1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
23 /* This file has been modified for usage in libiberty. It includes "xregex.h"
24 instead of <regex.h>. The "xregex.h" header file renames all external
25 routines with an "x" prefix so they do not collide with the native regex
26 routines or with other components regex routines. */
27 /* AIX requires this to be the first thing in the file. */
28 #if defined _AIX && !defined REGEX_MALLOC
40 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
41 # define PARAMS(args) args
43 # define PARAMS(args) ()
45 #endif /* Not PARAMS. */
47 #ifndef INSIDE_RECURSION
49 # if defined STDC_HEADERS && !defined emacs
52 /* We need this for `regex.h', and perhaps for the Emacs include files. */
53 # include <sys/types.h>
56 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 # if defined _LIBC || WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 # define btowc __btowc
90 /* We are also using some library internals. */
91 # include <locale/localeinfo.h>
92 # include <locale/elem-hash.h>
93 # include <langinfo.h>
94 # include <locale/coll-lookup.h>
97 /* This is for other GNU distributions with internationalized messages. */
98 # if HAVE_LIBINTL_H || defined _LIBC
102 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
105 # define gettext(msgid) (msgid)
108 # ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
111 # define gettext_noop(String) String
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
122 # else /* not emacs */
124 /* If we are not linking with Emacs proper,
125 we can't use the relocating allocator
126 even if config.h says that we can. */
129 # if defined STDC_HEADERS || defined _LIBC
136 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137 If nothing else has been done, use the method below. */
138 # ifdef INHIBIT_STRING_HEADER
139 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140 # if !defined bzero && !defined bcopy
141 # undef INHIBIT_STRING_HEADER
146 /* This is the normal way of making sure we have a bcopy and a bzero.
147 This is used in most programs--a few other programs avoid this
148 by defining INHIBIT_STRING_HEADER. */
149 # ifndef INHIBIT_STRING_HEADER
150 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
154 # define bzero(s, n) (memset (s, '\0', n), (s))
156 # define bzero(s, n) __bzero (s, n)
160 # include <strings.h>
162 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
165 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
170 /* Define the syntax stuff for \<, \>, etc. */
172 /* This must be nonzero for the wordchar and notwordchar pattern
173 commands in re_match_2. */
178 # ifdef SWITCH_ENUM_BUG
179 # define SWITCH_ENUM_CAST(x) ((int)(x))
181 # define SWITCH_ENUM_CAST(x) (x)
184 # endif /* not emacs */
186 # if defined _LIBC || HAVE_LIMITS_H
191 # define MB_LEN_MAX 1
194 /* Get the interface, including the syntax bits. */
195 # include "xregex.h" /* change for libiberty */
197 /* isalpha etc. are used for the character classes. */
200 /* Jim Meyering writes:
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
213 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 # define ISASCII(c) 1
216 # define ISASCII(c) isascii(c)
220 # define ISBLANK(c) (ISASCII (c) && isblank (c))
222 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
225 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
227 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
231 # define ISPRINT(c) (ISASCII (c) && isprint (c))
232 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 # define ISLOWER(c) (ISASCII (c) && islower (c))
237 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 # define ISSPACE(c) (ISASCII (c) && isspace (c))
239 # define ISUPPER(c) (ISASCII (c) && isupper (c))
240 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
243 # define TOLOWER(c) _tolower(c)
245 # define TOLOWER(c) tolower(c)
249 # define NULL (void *)0
252 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
253 since ours (we hope) works properly with all combinations of
254 machines, compilers, `char' and `unsigned char' argument types.
255 (Per Bothner suggested the basic approach.) */
256 # undef SIGN_EXTEND_CHAR
258 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259 # else /* not __STDC__ */
260 /* As in Harbison and Steele. */
261 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
265 /* How many characters in the character set. */
266 # define CHAR_SET_SIZE 256
270 extern char *re_syntax_table
;
272 # else /* not SYNTAX_TABLE */
274 static char re_syntax_table
[CHAR_SET_SIZE
];
276 static void init_syntax_once
PARAMS ((void));
286 bzero (re_syntax_table
, sizeof re_syntax_table
);
288 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
290 re_syntax_table
[c
] = Sword
;
292 re_syntax_table
['_'] = Sword
;
297 # endif /* not SYNTAX_TABLE */
299 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
303 /* Integer type for pointers. */
305 typedef unsigned long int uintptr_t;
308 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
320 # define REGEX_ALLOCATE malloc
321 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322 # define REGEX_FREE free
324 # else /* not REGEX_MALLOC */
326 /* Emacs already defines alloca, sometimes. */
329 /* Make alloca work the best possible way. */
331 # define alloca __builtin_alloca
332 # else /* not __GNUC__ */
335 # endif /* HAVE_ALLOCA_H */
336 # endif /* not __GNUC__ */
338 # endif /* not alloca */
340 # define REGEX_ALLOCATE alloca
342 /* Assumes a `char *destination' variable. */
343 # define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
347 /* No need to do anything to free, after alloca. */
348 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
350 # endif /* not REGEX_MALLOC */
352 /* Define how to allocate the failure stack. */
354 # if defined REL_ALLOC && defined REGEX_MALLOC
356 # define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360 # define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
363 # else /* not using relocating allocator */
367 # define REGEX_ALLOCATE_STACK malloc
368 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369 # define REGEX_FREE_STACK free
371 # else /* not REGEX_MALLOC */
373 # define REGEX_ALLOCATE_STACK alloca
375 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377 /* No need to explicitly free anything. */
378 # define REGEX_FREE_STACK(arg)
380 # endif /* not REGEX_MALLOC */
381 # endif /* not using relocating allocator */
384 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
387 # define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
390 /* (Re)Allocate N items of type T using malloc, or fail. */
391 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393 # define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
397 # define BYTEWIDTH 8 /* In bits. */
399 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
403 # define MAX(a, b) ((a) > (b) ? (a) : (b))
404 # define MIN(a, b) ((a) < (b) ? (a) : (b))
406 typedef char boolean
;
410 static reg_errcode_t byte_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
412 struct re_pattern_buffer
*bufp
));
414 static int byte_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
415 const char *string1
, int size1
,
416 const char *string2
, int size2
,
418 struct re_registers
*regs
,
420 static int byte_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
421 const char *string1
, int size1
,
422 const char *string2
, int size2
,
423 int startpos
, int range
,
424 struct re_registers
*regs
, int stop
));
425 static int byte_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
428 static reg_errcode_t wcs_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
430 struct re_pattern_buffer
*bufp
));
433 static int wcs_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
434 const char *cstring1
, int csize1
,
435 const char *cstring2
, int csize2
,
437 struct re_registers
*regs
,
439 wchar_t *string1
, int size1
,
440 wchar_t *string2
, int size2
,
441 int *mbs_offset1
, int *mbs_offset2
));
442 static int wcs_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
443 const char *string1
, int size1
,
444 const char *string2
, int size2
,
445 int startpos
, int range
,
446 struct re_registers
*regs
, int stop
));
447 static int wcs_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
450 /* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
459 /* Succeed right away--no more backtracking. */
462 /* Followed by one byte giving n, then by n literal bytes. */
466 /* Same as exactn, but contains binary data. */
470 /* Matches any (more or less) character. */
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
485 See regex_compile function. */
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
514 /* Fail unless at beginning of line. */
517 /* Fail unless at end of line. */
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
524 /* Analogously, for end of buffer/string. */
527 /* Followed by two byte relative address to which to jump. */
530 /* Same as jump, but marks the end of an alternative. */
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump
,
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
565 /* Push a dummy failure point and continue. Used at the end of
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
585 wordchar
, /* Matches any word-constituent character. */
586 notwordchar
, /* Matches any char that is not a word-constituent. */
588 wordbeg
, /* Succeeds if at word beginning. */
589 wordend
, /* Succeeds if at word end. */
591 wordbound
, /* Succeeds if at a word boundary. */
592 notwordbound
/* Succeeds if not at a word boundary. */
595 ,before_dot
, /* Succeeds if before point. */
596 at_dot
, /* Succeeds if at point. */
597 after_dot
, /* Succeeds if after point. */
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
603 /* Matches any character whose syntax is not that specified. */
607 #endif /* not INSIDE_RECURSION */
612 # define UCHAR_T unsigned char
613 # define COMPILED_BUFFER_VAR bufp->buffer
614 # define OFFSET_ADDRESS_SIZE 2
615 # define PREFIX(name) byte_##name
616 # define ARG_PREFIX(name) name
617 # define PUT_CHAR(c) putchar (c)
620 # define CHAR_T wchar_t
621 # define UCHAR_T wchar_t
622 # define COMPILED_BUFFER_VAR wc_buffer
623 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625 # define PREFIX(name) wcs_##name
626 # define ARG_PREFIX(name) c##name
627 /* Should we use wide stream?? */
628 # define PUT_CHAR(c) printf ("%C", c);
634 # define INSIDE_RECURSION
636 # undef INSIDE_RECURSION
639 # define INSIDE_RECURSION
641 # undef INSIDE_RECURSION
645 #ifdef INSIDE_RECURSION
646 /* Common operations on the compiled pattern. */
648 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
649 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
652 # define STORE_NUMBER(destination, number) \
654 *(destination) = (UCHAR_T)(number); \
657 # define STORE_NUMBER(destination, number) \
659 (destination)[0] = (number) & 0377; \
660 (destination)[1] = (number) >> 8; \
664 /* Same as STORE_NUMBER, except increment DESTINATION to
665 the byte after where the number is stored. Therefore, DESTINATION
666 must be an lvalue. */
667 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
669 # define STORE_NUMBER_AND_INCR(destination, number) \
671 STORE_NUMBER (destination, number); \
672 (destination) += OFFSET_ADDRESS_SIZE; \
675 /* Put into DESTINATION a number stored in two contiguous bytes starting
677 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
680 # define EXTRACT_NUMBER(destination, source) \
682 (destination) = *(source); \
685 # define EXTRACT_NUMBER(destination, source) \
687 (destination) = *(source) & 0377; \
688 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
693 static void PREFIX(extract_number
) _RE_ARGS ((int *dest
, UCHAR_T
*source
));
695 PREFIX(extract_number
) (dest
, source
)
702 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
703 *dest
= *source
& 0377;
708 # ifndef EXTRACT_MACROS /* To debug the macros. */
709 # undef EXTRACT_NUMBER
710 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
711 # endif /* not EXTRACT_MACROS */
715 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
716 SOURCE must be an lvalue. */
718 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
720 EXTRACT_NUMBER (destination, source); \
721 (source) += OFFSET_ADDRESS_SIZE; \
725 static void PREFIX(extract_number_and_incr
) _RE_ARGS ((int *destination
,
728 PREFIX(extract_number_and_incr
) (destination
, source
)
732 PREFIX(extract_number
) (destination
, *source
);
733 *source
+= OFFSET_ADDRESS_SIZE
;
736 # ifndef EXTRACT_MACROS
737 # undef EXTRACT_NUMBER_AND_INCR
738 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
739 PREFIX(extract_number_and_incr) (&dest, &src)
740 # endif /* not EXTRACT_MACROS */
746 /* If DEBUG is defined, Regex prints many voluminous messages about what
747 it is doing (if the variable `debug' is nonzero). If linked with the
748 main program in `iregex.c', you can enter patterns and strings
749 interactively. And if linked with the main program in `main.c' and
750 the other test files, you can run the already-written tests. */
754 # ifndef DEFINED_ONCE
756 /* We use standard I/O for debugging. */
759 /* It is useful to test things that ``must'' be true when debugging. */
764 # define DEBUG_STATEMENT(e) e
765 # define DEBUG_PRINT1(x) if (debug) printf (x)
766 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
767 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
