 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1578 struct bfd_link_info
*info
)
1580 struct mips_elf_link_hash_table
*htab
;
1582 asection
*s
, *input_section
;
1585 htab
= mips_elf_hash_table (info
);
1587 /* Create a unique name for the new section. */
1588 name
= bfd_malloc (11 + sizeof (".text.stub."));
1591 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1593 /* Create the section. */
1594 input_section
= stub
->h
->root
.root
.u
.def
.section
;
1595 s
= htab
->add_stub_section (name
, input_section
,
1596 input_section
->output_section
);
1600 /* Make sure that any padding goes before the stub. */
1601 align
= input_section
->alignment_power
;
1602 if (!bfd_set_section_alignment (s
->owner
, s
, align
))
1605 s
->size
= (1 << align
) - 8;
1607 /* Create a symbol for the stub. */
1608 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1609 stub
->stub_section
= s
;
1610 stub
->offset
= s
->size
;
1612 /* Allocate room for it. */
1617 /* STUB describes an la25 stub that we have decided to implement
1618 with a separate trampoline. Allocate room for it and redirect
1619 the function symbol to it. */
1622 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1623 struct bfd_link_info
*info
)
1625 struct mips_elf_link_hash_table
*htab
;
1628 htab
= mips_elf_hash_table (info
);
1630 /* Create a trampoline section, if we haven't already. */
1631 s
= htab
->strampoline
;
1634 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1635 s
= htab
->add_stub_section (".text", NULL
,
1636 input_section
->output_section
);
1637 if (s
== NULL
|| !bfd_set_section_alignment (s
->owner
, s
, 4))
1639 htab
->strampoline
= s
;
1642 /* Create a symbol for the stub. */
1643 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1644 stub
->stub_section
= s
;
1645 stub
->offset
= s
->size
;
1647 /* Allocate room for it. */
1652 /* H describes a symbol that needs an la25 stub. Make sure that an
1653 appropriate stub exists and point H at it. */
1656 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1657 struct mips_elf_link_hash_entry
*h
)
1659 struct mips_elf_link_hash_table
*htab
;
1660 struct mips_elf_la25_stub search
, *stub
;
1661 bfd_boolean use_trampoline_p
;
1666 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1667 of the section and if we would need no more than 2 nops. */
1668 s
= h
->root
.root
.u
.def
.section
;
1669 value
= h
->root
.root
.u
.def
.value
;
1670 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
1672 /* Describe the stub we want. */
1673 search
.stub_section
= NULL
;
1677 /* See if we've already created an equivalent stub. */
1678 htab
= mips_elf_hash_table (info
);
1679 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
1683 stub
= (struct mips_elf_la25_stub
*) *slot
;
1686 /* We can reuse the existing stub. */
1687 h
->la25_stub
= stub
;
1691 /* Create a permanent copy of ENTRY and add it to the hash table. */
1692 stub
= bfd_malloc (sizeof (search
));
1698 h
->la25_stub
= stub
;
1699 return (use_trampoline_p
1700 ? mips_elf_add_la25_trampoline (stub
, info
)
1701 : mips_elf_add_la25_intro (stub
, info
));
1704 /* A mips_elf_link_hash_traverse callback that is called before sizing
1705 sections. DATA points to a mips_htab_traverse_info structure. */
1708 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
1710 struct mips_htab_traverse_info
*hti
;
1712 hti
= (struct mips_htab_traverse_info
*) data
;
1713 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1714 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1716 if (!hti
->info
->relocatable
)
1717 mips_elf_check_mips16_stubs (hti
->info
, h
);
1719 if (mips_elf_local_pic_function_p (h
))
1721 /* H is a function that might need $25 to be valid on entry.
1722 If we're creating a non-PIC relocatable object, mark H as
1723 being PIC. If we're creating a non-relocatable object with
1724 non-PIC branches and jumps to H, make sure that H has an la25
1726 if (hti
->info
->relocatable
)
1728 if (!PIC_OBJECT_P (hti
->output_bfd
))
1729 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
1731 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
1740 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1741 Most mips16 instructions are 16 bits, but these instructions
1744 The format of these instructions is:
1746 +--------------+--------------------------------+
1747 | JALX | X| Imm 20:16 | Imm 25:21 |
1748 +--------------+--------------------------------+
1750 +-----------------------------------------------+
1752 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1753 Note that the immediate value in the first word is swapped.
1755 When producing a relocatable object file, R_MIPS16_26 is
1756 handled mostly like R_MIPS_26. In particular, the addend is
1757 stored as a straight 26-bit value in a 32-bit instruction.
1758 (gas makes life simpler for itself by never adjusting a
1759 R_MIPS16_26 reloc to be against a section, so the addend is
1760 always zero). However, the 32 bit instruction is stored as 2
1761 16-bit values, rather than a single 32-bit value. In a
1762 big-endian file, the result is the same; in a little-endian
1763 file, the two 16-bit halves of the 32 bit value are swapped.
1764 This is so that a disassembler can recognize the jal
1767 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1768 instruction stored as two 16-bit values. The addend A is the
1769 contents of the targ26 field. The calculation is the same as
1770 R_MIPS_26. When storing the calculated value, reorder the
1771 immediate value as shown above, and don't forget to store the
1772 value as two 16-bit values.
1774 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1778 +--------+----------------------+
1782 +--------+----------------------+
1785 +----------+------+-------------+
1789 +----------+--------------------+
1790 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1791 ((sub1 << 16) | sub2)).
1793 When producing a relocatable object file, the calculation is
1794 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1795 When producing a fully linked file, the calculation is
1796 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1797 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1799 The table below lists the other MIPS16 instruction relocations.
1800 Each one is calculated in the same way as the non-MIPS16 relocation
1801 given on the right, but using the extended MIPS16 layout of 16-bit
1804 R_MIPS16_GPREL R_MIPS_GPREL16
1805 R_MIPS16_GOT16 R_MIPS_GOT16
1806 R_MIPS16_CALL16 R_MIPS_CALL16
1807 R_MIPS16_HI16 R_MIPS_HI16
1808 R_MIPS16_LO16 R_MIPS_LO16
1810 A typical instruction will have a format like this:
1812 +--------------+--------------------------------+
1813 | EXTEND | Imm 10:5 | Imm 15:11 |
1814 +--------------+--------------------------------+
1815 | Major | rx | ry | Imm 4:0 |
1816 +--------------+--------------------------------+
1818 EXTEND is the five bit value 11110. Major is the instruction
1821 All we need to do here is shuffle the bits appropriately.
1822 As above, the two 16-bit halves must be swapped on a
1823 little-endian system. */
1825 static inline bfd_boolean
1826 mips16_reloc_p (int r_type
)
1831 case R_MIPS16_GPREL
:
1832 case R_MIPS16_GOT16
:
1833 case R_MIPS16_CALL16
:
1843 static inline bfd_boolean
1844 got16_reloc_p (int r_type
)
1846 return r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS16_GOT16
;
1849 static inline bfd_boolean
1850 call16_reloc_p (int r_type
)
1852 return r_type
== R_MIPS_CALL16
|| r_type
== R_MIPS16_CALL16
;
1855 static inline bfd_boolean
1856 hi16_reloc_p (int r_type
)
1858 return r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
;
1861 static inline bfd_boolean
1862 lo16_reloc_p (int r_type
)
1864 return r_type
== R_MIPS_LO16
|| r_type
== R_MIPS16_LO16
;
1867 static inline bfd_boolean
1868 mips16_call_reloc_p (int r_type
)
1870 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
1874 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1875 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1877 bfd_vma extend
, insn
, val
;
1879 if (!mips16_reloc_p (r_type
))
1882 /* Pick up the mips16 extend instruction and the real instruction. */
1883 extend
= bfd_get_16 (abfd
, data
);
1884 insn
= bfd_get_16 (abfd
, data
+ 2);
1885 if (r_type
== R_MIPS16_26
)
1888 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1889 | ((extend
& 0x1f) << 21) | insn
;
1891 val
= extend
<< 16 | insn
;
1894 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1895 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1896 bfd_put_32 (abfd
, val
, data
);
1900 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1901 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1903 bfd_vma extend
, insn
, val
;
1905 if (!mips16_reloc_p (r_type
))
1908 val
= bfd_get_32 (abfd
, data
);
1909 if (r_type
== R_MIPS16_26
)
1913 insn
= val
& 0xffff;
1914 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1915 | ((val
>> 21) & 0x1f);
1919 insn
= val
& 0xffff;
1925 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1926 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1928 bfd_put_16 (abfd
, insn
, data
+ 2);
1929 bfd_put_16 (abfd
, extend
, data
);
1932 bfd_reloc_status_type
1933 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1934 arelent
*reloc_entry
, asection
*input_section
,
1935 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1939 bfd_reloc_status_type status
;
1941 if (bfd_is_com_section (symbol
->section
))
1944 relocation
= symbol
->value
;
1946 relocation
+= symbol
->section
->output_section
->vma
;
1947 relocation
+= symbol
->section
->output_offset
;
1949 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1950 return bfd_reloc_outofrange
;
1952 /* Set val to the offset into the section or symbol. */
1953 val
= reloc_entry
->addend
;
1955 _bfd_mips_elf_sign_extend (val
, 16);
1957 /* Adjust val for the final section location and GP value. If we
1958 are producing relocatable output, we don't want to do this for
1959 an external symbol. */
1961 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1962 val
+= relocation
- gp
;
1964 if (reloc_entry
->howto
->partial_inplace
)
1966 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1968 + reloc_entry
->address
);
1969 if (status
!= bfd_reloc_ok
)
1973 reloc_entry
->addend
= val
;
1976 reloc_entry
->address
+= input_section
->output_offset
;
1978 return bfd_reloc_ok
;
1981 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1982 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1983 that contains the relocation field and DATA points to the start of
1988 struct mips_hi16
*next
;
1990 asection
*input_section
;
1994 /* FIXME: This should not be a static variable. */
1996 static struct mips_hi16
*mips_hi16_list
;
1998 /* A howto special_function for REL *HI16 relocations. We can only
1999 calculate the correct value once we've seen the partnering
2000 *LO16 relocation, so just save the information for later.
2002 The ABI requires that the *LO16 immediately follow the *HI16.
2003 However, as a GNU extension, we permit an arbitrary number of
2004 *HI16s to be associated with a single *LO16. This significantly
2005 simplies the relocation handling in gcc. */
2007 bfd_reloc_status_type
2008 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2009 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2010 asection
*input_section
, bfd
*output_bfd
,
2011 char **error_message ATTRIBUTE_UNUSED
)
2013 struct mips_hi16
*n
;
2015 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2016 return bfd_reloc_outofrange
;
2018 n
= bfd_malloc (sizeof *n
);
2020 return bfd_reloc_outofrange
;
2022 n
->next
= mips_hi16_list
;
2024 n
->input_section
= input_section
;
2025 n
->rel
= *reloc_entry
;
2028 if (output_bfd
!= NULL
)
2029 reloc_entry
->address
+= input_section
->output_offset
;
2031 return bfd_reloc_ok
;
2034 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2035 like any other 16-bit relocation when applied to global symbols, but is
2036 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2038 bfd_reloc_status_type
2039 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2040 void *data
, asection
*input_section
,
2041 bfd
*output_bfd
, char **error_message
)
2043 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2044 || bfd_is_und_section (bfd_get_section (symbol
))
2045 || bfd_is_com_section (bfd_get_section (symbol
)))
2046 /* The relocation is against a global symbol. */
2047 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2048 input_section
, output_bfd
,
2051 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2052 input_section
, output_bfd
, error_message
);
2055 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2056 is a straightforward 16 bit inplace relocation, but we must deal with
2057 any partnering high-part relocations as well. */
2059 bfd_reloc_status_type
2060 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2061 void *data
, asection
*input_section
,
2062 bfd
*output_bfd
, char **error_message
)
2065 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2067 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2068 return bfd_reloc_outofrange
;
2070 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2072 vallo
= bfd_get_32 (abfd
, location
);
2073 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2076 while (mips_hi16_list
!= NULL
)
2078 bfd_reloc_status_type ret
;
2079 struct mips_hi16
*hi
;
2081 hi
= mips_hi16_list
;
2083 /* R_MIPS*_GOT16 relocations are something of a special case. We
2084 want to install the addend in the same way as for a R_MIPS*_HI16
2085 relocation (with a rightshift of 16). However, since GOT16
2086 relocations can also be used with global symbols, their howto
2087 has a rightshift of 0. */
2088 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2089 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2090 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2091 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2093 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2094 carry or borrow will induce a change of +1 or -1 in the high part. */
2095 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2097 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2098 hi
->input_section
, output_bfd
,
2100 if (ret
!= bfd_reloc_ok
)
2103 mips_hi16_list
= hi
->next
;
2107 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2108 input_section
, output_bfd
,
2112 /* A generic howto special_function. This calculates and installs the
2113 relocation itself, thus avoiding the oft-discussed problems in
2114 bfd_perform_relocation and bfd_install_relocation. */
2116 bfd_reloc_status_type
2117 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2118 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2119 asection
*input_section
, bfd
*output_bfd
,
2120 char **error_message ATTRIBUTE_UNUSED
)
2123 bfd_reloc_status_type status
;
2124 bfd_boolean relocatable
;
2126 relocatable
= (output_bfd
!= NULL
);
2128 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2129 return bfd_reloc_outofrange
;
2131 /* Build up the field adjustment in VAL. */
2133 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2135 /* Either we're calculating the final field value or we have a
2136 relocation against a section symbol. Add in the section's
2137 offset or address. */
2138 val
+= symbol
->section
->output_section
->vma
;
2139 val
+= symbol
->section
->output_offset
;
2144 /* We're calculating the final field value. Add in the symbol's value
2145 and, if pc-relative, subtract the address of the field itself. */
2146 val
+= symbol
->value
;
2147 if (reloc_entry
->howto
->pc_relative
)
2149 val
-= input_section
->output_section
->vma
;
2150 val
-= input_section
->output_offset
;
2151 val
-= reloc_entry
->address
;
2155 /* VAL is now the final adjustment. If we're keeping this relocation
2156 in the output file, and if the relocation uses a separate addend,
2157 we just need to add VAL to that addend. Otherwise we need to add
2158 VAL to the relocation field itself. */
2159 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2160 reloc_entry
->addend
+= val
;
2163 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2165 /* Add in the separate addend, if any. */
2166 val
+= reloc_entry
->addend
;
2168 /* Add VAL to the relocation field. */
2169 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2171 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2173 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2176 if (status
!= bfd_reloc_ok
)
2181 reloc_entry
->address
+= input_section
->output_offset
;
2183 return bfd_reloc_ok
;
2186 /* Swap an entry in a .gptab section. Note that these routines rely
2187 on the equivalence of the two elements of the union. */
2190 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2193 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2194 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2198 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2199 Elf32_External_gptab
*ex
)
2201 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2202 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2206 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2207 Elf32_External_compact_rel
*ex
)
2209 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2210 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2211 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2212 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2213 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2214 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2218 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2219 Elf32_External_crinfo
*ex
)
2223 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2224 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2225 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2226 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2227 H_PUT_32 (abfd
, l
, ex
->info
);
2228 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2229 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2232 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2233 routines swap this structure in and out. They are used outside of
2234 BFD, so they are globally visible. */
2237 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2240 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2241 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2242 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2243 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2244 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2245 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2249 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2250 Elf32_External_RegInfo
*ex
)
2252 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2253 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2254 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2255 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2256 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2257 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2260 /* In the 64 bit ABI, the .MIPS.options section holds register
2261 information in an Elf64_Reginfo structure. These routines swap
2262 them in and out. They are globally visible because they are used
2263 outside of BFD. These routines are here so that gas can call them
2264 without worrying about whether the 64 bit ABI has been included. */
2267 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2268 Elf64_Internal_RegInfo
*in
)
2270 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2271 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2272 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2273 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2274 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2275 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2276 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2280 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2281 Elf64_External_RegInfo
*ex
)
2283 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2284 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2285 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2286 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2287 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2288 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2289 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2292 /* Swap in an options header. */
2295 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2296 Elf_Internal_Options
*in
)
2298 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2299 in
->size
= H_GET_8 (abfd
, ex
->size
);
2300 in
->section
= H_GET_16 (abfd
, ex
->section
);
2301 in
->info
= H_GET_32 (abfd
, ex
->info
);
2304 /* Swap out an options header. */
2307 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2308 Elf_External_Options
*ex
)
2310 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2311 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2312 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2313 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2316 /* This function is called via qsort() to sort the dynamic relocation
2317 entries by increasing r_symndx value. */
2320 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2322 Elf_Internal_Rela int_reloc1
;
2323 Elf_Internal_Rela int_reloc2
;
2326 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2327 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2329 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2333 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2335 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2340 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2343 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2344 const void *arg2 ATTRIBUTE_UNUSED
)
2347 Elf_Internal_Rela int_reloc1
[3];
2348 Elf_Internal_Rela int_reloc2
[3];
2350 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2351 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2352 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2353 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2355 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2357 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2360 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2362 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2371 /* This routine is used to write out ECOFF debugging external symbol
2372 information. It is called via mips_elf_link_hash_traverse. The
2373 ECOFF external symbol information must match the ELF external
2374 symbol information. Unfortunately, at this point we don't know
2375 whether a symbol is required by reloc information, so the two
2376 tables may wind up being different. We must sort out the external
2377 symbol information before we can set the final size of the .mdebug
2378 section, and we must set the size of the .mdebug section before we
2379 can relocate any sections, and we can't know which symbols are
2380 required by relocation until we relocate the sections.
2381 Fortunately, it is relatively unlikely that any symbol will be
2382 stripped but required by a reloc. In particular, it can not happen
2383 when generating a final executable. */
2386 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2388 struct extsym_info
*einfo
= data
;
2390 asection
*sec
, *output_section
;
2392 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2393 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2395 if (h
->root
.indx
== -2)
2397 else if ((h
->root
.def_dynamic
2398 || h
->root
.ref_dynamic
2399 || h
->root
.type
== bfd_link_hash_new
)
2400 && !h
->root
.def_regular
2401 && !h
->root
.ref_regular
)
2403 else if (einfo
->info
->strip
== strip_all
2404 || (einfo
->info
->strip
== strip_some
2405 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2406 h
->root
.root
.root
.string
,
2407 FALSE
, FALSE
) == NULL
))
2415 if (h
->esym
.ifd
== -2)
2418 h
->esym
.cobol_main
= 0;
2419 h
->esym
.weakext
= 0;
2420 h
->esym
.reserved
= 0;
2421 h
->esym
.ifd
= ifdNil
;
2422 h
->esym
.asym
.value
= 0;
2423 h
->esym
.asym
.st
= stGlobal
;
2425 if (h
->root
.root
.type
== bfd_link_hash_undefined
2426 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2430 /* Use undefined class. Also, set class and type for some
2432 name
= h
->root
.root
.root
.string
;
2433 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2434 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2436 h
->esym
.asym
.sc
= scData
;
2437 h
->esym
.asym
.st
= stLabel
;
2438 h
->esym
.asym
.value
= 0;
2440 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2442 h
->esym
.asym
.sc
= scAbs
;
2443 h
->esym
.asym
.st
= stLabel
;
2444 h
->esym
.asym
.value
=
2445 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2447 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
2449 h
->esym
.asym
.sc
= scAbs
;
2450 h
->esym
.asym
.st
= stLabel
;
2451 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
2454 h
->esym
.asym
.sc
= scUndefined
;
2456 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2457 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2458 h
->esym
.asym
.sc
= scAbs
;
2463 sec
= h
->root
.root
.u
.def
.section
;
2464 output_section
= sec
->output_section
;
2466 /* When making a shared library and symbol h is the one from
2467 the another shared library, OUTPUT_SECTION may be null. */
2468 if (output_section
== NULL
)
2469 h
->esym
.asym
.sc
= scUndefined
;
2472 name
= bfd_section_name (output_section
->owner
, output_section
);
2474 if (strcmp (name
, ".text") == 0)
2475 h
->esym
.asym
.sc
= scText
;
2476 else if (strcmp (name
, ".data") == 0)
2477 h
->esym
.asym
.sc
= scData
;
2478 else if (strcmp (name
, ".sdata") == 0)
2479 h
->esym
.asym
.sc
= scSData
;
2480 else if (strcmp (name
, ".rodata") == 0
2481 || strcmp (name
, ".rdata") == 0)
2482 h
->esym
.asym
.sc
= scRData
;
2483 else if (strcmp (name
, ".bss") == 0)
2484 h
->esym
.asym
.sc
= scBss
;
2485 else if (strcmp (name
, ".sbss") == 0)
2486 h
->esym
.asym
.sc
= scSBss
;
2487 else if (strcmp (name
, ".init") == 0)
2488 h
->esym
.asym
.sc
= scInit
;
2489 else if (strcmp (name
, ".fini") == 0)
2490 h
->esym
.asym
.sc
= scFini
;
2492 h
->esym
.asym
.sc
= scAbs
;
2496 h
->esym
.asym
.reserved
= 0;
2497 h
->esym
.asym
.index
= indexNil
;
2500 if (h
->root
.root
.type
== bfd_link_hash_common
)
2501 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
2502 else if (h
->root
.root
.type
== bfd_link_hash_defined
2503 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2505 if (h
->esym
.asym
.sc
== scCommon
)
2506 h
->esym
.asym
.sc
= scBss
;
2507 else if (h
->esym
.asym
.sc
== scSCommon
)
2508 h
->esym
.asym
.sc
= scSBss
;
2510 sec
= h
->root
.root
.u
.def
.section
;
2511 output_section
= sec
->output_section
;
2512 if (output_section
!= NULL
)
2513 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
2514 + sec
->output_offset
2515 + output_section
->vma
);
2517 h
->esym
.asym
.value
= 0;
2521 struct mips_elf_link_hash_entry
*hd
= h
;
2523 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
2524 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
2526 if (hd
->needs_lazy_stub
)
2528 /* Set type and value for a symbol with a function stub. */
2529 h
->esym
.asym
.st
= stProc
;
2530 sec
= hd
->root
.root
.u
.def
.section
;
2532 h
->esym
.asym
.value
= 0;
2535 output_section
= sec
->output_section
;
2536 if (output_section
!= NULL
)
2537 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
2538 + sec
->output_offset
2539 + output_section
->vma
);
2541 h
->esym
.asym
.value
= 0;
2546 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
2547 h
->root
.root
.root
.string
,
2550 einfo
->failed
= TRUE
;
2557 /* A comparison routine used to sort .gptab entries. */
2560 gptab_compare (const void *p1
, const void *p2
)
2562 const Elf32_gptab
*a1
= p1
;
2563 const Elf32_gptab
*a2
= p2
;
2565 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
2568 /* Functions to manage the got entry hash table. */
2570 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2573 static INLINE hashval_t
2574 mips_elf_hash_bfd_vma (bfd_vma addr
)
2577 return addr
+ (addr
>> 32);
2583 /* got_entries only match if they're identical, except for gotidx, so
2584 use all fields to compute the hash, and compare the appropriate
2588 mips_elf_got_entry_hash (const void *entry_
)
2590 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2592 return entry
->symndx
2593 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
2594 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
2596 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
2597 : entry
->d
.h
->root
.root
.root
.hash
));
2601 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
2603 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2604 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2606 /* An LDM entry can only match another LDM entry. */
2607 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2610 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
2611 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
2612 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
2613 : e1
->d
.h
== e2
->d
.h
);
2616 /* multi_got_entries are still a match in the case of global objects,
2617 even if the input bfd in which they're referenced differs, so the
2618 hash computation and compare functions are adjusted
2622 mips_elf_multi_got_entry_hash (const void *entry_
)
2624 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2626 return entry
->symndx
2628 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2629 : entry
->symndx
>= 0
2630 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2631 ? (GOT_TLS_LDM
<< 17)
2633 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2634 : entry
->d
.h
->root
.root
.root
.hash
);
2638 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2640 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2641 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2643 /* Any two LDM entries match. */
2644 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2647 /* Nothing else matches an LDM entry. */
2648 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2651 return e1
->symndx
== e2
->symndx
2652 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2653 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2654 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2655 : e1
->d
.h
== e2
->d
.h
);
2659 mips_got_page_entry_hash (const void *entry_
)
2661 const struct mips_got_page_entry
*entry
;
2663 entry
= (const struct mips_got_page_entry
*) entry_
;
2664 return entry
->abfd
->id
+ entry
->symndx
;
2668 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
2670 const struct mips_got_page_entry
*entry1
, *entry2
;
2672 entry1
= (const struct mips_got_page_entry
*) entry1_
;
2673 entry2
= (const struct mips_got_page_entry
*) entry2_
;
2674 return entry1
->abfd
== entry2
->abfd
&& entry1
->symndx
== entry2
->symndx
;
2677 /* Return the dynamic relocation section. If it doesn't exist, try to
2678 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2679 if creation fails. */
2682 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2688 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2689 dynobj
= elf_hash_table (info
)->dynobj
;
2690 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2691 if (sreloc
== NULL
&& create_p
)
2693 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2698 | SEC_LINKER_CREATED
2701 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2702 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2708 /* Count the number of relocations needed for a TLS GOT entry, with
2709 access types from TLS_TYPE, and symbol H (or a local symbol if H
2713 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2714 struct elf_link_hash_entry
*h
)
2718 bfd_boolean need_relocs
= FALSE
;
2719 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2721 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2722 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2725 if ((info
->shared
|| indx
!= 0)
2727 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2728 || h
->root
.type
!= bfd_link_hash_undefweak
))
2734 if (tls_type
& GOT_TLS_GD
)
2741 if (tls_type
& GOT_TLS_IE
)
2744 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2750 /* Count the number of TLS relocations required for the GOT entry in
2751 ARG1, if it describes a local symbol. */
2754 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2756 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2757 struct mips_elf_count_tls_arg
*arg
= arg2
;
2759 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2760 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2765 /* Count the number of TLS GOT entries required for the global (or
2766 forced-local) symbol in ARG1. */
2769 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2771 struct mips_elf_link_hash_entry
*hm
2772 = (struct mips_elf_link_hash_entry
*) arg1
;
2773 struct mips_elf_count_tls_arg
*arg
= arg2
;
2775 if (hm
->tls_type
& GOT_TLS_GD
)
2777 if (hm
->tls_type
& GOT_TLS_IE
)
2783 /* Count the number of TLS relocations required for the global (or
2784 forced-local) symbol in ARG1. */
2787 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2789 struct mips_elf_link_hash_entry
*hm
2790 = (struct mips_elf_link_hash_entry
*) arg1
;
2791 struct mips_elf_count_tls_arg
*arg
= arg2
;
2793 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2798 /* Output a simple dynamic relocation into SRELOC. */
2801 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2803 unsigned long reloc_index
,
2808 Elf_Internal_Rela rel
[3];
2810 memset (rel
, 0, sizeof (rel
));
2812 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2813 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2815 if (ABI_64_P (output_bfd
))
2817 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2818 (output_bfd
, &rel
[0],
2820 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
2823 bfd_elf32_swap_reloc_out
2824 (output_bfd
, &rel
[0],
2826 + reloc_index
* sizeof (Elf32_External_Rel
)));
2829 /* Initialize a set of TLS GOT entries for one symbol. */
2832 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2833 unsigned char *tls_type_p
,
2834 struct bfd_link_info
*info
,
2835 struct mips_elf_link_hash_entry
*h
,
2838 struct mips_elf_link_hash_table
*htab
;
2840 asection
*sreloc
, *sgot
;
2841 bfd_vma offset
, offset2
;
2842 bfd_boolean need_relocs
= FALSE
;
2844 htab
= mips_elf_hash_table (info
);
2850 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2852 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2853 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2854 indx
= h
->root
.dynindx
;
2857 if (*tls_type_p
& GOT_TLS_DONE
)
2860 if ((info
->shared
|| indx
!= 0)
2862 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2863 || h
->root
.type
!= bfd_link_hash_undefweak
))
2866 /* MINUS_ONE means the symbol is not defined in this object. It may not
2867 be defined at all; assume that the value doesn't matter in that
2868 case. Otherwise complain if we would use the value. */
2869 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2870 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2872 /* Emit necessary relocations. */
2873 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2875 /* General Dynamic. */
2876 if (*tls_type_p
& GOT_TLS_GD
)
2878 offset
= got_offset
;
2879 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2883 mips_elf_output_dynamic_relocation
2884 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2885 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2886 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2889 mips_elf_output_dynamic_relocation
2890 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2891 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2892 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2894 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2895 sgot
->contents
+ offset2
);
2899 MIPS_ELF_PUT_WORD (abfd
, 1,
2900 sgot
->contents
+ offset
);
2901 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2902 sgot
->contents
+ offset2
);
2905 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2908 /* Initial Exec model. */
2909 if (*tls_type_p
& GOT_TLS_IE
)
2911 offset
= got_offset
;
2916 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2917 sgot
->contents
+ offset
);
2919 MIPS_ELF_PUT_WORD (abfd
, 0,
2920 sgot
->contents
+ offset
);
2922 mips_elf_output_dynamic_relocation
2923 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2924 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2925 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2928 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2929 sgot
->contents
+ offset
);
2932 if (*tls_type_p
& GOT_TLS_LDM
)
2934 /* The initial offset is zero, and the LD offsets will include the
2935 bias by DTP_OFFSET. */
