1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22 /* No specific ABI or "processor-specific supplement" defined. */
25 - "Traditional" linker relaxation (shrinking whole sections).
26 - Merge reloc stubs jumping to same location.
27 - GETA stub relaxation (call a stub for out of range new
28 R_MMIX_GETA_STUBBABLE). */
35 #include "opcode/mmix.h"
37 #define MINUS_ONE (((bfd_vma) 0) - 1)
39 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41 /* Put these everywhere in new code. */
43 _bfd_abort (__FILE__, __LINE__, \
44 "Internal: Non-debugged code (test-case missing)")
47 _bfd_abort (__FILE__, __LINE__, \
50 struct _mmix_elf_section_data
52 struct bfd_elf_section_data elf
;
55 struct bpo_reloc_section_info
*reloc
;
56 struct bpo_greg_section_info
*greg
;
59 struct pushj_stub_info
61 /* Maximum number of stubs needed for this section. */
62 bfd_size_type n_pushj_relocs
;
64 /* Size of stubs after a mmix_elf_relax_section round. */
65 bfd_size_type stubs_size_sum
;
67 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
68 of these. Allocated in mmix_elf_check_common_relocs. */
69 bfd_size_type
*stub_size
;
71 /* Offset of next stub during relocation. Somewhat redundant with the
72 above: error coverage is easier and we don't have to reset the
73 stubs_size_sum for relocation. */
74 bfd_size_type stub_offset
;
78 #define mmix_elf_section_data(sec) \
79 ((struct _mmix_elf_section_data *) elf_section_data (sec))
81 /* For each section containing a base-plus-offset (BPO) reloc, we attach
82 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
84 struct bpo_reloc_section_info
86 /* The base is 1; this is the first number in this section. */
87 size_t first_base_plus_offset_reloc
;
89 /* Number of BPO-relocs in this section. */
90 size_t n_bpo_relocs_this_section
;
92 /* Running index, used at relocation time. */
95 /* We don't have access to the bfd_link_info struct in
96 mmix_final_link_relocate. What we really want to get at is the
97 global single struct greg_relocation, so we stash it here. */
98 asection
*bpo_greg_section
;
101 /* Helper struct (in global context) for the one below.
102 There's one of these created for every BPO reloc. */
103 struct bpo_reloc_request
107 /* Valid after relaxation. The base is 0; the first register number
108 must be added. The offset is in range 0..255. */
112 /* The order number for this BPO reloc, corresponding to the order in
113 which BPO relocs were found. Used to create an index after reloc
114 requests are sorted. */
117 /* Set when the value is computed. Better than coding "guard values"
118 into the other members. Is FALSE only for BPO relocs in a GC:ed
123 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
124 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
125 which is linked into the register contents section
126 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
127 linker; using the same hook as for usual with BPO relocs does not
129 struct bpo_greg_section_info
131 /* After GC, this reflects the number of remaining, non-excluded
135 /* This is the number of allocated bpo_reloc_requests; the size of
136 sorted_indexes. Valid after the check.*relocs functions are called
137 for all incoming sections. It includes the number of BPO relocs in
138 sections that were GC:ed. */
139 size_t n_max_bpo_relocs
;
141 /* A counter used to find out when to fold the BPO gregs, since we
142 don't have a single "after-relaxation" hook. */
143 size_t n_remaining_bpo_relocs_this_relaxation_round
;
145 /* The number of linker-allocated GREGs resulting from BPO relocs.
146 This is an approximation after _bfd_mmix_before_linker_allocation
147 and supposedly accurate after mmix_elf_relax_section is called for
148 all incoming non-collected sections. */
149 size_t n_allocated_bpo_gregs
;
151 /* Index into reloc_request[], sorted on increasing "value", secondary
152 by increasing index for strict sorting order. */
153 size_t *bpo_reloc_indexes
;
155 /* An array of all relocations, with the "value" member filled in by
156 the relaxation function. */
157 struct bpo_reloc_request
*reloc_request
;
160 static bfd_boolean mmix_elf_link_output_symbol_hook
161 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
162 asection
*, struct elf_link_hash_entry
*));
164 static bfd_reloc_status_type mmix_elf_reloc
165 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
167 static reloc_howto_type
*bfd_elf64_bfd_reloc_type_lookup
168 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
170 static void mmix_info_to_howto_rela
171 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
173 static int mmix_elf_sort_relocs
PARAMS ((const PTR
, const PTR
));
175 static bfd_boolean mmix_elf_new_section_hook
176 PARAMS ((bfd
*, asection
*));
178 static bfd_boolean mmix_elf_check_relocs
179 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
180 const Elf_Internal_Rela
*));
182 static bfd_boolean mmix_elf_check_common_relocs
183 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
184 const Elf_Internal_Rela
*));
186 static bfd_boolean mmix_elf_relocate_section
187 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
188 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
190 static bfd_reloc_status_type mmix_final_link_relocate
191 PARAMS ((reloc_howto_type
*, asection
*, bfd_byte
*,
192 bfd_vma
, bfd_signed_vma
, bfd_vma
, const char *, asection
*));
194 static bfd_reloc_status_type mmix_elf_perform_relocation
195 PARAMS ((asection
*, reloc_howto_type
*, PTR
, bfd_vma
, bfd_vma
));
197 static bfd_boolean mmix_elf_section_from_bfd_section
198 PARAMS ((bfd
*, asection
*, int *));
200 static bfd_boolean mmix_elf_add_symbol_hook
201 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
202 const char **, flagword
*, asection
**, bfd_vma
*));
204 static bfd_boolean mmix_elf_is_local_label_name
205 PARAMS ((bfd
*, const char *));
207 static int bpo_reloc_request_sort_fn
PARAMS ((const PTR
, const PTR
));
209 static bfd_boolean mmix_elf_relax_section
210 PARAMS ((bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
,
211 bfd_boolean
*again
));
213 extern bfd_boolean mmix_elf_final_link
PARAMS ((bfd
*, struct bfd_link_info
*));
215 extern void mmix_elf_symbol_processing
PARAMS ((bfd
*, asymbol
*));
217 /* Only intended to be called from a debugger. */
218 extern void mmix_dump_bpo_gregs
219 PARAMS ((struct bfd_link_info
*, bfd_error_handler_type
));
222 mmix_set_relaxable_size
223 PARAMS ((bfd
*, asection
*, void *));
226 /* Watch out: this currently needs to have elements with the same index as
227 their R_MMIX_ number. */
228 static reloc_howto_type elf_mmix_howto_table
[] =
230 /* This reloc does nothing. */
231 HOWTO (R_MMIX_NONE
, /* type */
233 2, /* size (0 = byte, 1 = short, 2 = long) */
235 FALSE
, /* pc_relative */
237 complain_overflow_bitfield
, /* complain_on_overflow */
238 bfd_elf_generic_reloc
, /* special_function */
239 "R_MMIX_NONE", /* name */
240 FALSE
, /* partial_inplace */
243 FALSE
), /* pcrel_offset */
245 /* An 8 bit absolute relocation. */
246 HOWTO (R_MMIX_8
, /* type */
248 0, /* size (0 = byte, 1 = short, 2 = long) */
250 FALSE
, /* pc_relative */
252 complain_overflow_bitfield
, /* complain_on_overflow */
253 bfd_elf_generic_reloc
, /* special_function */
254 "R_MMIX_8", /* name */
255 FALSE
, /* partial_inplace */
258 FALSE
), /* pcrel_offset */
260 /* An 16 bit absolute relocation. */
261 HOWTO (R_MMIX_16
, /* type */
263 1, /* size (0 = byte, 1 = short, 2 = long) */
265 FALSE
, /* pc_relative */
267 complain_overflow_bitfield
, /* complain_on_overflow */
268 bfd_elf_generic_reloc
, /* special_function */
269 "R_MMIX_16", /* name */
270 FALSE
, /* partial_inplace */
272 0xffff, /* dst_mask */
273 FALSE
), /* pcrel_offset */
275 /* An 24 bit absolute relocation. */
276 HOWTO (R_MMIX_24
, /* type */
278 2, /* size (0 = byte, 1 = short, 2 = long) */
280 FALSE
, /* pc_relative */
282 complain_overflow_bitfield
, /* complain_on_overflow */
283 bfd_elf_generic_reloc
, /* special_function */
284 "R_MMIX_24", /* name */
285 FALSE
, /* partial_inplace */
286 ~0xffffff, /* src_mask */
287 0xffffff, /* dst_mask */
288 FALSE
), /* pcrel_offset */
290 /* A 32 bit absolute relocation. */
291 HOWTO (R_MMIX_32
, /* type */
293 2, /* size (0 = byte, 1 = short, 2 = long) */
295 FALSE
, /* pc_relative */
297 complain_overflow_bitfield
, /* complain_on_overflow */
298 bfd_elf_generic_reloc
, /* special_function */
299 "R_MMIX_32", /* name */
300 FALSE
, /* partial_inplace */
302 0xffffffff, /* dst_mask */
303 FALSE
), /* pcrel_offset */
305 /* 64 bit relocation. */
306 HOWTO (R_MMIX_64
, /* type */
308 4, /* size (0 = byte, 1 = short, 2 = long) */
310 FALSE
, /* pc_relative */
312 complain_overflow_bitfield
, /* complain_on_overflow */
313 bfd_elf_generic_reloc
, /* special_function */
314 "R_MMIX_64", /* name */
315 FALSE
, /* partial_inplace */
317 MINUS_ONE
, /* dst_mask */
318 FALSE
), /* pcrel_offset */
320 /* An 8 bit PC-relative relocation. */
321 HOWTO (R_MMIX_PC_8
, /* type */
323 0, /* size (0 = byte, 1 = short, 2 = long) */
325 TRUE
, /* pc_relative */
327 complain_overflow_bitfield
, /* complain_on_overflow */
328 bfd_elf_generic_reloc
, /* special_function */
329 "R_MMIX_PC_8", /* name */
330 FALSE
, /* partial_inplace */
333 TRUE
), /* pcrel_offset */
335 /* An 16 bit PC-relative relocation. */
336 HOWTO (R_MMIX_PC_16
, /* type */
338 1, /* size (0 = byte, 1 = short, 2 = long) */
340 TRUE
, /* pc_relative */
342 complain_overflow_bitfield
, /* complain_on_overflow */
343 bfd_elf_generic_reloc
, /* special_function */
344 "R_MMIX_PC_16", /* name */
345 FALSE
, /* partial_inplace */
347 0xffff, /* dst_mask */
348 TRUE
), /* pcrel_offset */
350 /* An 24 bit PC-relative relocation. */
351 HOWTO (R_MMIX_PC_24
, /* type */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
355 TRUE
, /* pc_relative */
357 complain_overflow_bitfield
, /* complain_on_overflow */
358 bfd_elf_generic_reloc
, /* special_function */
359 "R_MMIX_PC_24", /* name */
360 FALSE
, /* partial_inplace */
361 ~0xffffff, /* src_mask */
362 0xffffff, /* dst_mask */
363 TRUE
), /* pcrel_offset */
365 /* A 32 bit absolute PC-relative relocation. */
366 HOWTO (R_MMIX_PC_32
, /* type */
368 2, /* size (0 = byte, 1 = short, 2 = long) */
370 TRUE
, /* pc_relative */
372 complain_overflow_bitfield
, /* complain_on_overflow */
373 bfd_elf_generic_reloc
, /* special_function */
374 "R_MMIX_PC_32", /* name */
375 FALSE
, /* partial_inplace */
377 0xffffffff, /* dst_mask */
378 TRUE
), /* pcrel_offset */
380 /* 64 bit PC-relative relocation. */