768 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
769 # endif /* not DEFINED_ONCE */
771 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
772 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
773 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
774 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
777 /* Print the fastmap in human-readable form. */
779 # ifndef DEFINED_ONCE
781 print_fastmap (fastmap
)
784 unsigned was_a_range
= 0;
787 while (i
< (1 << BYTEWIDTH
))
793 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
807 # endif /* not DEFINED_ONCE */
810 /* Print a compiled pattern string in human-readable form, starting at
811 the START pointer into it and ending just before the pointer END. */
814 PREFIX(print_partial_compiled_pattern
) (start
, end
)
829 /* Loop over pattern commands. */
833 printf ("%td:\t", p
- start
);
835 printf ("%ld:\t", (long int) (p
- start
));
838 switch ((re_opcode_t
) *p
++)
846 printf ("/exactn/%d", mcnt
);
858 printf ("/exactn_bin/%d", mcnt
);
861 printf("/%lx", (long int) *p
++);
865 # endif /* MBS_SUPPORT */
869 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
874 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
878 printf ("/duplicate/%ld", (long int) *p
++);
891 printf ("/charset [%s",
892 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
894 length
= *workp
++; /* the length of char_classes */
895 for (i
=0 ; i
<length
; i
++)
896 printf("[:%lx:]", (long int) *p
++);
897 length
= *workp
++; /* the length of collating_symbol */
898 for (i
=0 ; i
<length
;)
902 PUT_CHAR((i
++,*p
++));
906 length
= *workp
++; /* the length of equivalence_class */
907 for (i
=0 ; i
<length
;)
911 PUT_CHAR((i
++,*p
++));
915 length
= *workp
++; /* the length of char_range */
916 for (i
=0 ; i
<length
; i
++)
918 wchar_t range_start
= *p
++;
919 wchar_t range_end
= *p
++;
920 printf("%C-%C", range_start
, range_end
);
922 length
= *workp
++; /* the length of char */
923 for (i
=0 ; i
<length
; i
++)
927 register int c
, last
= -100;
928 register int in_range
= 0;
930 printf ("/charset [%s",
931 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
933 assert (p
+ *p
< pend
);
935 for (c
= 0; c
< 256; c
++)
937 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
939 /* Are we starting a range? */
940 if (last
+ 1 == c
&& ! in_range
)
945 /* Have we broken a range? */
946 else if (last
+ 1 != c
&& in_range
)
976 case on_failure_jump
:
977 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
979 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
981 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
985 case on_failure_keep_string_jump
:
986 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
988 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
990 printf ("/on_failure_keep_string_jump to %ld",
991 (long int) (p
+ mcnt
- start
));
995 case dummy_failure_jump
:
996 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
998 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
1000 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1004 case push_dummy_failure
:
1005 printf ("/push_dummy_failure");
1008 case maybe_pop_jump
:
1009 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1011 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
1013 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
1017 case pop_failure_jump
:
1018 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1020 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
1022 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1027 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1029 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
1031 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
1036 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1038 printf ("/jump to %td", p
+ mcnt
- start
);
1040 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
1045 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1047 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1049 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
1051 printf ("/succeed_n to %ld, %d times",
1052 (long int) (p1
- start
), mcnt2
);
1057 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1059 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1060 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1064 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1066 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1068 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1070 printf ("/set_number_at location %ld to %d",
1071 (long int) (p1
- start
), mcnt2
);
1076 printf ("/wordbound");
1080 printf ("/notwordbound");
1084 printf ("/wordbeg");
1088 printf ("/wordend");
1093 printf ("/before_dot");
1101 printf ("/after_dot");
1105 printf ("/syntaxspec");
1107 printf ("/%d", mcnt
);
1111 printf ("/notsyntaxspec");
1113 printf ("/%d", mcnt
);
1118 printf ("/wordchar");
1122 printf ("/notwordchar");
1134 printf ("?%ld", (long int) *(p
-1));
1141 printf ("%td:\tend of pattern.\n", p
- start
);
1143 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1149 PREFIX(print_compiled_pattern
) (bufp
)
1150 struct re_pattern_buffer
*bufp
;
1152 UCHAR_T
*buffer
= (UCHAR_T
*) bufp
->buffer
;
1154 PREFIX(print_partial_compiled_pattern
) (buffer
, buffer
1155 + bufp
->used
/ sizeof(UCHAR_T
));
1156 printf ("%ld bytes used/%ld bytes allocated.\n",
1157 bufp
->used
, bufp
->allocated
);
1159 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1161 printf ("fastmap: ");
1162 print_fastmap (bufp
->fastmap
);
1166 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1168 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1170 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1171 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1172 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1173 printf ("no_sub: %d\t", bufp
->no_sub
);
1174 printf ("not_bol: %d\t", bufp
->not_bol
);
1175 printf ("not_eol: %d\t", bufp
->not_eol
);
1176 printf ("syntax: %lx\n", bufp
->syntax
);
1177 /* Perhaps we should print the translate table? */
1182 PREFIX(print_double_string
) (where
, string1
, size1
, string2
, size2
)
1183 const CHAR_T
*where
;
1184 const CHAR_T
*string1
;
1185 const CHAR_T
*string2
;
1197 if (FIRST_STRING_P (where
))
1199 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1200 PUT_CHAR (string1
[this_char
]);
1206 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1208 PUT_CHAR (string2
[this_char
]);
1211 fputs ("...", stdout
);
1218 # ifndef DEFINED_ONCE
1227 # else /* not DEBUG */
1229 # ifndef DEFINED_ONCE
1233 # define DEBUG_STATEMENT(e)
1234 # define DEBUG_PRINT1(x)
1235 # define DEBUG_PRINT2(x1, x2)
1236 # define DEBUG_PRINT3(x1, x2, x3)
1237 # define DEBUG_PRINT4(x1, x2, x3, x4)
1238 # endif /* not DEFINED_ONCE */
1239 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1240 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1242 # endif /* not DEBUG */
1247 /* This convert a multibyte string to a wide character string.
1248 And write their correspondances to offset_buffer(see below)
1249 and write whether each wchar_t is binary data to is_binary.
1250 This assume invalid multibyte sequences as binary data.
1251 We assume offset_buffer and is_binary is already allocated
1254 static size_t convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char* src
,
1255 size_t len
, int *offset_buffer
,
1258 convert_mbs_to_wcs (dest
, src
, len
, offset_buffer
, is_binary
)
1260 const unsigned char* src
;
1261 size_t len
; /* the length of multibyte string. */
1263 /* It hold correspondances between src(char string) and
1264 dest(wchar_t string) for optimization.
1266 dest = {'X', 'Y', 'Z'}
1267 (each "xxx", "y" and "zz" represent one multibyte character
1268 corresponding to 'X', 'Y' and 'Z'.)
1269 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1275 wchar_t *pdest
= dest
;
1276 const unsigned char *psrc
= src
;
1277 size_t wc_count
= 0;
1281 size_t mb_remain
= len
;
1282 size_t mb_count
= 0;
1284 /* Initialize the conversion state. */
1285 memset (&mbs
, 0, sizeof (mbstate_t));
1287 offset_buffer
[0] = 0;
1288 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1292 consumed
= __mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1294 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1298 /* failed to convert. maybe src contains binary data.
1299 So we consume 1 byte manualy. */
1303 is_binary
[wc_count
] = TRUE
;
1306 is_binary
[wc_count
] = FALSE
;
1307 /* In sjis encoding, we use yen sign as escape character in
1308 place of reverse solidus. So we convert 0x5c(yen sign in
1309 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1310 solidus in UCS2). */
1311 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1312 *pdest
= (wchar_t) *psrc
;
1314 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1317 /* Fill remain of the buffer with sentinel. */
1318 for (i
= wc_count
+ 1 ; i
<= len
; i
++)
1319 offset_buffer
[i
] = mb_count
+ 1;
1326 #else /* not INSIDE_RECURSION */
1328 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1329 also be assigned to arbitrarily: each pattern buffer stores its own
1330 syntax, so it can be changed between regex compilations. */
1331 /* This has no initializer because initialized variables in Emacs
1332 become read-only after dumping. */
1333 reg_syntax_t re_syntax_options
;
1336 /* Specify the precise syntax of regexps for compilation. This provides
1337 for compatibility for various utilities which historically have
1338 different, incompatible syntaxes.
1340 The argument SYNTAX is a bit mask comprised of the various bits
1341 defined in regex.h. We return the old syntax. */
1344 re_set_syntax (syntax
)
1345 reg_syntax_t syntax
;
1347 reg_syntax_t ret
= re_syntax_options
;
1349 re_syntax_options
= syntax
;
1351 if (syntax
& RE_DEBUG
)
1353 else if (debug
) /* was on but now is not */
1359 weak_alias (__re_set_syntax
, re_set_syntax
)
1362 /* This table gives an error message for each of the error codes listed
1363 in regex.h. Obviously the order here has to be same as there.
1364 POSIX doesn't require that we do anything for REG_NOERROR,
1365 but why not be nice? */
1367 static const char re_error_msgid
[] =
1369 # define REG_NOERROR_IDX 0
1370 gettext_noop ("Success") /* REG_NOERROR */
1372 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1373 gettext_noop ("No match") /* REG_NOMATCH */
1375 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1376 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1378 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1379 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1381 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1382 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1384 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1385 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1387 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1388 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1390 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1391 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1393 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1394 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1396 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1397 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1399 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1400 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1402 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1403 gettext_noop ("Invalid range end") /* REG_ERANGE */
1405 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1406 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1408 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1409 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1411 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1412 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1414 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1415 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1417 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1418 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1421 static const size_t re_error_msgid_idx
[] =
1442 #endif /* INSIDE_RECURSION */
1444 #ifndef DEFINED_ONCE
1445 /* Avoiding alloca during matching, to placate r_alloc. */
1447 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1448 searching and matching functions should not call alloca. On some
1449 systems, alloca is implemented in terms of malloc, and if we're
1450 using the relocating allocator routines, then malloc could cause a
1451 relocation, which might (if the strings being searched are in the
1452 ralloc heap) shift the data out from underneath the regexp
1455 Here's another reason to avoid allocation: Emacs
1456 processes input from X in a signal handler; processing X input may
1457 call malloc; if input arrives while a matching routine is calling
1458 malloc, then we're scrod. But Emacs can't just block input while
1459 calling matching routines; then we don't notice interrupts when
1460 they come in. So, Emacs blocks input around all regexp calls
1461 except the matching calls, which it leaves unprotected, in the
1462 faith that they will not malloc. */
1464 /* Normally, this is fine. */
1465 # define MATCH_MAY_ALLOCATE
1467 /* When using GNU C, we are not REALLY using the C alloca, no matter
1468 what config.h may say. So don't take precautions for it. */
1473 /* The match routines may not allocate if (1) they would do it with malloc
1474 and (2) it's not safe for them to use malloc.