2936 MIPS_ELF_PUT_WORD (abfd
, 0,
2937 sgot
->contents
+ got_offset
2938 + MIPS_ELF_GOT_SIZE (abfd
));
2941 MIPS_ELF_PUT_WORD (abfd
, 1,
2942 sgot
->contents
+ got_offset
);
2944 mips_elf_output_dynamic_relocation
2945 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
2946 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2947 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2950 *tls_type_p
|= GOT_TLS_DONE
;
2953 /* Return the GOT index to use for a relocation of type R_TYPE against
2954 a symbol accessed using TLS_TYPE models. The GOT entries for this
2955 symbol in this GOT start at GOT_INDEX. This function initializes the
2956 GOT entries and corresponding relocations. */
2959 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2960 int r_type
, struct bfd_link_info
*info
,
2961 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2963 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2964 || r_type
== R_MIPS_TLS_LDM
);
2966 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2968 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2970 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2971 if (*tls_type
& GOT_TLS_GD
)
2972 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2977 if (r_type
== R_MIPS_TLS_GD
)
2979 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2983 if (r_type
== R_MIPS_TLS_LDM
)
2985 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2992 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2993 for global symbol H. .got.plt comes before the GOT, so the offset
2994 will be negative. */
2997 mips_elf_gotplt_index (struct bfd_link_info
*info
,
2998 struct elf_link_hash_entry
*h
)
3000 bfd_vma plt_index
, got_address
, got_value
;
3001 struct mips_elf_link_hash_table
*htab
;
3003 htab
= mips_elf_hash_table (info
);
3004 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
3006 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3007 section starts with reserved entries. */
3008 BFD_ASSERT (htab
->is_vxworks
);
3010 /* Calculate the index of the symbol's PLT entry. */
3011 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
3013 /* Calculate the address of the associated .got.plt entry. */
3014 got_address
= (htab
->sgotplt
->output_section
->vma
3015 + htab
->sgotplt
->output_offset
3018 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3019 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3020 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3021 + htab
->root
.hgot
->root
.u
.def
.value
);
3023 return got_address
- got_value
;
3026 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3027 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3028 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3029 offset can be found. */
3032 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3033 bfd_vma value
, unsigned long r_symndx
,
3034 struct mips_elf_link_hash_entry
*h
, int r_type
)
3036 struct mips_elf_link_hash_table
*htab
;
3037 struct mips_got_entry
*entry
;
3039 htab
= mips_elf_hash_table (info
);
3040 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3041 r_symndx
, h
, r_type
);
3045 if (TLS_RELOC_P (r_type
))
3047 if (entry
->symndx
== -1 && htab
->got_info
->next
== NULL
)
3048 /* A type (3) entry in the single-GOT case. We use the symbol's
3049 hash table entry to track the index. */
3050 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
3051 r_type
, info
, h
, value
);
3053 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
3054 r_type
, info
, h
, value
);
3057 return entry
->gotidx
;
3060 /* Returns the GOT index for the global symbol indicated by H. */
3063 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
3064 int r_type
, struct bfd_link_info
*info
)
3066 struct mips_elf_link_hash_table
*htab
;
3068 struct mips_got_info
*g
, *gg
;
3069 long global_got_dynindx
= 0;
3071 htab
= mips_elf_hash_table (info
);
3072 gg
= g
= htab
->got_info
;
3073 if (g
->bfd2got
&& ibfd
)
3075 struct mips_got_entry e
, *p
;
3077 BFD_ASSERT (h
->dynindx
>= 0);
3079 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3080 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
3084 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
3087 p
= htab_find (g
->got_entries
, &e
);
3089 BFD_ASSERT (p
->gotidx
> 0);
3091 if (TLS_RELOC_P (r_type
))
3093 bfd_vma value
= MINUS_ONE
;
3094 if ((h
->root
.type
== bfd_link_hash_defined
3095 || h
->root
.type
== bfd_link_hash_defweak
)
3096 && h
->root
.u
.def
.section
->output_section
)
3097 value
= (h
->root
.u
.def
.value
3098 + h
->root
.u
.def
.section
->output_offset
3099 + h
->root
.u
.def
.section
->output_section
->vma
);
3101 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
3102 info
, e
.d
.h
, value
);
3109 if (gg
->global_gotsym
!= NULL
)
3110 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
3112 if (TLS_RELOC_P (r_type
))
3114 struct mips_elf_link_hash_entry
*hm
3115 = (struct mips_elf_link_hash_entry
*) h
;
3116 bfd_vma value
= MINUS_ONE
;
3118 if ((h
->root
.type
== bfd_link_hash_defined
3119 || h
->root
.type
== bfd_link_hash_defweak
)
3120 && h
->root
.u
.def
.section
->output_section
)
3121 value
= (h
->root
.u
.def
.value
3122 + h
->root
.u
.def
.section
->output_offset
3123 + h
->root
.u
.def
.section
->output_section
->vma
);
3125 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
3126 r_type
, info
, hm
, value
);
3130 /* Once we determine the global GOT entry with the lowest dynamic
3131 symbol table index, we must put all dynamic symbols with greater
3132 indices into the GOT. That makes it easy to calculate the GOT
3134 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3135 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3136 * MIPS_ELF_GOT_SIZE (abfd
));
3138 BFD_ASSERT (index
< htab
->sgot
->size
);
3143 /* Find a GOT page entry that points to within 32KB of VALUE. These
3144 entries are supposed to be placed at small offsets in the GOT, i.e.,
3145 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3146 entry could be created. If OFFSETP is nonnull, use it to return the
3147 offset of the GOT entry from VALUE. */
3150 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3151 bfd_vma value
, bfd_vma
*offsetp
)
3153 bfd_vma page
, index
;
3154 struct mips_got_entry
*entry
;
3156 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3157 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3158 NULL
, R_MIPS_GOT_PAGE
);
3163 index
= entry
->gotidx
;
3166 *offsetp
= value
- entry
->d
.address
;
3171 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3172 EXTERNAL is true if the relocation was against a global symbol
3173 that has been forced local. */
3176 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3177 bfd_vma value
, bfd_boolean external
)
3179 struct mips_got_entry
*entry
;
3181 /* GOT16 relocations against local symbols are followed by a LO16
3182 relocation; those against global symbols are not. Thus if the
3183 symbol was originally local, the GOT16 relocation should load the
3184 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3186 value
= mips_elf_high (value
) << 16;
3188 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3189 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3190 same in all cases. */
3191 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3192 NULL
, R_MIPS_GOT16
);
3194 return entry
->gotidx
;
3199 /* Returns the offset for the entry at the INDEXth position
3203 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3204 bfd
*input_bfd
, bfd_vma index
)
3206 struct mips_elf_link_hash_table
*htab
;
3210 htab
= mips_elf_hash_table (info
);
3212 gp
= _bfd_get_gp_value (output_bfd
)
3213 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3215 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
3218 /* Create and return a local GOT entry for VALUE, which was calculated
3219 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3220 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3223 static struct mips_got_entry
*
3224 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3225 bfd
*ibfd
, bfd_vma value
,
3226 unsigned long r_symndx
,
3227 struct mips_elf_link_hash_entry
*h
,
3230 struct mips_got_entry entry
, **loc
;
3231 struct mips_got_info
*g
;
3232 struct mips_elf_link_hash_table
*htab
;
3234 htab
= mips_elf_hash_table (info
);
3238 entry
.d
.address
= value
;
3241 g
= mips_elf_got_for_ibfd (htab
->got_info
, ibfd
);
3244 g
= mips_elf_got_for_ibfd (htab
->got_info
, abfd
);
3245 BFD_ASSERT (g
!= NULL
);
3248 /* We might have a symbol, H, if it has been forced local. Use the
3249 global entry then. It doesn't matter whether an entry is local
3250 or global for TLS, since the dynamic linker does not
3251 automatically relocate TLS GOT entries. */
3252 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
3253 if (TLS_RELOC_P (r_type
))
3255 struct mips_got_entry
*p
;
3258 if (r_type
== R_MIPS_TLS_LDM
)
3260 entry
.tls_type
= GOT_TLS_LDM
;
3266 entry
.symndx
= r_symndx
;
3272 p
= (struct mips_got_entry
*)
3273 htab_find (g
->got_entries
, &entry
);
3279 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3284 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
3287 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3292 memcpy (*loc
, &entry
, sizeof entry
);
3294 if (g
->assigned_gotno
> g
->local_gotno
)
3296 (*loc
)->gotidx
= -1;
3297 /* We didn't allocate enough space in the GOT. */
3298 (*_bfd_error_handler
)
3299 (_("not enough GOT space for local GOT entries"));
3300 bfd_set_error (bfd_error_bad_value
);
3304 MIPS_ELF_PUT_WORD (abfd
, value
,
3305 (htab
->sgot
->contents
+ entry
.gotidx
));
3307 /* These GOT entries need a dynamic relocation on VxWorks. */
3308 if (htab
->is_vxworks
)
3310 Elf_Internal_Rela outrel
;
3313 bfd_vma got_address
;
3315 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3316 got_address
= (htab
->sgot
->output_section
->vma
3317 + htab
->sgot
->output_offset
3320 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3321 outrel
.r_offset
= got_address
;
3322 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3323 outrel
.r_addend
= value
;
3324 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
3330 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3331 The number might be exact or a worst-case estimate, depending on how
3332 much information is available to elf_backend_omit_section_dynsym at
3333 the current linking stage. */
3335 static bfd_size_type
3336 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3338 bfd_size_type count
;
3341 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
3344 const struct elf_backend_data
*bed
;
3346 bed
= get_elf_backend_data (output_bfd
);
3347 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3348 if ((p
->flags
& SEC_EXCLUDE
) == 0
3349 && (p
->flags
& SEC_ALLOC
) != 0
3350 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3356 /* Sort the dynamic symbol table so that symbols that need GOT entries
3357 appear towards the end. */
3360 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3362 struct mips_elf_link_hash_table
*htab
;
3363 struct mips_elf_hash_sort_data hsd
;
3364 struct mips_got_info
*g
;
3366 if (elf_hash_table (info
)->dynsymcount
== 0)
3369 htab
= mips_elf_hash_table (info
);
3375 hsd
.max_unref_got_dynindx
3376 = hsd
.min_got_dynindx
3377 = (elf_hash_table (info
)->dynsymcount
- g
->reloc_only_gotno
);
3378 hsd
.max_non_got_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3379 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
3380 elf_hash_table (info
)),
3381 mips_elf_sort_hash_table_f
,
3384 /* There should have been enough room in the symbol table to
3385 accommodate both the GOT and non-GOT symbols. */
3386 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3387 BFD_ASSERT ((unsigned long) hsd
.max_unref_got_dynindx
3388 == elf_hash_table (info
)->dynsymcount
);
3389 BFD_ASSERT (elf_hash_table (info
)->dynsymcount
- hsd
.min_got_dynindx
3390 == g
->global_gotno
);
3392 /* Now we know which dynamic symbol has the lowest dynamic symbol
3393 table index in the GOT. */
3394 g
->global_gotsym
= hsd
.low
;
3399 /* If H needs a GOT entry, assign it the highest available dynamic
3400 index. Otherwise, assign it the lowest available dynamic
3404 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3406 struct mips_elf_hash_sort_data
*hsd
= data
;
3408 if (h
->root
.root
.type
== bfd_link_hash_warning
)
3409 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3411 /* Symbols without dynamic symbol table entries aren't interesting
3413 if (h
->root
.dynindx
== -1)
3416 switch (h
->global_got_area
)
3419 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3423 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3425 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3426 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3429 case GGA_RELOC_ONLY
:
3430 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3432 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3433 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3434 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3441 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3442 symbol table index lower than any we've seen to date, record it for
3446 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
3447 bfd
*abfd
, struct bfd_link_info
*info
,
3448 unsigned char tls_flag
)
3450 struct mips_elf_link_hash_table
*htab
;
3451 struct mips_elf_link_hash_entry
*hmips
;
3452 struct mips_got_entry entry
, **loc
;
3453 struct mips_got_info
*g
;
3455 htab
= mips_elf_hash_table (info
);
3456 hmips
= (struct mips_elf_link_hash_entry
*) h
;
3458 /* A global symbol in the GOT must also be in the dynamic symbol
3460 if (h
->dynindx
== -1)
3462 switch (ELF_ST_VISIBILITY (h
->other
))
3466 _bfd_elf_link_hash_hide_symbol (info
, h
, TRUE
);
3469 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
3473 /* Make sure we have a GOT to put this entry into. */
3475 BFD_ASSERT (g
!= NULL
);
3479 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3482 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3485 /* If we've already marked this entry as needing GOT space, we don't
3486 need to do it again. */
3489 (*loc
)->tls_type
|= tls_flag
;
3493 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3499 entry
.tls_type
= tls_flag
;
3501 memcpy (*loc
, &entry
, sizeof entry
);
3504 hmips
->global_got_area
= GGA_NORMAL
;
3509 /* Reserve space in G for a GOT entry containing the value of symbol
3510 SYMNDX in input bfd ABDF, plus ADDEND. */
3513 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
3514 struct bfd_link_info
*info
,
3515 unsigned char tls_flag
)
3517 struct mips_elf_link_hash_table
*htab
;
3518 struct mips_got_info
*g
;
3519 struct mips_got_entry entry
, **loc
;
3521 htab
= mips_elf_hash_table (info
);
3523 BFD_ASSERT (g
!= NULL
);
3526 entry
.symndx
= symndx
;
3527 entry
.d
.addend
= addend
;
3528 entry
.tls_type
= tls_flag
;
3529 loc
= (struct mips_got_entry
**)
3530 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
3534 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
3537 (*loc
)->tls_type
|= tls_flag
;
3539 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
3542 (*loc
)->tls_type
|= tls_flag
;
3550 entry
.tls_type
= tls_flag
;
3551 if (tls_flag
== GOT_TLS_IE
)
3553 else if (tls_flag
== GOT_TLS_GD
)
3555 else if (g
->tls_ldm_offset
== MINUS_ONE
)
3557 g
->tls_ldm_offset
= MINUS_TWO
;
3563 entry
.gotidx
= g
->local_gotno
++;
3567 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3572 memcpy (*loc
, &entry
, sizeof entry
);
3577 /* Return the maximum number of GOT page entries required for RANGE. */
3580 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
3582 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
3585 /* Record that ABFD has a page relocation against symbol SYMNDX and
3586 that ADDEND is the addend for that relocation.
3588 This function creates an upper bound on the number of GOT slots
3589 required; no attempt is made to combine references to non-overridable
3590 global symbols across multiple input files. */
3593 mips_elf_record_got_page_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3594 long symndx
, bfd_signed_vma addend
)
3596 struct mips_elf_link_hash_table
*htab
;
3597 struct mips_got_info
*g
;
3598 struct mips_got_page_entry lookup
, *entry
;
3599 struct mips_got_page_range
**range_ptr
, *range
;
3600 bfd_vma old_pages
, new_pages
;
3603 htab
= mips_elf_hash_table (info
);
3605 BFD_ASSERT (g
!= NULL
);
3607 /* Find the mips_got_page_entry hash table entry for this symbol. */
3609 lookup
.symndx
= symndx
;
3610 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
3614 /* Create a mips_got_page_entry if this is the first time we've
3616 entry
= (struct mips_got_page_entry
*) *loc
;
3619 entry
= bfd_alloc (abfd
, sizeof (*entry
));
3624 entry
->symndx
= symndx
;
3625 entry
->ranges
= NULL
;
3626 entry
->num_pages
= 0;
3630 /* Skip over ranges whose maximum extent cannot share a page entry
3632 range_ptr
= &entry
->ranges
;
3633 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
3634 range_ptr
= &(*range_ptr
)->next
;
3636 /* If we scanned to the end of the list, or found a range whose
3637 minimum extent cannot share a page entry with ADDEND, create
3638 a new singleton range. */
3640 if (!range
|| addend
< range
->min_addend
- 0xffff)
3642 range
= bfd_alloc (abfd
, sizeof (*range
));
3646 range
->next
= *range_ptr
;
3647 range
->min_addend
= addend
;
3648 range
->max_addend
= addend
;
3656 /* Remember how many pages the old range contributed. */
3657 old_pages
= mips_elf_pages_for_range (range
);
3659 /* Update the ranges. */
3660 if (addend
< range
->min_addend
)
3661 range
->min_addend
= addend
;
3662 else if (addend
> range
->max_addend
)
3664 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
3666 old_pages
+= mips_elf_pages_for_range (range
->next
);
3667 range
->max_addend
= range
->next
->max_addend
;
3668 range
->next
= range
->next
->next
;
3671 range
->max_addend
= addend
;
3674 /* Record any change in the total estimate. */
3675 new_pages
= mips_elf_pages_for_range (range
);
3676 if (old_pages
!= new_pages
)
3678 entry
->num_pages
+= new_pages
- old_pages
;
3679 g
->page_gotno
+= new_pages
- old_pages
;
3685 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3688 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
3692 struct mips_elf_link_hash_table
*htab
;
3694 htab
= mips_elf_hash_table (info
);
3695 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3696 BFD_ASSERT (s
!= NULL
);
3698 if (htab
->is_vxworks
)
3699 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
3704 /* Make room for a null element. */
3705 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
3708 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3712 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3713 if the GOT entry is for an indirect or warning symbol. */
3716 mips_elf_check_recreate_got (void **entryp
, void *data
)
3718 struct mips_got_entry
*entry
;
3719 bfd_boolean
*must_recreate
;
3721 entry
= (struct mips_got_entry
*) *entryp
;
3722 must_recreate
= (bfd_boolean
*) data
;
3723 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3725 struct mips_elf_link_hash_entry
*h
;
3728 if (h
->root
.root
.type
== bfd_link_hash_indirect
3729 || h
->root
.root
.type
== bfd_link_hash_warning
)
3731 *must_recreate
= TRUE
;
3738 /* A htab_traverse callback for GOT entries. Add all entries to
3739 hash table *DATA, converting entries for indirect and warning
3740 symbols into entries for the target symbol. Set *DATA to null
3744 mips_elf_recreate_got (void **entryp
, void *data
)
3747 struct mips_got_entry
*entry
;
3750 new_got
= (htab_t
*) data
;
3751 entry
= (struct mips_got_entry
*) *entryp
;
3752 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3754 struct mips_elf_link_hash_entry
*h
;
3757 while (h
->root
.root
.type
== bfd_link_hash_indirect
3758 || h
->root
.root
.type
== bfd_link_hash_warning
)
3760 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
3761 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3765 slot
= htab_find_slot (*new_got
, entry
, INSERT
);
3778 /* If any entries in G->got_entries are for indirect or warning symbols,
3779 replace them with entries for the target symbol. */
3782 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3784 bfd_boolean must_recreate
;
3787 must_recreate
= FALSE
;
3788 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &must_recreate
);
3791 new_got
= htab_create (htab_size (g
->got_entries
),
3792 mips_elf_got_entry_hash
,
3793 mips_elf_got_entry_eq
, NULL
);
3794 htab_traverse (g
->got_entries
, mips_elf_recreate_got
, &new_got
);
3795 if (new_got
== NULL
)
3798 /* Each entry in g->got_entries has either been copied to new_got
3799 or freed. Now delete the hash table itself. */
3800 htab_delete (g
->got_entries
);
3801 g
->got_entries
= new_got
;
3806 /* A mips_elf_link_hash_traverse callback for which DATA points
3807 to a mips_got_info. Count the number of type (3) entries. */
3810 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
3812 struct mips_got_info
*g
;
3814 g
= (struct mips_got_info
*) data
;
3815 if (h
->global_got_area
!= GGA_NONE
)
3817 if (h
->root
.forced_local
|| h
->root
.dynindx
== -1)
3819 /* We no longer need this entry if it was only used for
3820 relocations; those relocations will be against the
3821 null or section symbol instead of H. */
3822 if (h
->global_got_area
!= GGA_RELOC_ONLY
)
3824 h
->global_got_area
= GGA_NONE
;
3829 if (h
->global_got_area
== GGA_RELOC_ONLY
)
3830 g
->reloc_only_gotno
++;
3836 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3839 mips_elf_bfd2got_entry_hash (const void *entry_
)
3841 const struct mips_elf_bfd2got_hash
*entry
3842 = (struct mips_elf_bfd2got_hash
*)entry_
;
3844 return entry
->bfd
->id
;
3847 /* Check whether two hash entries have the same bfd. */
3850 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
3852 const struct mips_elf_bfd2got_hash
*e1
3853 = (const struct mips_elf_bfd2got_hash
*)entry1
;
3854 const struct mips_elf_bfd2got_hash
*e2
3855 = (const struct mips_elf_bfd2got_hash
*)entry2
;
3857 return e1
->bfd
== e2
->bfd
;
3860 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3861 be the master GOT data. */
3863 static struct mips_got_info
*
3864 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
3866 struct mips_elf_bfd2got_hash e
, *p
;
3872 p
= htab_find (g
->bfd2got
, &e
);
3873 return p
? p
->g
: NULL
;
3876 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3877 Return NULL if an error occured. */
3879 static struct mips_got_info
*
3880 mips_elf_get_got_for_bfd (struct htab
*bfd2got
, bfd
*output_bfd
,
3883 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
3884 struct mips_got_info
*g
;
3887 bfdgot_entry
.bfd
= input_bfd
;
3888 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
3889 bfdgot
= (struct mips_elf_bfd2got_hash
*) *bfdgotp
;
3893 bfdgot
= ((struct mips_elf_bfd2got_hash
*)
3894 bfd_alloc (output_bfd
, sizeof (struct mips_elf_bfd2got_hash
)));
3900 g
= ((struct mips_got_info
*)
3901 bfd_alloc (output_bfd
, sizeof (struct mips_got_info
)));
3905 bfdgot
->bfd
= input_bfd
;
3908 g
->global_gotsym
= NULL
;
3909 g
->global_gotno
= 0;
3910 g
->reloc_only_gotno
= 0;
3913 g
->assigned_gotno
= -1;
3915 g
->tls_assigned_gotno
= 0;
3916 g
->tls_ldm_offset
= MINUS_ONE
;
3917 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3918 mips_elf_multi_got_entry_eq
, NULL
);
3919 if (g
->got_entries
== NULL
)
3922 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
3923 mips_got_page_entry_eq
, NULL
);
3924 if (g
->got_page_entries
== NULL
)
3934 /* A htab_traverse callback for the entries in the master got.
3935 Create one separate got for each bfd that has entries in the global
3936 got, such that we can tell how many local and global entries each
3940 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
3942 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3943 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3944 struct mips_got_info
*g
;
3946 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3953 /* Insert the GOT entry in the bfd's got entry hash table. */
3954 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
3955 if (*entryp
!= NULL
)
3960 if (entry
->tls_type
)
3962 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3964 if (entry
->tls_type
& GOT_TLS_IE
)
3967 else if (entry
->symndx
>= 0 || entry
->d
.h
->root
.forced_local
)
3975 /* A htab_traverse callback for the page entries in the master got.
3976 Associate each page entry with the bfd's got. */
3979 mips_elf_make_got_pages_per_bfd (void **entryp
, void *p
)
3981 struct mips_got_page_entry
*entry
= (struct mips_got_page_entry
*) *entryp
;
3982 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*) p
;
3983 struct mips_got_info
*g
;
3985 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
3992 /* Insert the GOT entry in the bfd's got entry hash table. */
3993 entryp
= htab_find_slot (g
->got_page_entries
, entry
, INSERT
);
3994 if (*entryp
!= NULL
)
3998 g
->page_gotno
+= entry
->num_pages
;
4002 /* Consider merging the got described by BFD2GOT with TO, using the
4003 information given by ARG. Return -1 if this would lead to overflow,
4004 1 if they were merged successfully, and 0 if a merge failed due to
4005 lack of memory. (These values are chosen so that nonnegative return
4006 values can be returned by a htab_traverse callback.) */
4009 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash
*bfd2got
,
4010 struct mips_got_info
*to
,
4011 struct mips_elf_got_per_bfd_arg
*arg
)
4013 struct mips_got_info
*from
= bfd2got
->g
;
4014 unsigned int estimate
;
4016 /* Work out how many page entries we would need for the combined GOT. */
4017 estimate
= arg
->max_pages
;
4018 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4019 estimate
= from
->page_gotno
+ to
->page_gotno
;
4021 /* And conservatively estimate how many local, global and TLS entries
4023 estimate
+= (from
->local_gotno
4024 + from
->global_gotno
4030 /* Bail out if the combined GOT might be too big. */
4031 if (estimate
> arg
->max_count
)
4034 /* Commit to the merge. Record that TO is now the bfd for this got. */
4037 /* Transfer the bfd's got information from FROM to TO. */
4038 htab_traverse (from
->got_entries
, mips_elf_make_got_per_bfd
, arg
);
4039 if (arg
->obfd
== NULL
)
4042 htab_traverse (from
->got_page_entries
, mips_elf_make_got_pages_per_bfd
, arg
);
4043 if (arg
->obfd
== NULL
)
4046 /* We don't have to worry about releasing memory of the actual
4047 got entries, since they're all in the master got_entries hash
4049 htab_delete (from
->got_entries
);
4050 htab_delete (from
->got_page_entries
);
4054 /* Attempt to merge gots of different input bfds. Try to use as much
4055 as possible of the primary got, since it doesn't require explicit
4056 dynamic relocations, but don't use bfds that would reference global
4057 symbols out of the addressable range. Failing the primary got,
4058 attempt to merge with the current got, or finish the current got
4059 and then make make the new got current. */
4062 mips_elf_merge_gots (void **bfd2got_
, void *p
)
4064 struct mips_elf_bfd2got_hash
*bfd2got
4065 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
4066 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4067 struct mips_got_info
*g
;
4068 unsigned int estimate
;
4073 /* Work out the number of page, local and TLS entries. */
4074 estimate
= arg
->max_pages
;
4075 if (estimate
> g
->page_gotno
)
4076 estimate
= g
->page_gotno
;
4077 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4079 /* We place TLS GOT entries after both locals and globals. The globals
4080 for the primary GOT may overflow the normal GOT size limit, so be
4081 sure not to merge a GOT which requires TLS with the primary GOT in that
4082 case. This doesn't affect non-primary GOTs. */
4083 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4085 if (estimate
<= arg
->max_count
)
4087 /* If we don't have a primary GOT, use it as
4088 a starting point for the primary GOT. */
4091 arg
->primary
= bfd2got
->g
;
4095 /* Try merging with the primary GOT. */
4096 result
= mips_elf_merge_got_with (bfd2got
, arg
->primary
, arg
);
4101 /* If we can merge with the last-created got, do it. */
4104 result
= mips_elf_merge_got_with (bfd2got
, arg
->current
, arg
);
4109 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4110 fits; if it turns out that it doesn't, we'll get relocation
4111 overflows anyway. */
4112 g
->next
= arg
->current
;
4118 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4119 is null iff there is just a single GOT. */
4122 mips_elf_initialize_tls_index (void **entryp
, void *p
)
4124 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4125 struct mips_got_info
*g
= p
;
4127 unsigned char tls_type
;
4129 /* We're only interested in TLS symbols. */
4130 if (entry
->tls_type
== 0)
4133 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
4135 if (entry
->symndx
== -1 && g
->next
== NULL
)
4137 /* A type (3) got entry in the single-GOT case. We use the symbol's
4138 hash table entry to track its index. */
4139 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
4141 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
4142 entry
->d
.h
->tls_got_offset
= next_index
;
4143 tls_type
= entry
->d
.h
->tls_type
;
4147 if (entry
->tls_type
& GOT_TLS_LDM
)
4149 /* There are separate mips_got_entry objects for each input bfd
4150 that requires an LDM entry. Make sure that all LDM entries in
4151 a GOT resolve to the same index. */
4152 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
4154 entry
->gotidx
= g
->tls_ldm_offset
;
4157 g
->tls_ldm_offset
= next_index
;
4159 entry
->gotidx
= next_index
;
4160 tls_type
= entry
->tls_type
;
4163 /* Account for the entries we've just allocated. */
4164 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4165 g
->tls_assigned_gotno
+= 2;
4166 if (tls_type
& GOT_TLS_IE
)
4167 g
->tls_assigned_gotno
+= 1;
4172 /* If passed a NULL mips_got_info in the argument, set the marker used
4173 to tell whether a global symbol needs a got entry (in the primary
4174 got) to the given VALUE.
4176 If passed a pointer G to a mips_got_info in the argument (it must
4177 not be the primary GOT), compute the offset from the beginning of
4178 the (primary) GOT section to the entry in G corresponding to the
4179 global symbol. G's assigned_gotno must contain the index of the
4180 first available global GOT entry in G. VALUE must contain the size
4181 of a GOT entry in bytes. For each global GOT entry that requires a
4182 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4183 marked as not eligible for lazy resolution through a function
4186 mips_elf_set_global_got_offset (void **entryp
, void *p
)
4188 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4189 struct mips_elf_set_global_got_offset_arg
*arg
4190 = (struct mips_elf_set_global_got_offset_arg
*)p
;
4191 struct mips_got_info
*g
= arg
->g
;
4193 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
4194 arg
->needed_relocs
+=
4195 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
4196 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
4198 if (entry
->abfd
!= NULL
4199 && entry
->symndx
== -1
4200 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4204 BFD_ASSERT (g
->global_gotsym
== NULL
);
4206 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
4207 if (arg
->info
->shared
4208 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4209 && entry
->d
.h
->root
.def_dynamic
4210 && !entry
->d
.h
->root
.def_regular
))
4211 ++arg
->needed_relocs
;
4214 entry
->d
.h
->global_got_area
= arg
->value
;
4220 /* A htab_traverse callback for GOT entries for which DATA is the
4221 bfd_link_info. Forbid any global symbols from having traditional
4222 lazy-binding stubs. */
4225 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4227 struct bfd_link_info
*info
;
4228 struct mips_elf_link_hash_table
*htab
;
4229 struct mips_got_entry
*entry
;
4231 entry
= (struct mips_got_entry
*) *entryp
;
4232 info
= (struct bfd_link_info
*) data
;
4233 htab
= mips_elf_hash_table (info
);
4234 if (entry
->abfd
!= NULL
4235 && entry
->symndx
== -1
4236 && entry
->d
.h
->needs_lazy_stub
)
4238 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4239 htab
->lazy_stub_count
--;
4245 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4248 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4250 if (g
->bfd2got
== NULL
)
4253 g
= mips_elf_got_for_ibfd (g
, ibfd
);
4257 BFD_ASSERT (g
->next
);
4261 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4262 * MIPS_ELF_GOT_SIZE (abfd
);
4265 /* Turn a single GOT that is too big for 16-bit addressing into
4266 a sequence of GOTs, each one 16-bit addressable. */
4269 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4270 asection
*got
, bfd_size_type pages
)
4272 struct mips_elf_link_hash_table
*htab
;
4273 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4274 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
4275 struct mips_got_info
*g
, *gg
;
4276 unsigned int assign
, needed_relocs
;
4279 dynobj
= elf_hash_table (info
)->dynobj
;
4280 htab
= mips_elf_hash_table (info
);
4282 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
4283 mips_elf_bfd2got_entry_eq
, NULL
);
4284 if (g
->bfd2got
== NULL
)
4287 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
4288 got_per_bfd_arg
.obfd
= abfd
;
4289 got_per_bfd_arg
.info
= info
;
4291 /* Count how many GOT entries each input bfd requires, creating a
4292 map from bfd to got info while at that. */
4293 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
4294 if (got_per_bfd_arg
.obfd
== NULL
)
4297 /* Also count how many page entries each input bfd requires. */
4298 htab_traverse (g
->got_page_entries
, mips_elf_make_got_pages_per_bfd
,
4300 if (got_per_bfd_arg
.obfd
== NULL
)
4303 got_per_bfd_arg
.current
= NULL
;
4304 got_per_bfd_arg
.primary
= NULL
;
4305 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4306 / MIPS_ELF_GOT_SIZE (abfd
))
4307 - htab
->reserved_gotno
);
4308 got_per_bfd_arg
.max_pages
= pages
;
4309 /* The number of globals that will be included in the primary GOT.
4310 See the calls to mips_elf_set_global_got_offset below for more
4312 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4314 /* Try to merge the GOTs of input bfds together, as long as they
4315 don't seem to exceed the maximum GOT size, choosing one of them
4316 to be the primary GOT. */
4317 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
4318 if (got_per_bfd_arg
.obfd
== NULL
)
4321 /* If we do not find any suitable primary GOT, create an empty one. */
4322 if (got_per_bfd_arg
.primary
== NULL
)
4324 g
->next
= (struct mips_got_info
*)
4325 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
4326 if (g
->next
== NULL
)
4329 g
->next
->global_gotsym
= NULL
;
4330 g
->next
->global_gotno
= 0;
4331 g
->next
->reloc_only_gotno
= 0;
4332 g
->next
->local_gotno
= 0;
4333 g
->next
->page_gotno
= 0;
4334 g
->next
->tls_gotno
= 0;
4335 g
->next
->assigned_gotno
= 0;
4336 g
->next
->tls_assigned_gotno
= 0;
4337 g
->next
->tls_ldm_offset
= MINUS_ONE
;
4338 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
4339 mips_elf_multi_got_entry_eq
,
4341 if (g
->next
->got_entries
== NULL
)
4343 g
->next
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4344 mips_got_page_entry_eq
,
4346 if (g
->next
->got_page_entries
== NULL
)
4348 g
->next
->bfd2got
= NULL
;
4351 g
->next
= got_per_bfd_arg
.primary
;
4352 g
->next
->next
= got_per_bfd_arg
.current
;
4354 /* GG is now the master GOT, and G is the primary GOT. */
4358 /* Map the output bfd to the primary got. That's what we're going
4359 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4360 didn't mark in check_relocs, and we want a quick way to find it.
4361 We can't just use gg->next because we're going to reverse the
4364 struct mips_elf_bfd2got_hash
*bfdgot
;
4367 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
4368 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
4375 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
4377 BFD_ASSERT (*bfdgotp
== NULL
);
4381 /* Every symbol that is referenced in a dynamic relocation must be
4382 present in the primary GOT, so arrange for them to appear after
4383 those that are actually referenced. */
4384 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4385 g
->global_gotno
= gg
->global_gotno
;
4387 set_got_offset_arg
.g
= NULL
;
4388 set_got_offset_arg
.value
= GGA_RELOC_ONLY
;
4389 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
4390 &set_got_offset_arg
);
4391 set_got_offset_arg
.value
= GGA_NORMAL
;
4392 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
4393 &set_got_offset_arg
);
4395 /* Now go through the GOTs assigning them offset ranges.