381 HOWTO (R_MMIX_PC_64
, /* type */
383 4, /* size (0 = byte, 1 = short, 2 = long) */
385 TRUE
, /* pc_relative */
387 complain_overflow_bitfield
, /* complain_on_overflow */
388 bfd_elf_generic_reloc
, /* special_function */
389 "R_MMIX_PC_64", /* name */
390 FALSE
, /* partial_inplace */
392 MINUS_ONE
, /* dst_mask */
393 TRUE
), /* pcrel_offset */
395 /* GNU extension to record C++ vtable hierarchy. */
396 HOWTO (R_MMIX_GNU_VTINHERIT
, /* type */
398 0, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE
, /* pc_relative */
402 complain_overflow_dont
, /* complain_on_overflow */
403 NULL
, /* special_function */
404 "R_MMIX_GNU_VTINHERIT", /* name */
405 FALSE
, /* partial_inplace */
408 TRUE
), /* pcrel_offset */
410 /* GNU extension to record C++ vtable member usage. */
411 HOWTO (R_MMIX_GNU_VTENTRY
, /* type */
413 0, /* size (0 = byte, 1 = short, 2 = long) */
415 FALSE
, /* pc_relative */
417 complain_overflow_dont
, /* complain_on_overflow */
418 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
419 "R_MMIX_GNU_VTENTRY", /* name */
420 FALSE
, /* partial_inplace */
423 FALSE
), /* pcrel_offset */
425 /* The GETA relocation is supposed to get any address that could
426 possibly be reached by the GETA instruction. It can silently expand
427 to get a 64-bit operand, but will complain if any of the two least
428 significant bits are set. The howto members reflect a simple GETA. */
429 HOWTO (R_MMIX_GETA
, /* type */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
433 TRUE
, /* pc_relative */
435 complain_overflow_signed
, /* complain_on_overflow */
436 mmix_elf_reloc
, /* special_function */
437 "R_MMIX_GETA", /* name */
438 FALSE
, /* partial_inplace */
439 ~0x0100ffff, /* src_mask */
440 0x0100ffff, /* dst_mask */
441 TRUE
), /* pcrel_offset */
443 HOWTO (R_MMIX_GETA_1
, /* type */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
447 TRUE
, /* pc_relative */
449 complain_overflow_signed
, /* complain_on_overflow */
450 mmix_elf_reloc
, /* special_function */
451 "R_MMIX_GETA_1", /* name */
452 FALSE
, /* partial_inplace */
453 ~0x0100ffff, /* src_mask */
454 0x0100ffff, /* dst_mask */
455 TRUE
), /* pcrel_offset */
457 HOWTO (R_MMIX_GETA_2
, /* type */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
461 TRUE
, /* pc_relative */
463 complain_overflow_signed
, /* complain_on_overflow */
464 mmix_elf_reloc
, /* special_function */
465 "R_MMIX_GETA_2", /* name */
466 FALSE
, /* partial_inplace */
467 ~0x0100ffff, /* src_mask */
468 0x0100ffff, /* dst_mask */
469 TRUE
), /* pcrel_offset */
471 HOWTO (R_MMIX_GETA_3
, /* type */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
475 TRUE
, /* pc_relative */
477 complain_overflow_signed
, /* complain_on_overflow */
478 mmix_elf_reloc
, /* special_function */
479 "R_MMIX_GETA_3", /* name */
480 FALSE
, /* partial_inplace */
481 ~0x0100ffff, /* src_mask */
482 0x0100ffff, /* dst_mask */
483 TRUE
), /* pcrel_offset */
485 /* The conditional branches are supposed to reach any (code) address.
486 It can silently expand to a 64-bit operand, but will emit an error if
487 any of the two least significant bits are set. The howto members
488 reflect a simple branch. */
489 HOWTO (R_MMIX_CBRANCH
, /* type */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
493 TRUE
, /* pc_relative */
495 complain_overflow_signed
, /* complain_on_overflow */
496 mmix_elf_reloc
, /* special_function */
497 "R_MMIX_CBRANCH", /* name */
498 FALSE
, /* partial_inplace */
499 ~0x0100ffff, /* src_mask */
500 0x0100ffff, /* dst_mask */
501 TRUE
), /* pcrel_offset */
503 HOWTO (R_MMIX_CBRANCH_J
, /* type */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
507 TRUE
, /* pc_relative */
509 complain_overflow_signed
, /* complain_on_overflow */
510 mmix_elf_reloc
, /* special_function */
511 "R_MMIX_CBRANCH_J", /* name */
512 FALSE
, /* partial_inplace */
513 ~0x0100ffff, /* src_mask */
514 0x0100ffff, /* dst_mask */
515 TRUE
), /* pcrel_offset */
517 HOWTO (R_MMIX_CBRANCH_1
, /* type */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
521 TRUE
, /* pc_relative */
523 complain_overflow_signed
, /* complain_on_overflow */
524 mmix_elf_reloc
, /* special_function */
525 "R_MMIX_CBRANCH_1", /* name */
526 FALSE
, /* partial_inplace */
527 ~0x0100ffff, /* src_mask */
528 0x0100ffff, /* dst_mask */
529 TRUE
), /* pcrel_offset */
531 HOWTO (R_MMIX_CBRANCH_2
, /* type */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
535 TRUE
, /* pc_relative */
537 complain_overflow_signed
, /* complain_on_overflow */
538 mmix_elf_reloc
, /* special_function */
539 "R_MMIX_CBRANCH_2", /* name */
540 FALSE
, /* partial_inplace */
541 ~0x0100ffff, /* src_mask */
542 0x0100ffff, /* dst_mask */
543 TRUE
), /* pcrel_offset */
545 HOWTO (R_MMIX_CBRANCH_3
, /* type */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
549 TRUE
, /* pc_relative */
551 complain_overflow_signed
, /* complain_on_overflow */
552 mmix_elf_reloc
, /* special_function */
553 "R_MMIX_CBRANCH_3", /* name */
554 FALSE
, /* partial_inplace */
555 ~0x0100ffff, /* src_mask */
556 0x0100ffff, /* dst_mask */
557 TRUE
), /* pcrel_offset */
559 /* The PUSHJ instruction can reach any (code) address, as long as it's
560 the beginning of a function (no usable restriction). It can silently
561 expand to a 64-bit operand, but will emit an error if any of the two
562 least significant bits are set. It can also expand into a call to a
563 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
565 HOWTO (R_MMIX_PUSHJ
, /* type */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
569 TRUE
, /* pc_relative */
571 complain_overflow_signed
, /* complain_on_overflow */
572 mmix_elf_reloc
, /* special_function */
573 "R_MMIX_PUSHJ", /* name */
574 FALSE
, /* partial_inplace */
575 ~0x0100ffff, /* src_mask */
576 0x0100ffff, /* dst_mask */
577 TRUE
), /* pcrel_offset */
579 HOWTO (R_MMIX_PUSHJ_1
, /* type */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
583 TRUE
, /* pc_relative */
585 complain_overflow_signed
, /* complain_on_overflow */
586 mmix_elf_reloc
, /* special_function */
587 "R_MMIX_PUSHJ_1", /* name */
588 FALSE
, /* partial_inplace */
589 ~0x0100ffff, /* src_mask */
590 0x0100ffff, /* dst_mask */
591 TRUE
), /* pcrel_offset */
593 HOWTO (R_MMIX_PUSHJ_2
, /* type */
595 2, /* size (0 = byte, 1 = short, 2 = long) */
597 TRUE
, /* pc_relative */
599 complain_overflow_signed
, /* complain_on_overflow */
600 mmix_elf_reloc
, /* special_function */
601 "R_MMIX_PUSHJ_2", /* name */
602 FALSE
, /* partial_inplace */
603 ~0x0100ffff, /* src_mask */
604 0x0100ffff, /* dst_mask */
605 TRUE
), /* pcrel_offset */
607 HOWTO (R_MMIX_PUSHJ_3
, /* type */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
611 TRUE
, /* pc_relative */
613 complain_overflow_signed
, /* complain_on_overflow */
614 mmix_elf_reloc
, /* special_function */
615 "R_MMIX_PUSHJ_3", /* name */
616 FALSE
, /* partial_inplace */
617 ~0x0100ffff, /* src_mask */
618 0x0100ffff, /* dst_mask */
619 TRUE
), /* pcrel_offset */
621 /* A JMP is supposed to reach any (code) address. By itself, it can
622 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
623 limit is soon reached if you link the program in wildly different
624 memory segments. The howto members reflect a trivial JMP. */
625 HOWTO (R_MMIX_JMP
, /* type */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
629 TRUE
, /* pc_relative */
631 complain_overflow_signed
, /* complain_on_overflow */
632 mmix_elf_reloc
, /* special_function */
633 "R_MMIX_JMP", /* name */
634 FALSE
, /* partial_inplace */
635 ~0x1ffffff, /* src_mask */
636 0x1ffffff, /* dst_mask */
637 TRUE
), /* pcrel_offset */
639 HOWTO (R_MMIX_JMP_1
, /* type */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
643 TRUE
, /* pc_relative */
645 complain_overflow_signed
, /* complain_on_overflow */
646 mmix_elf_reloc
, /* special_function */
647 "R_MMIX_JMP_1", /* name */
648 FALSE
, /* partial_inplace */
649 ~0x1ffffff, /* src_mask */
650 0x1ffffff, /* dst_mask */
651 TRUE
), /* pcrel_offset */
653 HOWTO (R_MMIX_JMP_2
, /* type */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
657 TRUE
, /* pc_relative */
659 complain_overflow_signed
, /* complain_on_overflow */
660 mmix_elf_reloc
, /* special_function */
661 "R_MMIX_JMP_2", /* name */
662 FALSE
, /* partial_inplace */
663 ~0x1ffffff, /* src_mask */
664 0x1ffffff, /* dst_mask */
665 TRUE
), /* pcrel_offset */
667 HOWTO (R_MMIX_JMP_3
, /* type */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
671 TRUE
, /* pc_relative */
673 complain_overflow_signed
, /* complain_on_overflow */
674 mmix_elf_reloc
, /* special_function */
675 "R_MMIX_JMP_3", /* name */
676 FALSE
, /* partial_inplace */
677 ~0x1ffffff, /* src_mask */
678 0x1ffffff, /* dst_mask */
679 TRUE
), /* pcrel_offset */
681 /* When we don't emit link-time-relaxable code from the assembler, or
682 when relaxation has done all it can do, these relocs are used. For
683 GETA/PUSHJ/branches. */
684 HOWTO (R_MMIX_ADDR19
, /* type */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
688 TRUE
, /* pc_relative */
690 complain_overflow_signed
, /* complain_on_overflow */
691 mmix_elf_reloc
, /* special_function */
692 "R_MMIX_ADDR19", /* name */
693 FALSE
, /* partial_inplace */
694 ~0x0100ffff, /* src_mask */
695 0x0100ffff, /* dst_mask */
696 TRUE
), /* pcrel_offset */
699 HOWTO (R_MMIX_ADDR27
, /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 TRUE
, /* pc_relative */
705 complain_overflow_signed
, /* complain_on_overflow */
706 mmix_elf_reloc
, /* special_function */
707 "R_MMIX_ADDR27", /* name */
708 FALSE
, /* partial_inplace */
709 ~0x1ffffff, /* src_mask */
710 0x1ffffff, /* dst_mask */
711 TRUE
), /* pcrel_offset */
713 /* A general register or the value 0..255. If a value, then the
714 instruction (offset -3) needs adjusting. */
715 HOWTO (R_MMIX_REG_OR_BYTE
, /* type */
717 1, /* size (0 = byte, 1 = short, 2 = long) */
719 FALSE
, /* pc_relative */
721 complain_overflow_bitfield
, /* complain_on_overflow */
722 mmix_elf_reloc
, /* special_function */
723 "R_MMIX_REG_OR_BYTE", /* name */
724 FALSE
, /* partial_inplace */
727 FALSE
), /* pcrel_offset */
729 /* A general register. */
730 HOWTO (R_MMIX_REG
, /* type */
732 1, /* size (0 = byte, 1 = short, 2 = long) */
734 FALSE
, /* pc_relative */
736 complain_overflow_bitfield
, /* complain_on_overflow */
737 mmix_elf_reloc
, /* special_function */
738 "R_MMIX_REG", /* name */
739 FALSE
, /* partial_inplace */
742 FALSE
), /* pcrel_offset */
744 /* A register plus an index, corresponding to the relocation expression.