1475 Note that if REL_ALLOC is defined, matching would not use malloc for the
1476 failure stack, but we would still use it for the register vectors;
1477 so REL_ALLOC should not affect this. */
1478 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1479 # undef MATCH_MAY_ALLOCATE
1481 #endif /* not DEFINED_ONCE */
1483 #ifdef INSIDE_RECURSION
1484 /* Failure stack declarations and macros; both re_compile_fastmap and
1485 re_match_2 use a failure stack. These have to be macros because of
1486 REGEX_ALLOCATE_STACK. */
1489 /* Number of failure points for which to initially allocate space
1490 when matching. If this number is exceeded, we allocate more
1491 space, so it is not a hard limit. */
1492 # ifndef INIT_FAILURE_ALLOC
1493 # define INIT_FAILURE_ALLOC 5
1496 /* Roughly the maximum number of failure points on the stack. Would be
1497 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1498 This is a variable only so users of regex can assign to it; we never
1499 change it ourselves. */
1501 # ifdef INT_IS_16BIT
1503 # ifndef DEFINED_ONCE
1504 # if defined MATCH_MAY_ALLOCATE
1505 /* 4400 was enough to cause a crash on Alpha OSF/1,
1506 whose default stack limit is 2mb. */
1507 long int re_max_failures
= 4000;
1509 long int re_max_failures
= 2000;
1513 union PREFIX(fail_stack_elt
)
1519 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1523 PREFIX(fail_stack_elt_t
) *stack
;
1524 unsigned long int size
;
1525 unsigned long int avail
; /* Offset of next open position. */
1526 } PREFIX(fail_stack_type
);
1528 # else /* not INT_IS_16BIT */
1530 # ifndef DEFINED_ONCE
1531 # if defined MATCH_MAY_ALLOCATE
1532 /* 4400 was enough to cause a crash on Alpha OSF/1,
1533 whose default stack limit is 2mb. */
1534 int re_max_failures
= 4000;
1536 int re_max_failures
= 2000;
1540 union PREFIX(fail_stack_elt
)
1546 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1550 PREFIX(fail_stack_elt_t
) *stack
;
1552 unsigned avail
; /* Offset of next open position. */
1553 } PREFIX(fail_stack_type
);
1555 # endif /* INT_IS_16BIT */
1557 # ifndef DEFINED_ONCE
1558 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1559 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1560 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1564 /* Define macros to initialize and free the failure stack.
1565 Do `return -2' if the alloc fails. */
1567 # ifdef MATCH_MAY_ALLOCATE
1568 # define INIT_FAIL_STACK() \
1570 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1571 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1573 if (fail_stack.stack == NULL) \
1576 fail_stack.size = INIT_FAILURE_ALLOC; \
1577 fail_stack.avail = 0; \
1580 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1582 # define INIT_FAIL_STACK() \
1584 fail_stack.avail = 0; \
1587 # define RESET_FAIL_STACK()
1591 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1593 Return 1 if succeeds, and 0 if either ran out of memory
1594 allocating space for it or it was already too large.
1596 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1598 # define DOUBLE_FAIL_STACK(fail_stack) \
1599 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1601 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1602 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1603 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1604 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1606 (fail_stack).stack == NULL \
1608 : ((fail_stack).size <<= 1, \
1612 /* Push pointer POINTER on FAIL_STACK.
1613 Return 1 if was able to do so and 0 if ran out of memory allocating
1615 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1616 ((FAIL_STACK_FULL () \
1617 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1619 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1622 /* Push a pointer value onto the failure stack.
1623 Assumes the variable `fail_stack'. Probably should only
1624 be called from within `PUSH_FAILURE_POINT'. */
1625 # define PUSH_FAILURE_POINTER(item) \
1626 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1628 /* This pushes an integer-valued item onto the failure stack.
1629 Assumes the variable `fail_stack'. Probably should only
1630 be called from within `PUSH_FAILURE_POINT'. */
1631 # define PUSH_FAILURE_INT(item) \
1632 fail_stack.stack[fail_stack.avail++].integer = (item)
1634 /* Push a fail_stack_elt_t value onto the failure stack.
1635 Assumes the variable `fail_stack'. Probably should only
1636 be called from within `PUSH_FAILURE_POINT'. */
1637 # define PUSH_FAILURE_ELT(item) \
1638 fail_stack.stack[fail_stack.avail++] = (item)
1640 /* These three POP... operations complement the three PUSH... operations.
1641 All assume that `fail_stack' is nonempty. */
1642 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1643 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1644 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1646 /* Used to omit pushing failure point id's when we're not debugging. */
1648 # define DEBUG_PUSH PUSH_FAILURE_INT
1649 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1651 # define DEBUG_PUSH(item)
1652 # define DEBUG_POP(item_addr)
1656 /* Push the information about the state we will need
1657 if we ever fail back to it.
1659 Requires variables fail_stack, regstart, regend, reg_info, and
1660 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1663 Does `return FAILURE_CODE' if runs out of memory. */
1665 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1667 char *destination; \
1668 /* Must be int, so when we don't save any registers, the arithmetic \
1669 of 0 + -1 isn't done as unsigned. */ \
1670 /* Can't be int, since there is not a shred of a guarantee that int \
1671 is wide enough to hold a value of something to which pointer can \
1673 active_reg_t this_reg; \
1675 DEBUG_STATEMENT (failure_id++); \
1676 DEBUG_STATEMENT (nfailure_points_pushed++); \
1677 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1678 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1679 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1681 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1682 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1684 /* Ensure we have enough space allocated for what we will push. */ \
1685 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1687 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1688 return failure_code; \
1690 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1691 (fail_stack).size); \
1692 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1695 /* Push the info, starting with the registers. */ \
1696 DEBUG_PRINT1 ("\n"); \
1699 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1702 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1703 DEBUG_STATEMENT (num_regs_pushed++); \
1705 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1706 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1708 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1709 PUSH_FAILURE_POINTER (regend[this_reg]); \
1711 DEBUG_PRINT2 (" info: %p\n ", \
1712 reg_info[this_reg].word.pointer); \
1713 DEBUG_PRINT2 (" match_null=%d", \
1714 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1715 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1716 DEBUG_PRINT2 (" matched_something=%d", \
1717 MATCHED_SOMETHING (reg_info[this_reg])); \
1718 DEBUG_PRINT2 (" ever_matched=%d", \
1719 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1720 DEBUG_PRINT1 ("\n"); \
1721 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1724 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1725 PUSH_FAILURE_INT (lowest_active_reg); \
1727 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1728 PUSH_FAILURE_INT (highest_active_reg); \
1730 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1731 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1732 PUSH_FAILURE_POINTER (pattern_place); \
1734 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1735 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1737 DEBUG_PRINT1 ("'\n"); \
1738 PUSH_FAILURE_POINTER (string_place); \
1740 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1741 DEBUG_PUSH (failure_id); \
1744 # ifndef DEFINED_ONCE
1745 /* This is the number of items that are pushed and popped on the stack
1746 for each register. */
1747 # define NUM_REG_ITEMS 3
1749 /* Individual items aside from the registers. */
1751 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1753 # define NUM_NONREG_ITEMS 4
1756 /* We push at most this many items on the stack. */
1757 /* We used to use (num_regs - 1), which is the number of registers
1758 this regexp will save; but that was changed to 5
1759 to avoid stack overflow for a regexp with lots of parens. */
1760 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1762 /* We actually push this many items. */
1763 # define NUM_FAILURE_ITEMS \
1765 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1769 /* How many items can still be added to the stack without overflowing it. */
1770 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1771 # endif /* not DEFINED_ONCE */
1774 /* Pops what PUSH_FAIL_STACK pushes.
1776 We restore into the parameters, all of which should be lvalues:
1777 STR -- the saved data position.
1778 PAT -- the saved pattern position.
1779 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1780 REGSTART, REGEND -- arrays of string positions.
1781 REG_INFO -- array of information about each subexpression.
1783 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1784 `pend', `string1', `size1', `string2', and `size2'. */
1785 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1787 DEBUG_STATEMENT (unsigned failure_id;) \
1788 active_reg_t this_reg; \
1789 const UCHAR_T *string_temp; \
1791 assert (!FAIL_STACK_EMPTY ()); \
1793 /* Remove failure points and point to how many regs pushed. */ \
1794 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1795 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1796 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1798 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1800 DEBUG_POP (&failure_id); \
1801 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1803 /* If the saved string location is NULL, it came from an \
1804 on_failure_keep_string_jump opcode, and we want to throw away the \
1805 saved NULL, thus retaining our current position in the string. */ \
1806 string_temp = POP_FAILURE_POINTER (); \
1807 if (string_temp != NULL) \
1808 str = (const CHAR_T *) string_temp; \
1810 DEBUG_PRINT2 (" Popping string %p: `", str); \
1811 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1812 DEBUG_PRINT1 ("'\n"); \
1814 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1815 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1816 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1818 /* Restore register info. */ \
1819 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1820 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1822 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1823 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1826 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1828 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1830 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1831 DEBUG_PRINT2 (" info: %p\n", \
1832 reg_info[this_reg].word.pointer); \
1834 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1835 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1837 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1838 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1842 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1844 reg_info[this_reg].word.integer = 0; \
1845 regend[this_reg] = 0; \
1846 regstart[this_reg] = 0; \
1848 highest_active_reg = high_reg; \
1851 set_regs_matched_done = 0; \
1852 DEBUG_STATEMENT (nfailure_points_popped++); \
1853 } /* POP_FAILURE_POINT */
1855 /* Structure for per-register (a.k.a. per-group) information.