4396 [assigned_gotno, local_gotno[ will be set to the range of local
4397 entries in each GOT. We can then compute the end of a GOT by
4398 adding local_gotno to global_gotno. We reverse the list and make
4399 it circular since then we'll be able to quickly compute the
4400 beginning of a GOT, by computing the end of its predecessor. To
4401 avoid special cases for the primary GOT, while still preserving
4402 assertions that are valid for both single- and multi-got links,
4403 we arrange for the main got struct to have the right number of
4404 global entries, but set its local_gotno such that the initial
4405 offset of the primary GOT is zero. Remember that the primary GOT
4406 will become the last item in the circular linked list, so it
4407 points back to the master GOT. */
4408 gg
->local_gotno
= -g
->global_gotno
;
4409 gg
->global_gotno
= g
->global_gotno
;
4416 struct mips_got_info
*gn
;
4418 assign
+= htab
->reserved_gotno
;
4419 g
->assigned_gotno
= assign
;
4420 g
->local_gotno
+= assign
;
4421 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4422 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4424 /* Take g out of the direct list, and push it onto the reversed
4425 list that gg points to. g->next is guaranteed to be nonnull after
4426 this operation, as required by mips_elf_initialize_tls_index. */
4431 /* Set up any TLS entries. We always place the TLS entries after
4432 all non-TLS entries. */
4433 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
4434 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
4436 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4439 /* Forbid global symbols in every non-primary GOT from having
4440 lazy-binding stubs. */
4442 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
4446 got
->size
= (gg
->next
->local_gotno
4447 + gg
->next
->global_gotno
4448 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
4451 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4452 set_got_offset_arg
.info
= info
;
4453 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
4455 unsigned int save_assign
;
4457 /* Assign offsets to global GOT entries. */
4458 save_assign
= g
->assigned_gotno
;
4459 g
->assigned_gotno
= g
->local_gotno
;
4460 set_got_offset_arg
.g
= g
;
4461 set_got_offset_arg
.needed_relocs
= 0;
4462 htab_traverse (g
->got_entries
,
4463 mips_elf_set_global_got_offset
,
4464 &set_got_offset_arg
);
4465 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
4466 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
<= g
->global_gotno
);
4468 g
->assigned_gotno
= save_assign
;
4471 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
4472 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
4473 + g
->next
->global_gotno
4474 + g
->next
->tls_gotno
4475 + htab
->reserved_gotno
);
4480 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
4487 /* Returns the first relocation of type r_type found, beginning with
4488 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4490 static const Elf_Internal_Rela
*
4491 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
4492 const Elf_Internal_Rela
*relocation
,
4493 const Elf_Internal_Rela
*relend
)
4495 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
4497 while (relocation
< relend
)
4499 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
4500 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
4506 /* We didn't find it. */
4510 /* Return whether a relocation is against a local symbol. */
4513 mips_elf_local_relocation_p (bfd
*input_bfd
,
4514 const Elf_Internal_Rela
*relocation
,
4515 asection
**local_sections
,
4516 bfd_boolean check_forced
)
4518 unsigned long r_symndx
;
4519 Elf_Internal_Shdr
*symtab_hdr
;
4520 struct mips_elf_link_hash_entry
*h
;
4523 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4524 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4525 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
4527 if (r_symndx
< extsymoff
)
4529 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
4534 /* Look up the hash table to check whether the symbol
4535 was forced local. */
4536 h
= (struct mips_elf_link_hash_entry
*)
4537 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
4538 /* Find the real hash-table entry for this symbol. */
4539 while (h
->root
.root
.type
== bfd_link_hash_indirect
4540 || h
->root
.root
.type
== bfd_link_hash_warning
)
4541 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4542 if (h
->root
.forced_local
)
4549 /* Sign-extend VALUE, which has the indicated number of BITS. */
4552 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
4554 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
4555 /* VALUE is negative. */
4556 value
|= ((bfd_vma
) - 1) << bits
;
4561 /* Return non-zero if the indicated VALUE has overflowed the maximum
4562 range expressible by a signed number with the indicated number of
4566 mips_elf_overflow_p (bfd_vma value
, int bits
)
4568 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
4570 if (svalue
> (1 << (bits
- 1)) - 1)
4571 /* The value is too big. */
4573 else if (svalue
< -(1 << (bits
- 1)))
4574 /* The value is too small. */
4581 /* Calculate the %high function. */
4584 mips_elf_high (bfd_vma value
)
4586 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
4589 /* Calculate the %higher function. */
4592 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
4595 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
4602 /* Calculate the %highest function. */
4605 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
4608 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4615 /* Create the .compact_rel section. */
4618 mips_elf_create_compact_rel_section
4619 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4622 register asection
*s
;
4624 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
4626 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
4629 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
4631 || ! bfd_set_section_alignment (abfd
, s
,
4632 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4635 s
->size
= sizeof (Elf32_External_compact_rel
);
4641 /* Create the .got section to hold the global offset table. */
4644 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
4647 register asection
*s
;
4648 struct elf_link_hash_entry
*h
;
4649 struct bfd_link_hash_entry
*bh
;
4650 struct mips_got_info
*g
;
4652 struct mips_elf_link_hash_table
*htab
;
4654 htab
= mips_elf_hash_table (info
);
4656 /* This function may be called more than once. */
4660 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4661 | SEC_LINKER_CREATED
);
4663 /* We have to use an alignment of 2**4 here because this is hardcoded
4664 in the function stub generation and in the linker script. */
4665 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
4667 || ! bfd_set_section_alignment (abfd
, s
, 4))
4671 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4672 linker script because we don't want to define the symbol if we
4673 are not creating a global offset table. */
4675 if (! (_bfd_generic_link_add_one_symbol
4676 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
4677 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
4680 h
= (struct elf_link_hash_entry
*) bh
;
4683 h
->type
= STT_OBJECT
;
4684 elf_hash_table (info
)->hgot
= h
;
4687 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
4690 amt
= sizeof (struct mips_got_info
);
4691 g
= bfd_alloc (abfd
, amt
);
4694 g
->global_gotsym
= NULL
;
4695 g
->global_gotno
= 0;
4696 g
->reloc_only_gotno
= 0;
4700 g
->assigned_gotno
= 0;
4703 g
->tls_ldm_offset
= MINUS_ONE
;
4704 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
4705 mips_elf_got_entry_eq
, NULL
);
4706 if (g
->got_entries
== NULL
)
4708 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4709 mips_got_page_entry_eq
, NULL
);
4710 if (g
->got_page_entries
== NULL
)
4713 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
4714 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4716 /* We also need a .got.plt section when generating PLTs. */
4717 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
4718 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
4719 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
4727 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4728 __GOTT_INDEX__ symbols. These symbols are only special for
4729 shared objects; they are not used in executables. */
4732 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
4734 return (mips_elf_hash_table (info
)->is_vxworks
4736 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
4737 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
4740 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4741 require an la25 stub. See also mips_elf_local_pic_function_p,
4742 which determines whether the destination function ever requires a
4746 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
)
4748 /* We specifically ignore branches and jumps from EF_PIC objects,
4749 where the onus is on the compiler or programmer to perform any
4750 necessary initialization of $25. Sometimes such initialization
4751 is unnecessary; for example, -mno-shared functions do not use
4752 the incoming value of $25, and may therefore be called directly. */
4753 if (PIC_OBJECT_P (input_bfd
))
4768 /* Calculate the value produced by the RELOCATION (which comes from
4769 the INPUT_BFD). The ADDEND is the addend to use for this
4770 RELOCATION; RELOCATION->R_ADDEND is ignored.
4772 The result of the relocation calculation is stored in VALUEP.
4773 REQUIRE_JALXP indicates whether or not the opcode used with this
4774 relocation must be JALX.
4776 This function returns bfd_reloc_continue if the caller need take no
4777 further action regarding this relocation, bfd_reloc_notsupported if
4778 something goes dramatically wrong, bfd_reloc_overflow if an
4779 overflow occurs, and bfd_reloc_ok to indicate success. */
4781 static bfd_reloc_status_type
4782 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
4783 asection
*input_section
,
4784 struct bfd_link_info
*info
,
4785 const Elf_Internal_Rela
*relocation
,
4786 bfd_vma addend
, reloc_howto_type
*howto
,
4787 Elf_Internal_Sym
*local_syms
,
4788 asection
**local_sections
, bfd_vma
*valuep
,
4789 const char **namep
, bfd_boolean
*require_jalxp
,
4790 bfd_boolean save_addend
)
4792 /* The eventual value we will return. */
4794 /* The address of the symbol against which the relocation is
4797 /* The final GP value to be used for the relocatable, executable, or
4798 shared object file being produced. */
4800 /* The place (section offset or address) of the storage unit being
4803 /* The value of GP used to create the relocatable object. */
4805 /* The offset into the global offset table at which the address of
4806 the relocation entry symbol, adjusted by the addend, resides
4807 during execution. */
4808 bfd_vma g
= MINUS_ONE
;
4809 /* The section in which the symbol referenced by the relocation is
4811 asection
*sec
= NULL
;
4812 struct mips_elf_link_hash_entry
*h
= NULL
;
4813 /* TRUE if the symbol referred to by this relocation is a local
4815 bfd_boolean local_p
, was_local_p
;
4816 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4817 bfd_boolean gp_disp_p
= FALSE
;
4818 /* TRUE if the symbol referred to by this relocation is
4819 "__gnu_local_gp". */
4820 bfd_boolean gnu_local_gp_p
= FALSE
;
4821 Elf_Internal_Shdr
*symtab_hdr
;
4823 unsigned long r_symndx
;
4825 /* TRUE if overflow occurred during the calculation of the
4826 relocation value. */
4827 bfd_boolean overflowed_p
;
4828 /* TRUE if this relocation refers to a MIPS16 function. */
4829 bfd_boolean target_is_16_bit_code_p
= FALSE
;
4830 struct mips_elf_link_hash_table
*htab
;
4833 dynobj
= elf_hash_table (info
)->dynobj
;
4834 htab
= mips_elf_hash_table (info
);
4836 /* Parse the relocation. */
4837 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4838 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4839 p
= (input_section
->output_section
->vma
4840 + input_section
->output_offset
4841 + relocation
->r_offset
);
4843 /* Assume that there will be no overflow. */
4844 overflowed_p
= FALSE
;
4846 /* Figure out whether or not the symbol is local, and get the offset
4847 used in the array of hash table entries. */
4848 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4849 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4850 local_sections
, FALSE
);
4851 was_local_p
= local_p
;
4852 if (! elf_bad_symtab (input_bfd
))
4853 extsymoff
= symtab_hdr
->sh_info
;
4856 /* The symbol table does not follow the rule that local symbols
4857 must come before globals. */
4861 /* Figure out the value of the symbol. */
4864 Elf_Internal_Sym
*sym
;
4866 sym
= local_syms
+ r_symndx
;
4867 sec
= local_sections
[r_symndx
];
4869 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4870 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
4871 || (sec
->flags
& SEC_MERGE
))
4872 symbol
+= sym
->st_value
;
4873 if ((sec
->flags
& SEC_MERGE
)
4874 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
4876 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
4878 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
4881 /* MIPS16 text labels should be treated as odd. */
4882 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
4885 /* Record the name of this symbol, for our caller. */
4886 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
4887 symtab_hdr
->sh_link
,
4890 *namep
= bfd_section_name (input_bfd
, sec
);
4892 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
4896 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4898 /* For global symbols we look up the symbol in the hash-table. */
4899 h
= ((struct mips_elf_link_hash_entry
*)
4900 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
4901 /* Find the real hash-table entry for this symbol. */
4902 while (h
->root
.root
.type
== bfd_link_hash_indirect
4903 || h
->root
.root
.type
== bfd_link_hash_warning
)
4904 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4906 /* Record the name of this symbol, for our caller. */
4907 *namep
= h
->root
.root
.root
.string
;
4909 /* See if this is the special _gp_disp symbol. Note that such a
4910 symbol must always be a global symbol. */
4911 if (strcmp (*namep
, "_gp_disp") == 0
4912 && ! NEWABI_P (input_bfd
))
4914 /* Relocations against _gp_disp are permitted only with
4915 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4916 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
4917 return bfd_reloc_notsupported
;
4921 /* See if this is the special _gp symbol. Note that such a
4922 symbol must always be a global symbol. */
4923 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
4924 gnu_local_gp_p
= TRUE
;
4927 /* If this symbol is defined, calculate its address. Note that
4928 _gp_disp is a magic symbol, always implicitly defined by the
4929 linker, so it's inappropriate to check to see whether or not
4931 else if ((h
->root
.root
.type
== bfd_link_hash_defined
4932 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4933 && h
->root
.root
.u
.def
.section
)
4935 sec
= h
->root
.root
.u
.def
.section
;
4936 if (sec
->output_section
)
4937 symbol
= (h
->root
.root
.u
.def
.value
4938 + sec
->output_section
->vma
4939 + sec
->output_offset
);
4941 symbol
= h
->root
.root
.u
.def
.value
;
4943 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
4944 /* We allow relocations against undefined weak symbols, giving
4945 it the value zero, so that you can undefined weak functions
4946 and check to see if they exist by looking at their
4949 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
4950 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
4952 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
4953 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4955 /* If this is a dynamic link, we should have created a
4956 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4957 in in _bfd_mips_elf_create_dynamic_sections.
4958 Otherwise, we should define the symbol with a value of 0.
4959 FIXME: It should probably get into the symbol table
4961 BFD_ASSERT (! info
->shared
);
4962 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
4965 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
4967 /* This is an optional symbol - an Irix specific extension to the
4968 ELF spec. Ignore it for now.
4969 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4970 than simply ignoring them, but we do not handle this for now.
4971 For information see the "64-bit ELF Object File Specification"
4972 which is available from here:
4973 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4978 if (! ((*info
->callbacks
->undefined_symbol
)
4979 (info
, h
->root
.root
.root
.string
, input_bfd
,
4980 input_section
, relocation
->r_offset
,
4981 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
4982 || ELF_ST_VISIBILITY (h
->root
.other
))))
4983 return bfd_reloc_undefined
;
4987 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
4990 /* If this is a reference to a 16-bit function with a stub, we need
4991 to redirect the relocation to the stub unless:
4993 (a) the relocation is for a MIPS16 JAL;
4995 (b) the relocation is for a MIPS16 PIC call, and there are no
4996 non-MIPS16 uses of the GOT slot; or
4998 (c) the section allows direct references to MIPS16 functions. */
4999 if (r_type
!= R_MIPS16_26
5000 && !info
->relocatable
5002 && h
->fn_stub
!= NULL
5003 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5005 && elf_tdata (input_bfd
)->local_stubs
!= NULL
5006 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5007 && !section_allows_mips16_refs_p (input_section
))
5009 /* This is a 32- or 64-bit call to a 16-bit function. We should
5010 have already noticed that we were going to need the
5013 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5016 BFD_ASSERT (h
->need_fn_stub
);
5020 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5021 /* The target is 16-bit, but the stub isn't. */
5022 target_is_16_bit_code_p
= FALSE
;
5024 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5025 need to redirect the call to the stub. Note that we specifically
5026 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5027 use an indirect stub instead. */
5028 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
5029 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5031 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5032 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5033 && !target_is_16_bit_code_p
)
5036 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5039 /* If both call_stub and call_fp_stub are defined, we can figure
5040 out which one to use by checking which one appears in the input
5042 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5047 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5049 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
5051 sec
= h
->call_fp_stub
;
5058 else if (h
->call_stub
!= NULL
)
5061 sec
= h
->call_fp_stub
;
5064 BFD_ASSERT (sec
->size
> 0);
5065 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5067 /* If this is a direct call to a PIC function, redirect to the
5069 else if (h
!= NULL
&& h
->la25_stub
5070 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
))
5071 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5072 + h
->la25_stub
->stub_section
->output_offset
5073 + h
->la25_stub
->offset
);
5075 /* Calls from 16-bit code to 32-bit code and vice versa require the
5076 special jalx instruction. */
5077 *require_jalxp
= (!info
->relocatable
5078 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
5079 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
5081 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5082 local_sections
, TRUE
);
5084 gp0
= _bfd_get_gp_value (input_bfd
);
5085 gp
= _bfd_get_gp_value (abfd
);
5087 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5092 /* If we haven't already determined the GOT offset, oand we're going
5093 to need it, get it now. */
5096 case R_MIPS_GOT_PAGE
:
5097 case R_MIPS_GOT_OFST
:
5098 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5100 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
5101 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
5105 case R_MIPS16_CALL16
:
5106 case R_MIPS16_GOT16
:
5109 case R_MIPS_GOT_DISP
:
5110 case R_MIPS_GOT_HI16
:
5111 case R_MIPS_CALL_HI16
:
5112 case R_MIPS_GOT_LO16
:
5113 case R_MIPS_CALL_LO16
:
5115 case R_MIPS_TLS_GOTTPREL
:
5116 case R_MIPS_TLS_LDM
:
5117 /* Find the index into the GOT where this value is located. */
5118 if (r_type
== R_MIPS_TLS_LDM
)
5120 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5121 0, 0, NULL
, r_type
);
5123 return bfd_reloc_outofrange
;
5127 /* On VxWorks, CALL relocations should refer to the .got.plt
5128 entry, which is initialized to point at the PLT stub. */
5129 if (htab
->is_vxworks
5130 && (r_type
== R_MIPS_CALL_HI16
5131 || r_type
== R_MIPS_CALL_LO16
5132 || call16_reloc_p (r_type
)))
5134 BFD_ASSERT (addend
== 0);
5135 BFD_ASSERT (h
->root
.needs_plt
);
5136 g
= mips_elf_gotplt_index (info
, &h
->root
);
5140 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5141 GOT_PAGE relocation that decays to GOT_DISP because the
5142 symbol turns out to be global. The addend is then added
5144 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
5145 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
5146 &h
->root
, r_type
, info
);
5147 if (h
->tls_type
== GOT_NORMAL
5148 && (! elf_hash_table(info
)->dynamic_sections_created
5150 && (info
->symbolic
|| h
->root
.forced_local
)
5151 && h
->root
.def_regular
)))
5152 /* This is a static link or a -Bsymbolic link. The
5153 symbol is defined locally, or was forced to be local.
5154 We must initialize this entry in the GOT. */
5155 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->sgot
->contents
+ g
);
5158 else if (!htab
->is_vxworks
5159 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5160 /* The calculation below does not involve "g". */
5164 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5165 symbol
+ addend
, r_symndx
, h
, r_type
);
5167 return bfd_reloc_outofrange
;
5170 /* Convert GOT indices to actual offsets. */
5171 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5175 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5176 symbols are resolved by the loader. Add them to .rela.dyn. */
5177 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5179 Elf_Internal_Rela outrel
;
5183 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5184 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5186 outrel
.r_offset
= (input_section
->output_section
->vma
5187 + input_section
->output_offset
5188 + relocation
->r_offset
);
5189 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5190 outrel
.r_addend
= addend
;
5191 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5193 /* If we've written this relocation for a readonly section,
5194 we need to set DF_TEXTREL again, so that we do not delete the
5196 if (MIPS_ELF_READONLY_SECTION (input_section
))
5197 info
->flags
|= DF_TEXTREL
;
5200 return bfd_reloc_ok
;
5203 /* Figure out what kind of relocation is being performed. */
5207 return bfd_reloc_continue
;
5210 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
5211 overflowed_p
= mips_elf_overflow_p (value
, 16);
5218 || (htab
->root
.dynamic_sections_created
5220 && h
->root
.def_dynamic
5221 && !h
->root
.def_regular
5222 && !h
->has_static_relocs
))
5225 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5226 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5227 && (input_section
->flags
& SEC_ALLOC
) != 0)
5229 /* If we're creating a shared library, then we can't know
5230 where the symbol will end up. So, we create a relocation
5231 record in the output, and leave the job up to the dynamic
5232 linker. We must do the same for executable references to
5233 shared library symbols, unless we've decided to use copy
5234 relocs or PLTs instead. */
5236 if (!mips_elf_create_dynamic_relocation (abfd
,
5244 return bfd_reloc_undefined
;
5248 if (r_type
!= R_MIPS_REL32
)
5249 value
= symbol
+ addend
;
5253 value
&= howto
->dst_mask
;
5257 value
= symbol
+ addend
- p
;
5258 value
&= howto
->dst_mask
;
5262 /* The calculation for R_MIPS16_26 is just the same as for an
5263 R_MIPS_26. It's only the storage of the relocated field into
5264 the output file that's different. That's handled in
5265 mips_elf_perform_relocation. So, we just fall through to the
5266 R_MIPS_26 case here. */
5269 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
5272 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
5273 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5274 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
5276 value
&= howto
->dst_mask
;
5279 case R_MIPS_TLS_DTPREL_HI16
:
5280 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
5284 case R_MIPS_TLS_DTPREL_LO16
:
5285 case R_MIPS_TLS_DTPREL32
:
5286 case R_MIPS_TLS_DTPREL64
:
5287 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
5290 case R_MIPS_TLS_TPREL_HI16
:
5291 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
5295 case R_MIPS_TLS_TPREL_LO16
:
5296 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
5303 value
= mips_elf_high (addend
+ symbol
);
5304 value
&= howto
->dst_mask
;
5308 /* For MIPS16 ABI code we generate this sequence
5309 0: li $v0,%hi(_gp_disp)
5310 4: addiupc $v1,%lo(_gp_disp)
5314 So the offsets of hi and lo relocs are the same, but the
5315 $pc is four higher than $t9 would be, so reduce
5316 both reloc addends by 4. */
5317 if (r_type
== R_MIPS16_HI16
)
5318 value
= mips_elf_high (addend
+ gp
- p
- 4);
5320 value
= mips_elf_high (addend
+ gp
- p
);
5321 overflowed_p
= mips_elf_overflow_p (value
, 16);
5328 value
= (symbol
+ addend
) & howto
->dst_mask
;
5331 /* See the comment for R_MIPS16_HI16 above for the reason
5332 for this conditional. */
5333 if (r_type
== R_MIPS16_LO16
)
5334 value
= addend
+ gp
- p
;
5336 value
= addend
+ gp
- p
+ 4;
5337 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5338 for overflow. But, on, say, IRIX5, relocations against
5339 _gp_disp are normally generated from the .cpload
5340 pseudo-op. It generates code that normally looks like
5343 lui $gp,%hi(_gp_disp)
5344 addiu $gp,$gp,%lo(_gp_disp)
5347 Here $t9 holds the address of the function being called,
5348 as required by the MIPS ELF ABI. The R_MIPS_LO16
5349 relocation can easily overflow in this situation, but the
5350 R_MIPS_HI16 relocation will handle the overflow.
5351 Therefore, we consider this a bug in the MIPS ABI, and do
5352 not check for overflow here. */
5356 case R_MIPS_LITERAL
:
5357 /* Because we don't merge literal sections, we can handle this
5358 just like R_MIPS_GPREL16. In the long run, we should merge
5359 shared literals, and then we will need to additional work
5364 case R_MIPS16_GPREL
:
5365 /* The R_MIPS16_GPREL performs the same calculation as
5366 R_MIPS_GPREL16, but stores the relocated bits in a different
5367 order. We don't need to do anything special here; the
5368 differences are handled in mips_elf_perform_relocation. */
5369 case R_MIPS_GPREL16
:
5370 /* Only sign-extend the addend if it was extracted from the
5371 instruction. If the addend was separate, leave it alone,
5372 otherwise we may lose significant bits. */
5373 if (howto
->partial_inplace
)
5374 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5375 value
= symbol
+ addend
- gp
;
5376 /* If the symbol was local, any earlier relocatable links will
5377 have adjusted its addend with the gp offset, so compensate
5378 for that now. Don't do it for symbols forced local in this
5379 link, though, since they won't have had the gp offset applied
5383 overflowed_p
= mips_elf_overflow_p (value
, 16);
5386 case R_MIPS16_GOT16
:
5387 case R_MIPS16_CALL16
:
5390 /* VxWorks does not have separate local and global semantics for
5391 R_MIPS*_GOT16; every relocation evaluates to "G". */
5392 if (!htab
->is_vxworks
&& local_p
)
5396 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
5397 local_sections
, FALSE
);
5398 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
5399 symbol
+ addend
, forced
);
5400 if (value
== MINUS_ONE
)
5401 return bfd_reloc_outofrange
;
5403 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5404 overflowed_p
= mips_elf_overflow_p (value
, 16);
5411 case R_MIPS_TLS_GOTTPREL
:
5412 case R_MIPS_TLS_LDM
:
5413 case R_MIPS_GOT_DISP
:
5416 overflowed_p
= mips_elf_overflow_p (value
, 16);
5419 case R_MIPS_GPREL32
:
5420 value
= (addend
+ symbol
+ gp0
- gp
);
5422 value
&= howto
->dst_mask
;
5426 case R_MIPS_GNU_REL16_S2
:
5427 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
5428 overflowed_p
= mips_elf_overflow_p (value
, 18);
5429 value
>>= howto
->rightshift
;
5430 value
&= howto
->dst_mask
;
5433 case R_MIPS_GOT_HI16
:
5434 case R_MIPS_CALL_HI16
:
5435 /* We're allowed to handle these two relocations identically.
5436 The dynamic linker is allowed to handle the CALL relocations
5437 differently by creating a lazy evaluation stub. */
5439 value
= mips_elf_high (value
);
5440 value
&= howto
->dst_mask
;
5443 case R_MIPS_GOT_LO16
:
5444 case R_MIPS_CALL_LO16
:
5445 value
= g
& howto
->dst_mask
;
5448 case R_MIPS_GOT_PAGE
:
5449 /* GOT_PAGE relocations that reference non-local symbols decay
5450 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5454 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
5455 if (value
== MINUS_ONE
)
5456 return bfd_reloc_outofrange
;
5457 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5458 overflowed_p
= mips_elf_overflow_p (value
, 16);
5461 case R_MIPS_GOT_OFST
:
5463 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
5466 overflowed_p
= mips_elf_overflow_p (value
, 16);
5470 value
= symbol
- addend
;
5471 value
&= howto
->dst_mask
;
5475 value
= mips_elf_higher (addend
+ symbol
);
5476 value
&= howto
->dst_mask
;
5479 case R_MIPS_HIGHEST
:
5480 value
= mips_elf_highest (addend
+ symbol
);
5481 value
&= howto
->dst_mask
;
5484 case R_MIPS_SCN_DISP
:
5485 value
= symbol
+ addend
- sec
->output_offset
;
5486 value
&= howto
->dst_mask
;
5490 /* This relocation is only a hint. In some cases, we optimize
5491 it into a bal instruction. But we don't try to optimize
5492 when the symbol does not resolve locally. */
5493 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
5494 return bfd_reloc_continue
;
5495 value
= symbol
+ addend
;
5499 case R_MIPS_GNU_VTINHERIT
:
5500 case R_MIPS_GNU_VTENTRY
:
5501 /* We don't do anything with these at present. */
5502 return bfd_reloc_continue
;
5505 /* An unrecognized relocation type. */
5506 return bfd_reloc_notsupported
;
5509 /* Store the VALUE for our caller. */
5511 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
5514 /* Obtain the field relocated by RELOCATION. */
5517 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5518 const Elf_Internal_Rela
*relocation
,
5519 bfd
*input_bfd
, bfd_byte
*contents
)
5522 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5524 /* Obtain the bytes. */
5525 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
5530 /* It has been determined that the result of the RELOCATION is the
5531 VALUE. Use HOWTO to place VALUE into the output file at the
5532 appropriate position. The SECTION is the section to which the
5533 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5534 for the relocation must be either JAL or JALX, and it is
5535 unconditionally converted to JALX.
5537 Returns FALSE if anything goes wrong. */
5540 mips_elf_perform_relocation (struct bfd_link_info
*info
,
5541 reloc_howto_type
*howto
,
5542 const Elf_Internal_Rela
*relocation
,
5543 bfd_vma value
, bfd
*input_bfd
,
5544 asection
*input_section
, bfd_byte
*contents
,
5545 bfd_boolean require_jalx
)
5549 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5551 /* Figure out where the relocation is occurring. */
5552 location
= contents
+ relocation
->r_offset
;
5554 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5556 /* Obtain the current value. */
5557 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5559 /* Clear the field we are setting. */
5560 x
&= ~howto
->dst_mask
;
5562 /* Set the field. */
5563 x
|= (value
& howto
->dst_mask
);
5565 /* If required, turn JAL into JALX. */
5569 bfd_vma opcode
= x
>> 26;
5570 bfd_vma jalx_opcode
;
5572 /* Check to see if the opcode is already JAL or JALX. */
5573 if (r_type
== R_MIPS16_26
)
5575 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
5580 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
5584 /* If the opcode is not JAL or JALX, there's a problem. */
5587 (*_bfd_error_handler
)
5588 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5591 (unsigned long) relocation
->r_offset
);
5592 bfd_set_error (bfd_error_bad_value
);
5596 /* Make this the JALX opcode. */
5597 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
5600 /* Try converting JAL and JALR to BAL, if the target is in range. */
5601 if (!info
->relocatable
5603 && ((JAL_TO_BAL_P (input_bfd
)
5604 && r_type
== R_MIPS_26
5605 && (x
>> 26) == 0x3) /* jal addr */
5606 || (JALR_TO_BAL_P (input_bfd
)
5607 && r_type
== R_MIPS_JALR
5608 && x
== 0x0320f809))) /* jalr t9 */
5614 addr
= (input_section
->output_section
->vma
5615 + input_section
->output_offset
5616 + relocation
->r_offset
5618 if (r_type
== R_MIPS_26
)
5619 dest
= (value
<< 2) | ((addr
>> 28) << 28);
5623 if (off
<= 0x1ffff && off
>= -0x20000)
5624 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
5627 /* Put the value into the output. */
5628 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
5630 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
5636 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5637 is the original relocation, which is now being transformed into a
5638 dynamic relocation. The ADDENDP is adjusted if necessary; the
5639 caller should store the result in place of the original addend. */
5642 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
5643 struct bfd_link_info
*info
,
5644 const Elf_Internal_Rela
*rel
,
5645 struct mips_elf_link_hash_entry
*h
,
5646 asection
*sec
, bfd_vma symbol
,
5647 bfd_vma
*addendp
, asection
*input_section
)
5649 Elf_Internal_Rela outrel
[3];
5654 bfd_boolean defined_p
;
5655 struct mips_elf_link_hash_table
*htab
;
5657 htab
= mips_elf_hash_table (info
);
5658 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
5659 dynobj
= elf_hash_table (info
)->dynobj
;
5660 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
5661 BFD_ASSERT (sreloc
!= NULL
);
5662 BFD_ASSERT (sreloc
->contents
!= NULL
);
5663 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
5666 outrel
[0].r_offset
=
5667 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
5668 if (ABI_64_P (output_bfd
))
5670 outrel
[1].r_offset
=
5671 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
5672 outrel
[2].r_offset
=
5673 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
5676 if (outrel
[0].r_offset
== MINUS_ONE
)
5677 /* The relocation field has been deleted. */
5680 if (outrel
[0].r_offset
== MINUS_TWO
)
5682 /* The relocation field has been converted into a relative value of
5683 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5684 the field to be fully relocated, so add in the symbol's value. */
5689 /* We must now calculate the dynamic symbol table index to use
5690 in the relocation. */
5692 && (!h
->root
.def_regular
5693 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
5695 indx
= h
->root
.dynindx
;
5696 if (SGI_COMPAT (output_bfd
))
5697 defined_p
= h
->root
.def_regular
;
5699 /* ??? glibc's ld.so just adds the final GOT entry to the
5700 relocation field. It therefore treats relocs against
5701 defined symbols in the same way as relocs against
5702 undefined symbols. */
5707 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
5709 else if (sec
== NULL
|| sec
->owner
== NULL
)
5711 bfd_set_error (bfd_error_bad_value
);
5716 indx
= elf_section_data (sec
->output_section
)->dynindx
;
5719 asection
*osec
= htab
->root
.text_index_section
;
5720 indx
= elf_section_data (osec
)->dynindx
;
5726 /* Instead of generating a relocation using the section
5727 symbol, we may as well make it a fully relative
5728 relocation. We want to avoid generating relocations to
5729 local symbols because we used to generate them
5730 incorrectly, without adding the original symbol value,
5731 which is mandated by the ABI for section symbols. In
5732 order to give dynamic loaders and applications time to
5733 phase out the incorrect use, we refrain from emitting
5734 section-relative relocations. It's not like they're
5735 useful, after all. This should be a bit more efficient
5737 /* ??? Although this behavior is compatible with glibc's ld.so,
5738 the ABI says that relocations against STN_UNDEF should have
5739 a symbol value of 0. Irix rld honors this, so relocations
5740 against STN_UNDEF have no effect. */
5741 if (!SGI_COMPAT (output_bfd
))
5746 /* If the relocation was previously an absolute relocation and
5747 this symbol will not be referred to by the relocation, we must
5748 adjust it by the value we give it in the dynamic symbol table.
5749 Otherwise leave the job up to the dynamic linker. */
5750 if (defined_p
&& r_type
!= R_MIPS_REL32
)
5753 if (htab
->is_vxworks
)
5754 /* VxWorks uses non-relative relocations for this. */
5755 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
5757 /* The relocation is always an REL32 relocation because we don't
5758 know where the shared library will wind up at load-time. */
5759 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
5762 /* For strict adherence to the ABI specification, we should
5763 generate a R_MIPS_64 relocation record by itself before the
5764 _REL32/_64 record as well, such that the addend is read in as
5765 a 64-bit value (REL32 is a 32-bit relocation, after all).
