Finished layout code.
[binutils.git] / gold / layout.cc
blobd91f73105d2e9a619e367f2ae469f33112962bff
1 // layout.cc -- lay out output file sections for gold
3 #include "gold.h"
5 #include <cassert>
6 #include <cstring>
7 #include <algorithm>
8 #include <iostream>
9 #include <utility>
11 #include "output.h"
12 #include "layout.h"
14 namespace gold
17 // Layout_task methods.
19 Layout_task::~Layout_task()
23 // This task can be run when it is unblocked.
25 Task::Is_runnable_type
26 Layout_task::is_runnable(Workqueue*)
28 if (this->this_blocker_->is_blocked())
29 return IS_BLOCKED;
30 return IS_RUNNABLE;
33 // We don't need to hold any locks for the duration of this task. In
34 // fact this task will be the only one running.
36 Task_locker*
37 Layout_task::locks(Workqueue*)
39 return NULL;
42 // Lay out the sections. This is called after all the input objects
43 // have been read.
45 void
46 Layout_task::run(Workqueue*)
48 Layout layout(this->options_);
49 layout.init();
50 for (Input_objects::Object_list::const_iterator p =
51 this->input_objects_->begin();
52 p != this->input_objects_->end();
53 ++p)
54 (*p)->layout(&layout);
55 layout.finalize(this->input_objects_, this->symtab_);
58 // Layout methods.
60 Layout::Layout(const General_options& options)
61 : options_(options), namepool_(), sympool_(), signatures_(),
62 section_name_map_(), segment_list_(), section_list_()
66 // Prepare for doing layout.
68 void
69 Layout::init()
71 // Make space for more than enough segments for a typical file.
72 // This is just for efficiency--it's OK if we wind up needing more.
73 segment_list_.reserve(12);
76 // Hash a key we use to look up an output section mapping.
78 size_t
79 Layout::Hash_key::operator()(const Layout::Key& k) const
81 return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
84 // Whether to include this section in the link.
86 template<int size, bool big_endian>
87 bool
88 Layout::include_section(Object*, const char*,
89 const elfcpp::Shdr<size, big_endian>& shdr)
91 // Some section types are never linked. Some are only linked when
92 // doing a relocateable link.
93 switch (shdr.get_sh_type())
95 case elfcpp::SHT_NULL:
96 case elfcpp::SHT_SYMTAB:
97 case elfcpp::SHT_DYNSYM:
98 case elfcpp::SHT_STRTAB:
99 case elfcpp::SHT_HASH:
100 case elfcpp::SHT_DYNAMIC:
101 case elfcpp::SHT_SYMTAB_SHNDX:
102 return false;
104 case elfcpp::SHT_RELA:
105 case elfcpp::SHT_REL:
106 case elfcpp::SHT_GROUP:
107 return this->options_.is_relocatable();
109 default:
110 // FIXME: Handle stripping debug sections here.
111 return true;
115 // Return the output section to use for input section NAME, with
116 // header HEADER, from object OBJECT. Set *OFF to the offset of this
117 // input section without the output section.
119 template<int size, bool big_endian>
120 Output_section*
121 Layout::layout(Object* object, const char* name,
122 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
124 if (!this->include_section(object, name, shdr))
125 return NULL;
127 // Unless we are doing a relocateable link, .gnu.linkonce sections
128 // are laid out as though they were named for the sections are
129 // placed into.
130 if (!this->options_.is_relocatable() && Layout::is_linkonce(name))
131 name = Layout::linkonce_output_name(name);
133 // FIXME: Handle SHF_OS_NONCONFORMING here.
135 // Canonicalize the section name.
136 name = this->namepool_.add(name);
138 // Find the output section. The output section is selected based on
139 // the section name, type, and flags.
141 // FIXME: If we want to do relaxation, we need to modify this
142 // algorithm. We also build a list of input sections for each
143 // output section. Then we relax all the input sections. Then we
144 // walk down the list and adjust all the offsets.
146 elfcpp::Elf_Word type = shdr.get_sh_type();
147 elfcpp::Elf_Xword flags = shdr.get_sh_flags();
148 const Key key(name, std::make_pair(type, flags));
149 const std::pair<Key, Output_section*> v(key, NULL);
150 std::pair<Section_name_map::iterator, bool> ins(
151 this->section_name_map_.insert(v));
153 Output_section* os;
154 if (!ins.second)
155 os = ins.first->second;
156 else
158 // This is the first time we've seen this name/type/flags
159 // combination.