1856 Other register information, such as the
1857 starting and ending positions (which are addresses), and the list of
1858 inner groups (which is a bits list) are maintained in separate
1861 We are making a (strictly speaking) nonportable assumption here: that
1862 the compiler will pack our bit fields into something that fits into
1863 the type of `word', i.e., is something that fits into one item on the
1867 /* Declarations and macros for re_match_2. */
1871 PREFIX(fail_stack_elt_t
) word
;
1874 /* This field is one if this group can match the empty string,
1875 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1876 # define MATCH_NULL_UNSET_VALUE 3
1877 unsigned match_null_string_p
: 2;
1878 unsigned is_active
: 1;
1879 unsigned matched_something
: 1;
1880 unsigned ever_matched_something
: 1;
1882 } PREFIX(register_info_type
);
1884 # ifndef DEFINED_ONCE
1885 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1886 # define IS_ACTIVE(R) ((R).bits.is_active)
1887 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1888 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1891 /* Call this when have matched a real character; it sets `matched' flags
1892 for the subexpressions which we are currently inside. Also records
1893 that those subexprs have matched. */
1894 # define SET_REGS_MATCHED() \
1897 if (!set_regs_matched_done) \
1900 set_regs_matched_done = 1; \
1901 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1903 MATCHED_SOMETHING (reg_info[r]) \
1904 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1910 # endif /* not DEFINED_ONCE */
1912 /* Registers are set to a sentinel when they haven't yet matched. */
1913 static CHAR_T
PREFIX(reg_unset_dummy
);
1914 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1915 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1917 /* Subroutine declarations and macros for regex_compile. */
1918 static void PREFIX(store_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
, int arg
));
1919 static void PREFIX(store_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1920 int arg1
, int arg2
));
1921 static void PREFIX(insert_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1922 int arg
, UCHAR_T
*end
));
1923 static void PREFIX(insert_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1924 int arg1
, int arg2
, UCHAR_T
*end
));
1925 static boolean
PREFIX(at_begline_loc_p
) _RE_ARGS ((const CHAR_T
*pattern
,
1927 reg_syntax_t syntax
));
1928 static boolean
PREFIX(at_endline_loc_p
) _RE_ARGS ((const CHAR_T
*p
,
1930 reg_syntax_t syntax
));
1932 static reg_errcode_t wcs_compile_range
_RE_ARGS ((CHAR_T range_start
,
1933 const CHAR_T
**p_ptr
,
1936 reg_syntax_t syntax
,
1939 static void insert_space
_RE_ARGS ((int num
, CHAR_T
*loc
, CHAR_T
*end
));
1941 static reg_errcode_t byte_compile_range
_RE_ARGS ((unsigned int range_start
,
1945 reg_syntax_t syntax
,
1949 /* Fetch the next character in the uncompiled pattern---translating it
1950 if necessary. Also cast from a signed character in the constant
1951 string passed to us by the user to an unsigned char that we can use
1952 as an array index (in, e.g., `translate'). */
1953 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1954 because it is impossible to allocate 4GB array for some encodings
1955 which have 4 byte character_set like UCS4. */
1958 # define PATFETCH(c) \
1959 do {if (p == pend) return REG_EEND; \
1960 c = (UCHAR_T) *p++; \
1961 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1964 # define PATFETCH(c) \
1965 do {if (p == pend) return REG_EEND; \
1966 c = (unsigned char) *p++; \
1967 if (translate) c = (unsigned char) translate[c]; \
1972 /* Fetch the next character in the uncompiled pattern, with no
1974 # define PATFETCH_RAW(c) \
1975 do {if (p == pend) return REG_EEND; \
1976 c = (UCHAR_T) *p++; \
1979 /* Go backwards one character in the pattern. */
1980 # define PATUNFETCH p--
1983 /* If `translate' is non-null, return translate[D], else just D. We
1984 cast the subscript to translate because some data is declared as
1985 `char *', to avoid warnings when a string constant is passed. But
1986 when we use a character as a subscript we must make it unsigned. */
1987 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1988 because it is impossible to allocate 4GB array for some encodings
1989 which have 4 byte character_set like UCS4. */
1993 # define TRANSLATE(d) \
1994 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1995 ? (char) translate[(unsigned char) (d)] : (d))
1997 # define TRANSLATE(d) \
1998 (translate ? (char) translate[(unsigned char) (d)] : (d))
2003 /* Macros for outputting the compiled pattern into `buffer'. */
2005 /* If the buffer isn't allocated when it comes in, use this. */
2006 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2008 /* Make sure we have at least N more bytes of space in buffer. */
2010 # define GET_BUFFER_SPACE(n) \
2011 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2012 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2015 # define GET_BUFFER_SPACE(n) \
2016 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2020 /* Make sure we have one more byte of buffer space and then add C to it. */
2021 # define BUF_PUSH(c) \
2023 GET_BUFFER_SPACE (1); \
2024 *b++ = (UCHAR_T) (c); \
2028 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2029 # define BUF_PUSH_2(c1, c2) \
2031 GET_BUFFER_SPACE (2); \
2032 *b++ = (UCHAR_T) (c1); \
2033 *b++ = (UCHAR_T) (c2); \
2037 /* As with BUF_PUSH_2, except for three bytes. */
2038 # define BUF_PUSH_3(c1, c2, c3) \
2040 GET_BUFFER_SPACE (3); \
2041 *b++ = (UCHAR_T) (c1); \
2042 *b++ = (UCHAR_T) (c2); \
2043 *b++ = (UCHAR_T) (c3); \
2046 /* Store a jump with opcode OP at LOC to location TO. We store a
2047 relative address offset by the three bytes the jump itself occupies. */
2048 # define STORE_JUMP(op, loc, to) \
2049 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2051 /* Likewise, for a two-argument jump. */
2052 # define STORE_JUMP2(op, loc, to, arg) \
2053 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2055 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2056 # define INSERT_JUMP(op, loc, to) \
2057 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2059 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2060 # define INSERT_JUMP2(op, loc, to, arg) \
2061 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2064 /* This is not an arbitrary limit: the arguments which represent offsets
2065 into the pattern are two bytes long. So if 2^16 bytes turns out to
2066 be too small, many things would have to change. */
2067 /* Any other compiler which, like MSC, has allocation limit below 2^16
2068 bytes will have to use approach similar to what was done below for
2069 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2070 reallocating to 0 bytes. Such thing is not going to work too well.
2071 You have been warned!! */
2072 # ifndef DEFINED_ONCE
2073 # if defined _MSC_VER && !defined WIN32
2074 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2075 The REALLOC define eliminates a flurry of conversion warnings,
2076 but is not required. */
2077 # define MAX_BUF_SIZE 65500L
2078 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2080 # define MAX_BUF_SIZE (1L << 16)
2081 # define REALLOC(p,s) realloc ((p), (s))
2084 /* Extend the buffer by twice its current size via realloc and
2085 reset the pointers that pointed into the old block to point to the
2086 correct places in the new one. If extending the buffer results in it
2087 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2088 # if __BOUNDED_POINTERS__
2089 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2090 # define MOVE_BUFFER_POINTER(P) \
2091 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2092 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2095 SET_HIGH_BOUND (b); \
2096 SET_HIGH_BOUND (begalt); \
2097 if (fixup_alt_jump) \
2098 SET_HIGH_BOUND (fixup_alt_jump); \
2100 SET_HIGH_BOUND (laststart); \
2101 if (pending_exact) \
2102 SET_HIGH_BOUND (pending_exact); \
2105 # define MOVE_BUFFER_POINTER(P) (P) += incr
2106 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2108 # endif /* not DEFINED_ONCE */
2111 # define EXTEND_BUFFER() \
2113 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2115 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2117 bufp->allocated <<= 1; \
2118 if (bufp->allocated > MAX_BUF_SIZE) \
2119 bufp->allocated = MAX_BUF_SIZE; \
2120 /* How many characters the new buffer can have? */ \
2121 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2122 if (wchar_count == 0) wchar_count = 1; \
2123 /* Truncate the buffer to CHAR_T align. */ \
2124 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2125 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2126 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2127 if (COMPILED_BUFFER_VAR == NULL) \
2128 return REG_ESPACE; \
2129 /* If the buffer moved, move all the pointers into it. */ \
2130 if (old_buffer != COMPILED_BUFFER_VAR) \
2132 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2133 MOVE_BUFFER_POINTER (b); \
2134 MOVE_BUFFER_POINTER (begalt); \
2135 if (fixup_alt_jump) \
2136 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2138 MOVE_BUFFER_POINTER (laststart); \
2139 if (pending_exact) \
2140 MOVE_BUFFER_POINTER (pending_exact); \
2142 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2145 # define EXTEND_BUFFER() \
2147 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2148 if (bufp->allocated == MAX_BUF_SIZE) \
2150 bufp->allocated <<= 1; \
2151 if (bufp->allocated > MAX_BUF_SIZE) \
2152 bufp->allocated = MAX_BUF_SIZE; \
2153 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2155 if (COMPILED_BUFFER_VAR == NULL) \
2156 return REG_ESPACE; \
2157 /* If the buffer moved, move all the pointers into it. */ \
2158 if (old_buffer != COMPILED_BUFFER_VAR) \
2160 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2161 MOVE_BUFFER_POINTER (b); \
2162 MOVE_BUFFER_POINTER (begalt); \
2163 if (fixup_alt_jump) \
2164 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2166 MOVE_BUFFER_POINTER (laststart); \
2167 if (pending_exact) \
2168 MOVE_BUFFER_POINTER (pending_exact); \
2170 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2174 # ifndef DEFINED_ONCE
2175 /* Since we have one byte reserved for the register number argument to
2176 {start,stop}_memory, the maximum number of groups we can report
2177 things about is what fits in that byte. */
2178 # define MAX_REGNUM 255
2180 /* But patterns can have more than `MAX_REGNUM' registers. We just
2181 ignore the excess. */
2182 typedef unsigned regnum_t
;
2185 /* Macros for the compile stack. */
2187 /* Since offsets can go either forwards or backwards, this type needs to
2188 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2189 /* int may be not enough when sizeof(int) == 2. */
2190 typedef long pattern_offset_t
;
2194 pattern_offset_t begalt_offset
;
2195 pattern_offset_t fixup_alt_jump
;
2196 pattern_offset_t inner_group_offset
;
2197 pattern_offset_t laststart_offset
;
2199 } compile_stack_elt_t
;
2204 compile_stack_elt_t
*stack
;
2206 unsigned avail
; /* Offset of next open position. */
2207 } compile_stack_type
;
2210 # define INIT_COMPILE_STACK_SIZE 32
2212 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2213 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2215 /* The next available element. */
2216 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2218 # endif /* not DEFINED_ONCE */
2220 /* Set the bit for character C in a list. */
2221 # ifndef DEFINED_ONCE
2222 # define SET_LIST_BIT(c) \
2223 (b[((unsigned char) (c)) / BYTEWIDTH] \
2224 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2225 # endif /* DEFINED_ONCE */
2227 /* Get the next unsigned number in the uncompiled pattern. */
2228 # define GET_UNSIGNED_NUMBER(num) \
2233 if (c < '0' || c > '9') \
2235 if (num <= RE_DUP_MAX) \
2239 num = num * 10 + c - '0'; \
2244 # ifndef DEFINED_ONCE
2245 # if defined _LIBC || WIDE_CHAR_SUPPORT
2246 /* The GNU C library provides support for user-defined character classes
2247 and the functions from ISO C amendement 1. */
2248 # ifdef CHARCLASS_NAME_MAX
2249 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2251 /* This shouldn't happen but some implementation might still have this
2252 problem. Use a reasonable default value. */
2253 # define CHAR_CLASS_MAX_LENGTH 256
2257 # define IS_CHAR_CLASS(string) __wctype (string)
2259 # define IS_CHAR_CLASS(string) wctype (string)
2262 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2264 # define IS_CHAR_CLASS(string) \
2265 (STREQ (string, "alpha") || STREQ (string, "upper") \
2266 || STREQ (string, "lower") || STREQ (string, "digit") \
2267 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2268 || STREQ (string, "space") || STREQ (string, "print") \
2269 || STREQ (string, "punct") || STREQ (string, "graph") \
2270 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2272 # endif /* DEFINED_ONCE */
2274 # ifndef MATCH_MAY_ALLOCATE
2276 /* If we cannot allocate large objects within re_match_2_internal,
2277 we make the fail stack and register vectors global.
2278 The fail stack, we grow to the maximum size when a regexp
2280 The register vectors, we adjust in size each time we
2281 compile a regexp, according to the number of registers it needs. */
2283 static PREFIX(fail_stack_type
) fail_stack
;
2285 /* Size with which the following vectors are currently allocated.
2286 That is so we can make them bigger as needed,
2287 but never make them smaller. */
2288 # ifdef DEFINED_ONCE
2289 static int regs_allocated_size
;
2291 static const char ** regstart
, ** regend
;
2292 static const char ** old_regstart
, ** old_regend
;
2293 static const char **best_regstart
, **best_regend
;
2294 static const char **reg_dummy
;
2295 # endif /* DEFINED_ONCE */
2297 static PREFIX(register_info_type
) *PREFIX(reg_info
);
2298 static PREFIX(register_info_type
) *PREFIX(reg_info_dummy
);
2300 /* Make the register vectors big enough for NUM_REGS registers,
2301 but don't make them smaller. */
2304 PREFIX(regex_grow_registers
) (num_regs
)
2307 if (num_regs
> regs_allocated_size
)
2309 RETALLOC_IF (regstart
, num_regs
, const char *);
2310 RETALLOC_IF (regend
, num_regs
, const char *);
2311 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2312 RETALLOC_IF (old_regend
, num_regs
, const char *);
2313 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2314 RETALLOC_IF (best_regend
, num_regs
, const char *);
2315 RETALLOC_IF (PREFIX(reg_info
), num_regs
, PREFIX(register_info_type
));
2316 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2317 RETALLOC_IF (PREFIX(reg_info_dummy
), num_regs
, PREFIX(register_info_type
));
2319 regs_allocated_size
= num_regs
;
2323 # endif /* not MATCH_MAY_ALLOCATE */
2325 # ifndef DEFINED_ONCE
2326 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2329 # endif /* not DEFINED_ONCE */
2331 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2332 Returns one of error codes defined in `regex.h', or zero for success.