5766 However, since none of the existing ELF64 MIPS dynamic
5767 loaders seems to care, we don't waste space with these
5768 artificial relocations. If this turns out to not be true,
5769 mips_elf_allocate_dynamic_relocation() should be tweaked so
5770 as to make room for a pair of dynamic relocations per
5771 invocation if ABI_64_P, and here we should generate an
5772 additional relocation record with R_MIPS_64 by itself for a
5773 NULL symbol before this relocation record. */
5774 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
5775 ABI_64_P (output_bfd
)
5778 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
5780 /* Adjust the output offset of the relocation to reference the
5781 correct location in the output file. */
5782 outrel
[0].r_offset
+= (input_section
->output_section
->vma
5783 + input_section
->output_offset
);
5784 outrel
[1].r_offset
+= (input_section
->output_section
->vma
5785 + input_section
->output_offset
);
5786 outrel
[2].r_offset
+= (input_section
->output_section
->vma
5787 + input_section
->output_offset
);
5789 /* Put the relocation back out. We have to use the special
5790 relocation outputter in the 64-bit case since the 64-bit
5791 relocation format is non-standard. */
5792 if (ABI_64_P (output_bfd
))
5794 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
5795 (output_bfd
, &outrel
[0],
5797 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
5799 else if (htab
->is_vxworks
)
5801 /* VxWorks uses RELA rather than REL dynamic relocations. */
5802 outrel
[0].r_addend
= *addendp
;
5803 bfd_elf32_swap_reloca_out
5804 (output_bfd
, &outrel
[0],
5806 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
5809 bfd_elf32_swap_reloc_out
5810 (output_bfd
, &outrel
[0],
5811 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
5813 /* We've now added another relocation. */
5814 ++sreloc
->reloc_count
;
5816 /* Make sure the output section is writable. The dynamic linker
5817 will be writing to it. */
5818 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
5821 /* On IRIX5, make an entry of compact relocation info. */
5822 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
5824 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5829 Elf32_crinfo cptrel
;
5831 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
5832 cptrel
.vaddr
= (rel
->r_offset
5833 + input_section
->output_section
->vma
5834 + input_section
->output_offset
);
5835 if (r_type
== R_MIPS_REL32
)
5836 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
5838 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
5839 mips_elf_set_cr_dist2to (cptrel
, 0);
5840 cptrel
.konst
= *addendp
;
5842 cr
= (scpt
->contents
5843 + sizeof (Elf32_External_compact_rel
));
5844 mips_elf_set_cr_relvaddr (cptrel
, 0);
5845 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
5846 ((Elf32_External_crinfo
*) cr
5847 + scpt
->reloc_count
));
5848 ++scpt
->reloc_count
;
5852 /* If we've written this relocation for a readonly section,
5853 we need to set DF_TEXTREL again, so that we do not delete the
5855 if (MIPS_ELF_READONLY_SECTION (input_section
))
5856 info
->flags
|= DF_TEXTREL
;
5861 /* Return the MACH for a MIPS e_flags value. */
5864 _bfd_elf_mips_mach (flagword flags
)
5866 switch (flags
& EF_MIPS_MACH
)
5868 case E_MIPS_MACH_3900
:
5869 return bfd_mach_mips3900
;
5871 case E_MIPS_MACH_4010
:
5872 return bfd_mach_mips4010
;
5874 case E_MIPS_MACH_4100
:
5875 return bfd_mach_mips4100
;
5877 case E_MIPS_MACH_4111
:
5878 return bfd_mach_mips4111
;
5880 case E_MIPS_MACH_4120
:
5881 return bfd_mach_mips4120
;
5883 case E_MIPS_MACH_4650
:
5884 return bfd_mach_mips4650
;
5886 case E_MIPS_MACH_5400
:
5887 return bfd_mach_mips5400
;
5889 case E_MIPS_MACH_5500
:
5890 return bfd_mach_mips5500
;
5892 case E_MIPS_MACH_9000
:
5893 return bfd_mach_mips9000
;
5895 case E_MIPS_MACH_SB1
:
5896 return bfd_mach_mips_sb1
;
5898 case E_MIPS_MACH_LS2E
:
5899 return bfd_mach_mips_loongson_2e
;
5901 case E_MIPS_MACH_LS2F
:
5902 return bfd_mach_mips_loongson_2f
;
5904 case E_MIPS_MACH_OCTEON
:
5905 return bfd_mach_mips_octeon
;
5907 case E_MIPS_MACH_XLR
:
5908 return bfd_mach_mips_xlr
;
5911 switch (flags
& EF_MIPS_ARCH
)
5915 return bfd_mach_mips3000
;
5918 return bfd_mach_mips6000
;
5921 return bfd_mach_mips4000
;
5924 return bfd_mach_mips8000
;
5927 return bfd_mach_mips5
;
5929 case E_MIPS_ARCH_32
:
5930 return bfd_mach_mipsisa32
;
5932 case E_MIPS_ARCH_64
:
5933 return bfd_mach_mipsisa64
;
5935 case E_MIPS_ARCH_32R2
:
5936 return bfd_mach_mipsisa32r2
;
5938 case E_MIPS_ARCH_64R2
:
5939 return bfd_mach_mipsisa64r2
;
5946 /* Return printable name for ABI. */
5948 static INLINE
char *
5949 elf_mips_abi_name (bfd
*abfd
)
5953 flags
= elf_elfheader (abfd
)->e_flags
;
5954 switch (flags
& EF_MIPS_ABI
)
5957 if (ABI_N32_P (abfd
))
5959 else if (ABI_64_P (abfd
))
5963 case E_MIPS_ABI_O32
:
5965 case E_MIPS_ABI_O64
:
5967 case E_MIPS_ABI_EABI32
:
5969 case E_MIPS_ABI_EABI64
:
5972 return "unknown abi";
5976 /* MIPS ELF uses two common sections. One is the usual one, and the
5977 other is for small objects. All the small objects are kept
5978 together, and then referenced via the gp pointer, which yields
5979 faster assembler code. This is what we use for the small common
5980 section. This approach is copied from ecoff.c. */
5981 static asection mips_elf_scom_section
;
5982 static asymbol mips_elf_scom_symbol
;
5983 static asymbol
*mips_elf_scom_symbol_ptr
;
5985 /* MIPS ELF also uses an acommon section, which represents an
5986 allocated common symbol which may be overridden by a
5987 definition in a shared library. */
5988 static asection mips_elf_acom_section
;
5989 static asymbol mips_elf_acom_symbol
;
5990 static asymbol
*mips_elf_acom_symbol_ptr
;
5992 /* This is used for both the 32-bit and the 64-bit ABI. */
5995 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
5997 elf_symbol_type
*elfsym
;
5999 /* Handle the special MIPS section numbers that a symbol may use. */
6000 elfsym
= (elf_symbol_type
*) asym
;
6001 switch (elfsym
->internal_elf_sym
.st_shndx
)
6003 case SHN_MIPS_ACOMMON
:
6004 /* This section is used in a dynamically linked executable file.
6005 It is an allocated common section. The dynamic linker can
6006 either resolve these symbols to something in a shared
6007 library, or it can just leave them here. For our purposes,
6008 we can consider these symbols to be in a new section. */
6009 if (mips_elf_acom_section
.name
== NULL
)
6011 /* Initialize the acommon section. */
6012 mips_elf_acom_section
.name
= ".acommon";
6013 mips_elf_acom_section
.flags
= SEC_ALLOC
;
6014 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
6015 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
6016 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
6017 mips_elf_acom_symbol
.name
= ".acommon";
6018 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
6019 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
6020 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
6022 asym
->section
= &mips_elf_acom_section
;
6026 /* Common symbols less than the GP size are automatically
6027 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6028 if (asym
->value
> elf_gp_size (abfd
)
6029 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
6030 || IRIX_COMPAT (abfd
) == ict_irix6
)
6033 case SHN_MIPS_SCOMMON
:
6034 if (mips_elf_scom_section
.name
== NULL
)
6036 /* Initialize the small common section. */
6037 mips_elf_scom_section
.name
= ".scommon";
6038 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
6039 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
6040 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
6041 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
6042 mips_elf_scom_symbol
.name
= ".scommon";
6043 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
6044 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
6045 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
6047 asym
->section
= &mips_elf_scom_section
;
6048 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
6051 case SHN_MIPS_SUNDEFINED
:
6052 asym
->section
= bfd_und_section_ptr
;
6057 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
6059 BFD_ASSERT (SGI_COMPAT (abfd
));
6060 if (section
!= NULL
)
6062 asym
->section
= section
;
6063 /* MIPS_TEXT is a bit special, the address is not an offset
6064 to the base of the .text section. So substract the section
6065 base address to make it an offset. */
6066 asym
->value
-= section
->vma
;
6073 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
6075 BFD_ASSERT (SGI_COMPAT (abfd
));
6076 if (section
!= NULL
)
6078 asym
->section
= section
;
6079 /* MIPS_DATA is a bit special, the address is not an offset
6080 to the base of the .data section. So substract the section
6081 base address to make it an offset. */
6082 asym
->value
-= section
->vma
;
6088 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6089 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
6090 && (asym
->value
& 1) != 0)
6093 elfsym
->internal_elf_sym
.st_other
6094 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
6098 /* Implement elf_backend_eh_frame_address_size. This differs from
6099 the default in the way it handles EABI64.
6101 EABI64 was originally specified as an LP64 ABI, and that is what
6102 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6103 historically accepted the combination of -mabi=eabi and -mlong32,
6104 and this ILP32 variation has become semi-official over time.
6105 Both forms use elf32 and have pointer-sized FDE addresses.
6107 If an EABI object was generated by GCC 4.0 or above, it will have
6108 an empty .gcc_compiled_longXX section, where XX is the size of longs
6109 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6110 have no special marking to distinguish them from LP64 objects.
6112 We don't want users of the official LP64 ABI to be punished for the
6113 existence of the ILP32 variant, but at the same time, we don't want
6114 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6115 We therefore take the following approach:
6117 - If ABFD contains a .gcc_compiled_longXX section, use it to
6118 determine the pointer size.
6120 - Otherwise check the type of the first relocation. Assume that
6121 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6125 The second check is enough to detect LP64 objects generated by pre-4.0
6126 compilers because, in the kind of output generated by those compilers,
6127 the first relocation will be associated with either a CIE personality
6128 routine or an FDE start address. Furthermore, the compilers never
6129 used a special (non-pointer) encoding for this ABI.
6131 Checking the relocation type should also be safe because there is no
6132 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6136 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
6138 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
6140 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
6142 bfd_boolean long32_p
, long64_p
;
6144 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
6145 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
6146 if (long32_p
&& long64_p
)
6153 if (sec
->reloc_count
> 0
6154 && elf_section_data (sec
)->relocs
!= NULL
6155 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
6164 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6165 relocations against two unnamed section symbols to resolve to the
6166 same address. For example, if we have code like:
6168 lw $4,%got_disp(.data)($gp)
6169 lw $25,%got_disp(.text)($gp)
6172 then the linker will resolve both relocations to .data and the program
6173 will jump there rather than to .text.
6175 We can work around this problem by giving names to local section symbols.
6176 This is also what the MIPSpro tools do. */
6179 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
6181 return SGI_COMPAT (abfd
);
6184 /* Work over a section just before writing it out. This routine is
6185 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6186 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6190 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
6192 if (hdr
->sh_type
== SHT_MIPS_REGINFO
6193 && hdr
->sh_size
> 0)
6197 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
6198 BFD_ASSERT (hdr
->contents
== NULL
);
6201 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
6204 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6205 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6209 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
6210 && hdr
->bfd_section
!= NULL
6211 && mips_elf_section_data (hdr
->bfd_section
) != NULL
6212 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
6214 bfd_byte
*contents
, *l
, *lend
;
6216 /* We stored the section contents in the tdata field in the
6217 set_section_contents routine. We save the section contents
6218 so that we don't have to read them again.
6219 At this point we know that elf_gp is set, so we can look
6220 through the section contents to see if there is an
6221 ODK_REGINFO structure. */
6223 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
6225 lend
= contents
+ hdr
->sh_size
;
6226 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6228 Elf_Internal_Options intopt
;
6230 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6232 if (intopt
.size
< sizeof (Elf_External_Options
))
6234 (*_bfd_error_handler
)
6235 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6236 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6239 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6246 + sizeof (Elf_External_Options
)
6247 + (sizeof (Elf64_External_RegInfo
) - 8)),
6250 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
6251 if (bfd_bwrite (buf
, 8, abfd
) != 8)
6254 else if (intopt
.kind
== ODK_REGINFO
)
6261 + sizeof (Elf_External_Options
)
6262 + (sizeof (Elf32_External_RegInfo
) - 4)),
6265 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6266 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6273 if (hdr
->bfd_section
!= NULL
)
6275 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
6277 /* .sbss is not handled specially here because the GNU/Linux
6278 prelinker can convert .sbss from NOBITS to PROGBITS and
6279 changing it back to NOBITS breaks the binary. The entry in
6280 _bfd_mips_elf_special_sections will ensure the correct flags
6281 are set on .sbss if BFD creates it without reading it from an
6282 input file, and without special handling here the flags set
6283 on it in an input file will be followed. */
6284 if (strcmp (name
, ".sdata") == 0
6285 || strcmp (name
, ".lit8") == 0
6286 || strcmp (name
, ".lit4") == 0)
6288 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
6289 hdr
->sh_type
= SHT_PROGBITS
;
6291 else if (strcmp (name
, ".srdata") == 0)
6293 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
6294 hdr
->sh_type
= SHT_PROGBITS
;
6296 else if (strcmp (name
, ".compact_rel") == 0)
6299 hdr
->sh_type
= SHT_PROGBITS
;
6301 else if (strcmp (name
, ".rtproc") == 0)
6303 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
6305 unsigned int adjust
;
6307 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
6309 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
6317 /* Handle a MIPS specific section when reading an object file. This
6318 is called when elfcode.h finds a section with an unknown type.
6319 This routine supports both the 32-bit and 64-bit ELF ABI.
6321 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6325 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
6326 Elf_Internal_Shdr
*hdr
,
6332 /* There ought to be a place to keep ELF backend specific flags, but
6333 at the moment there isn't one. We just keep track of the
6334 sections by their name, instead. Fortunately, the ABI gives
6335 suggested names for all the MIPS specific sections, so we will
6336 probably get away with this. */
6337 switch (hdr
->sh_type
)
6339 case SHT_MIPS_LIBLIST
:
6340 if (strcmp (name
, ".liblist") != 0)
6344 if (strcmp (name
, ".msym") != 0)
6347 case SHT_MIPS_CONFLICT
:
6348 if (strcmp (name
, ".conflict") != 0)
6351 case SHT_MIPS_GPTAB
:
6352 if (! CONST_STRNEQ (name
, ".gptab."))
6355 case SHT_MIPS_UCODE
:
6356 if (strcmp (name
, ".ucode") != 0)
6359 case SHT_MIPS_DEBUG
:
6360 if (strcmp (name
, ".mdebug") != 0)
6362 flags
= SEC_DEBUGGING
;
6364 case SHT_MIPS_REGINFO
:
6365 if (strcmp (name
, ".reginfo") != 0
6366 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
6368 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
6370 case SHT_MIPS_IFACE
:
6371 if (strcmp (name
, ".MIPS.interfaces") != 0)
6374 case SHT_MIPS_CONTENT
:
6375 if (! CONST_STRNEQ (name
, ".MIPS.content"))
6378 case SHT_MIPS_OPTIONS
:
6379 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6382 case SHT_MIPS_DWARF
:
6383 if (! CONST_STRNEQ (name
, ".debug_")
6384 && ! CONST_STRNEQ (name
, ".zdebug_"))
6387 case SHT_MIPS_SYMBOL_LIB
:
6388 if (strcmp (name
, ".MIPS.symlib") != 0)
6391 case SHT_MIPS_EVENTS
:
6392 if (! CONST_STRNEQ (name
, ".MIPS.events")
6393 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
6400 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
6405 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
6406 (bfd_get_section_flags (abfd
,
6412 /* FIXME: We should record sh_info for a .gptab section. */
6414 /* For a .reginfo section, set the gp value in the tdata information
6415 from the contents of this section. We need the gp value while
6416 processing relocs, so we just get it now. The .reginfo section
6417 is not used in the 64-bit MIPS ELF ABI. */
6418 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
6420 Elf32_External_RegInfo ext
;
6423 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
6424 &ext
, 0, sizeof ext
))
6426 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
6427 elf_gp (abfd
) = s
.ri_gp_value
;
6430 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6431 set the gp value based on what we find. We may see both
6432 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6433 they should agree. */
6434 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
6436 bfd_byte
*contents
, *l
, *lend
;
6438 contents
= bfd_malloc (hdr
->sh_size
);
6439 if (contents
== NULL
)
6441 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
6448 lend
= contents
+ hdr
->sh_size
;
6449 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6451 Elf_Internal_Options intopt
;
6453 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6455 if (intopt
.size
< sizeof (Elf_External_Options
))
6457 (*_bfd_error_handler
)
6458 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6459 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6462 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6464 Elf64_Internal_RegInfo intreg
;
6466 bfd_mips_elf64_swap_reginfo_in
6468 ((Elf64_External_RegInfo
*)
6469 (l
+ sizeof (Elf_External_Options
))),
6471 elf_gp (abfd
) = intreg
.ri_gp_value
;
6473 else if (intopt
.kind
== ODK_REGINFO
)
6475 Elf32_RegInfo intreg
;
6477 bfd_mips_elf32_swap_reginfo_in
6479 ((Elf32_External_RegInfo
*)
6480 (l
+ sizeof (Elf_External_Options
))),
6482 elf_gp (abfd
) = intreg
.ri_gp_value
;
6492 /* Set the correct type for a MIPS ELF section. We do this by the
6493 section name, which is a hack, but ought to work. This routine is
6494 used by both the 32-bit and the 64-bit ABI. */
6497 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
6499 const char *name
= bfd_get_section_name (abfd
, sec
);
6501 if (strcmp (name
, ".liblist") == 0)
6503 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
6504 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
6505 /* The sh_link field is set in final_write_processing. */
6507 else if (strcmp (name
, ".conflict") == 0)
6508 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
6509 else if (CONST_STRNEQ (name
, ".gptab."))
6511 hdr
->sh_type
= SHT_MIPS_GPTAB
;
6512 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
6513 /* The sh_info field is set in final_write_processing. */
6515 else if (strcmp (name
, ".ucode") == 0)
6516 hdr
->sh_type
= SHT_MIPS_UCODE
;
6517 else if (strcmp (name
, ".mdebug") == 0)
6519 hdr
->sh_type
= SHT_MIPS_DEBUG
;
6520 /* In a shared object on IRIX 5.3, the .mdebug section has an
6521 entsize of 0. FIXME: Does this matter? */
6522 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
6523 hdr
->sh_entsize
= 0;
6525 hdr
->sh_entsize
= 1;
6527 else if (strcmp (name
, ".reginfo") == 0)
6529 hdr
->sh_type
= SHT_MIPS_REGINFO
;
6530 /* In a shared object on IRIX 5.3, the .reginfo section has an
6531 entsize of 0x18. FIXME: Does this matter? */
6532 if (SGI_COMPAT (abfd
))
6534 if ((abfd
->flags
& DYNAMIC
) != 0)
6535 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6537 hdr
->sh_entsize
= 1;
6540 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6542 else if (SGI_COMPAT (abfd
)
6543 && (strcmp (name
, ".hash") == 0
6544 || strcmp (name
, ".dynamic") == 0
6545 || strcmp (name
, ".dynstr") == 0))
6547 if (SGI_COMPAT (abfd
))
6548 hdr
->sh_entsize
= 0;
6550 /* This isn't how the IRIX6 linker behaves. */
6551 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
6554 else if (strcmp (name
, ".got") == 0
6555 || strcmp (name
, ".srdata") == 0
6556 || strcmp (name
, ".sdata") == 0
6557 || strcmp (name
, ".sbss") == 0
6558 || strcmp (name
, ".lit4") == 0
6559 || strcmp (name
, ".lit8") == 0)
6560 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
6561 else if (strcmp (name
, ".MIPS.interfaces") == 0)
6563 hdr
->sh_type
= SHT_MIPS_IFACE
;
6564 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6566 else if (CONST_STRNEQ (name
, ".MIPS.content"))
6568 hdr
->sh_type
= SHT_MIPS_CONTENT
;
6569 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6570 /* The sh_info field is set in final_write_processing. */
6572 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6574 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
6575 hdr
->sh_entsize
= 1;
6576 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6578 else if (CONST_STRNEQ (name
, ".debug_")
6579 || CONST_STRNEQ (name
, ".zdebug_"))
6581 hdr
->sh_type
= SHT_MIPS_DWARF
;
6583 /* Irix facilities such as libexc expect a single .debug_frame
6584 per executable, the system ones have NOSTRIP set and the linker
6585 doesn't merge sections with different flags so ... */
6586 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
6587 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6589 else if (strcmp (name
, ".MIPS.symlib") == 0)
6591 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
6592 /* The sh_link and sh_info fields are set in
6593 final_write_processing. */
6595 else if (CONST_STRNEQ (name
, ".MIPS.events")
6596 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
6598 hdr
->sh_type
= SHT_MIPS_EVENTS
;
6599 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6600 /* The sh_link field is set in final_write_processing. */
6602 else if (strcmp (name
, ".msym") == 0)
6604 hdr
->sh_type
= SHT_MIPS_MSYM
;
6605 hdr
->sh_flags
|= SHF_ALLOC
;
6606 hdr
->sh_entsize
= 8;
6609 /* The generic elf_fake_sections will set up REL_HDR using the default
6610 kind of relocations. We used to set up a second header for the
6611 non-default kind of relocations here, but only NewABI would use
6612 these, and the IRIX ld doesn't like resulting empty RELA sections.
6613 Thus we create those header only on demand now. */
6618 /* Given a BFD section, try to locate the corresponding ELF section
6619 index. This is used by both the 32-bit and the 64-bit ABI.
6620 Actually, it's not clear to me that the 64-bit ABI supports these,
6621 but for non-PIC objects we will certainly want support for at least
6622 the .scommon section. */
6625 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
6626 asection
*sec
, int *retval
)
6628 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
6630 *retval
= SHN_MIPS_SCOMMON
;
6633 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
6635 *retval
= SHN_MIPS_ACOMMON
;
6641 /* Hook called by the linker routine which adds symbols from an object
6642 file. We must handle the special MIPS section numbers here. */
6645 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
6646 Elf_Internal_Sym
*sym
, const char **namep
,
6647 flagword
*flagsp ATTRIBUTE_UNUSED
,
6648 asection
**secp
, bfd_vma
*valp
)
6650 if (SGI_COMPAT (abfd
)
6651 && (abfd
->flags
& DYNAMIC
) != 0
6652 && strcmp (*namep
, "_rld_new_interface") == 0)
6654 /* Skip IRIX5 rld entry name. */
6659 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6660 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6661 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6662 a magic symbol resolved by the linker, we ignore this bogus definition
6663 of _gp_disp. New ABI objects do not suffer from this problem so this
6664 is not done for them. */
6666 && (sym
->st_shndx
== SHN_ABS
)
6667 && (strcmp (*namep
, "_gp_disp") == 0))
6673 switch (sym
->st_shndx
)
6676 /* Common symbols less than the GP size are automatically
6677 treated as SHN_MIPS_SCOMMON symbols. */
6678 if (sym
->st_size
> elf_gp_size (abfd
)
6679 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
6680 || IRIX_COMPAT (abfd
) == ict_irix6
)
6683 case SHN_MIPS_SCOMMON
:
6684 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
6685 (*secp
)->flags
|= SEC_IS_COMMON
;
6686 *valp
= sym
->st_size
;
6690 /* This section is used in a shared object. */
6691 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
6693 asymbol
*elf_text_symbol
;
6694 asection
*elf_text_section
;
6695 bfd_size_type amt
= sizeof (asection
);
6697 elf_text_section
= bfd_zalloc (abfd
, amt
);
6698 if (elf_text_section
== NULL
)
6701 amt
= sizeof (asymbol
);
6702 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
6703 if (elf_text_symbol
== NULL
)
6706 /* Initialize the section. */
6708 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
6709 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
6711 elf_text_section
->symbol
= elf_text_symbol
;
6712 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
6714 elf_text_section
->name
= ".text";
6715 elf_text_section
->flags
= SEC_NO_FLAGS
;
6716 elf_text_section
->output_section
= NULL
;
6717 elf_text_section
->owner
= abfd
;
6718 elf_text_symbol
->name
= ".text";
6719 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6720 elf_text_symbol
->section
= elf_text_section
;
6722 /* This code used to do *secp = bfd_und_section_ptr if
6723 info->shared. I don't know why, and that doesn't make sense,
6724 so I took it out. */
6725 *secp
= elf_tdata (abfd
)->elf_text_section
;
6728 case SHN_MIPS_ACOMMON
:
6729 /* Fall through. XXX Can we treat this as allocated data? */
6731 /* This section is used in a shared object. */
6732 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
6734 asymbol
*elf_data_symbol
;
6735 asection
*elf_data_section
;
6736 bfd_size_type amt
= sizeof (asection
);
6738 elf_data_section
= bfd_zalloc (abfd
, amt
);
6739 if (elf_data_section
== NULL
)
6742 amt
= sizeof (asymbol
);
6743 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
6744 if (elf_data_symbol
== NULL
)
6747 /* Initialize the section. */
6749 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
6750 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
6752 elf_data_section
->symbol
= elf_data_symbol
;
6753 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
6755 elf_data_section
->name
= ".data";
6756 elf_data_section
->flags
= SEC_NO_FLAGS
;
6757 elf_data_section
->output_section
= NULL
;
6758 elf_data_section
->owner
= abfd
;
6759 elf_data_symbol
->name
= ".data";
6760 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
6761 elf_data_symbol
->section
= elf_data_section
;
6763 /* This code used to do *secp = bfd_und_section_ptr if
6764 info->shared. I don't know why, and that doesn't make sense,
6765 so I took it out. */
6766 *secp
= elf_tdata (abfd
)->elf_data_section
;
6769 case SHN_MIPS_SUNDEFINED
:
6770 *secp
= bfd_und_section_ptr
;
6774 if (SGI_COMPAT (abfd
)
6776 && info
->output_bfd
->xvec
== abfd
->xvec
6777 && strcmp (*namep
, "__rld_obj_head") == 0)
6779 struct elf_link_hash_entry
*h
;
6780 struct bfd_link_hash_entry
*bh
;
6782 /* Mark __rld_obj_head as dynamic. */
6784 if (! (_bfd_generic_link_add_one_symbol
6785 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
6786 get_elf_backend_data (abfd
)->collect
, &bh
)))
6789 h
= (struct elf_link_hash_entry
*) bh
;
6792 h
->type
= STT_OBJECT
;
6794 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6797 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
6800 /* If this is a mips16 text symbol, add 1 to the value to make it
6801 odd. This will cause something like .word SYM to come up with
6802 the right value when it is loaded into the PC. */
6803 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6809 /* This hook function is called before the linker writes out a global
6810 symbol. We mark symbols as small common if appropriate. This is
6811 also where we undo the increment of the value for a mips16 symbol. */
6814 _bfd_mips_elf_link_output_symbol_hook
6815 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
6816 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
6817 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
6819 /* If we see a common symbol, which implies a relocatable link, then
6820 if a symbol was small common in an input file, mark it as small
6821 common in the output file. */
6822 if (sym
->st_shndx
== SHN_COMMON
6823 && strcmp (input_sec
->name
, ".scommon") == 0)
6824 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
6826 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
6827 sym
->st_value
&= ~1;
6832 /* Functions for the dynamic linker. */
6834 /* Create dynamic sections when linking against a dynamic object. */
6837 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6839 struct elf_link_hash_entry
*h
;
6840 struct bfd_link_hash_entry
*bh
;
6842 register asection
*s
;
6843 const char * const *namep
;
6844 struct mips_elf_link_hash_table
*htab
;
6846 htab
= mips_elf_hash_table (info
);
6847 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
6848 | SEC_LINKER_CREATED
| SEC_READONLY
);
6850 /* The psABI requires a read-only .dynamic section, but the VxWorks
6852 if (!htab
->is_vxworks
)
6854 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6857 if (! bfd_set_section_flags (abfd
, s
, flags
))
6862 /* We need to create .got section. */
6863 if (!mips_elf_create_got_section (abfd
, info
))
6866 if (! mips_elf_rel_dyn_section (info
, TRUE
))
6869 /* Create .stub section. */
6870 s
= bfd_make_section_with_flags (abfd
,
6871 MIPS_ELF_STUB_SECTION_NAME (abfd
),
6874 || ! bfd_set_section_alignment (abfd
, s
,
6875 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6879 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
6881 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
6883 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
6884 flags
&~ (flagword
) SEC_READONLY
);
6886 || ! bfd_set_section_alignment (abfd
, s
,
6887 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6891 /* On IRIX5, we adjust add some additional symbols and change the
6892 alignments of several sections. There is no ABI documentation
6893 indicating that this is necessary on IRIX6, nor any evidence that
6894 the linker takes such action. */
6895 if (IRIX_COMPAT (abfd
) == ict_irix5
)
6897 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
6900 if (! (_bfd_generic_link_add_one_symbol
6901 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
6902 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6905 h
= (struct elf_link_hash_entry
*) bh
;
6908 h
->type
= STT_SECTION
;
6910 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6914 /* We need to create a .compact_rel section. */
6915 if (SGI_COMPAT (abfd
))
6917 if (!mips_elf_create_compact_rel_section (abfd
, info
))
6921 /* Change alignments of some sections. */
6922 s
= bfd_get_section_by_name (abfd
, ".hash");
6924 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6925 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6927 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6928 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6930 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6931 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6933 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6934 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6936 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6943 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6945 if (!(_bfd_generic_link_add_one_symbol
6946 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
6947 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6950 h
= (struct elf_link_hash_entry
*) bh
;
6953 h
->type
= STT_SECTION
;
6955 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6958 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
6960 /* __rld_map is a four byte word located in the .data section
6961 and is filled in by the rtld to contain a pointer to
6962 the _r_debug structure. Its symbol value will be set in
6963 _bfd_mips_elf_finish_dynamic_symbol. */
6964 s
= bfd_get_section_by_name (abfd
, ".rld_map");
6965 BFD_ASSERT (s
!= NULL
);
6967 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
6969 if (!(_bfd_generic_link_add_one_symbol
6970 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
6971 get_elf_backend_data (abfd
)->collect
, &bh
)))
6974 h
= (struct elf_link_hash_entry
*) bh
;
6977 h
->type
= STT_OBJECT
;
6979 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6984 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6985 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6986 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
6989 /* Cache the sections created above. */
6990 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
6991 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
6992 if (htab
->is_vxworks
)
6994 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
6995 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
6998 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
7000 || (htab
->is_vxworks
&& !htab
->srelbss
&& !info
->shared
)
7005 if (htab
->is_vxworks
)
7007 /* Do the usual VxWorks handling. */
7008 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
7011 /* Work out the PLT sizes. */
7014 htab
->plt_header_size
7015 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
7016 htab
->plt_entry_size
7017 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
7021 htab
->plt_header_size
7022 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
7023 htab
->plt_entry_size
7024 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
7027 else if (!info
->shared
)
7029 /* All variants of the plt0 entry are the same size. */
7030 htab
->plt_header_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
7031 htab
->plt_entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
7037 /* Return true if relocation REL against section SEC is a REL rather than
7038 RELA relocation. RELOCS is the first relocation in the section and
7039 ABFD is the bfd that contains SEC. */
7042 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
7043 const Elf_Internal_Rela
*relocs
,
7044 const Elf_Internal_Rela
*rel
)
7046 Elf_Internal_Shdr
*rel_hdr
;
7047 const struct elf_backend_data
*bed
;
7049 /* To determine which flavor or relocation this is, we depend on the
7050 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7051 rel_hdr
= &elf_section_data (sec
)->rel_hdr
;
7052 bed
= get_elf_backend_data (abfd
);
7053 if ((size_t) (rel
- relocs
)
7054 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7055 rel_hdr
= elf_section_data (sec
)->rel_hdr2
;
7056 return rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (abfd
);
7059 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7060 HOWTO is the relocation's howto and CONTENTS points to the contents
7061 of the section that REL is against. */
7064 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
7065 reloc_howto_type
*howto
, bfd_byte
*contents
)
7068 unsigned int r_type
;
7071 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7072 location
= contents
+ rel
->r_offset
;
7074 /* Get the addend, which is stored in the input file. */
7075 _bfd_mips16_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
7076 addend
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
7077 _bfd_mips16_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
7079 return addend
& howto
->src_mask
;
7082 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7083 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7084 and update *ADDEND with the final addend. Return true on success
7085 or false if the LO16 could not be found. RELEND is the exclusive
7086 upper bound on the relocations for REL's section. */
7089 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
7090 const Elf_Internal_Rela
*rel
,
7091 const Elf_Internal_Rela
*relend
,
7092 bfd_byte
*contents
, bfd_vma
*addend
)
7094 unsigned int r_type
, lo16_type
;
7095 const Elf_Internal_Rela
*lo16_relocation
;
7096 reloc_howto_type
*lo16_howto
;
7099 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7100 if (mips16_reloc_p (r_type
))
7101 lo16_type
= R_MIPS16_LO16
;
7103 lo16_type
= R_MIPS_LO16
;
7105 /* The combined value is the sum of the HI16 addend, left-shifted by
7106 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7107 code does a `lui' of the HI16 value, and then an `addiu' of the
7110 Scan ahead to find a matching LO16 relocation.
7112 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7113 be immediately following. However, for the IRIX6 ABI, the next
7114 relocation may be a composed relocation consisting of several
7115 relocations for the same address. In that case, the R_MIPS_LO16
7116 relocation may occur as one of these. We permit a similar
7117 extension in general, as that is useful for GCC.
7119 In some cases GCC dead code elimination removes the LO16 but keeps
7120 the corresponding HI16. This is strictly speaking a violation of
7121 the ABI but not immediately harmful. */
7122 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
7123 if (lo16_relocation
== NULL
)
7126 /* Obtain the addend kept there. */
7127 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
7128 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
7130 l
<<= lo16_howto
->rightshift
;
7131 l
= _bfd_mips_elf_sign_extend (l
, 16);
7138 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7139 store the contents in *CONTENTS on success. Assume that *CONTENTS
7140 already holds the contents if it is nonull on entry. */
7143 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
7148 /* Get cached copy if it exists. */
7149 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7151 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
7155 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
7158 /* Look through the relocs for a section during the first phase, and
7159 allocate space in the global offset table. */
7162 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
7163 asection
*sec
, const Elf_Internal_Rela
*relocs
)
7167 Elf_Internal_Shdr
*symtab_hdr
;
7168 struct elf_link_hash_entry
**sym_hashes
;
7170 const Elf_Internal_Rela
*rel
;
7171 const Elf_Internal_Rela
*rel_end
;
7173 const struct elf_backend_data
*bed
;
7174 struct mips_elf_link_hash_table
*htab
;
7177 reloc_howto_type
*howto
;
7179 if (info
->relocatable
)
7182 htab
= mips_elf_hash_table (info
);
7183 dynobj
= elf_hash_table (info
)->dynobj
;
7184 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7185 sym_hashes
= elf_sym_hashes (abfd
);
7186 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7188 bed
= get_elf_backend_data (abfd
);
7189 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7191 /* Check for the mips16 stub sections. */
7193 name
= bfd_get_section_name (abfd
, sec
);
7194 if (FN_STUB_P (name
))
7196 unsigned long r_symndx
;
7198 /* Look at the relocation information to figure out which symbol
7201 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7204 (*_bfd_error_handler
)
7205 (_("%B: Warning: cannot determine the target function for"
7206 " stub section `%s'"),
7208 bfd_set_error (bfd_error_bad_value
);
7212 if (r_symndx
< extsymoff
7213 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7217 /* This stub is for a local symbol. This stub will only be
7218 needed if there is some relocation in this BFD, other
7219 than a 16 bit function call, which refers to this symbol. */
7220 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7222 Elf_Internal_Rela
*sec_relocs
;
7223 const Elf_Internal_Rela
*r
, *rend
;
7225 /* We can ignore stub sections when looking for relocs. */
7226 if ((o
->flags
& SEC_RELOC
) == 0
7227 || o
->reloc_count
== 0
7228 || section_allows_mips16_refs_p (o
))
7232 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7234 if (sec_relocs
== NULL
)
7237 rend
= sec_relocs
+ o
->reloc_count
;
7238 for (r
= sec_relocs
; r
< rend
; r
++)
7239 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7240 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
7243 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7252 /* There is no non-call reloc for this stub, so we do
7253 not need it. Since this function is called before
7254 the linker maps input sections to output sections, we
7255 can easily discard it by setting the SEC_EXCLUDE
7257 sec
->flags
|= SEC_EXCLUDE
;
7261 /* Record this stub in an array of local symbol stubs for
7263 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7265 unsigned long symcount
;
7269 if (elf_bad_symtab (abfd
))
7270 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7272 symcount
= symtab_hdr
->sh_info
;
7273 amt
= symcount
* sizeof (asection
*);
7274 n
= bfd_zalloc (abfd
, amt
);
7277 elf_tdata (abfd
)->local_stubs
= n
;
7280 sec
->flags
|= SEC_KEEP
;
7281 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7283 /* We don't need to set mips16_stubs_seen in this case.