745 The sizes must correspond to the valid range of the expression, while
746 the bitmasks correspond to what we store in the image. */
747 HOWTO (R_MMIX_BASE_PLUS_OFFSET
, /* type */
749 4, /* size (0 = byte, 1 = short, 2 = long) */
751 FALSE
, /* pc_relative */
753 complain_overflow_bitfield
, /* complain_on_overflow */
754 mmix_elf_reloc
, /* special_function */
755 "R_MMIX_BASE_PLUS_OFFSET", /* name */
756 FALSE
, /* partial_inplace */
758 0xffff, /* dst_mask */
759 FALSE
), /* pcrel_offset */
761 /* A "magic" relocation for a LOCAL expression, asserting that the
762 expression is less than the number of global registers. No actual
763 modification of the contents is done. Implementing this as a
764 relocation was less intrusive than e.g. putting such expressions in a
765 section to discard *after* relocation. */
766 HOWTO (R_MMIX_LOCAL
, /* type */
768 0, /* size (0 = byte, 1 = short, 2 = long) */
770 FALSE
, /* pc_relative */
772 complain_overflow_dont
, /* complain_on_overflow */
773 mmix_elf_reloc
, /* special_function */
774 "R_MMIX_LOCAL", /* name */
775 FALSE
, /* partial_inplace */
778 FALSE
), /* pcrel_offset */
780 HOWTO (R_MMIX_PUSHJ_STUBBABLE
, /* type */
782 2, /* size (0 = byte, 1 = short, 2 = long) */
784 TRUE
, /* pc_relative */
786 complain_overflow_signed
, /* complain_on_overflow */
787 mmix_elf_reloc
, /* special_function */
788 "R_MMIX_PUSHJ_STUBBABLE", /* name */
789 FALSE
, /* partial_inplace */
790 ~0x0100ffff, /* src_mask */
791 0x0100ffff, /* dst_mask */
792 TRUE
) /* pcrel_offset */
796 /* Map BFD reloc types to MMIX ELF reloc types. */
798 struct mmix_reloc_map
800 bfd_reloc_code_real_type bfd_reloc_val
;
801 enum elf_mmix_reloc_type elf_reloc_val
;
805 static const struct mmix_reloc_map mmix_reloc_map
[] =
807 {BFD_RELOC_NONE
, R_MMIX_NONE
},
808 {BFD_RELOC_8
, R_MMIX_8
},
809 {BFD_RELOC_16
, R_MMIX_16
},
810 {BFD_RELOC_24
, R_MMIX_24
},
811 {BFD_RELOC_32
, R_MMIX_32
},
812 {BFD_RELOC_64
, R_MMIX_64
},
813 {BFD_RELOC_8_PCREL
, R_MMIX_PC_8
},
814 {BFD_RELOC_16_PCREL
, R_MMIX_PC_16
},
815 {BFD_RELOC_24_PCREL
, R_MMIX_PC_24
},
816 {BFD_RELOC_32_PCREL
, R_MMIX_PC_32
},
817 {BFD_RELOC_64_PCREL
, R_MMIX_PC_64
},
818 {BFD_RELOC_VTABLE_INHERIT
, R_MMIX_GNU_VTINHERIT
},
819 {BFD_RELOC_VTABLE_ENTRY
, R_MMIX_GNU_VTENTRY
},
820 {BFD_RELOC_MMIX_GETA
, R_MMIX_GETA
},
821 {BFD_RELOC_MMIX_CBRANCH
, R_MMIX_CBRANCH
},
822 {BFD_RELOC_MMIX_PUSHJ
, R_MMIX_PUSHJ
},
823 {BFD_RELOC_MMIX_JMP
, R_MMIX_JMP
},
824 {BFD_RELOC_MMIX_ADDR19
, R_MMIX_ADDR19
},
825 {BFD_RELOC_MMIX_ADDR27
, R_MMIX_ADDR27
},
826 {BFD_RELOC_MMIX_REG_OR_BYTE
, R_MMIX_REG_OR_BYTE
},
827 {BFD_RELOC_MMIX_REG
, R_MMIX_REG
},
828 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET
, R_MMIX_BASE_PLUS_OFFSET
},
829 {BFD_RELOC_MMIX_LOCAL
, R_MMIX_LOCAL
},
830 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE
, R_MMIX_PUSHJ_STUBBABLE
}
833 static reloc_howto_type
*
834 bfd_elf64_bfd_reloc_type_lookup (abfd
, code
)
835 bfd
*abfd ATTRIBUTE_UNUSED
;
836 bfd_reloc_code_real_type code
;
841 i
< sizeof (mmix_reloc_map
) / sizeof (mmix_reloc_map
[0]);
844 if (mmix_reloc_map
[i
].bfd_reloc_val
== code
)
845 return &elf_mmix_howto_table
[mmix_reloc_map
[i
].elf_reloc_val
];
851 static reloc_howto_type
*
852 bfd_elf64_bfd_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
858 i
< sizeof (elf_mmix_howto_table
) / sizeof (elf_mmix_howto_table
[0]);
860 if (elf_mmix_howto_table
[i
].name
!= NULL
861 && strcasecmp (elf_mmix_howto_table
[i
].name
, r_name
) == 0)
862 return &elf_mmix_howto_table
[i
];
868 mmix_elf_new_section_hook (abfd
, sec
)
872 if (!sec
->used_by_bfd
)
874 struct _mmix_elf_section_data
*sdata
;
875 bfd_size_type amt
= sizeof (*sdata
);
877 sdata
= bfd_zalloc (abfd
, amt
);
880 sec
->used_by_bfd
= sdata
;
883 return _bfd_elf_new_section_hook (abfd
, sec
);
887 /* This function performs the actual bitfiddling and sanity check for a
888 final relocation. Each relocation gets its *worst*-case expansion
889 in size when it arrives here; any reduction in size should have been
890 caught in linker relaxation earlier. When we get here, the relocation
891 looks like the smallest instruction with SWYM:s (nop:s) appended to the
892 max size. We fill in those nop:s.
894 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
898 INCML $N,(foo >> 16) & 0xffff
899 INCMH $N,(foo >> 32) & 0xffff
900 INCH $N,(foo >> 48) & 0xffff
902 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
903 condbranches needing relaxation might be rare enough to not be
914 R_MMIX_PUSHJ: (FIXME: Relaxation...)
923 R_MMIX_JMP: (FIXME: Relaxation...)
932 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
934 static bfd_reloc_status_type
935 mmix_elf_perform_relocation (isec
, howto
, datap
, addr
, value
)
937 reloc_howto_type
*howto
;
942 bfd
*abfd
= isec
->owner
;
943 bfd_reloc_status_type flag
= bfd_reloc_ok
;
944 bfd_reloc_status_type r
;
948 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
949 We handle the differences here and the common sequence later. */
954 reg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
956 /* We change to an absolute value. */
962 int in1
= bfd_get_16 (abfd
, (bfd_byte
*) datap
) << 16;
964 /* Invert the condition and prediction bit, and set the offset
965 to five instructions ahead.
967 We *can* do better if we want to. If the branch is found to be
968 within limits, we could leave the branch as is; there'll just
969 be a bunch of NOP:s after it. But we shouldn't see this
970 sequence often enough that it's worth doing it. */
973 (((in1
^ ((PRED_INV_BIT
| COND_INV_BIT
) << 24)) & ~0xffff)
977 /* Put a "GO $255,$255,0" after the common sequence. */
979 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24) | 0xffff00,
980 (bfd_byte
*) datap
+ 20);
982 /* Common sequence starts at offset 4. */
985 /* We change to an absolute value. */
990 case R_MMIX_PUSHJ_STUBBABLE
:
991 /* If the address fits, we're fine. */
993 /* Note rightshift 0; see R_MMIX_JMP case below. */
994 && (r
= bfd_check_overflow (complain_overflow_signed
,
997 bfd_arch_bits_per_address (abfd
),
998 value
)) == bfd_reloc_ok
)
999 goto pcrel_mmix_reloc_fits
;
1002 bfd_size_type size
= isec
->rawsize
? isec
->rawsize
: isec
->size
;
1004 /* We have the bytes at the PUSHJ insn and need to get the
1005 position for the stub. There's supposed to be room allocated
1007 bfd_byte
*stubcontents
1008 = ((bfd_byte
*) datap
1009 - (addr
- (isec
->output_section
->vma
+ isec
->output_offset
))
1011 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1014 /* The address doesn't fit, so redirect the PUSHJ to the
1015 location of the stub. */
1016 r
= mmix_elf_perform_relocation (isec
,
1017 &elf_mmix_howto_table
1021 isec
->output_section
->vma
1022 + isec
->output_offset
1024 + (mmix_elf_section_data (isec
)
1027 if (r
!= bfd_reloc_ok
)
1031 = (isec
->output_section
->vma
1032 + isec
->output_offset
1034 + mmix_elf_section_data (isec
)->pjs
.stub_offset
);
1036 /* We generate a simple JMP if that suffices, else the whole 5
1038 if (bfd_check_overflow (complain_overflow_signed
,
1039 elf_mmix_howto_table
[R_MMIX_ADDR27
].bitsize
,
1041 bfd_arch_bits_per_address (abfd
),
1042 addr
+ value
- stubaddr
) == bfd_reloc_ok
)
1044 bfd_put_32 (abfd
, JMP_INSN_BYTE
<< 24, stubcontents
);
1045 r
= mmix_elf_perform_relocation (isec
,
1046 &elf_mmix_howto_table
1050 value
+ addr
- stubaddr
);
1051 mmix_elf_section_data (isec
)->pjs
.stub_offset
+= 4;
1053 if (size
+ mmix_elf_section_data (isec
)->pjs
.stub_offset
1061 /* Put a "GO $255,0" after the common sequence. */
1063 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1064 | 0xff00, (bfd_byte
*) stubcontents
+ 16);
1066 /* Prepare for the general code to set the first part of the
1069 datap
= stubcontents
;
1070 mmix_elf_section_data (isec
)->pjs
.stub_offset
1071 += MAX_PUSHJ_STUB_SIZE
;
1078 int inreg
= bfd_get_8 (abfd
, (bfd_byte
*) datap
+ 1);
1080 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1082 ((PUSHGO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1085 (bfd_byte
*) datap
+ 16);