2334 Assumes the `allocated' (and perhaps `buffer') and `translate'
2335 fields are set in BUFP on entry.
2337 If it succeeds, results are put in BUFP (if it returns an error, the
2338 contents of BUFP are undefined):
2339 `buffer' is the compiled pattern;
2340 `syntax' is set to SYNTAX;
2341 `used' is set to the length of the compiled pattern;
2342 `fastmap_accurate' is zero;
2343 `re_nsub' is the number of subexpressions in PATTERN;
2344 `not_bol' and `not_eol' are zero;
2346 The `fastmap' and `newline_anchor' fields are neither
2347 examined nor set. */
2349 /* Return, freeing storage we allocated. */
2351 # define FREE_STACK_RETURN(value) \
2352 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2354 # define FREE_STACK_RETURN(value) \
2355 return (free (compile_stack.stack), value)
2358 static reg_errcode_t
2359 PREFIX(regex_compile
) (ARG_PREFIX(pattern
), ARG_PREFIX(size
), syntax
, bufp
)
2360 const char *ARG_PREFIX(pattern
);
2361 size_t ARG_PREFIX(size
);
2362 reg_syntax_t syntax
;
2363 struct re_pattern_buffer
*bufp
;
2365 /* We fetch characters from PATTERN here. Even though PATTERN is
2366 `char *' (i.e., signed), we declare these variables as unsigned, so
2367 they can be reliably used as array indices. */
2368 register UCHAR_T c
, c1
;
2371 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2372 CHAR_T
*pattern
, *COMPILED_BUFFER_VAR
;
2374 /* offset buffer for optimization. See convert_mbs_to_wc. */
2375 int *mbs_offset
= NULL
;
2376 /* It hold whether each wchar_t is binary data or not. */
2377 char *is_binary
= NULL
;
2378 /* A flag whether exactn is handling binary data or not. */
2379 char is_exactn_bin
= FALSE
;
2382 /* A random temporary spot in PATTERN. */
2385 /* Points to the end of the buffer, where we should append. */
2386 register UCHAR_T
*b
;
2388 /* Keeps track of unclosed groups. */
2389 compile_stack_type compile_stack
;
2391 /* Points to the current (ending) position in the pattern. */
2396 const CHAR_T
*p
= pattern
;
2397 const CHAR_T
*pend
= pattern
+ size
;
2400 /* How to translate the characters in the pattern. */
2401 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2403 /* Address of the count-byte of the most recently inserted `exactn'
2404 command. This makes it possible to tell if a new exact-match
2405 character can be added to that command or if the character requires
2406 a new `exactn' command. */
2407 UCHAR_T
*pending_exact
= 0;
2409 /* Address of start of the most recently finished expression.
2410 This tells, e.g., postfix * where to find the start of its
2411 operand. Reset at the beginning of groups and alternatives. */
2412 UCHAR_T
*laststart
= 0;
2414 /* Address of beginning of regexp, or inside of last group. */
2417 /* Address of the place where a forward jump should go to the end of
2418 the containing expression. Each alternative of an `or' -- except the
2419 last -- ends with a forward jump of this sort. */
2420 UCHAR_T
*fixup_alt_jump
= 0;
2422 /* Counts open-groups as they are encountered. Remembered for the
2423 matching close-group on the compile stack, so the same register
2424 number is put in the stop_memory as the start_memory. */
2425 regnum_t regnum
= 0;
2428 /* Initialize the wchar_t PATTERN and offset_buffer. */
2429 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_T
);
2430 mbs_offset
= TALLOC(csize
+ 1, int);
2431 is_binary
= TALLOC(csize
+ 1, char);
2432 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2439 pattern
[csize
] = L
'\0'; /* sentinel */
2440 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2452 DEBUG_PRINT1 ("\nCompiling pattern: ");
2455 unsigned debug_count
;
2457 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2458 PUT_CHAR (pattern
[debug_count
]);
2463 /* Initialize the compile stack. */
2464 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2465 if (compile_stack
.stack
== NULL
)
2475 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2476 compile_stack
.avail
= 0;
2478 /* Initialize the pattern buffer. */
2479 bufp
->syntax
= syntax
;
2480 bufp
->fastmap_accurate
= 0;
2481 bufp
->not_bol
= bufp
->not_eol
= 0;
2483 /* Set `used' to zero, so that if we return an error, the pattern
2484 printer (for debugging) will think there's no pattern. We reset it
2488 /* Always count groups, whether or not bufp->no_sub is set. */
2491 #if !defined emacs && !defined SYNTAX_TABLE
2492 /* Initialize the syntax table. */
2493 init_syntax_once ();
2496 if (bufp
->allocated
== 0)
2499 { /* If zero allocated, but buffer is non-null, try to realloc
2500 enough space. This loses if buffer's address is bogus, but
2501 that is the user's responsibility. */
2503 /* Free bufp->buffer and allocate an array for wchar_t pattern
2506 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(UCHAR_T
),
2509 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, UCHAR_T
);
2513 { /* Caller did not allocate a buffer. Do it for them. */
2514 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(UCHAR_T
),
2518 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2520 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2522 bufp
->allocated
= INIT_BUF_SIZE
;
2526 COMPILED_BUFFER_VAR
= (UCHAR_T
*) bufp
->buffer
;
2529 begalt
= b
= COMPILED_BUFFER_VAR
;
2531 /* Loop through the uncompiled pattern until we're at the end. */
2540 if ( /* If at start of pattern, it's an operator. */
2542 /* If context independent, it's an operator. */
2543 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2544 /* Otherwise, depends on what's come before. */
2545 || PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
))
2555 if ( /* If at end of pattern, it's an operator. */
2557 /* If context independent, it's an operator. */
2558 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2559 /* Otherwise, depends on what's next. */
2560 || PREFIX(at_endline_loc_p
) (p
, pend
, syntax
))
2570 if ((syntax
& RE_BK_PLUS_QM
)
2571 || (syntax
& RE_LIMITED_OPS
))
2575 /* If there is no previous pattern... */
2578 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2579 FREE_STACK_RETURN (REG_BADRPT
);
2580 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2585 /* Are we optimizing this jump? */
2586 boolean keep_string_p
= false;
2588 /* 1 means zero (many) matches is allowed. */
2589 char zero_times_ok
= 0, many_times_ok
= 0;
2591 /* If there is a sequence of repetition chars, collapse it
2592 down to just one (the right one). We can't combine
2593 interval operators with these because of, e.g., `a{2}*',
2594 which should only match an even number of `a's. */
2598 zero_times_ok
|= c
!= '+';
2599 many_times_ok
|= c
!= '?';
2607 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2610 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2612 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2615 if (!(c1
== '+' || c1
== '?'))
2630 /* If we get here, we found another repeat character. */
2633 /* Star, etc. applied to an empty pattern is equivalent
2634 to an empty pattern. */
2638 /* Now we know whether or not zero matches is allowed
2639 and also whether or not two or more matches is allowed. */
2641 { /* More than one repetition is allowed, so put in at the
2642 end a backward relative jump from `b' to before the next
2643 jump we're going to put in below (which jumps from
2644 laststart to after this jump).
2646 But if we are at the `*' in the exact sequence `.*\n',
2647 insert an unconditional jump backwards to the .,
2648 instead of the beginning of the loop. This way we only
2649 push a failure point once, instead of every time
2650 through the loop. */
2651 assert (p
- 1 > pattern
);
2653 /* Allocate the space for the jump. */
2654 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2656 /* We know we are not at the first character of the pattern,
2657 because laststart was nonzero. And we've already
2658 incremented `p', by the way, to be the character after
2659 the `*'. Do we have to do something analogous here
2660 for null bytes, because of RE_DOT_NOT_NULL? */
2661 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2663 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2664 && !(syntax
& RE_DOT_NEWLINE
))
2665 { /* We have .*\n. */
2666 STORE_JUMP (jump
, b
, laststart
);
2667 keep_string_p
= true;
2670 /* Anything else. */
2671 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2672 (1 + OFFSET_ADDRESS_SIZE
));
2674 /* We've added more stuff to the buffer. */
2675 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2678 /* On failure, jump from laststart to b + 3, which will be the
2679 end of the buffer after this jump is inserted. */
2680 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2682 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2683 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2685 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2687 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2691 /* At least one repetition is required, so insert a
2692 `dummy_failure_jump' before the initial
2693 `on_failure_jump' instruction of the loop. This
2694 effects a skip over that instruction the first time
2695 we hit that loop. */
2696 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2697 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2698 2 + 2 * OFFSET_ADDRESS_SIZE
);
2699 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2713 boolean had_char_class
= false;
2715 CHAR_T range_start
= 0xffffffff;
2717 unsigned int range_start
= 0xffffffff;
2719 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2722 /* We assume a charset(_not) structure as a wchar_t array.
2723 charset[0] = (re_opcode_t) charset(_not)
2724 charset[1] = l (= length of char_classes)
2725 charset[2] = m (= length of collating_symbols)
2726 charset[3] = n (= length of equivalence_classes)
2727 charset[4] = o (= length of char_ranges)
2728 charset[5] = p (= length of chars)
2730 charset[6] = char_class (wctype_t)
2731 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2733 charset[l+5] = char_class (wctype_t)
2735 charset[l+6] = collating_symbol (wchar_t)
2737 charset[l+m+5] = collating_symbol (wchar_t)
2738 ifdef _LIBC we use the index if
2739 _NL_COLLATE_SYMB_EXTRAMB instead of
2742 charset[l+m+6] = equivalence_classes (wchar_t)
2744 charset[l+m+n+5] = equivalence_classes (wchar_t)
2745 ifdef _LIBC we use the index in
2746 _NL_COLLATE_WEIGHT instead of
2749 charset[l+m+n+6] = range_start
2750 charset[l+m+n+7] = range_end
2752 charset[l+m+n+2o+4] = range_start
2753 charset[l+m+n+2o+5] = range_end
2754 ifdef _LIBC we use the value looked up
2755 in _NL_COLLATE_COLLSEQ instead of
2758 charset[l+m+n+2o+6] = char
2760 charset[l+m+n+2o+p+5] = char
2764 /* We need at least 6 spaces: the opcode, the length of
2765 char_classes, the length of collating_symbols, the length of
2766 equivalence_classes, the length of char_ranges, the length of
2768 GET_BUFFER_SPACE (6);
2770 /* Save b as laststart. And We use laststart as the pointer
2771 to the first element of the charset here.