160 os = this->make_output_section(name, type, flags);
161 ins.first->second = os;
164 // FIXME: Handle SHF_LINK_ORDER somewhere.
166 *off = os->add_input_section(object, name, shdr);
168 return os;
171 // Map section flags to segment flags.
173 elfcpp::Elf_Word
174 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
176 elfcpp::Elf_Word ret = elfcpp::PF_R;
177 if ((flags & elfcpp::SHF_WRITE) != 0)
178 ret |= elfcpp::PF_W;
179 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
180 ret |= elfcpp::PF_X;
181 return ret;
184 // Make a new Output_section, and attach it to segments as
185 // appropriate.
187 Output_section*
188 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
189 elfcpp::Elf_Xword flags)
191 Output_section* os = new Output_section(name, type, flags);
193 if ((flags & elfcpp::SHF_ALLOC) == 0)
194 this->section_list_.push_back(os);
195 else
197 // This output section goes into a PT_LOAD segment.
199 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
201 // The only thing we really care about for PT_LOAD segments is
202 // whether or not they are writable, so that is how we search
203 // for them. People who need segments sorted on some other
204 // basis will have to wait until we implement a mechanism for
205 // them to describe the segments they want.
207 Segment_list::const_iterator p;
208 for (p = this->segment_list_.begin();
209 p != this->segment_list_.end();
210 ++p)
212 if ((*p)->type() == elfcpp::PT_LOAD
213 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
215 (*p)->add_output_section(os, seg_flags);
216 break;
220 if (p == this->segment_list_.end())
222 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
223 seg_flags);
224 this->segment_list_.push_back(oseg);
225 oseg->add_output_section(os, seg_flags);
228 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
229 // segment.
230 if (type == elfcpp::SHT_NOTE)
232 // See if we already have an equivalent PT_NOTE segment.
233 for (p = this->segment_list_.begin();
234 p != segment_list_.end();
235 ++p)
237 if ((*p)->type() == elfcpp::PT_NOTE
238 && (((*p)->flags() & elfcpp::PF_W)
239 == (seg_flags & elfcpp::PF_W)))
241 (*p)->add_output_section(os, seg_flags);
242 break;
246 if (p == this->segment_list_.end())
248 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
249 seg_flags);
250 this->segment_list_.push_back(oseg);
251 oseg->add_output_section(os, seg_flags);
255 // If we see a loadable SHF_TLS section, we create a PT_TLS
256 // segment.
257 if ((flags & elfcpp::SHF_TLS) != 0)
259 // See if we already have an equivalent PT_TLS segment.
260 for (p = this->segment_list_.begin();
261 p != segment_list_.end();
262 ++p)
264 if ((*p)->type() == elfcpp::PT_TLS
265 && (((*p)->flags() & elfcpp::PF_W)
266 == (seg_flags & elfcpp::PF_W)))
268 (*p)->add_output_section(os, seg_flags);
269 break;
273 if (p == this->segment_list_.end())
275 Output_segment* oseg = new Output_segment(elfcpp::PT_TLS,
276 seg_flags);
277 this->segment_list_.push_back(oseg);
278 oseg->add_output_section(os, seg_flags);
283 return os;
286 // Find the first read-only PT_LOAD segment, creating one if
287 // necessary.
289 Output_segment*
290 Layout::find_first_load_seg()
292 for (Segment_list::const_iterator p = this->segment_list_.begin();
293 p != this->segment_list_.end();
294 ++p)
296 if ((*p)->type() == elfcpp::PT_LOAD
297 && ((*p)->flags() & elfcpp::PF_R) != 0
298 && ((*p)->flags() & elfcpp::PF_W) == 0)
299 return *p;
302 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
303 this->segment_list_.push_back(load_seg);
304 return load_seg;
307 // Finalize the layout. When this is called, we have created all the
308 // output sections and all the output segments which are based on
309 // input sections. We have several things to do, and we have to do
310 // them in the right order, so that we get the right results correctly
311 // and efficiently.
313 // 1) Finalize the list of output segments and create the segment
314 // table header.
316 // 2) Finalize the dynamic symbol table and associated sections.
318 // 3) Determine the final file offset of all the output segments.
320 // 4) Determine the final file offset of all the SHF_ALLOC output
321 // sections.
323 // 5) Create the symbol table sections and the section name table
324 // section.
326 // 6) Finalize the symbol table: set symbol values to their final
327 // value and make a final determination of which symbols are going
328 // into the output symbol table.