1087 /* We change to an absolute value. */
1093 /* This one is a little special. If we get here on a non-relaxing
1094 link, and the destination is actually in range, we don't need to
1096 If so, we fall through to the bit-fiddling relocs.
1098 FIXME: bfd_check_overflow seems broken; the relocation is
1099 rightshifted before testing, so supply a zero rightshift. */
1101 if (! ((value
& 3) == 0
1102 && (r
= bfd_check_overflow (complain_overflow_signed
,
1105 bfd_arch_bits_per_address (abfd
),
1106 value
)) == bfd_reloc_ok
))
1108 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1109 modified below, and put a "GO $255,$255,0" after the
1110 address-loading sequence. */
1112 ((GO_INSN_BYTE
| IMM_OFFSET_BIT
) << 24)
1114 (bfd_byte
*) datap
+ 16);
1116 /* We change to an absolute value. */
1123 pcrel_mmix_reloc_fits
:
1124 /* These must be in range, or else we emit an error. */
1125 if ((value
& 3) == 0
1126 /* Note rightshift 0; see above. */
1127 && (r
= bfd_check_overflow (complain_overflow_signed
,
1130 bfd_arch_bits_per_address (abfd
),
1131 value
)) == bfd_reloc_ok
)
1134 = bfd_get_32 (abfd
, (bfd_byte
*) datap
);
1137 if ((bfd_signed_vma
) value
< 0)
1140 value
+= (1 << (howto
->bitsize
- 1));
1148 (in1
& howto
->src_mask
)
1150 | (value
& howto
->dst_mask
),
1151 (bfd_byte
*) datap
);
1153 return bfd_reloc_ok
;
1156 return bfd_reloc_overflow
;
1158 case R_MMIX_BASE_PLUS_OFFSET
:
1160 struct bpo_reloc_section_info
*bpodata
1161 = mmix_elf_section_data (isec
)->bpo
.reloc
;
1162 asection
*bpo_greg_section
1163 = bpodata
->bpo_greg_section
;
1164 struct bpo_greg_section_info
*gregdata
1165 = mmix_elf_section_data (bpo_greg_section
)->bpo
.greg
;
1167 = gregdata
->bpo_reloc_indexes
[bpodata
->bpo_index
++];
1169 /* A consistency check: The value we now have in "relocation" must
1170 be the same as the value we stored for that relocation. It
1171 doesn't cost much, so can be left in at all times. */
1172 if (value
!= gregdata
->reloc_request
[bpo_index
].value
)
1174 (*_bfd_error_handler
)
1175 (_("%s: Internal inconsistency error for value for\n\
1176 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1177 bfd_get_filename (isec
->owner
),
1178 (unsigned long) (value
>> 32), (unsigned long) value
,
1179 (unsigned long) (gregdata
->reloc_request
[bpo_index
].value
1181 (unsigned long) gregdata
->reloc_request
[bpo_index
].value
);
1182 bfd_set_error (bfd_error_bad_value
);
1183 return bfd_reloc_overflow
;
1186 /* Then store the register number and offset for that register
1187 into datap and datap + 1 respectively. */
1189 gregdata
->reloc_request
[bpo_index
].regindex
1190 + bpo_greg_section
->output_section
->vma
/ 8,
1193 gregdata
->reloc_request
[bpo_index
].offset
,
1194 ((unsigned char *) datap
) + 1);
1195 return bfd_reloc_ok
;
1198 case R_MMIX_REG_OR_BYTE
:
1201 return bfd_reloc_overflow
;
1202 bfd_put_8 (abfd
, value
, datap
);
1203 return bfd_reloc_ok
;
1206 BAD_CASE (howto
->type
);
1209 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1212 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1213 everything that looks strange. */
1215 flag
= bfd_reloc_overflow
;
1218 (SETL_INSN_BYTE
<< 24) | (value
& 0xffff) | (reg
<< 16),
1219 (bfd_byte
*) datap
+ offs
);
1221 (INCML_INSN_BYTE
<< 24) | ((value
>> 16) & 0xffff) | (reg
<< 16),
1222 (bfd_byte
*) datap
+ offs
+ 4);
1224 (INCMH_INSN_BYTE
<< 24) | ((value
>> 32) & 0xffff) | (reg
<< 16),
1225 (bfd_byte
*) datap
+ offs
+ 8);
1227 (INCH_INSN_BYTE
<< 24) | ((value
>> 48) & 0xffff) | (reg
<< 16),
1228 (bfd_byte
*) datap
+ offs
+ 12);
1233 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1236 mmix_info_to_howto_rela (abfd
, cache_ptr
, dst
)
1237 bfd
*abfd ATTRIBUTE_UNUSED
;
1239 Elf_Internal_Rela
*dst
;
1241 unsigned int r_type
;
1243 r_type
= ELF64_R_TYPE (dst
->r_info
);
1244 BFD_ASSERT (r_type
< (unsigned int) R_MMIX_max
);
1245 cache_ptr
->howto
= &elf_mmix_howto_table
[r_type
];
1248 /* Any MMIX-specific relocation gets here at assembly time or when linking
1249 to other formats (such as mmo); this is the relocation function from
1250 the reloc_table. We don't get here for final pure ELF linking. */
1252 static bfd_reloc_status_type
1253 mmix_elf_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1254 output_bfd
, error_message
)
1256 arelent
*reloc_entry
;
1259 asection
*input_section
;
1261 char **error_message ATTRIBUTE_UNUSED
;
1264 bfd_reloc_status_type r
;
1265 asection
*reloc_target_output_section
;
1266 bfd_reloc_status_type flag
= bfd_reloc_ok
;
1267 bfd_vma output_base
= 0;
1270 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1271 input_section
, output_bfd
, error_message
);
1273 /* If that was all that was needed (i.e. this isn't a final link, only
1274 some segment adjustments), we're done. */
1275 if (r
!= bfd_reloc_continue
)
1278 if (bfd_is_und_section (symbol
->section
)
1279 && (symbol
->flags
& BSF_WEAK
) == 0
1280 && output_bfd
== (bfd
*) NULL
)
1281 return bfd_reloc_undefined
;
1283 /* Is the address of the relocation really within the section? */
1284 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1285 return bfd_reloc_outofrange
;
1287 /* Work out which section the relocation is targeted at and the
1288 initial relocation command value. */
1290 /* Get symbol value. (Common symbols are special.) */
1291 if (bfd_is_com_section (symbol
->section
))
1294 relocation
= symbol
->value
;
1296 reloc_target_output_section
= bfd_get_output_section (symbol
);
1298 /* Here the variable relocation holds the final address of the symbol we
1299 are relocating against, plus any addend. */
1303 output_base
= reloc_target_output_section
->vma
;
1305 relocation
+= output_base
+ symbol
->section
->output_offset
;
1307 /* Get position of relocation. */
1308 addr
= (reloc_entry
->address
+ input_section
->output_section
->vma
1309 + input_section
->output_offset
);
1310 if (output_bfd
!= (bfd
*) NULL
)
1312 /* Add in supplied addend. */
1313 relocation
+= reloc_entry
->addend
;
1315 /* This is a partial relocation, and we want to apply the
1316 relocation to the reloc entry rather than the raw data.
1317 Modify the reloc inplace to reflect what we now know. */
1318 reloc_entry
->addend
= relocation
;
1319 reloc_entry
->address
+= input_section
->output_offset
;
1323 return mmix_final_link_relocate (reloc_entry
->howto
, input_section
,
1324 data
, reloc_entry
->address
,
1325 reloc_entry
->addend
, relocation
,
1326 bfd_asymbol_name (symbol
),
1327 reloc_target_output_section
);
1330 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1331 for guidance if you're thinking of copying this. */
1334 mmix_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1335 contents
, relocs
, local_syms
, local_sections
)
1336 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1337 struct bfd_link_info
*info
;
1339 asection
*input_section
;
1341 Elf_Internal_Rela
*relocs
;
1342 Elf_Internal_Sym
*local_syms
;
1343 asection
**local_sections
;
1345 Elf_Internal_Shdr
*symtab_hdr
;
1346 struct elf_link_hash_entry
**sym_hashes
;
1347 Elf_Internal_Rela
*rel
;
1348 Elf_Internal_Rela
*relend
;
1352 size
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
1353 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1354 sym_hashes
= elf_sym_hashes (input_bfd
);
1355 relend
= relocs
+ input_section
->reloc_count
;
1357 /* Zero the stub area before we start. */
1358 if (input_section
->rawsize
!= 0
1359 && input_section
->size
> input_section
->rawsize
)
1360 memset (contents
+ input_section
->rawsize
, 0,
1361 input_section
->size
- input_section
->rawsize
);
1363 for (rel
= relocs
; rel
< relend
; rel
++)
1365 reloc_howto_type
*howto
;
1366 unsigned long r_symndx
;
1367 Elf_Internal_Sym
*sym
;
1369 struct elf_link_hash_entry
*h
;
1371 bfd_reloc_status_type r
;
1372 const char *name
= NULL
;
1374 bfd_boolean undefined_signalled
= FALSE
;
1376 r_type
= ELF64_R_TYPE (rel
->r_info
);
1378 if (r_type
== R_MMIX_GNU_VTINHERIT
1379 || r_type
== R_MMIX_GNU_VTENTRY
)
1382 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1384 howto
= elf_mmix_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
1389 if (r_symndx
< symtab_hdr
->sh_info
)
1391 sym
= local_syms
+ r_symndx
;
1392 sec
= local_sections
[r_symndx
];
1393 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
1395 name
= bfd_elf_string_from_elf_section (input_bfd
,
1396 symtab_hdr
->sh_link
,
1399 name
= bfd_section_name (input_bfd
, sec
);
1403 bfd_boolean unresolved_reloc
;
1405 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
1406 r_symndx
, symtab_hdr
, sym_hashes
,
1408 unresolved_reloc
, undefined_signalled
);
1409 name
= h
->root
.root
.string
;
1412 if (sec
!= NULL
&& elf_discarded_section (sec
))
1414 /* For relocs against symbols from removed linkonce sections,
1415 or sections discarded by a linker script, we just want the
1416 section contents zeroed. Avoid any special processing. */
1417 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
1423 if (info
->relocatable
)
1425 /* This is a relocatable link. For most relocs we don't have to
1426 change anything, unless the reloc is against a section
1427 symbol, in which case we have to adjust according to where
1428 the section symbol winds up in the output section. */
1429 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1430 rel
->r_addend
+= sec
->output_offset
;
1432 /* For PUSHJ stub relocs however, we may need to change the
1433 reloc and the section contents, if the reloc doesn't reach
1434 beyond the end of the output section and previous stubs.