7284 That flag is used to see whether we need to look through
7285 the global symbol table for stubs. We don't need to set
7286 it here, because we just have a local stub. */
7290 struct mips_elf_link_hash_entry
*h
;
7292 h
= ((struct mips_elf_link_hash_entry
*)
7293 sym_hashes
[r_symndx
- extsymoff
]);
7295 while (h
->root
.root
.type
== bfd_link_hash_indirect
7296 || h
->root
.root
.type
== bfd_link_hash_warning
)
7297 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7299 /* H is the symbol this stub is for. */
7301 /* If we already have an appropriate stub for this function, we
7302 don't need another one, so we can discard this one. Since
7303 this function is called before the linker maps input sections
7304 to output sections, we can easily discard it by setting the
7305 SEC_EXCLUDE flag. */
7306 if (h
->fn_stub
!= NULL
)
7308 sec
->flags
|= SEC_EXCLUDE
;
7312 sec
->flags
|= SEC_KEEP
;
7314 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7317 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
7319 unsigned long r_symndx
;
7320 struct mips_elf_link_hash_entry
*h
;
7323 /* Look at the relocation information to figure out which symbol
7326 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7329 (*_bfd_error_handler
)
7330 (_("%B: Warning: cannot determine the target function for"
7331 " stub section `%s'"),
7333 bfd_set_error (bfd_error_bad_value
);
7337 if (r_symndx
< extsymoff
7338 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7342 /* This stub is for a local symbol. This stub will only be
7343 needed if there is some relocation (R_MIPS16_26) in this BFD
7344 that refers to this symbol. */
7345 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7347 Elf_Internal_Rela
*sec_relocs
;
7348 const Elf_Internal_Rela
*r
, *rend
;
7350 /* We can ignore stub sections when looking for relocs. */
7351 if ((o
->flags
& SEC_RELOC
) == 0
7352 || o
->reloc_count
== 0
7353 || section_allows_mips16_refs_p (o
))
7357 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7359 if (sec_relocs
== NULL
)
7362 rend
= sec_relocs
+ o
->reloc_count
;
7363 for (r
= sec_relocs
; r
< rend
; r
++)
7364 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7365 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
7368 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7377 /* There is no non-call reloc for this stub, so we do
7378 not need it. Since this function is called before
7379 the linker maps input sections to output sections, we
7380 can easily discard it by setting the SEC_EXCLUDE
7382 sec
->flags
|= SEC_EXCLUDE
;
7386 /* Record this stub in an array of local symbol call_stubs for
7388 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
7390 unsigned long symcount
;
7394 if (elf_bad_symtab (abfd
))
7395 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7397 symcount
= symtab_hdr
->sh_info
;
7398 amt
= symcount
* sizeof (asection
*);
7399 n
= bfd_zalloc (abfd
, amt
);
7402 elf_tdata (abfd
)->local_call_stubs
= n
;
7405 sec
->flags
|= SEC_KEEP
;
7406 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
7408 /* We don't need to set mips16_stubs_seen in this case.
7409 That flag is used to see whether we need to look through
7410 the global symbol table for stubs. We don't need to set
7411 it here, because we just have a local stub. */
7415 h
= ((struct mips_elf_link_hash_entry
*)
7416 sym_hashes
[r_symndx
- extsymoff
]);
7418 /* H is the symbol this stub is for. */
7420 if (CALL_FP_STUB_P (name
))
7421 loc
= &h
->call_fp_stub
;
7423 loc
= &h
->call_stub
;
7425 /* If we already have an appropriate stub for this function, we
7426 don't need another one, so we can discard this one. Since
7427 this function is called before the linker maps input sections
7428 to output sections, we can easily discard it by setting the
7429 SEC_EXCLUDE flag. */
7432 sec
->flags
|= SEC_EXCLUDE
;
7436 sec
->flags
|= SEC_KEEP
;
7438 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7444 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7446 unsigned long r_symndx
;
7447 unsigned int r_type
;
7448 struct elf_link_hash_entry
*h
;
7449 bfd_boolean can_make_dynamic_p
;
7451 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
7452 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7454 if (r_symndx
< extsymoff
)
7456 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
7458 (*_bfd_error_handler
)
7459 (_("%B: Malformed reloc detected for section %s"),
7461 bfd_set_error (bfd_error_bad_value
);
7466 h
= sym_hashes
[r_symndx
- extsymoff
];
7468 && (h
->root
.type
== bfd_link_hash_indirect
7469 || h
->root
.type
== bfd_link_hash_warning
))
7470 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7473 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7474 relocation into a dynamic one. */
7475 can_make_dynamic_p
= FALSE
;
7478 case R_MIPS16_GOT16
:
7479 case R_MIPS16_CALL16
:
7482 case R_MIPS_CALL_HI16
:
7483 case R_MIPS_CALL_LO16
:
7484 case R_MIPS_GOT_HI16
:
7485 case R_MIPS_GOT_LO16
:
7486 case R_MIPS_GOT_PAGE
:
7487 case R_MIPS_GOT_OFST
:
7488 case R_MIPS_GOT_DISP
:
7489 case R_MIPS_TLS_GOTTPREL
:
7491 case R_MIPS_TLS_LDM
:
7493 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7494 if (!mips_elf_create_got_section (dynobj
, info
))
7496 if (htab
->is_vxworks
&& !info
->shared
)
7498 (*_bfd_error_handler
)
7499 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7500 abfd
, (unsigned long) rel
->r_offset
);
7501 bfd_set_error (bfd_error_bad_value
);
7506 /* This is just a hint; it can safely be ignored. Don't set
7507 has_static_relocs for the corresponding symbol. */
7514 /* In VxWorks executables, references to external symbols
7515 must be handled using copy relocs or PLT entries; it is not
7516 possible to convert this relocation into a dynamic one.
7518 For executables that use PLTs and copy-relocs, we have a
7519 choice between converting the relocation into a dynamic
7520 one or using copy relocations or PLT entries. It is
7521 usually better to do the former, unless the relocation is
7522 against a read-only section. */
7525 && !htab
->is_vxworks
7526 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
7527 && !(!info
->nocopyreloc
7528 && !PIC_OBJECT_P (abfd
)
7529 && MIPS_ELF_READONLY_SECTION (sec
))))
7530 && (sec
->flags
& SEC_ALLOC
) != 0)
7532 can_make_dynamic_p
= TRUE
;
7534 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7540 /* Most static relocations require pointer equality, except
7543 h
->pointer_equality_needed
= TRUE
;
7550 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= TRUE
;
7556 /* Relocations against the special VxWorks __GOTT_BASE__ and
7557 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7558 room for them in .rela.dyn. */
7559 if (is_gott_symbol (info
, h
))
7563 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7567 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7568 if (MIPS_ELF_READONLY_SECTION (sec
))
7569 /* We tell the dynamic linker that there are
7570 relocations against the text segment. */
7571 info
->flags
|= DF_TEXTREL
;
7574 else if (r_type
== R_MIPS_CALL_LO16
7575 || r_type
== R_MIPS_GOT_LO16
7576 || r_type
== R_MIPS_GOT_DISP
7577 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
7579 /* We may need a local GOT entry for this relocation. We
7580 don't count R_MIPS_GOT_PAGE because we can estimate the
7581 maximum number of pages needed by looking at the size of
7582 the segment. Similar comments apply to R_MIPS*_GOT16 and
7583 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7584 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7585 R_MIPS_CALL_HI16 because these are always followed by an
7586 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7587 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7588 rel
->r_addend
, info
, 0))
7592 if (h
!= NULL
&& mips_elf_relocation_needs_la25_stub (abfd
, r_type
))
7593 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
7598 case R_MIPS16_CALL16
:
7601 (*_bfd_error_handler
)
7602 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7603 abfd
, (unsigned long) rel
->r_offset
);
7604 bfd_set_error (bfd_error_bad_value
);
7609 case R_MIPS_CALL_HI16
:
7610 case R_MIPS_CALL_LO16
:
7613 /* VxWorks call relocations point at the function's .got.plt
7614 entry, which will be allocated by adjust_dynamic_symbol.
7615 Otherwise, this symbol requires a global GOT entry. */
7616 if ((!htab
->is_vxworks
|| h
->forced_local
)
7617 && !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7620 /* We need a stub, not a plt entry for the undefined
7621 function. But we record it as if it needs plt. See
7622 _bfd_elf_adjust_dynamic_symbol. */
7628 case R_MIPS_GOT_PAGE
:
7629 /* If this is a global, overridable symbol, GOT_PAGE will
7630 decay to GOT_DISP, so we'll need a GOT entry for it. */
7633 struct mips_elf_link_hash_entry
*hmips
=
7634 (struct mips_elf_link_hash_entry
*) h
;
7636 /* This symbol is definitely not overridable. */
7637 if (hmips
->root
.def_regular
7638 && ! (info
->shared
&& ! info
->symbolic
7639 && ! hmips
->root
.forced_local
))
7644 case R_MIPS16_GOT16
:
7646 case R_MIPS_GOT_HI16
:
7647 case R_MIPS_GOT_LO16
:
7648 if (!h
|| r_type
== R_MIPS_GOT_PAGE
)
7650 /* This relocation needs (or may need, if h != NULL) a
7651 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7652 know for sure until we know whether the symbol is
7654 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
7656 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
7658 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7659 addend
= mips_elf_read_rel_addend (abfd
, rel
,
7661 if (r_type
== R_MIPS_GOT16
)
7662 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
7665 addend
<<= howto
->rightshift
;
7668 addend
= rel
->r_addend
;
7669 if (!mips_elf_record_got_page_entry (info
, abfd
, r_symndx
,
7676 case R_MIPS_GOT_DISP
:
7677 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
, 0))
7681 case R_MIPS_TLS_GOTTPREL
:
7683 info
->flags
|= DF_STATIC_TLS
;
7686 case R_MIPS_TLS_LDM
:
7687 if (r_type
== R_MIPS_TLS_LDM
)
7695 /* This symbol requires a global offset table entry, or two
7696 for TLS GD relocations. */
7698 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
7700 : r_type
== R_MIPS_TLS_LDM
7705 struct mips_elf_link_hash_entry
*hmips
=
7706 (struct mips_elf_link_hash_entry
*) h
;
7707 hmips
->tls_type
|= flag
;
7709 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
,
7715 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
7717 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7728 /* In VxWorks executables, references to external symbols
7729 are handled using copy relocs or PLT stubs, so there's
7730 no need to add a .rela.dyn entry for this relocation. */
7731 if (can_make_dynamic_p
)
7735 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7739 if (info
->shared
&& h
== NULL
)
7741 /* When creating a shared object, we must copy these
7742 reloc types into the output file as R_MIPS_REL32
7743 relocs. Make room for this reloc in .rel(a).dyn. */
7744 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7745 if (MIPS_ELF_READONLY_SECTION (sec
))
7746 /* We tell the dynamic linker that there are
7747 relocations against the text segment. */
7748 info
->flags
|= DF_TEXTREL
;
7752 struct mips_elf_link_hash_entry
*hmips
;
7754 /* For a shared object, we must copy this relocation
7755 unless the symbol turns out to be undefined and
7756 weak with non-default visibility, in which case
7757 it will be left as zero.
7759 We could elide R_MIPS_REL32 for locally binding symbols
7760 in shared libraries, but do not yet do so.
7762 For an executable, we only need to copy this
7763 reloc if the symbol is defined in a dynamic
7765 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7766 ++hmips
->possibly_dynamic_relocs
;
7767 if (MIPS_ELF_READONLY_SECTION (sec
))
7768 /* We need it to tell the dynamic linker if there
7769 are relocations against the text segment. */
7770 hmips
->readonly_reloc
= TRUE
;
7774 if (SGI_COMPAT (abfd
))
7775 mips_elf_hash_table (info
)->compact_rel_size
+=
7776 sizeof (Elf32_External_crinfo
);
7780 case R_MIPS_GPREL16
:
7781 case R_MIPS_LITERAL
:
7782 case R_MIPS_GPREL32
:
7783 if (SGI_COMPAT (abfd
))
7784 mips_elf_hash_table (info
)->compact_rel_size
+=
7785 sizeof (Elf32_External_crinfo
);
7788 /* This relocation describes the C++ object vtable hierarchy.
7789 Reconstruct it for later use during GC. */
7790 case R_MIPS_GNU_VTINHERIT
:
7791 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
7795 /* This relocation describes which C++ vtable entries are actually
7796 used. Record for later use during GC. */
7797 case R_MIPS_GNU_VTENTRY
:
7798 BFD_ASSERT (h
!= NULL
);
7800 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
7808 /* We must not create a stub for a symbol that has relocations
7809 related to taking the function's address. This doesn't apply to
7810 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7811 a normal .got entry. */
7812 if (!htab
->is_vxworks
&& h
!= NULL
)
7816 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
7818 case R_MIPS16_CALL16
:
7820 case R_MIPS_CALL_HI16
:
7821 case R_MIPS_CALL_LO16
:
7826 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7827 if there is one. We only need to handle global symbols here;
7828 we decide whether to keep or delete stubs for local symbols
7829 when processing the stub's relocations. */
7831 && !mips16_call_reloc_p (r_type
)
7832 && !section_allows_mips16_refs_p (sec
))
7834 struct mips_elf_link_hash_entry
*mh
;
7836 mh
= (struct mips_elf_link_hash_entry
*) h
;
7837 mh
->need_fn_stub
= TRUE
;
7840 /* Refuse some position-dependent relocations when creating a
7841 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7842 not PIC, but we can create dynamic relocations and the result
7843 will be fine. Also do not refuse R_MIPS_LO16, which can be
7844 combined with R_MIPS_GOT16. */
7852 case R_MIPS_HIGHEST
:
7853 /* Don't refuse a high part relocation if it's against
7854 no symbol (e.g. part of a compound relocation). */
7858 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7859 and has a special meaning. */
7860 if (!NEWABI_P (abfd
) && h
!= NULL
7861 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
7868 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
7869 (*_bfd_error_handler
)
7870 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7872 (h
) ? h
->root
.root
.string
: "a local symbol");
7873 bfd_set_error (bfd_error_bad_value
);
7885 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
7886 struct bfd_link_info
*link_info
,
7889 Elf_Internal_Rela
*internal_relocs
;
7890 Elf_Internal_Rela
*irel
, *irelend
;
7891 Elf_Internal_Shdr
*symtab_hdr
;
7892 bfd_byte
*contents
= NULL
;
7894 bfd_boolean changed_contents
= FALSE
;
7895 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
7896 Elf_Internal_Sym
*isymbuf
= NULL
;
7898 /* We are not currently changing any sizes, so only one pass. */
7901 if (link_info
->relocatable
)
7904 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
7905 link_info
->keep_memory
);
7906 if (internal_relocs
== NULL
)
7909 irelend
= internal_relocs
+ sec
->reloc_count
7910 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
7911 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7912 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7914 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
7917 bfd_signed_vma sym_offset
;
7918 unsigned int r_type
;
7919 unsigned long r_symndx
;
7921 unsigned long instruction
;
7923 /* Turn jalr into bgezal, and jr into beq, if they're marked
7924 with a JALR relocation, that indicate where they jump to.
7925 This saves some pipeline bubbles. */
7926 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
7927 if (r_type
!= R_MIPS_JALR
)
7930 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
7931 /* Compute the address of the jump target. */
7932 if (r_symndx
>= extsymoff
)
7934 struct mips_elf_link_hash_entry
*h
7935 = ((struct mips_elf_link_hash_entry
*)
7936 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
7938 while (h
->root
.root
.type
== bfd_link_hash_indirect
7939 || h
->root
.root
.type
== bfd_link_hash_warning
)
7940 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7942 /* If a symbol is undefined, or if it may be overridden,
7944 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
7945 || h
->root
.root
.type
== bfd_link_hash_defweak
)
7946 && h
->root
.root
.u
.def
.section
)
7947 || (link_info
->shared
&& ! link_info
->symbolic
7948 && !h
->root
.forced_local
))
7951 sym_sec
= h
->root
.root
.u
.def
.section
;
7952 if (sym_sec
->output_section
)
7953 symval
= (h
->root
.root
.u
.def
.value
7954 + sym_sec
->output_section
->vma
7955 + sym_sec
->output_offset
);
7957 symval
= h
->root
.root
.u
.def
.value
;
7961 Elf_Internal_Sym
*isym
;
7963 /* Read this BFD's symbols if we haven't done so already. */
7964 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
7966 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
7967 if (isymbuf
== NULL
)
7968 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
7969 symtab_hdr
->sh_info
, 0,
7971 if (isymbuf
== NULL
)
7975 isym
= isymbuf
+ r_symndx
;
7976 if (isym
->st_shndx
== SHN_UNDEF
)
7978 else if (isym
->st_shndx
== SHN_ABS
)
7979 sym_sec
= bfd_abs_section_ptr
;
7980 else if (isym
->st_shndx
== SHN_COMMON
)
7981 sym_sec
= bfd_com_section_ptr
;
7984 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
7985 symval
= isym
->st_value
7986 + sym_sec
->output_section
->vma
7987 + sym_sec
->output_offset
;
7990 /* Compute branch offset, from delay slot of the jump to the
7992 sym_offset
= (symval
+ irel
->r_addend
)
7993 - (sec_start
+ irel
->r_offset
+ 4);
7995 /* Branch offset must be properly aligned. */
7996 if ((sym_offset
& 3) != 0)
8001 /* Check that it's in range. */
8002 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
8005 /* Get the section contents if we haven't done so already. */
8006 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8009 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
8011 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8012 if ((instruction
& 0xfc1fffff) == 0x0000f809)
8013 instruction
= 0x04110000;
8014 /* If it was jr <reg>, turn it into b <target>. */
8015 else if ((instruction
& 0xfc1fffff) == 0x00000008)
8016 instruction
= 0x10000000;
8020 instruction
|= (sym_offset
& 0xffff);
8021 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
8022 changed_contents
= TRUE
;
8025 if (contents
!= NULL
8026 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8028 if (!changed_contents
&& !link_info
->keep_memory
)
8032 /* Cache the section contents for elf_link_input_bfd. */
8033 elf_section_data (sec
)->this_hdr
.contents
= contents
;
8039 if (contents
!= NULL
8040 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8045 /* Allocate space for global sym dynamic relocs. */
8048 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
8050 struct bfd_link_info
*info
= inf
;
8052 struct mips_elf_link_hash_entry
*hmips
;
8053 struct mips_elf_link_hash_table
*htab
;
8055 htab
= mips_elf_hash_table (info
);
8056 dynobj
= elf_hash_table (info
)->dynobj
;
8057 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8059 /* VxWorks executables are handled elsewhere; we only need to
8060 allocate relocations in shared objects. */
8061 if (htab
->is_vxworks
&& !info
->shared
)
8064 /* Ignore indirect and warning symbols. All relocations against
8065 such symbols will be redirected to the target symbol. */
8066 if (h
->root
.type
== bfd_link_hash_indirect
8067 || h
->root
.type
== bfd_link_hash_warning
)
8070 /* If this symbol is defined in a dynamic object, or we are creating
8071 a shared library, we will need to copy any R_MIPS_32 or
8072 R_MIPS_REL32 relocs against it into the output file. */
8073 if (! info
->relocatable
8074 && hmips
->possibly_dynamic_relocs
!= 0
8075 && (h
->root
.type
== bfd_link_hash_defweak
8079 bfd_boolean do_copy
= TRUE
;
8081 if (h
->root
.type
== bfd_link_hash_undefweak
)
8083 /* Do not copy relocations for undefined weak symbols with
8084 non-default visibility. */
8085 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
8088 /* Make sure undefined weak symbols are output as a dynamic
8090 else if (h
->dynindx
== -1 && !h
->forced_local
)
8092 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8099 /* Even though we don't directly need a GOT entry for this symbol,
8100 a symbol must have a dynamic symbol table index greater that
8101 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8102 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
8103 hmips
->global_got_area
= GGA_RELOC_ONLY
;
8105 mips_elf_allocate_dynamic_relocations
8106 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
8107 if (hmips
->readonly_reloc
)
8108 /* We tell the dynamic linker that there are relocations
8109 against the text segment. */
8110 info
->flags
|= DF_TEXTREL
;
8117 /* Adjust a symbol defined by a dynamic object and referenced by a
8118 regular object. The current definition is in some section of the
8119 dynamic object, but we're not including those sections. We have to
8120 change the definition to something the rest of the link can
8124 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
8125 struct elf_link_hash_entry
*h
)
8128 struct mips_elf_link_hash_entry
*hmips
;
8129 struct mips_elf_link_hash_table
*htab
;
8131 htab
= mips_elf_hash_table (info
);
8132 dynobj
= elf_hash_table (info
)->dynobj
;
8133 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8135 /* Make sure we know what is going on here. */
8136 BFD_ASSERT (dynobj
!= NULL
8138 || h
->u
.weakdef
!= NULL
8141 && !h
->def_regular
)));
8143 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8145 /* If there are call relocations against an externally-defined symbol,
8146 see whether we can create a MIPS lazy-binding stub for it. We can
8147 only do this if all references to the function are through call
8148 relocations, and in that case, the traditional lazy-binding stubs
8149 are much more efficient than PLT entries.
8151 Traditional stubs are only available on SVR4 psABI-based systems;
8152 VxWorks always uses PLTs instead. */
8153 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
8155 if (! elf_hash_table (info
)->dynamic_sections_created
)
8158 /* If this symbol is not defined in a regular file, then set
8159 the symbol to the stub location. This is required to make
8160 function pointers compare as equal between the normal
8161 executable and the shared library. */
8162 if (!h
->def_regular
)
8164 hmips
->needs_lazy_stub
= TRUE
;
8165 htab
->lazy_stub_count
++;
8169 /* As above, VxWorks requires PLT entries for externally-defined
8170 functions that are only accessed through call relocations.
8172 Both VxWorks and non-VxWorks targets also need PLT entries if there
8173 are static-only relocations against an externally-defined function.
8174 This can technically occur for shared libraries if there are
8175 branches to the symbol, although it is unlikely that this will be
8176 used in practice due to the short ranges involved. It can occur
8177 for any relative or absolute relocation in executables; in that
8178 case, the PLT entry becomes the function's canonical address. */
8179 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
8180 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
8181 && htab
->use_plts_and_copy_relocs
8182 && !SYMBOL_CALLS_LOCAL (info
, h
)
8183 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
8184 && h
->root
.type
== bfd_link_hash_undefweak
))
8186 /* If this is the first symbol to need a PLT entry, allocate room
8188 if (htab
->splt
->size
== 0)
8190 BFD_ASSERT (htab
->sgotplt
->size
== 0);
8192 /* If we're using the PLT additions to the psABI, each PLT
8193 entry is 16 bytes and the PLT0 entry is 32 bytes.
8194 Encourage better cache usage by aligning. We do this
8195 lazily to avoid pessimizing traditional objects. */
8196 if (!htab
->is_vxworks
8197 && !bfd_set_section_alignment (dynobj
, htab
->splt
, 5))
8200 /* Make sure that .got.plt is word-aligned. We do this lazily
8201 for the same reason as above. */
8202 if (!bfd_set_section_alignment (dynobj
, htab
->sgotplt
,
8203 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
8206 htab
->splt
->size
+= htab
->plt_header_size
;
8208 /* On non-VxWorks targets, the first two entries in .got.plt
8210 if (!htab
->is_vxworks
)
8211 htab
->sgotplt
->size
+= 2 * MIPS_ELF_GOT_SIZE (dynobj
);
8213 /* On VxWorks, also allocate room for the header's
8214 .rela.plt.unloaded entries. */
8215 if (htab
->is_vxworks
&& !info
->shared
)
8216 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
8219 /* Assign the next .plt entry to this symbol. */
8220 h
->plt
.offset
= htab
->splt
->size
;
8221 htab
->splt
->size
+= htab
->plt_entry_size
;
8223 /* If the output file has no definition of the symbol, set the
8224 symbol's value to the address of the stub. */
8225 if (!info
->shared
&& !h
->def_regular
)
8227 h
->root
.u
.def
.section
= htab
->splt
;
8228 h
->root
.u
.def
.value
= h
->plt
.offset
;
8229 /* For VxWorks, point at the PLT load stub rather than the
8230 lazy resolution stub; this stub will become the canonical
8231 function address. */
8232 if (htab
->is_vxworks
)
8233 h
->root
.u
.def
.value
+= 8;
8236 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8238 htab
->sgotplt
->size
+= MIPS_ELF_GOT_SIZE (dynobj
);
8239 htab
->srelplt
->size
+= (htab
->is_vxworks
8240 ? MIPS_ELF_RELA_SIZE (dynobj
)
8241 : MIPS_ELF_REL_SIZE (dynobj
));
8243 /* Make room for the .rela.plt.unloaded relocations. */
8244 if (htab
->is_vxworks
&& !info
->shared
)
8245 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
8247 /* All relocations against this symbol that could have been made
8248 dynamic will now refer to the PLT entry instead. */
8249 hmips
->possibly_dynamic_relocs
= 0;
8254 /* If this is a weak symbol, and there is a real definition, the
8255 processor independent code will have arranged for us to see the
8256 real definition first, and we can just use the same value. */
8257 if (h
->u
.weakdef
!= NULL
)
8259 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
8260 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
8261 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
8262 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
8266 /* Otherwise, there is nothing further to do for symbols defined
8267 in regular objects. */
8271 /* There's also nothing more to do if we'll convert all relocations
8272 against this symbol into dynamic relocations. */
8273 if (!hmips
->has_static_relocs
)
8276 /* We're now relying on copy relocations. Complain if we have
8277 some that we can't convert. */
8278 if (!htab
->use_plts_and_copy_relocs
|| info
->shared
)
8280 (*_bfd_error_handler
) (_("non-dynamic relocations refer to "
8281 "dynamic symbol %s"),
8282 h
->root
.root
.string
);
8283 bfd_set_error (bfd_error_bad_value
);
8287 /* We must allocate the symbol in our .dynbss section, which will
8288 become part of the .bss section of the executable. There will be
8289 an entry for this symbol in the .dynsym section. The dynamic
8290 object will contain position independent code, so all references
8291 from the dynamic object to this symbol will go through the global
8292 offset table. The dynamic linker will use the .dynsym entry to
8293 determine the address it must put in the global offset table, so
8294 both the dynamic object and the regular object will refer to the
8295 same memory location for the variable. */
8297 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
8299 if (htab
->is_vxworks
)
8300 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
8302 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8306 /* All relocations against this symbol that could have been made
8307 dynamic will now refer to the local copy instead. */
8308 hmips
->possibly_dynamic_relocs
= 0;
8310 return _bfd_elf_adjust_dynamic_copy (h
, htab
->sdynbss
);
8313 /* This function is called after all the input files have been read,
8314 and the input sections have been assigned to output sections. We
8315 check for any mips16 stub sections that we can discard. */
8318 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
8319 struct bfd_link_info
*info
)
8322 struct mips_elf_link_hash_table
*htab
;
8323 struct mips_htab_traverse_info hti
;
8325 htab
= mips_elf_hash_table (info
);
8327 /* The .reginfo section has a fixed size. */
8328 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8330 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
8333 hti
.output_bfd
= output_bfd
;
8335 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8336 mips_elf_check_symbols
, &hti
);
8343 /* If the link uses a GOT, lay it out and work out its size. */
8346 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
8350 struct mips_got_info
*g
;
8351 bfd_size_type loadable_size
= 0;
8352 bfd_size_type page_gotno
;
8354 struct mips_elf_count_tls_arg count_tls_arg
;
8355 struct mips_elf_link_hash_table
*htab
;
8357 htab
= mips_elf_hash_table (info
);
8362 dynobj
= elf_hash_table (info
)->dynobj
;
8365 /* Allocate room for the reserved entries. VxWorks always reserves
8366 3 entries; other objects only reserve 2 entries. */
8367 BFD_ASSERT (g
->assigned_gotno
== 0);
8368 if (htab
->is_vxworks
)
8369 htab
->reserved_gotno
= 3;
8371 htab
->reserved_gotno
= 2;
8372 g
->local_gotno
+= htab
->reserved_gotno
;
8373 g
->assigned_gotno
= htab
->reserved_gotno
;
8375 /* Replace entries for indirect and warning symbols with entries for
8376 the target symbol. */
8377 if (!mips_elf_resolve_final_got_entries (g
))
8380 /* Count the number of GOT symbols. */
8381 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, g
);
8383 /* Calculate the total loadable size of the output. That
8384 will give us the maximum number of GOT_PAGE entries
8386 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8388 asection
*subsection
;
8390 for (subsection
= sub
->sections
;
8392 subsection
= subsection
->next
)
8394 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8396 loadable_size
+= ((subsection
->size
+ 0xf)
8397 &~ (bfd_size_type
) 0xf);
8401 if (htab
->is_vxworks
)
8402 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8403 relocations against local symbols evaluate to "G", and the EABI does
8404 not include R_MIPS_GOT_PAGE. */
8407 /* Assume there are two loadable segments consisting of contiguous
8408 sections. Is 5 enough? */
8409 page_gotno
= (loadable_size
>> 16) + 5;
8411 /* Choose the smaller of the two estimates; both are intended to be
8413 if (page_gotno
> g
->page_gotno
)
8414 page_gotno
= g
->page_gotno
;
8416 g
->local_gotno
+= page_gotno
;
8417 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8418 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8420 /* We need to calculate tls_gotno for global symbols at this point
8421 instead of building it up earlier, to avoid doublecounting
8422 entries for one global symbol from multiple input files. */
8423 count_tls_arg
.info
= info
;
8424 count_tls_arg
.needed
= 0;
8425 elf_link_hash_traverse (elf_hash_table (info
),
8426 mips_elf_count_global_tls_entries
,
8428 g
->tls_gotno
+= count_tls_arg
.needed
;
8429 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8431 /* VxWorks does not support multiple GOTs. It initializes $gp to
8432 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8434 if (htab
->is_vxworks
)
8436 /* VxWorks executables do not need a GOT. */
8439 /* Each VxWorks GOT entry needs an explicit relocation. */
8442 count
= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
8444 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
8447 else if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
8449 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
8454 struct mips_elf_count_tls_arg arg
;
8456 /* Set up TLS entries. */
8457 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
8458 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
8460 /* Allocate room for the TLS relocations. */
8463 htab_traverse (g
->got_entries
, mips_elf_count_local_tls_relocs
, &arg
);
8464 elf_link_hash_traverse (elf_hash_table (info
),
8465 mips_elf_count_global_tls_relocs
,
8468 mips_elf_allocate_dynamic_relocations (dynobj
, info
, arg
.needed
);
8474 /* Estimate the size of the .MIPS.stubs section. */
8477 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
8479 struct mips_elf_link_hash_table
*htab
;
8480 bfd_size_type dynsymcount
;
8482 htab
= mips_elf_hash_table (info
);
8483 if (htab
->lazy_stub_count
== 0)
8486 /* IRIX rld assumes that a function stub isn't at the end of the .text
8487 section, so add a dummy entry to the end. */
8488 htab
->lazy_stub_count
++;
8490 /* Get a worst-case estimate of the number of dynamic symbols needed.
8491 At this point, dynsymcount does not account for section symbols
8492 and count_section_dynsyms may overestimate the number that will
8494 dynsymcount
= (elf_hash_table (info
)->dynsymcount
8495 + count_section_dynsyms (output_bfd
, info
));
8497 /* Determine the size of one stub entry. */
8498 htab
->function_stub_size
= (dynsymcount
> 0x10000
8499 ? MIPS_FUNCTION_STUB_BIG_SIZE
8500 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
8502 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
8505 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8506 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8507 allocate an entry in the stubs section. */
8510 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void **data
)
8512 struct mips_elf_link_hash_table
*htab
;
8514 htab
= (struct mips_elf_link_hash_table
*) data
;
8515 if (h
->needs_lazy_stub
)
8517 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
8518 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
;
8519 h
->root
.plt
.offset
= htab
->sstubs
->size
;
8520 htab
->sstubs
->size
+= htab
->function_stub_size
;
8525 /* Allocate offsets in the stubs section to each symbol that needs one.