330 // 7) Create the section table header.
332 // 8) Determine the final file offset of all the output sections which
333 // are not SHF_ALLOC, including the section table header.
335 // 9) Finalize the ELF file header.
337 // This function returns the size of the output file.
339 off_t
340 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
342 if (input_objects->any_dynamic())
344 // If there are any dynamic objects in the link, then we need
345 // some additional segments: PT_PHDRS, PT_INTERP, and
346 // PT_DYNAMIC. We also need to finalize the dynamic symbol
347 // table and create the dynamic hash table.
348 abort();
351 // FIXME: Handle PT_GNU_STACK.
353 Output_segment* load_seg = this->find_first_load_seg();
355 // Lay out the segment headers.
356 int size = input_objects->target()->get_size();
357 Output_segment_headers* segment_headers;
358 segment_headers = new Output_segment_headers(size, this->segment_list_);
359 load_seg->add_initial_output_data(segment_headers);
360 // FIXME: Attach them to PT_PHDRS if necessary.
362 // Lay out the file header.
363 Output_file_header* file_header;
364 file_header = new Output_file_header(size,
365 this->options_,
366 input_objects->target(),
367 symtab,
368 segment_headers);
369 load_seg->add_initial_output_data(file_header);
371 // Set the file offsets of all the segments.
372 off_t off = this->set_segment_offsets(input_objects->target(), load_seg);
374 // Create the symbol table sections.
375 // FIXME: We don't need to do this if we are stripping symbols.
376 Output_section* osymtab;
377 Output_section* ostrtab;
378 this->create_symtab_sections(input_objects, symtab, &osymtab, &ostrtab);
380 // Create the .shstrtab section.
381 Output_section* shstrtab_section = this->create_shstrtab();
383 // Set the file offsets of all the sections not associated with
384 // segments.
385 off = this->set_section_offsets(off);
387 // Create the section table header.
388 Output_section_headers* oshdrs = this->create_shdrs(size, off);
389 off += oshdrs->data_size();
391 file_header->set_section_info(oshdrs, shstrtab_section);
393 // Now we know exactly where everything goes in the output file.
395 return off;
398 // Return whether SEG1 should be before SEG2 in the output file. This
399 // is based entirely on the segment type and flags. When this is
400 // called the segment addresses has normally not yet been set.
402 bool
403 Layout::segment_precedes(const Output_segment* seg1,
404 const Output_segment* seg2)
406 elfcpp::Elf_Word type1 = seg1->type();
407 elfcpp::Elf_Word type2 = seg2->type();
409 // The single PT_PHDR segment is required to precede any loadable
410 // segment. We simply make it always first.
411 if (type1 == elfcpp::PT_PHDR)
413 assert(type2 != elfcpp::PT_PHDR);
414 return true;
416 if (type2 == elfcpp::PT_PHDR)
417 return false;
419 // The single PT_INTERP segment is required to precede any loadable
420 // segment. We simply make it always second.
421 if (type1 == elfcpp::PT_INTERP)
423 assert(type2 != elfcpp::PT_INTERP);
424 return true;
426 if (type2 == elfcpp::PT_INTERP)
427 return false;
429 // We then put PT_LOAD segments before any other segments.
430 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
431 return true;
432 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
433 return false;
435 const elfcpp::Elf_Word flags1 = seg1->flags();
436 const elfcpp::Elf_Word flags2 = seg2->flags();
438 // The order of non-PT_LOAD segments is unimportant. We simply sort
439 // by the numeric segment type and flags values. There should not
440 // be more than one segment with the same type and flags.
441 if (type1 != elfcpp::PT_LOAD)
443 if (type1 != type2)
444 return type1 < type2;
445 assert(flags1 != flags2);
446 return flags1 < flags2;
449 // We sort PT_LOAD segments based on the flags. Readonly segments
450 // come before writable segments. Then executable segments come
451 // before non-executable segments. Then the unlikely case of a
452 // non-readable segment comes before the normal case of a readable
453 // segment. If there are multiple segments with the same type and
454 // flags, we require that the address be set, and we sort by
455 // virtual address and then physical address.