1435 Then we change the section contents to be a PUSHJ to the end
1436 of the input section plus stubs (we can do that without using
1437 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1438 at the stub location. */
1439 if (r_type
== R_MMIX_PUSHJ_STUBBABLE
)
1441 /* We've already checked whether we need a stub; use that
1443 if (mmix_elf_section_data (input_section
)->pjs
.stub_size
[pjsno
]
1446 Elf_Internal_Rela relcpy
;
1448 if (mmix_elf_section_data (input_section
)
1449 ->pjs
.stub_size
[pjsno
] != MAX_PUSHJ_STUB_SIZE
)
1452 /* There's already a PUSHJ insn there, so just fill in
1453 the offset bits to the stub. */
1454 if (mmix_final_link_relocate (elf_mmix_howto_table
1461 ->output_section
->vma
1462 + input_section
->output_offset
1464 + mmix_elf_section_data (input_section
)
1466 NULL
, NULL
) != bfd_reloc_ok
)
1469 /* Put a JMP insn at the stub; it goes with the
1470 R_MMIX_JMP reloc. */
1471 bfd_put_32 (output_bfd
, JMP_INSN_BYTE
<< 24,
1474 + mmix_elf_section_data (input_section
)
1477 /* Change the reloc to be at the stub, and to a full
1478 R_MMIX_JMP reloc. */
1479 rel
->r_info
= ELF64_R_INFO (r_symndx
, R_MMIX_JMP
);
1482 + mmix_elf_section_data (input_section
)
1485 mmix_elf_section_data (input_section
)->pjs
.stub_offset
1486 += MAX_PUSHJ_STUB_SIZE
;
1488 /* Shift this reloc to the end of the relocs to maintain
1489 the r_offset sorted reloc order. */
1491 memmove (rel
, rel
+ 1, (char *) relend
- (char *) rel
);
1492 relend
[-1] = relcpy
;
1494 /* Back up one reloc, or else we'd skip the next reloc
1504 r
= mmix_final_link_relocate (howto
, input_section
,
1505 contents
, rel
->r_offset
,
1506 rel
->r_addend
, relocation
, name
, sec
);
1508 if (r
!= bfd_reloc_ok
)
1510 bfd_boolean check_ok
= TRUE
;
1511 const char * msg
= (const char *) NULL
;
1515 case bfd_reloc_overflow
:
1516 check_ok
= info
->callbacks
->reloc_overflow
1517 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
1518 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
1521 case bfd_reloc_undefined
:
1522 /* We may have sent this message above. */
1523 if (! undefined_signalled
)
1524 check_ok
= info
->callbacks
->undefined_symbol
1525 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
1527 undefined_signalled
= TRUE
;
1530 case bfd_reloc_outofrange
:
1531 msg
= _("internal error: out of range error");
1534 case bfd_reloc_notsupported
:
1535 msg
= _("internal error: unsupported relocation error");
1538 case bfd_reloc_dangerous
:
1539 msg
= _("internal error: dangerous relocation");
1543 msg
= _("internal error: unknown error");
1548 check_ok
= info
->callbacks
->warning
1549 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
1559 /* Perform a single relocation. By default we use the standard BFD
1560 routines. A few relocs we have to do ourselves. */
1562 static bfd_reloc_status_type
1563 mmix_final_link_relocate (howto
, input_section
, contents
,
1564 r_offset
, r_addend
, relocation
, symname
, symsec
)
1565 reloc_howto_type
*howto
;
1566 asection
*input_section
;
1569 bfd_signed_vma r_addend
;
1571 const char *symname
;
1574 bfd_reloc_status_type r
= bfd_reloc_ok
;
1576 = (input_section
->output_section
->vma
1577 + input_section
->output_offset
1580 = (bfd_signed_vma
) relocation
+ r_addend
;
1582 switch (howto
->type
)
1584 /* All these are PC-relative. */
1585 case R_MMIX_PUSHJ_STUBBABLE
:
1587 case R_MMIX_CBRANCH
:
1592 contents
+= r_offset
;
1594 srel
-= (input_section
->output_section
->vma
1595 + input_section
->output_offset
1598 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1602 case R_MMIX_BASE_PLUS_OFFSET
:
1604 return bfd_reloc_undefined
;
1606 /* Check that we're not relocating against a register symbol. */
1607 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1608 MMIX_REG_CONTENTS_SECTION_NAME
) == 0
1609 || strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1610 MMIX_REG_SECTION_NAME
) == 0)
1612 /* Note: This is separated out into two messages in order
1613 to ease the translation into other languages. */
1614 if (symname
== NULL
|| *symname
== 0)
1615 (*_bfd_error_handler
)
1616 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1617 bfd_get_filename (input_section
->owner
),
1618 bfd_get_section_name (symsec
->owner
, symsec
));
1620 (*_bfd_error_handler
)
1621 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1622 bfd_get_filename (input_section
->owner
), symname
,
1623 bfd_get_section_name (symsec
->owner
, symsec
));
1624 return bfd_reloc_overflow
;
1628 case R_MMIX_REG_OR_BYTE
:
1630 /* For now, we handle these alike. They must refer to an register
1631 symbol, which is either relative to the register section and in
1632 the range 0..255, or is in the register contents section with vma
1635 /* FIXME: A better way to check for reg contents section?
1636 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1638 return bfd_reloc_undefined
;
1640 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1641 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1643 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1645 /* The bfd_reloc_outofrange return value, though intuitively
1646 a better value, will not get us an error. */
1647 return bfd_reloc_overflow
;
1651 else if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1652 MMIX_REG_SECTION_NAME
) == 0)
1654 if (srel
< 0 || srel
> 255)
1655 /* The bfd_reloc_outofrange return value, though intuitively a
1656 better value, will not get us an error. */
1657 return bfd_reloc_overflow
;
1661 /* Note: This is separated out into two messages in order
1662 to ease the translation into other languages. */
1663 if (symname
== NULL
|| *symname
== 0)
1664 (*_bfd_error_handler
)
1665 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1666 bfd_get_filename (input_section
->owner
),
1667 bfd_get_section_name (symsec
->owner
, symsec
));
1669 (*_bfd_error_handler
)
1670 (_("%s: register relocation against non-register symbol: %s in %s"),
1671 bfd_get_filename (input_section
->owner
), symname
,
1672 bfd_get_section_name (symsec
->owner
, symsec
));
1674 /* The bfd_reloc_outofrange return value, though intuitively a
1675 better value, will not get us an error. */
1676 return bfd_reloc_overflow
;
1679 contents
+= r_offset
;
1680 r
= mmix_elf_perform_relocation (input_section
, howto
, contents
,
1685 /* This isn't a real relocation, it's just an assertion that the
1686 final relocation value corresponds to a local register. We
1687 ignore the actual relocation; nothing is changed. */
1690 = bfd_get_section_by_name (input_section
->output_section
->owner
,
1691 MMIX_REG_CONTENTS_SECTION_NAME
);
1692 bfd_vma first_global
;
1694 /* Check that this is an absolute value, or a reference to the
1695 register contents section or the register (symbol) section.
1696 Absolute numbers can get here as undefined section. Undefined
1697 symbols are signalled elsewhere, so there's no conflict in us
1698 accidentally handling it. */
1699 if (!bfd_is_abs_section (symsec
)
1700 && !bfd_is_und_section (symsec
)
1701 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1702 MMIX_REG_CONTENTS_SECTION_NAME
) != 0
1703 && strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1704 MMIX_REG_SECTION_NAME
) != 0)
1706 (*_bfd_error_handler
)
1707 (_("%s: directive LOCAL valid only with a register or absolute value"),
1708 bfd_get_filename (input_section
->owner
));
1710 return bfd_reloc_overflow
;
1713 /* If we don't have a register contents section, then $255 is the
1714 first global register. */
1719 first_global
= bfd_get_section_vma (abfd
, regsec
) / 8;
1720 if (strcmp (bfd_get_section_name (symsec
->owner
, symsec
),
1721 MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
1723 if ((srel
& 7) != 0 || srel
< 32*8 || srel
> 255*8)
1724 /* The bfd_reloc_outofrange return value, though
1725 intuitively a better value, will not get us an error. */
1726 return bfd_reloc_overflow
;
1731 if ((bfd_vma
) srel
>= first_global
)
1733 /* FIXME: Better error message. */
1734 (*_bfd_error_handler
)
1735 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1736 bfd_get_filename (input_section
->owner
), (long) srel
, (long) first_global
);
1738 return bfd_reloc_overflow
;
1745 r
= _bfd_final_link_relocate (howto
, input_section
->owner
, input_section
,
1747 relocation
, r_addend
);
1753 /* Return the section that should be marked against GC for a given
1757 mmix_elf_gc_mark_hook (asection
*sec
,
1758 struct bfd_link_info
*info
,
1759 Elf_Internal_Rela
*rel
,
1760 struct elf_link_hash_entry
*h
,
1761 Elf_Internal_Sym
*sym
)
1764 switch (ELF64_R_TYPE (rel
->r_info
))
1766 case R_MMIX_GNU_VTINHERIT
:
1767 case R_MMIX_GNU_VTENTRY
:
1771 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1774 /* Update relocation info for a GC-excluded section. We could supposedly
1775 perform the allocation after GC, but there's no suitable hook between
1776 GC (or section merge) and the point when all input sections must be
1777 present. Better to waste some memory and (perhaps) a little time. */
1780 mmix_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1781 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1783 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
1785 struct bpo_reloc_section_info
*bpodata
1786 = mmix_elf_section_data (sec
)->bpo
.reloc
;
1787 asection
*allocated_gregs_section
;
1789 /* If no bpodata here, we have nothing to do. */
1790 if (bpodata
== NULL
)
1793 allocated_gregs_section
= bpodata
->bpo_greg_section
;
1795 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
->n_bpo_relocs
1796 -= bpodata
->n_bpo_relocs_this_section
;
1801 /* Sort register relocs to come before expanding relocs. */
1804 mmix_elf_sort_relocs (p1
, p2
)
1808 const Elf_Internal_Rela
*r1
= (const Elf_Internal_Rela
*) p1
;
1809 const Elf_Internal_Rela
*r2
= (const Elf_Internal_Rela
*) p2
;
1810 int r1_is_reg
, r2_is_reg
;
1812 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1814 if ((r1
->r_offset
& ~(bfd_vma
) 3) > (r2
->r_offset
& ~(bfd_vma
) 3))
1816 else if ((r1
->r_offset
& ~(bfd_vma
) 3) < (r2
->r_offset
& ~(bfd_vma
) 3))
1820 = (ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG_OR_BYTE
1821 || ELF64_R_TYPE (r1
->r_info
) == R_MMIX_REG
);
1823 = (ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG_OR_BYTE
1824 || ELF64_R_TYPE (r2
->r_info
) == R_MMIX_REG
);
1825 if (r1_is_reg
!= r2_is_reg
)
1826 return r2_is_reg
- r1_is_reg
;
1828 /* Neither or both are register relocs. Then sort on full offset. */
1829 if (r1
->r_offset
> r2
->r_offset
)