8526 Set the final size of the .MIPS.stub section. */
8529 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
8531 struct mips_elf_link_hash_table
*htab
;
8533 htab
= mips_elf_hash_table (info
);
8534 if (htab
->lazy_stub_count
== 0)
8537 htab
->sstubs
->size
= 0;
8538 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8539 mips_elf_allocate_lazy_stub
, htab
);
8540 htab
->sstubs
->size
+= htab
->function_stub_size
;
8541 BFD_ASSERT (htab
->sstubs
->size
8542 == htab
->lazy_stub_count
* htab
->function_stub_size
);
8545 /* Set the sizes of the dynamic sections. */
8548 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
8549 struct bfd_link_info
*info
)
8552 asection
*s
, *sreldyn
;
8553 bfd_boolean reltext
;
8554 struct mips_elf_link_hash_table
*htab
;
8556 htab
= mips_elf_hash_table (info
);
8557 dynobj
= elf_hash_table (info
)->dynobj
;
8558 BFD_ASSERT (dynobj
!= NULL
);
8560 if (elf_hash_table (info
)->dynamic_sections_created
)
8562 /* Set the contents of the .interp section to the interpreter. */
8563 if (info
->executable
)
8565 s
= bfd_get_section_by_name (dynobj
, ".interp");
8566 BFD_ASSERT (s
!= NULL
);
8568 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
8570 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
8573 /* Create a symbol for the PLT, if we know that we are using it. */
8574 if (htab
->splt
&& htab
->splt
->size
> 0 && htab
->root
.hplt
== NULL
)
8576 struct elf_link_hash_entry
*h
;
8578 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
8580 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->splt
,
8581 "_PROCEDURE_LINKAGE_TABLE_");
8582 htab
->root
.hplt
= h
;
8589 /* Allocate space for global sym dynamic relocs. */
8590 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, (PTR
) info
);
8592 mips_elf_estimate_stub_size (output_bfd
, info
);
8594 if (!mips_elf_lay_out_got (output_bfd
, info
))
8597 mips_elf_lay_out_lazy_stubs (info
);
8599 /* The check_relocs and adjust_dynamic_symbol entry points have
8600 determined the sizes of the various dynamic sections. Allocate
8603 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
8607 /* It's OK to base decisions on the section name, because none
8608 of the dynobj section names depend upon the input files. */
8609 name
= bfd_get_section_name (dynobj
, s
);
8611 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
8614 if (CONST_STRNEQ (name
, ".rel"))
8618 const char *outname
;
8621 /* If this relocation section applies to a read only
8622 section, then we probably need a DT_TEXTREL entry.
8623 If the relocation section is .rel(a).dyn, we always
8624 assert a DT_TEXTREL entry rather than testing whether
8625 there exists a relocation to a read only section or
8627 outname
= bfd_get_section_name (output_bfd
,
8629 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
8631 && (target
->flags
& SEC_READONLY
) != 0
8632 && (target
->flags
& SEC_ALLOC
) != 0)
8633 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
8636 /* We use the reloc_count field as a counter if we need
8637 to copy relocs into the output file. */
8638 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
8641 /* If combreloc is enabled, elf_link_sort_relocs() will
8642 sort relocations, but in a different way than we do,
8643 and before we're done creating relocations. Also, it
8644 will move them around between input sections'
8645 relocation's contents, so our sorting would be
8646 broken, so don't let it run. */
8647 info
->combreloc
= 0;
8650 else if (! info
->shared
8651 && ! mips_elf_hash_table (info
)->use_rld_obj_head
8652 && CONST_STRNEQ (name
, ".rld_map"))
8654 /* We add a room for __rld_map. It will be filled in by the
8655 rtld to contain a pointer to the _r_debug structure. */
8658 else if (SGI_COMPAT (output_bfd
)
8659 && CONST_STRNEQ (name
, ".compact_rel"))
8660 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
8661 else if (s
== htab
->splt
)
8663 /* If the last PLT entry has a branch delay slot, allocate
8664 room for an extra nop to fill the delay slot. This is
8665 for CPUs without load interlocking. */
8666 if (! LOAD_INTERLOCKS_P (output_bfd
)
8667 && ! htab
->is_vxworks
&& s
->size
> 0)
8670 else if (! CONST_STRNEQ (name
, ".init")
8672 && s
!= htab
->sgotplt
8673 && s
!= htab
->sstubs
8674 && s
!= htab
->sdynbss
)
8676 /* It's not one of our sections, so don't allocate space. */
8682 s
->flags
|= SEC_EXCLUDE
;
8686 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
8689 /* Allocate memory for the section contents. */
8690 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
8691 if (s
->contents
== NULL
)
8693 bfd_set_error (bfd_error_no_memory
);
8698 if (elf_hash_table (info
)->dynamic_sections_created
)
8700 /* Add some entries to the .dynamic section. We fill in the
8701 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8702 must add the entries now so that we get the correct size for
8703 the .dynamic section. */
8705 /* SGI object has the equivalence of DT_DEBUG in the
8706 DT_MIPS_RLD_MAP entry. This must come first because glibc
8707 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8708 looks at the first one it sees. */
8710 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
8713 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8714 used by the debugger. */
8715 if (info
->executable
8716 && !SGI_COMPAT (output_bfd
)
8717 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
8720 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
8721 info
->flags
|= DF_TEXTREL
;
8723 if ((info
->flags
& DF_TEXTREL
) != 0)
8725 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
8728 /* Clear the DF_TEXTREL flag. It will be set again if we
8729 write out an actual text relocation; we may not, because
8730 at this point we do not know whether e.g. any .eh_frame
8731 absolute relocations have been converted to PC-relative. */
8732 info
->flags
&= ~DF_TEXTREL
;
8735 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
8738 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
8739 if (htab
->is_vxworks
)
8741 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8742 use any of the DT_MIPS_* tags. */
8743 if (sreldyn
&& sreldyn
->size
> 0)
8745 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
8748 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
8751 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
8757 if (sreldyn
&& sreldyn
->size
> 0)
8759 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
8762 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
8765 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
8769 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
8772 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
8775 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
8778 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
8781 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
8784 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
8787 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
8790 if (IRIX_COMPAT (dynobj
) == ict_irix5
8791 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
8794 if (IRIX_COMPAT (dynobj
) == ict_irix6
8795 && (bfd_get_section_by_name
8796 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
8797 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
8800 if (htab
->splt
->size
> 0)
8802 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
8805 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
8808 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
8811 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
8814 if (htab
->is_vxworks
8815 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
8822 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8823 Adjust its R_ADDEND field so that it is correct for the output file.
8824 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8825 and sections respectively; both use symbol indexes. */
8828 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
8829 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
8830 asection
**local_sections
, Elf_Internal_Rela
*rel
)
8832 unsigned int r_type
, r_symndx
;
8833 Elf_Internal_Sym
*sym
;
8836 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8838 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8839 if (r_type
== R_MIPS16_GPREL
8840 || r_type
== R_MIPS_GPREL16
8841 || r_type
== R_MIPS_GPREL32
8842 || r_type
== R_MIPS_LITERAL
)
8844 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
8845 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
8848 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
8849 sym
= local_syms
+ r_symndx
;
8851 /* Adjust REL's addend to account for section merging. */
8852 if (!info
->relocatable
)
8854 sec
= local_sections
[r_symndx
];
8855 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8858 /* This would normally be done by the rela_normal code in elflink.c. */
8859 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8860 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
8864 /* Relocate a MIPS ELF section. */
8867 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
8868 bfd
*input_bfd
, asection
*input_section
,
8869 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
8870 Elf_Internal_Sym
*local_syms
,
8871 asection
**local_sections
)
8873 Elf_Internal_Rela
*rel
;
8874 const Elf_Internal_Rela
*relend
;
8876 bfd_boolean use_saved_addend_p
= FALSE
;
8877 const struct elf_backend_data
*bed
;
8879 bed
= get_elf_backend_data (output_bfd
);
8880 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8881 for (rel
= relocs
; rel
< relend
; ++rel
)
8885 reloc_howto_type
*howto
;
8886 bfd_boolean require_jalx
;
8887 /* TRUE if the relocation is a RELA relocation, rather than a
8889 bfd_boolean rela_relocation_p
= TRUE
;
8890 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
8892 unsigned long r_symndx
;
8894 Elf_Internal_Shdr
*symtab_hdr
;
8895 struct elf_link_hash_entry
*h
;
8897 /* Find the relocation howto for this relocation. */
8898 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
8899 NEWABI_P (input_bfd
)
8900 && (MIPS_RELOC_RELA_P
8901 (input_bfd
, input_section
,
8904 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
8905 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8906 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
8908 sec
= local_sections
[r_symndx
];
8913 unsigned long extsymoff
;
8916 if (!elf_bad_symtab (input_bfd
))
8917 extsymoff
= symtab_hdr
->sh_info
;
8918 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
8919 while (h
->root
.type
== bfd_link_hash_indirect
8920 || h
->root
.type
== bfd_link_hash_warning
)
8921 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8924 if (h
->root
.type
== bfd_link_hash_defined
8925 || h
->root
.type
== bfd_link_hash_defweak
)
8926 sec
= h
->root
.u
.def
.section
;
8929 if (sec
!= NULL
&& elf_discarded_section (sec
))
8931 /* For relocs against symbols from removed linkonce sections,
8932 or sections discarded by a linker script, we just want the
8933 section contents zeroed. Avoid any special processing. */
8934 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8940 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
8942 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8943 64-bit code, but make sure all their addresses are in the
8944 lowermost or uppermost 32-bit section of the 64-bit address
8945 space. Thus, when they use an R_MIPS_64 they mean what is
8946 usually meant by R_MIPS_32, with the exception that the
8947 stored value is sign-extended to 64 bits. */
8948 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
8950 /* On big-endian systems, we need to lie about the position
8952 if (bfd_big_endian (input_bfd
))
8956 if (!use_saved_addend_p
)
8958 /* If these relocations were originally of the REL variety,
8959 we must pull the addend out of the field that will be
8960 relocated. Otherwise, we simply use the contents of the
8962 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
8965 rela_relocation_p
= FALSE
;
8966 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
8968 if (hi16_reloc_p (r_type
)
8969 || (got16_reloc_p (r_type
)
8970 && mips_elf_local_relocation_p (input_bfd
, rel
,
8971 local_sections
, FALSE
)))
8973 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
8979 name
= h
->root
.root
.string
;
8981 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
8982 local_syms
+ r_symndx
,
8984 (*_bfd_error_handler
)
8985 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8986 input_bfd
, input_section
, name
, howto
->name
,
8991 addend
<<= howto
->rightshift
;
8994 addend
= rel
->r_addend
;
8995 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
8996 local_syms
, local_sections
, rel
);
8999 if (info
->relocatable
)
9001 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
9002 && bfd_big_endian (input_bfd
))
9005 if (!rela_relocation_p
&& rel
->r_addend
)
9007 addend
+= rel
->r_addend
;
9008 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
9009 addend
= mips_elf_high (addend
);
9010 else if (r_type
== R_MIPS_HIGHER
)
9011 addend
= mips_elf_higher (addend
);
9012 else if (r_type
== R_MIPS_HIGHEST
)
9013 addend
= mips_elf_highest (addend
);
9015 addend
>>= howto
->rightshift
;
9017 /* We use the source mask, rather than the destination
9018 mask because the place to which we are writing will be
9019 source of the addend in the final link. */
9020 addend
&= howto
->src_mask
;
9022 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9023 /* See the comment above about using R_MIPS_64 in the 32-bit
9024 ABI. Here, we need to update the addend. It would be
9025 possible to get away with just using the R_MIPS_32 reloc
9026 but for endianness. */
9032 if (addend
& ((bfd_vma
) 1 << 31))
9034 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9041 /* If we don't know that we have a 64-bit type,
9042 do two separate stores. */
9043 if (bfd_big_endian (input_bfd
))
9045 /* Store the sign-bits (which are most significant)
9047 low_bits
= sign_bits
;
9053 high_bits
= sign_bits
;
9055 bfd_put_32 (input_bfd
, low_bits
,
9056 contents
+ rel
->r_offset
);
9057 bfd_put_32 (input_bfd
, high_bits
,
9058 contents
+ rel
->r_offset
+ 4);
9062 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
9063 input_bfd
, input_section
,
9068 /* Go on to the next relocation. */
9072 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9073 relocations for the same offset. In that case we are
9074 supposed to treat the output of each relocation as the addend
9076 if (rel
+ 1 < relend
9077 && rel
->r_offset
== rel
[1].r_offset
9078 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
9079 use_saved_addend_p
= TRUE
;
9081 use_saved_addend_p
= FALSE
;
9083 /* Figure out what value we are supposed to relocate. */
9084 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
9085 input_section
, info
, rel
,
9086 addend
, howto
, local_syms
,
9087 local_sections
, &value
,
9088 &name
, &require_jalx
,
9089 use_saved_addend_p
))
9091 case bfd_reloc_continue
:
9092 /* There's nothing to do. */
9095 case bfd_reloc_undefined
:
9096 /* mips_elf_calculate_relocation already called the
9097 undefined_symbol callback. There's no real point in
9098 trying to perform the relocation at this point, so we
9099 just skip ahead to the next relocation. */
9102 case bfd_reloc_notsupported
:
9103 msg
= _("internal error: unsupported relocation error");
9104 info
->callbacks
->warning
9105 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
9108 case bfd_reloc_overflow
:
9109 if (use_saved_addend_p
)
9110 /* Ignore overflow until we reach the last relocation for
9111 a given location. */
9115 struct mips_elf_link_hash_table
*htab
;
9117 htab
= mips_elf_hash_table (info
);
9118 BFD_ASSERT (name
!= NULL
);
9119 if (!htab
->small_data_overflow_reported
9120 && (howto
->type
== R_MIPS_GPREL16
9121 || howto
->type
== R_MIPS_LITERAL
))
9124 _("small-data section exceeds 64KB;"
9125 " lower small-data size limit (see option -G)");
9127 htab
->small_data_overflow_reported
= TRUE
;
9128 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
9130 if (! ((*info
->callbacks
->reloc_overflow
)
9131 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
9132 input_bfd
, input_section
, rel
->r_offset
)))
9145 /* If we've got another relocation for the address, keep going
9146 until we reach the last one. */
9147 if (use_saved_addend_p
)
9153 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9154 /* See the comment above about using R_MIPS_64 in the 32-bit
9155 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9156 that calculated the right value. Now, however, we
9157 sign-extend the 32-bit result to 64-bits, and store it as a
9158 64-bit value. We are especially generous here in that we
9159 go to extreme lengths to support this usage on systems with
9160 only a 32-bit VMA. */
9166 if (value
& ((bfd_vma
) 1 << 31))
9168 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9175 /* If we don't know that we have a 64-bit type,
9176 do two separate stores. */
9177 if (bfd_big_endian (input_bfd
))
9179 /* Undo what we did above. */
9181 /* Store the sign-bits (which are most significant)
9183 low_bits
= sign_bits
;
9189 high_bits
= sign_bits
;
9191 bfd_put_32 (input_bfd
, low_bits
,
9192 contents
+ rel
->r_offset
);
9193 bfd_put_32 (input_bfd
, high_bits
,
9194 contents
+ rel
->r_offset
+ 4);
9198 /* Actually perform the relocation. */
9199 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
9200 input_bfd
, input_section
,
9201 contents
, require_jalx
))
9208 /* A function that iterates over each entry in la25_stubs and fills
9209 in the code for each one. DATA points to a mips_htab_traverse_info. */
9212 mips_elf_create_la25_stub (void **slot
, void *data
)
9214 struct mips_htab_traverse_info
*hti
;
9215 struct mips_elf_link_hash_table
*htab
;
9216 struct mips_elf_la25_stub
*stub
;
9219 bfd_vma offset
, target
, target_high
, target_low
;
9221 stub
= (struct mips_elf_la25_stub
*) *slot
;
9222 hti
= (struct mips_htab_traverse_info
*) data
;
9223 htab
= mips_elf_hash_table (hti
->info
);
9225 /* Create the section contents, if we haven't already. */
9226 s
= stub
->stub_section
;
9230 loc
= bfd_malloc (s
->size
);
9239 /* Work out where in the section this stub should go. */
9240 offset
= stub
->offset
;
9242 /* Work out the target address. */
9243 target
= (stub
->h
->root
.root
.u
.def
.section
->output_section
->vma
9244 + stub
->h
->root
.root
.u
.def
.section
->output_offset
9245 + stub
->h
->root
.root
.u
.def
.value
);
9246 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
9247 target_low
= (target
& 0xffff);
9249 if (stub
->stub_section
!= htab
->strampoline
)
9251 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9252 of the section and write the two instructions at the end. */
9253 memset (loc
, 0, offset
);
9255 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9256 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
9260 /* This is trampoline. */
9262 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9263 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
9264 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
9265 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
9270 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9271 adjust it appropriately now. */
9274 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
9275 const char *name
, Elf_Internal_Sym
*sym
)
9277 /* The linker script takes care of providing names and values for
9278 these, but we must place them into the right sections. */
9279 static const char* const text_section_symbols
[] = {
9282 "__dso_displacement",
9284 "__program_header_table",
9288 static const char* const data_section_symbols
[] = {
9296 const char* const *p
;
9299 for (i
= 0; i
< 2; ++i
)
9300 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
9303 if (strcmp (*p
, name
) == 0)
9305 /* All of these symbols are given type STT_SECTION by the
9307 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9308 sym
->st_other
= STO_PROTECTED
;
9310 /* The IRIX linker puts these symbols in special sections. */
9312 sym
->st_shndx
= SHN_MIPS_TEXT
;
9314 sym
->st_shndx
= SHN_MIPS_DATA
;
9320 /* Finish up dynamic symbol handling. We set the contents of various
9321 dynamic sections here. */
9324 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
9325 struct bfd_link_info
*info
,
9326 struct elf_link_hash_entry
*h
,
9327 Elf_Internal_Sym
*sym
)
9331 struct mips_got_info
*g
, *gg
;
9334 struct mips_elf_link_hash_table
*htab
;
9335 struct mips_elf_link_hash_entry
*hmips
;
9337 htab
= mips_elf_hash_table (info
);
9338 dynobj
= elf_hash_table (info
)->dynobj
;
9339 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9341 BFD_ASSERT (!htab
->is_vxworks
);
9343 if (h
->plt
.offset
!= MINUS_ONE
&& hmips
->no_fn_stub
)
9345 /* We've decided to create a PLT entry for this symbol. */
9347 bfd_vma header_address
, plt_index
, got_address
;
9348 bfd_vma got_address_high
, got_address_low
, load
;
9349 const bfd_vma
*plt_entry
;
9351 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9352 BFD_ASSERT (h
->dynindx
!= -1);
9353 BFD_ASSERT (htab
->splt
!= NULL
);
9354 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9355 BFD_ASSERT (!h
->def_regular
);
9357 /* Calculate the address of the PLT header. */
9358 header_address
= (htab
->splt
->output_section
->vma
9359 + htab
->splt
->output_offset
);
9361 /* Calculate the index of the entry. */
9362 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9363 / htab
->plt_entry_size
);
9365 /* Calculate the address of the .got.plt entry. */
9366 got_address
= (htab
->sgotplt
->output_section
->vma
9367 + htab
->sgotplt
->output_offset
9368 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9369 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9370 got_address_low
= got_address
& 0xffff;
9372 /* Initially point the .got.plt entry at the PLT header. */
9373 loc
= (htab
->sgotplt
->contents
9374 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9375 if (ABI_64_P (output_bfd
))
9376 bfd_put_64 (output_bfd
, header_address
, loc
);
9378 bfd_put_32 (output_bfd
, header_address
, loc
);
9380 /* Find out where the .plt entry should go. */
9381 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9383 /* Pick the load opcode. */
9384 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
9386 /* Fill in the PLT entry itself. */
9387 plt_entry
= mips_exec_plt_entry
;
9388 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
9389 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
, loc
+ 4);
9391 if (! LOAD_INTERLOCKS_P (output_bfd
))
9393 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
9394 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9398 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
9399 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 12);
9402 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9403 mips_elf_output_dynamic_relocation (output_bfd
, htab
->srelplt
,
9404 plt_index
, h
->dynindx
,
9405 R_MIPS_JUMP_SLOT
, got_address
);
9407 /* We distinguish between PLT entries and lazy-binding stubs by
9408 giving the former an st_other value of STO_MIPS_PLT. Set the
9409 flag and leave the value if there are any relocations in the
9410 binary where pointer equality matters. */
9411 sym
->st_shndx
= SHN_UNDEF
;
9412 if (h
->pointer_equality_needed
)
9413 sym
->st_other
= STO_MIPS_PLT
;
9417 else if (h
->plt
.offset
!= MINUS_ONE
)
9419 /* We've decided to create a lazy-binding stub. */
9420 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
9422 /* This symbol has a stub. Set it up. */
9424 BFD_ASSERT (h
->dynindx
!= -1);
9426 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9427 || (h
->dynindx
<= 0xffff));
9429 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9430 sign extension at runtime in the stub, resulting in a negative
9432 if (h
->dynindx
& ~0x7fffffff)
9435 /* Fill the stub. */
9437 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
9439 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
9441 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9443 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
9447 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
9450 /* If a large stub is not required and sign extension is not a
9451 problem, then use legacy code in the stub. */
9452 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9453 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
9454 else if (h
->dynindx
& ~0x7fff)
9455 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
9457 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
9460 BFD_ASSERT (h
->plt
.offset
<= htab
->sstubs
->size
);
9461 memcpy (htab
->sstubs
->contents
+ h
->plt
.offset
,
9462 stub
, htab
->function_stub_size
);
9464 /* Mark the symbol as undefined. plt.offset != -1 occurs
9465 only for the referenced symbol. */
9466 sym
->st_shndx
= SHN_UNDEF
;
9468 /* The run-time linker uses the st_value field of the symbol
9469 to reset the global offset table entry for this external
9470 to its stub address when unlinking a shared object. */
9471 sym
->st_value
= (htab
->sstubs
->output_section
->vma
9472 + htab
->sstubs
->output_offset
9476 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9477 refer to the stub, since only the stub uses the standard calling
9479 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
9481 BFD_ASSERT (hmips
->need_fn_stub
);
9482 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
9483 + hmips
->fn_stub
->output_offset
);
9484 sym
->st_size
= hmips
->fn_stub
->size
;
9485 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
9488 BFD_ASSERT (h
->dynindx
!= -1
9489 || h
->forced_local
);
9493 BFD_ASSERT (g
!= NULL
);
9495 /* Run through the global symbol table, creating GOT entries for all
9496 the symbols that need them. */
9497 if (g
->global_gotsym
!= NULL
9498 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9503 value
= sym
->st_value
;
9504 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9505 R_MIPS_GOT16
, info
);
9506 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
9509 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
9511 struct mips_got_entry e
, *p
;
9517 e
.abfd
= output_bfd
;
9522 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
9525 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
9530 || (elf_hash_table (info
)->dynamic_sections_created
9532 && p
->d
.h
->root
.def_dynamic
9533 && !p
->d
.h
->root
.def_regular
))
9535 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9536 the various compatibility problems, it's easier to mock
9537 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9538 mips_elf_create_dynamic_relocation to calculate the
9539 appropriate addend. */
9540 Elf_Internal_Rela rel
[3];
9542 memset (rel
, 0, sizeof (rel
));
9543 if (ABI_64_P (output_bfd
))
9544 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
9546 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
9547 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
9550 if (! (mips_elf_create_dynamic_relocation
9551 (output_bfd
, info
, rel
,
9552 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
9556 entry
= sym
->st_value
;
9557 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
9562 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9563 name
= h
->root
.root
.string
;
9564 if (strcmp (name
, "_DYNAMIC") == 0
9565 || h
== elf_hash_table (info
)->hgot
)
9566 sym
->st_shndx
= SHN_ABS
;
9567 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
9568 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
9570 sym
->st_shndx
= SHN_ABS
;
9571 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9574 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
9576 sym
->st_shndx
= SHN_ABS
;
9577 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9578 sym
->st_value
= elf_gp (output_bfd
);
9580 else if (SGI_COMPAT (output_bfd
))
9582 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
9583 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
9585 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9586 sym
->st_other
= STO_PROTECTED
;
9588 sym
->st_shndx
= SHN_MIPS_DATA
;
9590 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
9592 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9593 sym
->st_other
= STO_PROTECTED
;
9594 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
9595 sym
->st_shndx
= SHN_ABS
;
9597 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
9599 if (h
->type
== STT_FUNC
)
9600 sym
->st_shndx
= SHN_MIPS_TEXT
;
9601 else if (h
->type
== STT_OBJECT
)
9602 sym
->st_shndx
= SHN_MIPS_DATA
;
9606 /* Emit a copy reloc, if needed. */
9612 BFD_ASSERT (h
->dynindx
!= -1);
9613 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9615 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9616 symval
= (h
->root
.u
.def
.section
->output_section
->vma
9617 + h
->root
.u
.def
.section
->output_offset
9618 + h
->root
.u
.def
.value
);
9619 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
9620 h
->dynindx
, R_MIPS_COPY
, symval
);
9623 /* Handle the IRIX6-specific symbols. */
9624 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
9625 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
9629 if (! mips_elf_hash_table (info
)->use_rld_obj_head
9630 && (strcmp (name
, "__rld_map") == 0
9631 || strcmp (name
, "__RLD_MAP") == 0))
9633 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
9634 BFD_ASSERT (s
!= NULL
);
9635 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
9636 bfd_put_32 (output_bfd
, 0, s
->contents
);
9637 if (mips_elf_hash_table (info
)->rld_value
== 0)
9638 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9640 else if (mips_elf_hash_table (info
)->use_rld_obj_head
9641 && strcmp (name
, "__rld_obj_head") == 0)
9643 /* IRIX6 does not use a .rld_map section. */
9644 if (IRIX_COMPAT (output_bfd
) == ict_irix5
9645 || IRIX_COMPAT (output_bfd
) == ict_none
)
9646 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
9648 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
9652 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9653 treat MIPS16 symbols like any other. */
9654 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9656 BFD_ASSERT (sym
->st_value
& 1);
9657 sym
->st_other
-= STO_MIPS16
;
9663 /* Likewise, for VxWorks. */
9666 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
9667 struct bfd_link_info
*info
,
9668 struct elf_link_hash_entry
*h
,
9669 Elf_Internal_Sym
*sym
)
9673 struct mips_got_info
*g
;
9674 struct mips_elf_link_hash_table
*htab
;
9676 htab
= mips_elf_hash_table (info
);
9677 dynobj
= elf_hash_table (info
)->dynobj
;
9679 if (h
->plt
.offset
!= (bfd_vma
) -1)
9682 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
9683 Elf_Internal_Rela rel
;
9684 static const bfd_vma
*plt_entry
;
9686 BFD_ASSERT (h
->dynindx
!= -1);
9687 BFD_ASSERT (htab
->splt
!= NULL
);
9688 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9690 /* Calculate the address of the .plt entry. */
9691 plt_address
= (htab
->splt
->output_section
->vma
9692 + htab
->splt
->output_offset
9695 /* Calculate the index of the entry. */
9696 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9697 / htab
->plt_entry_size
);
9699 /* Calculate the address of the .got.plt entry. */
9700 got_address
= (htab
->sgotplt
->output_section
->vma
9701 + htab
->sgotplt
->output_offset
9704 /* Calculate the offset of the .got.plt entry from
9705 _GLOBAL_OFFSET_TABLE_. */
9706 got_offset
= mips_elf_gotplt_index (info
, h
);
9708 /* Calculate the offset for the branch at the start of the PLT
9709 entry. The branch jumps to the beginning of .plt. */
9710 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
9712 /* Fill in the initial value of the .got.plt entry. */
9713 bfd_put_32 (output_bfd
, plt_address
,
9714 htab
->sgotplt
->contents
+ plt_index
* 4);
9716 /* Find out where the .plt entry should go. */
9717 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9721 plt_entry
= mips_vxworks_shared_plt_entry
;
9722 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9723 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9727 bfd_vma got_address_high
, got_address_low
;
9729 plt_entry
= mips_vxworks_exec_plt_entry
;
9730 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9731 got_address_low
= got_address
& 0xffff;
9733 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
9734 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
9735 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
9736 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
9737 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9738 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9739 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9740 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9742 loc
= (htab
->srelplt2
->contents
9743 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
9745 /* Emit a relocation for the .got.plt entry. */
9746 rel
.r_offset
= got_address
;
9747 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9748 rel
.r_addend
= h
->plt
.offset
;
9749 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9751 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9752 loc
+= sizeof (Elf32_External_Rela
);
9753 rel
.r_offset
= plt_address
+ 8;
9754 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9755 rel
.r_addend
= got_offset
;
9756 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9758 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9759 loc
+= sizeof (Elf32_External_Rela
);
9761 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9762 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9765 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9766 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
9767 rel
.r_offset
= got_address
;
9768 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
9770 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9772 if (!h
->def_regular
)
9773 sym
->st_shndx
= SHN_UNDEF
;
9776 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
9780 BFD_ASSERT (g
!= NULL
);
9782 /* See if this symbol has an entry in the GOT. */
9783 if (g
->global_gotsym
!= NULL
9784 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
9787 Elf_Internal_Rela outrel
;
9791 /* Install the symbol value in the GOT. */
9792 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9793 R_MIPS_GOT16
, info
);
9794 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
9796 /* Add a dynamic relocation for it. */
9797 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9798 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
9799 outrel
.r_offset
= (sgot
->output_section
->vma
9800 + sgot
->output_offset
9802 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
9803 outrel
.r_addend
= 0;
9804 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
9807 /* Emit a copy reloc, if needed. */
9810 Elf_Internal_Rela rel
;
9812 BFD_ASSERT (h
->dynindx
!= -1);
9814 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
9815 + h
->root
.u
.def
.section
->output_offset
9816 + h
->root
.u
.def
.value
);
9817 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
9819 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
9820 htab
->srelbss
->contents
9821 + (htab
->srelbss
->reloc_count
9822 * sizeof (Elf32_External_Rela
)));
9823 ++htab
->srelbss
->reloc_count
;
9826 /* If this is a mips16 symbol, force the value to be even. */
9827 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
9828 sym
->st_value
&= ~1;
9833 /* Write out a plt0 entry to the beginning of .plt. */
9836 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9839 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
9840 static const bfd_vma
*plt_entry
;
9841 struct mips_elf_link_hash_table
*htab
;
9843 htab
= mips_elf_hash_table (info
);
9844 if (ABI_64_P (output_bfd
))
9845 plt_entry
= mips_n64_exec_plt0_entry
;
9846 else if (ABI_N32_P (output_bfd
))
9847 plt_entry
= mips_n32_exec_plt0_entry
;
9849 plt_entry
= mips_o32_exec_plt0_entry
;
9851 /* Calculate the value of .got.plt. */
9852 gotplt_value
= (htab
->sgotplt
->output_section
->vma
9853 + htab
->sgotplt
->output_offset
);
9854 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
9855 gotplt_value_low
= gotplt_value
& 0xffff;
9857 /* The PLT sequence is not safe for N64 if .got.plt's address can
9858 not be loaded in two instructions. */
9859 BFD_ASSERT ((gotplt_value
& ~(bfd_vma
) 0x7fffffff) == 0
9860 || ~(gotplt_value
| 0x7fffffff) == 0);
9862 /* Install the PLT header. */
9863 loc
= htab
->splt
->contents
;
9864 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
9865 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
9866 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
9867 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9868 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9869 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9870 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
9871 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
9874 /* Install the PLT header for a VxWorks executable and finalize the
9875 contents of .rela.plt.unloaded. */
9878 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9880 Elf_Internal_Rela rela
;
9882 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
9883 static const bfd_vma
*plt_entry
;
9884 struct mips_elf_link_hash_table
*htab
;
9886 htab
= mips_elf_hash_table (info
);
9887 plt_entry
= mips_vxworks_exec_plt0_entry
;
9889 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9890 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
9891 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
9892 + htab
->root
.hgot
->root
.u
.def
.value
);
9894 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
9895 got_value_low
= got_value
& 0xffff;
9897 /* Calculate the address of the PLT header. */
9898 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
9900 /* Install the PLT header. */
9901 loc
= htab
->splt
->contents
;
9902 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
9903 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
9904 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
9905 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9906 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
9907 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
9909 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9910 loc
= htab
->srelplt2
->contents
;
9911 rela
.r_offset
= plt_address
;
9912 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9914 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9915 loc
+= sizeof (Elf32_External_Rela
);
9917 /* Output the relocation for the following addiu of
9918 %lo(_GLOBAL_OFFSET_TABLE_). */
9920 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9921 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
9922 loc
+= sizeof (Elf32_External_Rela
);
9924 /* Fix up the remaining relocations. They may have the wrong
9925 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9926 in which symbols were output. */
9927 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
9929 Elf_Internal_Rela rel
;
9931 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9932 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
9933 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9934 loc
+= sizeof (Elf32_External_Rela
);
9936 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9937 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
9938 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9939 loc
+= sizeof (Elf32_External_Rela
);
9941 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
9942 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
9943 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
9944 loc
+= sizeof (Elf32_External_Rela
);
9948 /* Install the PLT header for a VxWorks shared library. */
9951 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
9954 struct mips_elf_link_hash_table
*htab
;
9956 htab
= mips_elf_hash_table (info
);
9958 /* We just need to copy the entry byte-by-byte. */
9959 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
9960 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
9961 htab
->splt
->contents
+ i
* 4);
9964 /* Finish up the dynamic sections. */
9967 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
9968 struct bfd_link_info
*info
)
9973 struct mips_got_info
*gg
, *g
;
9974 struct mips_elf_link_hash_table
*htab
;
9976 htab
= mips_elf_hash_table (info
);
9977 dynobj
= elf_hash_table (info
)->dynobj
;
9979 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
9982 gg
= htab
->got_info
;
9984 if (elf_hash_table (info
)->dynamic_sections_created
)
9987 int dyn_to_skip
= 0, dyn_skipped
= 0;
9989 BFD_ASSERT (sdyn
!= NULL
);
9990 BFD_ASSERT (gg
!= NULL
);
9992 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
9993 BFD_ASSERT (g
!= NULL
);
9995 for (b
= sdyn
->contents
;
9996 b
< sdyn
->contents
+ sdyn
->size
;
9997 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
9999 Elf_Internal_Dyn dyn
;
10003 bfd_boolean swap_out_p
;
10005 /* Read in the current dynamic entry. */
10006 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10008 /* Assume that we're going to modify it and write it out. */
10014 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
10018 BFD_ASSERT (htab
->is_vxworks
);
10019 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
10023 /* Rewrite DT_STRSZ. */
10025 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
10030 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10033 case DT_MIPS_PLTGOT
:
10035 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10038 case DT_MIPS_RLD_VERSION
:
10039 dyn
.d_un
.d_val
= 1; /* XXX */
10042 case DT_MIPS_FLAGS
:
10043 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
10046 case DT_MIPS_TIME_STAMP
:
10050 dyn
.d_un
.d_val
= t
;
10054 case DT_MIPS_ICHECKSUM
:
10056 swap_out_p
= FALSE
;
10059 case DT_MIPS_IVERSION
:
10061 swap_out_p
= FALSE
;
10064 case DT_MIPS_BASE_ADDRESS
:
10065 s
= output_bfd
->sections
;
10066 BFD_ASSERT (s
!= NULL
);
10067 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
10070 case DT_MIPS_LOCAL_GOTNO
:
10071 dyn
.d_un
.d_val
= g
->local_gotno
;
10074 case DT_MIPS_UNREFEXTNO
:
10075 /* The index into the dynamic symbol table which is the
10076 entry of the first external symbol that is not
10077 referenced within the same object. */
10078 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
10081 case DT_MIPS_GOTSYM
:
10082 if (gg
->global_gotsym
)
10084 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
10087 /* In case if we don't have global got symbols we default
10088 to setting DT_MIPS_GOTSYM to the same value as
10089 DT_MIPS_SYMTABNO, so we just fall through. */
10091 case DT_MIPS_SYMTABNO
:
10093 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
10094 s
= bfd_get_section_by_name (output_bfd
, name
);
10095 BFD_ASSERT (s
!= NULL
);
10097 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
10100 case DT_MIPS_HIPAGENO
:
10101 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
10104 case DT_MIPS_RLD_MAP
:
10105 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
10108 case DT_MIPS_OPTIONS
:
10109 s
= (bfd_get_section_by_name
10110 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
10111 dyn
.d_un
.d_ptr
= s
->vma
;
10115 BFD_ASSERT (htab
->is_vxworks
);
10116 /* The count does not include the JUMP_SLOT relocations. */
10118 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
10122 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10123 if (htab
->is_vxworks
)
10124 dyn
.d_un
.d_val
= DT_RELA
;
10126 dyn
.d_un
.d_val
= DT_REL
;
10130 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10131 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
10135 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10136 dyn
.d_un
.d_ptr
= (htab
->srelplt
->output_section
->vma
10137 + htab
->srelplt
->output_offset
);
10141 /* If we didn't need any text relocations after all, delete
10142 the dynamic tag. */
10143 if (!(info
->flags
& DF_TEXTREL
))
10145 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
10146 swap_out_p
= FALSE
;
10151 /* If we didn't need any text relocations after all, clear
10152 DF_TEXTREL from DT_FLAGS. */
10153 if (!(info
->flags
& DF_TEXTREL
))
10154 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
10156 swap_out_p
= FALSE
;
10160 swap_out_p
= FALSE
;
10161 if (htab
->is_vxworks
10162 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10167 if (swap_out_p
|| dyn_skipped
)
10168 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10169 (dynobj
, &dyn
, b
- dyn_skipped
);
10173 dyn_skipped
+= dyn_to_skip
;
10178 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10179 if (dyn_skipped
> 0)
10180 memset (b
- dyn_skipped
, 0, dyn_skipped
);
10183 if (sgot
!= NULL
&& sgot
->size
> 0
10184 && !bfd_is_abs_section (sgot
->output_section
))
10186 if (htab
->is_vxworks
)
10188 /* The first entry of the global offset table points to the
10189 ".dynamic" section. The second is initialized by the
10190 loader and contains the shared library identifier.