2772 In other words, laststart[i] indicates charset[i]. */
2775 /* We test `*p == '^' twice, instead of using an if
2776 statement, so we only need one BUF_PUSH. */
2777 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2781 /* Push the length of char_classes, the length of
2782 collating_symbols, the length of equivalence_classes, the
2783 length of char_ranges and the length of chars. */
2784 BUF_PUSH_3 (0, 0, 0);
2787 /* Remember the first position in the bracket expression. */
2790 /* charset_not matches newline according to a syntax bit. */
2791 if ((re_opcode_t
) b
[-6] == charset_not
2792 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2795 laststart
[5]++; /* Update the length of characters */
2798 /* Read in characters and ranges, setting map bits. */
2801 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2805 /* \ might escape characters inside [...] and [^...]. */
2806 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2808 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2812 laststart
[5]++; /* Update the length of chars */
2817 /* Could be the end of the bracket expression. If it's
2818 not (i.e., when the bracket expression is `[]' so
2819 far), the ']' character bit gets set way below. */
2820 if (c
== ']' && p
!= p1
+ 1)
2823 /* Look ahead to see if it's a range when the last thing
2824 was a character class. */
2825 if (had_char_class
&& c
== '-' && *p
!= ']')
2826 FREE_STACK_RETURN (REG_ERANGE
);
2828 /* Look ahead to see if it's a range when the last thing
2829 was a character: if this is a hyphen not at the
2830 beginning or the end of a list, then it's the range
2833 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2834 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2838 /* Allocate the space for range_start and range_end. */
2839 GET_BUFFER_SPACE (2);
2840 /* Update the pointer to indicate end of buffer. */
2842 ret
= wcs_compile_range (range_start
, &p
, pend
, translate
,
2843 syntax
, b
, laststart
);
2844 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2845 range_start
= 0xffffffff;
2847 else if (p
[0] == '-' && p
[1] != ']')
2848 { /* This handles ranges made up of characters only. */
2851 /* Move past the `-'. */
2853 /* Allocate the space for range_start and range_end. */
2854 GET_BUFFER_SPACE (2);
2855 /* Update the pointer to indicate end of buffer. */
2857 ret
= wcs_compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2859 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2860 range_start
= 0xffffffff;
2863 /* See if we're at the beginning of a possible character
2865 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2866 { /* Leave room for the null. */
2867 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2872 /* If pattern is `[[:'. */
2873 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2878 if ((c
== ':' && *p
== ']') || p
== pend
)
2880 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2883 /* This is in any case an invalid class name. */
2888 /* If isn't a word bracketed by `[:' and `:]':
2889 undo the ending character, the letters, and leave
2890 the leading `:' and `[' (but store them as character). */
2891 if (c
== ':' && *p
== ']')
2896 /* Query the character class as wctype_t. */
2897 wt
= IS_CHAR_CLASS (str
);
2899 FREE_STACK_RETURN (REG_ECTYPE
);
2901 /* Throw away the ] at the end of the character
2905 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2907 /* Allocate the space for character class. */
2908 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2909 /* Update the pointer to indicate end of buffer. */
2910 b
+= CHAR_CLASS_SIZE
;
2911 /* Move data which follow character classes
2912 not to violate the data. */
2913 insert_space(CHAR_CLASS_SIZE
,
2914 laststart
+ 6 + laststart
[1],
2916 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2917 + __alignof__(wctype_t) - 1)
2918 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2919 /* Store the character class. */
2920 *((wctype_t*)alignedp
) = wt
;
2921 /* Update length of char_classes */
2922 laststart
[1] += CHAR_CLASS_SIZE
;
2924 had_char_class
= true;
2933 laststart
[5] += 2; /* Update the length of characters */
2935 had_char_class
= false;
2938 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2941 CHAR_T str
[128]; /* Should be large enough. */
2942 CHAR_T delim
= *p
; /* '=' or '.' */
2945 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2950 /* If pattern is `[[=' or '[[.'. */
2951 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2956 if ((c
== delim
&& *p
== ']') || p
== pend
)
2958 if (c1
< sizeof (str
) - 1)
2961 /* This is in any case an invalid class name. */
2966 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2968 unsigned int i
, offset
;
2969 /* If we have no collation data we use the default
2970 collation in which each character is in a class
2971 by itself. It also means that ASCII is the
2972 character set and therefore we cannot have character
2973 with more than one byte in the multibyte
2976 /* If not defined _LIBC, we push the name and
2977 `\0' for the sake of matching performance. */
2978 int datasize
= c1
+ 1;
2986 FREE_STACK_RETURN (REG_ECOLLATE
);
2991 const int32_t *table
;
2992 const int32_t *weights
;
2993 const int32_t *extra
;
2994 const int32_t *indirect
;
2997 /* This #include defines a local function! */
2998 # include <locale/weightwc.h>
3002 /* We push the index for equivalence class. */
3005 table
= (const int32_t *)
3006 _NL_CURRENT (LC_COLLATE
,
3007 _NL_COLLATE_TABLEWC
);
3008 weights
= (const int32_t *)
3009 _NL_CURRENT (LC_COLLATE
,
3010 _NL_COLLATE_WEIGHTWC
);
3011 extra
= (const int32_t *)
3012 _NL_CURRENT (LC_COLLATE
,
3013 _NL_COLLATE_EXTRAWC
);
3014 indirect
= (const int32_t *)
3015 _NL_CURRENT (LC_COLLATE
,
3016 _NL_COLLATE_INDIRECTWC
);
3018 idx
= findidx ((const wint_t**)&cp
);
3019 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
3020 /* This is no valid character. */
3021 FREE_STACK_RETURN (REG_ECOLLATE
);
3023 str
[0] = (wchar_t)idx
;
3025 else /* delim == '.' */
3027 /* We push collation sequence value
3028 for collating symbol. */
3030 const int32_t *symb_table
;
3031 const unsigned char *extra
;
3038 /* We have to convert the name to a single-byte
3039 string. This is possible since the names
3040 consist of ASCII characters and the internal
3041 representation is UCS4. */
3042 for (i
= 0; i
< c1
; ++i
)
3043 char_str
[i
] = str
[i
];
3046 _NL_CURRENT_WORD (LC_COLLATE
,
3047 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3048 symb_table
= (const int32_t *)
3049 _NL_CURRENT (LC_COLLATE
,
3050 _NL_COLLATE_SYMB_TABLEMB
);
3051 extra
= (const unsigned char *)
3052 _NL_CURRENT (LC_COLLATE
,
3053 _NL_COLLATE_SYMB_EXTRAMB
);
3055 /* Locate the character in the hashing table. */
3056 hash
= elem_hash (char_str
, c1
);
3059 elem
= hash
% table_size
;
3060 second
= hash
% (table_size
- 2);
3061 while (symb_table
[2 * elem
] != 0)
3063 /* First compare the hashing value. */
3064 if (symb_table
[2 * elem
] == hash
3065 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3066 && memcmp (char_str
,
3067 &extra
[symb_table
[2 * elem
+ 1]
3070 /* Yep, this is the entry. */
3071 idx
= symb_table
[2 * elem
+ 1];
3072 idx
+= 1 + extra
[idx
];
3080 if (symb_table
[2 * elem
] != 0)
3082 /* Compute the index of the byte sequence
3084 idx
+= 1 + extra
[idx
];
3085 /* Adjust for the alignment. */
3086 idx
= (idx
+ 3) & ~3;
3088 str
[0] = (wchar_t) idx
+ 4;
3090 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3092 /* No valid character. Match it as a
3093 single byte character. */
3094 had_char_class
= false;
3096 /* Update the length of characters */
3098 range_start
= str
[0];
3100 /* Throw away the ] at the end of the
3101 collating symbol. */
3103 /* exit from the switch block. */
3107 FREE_STACK_RETURN (REG_ECOLLATE
);
3112 /* Throw away the ] at the end of the equivalence
3113 class (or collating symbol). */
3116 /* Allocate the space for the equivalence class
3117 (or collating symbol) (and '\0' if needed). */
3118 GET_BUFFER_SPACE(datasize
);
3119 /* Update the pointer to indicate end of buffer. */
3123 { /* equivalence class */
3124 /* Calculate the offset of char_ranges,
3125 which is next to equivalence_classes. */
3126 offset
= laststart
[1] + laststart
[2]
3129 insert_space(datasize
, laststart
+ offset
, b
- 1);
3131 /* Write the equivalence_class and \0. */
3132 for (i
= 0 ; i
< datasize
; i
++)
3133 laststart
[offset
+ i
] = str
[i
];
3135 /* Update the length of equivalence_classes. */
3136 laststart
[3] += datasize
;
3137 had_char_class
= true;
3139 else /* delim == '.' */
3140 { /* collating symbol */
3141 /* Calculate the offset of the equivalence_classes,
3142 which is next to collating_symbols. */
3143 offset
= laststart
[1] + laststart
[2] + 6;
3144 /* Insert space and write the collationg_symbol
3146 insert_space(datasize
, laststart
+ offset
, b
-1);
3147 for (i
= 0 ; i
< datasize
; i
++)
3148 laststart
[offset
+ i
] = str
[i
];
3150 /* In re_match_2_internal if range_start < -1, we
3151 assume -range_start is the offset of the
3152 collating symbol which is specified as
3153 the character of the range start. So we assign
3154 -(laststart[1] + laststart[2] + 6) to
3156 range_start
= -(laststart
[1] + laststart
[2] + 6);
3157 /* Update the length of collating_symbol. */
3158 laststart
[2] += datasize
;
3159 had_char_class
= false;
3169 laststart
[5] += 2; /* Update the length of characters */
3170 range_start
= delim
;
3171 had_char_class
= false;
3176 had_char_class
= false;
3178 laststart
[5]++; /* Update the length of characters */
3184 /* Ensure that we have enough space to push a charset: the
3185 opcode, the length count, and the bitset; 34 bytes in all. */
3186 GET_BUFFER_SPACE (34);
3190 /* We test `*p == '^' twice, instead of using an if
3191 statement, so we only need one BUF_PUSH. */
3192 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3196 /* Remember the first position in the bracket expression. */
3199 /* Push the number of bytes in the bitmap. */
3200 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3202 /* Clear the whole map. */
3203 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3205 /* charset_not matches newline according to a syntax bit. */
3206 if ((re_opcode_t
) b
[-2] == charset_not
3207 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3208 SET_LIST_BIT ('\n');
3210 /* Read in characters and ranges, setting map bits. */
3213 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3217 /* \ might escape characters inside [...] and [^...]. */
3218 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3220 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3228 /* Could be the end of the bracket expression. If it's
3229 not (i.e., when the bracket expression is `[]' so
3230 far), the ']' character bit gets set way below. */
3231 if (c
== ']' && p
!= p1
+ 1)
3234 /* Look ahead to see if it's a range when the last thing
3235 was a character class. */
3236 if (had_char_class
&& c
== '-' && *p
!= ']')
3237 FREE_STACK_RETURN (REG_ERANGE
);
3239 /* Look ahead to see if it's a range when the last thing
3240 was a character: if this is a hyphen not at the
3241 beginning or the end of a list, then it's the range
3244 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3245 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3249 = byte_compile_range (range_start
, &p
, pend
, translate
,
3251 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3252 range_start
= 0xffffffff;
3255 else if (p
[0] == '-' && p
[1] != ']')
3256 { /* This handles ranges made up of characters only. */
3259 /* Move past the `-'. */
3262 ret
= byte_compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3263 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3264 range_start
= 0xffffffff;
3267 /* See if we're at the beginning of a possible character