1831 else if (r1
->r_offset
< r2
->r_offset
)
1836 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1839 mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
)
1841 struct bfd_link_info
*info
;
1843 const Elf_Internal_Rela
*relocs
;
1845 bfd
*bpo_greg_owner
= NULL
;
1846 asection
*allocated_gregs_section
= NULL
;
1847 struct bpo_greg_section_info
*gregdata
= NULL
;
1848 struct bpo_reloc_section_info
*bpodata
= NULL
;
1849 const Elf_Internal_Rela
*rel
;
1850 const Elf_Internal_Rela
*rel_end
;
1852 /* We currently have to abuse this COFF-specific member, since there's
1853 no target-machine-dedicated member. There's no alternative outside
1854 the bfd_link_info struct; we can't specialize a hash-table since
1855 they're different between ELF and mmo. */
1856 bpo_greg_owner
= (bfd
*) info
->base_file
;
1858 rel_end
= relocs
+ sec
->reloc_count
;
1859 for (rel
= relocs
; rel
< rel_end
; rel
++)
1861 switch (ELF64_R_TYPE (rel
->r_info
))
1863 /* This relocation causes a GREG allocation. We need to count
1864 them, and we need to create a section for them, so we need an
1865 object to fake as the owner of that section. We can't use
1866 the ELF dynobj for this, since the ELF bits assume lots of
1867 DSO-related stuff if that member is non-NULL. */
1868 case R_MMIX_BASE_PLUS_OFFSET
:
1869 /* We don't do anything with this reloc for a relocatable link. */
1870 if (info
->relocatable
)
1873 if (bpo_greg_owner
== NULL
)
1875 bpo_greg_owner
= abfd
;
1876 info
->base_file
= (PTR
) bpo_greg_owner
;
1879 if (allocated_gregs_section
== NULL
)
1880 allocated_gregs_section
1881 = bfd_get_section_by_name (bpo_greg_owner
,
1882 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
1884 if (allocated_gregs_section
== NULL
)
1886 allocated_gregs_section
1887 = bfd_make_section_with_flags (bpo_greg_owner
,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
,
1891 | SEC_LINKER_CREATED
));
1892 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1893 treated like any other section, and we'd get errors for
1894 address overlap with the text section. Let's set none of
1895 those flags, as that is what currently happens for usual
1896 GREG allocations, and that works. */
1897 if (allocated_gregs_section
== NULL
1898 || !bfd_set_section_alignment (bpo_greg_owner
,
1899 allocated_gregs_section
,
1903 gregdata
= (struct bpo_greg_section_info
*)
1904 bfd_zalloc (bpo_greg_owner
, sizeof (struct bpo_greg_section_info
));
1905 if (gregdata
== NULL
)
1907 mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
1910 else if (gregdata
== NULL
)
1912 = mmix_elf_section_data (allocated_gregs_section
)->bpo
.greg
;
1914 /* Get ourselves some auxiliary info for the BPO-relocs. */
1915 if (bpodata
== NULL
)
1917 /* No use doing a separate iteration pass to find the upper
1918 limit - just use the number of relocs. */
1919 bpodata
= (struct bpo_reloc_section_info
*)
1920 bfd_alloc (bpo_greg_owner
,
1921 sizeof (struct bpo_reloc_section_info
)
1922 * (sec
->reloc_count
+ 1));
1923 if (bpodata
== NULL
)
1925 mmix_elf_section_data (sec
)->bpo
.reloc
= bpodata
;
1926 bpodata
->first_base_plus_offset_reloc
1927 = bpodata
->bpo_index
1928 = gregdata
->n_max_bpo_relocs
;
1929 bpodata
->bpo_greg_section
1930 = allocated_gregs_section
;
1931 bpodata
->n_bpo_relocs_this_section
= 0;
1934 bpodata
->n_bpo_relocs_this_section
++;
1935 gregdata
->n_max_bpo_relocs
++;
1937 /* We don't get another chance to set this before GC; we've not
1938 set up any hook that runs before GC. */
1939 gregdata
->n_bpo_relocs
1940 = gregdata
->n_max_bpo_relocs
;
1943 case R_MMIX_PUSHJ_STUBBABLE
:
1944 mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
++;
1949 /* Allocate per-reloc stub storage and initialize it to the max stub
1951 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
!= 0)
1955 mmix_elf_section_data (sec
)->pjs
.stub_size
1956 = bfd_alloc (abfd
, mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
1957 * sizeof (mmix_elf_section_data (sec
)
1958 ->pjs
.stub_size
[0]));
1959 if (mmix_elf_section_data (sec
)->pjs
.stub_size
== NULL
)
1962 for (i
= 0; i
< mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
; i
++)
1963 mmix_elf_section_data (sec
)->pjs
.stub_size
[i
] = MAX_PUSHJ_STUB_SIZE
;
1969 /* Look through the relocs for a section during the first phase. */
1972 mmix_elf_check_relocs (abfd
, info
, sec
, relocs
)
1974 struct bfd_link_info
*info
;
1976 const Elf_Internal_Rela
*relocs
;
1978 Elf_Internal_Shdr
*symtab_hdr
;
1979 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
1980 const Elf_Internal_Rela
*rel
;
1981 const Elf_Internal_Rela
*rel_end
;
1983 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1984 sym_hashes
= elf_sym_hashes (abfd
);
1985 sym_hashes_end
= sym_hashes
+ symtab_hdr
->sh_size
/sizeof(Elf64_External_Sym
);
1986 if (!elf_bad_symtab (abfd
))
1987 sym_hashes_end
-= symtab_hdr
->sh_info
;
1989 /* First we sort the relocs so that any register relocs come before
1990 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1991 qsort ((PTR
) relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
1992 mmix_elf_sort_relocs
);
1994 /* Do the common part. */
1995 if (!mmix_elf_check_common_relocs (abfd
, info
, sec
, relocs
))
1998 if (info
->relocatable
)
2001 rel_end
= relocs
+ sec
->reloc_count
;
2002 for (rel
= relocs
; rel
< rel_end
; rel
++)
2004 struct elf_link_hash_entry
*h
;
2005 unsigned long r_symndx
;
2007 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2008 if (r_symndx
< symtab_hdr
->sh_info
)
2012 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2013 while (h
->root
.type
== bfd_link_hash_indirect
2014 || h
->root
.type
== bfd_link_hash_warning
)
2015 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2018 switch (ELF64_R_TYPE (rel
->r_info
))
2020 /* This relocation describes the C++ object vtable hierarchy.
2021 Reconstruct it for later use during GC. */
2022 case R_MMIX_GNU_VTINHERIT
:
2023 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2027 /* This relocation describes which C++ vtable entries are actually
2028 used. Record for later use during GC. */
2029 case R_MMIX_GNU_VTENTRY
:
2030 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
2039 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2040 Copied from elf_link_add_object_symbols. */
2043 _bfd_mmix_check_all_relocs (abfd
, info
)
2045 struct bfd_link_info
*info
;
2049 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2051 Elf_Internal_Rela
*internal_relocs
;
2054 if ((o
->flags
& SEC_RELOC
) == 0
2055 || o
->reloc_count
== 0
2056 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
2057 && (o
->flags
& SEC_DEBUGGING
) != 0)
2058 || bfd_is_abs_section (o
->output_section
))
2062 = _bfd_elf_link_read_relocs (abfd
, o
, (PTR
) NULL
,
2063 (Elf_Internal_Rela
*) NULL
,
2065 if (internal_relocs
== NULL
)
2068 ok
= mmix_elf_check_common_relocs (abfd
, info
, o
, internal_relocs
);
2070 if (! info
->keep_memory
)
2071 free (internal_relocs
);
2080 /* Change symbols relative to the reg contents section to instead be to
2081 the register section, and scale them down to correspond to the register
2085 mmix_elf_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
2086 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2087 const char *name ATTRIBUTE_UNUSED
;
2088 Elf_Internal_Sym
*sym
;
2089 asection
*input_sec
;
2090 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
;
2092 if (input_sec
!= NULL
2093 && input_sec
->name
!= NULL
2094 && ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
2095 && strcmp (input_sec
->name
, MMIX_REG_CONTENTS_SECTION_NAME
) == 0)
2098 sym
->st_shndx
= SHN_REGISTER
;
2104 /* We fake a register section that holds values that are register numbers.
2105 Having a SHN_REGISTER and register section translates better to other
2106 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2107 This section faking is based on a construct in elf32-mips.c. */
2108 static asection mmix_elf_reg_section
;
2109 static asymbol mmix_elf_reg_section_symbol
;
2110 static asymbol
*mmix_elf_reg_section_symbol_ptr
;
2112 /* Handle the special section numbers that a symbol may use. */
2115 mmix_elf_symbol_processing (abfd
, asym
)
2116 bfd
*abfd ATTRIBUTE_UNUSED
;
2119 elf_symbol_type
*elfsym
;
2121 elfsym
= (elf_symbol_type
*) asym
;
2122 switch (elfsym
->internal_elf_sym
.st_shndx
)
2125 if (mmix_elf_reg_section
.name
== NULL
)
2127 /* Initialize the register section. */
2128 mmix_elf_reg_section
.name
= MMIX_REG_SECTION_NAME
;
2129 mmix_elf_reg_section
.flags
= SEC_NO_FLAGS
;
2130 mmix_elf_reg_section
.output_section
= &mmix_elf_reg_section
;
2131 mmix_elf_reg_section
.symbol
= &mmix_elf_reg_section_symbol
;
2132 mmix_elf_reg_section
.symbol_ptr_ptr
= &mmix_elf_reg_section_symbol_ptr
;
2133 mmix_elf_reg_section_symbol
.name
= MMIX_REG_SECTION_NAME
;
2134 mmix_elf_reg_section_symbol
.flags
= BSF_SECTION_SYM
;
2135 mmix_elf_reg_section_symbol
.section
= &mmix_elf_reg_section
;
2136 mmix_elf_reg_section_symbol_ptr
= &mmix_elf_reg_section_symbol
;
2138 asym
->section
= &mmix_elf_reg_section
;
2146 /* Given a BFD section, try to locate the corresponding ELF section
2150 mmix_elf_section_from_bfd_section (abfd
, sec
, retval
)
2151 bfd
* abfd ATTRIBUTE_UNUSED
;
2155 if (strcmp (bfd_get_section_name (abfd
, sec
), MMIX_REG_SECTION_NAME
) == 0)
2156 *retval
= SHN_REGISTER
;
2163 /* Hook called by the linker routine which adds symbols from an object
2164 file. We must handle the special SHN_REGISTER section number here.
2166 We also check that we only have *one* each of the section-start
2167 symbols, since otherwise having two with the same value would cause
2168 them to be "merged", but with the contents serialized. */
2171 mmix_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
2173 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2174 Elf_Internal_Sym
*sym
;
2175 const char **namep ATTRIBUTE_UNUSED
;
2176 flagword
*flagsp ATTRIBUTE_UNUSED
;
2178 bfd_vma
*valp ATTRIBUTE_UNUSED
;
2180 if (sym
->st_shndx
== SHN_REGISTER
)
2182 *secp
= bfd_make_section_old_way (abfd
, MMIX_REG_SECTION_NAME
);
2183 (*secp
)->flags
|= SEC_LINKER_CREATED
;
2185 else if ((*namep
)[0] == '_' && (*namep
)[1] == '_' && (*namep
)[2] == '.'
2186 && CONST_STRNEQ (*namep
, MMIX_LOC_SECTION_START_SYMBOL_PREFIX
))
2188 /* See if we have another one. */
2189 struct bfd_link_hash_entry
*h
= bfd_link_hash_lookup (info
->hash
,
2195 if (h
!= NULL
&& h
->type
!= bfd_link_hash_undefined
)
2197 /* How do we get the asymbol (or really: the filename) from h?