10191 The third is also initialized by the loader and points
10192 to the lazy resolution stub. */
10193 MIPS_ELF_PUT_WORD (output_bfd
,
10194 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
10196 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10197 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10198 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10200 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
10204 /* The first entry of the global offset table will be filled at
10205 runtime. The second entry will be used by some runtime loaders.
10206 This isn't the case of IRIX rld. */
10207 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10208 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10209 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10212 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
10213 = MIPS_ELF_GOT_SIZE (output_bfd
);
10216 /* Generate dynamic relocations for the non-primary gots. */
10217 if (gg
!= NULL
&& gg
->next
)
10219 Elf_Internal_Rela rel
[3];
10220 bfd_vma addend
= 0;
10222 memset (rel
, 0, sizeof (rel
));
10223 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
10225 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
10227 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
10228 + g
->next
->tls_gotno
;
10230 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
10231 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10232 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10234 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10236 if (! info
->shared
)
10239 while (index
< g
->assigned_gotno
)
10241 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
10242 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
10243 if (!(mips_elf_create_dynamic_relocation
10244 (output_bfd
, info
, rel
, NULL
,
10245 bfd_abs_section_ptr
,
10246 0, &addend
, sgot
)))
10248 BFD_ASSERT (addend
== 0);
10253 /* The generation of dynamic relocations for the non-primary gots
10254 adds more dynamic relocations. We cannot count them until
10257 if (elf_hash_table (info
)->dynamic_sections_created
)
10260 bfd_boolean swap_out_p
;
10262 BFD_ASSERT (sdyn
!= NULL
);
10264 for (b
= sdyn
->contents
;
10265 b
< sdyn
->contents
+ sdyn
->size
;
10266 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10268 Elf_Internal_Dyn dyn
;
10271 /* Read in the current dynamic entry. */
10272 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10274 /* Assume that we're going to modify it and write it out. */
10280 /* Reduce DT_RELSZ to account for any relocations we
10281 decided not to make. This is for the n64 irix rld,
10282 which doesn't seem to apply any relocations if there
10283 are trailing null entries. */
10284 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10285 dyn
.d_un
.d_val
= (s
->reloc_count
10286 * (ABI_64_P (output_bfd
)
10287 ? sizeof (Elf64_Mips_External_Rel
)
10288 : sizeof (Elf32_External_Rel
)));
10289 /* Adjust the section size too. Tools like the prelinker
10290 can reasonably expect the values to the same. */
10291 elf_section_data (s
->output_section
)->this_hdr
.sh_size
10296 swap_out_p
= FALSE
;
10301 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10308 Elf32_compact_rel cpt
;
10310 if (SGI_COMPAT (output_bfd
))
10312 /* Write .compact_rel section out. */
10313 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
10317 cpt
.num
= s
->reloc_count
;
10319 cpt
.offset
= (s
->output_section
->filepos
10320 + sizeof (Elf32_External_compact_rel
));
10323 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
10324 ((Elf32_External_compact_rel
*)
10327 /* Clean up a dummy stub function entry in .text. */
10328 if (htab
->sstubs
!= NULL
)
10330 file_ptr dummy_offset
;
10332 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
10333 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
10334 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
10335 htab
->function_stub_size
);
10340 /* The psABI says that the dynamic relocations must be sorted in
10341 increasing order of r_symndx. The VxWorks EABI doesn't require
10342 this, and because the code below handles REL rather than RELA
10343 relocations, using it for VxWorks would be outright harmful. */
10344 if (!htab
->is_vxworks
)
10346 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10348 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
10350 reldyn_sorting_bfd
= output_bfd
;
10352 if (ABI_64_P (output_bfd
))
10353 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
10354 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
10355 sort_dynamic_relocs_64
);
10357 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
10358 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
10359 sort_dynamic_relocs
);
10364 if (htab
->splt
&& htab
->splt
->size
> 0)
10366 if (htab
->is_vxworks
)
10369 mips_vxworks_finish_shared_plt (output_bfd
, info
);
10371 mips_vxworks_finish_exec_plt (output_bfd
, info
);
10375 BFD_ASSERT (!info
->shared
);
10376 mips_finish_exec_plt (output_bfd
, info
);
10383 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10386 mips_set_isa_flags (bfd
*abfd
)
10390 switch (bfd_get_mach (abfd
))
10393 case bfd_mach_mips3000
:
10394 val
= E_MIPS_ARCH_1
;
10397 case bfd_mach_mips3900
:
10398 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
10401 case bfd_mach_mips6000
:
10402 val
= E_MIPS_ARCH_2
;
10405 case bfd_mach_mips4000
:
10406 case bfd_mach_mips4300
:
10407 case bfd_mach_mips4400
:
10408 case bfd_mach_mips4600
:
10409 val
= E_MIPS_ARCH_3
;
10412 case bfd_mach_mips4010
:
10413 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
10416 case bfd_mach_mips4100
:
10417 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
10420 case bfd_mach_mips4111
:
10421 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
10424 case bfd_mach_mips4120
:
10425 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
10428 case bfd_mach_mips4650
:
10429 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
10432 case bfd_mach_mips5400
:
10433 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
10436 case bfd_mach_mips5500
:
10437 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
10440 case bfd_mach_mips9000
:
10441 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
10444 case bfd_mach_mips5000
:
10445 case bfd_mach_mips7000
:
10446 case bfd_mach_mips8000
:
10447 case bfd_mach_mips10000
:
10448 case bfd_mach_mips12000
:
10449 case bfd_mach_mips14000
:
10450 case bfd_mach_mips16000
:
10451 val
= E_MIPS_ARCH_4
;
10454 case bfd_mach_mips5
:
10455 val
= E_MIPS_ARCH_5
;
10458 case bfd_mach_mips_loongson_2e
:
10459 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
10462 case bfd_mach_mips_loongson_2f
:
10463 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
10466 case bfd_mach_mips_sb1
:
10467 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
10470 case bfd_mach_mips_octeon
:
10471 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
10474 case bfd_mach_mips_xlr
:
10475 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
10478 case bfd_mach_mipsisa32
:
10479 val
= E_MIPS_ARCH_32
;
10482 case bfd_mach_mipsisa64
:
10483 val
= E_MIPS_ARCH_64
;
10486 case bfd_mach_mipsisa32r2
:
10487 val
= E_MIPS_ARCH_32R2
;
10490 case bfd_mach_mipsisa64r2
:
10491 val
= E_MIPS_ARCH_64R2
;
10494 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
10495 elf_elfheader (abfd
)->e_flags
|= val
;
10500 /* The final processing done just before writing out a MIPS ELF object
10501 file. This gets the MIPS architecture right based on the machine
10502 number. This is used by both the 32-bit and the 64-bit ABI. */
10505 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
10506 bfd_boolean linker ATTRIBUTE_UNUSED
)
10509 Elf_Internal_Shdr
**hdrpp
;
10513 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10514 is nonzero. This is for compatibility with old objects, which used
10515 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10516 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
10517 mips_set_isa_flags (abfd
);
10519 /* Set the sh_info field for .gptab sections and other appropriate
10520 info for each special section. */
10521 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
10522 i
< elf_numsections (abfd
);
10525 switch ((*hdrpp
)->sh_type
)
10527 case SHT_MIPS_MSYM
:
10528 case SHT_MIPS_LIBLIST
:
10529 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
10531 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10534 case SHT_MIPS_GPTAB
:
10535 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10536 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10537 BFD_ASSERT (name
!= NULL
10538 && CONST_STRNEQ (name
, ".gptab."));
10539 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
10540 BFD_ASSERT (sec
!= NULL
);
10541 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10544 case SHT_MIPS_CONTENT
:
10545 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10546 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10547 BFD_ASSERT (name
!= NULL
10548 && CONST_STRNEQ (name
, ".MIPS.content"));
10549 sec
= bfd_get_section_by_name (abfd
,
10550 name
+ sizeof ".MIPS.content" - 1);
10551 BFD_ASSERT (sec
!= NULL
);
10552 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10555 case SHT_MIPS_SYMBOL_LIB
:
10556 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
10558 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10559 sec
= bfd_get_section_by_name (abfd
, ".liblist");
10561 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
10564 case SHT_MIPS_EVENTS
:
10565 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
10566 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
10567 BFD_ASSERT (name
!= NULL
);
10568 if (CONST_STRNEQ (name
, ".MIPS.events"))
10569 sec
= bfd_get_section_by_name (abfd
,
10570 name
+ sizeof ".MIPS.events" - 1);
10573 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
10574 sec
= bfd_get_section_by_name (abfd
,
10576 + sizeof ".MIPS.post_rel" - 1));
10578 BFD_ASSERT (sec
!= NULL
);
10579 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
10586 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10590 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
10591 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
10596 /* See if we need a PT_MIPS_REGINFO segment. */
10597 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10598 if (s
&& (s
->flags
& SEC_LOAD
))
10601 /* See if we need a PT_MIPS_OPTIONS segment. */
10602 if (IRIX_COMPAT (abfd
) == ict_irix6
10603 && bfd_get_section_by_name (abfd
,
10604 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
10607 /* See if we need a PT_MIPS_RTPROC segment. */
10608 if (IRIX_COMPAT (abfd
) == ict_irix5
10609 && bfd_get_section_by_name (abfd
, ".dynamic")
10610 && bfd_get_section_by_name (abfd
, ".mdebug"))
10613 /* Allocate a PT_NULL header in dynamic objects. See
10614 _bfd_mips_elf_modify_segment_map for details. */
10615 if (!SGI_COMPAT (abfd
)
10616 && bfd_get_section_by_name (abfd
, ".dynamic"))
10622 /* Modify the segment map for an IRIX5 executable. */
10625 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
10626 struct bfd_link_info
*info
)
10629 struct elf_segment_map
*m
, **pm
;
10632 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10634 s
= bfd_get_section_by_name (abfd
, ".reginfo");
10635 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10637 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10638 if (m
->p_type
== PT_MIPS_REGINFO
)
10643 m
= bfd_zalloc (abfd
, amt
);
10647 m
->p_type
= PT_MIPS_REGINFO
;
10649 m
->sections
[0] = s
;
10651 /* We want to put it after the PHDR and INTERP segments. */
10652 pm
= &elf_tdata (abfd
)->segment_map
;
10654 && ((*pm
)->p_type
== PT_PHDR
10655 || (*pm
)->p_type
== PT_INTERP
))
10663 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10664 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10665 PT_MIPS_OPTIONS segment immediately following the program header
10667 if (NEWABI_P (abfd
)
10668 /* On non-IRIX6 new abi, we'll have already created a segment
10669 for this section, so don't create another. I'm not sure this
10670 is not also the case for IRIX 6, but I can't test it right
10672 && IRIX_COMPAT (abfd
) == ict_irix6
)
10674 for (s
= abfd
->sections
; s
; s
= s
->next
)
10675 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
10680 struct elf_segment_map
*options_segment
;
10682 pm
= &elf_tdata (abfd
)->segment_map
;
10684 && ((*pm
)->p_type
== PT_PHDR
10685 || (*pm
)->p_type
== PT_INTERP
))
10688 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
10690 amt
= sizeof (struct elf_segment_map
);
10691 options_segment
= bfd_zalloc (abfd
, amt
);
10692 options_segment
->next
= *pm
;
10693 options_segment
->p_type
= PT_MIPS_OPTIONS
;
10694 options_segment
->p_flags
= PF_R
;
10695 options_segment
->p_flags_valid
= TRUE
;
10696 options_segment
->count
= 1;
10697 options_segment
->sections
[0] = s
;
10698 *pm
= options_segment
;
10704 if (IRIX_COMPAT (abfd
) == ict_irix5
)
10706 /* If there are .dynamic and .mdebug sections, we make a room
10707 for the RTPROC header. FIXME: Rewrite without section names. */
10708 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
10709 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
10710 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
10712 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
10713 if (m
->p_type
== PT_MIPS_RTPROC
)
10718 m
= bfd_zalloc (abfd
, amt
);
10722 m
->p_type
= PT_MIPS_RTPROC
;
10724 s
= bfd_get_section_by_name (abfd
, ".rtproc");
10729 m
->p_flags_valid
= 1;
10734 m
->sections
[0] = s
;
10737 /* We want to put it after the DYNAMIC segment. */
10738 pm
= &elf_tdata (abfd
)->segment_map
;
10739 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
10749 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10750 .dynstr, .dynsym, and .hash sections, and everything in
10752 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
10754 if ((*pm
)->p_type
== PT_DYNAMIC
)
10757 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
10759 /* For a normal mips executable the permissions for the PT_DYNAMIC
10760 segment are read, write and execute. We do that here since
10761 the code in elf.c sets only the read permission. This matters
10762 sometimes for the dynamic linker. */
10763 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
10765 m
->p_flags
= PF_R
| PF_W
| PF_X
;
10766 m
->p_flags_valid
= 1;
10769 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10770 glibc's dynamic linker has traditionally derived the number of
10771 tags from the p_filesz field, and sometimes allocates stack
10772 arrays of that size. An overly-big PT_DYNAMIC segment can
10773 be actively harmful in such cases. Making PT_DYNAMIC contain
10774 other sections can also make life hard for the prelinker,
10775 which might move one of the other sections to a different
10776 PT_LOAD segment. */
10777 if (SGI_COMPAT (abfd
)
10780 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
10782 static const char *sec_names
[] =
10784 ".dynamic", ".dynstr", ".dynsym", ".hash"
10788 struct elf_segment_map
*n
;
10790 low
= ~(bfd_vma
) 0;
10792 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
10794 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
10795 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
10802 if (high
< s
->vma
+ sz
)
10803 high
= s
->vma
+ sz
;
10808 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10809 if ((s
->flags
& SEC_LOAD
) != 0
10811 && s
->vma
+ s
->size
<= high
)
10814 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
10815 n
= bfd_zalloc (abfd
, amt
);
10822 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10824 if ((s
->flags
& SEC_LOAD
) != 0
10826 && s
->vma
+ s
->size
<= high
)
10828 n
->sections
[i
] = s
;
10837 /* Allocate a spare program header in dynamic objects so that tools
10838 like the prelinker can add an extra PT_LOAD entry.
10840 If the prelinker needs to make room for a new PT_LOAD entry, its
10841 standard procedure is to move the first (read-only) sections into
10842 the new (writable) segment. However, the MIPS ABI requires
10843 .dynamic to be in a read-only segment, and the section will often
10844 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10846 Although the prelinker could in principle move .dynamic to a
10847 writable segment, it seems better to allocate a spare program
10848 header instead, and avoid the need to move any sections.
10849 There is a long tradition of allocating spare dynamic tags,
10850 so allocating a spare program header seems like a natural
10853 If INFO is NULL, we may be copying an already prelinked binary
10854 with objcopy or strip, so do not add this header. */
10856 && !SGI_COMPAT (abfd
)
10857 && bfd_get_section_by_name (abfd
, ".dynamic"))
10859 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
10860 if ((*pm
)->p_type
== PT_NULL
)
10864 m
= bfd_zalloc (abfd
, sizeof (*m
));
10868 m
->p_type
= PT_NULL
;
10876 /* Return the section that should be marked against GC for a given
10880 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
10881 struct bfd_link_info
*info
,
10882 Elf_Internal_Rela
*rel
,
10883 struct elf_link_hash_entry
*h
,
10884 Elf_Internal_Sym
*sym
)
10886 /* ??? Do mips16 stub sections need to be handled special? */
10889 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
10891 case R_MIPS_GNU_VTINHERIT
:
10892 case R_MIPS_GNU_VTENTRY
:
10896 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10899 /* Update the got entry reference counts for the section being removed. */
10902 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
10903 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
10904 asection
*sec ATTRIBUTE_UNUSED
,
10905 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
10908 Elf_Internal_Shdr
*symtab_hdr
;
10909 struct elf_link_hash_entry
**sym_hashes
;
10910 bfd_signed_vma
*local_got_refcounts
;
10911 const Elf_Internal_Rela
*rel
, *relend
;
10912 unsigned long r_symndx
;
10913 struct elf_link_hash_entry
*h
;
10915 if (info
->relocatable
)
10918 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10919 sym_hashes
= elf_sym_hashes (abfd
);
10920 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10922 relend
= relocs
+ sec
->reloc_count
;
10923 for (rel
= relocs
; rel
< relend
; rel
++)
10924 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
10926 case R_MIPS16_GOT16
:
10927 case R_MIPS16_CALL16
:
10929 case R_MIPS_CALL16
:
10930 case R_MIPS_CALL_HI16
:
10931 case R_MIPS_CALL_LO16
:
10932 case R_MIPS_GOT_HI16
:
10933 case R_MIPS_GOT_LO16
:
10934 case R_MIPS_GOT_DISP
:
10935 case R_MIPS_GOT_PAGE
:
10936 case R_MIPS_GOT_OFST
:
10937 /* ??? It would seem that the existing MIPS code does no sort
10938 of reference counting or whatnot on its GOT and PLT entries,
10939 so it is not possible to garbage collect them at this time. */
10950 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10951 hiding the old indirect symbol. Process additional relocation
10952 information. Also called for weakdefs, in which case we just let
10953 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10956 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
10957 struct elf_link_hash_entry
*dir
,
10958 struct elf_link_hash_entry
*ind
)
10960 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
10962 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
10964 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
10965 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
10966 /* Any absolute non-dynamic relocations against an indirect or weak
10967 definition will be against the target symbol. */
10968 if (indmips
->has_static_relocs
)
10969 dirmips
->has_static_relocs
= TRUE
;
10971 if (ind
->root
.type
!= bfd_link_hash_indirect
)
10974 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
10975 if (indmips
->readonly_reloc
)
10976 dirmips
->readonly_reloc
= TRUE
;
10977 if (indmips
->no_fn_stub
)
10978 dirmips
->no_fn_stub
= TRUE
;
10979 if (indmips
->fn_stub
)
10981 dirmips
->fn_stub
= indmips
->fn_stub
;
10982 indmips
->fn_stub
= NULL
;
10984 if (indmips
->need_fn_stub
)
10986 dirmips
->need_fn_stub
= TRUE
;
10987 indmips
->need_fn_stub
= FALSE
;
10989 if (indmips
->call_stub
)
10991 dirmips
->call_stub
= indmips
->call_stub
;
10992 indmips
->call_stub
= NULL
;
10994 if (indmips
->call_fp_stub
)
10996 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
10997 indmips
->call_fp_stub
= NULL
;
10999 if (indmips
->global_got_area
< dirmips
->global_got_area
)
11000 dirmips
->global_got_area
= indmips
->global_got_area
;
11001 if (indmips
->global_got_area
< GGA_NONE
)
11002 indmips
->global_got_area
= GGA_NONE
;
11003 if (indmips
->has_nonpic_branches
)
11004 dirmips
->has_nonpic_branches
= TRUE
;
11006 if (dirmips
->tls_type
== 0)
11007 dirmips
->tls_type
= indmips
->tls_type
;
11010 #define PDR_SIZE 32
11013 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
11014 struct bfd_link_info
*info
)
11017 bfd_boolean ret
= FALSE
;
11018 unsigned char *tdata
;
11021 o
= bfd_get_section_by_name (abfd
, ".pdr");
11026 if (o
->size
% PDR_SIZE
!= 0)
11028 if (o
->output_section
!= NULL
11029 && bfd_is_abs_section (o
->output_section
))
11032 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
11036 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
11037 info
->keep_memory
);
11044 cookie
->rel
= cookie
->rels
;
11045 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
11047 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
11049 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
11058 mips_elf_section_data (o
)->u
.tdata
= tdata
;
11059 o
->size
-= skip
* PDR_SIZE
;
11065 if (! info
->keep_memory
)
11066 free (cookie
->rels
);
11072 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
11074 if (strcmp (sec
->name
, ".pdr") == 0)
11080 _bfd_mips_elf_write_section (bfd
*output_bfd
,
11081 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
11082 asection
*sec
, bfd_byte
*contents
)
11084 bfd_byte
*to
, *from
, *end
;
11087 if (strcmp (sec
->name
, ".pdr") != 0)
11090 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
11094 end
= contents
+ sec
->size
;
11095 for (from
= contents
, i
= 0;
11097 from
+= PDR_SIZE
, i
++)
11099 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
11102 memcpy (to
, from
, PDR_SIZE
);
11105 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
11106 sec
->output_offset
, sec
->size
);
11110 /* MIPS ELF uses a special find_nearest_line routine in order the
11111 handle the ECOFF debugging information. */
11113 struct mips_elf_find_line
11115 struct ecoff_debug_info d
;
11116 struct ecoff_find_line i
;
11120 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
11121 asymbol
**symbols
, bfd_vma offset
,
11122 const char **filename_ptr
,
11123 const char **functionname_ptr
,
11124 unsigned int *line_ptr
)
11128 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
11129 filename_ptr
, functionname_ptr
,
11133 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11134 filename_ptr
, functionname_ptr
,
11135 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
11136 &elf_tdata (abfd
)->dwarf2_find_line_info
))
11139 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
11142 flagword origflags
;
11143 struct mips_elf_find_line
*fi
;
11144 const struct ecoff_debug_swap
* const swap
=
11145 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
11147 /* If we are called during a link, mips_elf_final_link may have
11148 cleared the SEC_HAS_CONTENTS field. We force it back on here
11149 if appropriate (which it normally will be). */
11150 origflags
= msec
->flags
;
11151 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
11152 msec
->flags
|= SEC_HAS_CONTENTS
;
11154 fi
= elf_tdata (abfd
)->find_line_info
;
11157 bfd_size_type external_fdr_size
;
11160 struct fdr
*fdr_ptr
;
11161 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
11163 fi
= bfd_zalloc (abfd
, amt
);
11166 msec
->flags
= origflags
;
11170 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
11172 msec
->flags
= origflags
;
11176 /* Swap in the FDR information. */
11177 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
11178 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
11179 if (fi
->d
.fdr
== NULL
)
11181 msec
->flags
= origflags
;
11184 external_fdr_size
= swap
->external_fdr_size
;
11185 fdr_ptr
= fi
->d
.fdr
;
11186 fraw_src
= (char *) fi
->d
.external_fdr
;
11187 fraw_end
= (fraw_src
11188 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
11189 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
11190 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
11192 elf_tdata (abfd
)->find_line_info
= fi
;
11194 /* Note that we don't bother to ever free this information.
11195 find_nearest_line is either called all the time, as in
11196 objdump -l, so the information should be saved, or it is
11197 rarely called, as in ld error messages, so the memory
11198 wasted is unimportant. Still, it would probably be a
11199 good idea for free_cached_info to throw it away. */
11202 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
11203 &fi
->i
, filename_ptr
, functionname_ptr
,
11206 msec
->flags
= origflags
;
11210 msec
->flags
= origflags
;
11213 /* Fall back on the generic ELF find_nearest_line routine. */
11215 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
11216 filename_ptr
, functionname_ptr
,
11221 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
11222 const char **filename_ptr
,
11223 const char **functionname_ptr
,
11224 unsigned int *line_ptr
)
11227 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11228 functionname_ptr
, line_ptr
,
11229 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11234 /* When are writing out the .options or .MIPS.options section,
11235 remember the bytes we are writing out, so that we can install the
11236 GP value in the section_processing routine. */
11239 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
11240 const void *location
,
11241 file_ptr offset
, bfd_size_type count
)
11243 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
11247 if (elf_section_data (section
) == NULL
)
11249 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
11250 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
11251 if (elf_section_data (section
) == NULL
)
11254 c
= mips_elf_section_data (section
)->u
.tdata
;
11257 c
= bfd_zalloc (abfd
, section
->size
);
11260 mips_elf_section_data (section
)->u
.tdata
= c
;
11263 memcpy (c
+ offset
, location
, count
);
11266 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
11270 /* This is almost identical to bfd_generic_get_... except that some
11271 MIPS relocations need to be handled specially. Sigh. */
11274 _bfd_elf_mips_get_relocated_section_contents
11276 struct bfd_link_info
*link_info
,
11277 struct bfd_link_order
*link_order
,
11279 bfd_boolean relocatable
,
11282 /* Get enough memory to hold the stuff */
11283 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
11284 asection
*input_section
= link_order
->u
.indirect
.section
;
11287 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
11288 arelent
**reloc_vector
= NULL
;
11291 if (reloc_size
< 0)
11294 reloc_vector
= bfd_malloc (reloc_size
);
11295 if (reloc_vector
== NULL
&& reloc_size
!= 0)
11298 /* read in the section */
11299 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
11300 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
11303 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
11307 if (reloc_count
< 0)
11310 if (reloc_count
> 0)
11315 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
11318 struct bfd_hash_entry
*h
;
11319 struct bfd_link_hash_entry
*lh
;
11320 /* Skip all this stuff if we aren't mixing formats. */
11321 if (abfd
&& input_bfd
11322 && abfd
->xvec
== input_bfd
->xvec
)
11326 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
11327 lh
= (struct bfd_link_hash_entry
*) h
;
11334 case bfd_link_hash_undefined
:
11335 case bfd_link_hash_undefweak
:
11336 case bfd_link_hash_common
:
11339 case bfd_link_hash_defined
:
11340 case bfd_link_hash_defweak
:
11342 gp
= lh
->u
.def
.value
;
11344 case bfd_link_hash_indirect
:
11345 case bfd_link_hash_warning
:
11347 /* @@FIXME ignoring warning for now */
11349 case bfd_link_hash_new
:
11358 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
11360 char *error_message
= NULL
;
11361 bfd_reloc_status_type r
;
11363 /* Specific to MIPS: Deal with relocation types that require
11364 knowing the gp of the output bfd. */
11365 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
11367 /* If we've managed to find the gp and have a special
11368 function for the relocation then go ahead, else default
11369 to the generic handling. */
11371 && (*parent
)->howto
->special_function
11372 == _bfd_mips_elf32_gprel16_reloc
)
11373 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
11374 input_section
, relocatable
,
11377 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
11379 relocatable
? abfd
: NULL
,
11384 asection
*os
= input_section
->output_section
;
11386 /* A partial link, so keep the relocs */
11387 os
->orelocation
[os
->reloc_count
] = *parent
;
11391 if (r
!= bfd_reloc_ok
)
11395 case bfd_reloc_undefined
:
11396 if (!((*link_info
->callbacks
->undefined_symbol
)
11397 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11398 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
11401 case bfd_reloc_dangerous
:
11402 BFD_ASSERT (error_message
!= NULL
);
11403 if (!((*link_info
->callbacks
->reloc_dangerous
)
11404 (link_info
, error_message
, input_bfd
, input_section
,
11405 (*parent
)->address
)))
11408 case bfd_reloc_overflow
:
11409 if (!((*link_info
->callbacks
->reloc_overflow
)
11411 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11412 (*parent
)->howto
->name
, (*parent
)->addend
,
11413 input_bfd
, input_section
, (*parent
)->address
)))
11416 case bfd_reloc_outofrange
:
11425 if (reloc_vector
!= NULL
)
11426 free (reloc_vector
);
11430 if (reloc_vector
!= NULL
)
11431 free (reloc_vector
);
11435 /* Allocate ABFD's target-dependent data. */
11438 _bfd_mips_elf_mkobject (bfd
*abfd
)
11440 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
11444 /* Create a MIPS ELF linker hash table. */
11446 struct bfd_link_hash_table
*
11447 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
11449 struct mips_elf_link_hash_table
*ret
;
11450 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
11452 ret
= bfd_malloc (amt
);
11456 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
11457 mips_elf_link_hash_newfunc
,
11458 sizeof (struct mips_elf_link_hash_entry
)))
11465 /* We no longer use this. */
11466 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
11467 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
11469 ret
->procedure_count
= 0;
11470 ret
->compact_rel_size
= 0;
11471 ret
->use_rld_obj_head
= FALSE
;
11472 ret
->rld_value
= 0;
11473 ret
->mips16_stubs_seen
= FALSE
;
11474 ret
->use_plts_and_copy_relocs
= FALSE
;
11475 ret
->is_vxworks
= FALSE
;
11476 ret
->small_data_overflow_reported
= FALSE
;
11477 ret
->srelbss
= NULL
;
11478 ret
->sdynbss
= NULL
;
11479 ret
->srelplt
= NULL
;
11480 ret
->srelplt2
= NULL
;
11481 ret
->sgotplt
= NULL
;
11483 ret
->sstubs
= NULL
;
11485 ret
->got_info
= NULL
;
11486 ret
->plt_header_size
= 0;
11487 ret
->plt_entry_size
= 0;
11488 ret
->lazy_stub_count
= 0;
11489 ret
->function_stub_size
= 0;
11490 ret
->strampoline
= NULL
;
11491 ret
->la25_stubs
= NULL
;
11492 ret
->add_stub_section
= NULL
;
11494 return &ret
->root
.root
;
11497 /* Likewise, but indicate that the target is VxWorks. */
11499 struct bfd_link_hash_table
*
11500 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
11502 struct bfd_link_hash_table
*ret
;
11504 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
11507 struct mips_elf_link_hash_table
*htab
;
11509 htab
= (struct mips_elf_link_hash_table
*) ret
;
11510 htab
->use_plts_and_copy_relocs
= TRUE
;
11511 htab
->is_vxworks
= TRUE
;
11516 /* A function that the linker calls if we are allowed to use PLTs
11517 and copy relocs. */
11520 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
11522 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
11525 /* We need to use a special link routine to handle the .reginfo and
11526 the .mdebug sections. We need to merge all instances of these
11527 sections together, not write them all out sequentially. */
11530 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11533 struct bfd_link_order
*p
;
11534 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
11535 asection
*rtproc_sec
;
11536 Elf32_RegInfo reginfo
;
11537 struct ecoff_debug_info debug
;
11538 struct mips_htab_traverse_info hti
;
11539 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11540 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
11541 HDRR
*symhdr
= &debug
.symbolic_header
;
11542 void *mdebug_handle
= NULL
;
11547 struct mips_elf_link_hash_table
*htab
;
11549 static const char * const secname
[] =
11551 ".text", ".init", ".fini", ".data",
11552 ".rodata", ".sdata", ".sbss", ".bss"
11554 static const int sc
[] =
11556 scText
, scInit
, scFini
, scData
,
11557 scRData
, scSData
, scSBss
, scBss
11560 /* Sort the dynamic symbols so that those with GOT entries come after
11562 htab
= mips_elf_hash_table (info
);
11563 if (!mips_elf_sort_hash_table (abfd
, info
))
11566 /* Create any scheduled LA25 stubs. */
11568 hti
.output_bfd
= abfd
;
11570 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
11574 /* Get a value for the GP register. */
11575 if (elf_gp (abfd
) == 0)
11577 struct bfd_link_hash_entry
*h
;
11579 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
11580 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
11581 elf_gp (abfd
) = (h
->u
.def
.value
11582 + h
->u
.def
.section
->output_section
->vma
11583 + h
->u
.def
.section
->output_offset
);
11584 else if (htab
->is_vxworks
11585 && (h
= bfd_link_hash_lookup (info
->hash
,
11586 "_GLOBAL_OFFSET_TABLE_",
11587 FALSE
, FALSE
, TRUE
))
11588 && h
->type
== bfd_link_hash_defined
)
11589 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
11590 + h
->u
.def
.section
->output_offset
11592 else if (info
->relocatable
)
11594 bfd_vma lo
= MINUS_ONE
;
11596 /* Find the GP-relative section with the lowest offset. */
11597 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11599 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
11602 /* And calculate GP relative to that. */
11603 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
11607 /* If the relocate_section function needs to do a reloc
11608 involving the GP value, it should make a reloc_dangerous
11609 callback to warn that GP is not defined. */
11613 /* Go through the sections and collect the .reginfo and .mdebug
11615 reginfo_sec
= NULL
;
11617 gptab_data_sec
= NULL
;
11618 gptab_bss_sec
= NULL
;
11619 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11621 if (strcmp (o
->name
, ".reginfo") == 0)
11623 memset (®info
, 0, sizeof reginfo
);
11625 /* We have found the .reginfo section in the output file.