3270 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3271 { /* Leave room for the null. */
3272 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3277 /* If pattern is `[[:'. */
3278 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3283 if ((c
== ':' && *p
== ']') || p
== pend
)
3285 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3288 /* This is in any case an invalid class name. */
3293 /* If isn't a word bracketed by `[:' and `:]':
3294 undo the ending character, the letters, and leave
3295 the leading `:' and `[' (but set bits for them). */
3296 if (c
== ':' && *p
== ']')
3298 # if defined _LIBC || WIDE_CHAR_SUPPORT
3299 boolean is_lower
= STREQ (str
, "lower");
3300 boolean is_upper
= STREQ (str
, "upper");
3304 wt
= IS_CHAR_CLASS (str
);
3306 FREE_STACK_RETURN (REG_ECTYPE
);
3308 /* Throw away the ] at the end of the character
3312 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3314 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3317 if (__iswctype (__btowc (ch
), wt
))
3320 if (iswctype (btowc (ch
), wt
))
3324 if (translate
&& (is_upper
|| is_lower
)
3325 && (ISUPPER (ch
) || ISLOWER (ch
)))
3329 had_char_class
= true;
3332 boolean is_alnum
= STREQ (str
, "alnum");
3333 boolean is_alpha
= STREQ (str
, "alpha");
3334 boolean is_blank
= STREQ (str
, "blank");
3335 boolean is_cntrl
= STREQ (str
, "cntrl");
3336 boolean is_digit
= STREQ (str
, "digit");
3337 boolean is_graph
= STREQ (str
, "graph");
3338 boolean is_lower
= STREQ (str
, "lower");
3339 boolean is_print
= STREQ (str
, "print");
3340 boolean is_punct
= STREQ (str
, "punct");
3341 boolean is_space
= STREQ (str
, "space");
3342 boolean is_upper
= STREQ (str
, "upper");
3343 boolean is_xdigit
= STREQ (str
, "xdigit");
3345 if (!IS_CHAR_CLASS (str
))
3346 FREE_STACK_RETURN (REG_ECTYPE
);
3348 /* Throw away the ] at the end of the character
3352 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3354 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3356 /* This was split into 3 if's to
3357 avoid an arbitrary limit in some compiler. */
3358 if ( (is_alnum
&& ISALNUM (ch
))
3359 || (is_alpha
&& ISALPHA (ch
))
3360 || (is_blank
&& ISBLANK (ch
))
3361 || (is_cntrl
&& ISCNTRL (ch
)))
3363 if ( (is_digit
&& ISDIGIT (ch
))
3364 || (is_graph
&& ISGRAPH (ch
))
3365 || (is_lower
&& ISLOWER (ch
))
3366 || (is_print
&& ISPRINT (ch
)))
3368 if ( (is_punct
&& ISPUNCT (ch
))
3369 || (is_space
&& ISSPACE (ch
))
3370 || (is_upper
&& ISUPPER (ch
))
3371 || (is_xdigit
&& ISXDIGIT (ch
)))
3373 if ( translate
&& (is_upper
|| is_lower
)
3374 && (ISUPPER (ch
) || ISLOWER (ch
)))
3377 had_char_class
= true;
3378 # endif /* libc || wctype.h */
3388 had_char_class
= false;
3391 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3393 unsigned char str
[MB_LEN_MAX
+ 1];
3396 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3402 /* If pattern is `[[='. */
3403 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3408 if ((c
== '=' && *p
== ']') || p
== pend
)
3410 if (c1
< MB_LEN_MAX
)
3413 /* This is in any case an invalid class name. */
3418 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3420 /* If we have no collation data we use the default
3421 collation in which each character is in a class
3422 by itself. It also means that ASCII is the
3423 character set and therefore we cannot have character
3424 with more than one byte in the multibyte
3431 FREE_STACK_RETURN (REG_ECOLLATE
);
3433 /* Throw away the ] at the end of the equivalence
3437 /* Set the bit for the character. */
3438 SET_LIST_BIT (str
[0]);
3443 /* Try to match the byte sequence in `str' against
3444 those known to the collate implementation.
3445 First find out whether the bytes in `str' are
3446 actually from exactly one character. */
3447 const int32_t *table
;
3448 const unsigned char *weights
;
3449 const unsigned char *extra
;
3450 const int32_t *indirect
;
3452 const unsigned char *cp
= str
;
3455 /* This #include defines a local function! */
3456 # include <locale/weight.h>
3458 table
= (const int32_t *)
3459 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3460 weights
= (const unsigned char *)
3461 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3462 extra
= (const unsigned char *)
3463 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3464 indirect
= (const int32_t *)
3465 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3467 idx
= findidx (&cp
);
3468 if (idx
== 0 || cp
< str
+ c1
)
3469 /* This is no valid character. */
3470 FREE_STACK_RETURN (REG_ECOLLATE
);
3472 /* Throw away the ] at the end of the equivalence
3476 /* Now we have to go throught the whole table
3477 and find all characters which have the same
3480 XXX Note that this is not entirely correct.
3481 we would have to match multibyte sequences
3482 but this is not possible with the current
3484 for (ch
= 1; ch
< 256; ++ch
)
3485 /* XXX This test would have to be changed if we
3486 would allow matching multibyte sequences. */
3489 int32_t idx2
= table
[ch
];
3490 size_t len
= weights
[idx2
];
3492 /* Test whether the lenghts match. */
3493 if (weights
[idx
] == len
)
3495 /* They do. New compare the bytes of
3500 && (weights
[idx
+ 1 + cnt
]
3501 == weights
[idx2
+ 1 + cnt
]))
3505 /* They match. Mark the character as
3512 had_char_class
= true;
3522 had_char_class
= false;
3525 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3527 unsigned char str
[128]; /* Should be large enough. */
3530 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3536 /* If pattern is `[[.'. */
3537 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3542 if ((c
== '.' && *p
== ']') || p
== pend
)
3544 if (c1
< sizeof (str
))
3547 /* This is in any case an invalid class name. */
3552 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3554 /* If we have no collation data we use the default
3555 collation in which each character is the name
3556 for its own class which contains only the one
3557 character. It also means that ASCII is the
3558 character set and therefore we cannot have character
3559 with more than one byte in the multibyte
3566 FREE_STACK_RETURN (REG_ECOLLATE
);
3568 /* Throw away the ] at the end of the equivalence
3572 /* Set the bit for the character. */
3573 SET_LIST_BIT (str
[0]);
3574 range_start
= ((const unsigned char *) str
)[0];
3579 /* Try to match the byte sequence in `str' against
3580 those known to the collate implementation.
3581 First find out whether the bytes in `str' are
3582 actually from exactly one character. */
3584 const int32_t *symb_table
;
3585 const unsigned char *extra
;
3592 _NL_CURRENT_WORD (LC_COLLATE
,
3593 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3594 symb_table
= (const int32_t *)
3595 _NL_CURRENT (LC_COLLATE
,
3596 _NL_COLLATE_SYMB_TABLEMB
);
3597 extra
= (const unsigned char *)
3598 _NL_CURRENT (LC_COLLATE
,
3599 _NL_COLLATE_SYMB_EXTRAMB
);
3601 /* Locate the character in the hashing table. */
3602 hash
= elem_hash (str
, c1
);
3605 elem
= hash
% table_size
;
3606 second
= hash
% (table_size
- 2);
3607 while (symb_table
[2 * elem
] != 0)
3609 /* First compare the hashing value. */
3610 if (symb_table
[2 * elem
] == hash
3611 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3613 &extra
[symb_table
[2 * elem
+ 1]
3617 /* Yep, this is the entry. */
3618 idx
= symb_table
[2 * elem
+ 1];
3619 idx
+= 1 + extra
[idx
];
3627 if (symb_table
[2 * elem
] == 0)
3628 /* This is no valid character. */
3629 FREE_STACK_RETURN (REG_ECOLLATE
);
3631 /* Throw away the ] at the end of the equivalence
3635 /* Now add the multibyte character(s) we found
3638 XXX Note that this is not entirely correct.
3639 we would have to match multibyte sequences
3640 but this is not possible with the current
3641 implementation. Also, we have to match
3642 collating symbols, which expand to more than
3643 one file, as a whole and not allow the
3644 individual bytes. */
3647 range_start
= extra
[idx
];
3650 SET_LIST_BIT (extra
[idx
]);
3655 had_char_class
= false;
3665 had_char_class
= false;
3670 had_char_class
= false;
3676 /* Discard any (non)matching list bytes that are all 0 at the
3677 end of the map. Decrease the map-length byte too. */
3678 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3687 if (syntax
& RE_NO_BK_PARENS
)
3694 if (syntax
& RE_NO_BK_PARENS
)
3701 if (syntax
& RE_NEWLINE_ALT
)
3708 if (syntax
& RE_NO_BK_VBAR
)
3715 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3716 goto handle_interval
;
3722 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3724 /* Do not translate the character after the \, so that we can
3725 distinguish, e.g., \B from \b, even if we normally would
3726 translate, e.g., B to b. */
3732 if (syntax
& RE_NO_BK_PARENS
)
3733 goto normal_backslash
;
3739 if (COMPILE_STACK_FULL
)
3741 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3742 compile_stack_elt_t
);
3743 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3745 compile_stack
.size
<<= 1;
3748 /* These are the values to restore when we hit end of this
3749 group. They are all relative offsets, so that if the
3750 whole pattern moves because of realloc, they will still
3752 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3753 COMPILE_STACK_TOP
.fixup_alt_jump
3754 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3755 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3756 COMPILE_STACK_TOP
.regnum
= regnum
;
3758 /* We will eventually replace the 0 with the number of
3759 groups inner to this one. But do not push a
3760 start_memory for groups beyond the last one we can
3761 represent in the compiled pattern. */
3762 if (regnum
<= MAX_REGNUM
)
3764 COMPILE_STACK_TOP
.inner_group_offset
= b
3765 - COMPILED_BUFFER_VAR
+ 2;
3766 BUF_PUSH_3 (start_memory
, regnum
, 0);
3769 compile_stack
.avail
++;
3774 /* If we've reached MAX_REGNUM groups, then this open
3775 won't actually generate any code, so we'll have to
3776 clear pending_exact explicitly. */
3782 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3784 if (COMPILE_STACK_EMPTY
)
3786 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3787 goto normal_backslash
;
3789 FREE_STACK_RETURN (REG_ERPAREN
);
3794 { /* Push a dummy failure point at the end of the
3795 alternative for a possible future
3796 `pop_failure_jump' to pop. See comments at
3797 `push_dummy_failure' in `re_match_2'. */
3798 BUF_PUSH (push_dummy_failure
);
3800 /* We allocated space for this jump when we assigned
3801 to `fixup_alt_jump', in the `handle_alt' case below. */
3802 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3805 /* See similar code for backslashed left paren above. */
3806 if (COMPILE_STACK_EMPTY
)
3808 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3811 FREE_STACK_RETURN (REG_ERPAREN
);
3814 /* Since we just checked for an empty stack above, this
3815 ``can't happen''. */
3816 assert (compile_stack
.avail
!= 0);
3818 /* We don't just want to restore into `regnum', because
3819 later groups should continue to be numbered higher,
3820 as in `(ab)c(de)' -- the second group is #2. */
3821 regnum_t this_group_regnum
;
3823 compile_stack
.avail
--;
3824 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3826 = COMPILE_STACK_TOP
.fixup_alt_jump
3827 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3829 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3830 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3831 /* If we've reached MAX_REGNUM groups, then this open
3832 won't actually generate any code, so we'll have to
3833 clear pending_exact explicitly. */
3836 /* We're at the end of the group, so now we know how many
3837 groups were inside this one. */
3838 if (this_group_regnum
<= MAX_REGNUM
)
3840 UCHAR_T
*inner_group_loc
3841 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3843 *inner_group_loc
= regnum