2198 h->u.def.section->owner is NULL. */
2199 ((*_bfd_error_handler
)
2200 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2201 bfd_get_filename (abfd
), *namep
,
2202 *namep
+ strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX
)));
2203 bfd_set_error (bfd_error_bad_value
);
2211 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2214 mmix_elf_is_local_label_name (abfd
, name
)
2221 /* Also include the default local-label definition. */
2222 if (_bfd_elf_is_local_label_name (abfd
, name
))
2228 /* If there's no ":", or more than one, it's not a local symbol. */
2229 colpos
= strchr (name
, ':');
2230 if (colpos
== NULL
|| strchr (colpos
+ 1, ':') != NULL
)
2233 /* Check that there are remaining characters and that they are digits. */
2237 digits
= strspn (colpos
+ 1, "0123456789");
2238 return digits
!= 0 && colpos
[1 + digits
] == 0;
2241 /* We get rid of the register section here. */
2244 mmix_elf_final_link (abfd
, info
)
2246 struct bfd_link_info
*info
;
2248 /* We never output a register section, though we create one for
2249 temporary measures. Check that nobody entered contents into it. */
2250 asection
*reg_section
;
2252 reg_section
= bfd_get_section_by_name (abfd
, MMIX_REG_SECTION_NAME
);
2254 if (reg_section
!= NULL
)
2256 /* FIXME: Pass error state gracefully. */
2257 if (bfd_get_section_flags (abfd
, reg_section
) & SEC_HAS_CONTENTS
)
2258 _bfd_abort (__FILE__
, __LINE__
, _("Register section has contents\n"));
2260 /* Really remove the section, if it hasn't already been done. */
2261 if (!bfd_section_removed_from_list (abfd
, reg_section
))
2263 bfd_section_list_remove (abfd
, reg_section
);
2264 --abfd
->section_count
;
2268 if (! bfd_elf_final_link (abfd
, info
))
2271 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2272 the regular linker machinery. We do it here, like other targets with
2273 special sections. */
2274 if (info
->base_file
!= NULL
)
2276 asection
*greg_section
2277 = bfd_get_section_by_name ((bfd
*) info
->base_file
,
2278 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2279 if (!bfd_set_section_contents (abfd
,
2280 greg_section
->output_section
,
2281 greg_section
->contents
,
2282 (file_ptr
) greg_section
->output_offset
,
2283 greg_section
->size
))
2289 /* We need to include the maximum size of PUSHJ-stubs in the initial
2290 section size. This is expected to shrink during linker relaxation. */
2293 mmix_set_relaxable_size (abfd
, sec
, ptr
)
2294 bfd
*abfd ATTRIBUTE_UNUSED
;
2298 struct bfd_link_info
*info
= ptr
;
2300 /* Make sure we only do this for section where we know we want this,
2301 otherwise we might end up resetting the size of COMMONs. */
2302 if (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0)
2305 sec
->rawsize
= sec
->size
;
2306 sec
->size
+= (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2307 * MAX_PUSHJ_STUB_SIZE
);
2309 /* For use in relocatable link, we start with a max stubs size. See
2310 mmix_elf_relax_section. */
2311 if (info
->relocatable
&& sec
->output_section
)
2312 mmix_elf_section_data (sec
->output_section
)->pjs
.stubs_size_sum
2313 += (mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
2314 * MAX_PUSHJ_STUB_SIZE
);
2317 /* Initialize stuff for the linker-generated GREGs to match
2318 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2321 _bfd_mmix_before_linker_allocation (abfd
, info
)
2322 bfd
*abfd ATTRIBUTE_UNUSED
;
2323 struct bfd_link_info
*info
;
2325 asection
*bpo_gregs_section
;
2326 bfd
*bpo_greg_owner
;
2327 struct bpo_greg_section_info
*gregdata
;
2331 size_t *bpo_reloc_indexes
;
2334 /* Set the initial size of sections. */
2335 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2336 bfd_map_over_sections (ibfd
, mmix_set_relaxable_size
, info
);
2338 /* The bpo_greg_owner bfd is supposed to have been set by
2339 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2340 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2341 bpo_greg_owner
= (bfd
*) info
->base_file
;
2342 if (bpo_greg_owner
== NULL
)
2346 = bfd_get_section_by_name (bpo_greg_owner
,
2347 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2349 if (bpo_gregs_section
== NULL
)
2352 /* We use the target-data handle in the ELF section data. */
2353 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2354 if (gregdata
== NULL
)
2357 n_gregs
= gregdata
->n_bpo_relocs
;
2358 gregdata
->n_allocated_bpo_gregs
= n_gregs
;
2360 /* When this reaches zero during relaxation, all entries have been
2361 filled in and the size of the linker gregs can be calculated. */
2362 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
= n_gregs
;
2364 /* Set the zeroth-order estimate for the GREGs size. */
2365 gregs_size
= n_gregs
* 8;
2367 if (!bfd_set_section_size (bpo_greg_owner
, bpo_gregs_section
, gregs_size
))
2370 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2371 time. Note that we must use the max number ever noted for the array,
2372 since the index numbers were created before GC. */
2373 gregdata
->reloc_request
2374 = bfd_zalloc (bpo_greg_owner
,
2375 sizeof (struct bpo_reloc_request
)
2376 * gregdata
->n_max_bpo_relocs
);
2378 gregdata
->bpo_reloc_indexes
2380 = bfd_alloc (bpo_greg_owner
,
2381 gregdata
->n_max_bpo_relocs
2383 if (bpo_reloc_indexes
== NULL
)
2386 /* The default order is an identity mapping. */
2387 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2389 bpo_reloc_indexes
[i
] = i
;
2390 gregdata
->reloc_request
[i
].bpo_reloc_no
= i
;
2396 /* Fill in contents in the linker allocated gregs. Everything is
2397 calculated at this point; we just move the contents into place here. */
2400 _bfd_mmix_after_linker_allocation (abfd
, link_info
)
2401 bfd
*abfd ATTRIBUTE_UNUSED
;
2402 struct bfd_link_info
*link_info
;
2404 asection
*bpo_gregs_section
;
2405 bfd
*bpo_greg_owner
;
2406 struct bpo_greg_section_info
*gregdata
;
2412 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2413 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2414 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2415 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2416 if (bpo_greg_owner
== NULL
)
2420 = bfd_get_section_by_name (bpo_greg_owner
,
2421 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2423 /* This can't happen without DSO handling. When DSOs are handled
2424 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2426 if (bpo_gregs_section
== NULL
)
2429 /* We use the target-data handle in the ELF section data. */
2431 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2432 if (gregdata
== NULL
)
2435 n_gregs
= gregdata
->n_allocated_bpo_gregs
;
2437 bpo_gregs_section
->contents
2438 = contents
= bfd_alloc (bpo_greg_owner
, bpo_gregs_section
->size
);
2439 if (contents
== NULL
)
2442 /* Sanity check: If these numbers mismatch, some relocation has not been
2443 accounted for and the rest of gregdata is probably inconsistent.
2444 It's a bug, but it's more helpful to identify it than segfaulting
2446 if (gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2447 != gregdata
->n_bpo_relocs
)
2449 (*_bfd_error_handler
)
2450 (_("Internal inconsistency: remaining %u != max %u.\n\
2451 Please report this bug."),
2452 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2453 gregdata
->n_bpo_relocs
);
2457 for (lastreg
= 255, i
= 0, j
= 0; j
< n_gregs
; i
++)
2458 if (gregdata
->reloc_request
[i
].regindex
!= lastreg
)
2460 bfd_put_64 (bpo_greg_owner
, gregdata
->reloc_request
[i
].value
,
2462 lastreg
= gregdata
->reloc_request
[i
].regindex
;
2469 /* Sort valid relocs to come before non-valid relocs, then on increasing
2473 bpo_reloc_request_sort_fn (p1
, p2
)
2477 const struct bpo_reloc_request
*r1
= (const struct bpo_reloc_request
*) p1
;
2478 const struct bpo_reloc_request
*r2
= (const struct bpo_reloc_request
*) p2
;
2480 /* Primary function is validity; non-valid relocs sorted after valid
2482 if (r1
->valid
!= r2
->valid
)
2483 return r2
->valid
- r1
->valid
;
2485 /* Then sort on value. Don't simplify and return just the difference of
2486 the values: the upper bits of the 64-bit value would be truncated on
2487 a host with 32-bit ints. */
2488 if (r1
->value
!= r2
->value
)
2489 return r1
->value
> r2
->value
? 1 : -1;
2491 /* As a last re-sort, use the relocation number, so we get a stable
2492 sort. The *addresses* aren't stable since items are swapped during
2493 sorting. It depends on the qsort implementation if this actually
2495 return r1
->bpo_reloc_no
> r2
->bpo_reloc_no
2496 ? 1 : (r1
->bpo_reloc_no
< r2
->bpo_reloc_no
? -1 : 0);
2499 /* For debug use only. Dumps the global register allocations resulting
2500 from base-plus-offset relocs. */
2503 mmix_dump_bpo_gregs (link_info
, pf
)
2504 struct bfd_link_info
*link_info
;
2505 bfd_error_handler_type pf
;
2507 bfd
*bpo_greg_owner
;
2508 asection
*bpo_gregs_section
;
2509 struct bpo_greg_section_info
*gregdata
;
2512 if (link_info
== NULL
|| link_info
->base_file
== NULL
)
2515 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2518 = bfd_get_section_by_name (bpo_greg_owner
,
2519 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME
);
2521 if (bpo_gregs_section
== NULL
)
2524 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2525 if (gregdata
== NULL
)
2529 pf
= _bfd_error_handler
;
2531 /* These format strings are not translated. They are for debug purposes
2532 only and never displayed to an end user. Should they escape, we
2533 surely want them in original. */
2534 (*pf
) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2535 n_allocated_bpo_gregs: %u\n", gregdata
->n_bpo_relocs
,
2536 gregdata
->n_max_bpo_relocs
,
2537 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
,
2538 gregdata
->n_allocated_bpo_gregs
);
2540 if (gregdata
->reloc_request
)
2541 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2542 (*pf
) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2544 (gregdata
->bpo_reloc_indexes
!= NULL
2545 ? gregdata
->bpo_reloc_indexes
[i
] : (size_t) -1),
2546 gregdata
->reloc_request
[i
].bpo_reloc_no
,
2547 gregdata
->reloc_request
[i
].valid
,
2549 (unsigned long) (gregdata
->reloc_request
[i
].value
>> 32),
2550 (unsigned long) gregdata
->reloc_request
[i
].value
,
2551 gregdata
->reloc_request
[i
].regindex
,
2552 gregdata
->reloc_request
[i
].offset
);
2555 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2556 when the last such reloc is done, an index-array is sorted according to