456 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
457 return (flags1 & elfcpp::PF_W) == 0;
458 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
459 return (flags1 & elfcpp::PF_X) != 0;
460 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
461 return (flags1 & elfcpp::PF_R) == 0;
463 uint64_t vaddr1 = seg1->vaddr();
464 uint64_t vaddr2 = seg2->vaddr();
465 if (vaddr1 != vaddr2)
466 return vaddr1 < vaddr2;
468 uint64_t paddr1 = seg1->paddr();
469 uint64_t paddr2 = seg2->paddr();
470 assert(paddr1 != paddr2);
471 return paddr1 < paddr2;
474 // Set the file offsets of all the segments. They have all been
475 // created. LOAD_SEG must be be laid out first. Return the offset of
476 // the data to follow.
478 off_t
479 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg)
481 // Sort them into the final order.
482 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
483 Layout::Compare_segments());
485 // Find the PT_LOAD segments, and set their addresses and offsets
486 // and their section's addresses and offsets.
487 uint64_t addr = target->text_segment_address();
488 off_t off = 0;
489 bool was_readonly = false;
490 for (Segment_list::iterator p = this->segment_list_.begin();
491 p != this->segment_list_.end();
492 ++p)
494 if ((*p)->type() == elfcpp::PT_LOAD)
496 if (load_seg != NULL && load_seg != *p)
497 abort();
498 load_seg = NULL;
500 // If the last segment was readonly, and this one is not,
501 // then skip the address forward one page, maintaining the
502 // same position within the page. This lets us store both
503 // segments overlapping on a single page in the file, but
504 // the loader will put them on different pages in memory.
506 uint64_t orig_addr = addr;
507 uint64_t orig_off = off;
509 uint64_t aligned_addr = addr;
510 uint64_t abi_pagesize = target->abi_pagesize();
511 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
513 uint64_t align = (*p)->max_data_align();
515 addr = (addr + align - 1) & ~ (align - 1);
516 aligned_addr = addr;
517 if ((addr & (abi_pagesize - 1)) != 0)
518 addr = addr + abi_pagesize;
521 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
522 uint64_t new_addr = (*p)->set_section_addresses(addr, &off);
524 // Now that we know the size of this segment, we may be able
525 // to save a page in memory, at the cost of wasting some
526 // file space, by instead aligning to the start of a new
527 // page. Here we use the real machine page size rather than
528 // the ABI mandated page size.
530 if (aligned_addr != addr)
532 uint64_t common_pagesize = target->common_pagesize();
533 uint64_t first_off = (common_pagesize
534 - (aligned_addr
535 & (common_pagesize - 1)));
536 uint64_t last_off = new_addr & (common_pagesize - 1);
537 if (first_off > 0
538 && last_off > 0
539 && ((aligned_addr & ~ (common_pagesize - 1))
540 != (new_addr & ~ (common_pagesize - 1)))
541 && first_off + last_off <= common_pagesize)
543 addr = ((aligned_addr + common_pagesize - 1)
544 & ~ (common_pagesize - 1));
545 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
546 new_addr = (*p)->set_section_addresses(addr, &off);
550 addr = new_addr;
552 if (((*p)->flags() & elfcpp::PF_W) == 0)
553 was_readonly = true;
557 // Handle the non-PT_LOAD segments, setting their offsets from their
558 // section's offsets.
559 for (Segment_list::iterator p = this->segment_list_.begin();
560 p != this->segment_list_.end();
561 ++p)
563 if ((*p)->type() != elfcpp::PT_LOAD)
564 (*p)->set_offset();
567 return off;
570 // Set the file offset of all the sections not associated with a
571 // segment.
573 off_t
574 Layout::set_section_offsets(off_t off)
576 for (Layout::Section_list::iterator p = this->section_list_.begin();
577 p != this->section_list_.end();
578 ++p)
580 uint64_t addralign = (*p)->addralign();
581 off = (off + addralign - 1) & ~ (addralign - 1);
582 (*p)->set_address(0, off);
583 off += (*p)->data_size();
585 return off;
588 // Create the symbol table sections.
590 void
591 Layout::create_symtab_sections(const Input_objects* input_objects,
592 Symbol_table* symtab,
593 Output_section** posymtab,
594 Output_section** postrtab)
596 off_t off = 0;
597 for (Input_objects::Object_list::const_iterator p = input_objects->begin();
598 p != input_objects->end();
599 ++p)
601 Task_lock_obj<Object> tlo(**p);
602 off = (*p)->finalize_local_symbols(off, &this->sympool_);
605 off = symtab->finalize(off, &this->sympool_);
607 *posymtab = new Output_section_symtab(this->namepool_.add(".symtab"), off);
608 *postrtab = new Output_section_strtab(this->namepool_.add(".strtab"),
609 &this->sympool_);
612 // Create the .shstrtab section, which holds the names of the
613 // sections. At the time this is called, we have created all the
614 // output sections except .shstrtab itself.