11626 Look through all the link_orders comprising it and merge
11627 the information together. */
11628 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11630 asection
*input_section
;
11632 Elf32_External_RegInfo ext
;
11635 if (p
->type
!= bfd_indirect_link_order
)
11637 if (p
->type
== bfd_data_link_order
)
11642 input_section
= p
->u
.indirect
.section
;
11643 input_bfd
= input_section
->owner
;
11645 if (! bfd_get_section_contents (input_bfd
, input_section
,
11646 &ext
, 0, sizeof ext
))
11649 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
11651 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
11652 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
11653 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
11654 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
11655 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
11657 /* ri_gp_value is set by the function
11658 mips_elf32_section_processing when the section is
11659 finally written out. */
11661 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11662 elf_link_input_bfd ignores this section. */
11663 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11666 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11667 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
11669 /* Skip this section later on (I don't think this currently
11670 matters, but someday it might). */
11671 o
->map_head
.link_order
= NULL
;
11676 if (strcmp (o
->name
, ".mdebug") == 0)
11678 struct extsym_info einfo
;
11681 /* We have found the .mdebug section in the output file.
11682 Look through all the link_orders comprising it and merge
11683 the information together. */
11684 symhdr
->magic
= swap
->sym_magic
;
11685 /* FIXME: What should the version stamp be? */
11686 symhdr
->vstamp
= 0;
11687 symhdr
->ilineMax
= 0;
11688 symhdr
->cbLine
= 0;
11689 symhdr
->idnMax
= 0;
11690 symhdr
->ipdMax
= 0;
11691 symhdr
->isymMax
= 0;
11692 symhdr
->ioptMax
= 0;
11693 symhdr
->iauxMax
= 0;
11694 symhdr
->issMax
= 0;
11695 symhdr
->issExtMax
= 0;
11696 symhdr
->ifdMax
= 0;
11698 symhdr
->iextMax
= 0;
11700 /* We accumulate the debugging information itself in the
11701 debug_info structure. */
11703 debug
.external_dnr
= NULL
;
11704 debug
.external_pdr
= NULL
;
11705 debug
.external_sym
= NULL
;
11706 debug
.external_opt
= NULL
;
11707 debug
.external_aux
= NULL
;
11709 debug
.ssext
= debug
.ssext_end
= NULL
;
11710 debug
.external_fdr
= NULL
;
11711 debug
.external_rfd
= NULL
;
11712 debug
.external_ext
= debug
.external_ext_end
= NULL
;
11714 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
11715 if (mdebug_handle
== NULL
)
11719 esym
.cobol_main
= 0;
11723 esym
.asym
.iss
= issNil
;
11724 esym
.asym
.st
= stLocal
;
11725 esym
.asym
.reserved
= 0;
11726 esym
.asym
.index
= indexNil
;
11728 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
11730 esym
.asym
.sc
= sc
[i
];
11731 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
11734 esym
.asym
.value
= s
->vma
;
11735 last
= s
->vma
+ s
->size
;
11738 esym
.asym
.value
= last
;
11739 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
11740 secname
[i
], &esym
))
11744 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11746 asection
*input_section
;
11748 const struct ecoff_debug_swap
*input_swap
;
11749 struct ecoff_debug_info input_debug
;
11753 if (p
->type
!= bfd_indirect_link_order
)
11755 if (p
->type
== bfd_data_link_order
)
11760 input_section
= p
->u
.indirect
.section
;
11761 input_bfd
= input_section
->owner
;
11763 if (!is_mips_elf (input_bfd
))
11765 /* I don't know what a non MIPS ELF bfd would be
11766 doing with a .mdebug section, but I don't really
11767 want to deal with it. */
11771 input_swap
= (get_elf_backend_data (input_bfd
)
11772 ->elf_backend_ecoff_debug_swap
);
11774 BFD_ASSERT (p
->size
== input_section
->size
);
11776 /* The ECOFF linking code expects that we have already
11777 read in the debugging information and set up an
11778 ecoff_debug_info structure, so we do that now. */
11779 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
11783 if (! (bfd_ecoff_debug_accumulate
11784 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
11785 &input_debug
, input_swap
, info
)))
11788 /* Loop through the external symbols. For each one with
11789 interesting information, try to find the symbol in
11790 the linker global hash table and save the information
11791 for the output external symbols. */
11792 eraw_src
= input_debug
.external_ext
;
11793 eraw_end
= (eraw_src
11794 + (input_debug
.symbolic_header
.iextMax
11795 * input_swap
->external_ext_size
));
11797 eraw_src
< eraw_end
;
11798 eraw_src
+= input_swap
->external_ext_size
)
11802 struct mips_elf_link_hash_entry
*h
;
11804 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
11805 if (ext
.asym
.sc
== scNil
11806 || ext
.asym
.sc
== scUndefined
11807 || ext
.asym
.sc
== scSUndefined
)
11810 name
= input_debug
.ssext
+ ext
.asym
.iss
;
11811 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
11812 name
, FALSE
, FALSE
, TRUE
);
11813 if (h
== NULL
|| h
->esym
.ifd
!= -2)
11818 BFD_ASSERT (ext
.ifd
11819 < input_debug
.symbolic_header
.ifdMax
);
11820 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
11826 /* Free up the information we just read. */
11827 free (input_debug
.line
);
11828 free (input_debug
.external_dnr
);
11829 free (input_debug
.external_pdr
);
11830 free (input_debug
.external_sym
);
11831 free (input_debug
.external_opt
);
11832 free (input_debug
.external_aux
);
11833 free (input_debug
.ss
);
11834 free (input_debug
.ssext
);
11835 free (input_debug
.external_fdr
);
11836 free (input_debug
.external_rfd
);
11837 free (input_debug
.external_ext
);
11839 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11840 elf_link_input_bfd ignores this section. */
11841 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11844 if (SGI_COMPAT (abfd
) && info
->shared
)
11846 /* Create .rtproc section. */
11847 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
11848 if (rtproc_sec
== NULL
)
11850 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
11851 | SEC_LINKER_CREATED
| SEC_READONLY
);
11853 rtproc_sec
= bfd_make_section_with_flags (abfd
,
11856 if (rtproc_sec
== NULL
11857 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
11861 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
11867 /* Build the external symbol information. */
11870 einfo
.debug
= &debug
;
11872 einfo
.failed
= FALSE
;
11873 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
11874 mips_elf_output_extsym
, &einfo
);
11878 /* Set the size of the .mdebug section. */
11879 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
11881 /* Skip this section later on (I don't think this currently
11882 matters, but someday it might). */
11883 o
->map_head
.link_order
= NULL
;
11888 if (CONST_STRNEQ (o
->name
, ".gptab."))
11890 const char *subname
;
11893 Elf32_External_gptab
*ext_tab
;
11896 /* The .gptab.sdata and .gptab.sbss sections hold
11897 information describing how the small data area would
11898 change depending upon the -G switch. These sections
11899 not used in executables files. */
11900 if (! info
->relocatable
)
11902 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11904 asection
*input_section
;
11906 if (p
->type
!= bfd_indirect_link_order
)
11908 if (p
->type
== bfd_data_link_order
)
11913 input_section
= p
->u
.indirect
.section
;
11915 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11916 elf_link_input_bfd ignores this section. */
11917 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11920 /* Skip this section later on (I don't think this
11921 currently matters, but someday it might). */
11922 o
->map_head
.link_order
= NULL
;
11924 /* Really remove the section. */
11925 bfd_section_list_remove (abfd
, o
);
11926 --abfd
->section_count
;
11931 /* There is one gptab for initialized data, and one for
11932 uninitialized data. */
11933 if (strcmp (o
->name
, ".gptab.sdata") == 0)
11934 gptab_data_sec
= o
;
11935 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
11939 (*_bfd_error_handler
)
11940 (_("%s: illegal section name `%s'"),
11941 bfd_get_filename (abfd
), o
->name
);
11942 bfd_set_error (bfd_error_nonrepresentable_section
);
11946 /* The linker script always combines .gptab.data and
11947 .gptab.sdata into .gptab.sdata, and likewise for
11948 .gptab.bss and .gptab.sbss. It is possible that there is
11949 no .sdata or .sbss section in the output file, in which
11950 case we must change the name of the output section. */
11951 subname
= o
->name
+ sizeof ".gptab" - 1;
11952 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
11954 if (o
== gptab_data_sec
)
11955 o
->name
= ".gptab.data";
11957 o
->name
= ".gptab.bss";
11958 subname
= o
->name
+ sizeof ".gptab" - 1;
11959 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
11962 /* Set up the first entry. */
11964 amt
= c
* sizeof (Elf32_gptab
);
11965 tab
= bfd_malloc (amt
);
11968 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
11969 tab
[0].gt_header
.gt_unused
= 0;
11971 /* Combine the input sections. */
11972 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11974 asection
*input_section
;
11976 bfd_size_type size
;
11977 unsigned long last
;
11978 bfd_size_type gpentry
;
11980 if (p
->type
!= bfd_indirect_link_order
)
11982 if (p
->type
== bfd_data_link_order
)
11987 input_section
= p
->u
.indirect
.section
;
11988 input_bfd
= input_section
->owner
;
11990 /* Combine the gptab entries for this input section one
11991 by one. We know that the input gptab entries are
11992 sorted by ascending -G value. */
11993 size
= input_section
->size
;
11995 for (gpentry
= sizeof (Elf32_External_gptab
);
11997 gpentry
+= sizeof (Elf32_External_gptab
))
11999 Elf32_External_gptab ext_gptab
;
12000 Elf32_gptab int_gptab
;
12006 if (! (bfd_get_section_contents
12007 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
12008 sizeof (Elf32_External_gptab
))))
12014 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
12016 val
= int_gptab
.gt_entry
.gt_g_value
;
12017 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
12020 for (look
= 1; look
< c
; look
++)
12022 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
12023 tab
[look
].gt_entry
.gt_bytes
+= add
;
12025 if (tab
[look
].gt_entry
.gt_g_value
== val
)
12031 Elf32_gptab
*new_tab
;
12034 /* We need a new table entry. */
12035 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
12036 new_tab
= bfd_realloc (tab
, amt
);
12037 if (new_tab
== NULL
)
12043 tab
[c
].gt_entry
.gt_g_value
= val
;
12044 tab
[c
].gt_entry
.gt_bytes
= add
;
12046 /* Merge in the size for the next smallest -G
12047 value, since that will be implied by this new
12050 for (look
= 1; look
< c
; look
++)
12052 if (tab
[look
].gt_entry
.gt_g_value
< val
12054 || (tab
[look
].gt_entry
.gt_g_value
12055 > tab
[max
].gt_entry
.gt_g_value
)))
12059 tab
[c
].gt_entry
.gt_bytes
+=
12060 tab
[max
].gt_entry
.gt_bytes
;
12065 last
= int_gptab
.gt_entry
.gt_bytes
;
12068 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12069 elf_link_input_bfd ignores this section. */
12070 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
12073 /* The table must be sorted by -G value. */
12075 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
12077 /* Swap out the table. */
12078 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
12079 ext_tab
= bfd_alloc (abfd
, amt
);
12080 if (ext_tab
== NULL
)
12086 for (j
= 0; j
< c
; j
++)
12087 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
12090 o
->size
= c
* sizeof (Elf32_External_gptab
);
12091 o
->contents
= (bfd_byte
*) ext_tab
;
12093 /* Skip this section later on (I don't think this currently
12094 matters, but someday it might). */
12095 o
->map_head
.link_order
= NULL
;
12099 /* Invoke the regular ELF backend linker to do all the work. */
12100 if (!bfd_elf_final_link (abfd
, info
))
12103 /* Now write out the computed sections. */
12105 if (reginfo_sec
!= NULL
)
12107 Elf32_External_RegInfo ext
;
12109 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
12110 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
12114 if (mdebug_sec
!= NULL
)
12116 BFD_ASSERT (abfd
->output_has_begun
);
12117 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
12119 mdebug_sec
->filepos
))
12122 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
12125 if (gptab_data_sec
!= NULL
)
12127 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
12128 gptab_data_sec
->contents
,
12129 0, gptab_data_sec
->size
))
12133 if (gptab_bss_sec
!= NULL
)
12135 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
12136 gptab_bss_sec
->contents
,
12137 0, gptab_bss_sec
->size
))
12141 if (SGI_COMPAT (abfd
))
12143 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
12144 if (rtproc_sec
!= NULL
)
12146 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
12147 rtproc_sec
->contents
,
12148 0, rtproc_sec
->size
))
12156 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12158 struct mips_mach_extension
{
12159 unsigned long extension
, base
;
12163 /* An array describing how BFD machines relate to one another. The entries
12164 are ordered topologically with MIPS I extensions listed last. */
12166 static const struct mips_mach_extension mips_mach_extensions
[] = {
12167 /* MIPS64r2 extensions. */
12168 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
12170 /* MIPS64 extensions. */
12171 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
12172 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
12173 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
12175 /* MIPS V extensions. */
12176 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
12178 /* R10000 extensions. */
12179 { bfd_mach_mips12000
, bfd_mach_mips10000
},
12180 { bfd_mach_mips14000
, bfd_mach_mips10000
},
12181 { bfd_mach_mips16000
, bfd_mach_mips10000
},
12183 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12184 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12185 better to allow vr5400 and vr5500 code to be merged anyway, since
12186 many libraries will just use the core ISA. Perhaps we could add
12187 some sort of ASE flag if this ever proves a problem. */
12188 { bfd_mach_mips5500
, bfd_mach_mips5400
},
12189 { bfd_mach_mips5400
, bfd_mach_mips5000
},
12191 /* MIPS IV extensions. */
12192 { bfd_mach_mips5
, bfd_mach_mips8000
},
12193 { bfd_mach_mips10000
, bfd_mach_mips8000
},
12194 { bfd_mach_mips5000
, bfd_mach_mips8000
},
12195 { bfd_mach_mips7000
, bfd_mach_mips8000
},
12196 { bfd_mach_mips9000
, bfd_mach_mips8000
},
12198 /* VR4100 extensions. */
12199 { bfd_mach_mips4120
, bfd_mach_mips4100
},
12200 { bfd_mach_mips4111
, bfd_mach_mips4100
},
12202 /* MIPS III extensions. */
12203 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
12204 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
12205 { bfd_mach_mips8000
, bfd_mach_mips4000
},
12206 { bfd_mach_mips4650
, bfd_mach_mips4000
},
12207 { bfd_mach_mips4600
, bfd_mach_mips4000
},
12208 { bfd_mach_mips4400
, bfd_mach_mips4000
},
12209 { bfd_mach_mips4300
, bfd_mach_mips4000
},
12210 { bfd_mach_mips4100
, bfd_mach_mips4000
},
12211 { bfd_mach_mips4010
, bfd_mach_mips4000
},
12213 /* MIPS32 extensions. */
12214 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
12216 /* MIPS II extensions. */
12217 { bfd_mach_mips4000
, bfd_mach_mips6000
},
12218 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
12220 /* MIPS I extensions. */
12221 { bfd_mach_mips6000
, bfd_mach_mips3000
},
12222 { bfd_mach_mips3900
, bfd_mach_mips3000
}
12226 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12229 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
12233 if (extension
== base
)
12236 if (base
== bfd_mach_mipsisa32
12237 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
12240 if (base
== bfd_mach_mipsisa32r2
12241 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
12244 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
12245 if (extension
== mips_mach_extensions
[i
].extension
)
12247 extension
= mips_mach_extensions
[i
].base
;
12248 if (extension
== base
)
12256 /* Return true if the given ELF header flags describe a 32-bit binary. */
12259 mips_32bit_flags_p (flagword flags
)
12261 return ((flags
& EF_MIPS_32BITMODE
) != 0
12262 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
12263 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
12264 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
12265 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
12266 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
12267 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
12271 /* Merge object attributes from IBFD into OBFD. Raise an error if
12272 there are conflicting attributes. */
12274 mips_elf_merge_obj_attributes (bfd
*ibfd
, bfd
*obfd
)
12276 obj_attribute
*in_attr
;
12277 obj_attribute
*out_attr
;
12279 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
12281 /* This is the first object. Copy the attributes. */
12282 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
12284 /* Use the Tag_null value to indicate the attributes have been
12286 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
12291 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12292 non-conflicting ones. */
12293 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
12294 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
12295 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12297 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
12298 if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12299 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
12300 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
12302 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12304 (_("Warning: %B uses unknown floating point ABI %d"), ibfd
,
12305 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12306 else if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
12308 (_("Warning: %B uses unknown floating point ABI %d"), obfd
,
12309 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
12311 switch (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12314 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12318 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12324 (_("Warning: %B uses hard float, %B uses soft float"),
12330 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12340 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12344 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12350 (_("Warning: %B uses hard float, %B uses soft float"),
12356 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12366 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12372 (_("Warning: %B uses hard float, %B uses soft float"),
12382 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
12386 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12392 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12398 (_("Warning: %B uses hard float, %B uses soft float"),
12412 /* Merge Tag_compatibility attributes and any common GNU ones. */
12413 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
12418 /* Merge backend specific data from an object file to the output
12419 object file when linking. */
12422 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
12424 flagword old_flags
;
12425 flagword new_flags
;
12427 bfd_boolean null_input_bfd
= TRUE
;
12430 /* Check if we have the same endianess */
12431 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
12433 (*_bfd_error_handler
)
12434 (_("%B: endianness incompatible with that of the selected emulation"),
12439 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
12442 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
12444 (*_bfd_error_handler
)
12445 (_("%B: ABI is incompatible with that of the selected emulation"),
12450 if (!mips_elf_merge_obj_attributes (ibfd
, obfd
))
12453 new_flags
= elf_elfheader (ibfd
)->e_flags
;
12454 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
12455 old_flags
= elf_elfheader (obfd
)->e_flags
;
12457 if (! elf_flags_init (obfd
))
12459 elf_flags_init (obfd
) = TRUE
;
12460 elf_elfheader (obfd
)->e_flags
= new_flags
;
12461 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
12462 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
12464 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
12465 && (bfd_get_arch_info (obfd
)->the_default
12466 || mips_mach_extends_p (bfd_get_mach (obfd
),
12467 bfd_get_mach (ibfd
))))
12469 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
12470 bfd_get_mach (ibfd
)))
12477 /* Check flag compatibility. */
12479 new_flags
&= ~EF_MIPS_NOREORDER
;
12480 old_flags
&= ~EF_MIPS_NOREORDER
;
12482 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12483 doesn't seem to matter. */
12484 new_flags
&= ~EF_MIPS_XGOT
;
12485 old_flags
&= ~EF_MIPS_XGOT
;
12487 /* MIPSpro generates ucode info in n64 objects. Again, we should
12488 just be able to ignore this. */
12489 new_flags
&= ~EF_MIPS_UCODE
;
12490 old_flags
&= ~EF_MIPS_UCODE
;
12492 /* DSOs should only be linked with CPIC code. */
12493 if ((ibfd
->flags
& DYNAMIC
) != 0)
12494 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
12496 if (new_flags
== old_flags
)
12499 /* Check to see if the input BFD actually contains any sections.
12500 If not, its flags may not have been initialised either, but it cannot
12501 actually cause any incompatibility. */
12502 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
12504 /* Ignore synthetic sections and empty .text, .data and .bss sections
12505 which are automatically generated by gas. */
12506 if (strcmp (sec
->name
, ".reginfo")
12507 && strcmp (sec
->name
, ".mdebug")
12509 || (strcmp (sec
->name
, ".text")
12510 && strcmp (sec
->name
, ".data")
12511 && strcmp (sec
->name
, ".bss"))))
12513 null_input_bfd
= FALSE
;
12517 if (null_input_bfd
)
12522 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
12523 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
12525 (*_bfd_error_handler
)
12526 (_("%B: warning: linking abicalls files with non-abicalls files"),
12531 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
12532 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
12533 if (! (new_flags
& EF_MIPS_PIC
))
12534 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
12536 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12537 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
12539 /* Compare the ISAs. */
12540 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
12542 (*_bfd_error_handler
)
12543 (_("%B: linking 32-bit code with 64-bit code"),
12547 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
12549 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12550 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
12552 /* Copy the architecture info from IBFD to OBFD. Also copy
12553 the 32-bit flag (if set) so that we continue to recognise
12554 OBFD as a 32-bit binary. */
12555 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
12556 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12557 elf_elfheader (obfd
)->e_flags
12558 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12560 /* Copy across the ABI flags if OBFD doesn't use them
12561 and if that was what caused us to treat IBFD as 32-bit. */
12562 if ((old_flags
& EF_MIPS_ABI
) == 0
12563 && mips_32bit_flags_p (new_flags
)
12564 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
12565 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
12569 /* The ISAs aren't compatible. */
12570 (*_bfd_error_handler
)
12571 (_("%B: linking %s module with previous %s modules"),
12573 bfd_printable_name (ibfd
),
12574 bfd_printable_name (obfd
));
12579 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12580 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
12582 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12583 does set EI_CLASS differently from any 32-bit ABI. */
12584 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
12585 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12586 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12588 /* Only error if both are set (to different values). */
12589 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
12590 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
12591 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
12593 (*_bfd_error_handler
)
12594 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12596 elf_mips_abi_name (ibfd
),
12597 elf_mips_abi_name (obfd
));
12600 new_flags
&= ~EF_MIPS_ABI
;
12601 old_flags
&= ~EF_MIPS_ABI
;
12604 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12605 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
12607 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
12609 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
12610 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
12613 /* Warn about any other mismatches */
12614 if (new_flags
!= old_flags
)
12616 (*_bfd_error_handler
)
12617 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12618 ibfd
, (unsigned long) new_flags
,
12619 (unsigned long) old_flags
);
12625 bfd_set_error (bfd_error_bad_value
);
12632 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12635 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
12637 BFD_ASSERT (!elf_flags_init (abfd
)
12638 || elf_elfheader (abfd
)->e_flags
== flags
);
12640 elf_elfheader (abfd
)->e_flags
= flags
;
12641 elf_flags_init (abfd
) = TRUE
;
12646 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
12650 default: return "";
12651 case DT_MIPS_RLD_VERSION
:
12652 return "MIPS_RLD_VERSION";
12653 case DT_MIPS_TIME_STAMP
:
12654 return "MIPS_TIME_STAMP";
12655 case DT_MIPS_ICHECKSUM
:
12656 return "MIPS_ICHECKSUM";
12657 case DT_MIPS_IVERSION
:
12658 return "MIPS_IVERSION";
12659 case DT_MIPS_FLAGS
:
12660 return "MIPS_FLAGS";
12661 case DT_MIPS_BASE_ADDRESS
:
12662 return "MIPS_BASE_ADDRESS";
12664 return "MIPS_MSYM";
12665 case DT_MIPS_CONFLICT
:
12666 return "MIPS_CONFLICT";
12667 case DT_MIPS_LIBLIST
:
12668 return "MIPS_LIBLIST";
12669 case DT_MIPS_LOCAL_GOTNO
:
12670 return "MIPS_LOCAL_GOTNO";
12671 case DT_MIPS_CONFLICTNO
:
12672 return "MIPS_CONFLICTNO";
12673 case DT_MIPS_LIBLISTNO
:
12674 return "MIPS_LIBLISTNO";
12675 case DT_MIPS_SYMTABNO
:
12676 return "MIPS_SYMTABNO";
12677 case DT_MIPS_UNREFEXTNO
:
12678 return "MIPS_UNREFEXTNO";
12679 case DT_MIPS_GOTSYM
:
12680 return "MIPS_GOTSYM";
12681 case DT_MIPS_HIPAGENO
:
12682 return "MIPS_HIPAGENO";
12683 case DT_MIPS_RLD_MAP
:
12684 return "MIPS_RLD_MAP";
12685 case DT_MIPS_DELTA_CLASS
:
12686 return "MIPS_DELTA_CLASS";
12687 case DT_MIPS_DELTA_CLASS_NO
:
12688 return "MIPS_DELTA_CLASS_NO";
12689 case DT_MIPS_DELTA_INSTANCE
:
12690 return "MIPS_DELTA_INSTANCE";
12691 case DT_MIPS_DELTA_INSTANCE_NO
:
12692 return "MIPS_DELTA_INSTANCE_NO";
12693 case DT_MIPS_DELTA_RELOC
:
12694 return "MIPS_DELTA_RELOC";
12695 case DT_MIPS_DELTA_RELOC_NO
:
12696 return "MIPS_DELTA_RELOC_NO";
12697 case DT_MIPS_DELTA_SYM
:
12698 return "MIPS_DELTA_SYM";
12699 case DT_MIPS_DELTA_SYM_NO
:
12700 return "MIPS_DELTA_SYM_NO";
12701 case DT_MIPS_DELTA_CLASSSYM
:
12702 return "MIPS_DELTA_CLASSSYM";
12703 case DT_MIPS_DELTA_CLASSSYM_NO
:
12704 return "MIPS_DELTA_CLASSSYM_NO";
12705 case DT_MIPS_CXX_FLAGS
:
12706 return "MIPS_CXX_FLAGS";
12707 case DT_MIPS_PIXIE_INIT
:
12708 return "MIPS_PIXIE_INIT";
12709 case DT_MIPS_SYMBOL_LIB
:
12710 return "MIPS_SYMBOL_LIB";
12711 case DT_MIPS_LOCALPAGE_GOTIDX
:
12712 return "MIPS_LOCALPAGE_GOTIDX";
12713 case DT_MIPS_LOCAL_GOTIDX
:
12714 return "MIPS_LOCAL_GOTIDX";
12715 case DT_MIPS_HIDDEN_GOTIDX
:
12716 return "MIPS_HIDDEN_GOTIDX";
12717 case DT_MIPS_PROTECTED_GOTIDX
:
12718 return "MIPS_PROTECTED_GOT_IDX";
12719 case DT_MIPS_OPTIONS
:
12720 return "MIPS_OPTIONS";
12721 case DT_MIPS_INTERFACE
:
12722 return "MIPS_INTERFACE";
12723 case DT_MIPS_DYNSTR_ALIGN
:
12724 return "DT_MIPS_DYNSTR_ALIGN";
12725 case DT_MIPS_INTERFACE_SIZE
:
12726 return "DT_MIPS_INTERFACE_SIZE";
12727 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
12728 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12729 case DT_MIPS_PERF_SUFFIX
:
12730 return "DT_MIPS_PERF_SUFFIX";
12731 case DT_MIPS_COMPACT_SIZE
:
12732 return "DT_MIPS_COMPACT_SIZE";
12733 case DT_MIPS_GP_VALUE
:
12734 return "DT_MIPS_GP_VALUE";
12735 case DT_MIPS_AUX_DYNAMIC
:
12736 return "DT_MIPS_AUX_DYNAMIC";
12737 case DT_MIPS_PLTGOT
:
12738 return "DT_MIPS_PLTGOT";
12739 case DT_MIPS_RWPLT
:
12740 return "DT_MIPS_RWPLT";
12745 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
12749 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
12751 /* Print normal ELF private data. */
12752 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
12754 /* xgettext:c-format */
12755 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
12757 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
12758 fprintf (file
, _(" [abi=O32]"));
12759 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
12760 fprintf (file
, _(" [abi=O64]"));
12761 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
12762 fprintf (file
, _(" [abi=EABI32]"));
12763 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
12764 fprintf (file
, _(" [abi=EABI64]"));
12765 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
12766 fprintf (file
, _(" [abi unknown]"));
12767 else if (ABI_N32_P (abfd
))
12768 fprintf (file
, _(" [abi=N32]"));
12769 else if (ABI_64_P (abfd
))
12770 fprintf (file
, _(" [abi=64]"));
12772 fprintf (file
, _(" [no abi set]"));
12774 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
12775 fprintf (file
, " [mips1]");
12776 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
12777 fprintf (file
, " [mips2]");
12778 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
12779 fprintf (file
, " [mips3]");
12780 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
12781 fprintf (file
, " [mips4]");
12782 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
12783 fprintf (file
, " [mips5]");
12784 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
12785 fprintf (file
, " [mips32]");
12786 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
12787 fprintf (file
, " [mips64]");
12788 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
12789 fprintf (file
, " [mips32r2]");
12790 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
12791 fprintf (file
, " [mips64r2]");
12793 fprintf (file
, _(" [unknown ISA]"));
12795 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
12796 fprintf (file
, " [mdmx]");
12798 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
12799 fprintf (file
, " [mips16]");
12801 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
12802 fprintf (file
, " [32bitmode]");
12804 fprintf (file
, _(" [not 32bitmode]"));
12806 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
12807 fprintf (file
, " [noreorder]");
12809 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
12810 fprintf (file
, " [PIC]");
12812 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
12813 fprintf (file
, " [CPIC]");
12815 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
12816 fprintf (file
, " [XGOT]");
12818 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
12819 fprintf (file
, " [UCODE]");
12821 fputc ('\n', file
);
12826 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
12828 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12829 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12830 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
12831 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12832 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
12833 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
12834 { NULL
, 0, 0, 0, 0 }
12837 /* Merge non visibility st_other attributes. Ensure that the
12838 STO_OPTIONAL flag is copied into h->other, even if this is not a
12839 definiton of the symbol. */
12841 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
12842 const Elf_Internal_Sym
*isym
,
12843 bfd_boolean definition
,
12844 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
12846 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
12848 unsigned char other
;
12850 other
= (definition
? isym
->st_other
: h
->other
);
12851 other
&= ~ELF_ST_VISIBILITY (-1);
12852 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
12856 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
12857 h
->other
|= STO_OPTIONAL
;
12860 /* Decide whether an undefined symbol is special and can be ignored.
12861 This is the case for OPTIONAL symbols on IRIX. */
12863 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
12865 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
12869 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
12871 return (sym
->st_shndx
== SHN_COMMON
12872 || sym
->st_shndx
== SHN_MIPS_ACOMMON
12873 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
12876 /* Return address for Ith PLT stub in section PLT, for relocation REL
12877 or (bfd_vma) -1 if it should not be included. */
12880 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
12881 const arelent
*rel ATTRIBUTE_UNUSED
)
12884 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
12885 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
12889 _bfd_mips_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
12891 struct mips_elf_link_hash_table
*htab
;
12892 Elf_Internal_Ehdr
*i_ehdrp
;
12894 i_ehdrp
= elf_elfheader (abfd
);
12897 htab
= mips_elf_hash_table (link_info
);
12898 if (htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
12899 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;