2557 the values and iterated over to produce register numbers (indexed by 0
2558 from the first allocated register number) and offsets for use in real
2561 PUSHJ stub accounting is also done here.
2563 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2566 mmix_elf_relax_section (abfd
, sec
, link_info
, again
)
2569 struct bfd_link_info
*link_info
;
2572 Elf_Internal_Shdr
*symtab_hdr
;
2573 Elf_Internal_Rela
*internal_relocs
;
2574 Elf_Internal_Rela
*irel
, *irelend
;
2575 asection
*bpo_gregs_section
= NULL
;
2576 struct bpo_greg_section_info
*gregdata
;
2577 struct bpo_reloc_section_info
*bpodata
2578 = mmix_elf_section_data (sec
)->bpo
.reloc
;
2579 /* The initialization is to quiet compiler warnings. The value is to
2580 spot a missing actual initialization. */
2581 size_t bpono
= (size_t) -1;
2583 bfd
*bpo_greg_owner
;
2584 Elf_Internal_Sym
*isymbuf
= NULL
;
2585 bfd_size_type size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
2587 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
= 0;
2589 /* Assume nothing changes. */
2592 /* We don't have to do anything if this section does not have relocs, or
2593 if this is not a code section. */
2594 if ((sec
->flags
& SEC_RELOC
) == 0
2595 || sec
->reloc_count
== 0
2596 || (sec
->flags
& SEC_CODE
) == 0
2597 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2598 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2599 then nothing to do. */
2601 && mmix_elf_section_data (sec
)->pjs
.n_pushj_relocs
== 0))
2604 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2606 bpo_greg_owner
= (bfd
*) link_info
->base_file
;
2608 if (bpodata
!= NULL
)
2610 bpo_gregs_section
= bpodata
->bpo_greg_section
;
2611 gregdata
= mmix_elf_section_data (bpo_gregs_section
)->bpo
.greg
;
2612 bpono
= bpodata
->first_base_plus_offset_reloc
;
2617 /* Get a copy of the native relocations. */
2619 = _bfd_elf_link_read_relocs (abfd
, sec
, (PTR
) NULL
,
2620 (Elf_Internal_Rela
*) NULL
,
2621 link_info
->keep_memory
);
2622 if (internal_relocs
== NULL
)
2625 /* Walk through them looking for relaxing opportunities. */
2626 irelend
= internal_relocs
+ sec
->reloc_count
;
2627 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2630 struct elf_link_hash_entry
*h
= NULL
;
2632 /* We only process two relocs. */
2633 if (ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_BASE_PLUS_OFFSET
2634 && ELF64_R_TYPE (irel
->r_info
) != (int) R_MMIX_PUSHJ_STUBBABLE
)
2637 /* We process relocs in a distinctly different way when this is a
2638 relocatable link (for one, we don't look at symbols), so we avoid
2639 mixing its code with that for the "normal" relaxation. */
2640 if (link_info
->relocatable
)
2642 /* The only transformation in a relocatable link is to generate
2643 a full stub at the location of the stub calculated for the
2644 input section, if the relocated stub location, the end of the
2645 output section plus earlier stubs, cannot be reached. Thus
2646 relocatable linking can only lead to worse code, but it still
2648 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_PUSHJ_STUBBABLE
)
2650 /* If we can reach the end of the output-section and beyond
2651 any current stubs, then we don't need a stub for this
2652 reloc. The relaxed order of output stub allocation may
2653 not exactly match the straightforward order, so we always
2654 assume presence of output stubs, which will allow
2655 relaxation only on relocations indifferent to the
2656 presence of output stub allocations for other relocations
2657 and thus the order of output stub allocation. */
2658 if (bfd_check_overflow (complain_overflow_signed
,
2661 bfd_arch_bits_per_address (abfd
),
2662 /* Output-stub location. */
2663 sec
->output_section
->rawsize
2664 + (mmix_elf_section_data (sec
2666 ->pjs
.stubs_size_sum
)
2667 /* Location of this PUSHJ reloc. */
2668 - (sec
->output_offset
+ irel
->r_offset
)
2669 /* Don't count *this* stub twice. */
2670 - (mmix_elf_section_data (sec
)
2671 ->pjs
.stub_size
[pjsno
]
2672 + MAX_PUSHJ_STUB_SIZE
))
2674 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2676 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2677 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2685 /* Get the value of the symbol referred to by the reloc. */
2686 if (ELF64_R_SYM (irel
->r_info
) < symtab_hdr
->sh_info
)
2688 /* A local symbol. */
2689 Elf_Internal_Sym
*isym
;
2692 /* Read this BFD's local symbols if we haven't already. */
2693 if (isymbuf
== NULL
)
2695 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2696 if (isymbuf
== NULL
)
2697 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
2698 symtab_hdr
->sh_info
, 0,
2704 isym
= isymbuf
+ ELF64_R_SYM (irel
->r_info
);
2705 if (isym
->st_shndx
== SHN_UNDEF
)
2706 sym_sec
= bfd_und_section_ptr
;
2707 else if (isym
->st_shndx
== SHN_ABS
)
2708 sym_sec
= bfd_abs_section_ptr
;
2709 else if (isym
->st_shndx
== SHN_COMMON
)
2710 sym_sec
= bfd_com_section_ptr
;
2712 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
2713 symval
= (isym
->st_value
2714 + sym_sec
->output_section
->vma
2715 + sym_sec
->output_offset
);
2721 /* An external symbol. */
2722 indx
= ELF64_R_SYM (irel
->r_info
) - symtab_hdr
->sh_info
;
2723 h
= elf_sym_hashes (abfd
)[indx
];
2724 BFD_ASSERT (h
!= NULL
);
2725 if (h
->root
.type
!= bfd_link_hash_defined
2726 && h
->root
.type
!= bfd_link_hash_defweak
)
2728 /* This appears to be a reference to an undefined symbol. Just
2729 ignore it--it will be caught by the regular reloc processing.
2730 We need to keep BPO reloc accounting consistent, though
2731 else we'll abort instead of emitting an error message. */
2732 if (ELF64_R_TYPE (irel
->r_info
) == R_MMIX_BASE_PLUS_OFFSET
2733 && gregdata
!= NULL
)
2735 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2741 symval
= (h
->root
.u
.def
.value
2742 + h
->root
.u
.def
.section
->output_section
->vma
2743 + h
->root
.u
.def
.section
->output_offset
);
2746 if (ELF64_R_TYPE (irel
->r_info
) == (int) R_MMIX_PUSHJ_STUBBABLE
)
2748 bfd_vma value
= symval
+ irel
->r_addend
;
2750 = (sec
->output_section
->vma
2751 + sec
->output_offset
2754 = (sec
->output_section
->vma
2755 + sec
->output_offset
2757 + mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
);
2759 if ((value
& 3) == 0
2760 && bfd_check_overflow (complain_overflow_signed
,
2763 bfd_arch_bits_per_address (abfd
),
2766 ? mmix_elf_section_data (sec
)
2767 ->pjs
.stub_size
[pjsno
]
2770 /* If the reloc fits, no stub is needed. */
2771 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 0;
2773 /* Maybe we can get away with just a JMP insn? */
2774 if ((value
& 3) == 0
2775 && bfd_check_overflow (complain_overflow_signed
,
2778 bfd_arch_bits_per_address (abfd
),
2781 ? mmix_elf_section_data (sec
)
2782 ->pjs
.stub_size
[pjsno
] - 4
2785 /* Yep, account for a stub consisting of a single JMP insn. */
2786 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
] = 4;
2788 /* Nope, go for the full insn stub. It doesn't seem useful to
2789 emit the intermediate sizes; those will only be useful for
2790 a >64M program assuming contiguous code. */
2791 mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
]
2792 = MAX_PUSHJ_STUB_SIZE
;
2794 mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
2795 += mmix_elf_section_data (sec
)->pjs
.stub_size
[pjsno
];
2800 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2802 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
]].value
2803 = symval
+ irel
->r_addend
;
2804 gregdata
->reloc_request
[gregdata
->bpo_reloc_indexes
[bpono
++]].valid
= TRUE
;
2805 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
--;
2808 /* Check if that was the last BPO-reloc. If so, sort the values and
2809 calculate how many registers we need to cover them. Set the size of
2810 the linker gregs, and if the number of registers changed, indicate
2811 that we need to relax some more because we have more work to do. */
2812 if (gregdata
!= NULL
2813 && gregdata
->n_remaining_bpo_relocs_this_relaxation_round
== 0)
2819 /* First, reset the remaining relocs for the next round. */
2820 gregdata
->n_remaining_bpo_relocs_this_relaxation_round
2821 = gregdata
->n_bpo_relocs
;
2823 qsort ((PTR
) gregdata
->reloc_request
,
2824 gregdata
->n_max_bpo_relocs
,
2825 sizeof (struct bpo_reloc_request
),
2826 bpo_reloc_request_sort_fn
);
2828 /* Recalculate indexes. When we find a change (however unlikely
2829 after the initial iteration), we know we need to relax again,
2830 since items in the GREG-array are sorted by increasing value and
2831 stored in the relaxation phase. */
2832 for (i
= 0; i
< gregdata
->n_max_bpo_relocs
; i
++)
2833 if (gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2836 gregdata
->bpo_reloc_indexes
[gregdata
->reloc_request
[i
].bpo_reloc_no
]
2841 /* Allocate register numbers (indexing from 0). Stop at the first
2843 for (i
= 0, regindex
= 0, prev_base
= gregdata
->reloc_request
[0].value
;
2844 i
< gregdata
->n_bpo_relocs
;
2847 if (gregdata
->reloc_request
[i
].value
> prev_base
+ 255)
2850 prev_base
= gregdata
->reloc_request
[i
].value
;
2852 gregdata
->reloc_request
[i
].regindex
= regindex
;
2853 gregdata
->reloc_request
[i
].offset
2854 = gregdata
->reloc_request
[i
].value
- prev_base
;
2857 /* If it's not the same as the last time, we need to relax again,
2858 because the size of the section has changed. I'm not sure we
2859 actually need to do any adjustments since the shrinking happens
2860 at the start of this section, but better safe than sorry. */
2861 if (gregdata
->n_allocated_bpo_gregs
!= regindex
+ 1)
2863 gregdata
->n_allocated_bpo_gregs
= regindex
+ 1;
2867 bpo_gregs_section
->size
= (regindex
+ 1) * 8;
2870 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2872 if (! link_info
->keep_memory
)
2876 /* Cache the symbols for elf_link_input_bfd. */
2877 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
2881 if (internal_relocs
!= NULL
2882 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2883 free (internal_relocs
);
2885 if (sec
->size
< size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2888 if (sec
->size
> size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
)
2890 sec
->size
= size
+ mmix_elf_section_data (sec
)->pjs
.stubs_size_sum
;
2897 if (isymbuf
!= NULL
&& (unsigned char *) isymbuf
!= symtab_hdr
->contents
)
2899 if (internal_relocs
!= NULL
2900 && elf_section_data (sec
)->relocs
!= internal_relocs
)
2901 free (internal_relocs
);
2905 #define ELF_ARCH bfd_arch_mmix
2906 #define ELF_MACHINE_CODE EM_MMIX
2908 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2909 However, that's too much for something somewhere in the linker part of
2910 BFD; perhaps the start-address has to be a non-zero multiple of this
2911 number, or larger than this number. The symptom is that the linker
2912 complains: "warning: allocated section `.text' not in segment". We
2913 settle for 64k; the page-size used in examples is 8k.
2914 #define ELF_MAXPAGESIZE 0x10000
2916 Unfortunately, this causes excessive padding in the supposedly small
2917 for-education programs that are the expected usage (where people would
2918 inspect output). We stick to 256 bytes just to have *some* default
2920 #define ELF_MAXPAGESIZE 0x100
2922 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2923 #define TARGET_BIG_NAME "elf64-mmix"
2925 #define elf_info_to_howto_rel NULL
2926 #define elf_info_to_howto mmix_info_to_howto_rela
2927 #define elf_backend_relocate_section mmix_elf_relocate_section
2928 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2929 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2931 #define elf_backend_link_output_symbol_hook \
2932 mmix_elf_link_output_symbol_hook
2933 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2935 #define elf_backend_check_relocs mmix_elf_check_relocs
2936 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2937 #define elf_backend_omit_section_dynsym \
2938 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2940 #define bfd_elf64_bfd_is_local_label_name \
2941 mmix_elf_is_local_label_name
2943 #define elf_backend_may_use_rel_p 0
2944 #define elf_backend_may_use_rela_p 1
2945 #define elf_backend_default_use_rela_p 1
2947 #define elf_backend_can_gc_sections 1
2948 #define elf_backend_section_from_bfd_section \
2949 mmix_elf_section_from_bfd_section
2951 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2952 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2953 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2955 #include "elf64-target.h"