616 Output_section*
617 Layout::create_shstrtab()
619 // FIXME: We don't need to create a .shstrtab section if we are
620 // stripping everything.
622 const char* name = this->namepool_.add(".shstrtab");
624 Output_section* os = new Output_section_strtab(name,
625 &this->namepool_);
627 this->section_list_.push_back(os);
629 return os;
632 // Create the section headers. SIZE is 32 or 64. OFF is the file
633 // offset.
635 Output_section_headers*
636 Layout::create_shdrs(int size, off_t off)
638 Output_section_headers* oshdrs;
639 oshdrs = new Output_section_headers(size, this->segment_list_,
640 this->section_list_);
641 uint64_t addralign = oshdrs->addralign();
642 off = (off + addralign - 1) & ~ (addralign - 1);
643 oshdrs->set_address(0, off);
644 return oshdrs;
647 // The mapping of .gnu.linkonce section names to real section names.
649 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t }
650 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
652 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
653 MAPPING_INIT("t", ".text"),
654 MAPPING_INIT("r", ".rodata"),
655 MAPPING_INIT("d", ".data"),
656 MAPPING_INIT("b", ".bss"),
657 MAPPING_INIT("s", ".sdata"),
658 MAPPING_INIT("sb", ".sbss"),
659 MAPPING_INIT("s2", ".sdata2"),
660 MAPPING_INIT("sb2", ".sbss2"),
661 MAPPING_INIT("wi", ".debug_info"),
662 MAPPING_INIT("td", ".tdata"),
663 MAPPING_INIT("tb", ".tbss"),
664 MAPPING_INIT("lr", ".lrodata"),
665 MAPPING_INIT("l", ".ldata"),
666 MAPPING_INIT("lb", ".lbss"),
668 #undef MAPPING_INIT
670 const int Layout::linkonce_mapping_count =
671 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
673 // Return the name of the output section to use for a .gnu.linkonce
674 // section. This is based on the default ELF linker script of the old
675 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
676 // to ".text".
678 const char*
679 Layout::linkonce_output_name(const char* name)
681 const char* s = name + sizeof(".gnu.linkonce") - 1;
682 if (*s != '.')
683 return name;
684 ++s;
685 const Linkonce_mapping* plm = linkonce_mapping;
686 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
688 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
689 return plm->to;
691 return name;
694 // Record the signature of a comdat section, and return whether to
695 // include it in the link. If GROUP is true, this is a regular
696 // section group. If GROUP is false, this is a group signature
697 // derived from the name of a linkonce section. We want linkonce
698 // signatures and group signatures to block each other, but we don't
699 // want a linkonce signature to block another linkonce signature.
701 bool
702 Layout::add_comdat(const char* signature, bool group)
704 std::string sig(signature);
705 std::pair<Signatures::iterator, bool> ins(
706 this->signatures_.insert(std::make_pair(signature, group)));
708 if (ins.second)
710 // This is the first time we've seen this signature.
711 return true;
714 if (ins.first->second)
716 // We've already seen a real section group with this signature.
717 return false;
719 else if (group)
721 // This is a real section group, and we've already seen a
722 // linkonce section with tihs signature. Record that we've seen
723 // a section group, and don't include this section group.
724 ins.first->second = true;
725 return false;
727 else
729 // We've already seen a linkonce section and this is a linkonce
730 // section. These don't block each other--this may be the same
731 // symbol name with different section types.
732 return true;
736 // Instantiate the templates we need. We could use the configure
737 // script to restrict this to only the ones for implemented targets.
739 template
740 Output_section*
741 Layout::layout<32, false>(Object* object, const char* name,
742 const elfcpp::Shdr<32, false>& shdr, off_t*);
744 template
745 Output_section*
746 Layout::layout<32, true>(Object* object, const char* name,
747 const elfcpp::Shdr<32, true>& shdr, off_t*);
749 template
750 Output_section*
751 Layout::layout<64, false>(Object* object, const char* name,
752 const elfcpp::Shdr<64, false>& shdr, off_t*);
754 template
755 Output_section*
756 Layout::layout<64, true>(Object* object, const char* name,
757 const elfcpp::Shdr<64, true>& shdr, off_t*);
760 } // End namespace gold.