- this_group_regnum
;
3844 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3845 regnum
- this_group_regnum
);
3851 case '|': /* `\|'. */
3852 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3853 goto normal_backslash
;
3855 if (syntax
& RE_LIMITED_OPS
)
3858 /* Insert before the previous alternative a jump which
3859 jumps to this alternative if the former fails. */
3860 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3861 INSERT_JUMP (on_failure_jump
, begalt
,
3862 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3864 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3866 /* The alternative before this one has a jump after it
3867 which gets executed if it gets matched. Adjust that
3868 jump so it will jump to this alternative's analogous
3869 jump (put in below, which in turn will jump to the next
3870 (if any) alternative's such jump, etc.). The last such
3871 jump jumps to the correct final destination. A picture:
3877 If we are at `b', then fixup_alt_jump right now points to a
3878 three-byte space after `a'. We'll put in the jump, set
3879 fixup_alt_jump to right after `b', and leave behind three
3880 bytes which we'll fill in when we get to after `c'. */
3883 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3885 /* Mark and leave space for a jump after this alternative,
3886 to be filled in later either by next alternative or
3887 when know we're at the end of a series of alternatives. */
3889 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3890 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3898 /* If \{ is a literal. */
3899 if (!(syntax
& RE_INTERVALS
)
3900 /* If we're at `\{' and it's not the open-interval
3902 || (syntax
& RE_NO_BK_BRACES
))
3903 goto normal_backslash
;
3907 /* If got here, then the syntax allows intervals. */
3909 /* At least (most) this many matches must be made. */
3910 int lower_bound
= -1, upper_bound
= -1;
3912 /* Place in the uncompiled pattern (i.e., just after
3913 the '{') to go back to if the interval is invalid. */
3914 const CHAR_T
*beg_interval
= p
;
3917 goto invalid_interval
;
3919 GET_UNSIGNED_NUMBER (lower_bound
);
3923 GET_UNSIGNED_NUMBER (upper_bound
);
3924 if (upper_bound
< 0)
3925 upper_bound
= RE_DUP_MAX
;
3928 /* Interval such as `{1}' => match exactly once. */
3929 upper_bound
= lower_bound
;
3931 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3932 goto invalid_interval
;
3934 if (!(syntax
& RE_NO_BK_BRACES
))
3936 if (c
!= '\\' || p
== pend
)
3937 goto invalid_interval
;
3942 goto invalid_interval
;
3944 /* If it's invalid to have no preceding re. */
3947 if (syntax
& RE_CONTEXT_INVALID_OPS
3948 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3949 FREE_STACK_RETURN (REG_BADRPT
);
3950 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3953 goto unfetch_interval
;
3956 /* We just parsed a valid interval. */
3958 if (RE_DUP_MAX
< upper_bound
)
3959 FREE_STACK_RETURN (REG_BADBR
);
3961 /* If the upper bound is zero, don't want to succeed at
3962 all; jump from `laststart' to `b + 3', which will be
3963 the end of the buffer after we insert the jump. */
3964 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3965 instead of 'b + 3'. */
3966 if (upper_bound
== 0)
3968 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3969 INSERT_JUMP (jump
, laststart
, b
+ 1
3970 + OFFSET_ADDRESS_SIZE
);
3971 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3974 /* Otherwise, we have a nontrivial interval. When
3975 we're all done, the pattern will look like:
3976 set_number_at <jump count> <upper bound>
3977 set_number_at <succeed_n count> <lower bound>
3978 succeed_n <after jump addr> <succeed_n count>
3980 jump_n <succeed_n addr> <jump count>
3981 (The upper bound and `jump_n' are omitted if
3982 `upper_bound' is 1, though.) */
3984 { /* If the upper bound is > 1, we need to insert
3985 more at the end of the loop. */
3986 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3987 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3989 GET_BUFFER_SPACE (nbytes
);
3991 /* Initialize lower bound of the `succeed_n', even
3992 though it will be set during matching by its
3993 attendant `set_number_at' (inserted next),
3994 because `re_compile_fastmap' needs to know.
3995 Jump to the `jump_n' we might insert below. */
3996 INSERT_JUMP2 (succeed_n
, laststart
,
3997 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
3998 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
4000 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4002 /* Code to initialize the lower bound. Insert
4003 before the `succeed_n'. The `5' is the last two
4004 bytes of this `set_number_at', plus 3 bytes of
4005 the following `succeed_n'. */
4006 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4007 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4008 of the following `succeed_n'. */
4009 PREFIX(insert_op2
) (set_number_at
, laststart
, 1
4010 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
4011 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4013 if (upper_bound
> 1)
4014 { /* More than one repetition is allowed, so
4015 append a backward jump to the `succeed_n'
4016 that starts this interval.
4018 When we've reached this during matching,
4019 we'll have matched the interval once, so
4020 jump back only `upper_bound - 1' times. */
4021 STORE_JUMP2 (jump_n
, b
, laststart
4022 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
4024 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4026 /* The location we want to set is the second
4027 parameter of the `jump_n'; that is `b-2' as
4028 an absolute address. `laststart' will be
4029 the `set_number_at' we're about to insert;
4030 `laststart+3' the number to set, the source
4031 for the relative address. But we are
4032 inserting into the middle of the pattern --
4033 so everything is getting moved up by 5.
4034 Conclusion: (b - 2) - (laststart + 3) + 5,
4035 i.e., b - laststart.
4037 We insert this at the beginning of the loop
4038 so that if we fail during matching, we'll
4039 reinitialize the bounds. */
4040 PREFIX(insert_op2
) (set_number_at
, laststart
,
4042 upper_bound
- 1, b
);
4043 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4050 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
4051 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
4053 /* Match the characters as literals. */
4056 if (syntax
& RE_NO_BK_BRACES
)
4059 goto normal_backslash
;
4063 /* There is no way to specify the before_dot and after_dot
4064 operators. rms says this is ok. --karl */
4072 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
4078 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
4084 if (syntax
& RE_NO_GNU_OPS
)
4087 BUF_PUSH (wordchar
);
4092 if (syntax
& RE_NO_GNU_OPS
)
4095 BUF_PUSH (notwordchar
);
4100 if (syntax
& RE_NO_GNU_OPS
)
4106 if (syntax
& RE_NO_GNU_OPS
)
4112 if (syntax
& RE_NO_GNU_OPS
)
4114 BUF_PUSH (wordbound
);
4118 if (syntax
& RE_NO_GNU_OPS
)
4120 BUF_PUSH (notwordbound
);
4124 if (syntax
& RE_NO_GNU_OPS
)
4130 if (syntax
& RE_NO_GNU_OPS
)
4135 case '1': case '2': case '3': case '4': case '5':
4136 case '6': case '7': case '8': case '9':
4137 if (syntax
& RE_NO_BK_REFS
)
4143 FREE_STACK_RETURN (REG_ESUBREG
);
4145 /* Can't back reference to a subexpression if inside of it. */
4146 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4150 BUF_PUSH_2 (duplicate
, c1
);
4156 if (syntax
& RE_BK_PLUS_QM
)
4159 goto normal_backslash
;
4163 /* You might think it would be useful for \ to mean
4164 not to translate; but if we don't translate it
4165 it will never match anything. */
4173 /* Expects the character in `c'. */
4175 /* If no exactn currently being built. */
4178 /* If last exactn handle binary(or character) and
4179 new exactn handle character(or binary). */
4180 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4183 /* If last exactn not at current position. */
4184 || pending_exact
+ *pending_exact
+ 1 != b
4186 /* We have only one byte following the exactn for the count. */
4187 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4189 /* If followed by a repetition operator. */
4190 || *p
== '*' || *p
== '^'
4191 || ((syntax
& RE_BK_PLUS_QM
)
4192 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4193 : (*p
== '+' || *p
== '?'))
4194 || ((syntax
& RE_INTERVALS
)
4195 && ((syntax
& RE_NO_BK_BRACES
)
4197 : (p
[0] == '\\' && p
[1] == '{'))))
4199 /* Start building a new exactn. */
4204 /* Is this exactn binary data or character? */
4205 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4207 BUF_PUSH_2 (exactn_bin
, 0);
4209 BUF_PUSH_2 (exactn
, 0);
4211 BUF_PUSH_2 (exactn
, 0);
4213 pending_exact
= b
- 1;
4220 } /* while p != pend */
4223 /* Through the pattern now. */
4226 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4228 if (!COMPILE_STACK_EMPTY
)
4229 FREE_STACK_RETURN (REG_EPAREN
);
4231 /* If we don't want backtracking, force success
4232 the first time we reach the end of the compiled pattern. */
4233 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4241 free (compile_stack
.stack
);
4243 /* We have succeeded; set the length of the buffer. */
4245 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4247 bufp
->used
= b
- bufp
->buffer
;
4253 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4254 PREFIX(print_compiled_pattern
) (bufp
);
4258 #ifndef MATCH_MAY_ALLOCATE
4259 /* Initialize the failure stack to the largest possible stack. This
4260 isn't necessary unless we're trying to avoid calling alloca in
4261 the search and match routines. */
4263 int num_regs
= bufp
->re_nsub
+ 1;
4265 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4266 is strictly greater than re_max_failures, the largest possible stack
4267 is 2 * re_max_failures failure points. */
4268 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4270 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4273 if (! fail_stack
.stack
)
4275 = (PREFIX(fail_stack_elt_t
) *) xmalloc (fail_stack
.size
4276 * sizeof (PREFIX(fail_stack_elt_t
)));
4279 = (PREFIX(fail_stack_elt_t
) *) xrealloc (fail_stack
.stack
,
4281 * sizeof (PREFIX(fail_stack_elt_t
))));
4282 # else /* not emacs */
4283 if (! fail_stack
.stack
)
4285 = (PREFIX(fail_stack_elt_t
) *) malloc (fail_stack
.size
4286 * sizeof (PREFIX(fail_stack_elt_t
)));
4289 = (PREFIX(fail_stack_elt_t
) *) realloc (fail_stack
.stack
,
4291 * sizeof (PREFIX(fail_stack_elt_t
))));
4292 # endif /* not emacs */
4295 PREFIX(regex_grow_registers
) (num_regs
);
4297 #endif /* not MATCH_MAY_ALLOCATE */
4300 } /* regex_compile */
4302 /* Subroutines for `regex_compile'. */
4304 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4305 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4308 PREFIX(store_op1
) (op
, loc
, arg
)
4313 *loc
= (UCHAR_T
) op
;
4314 STORE_NUMBER (loc
+ 1, arg
);
4318 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4319 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4322 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
)
4327 *loc
= (UCHAR_T
) op
;
4328 STORE_NUMBER (loc
+ 1, arg1
);
4329 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4333 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4334 for OP followed by two-byte integer parameter ARG. */
4335 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4338 PREFIX(insert_op1
) (op
, loc
, arg
, end
)
4344 register UCHAR_T
*pfrom
= end
;
4345 register UCHAR_T
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4347 while (pfrom
!= loc
)
4350 PREFIX(store_op1
) (op
, loc
, arg
);
4354 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4355 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4358 PREFIX(insert_op2
) (op
, loc
, arg1
, arg2
, end
)
4364 register UCHAR_T
*pfrom
= end
;
4365 register UCHAR_T
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4367 while (pfrom
!= loc
)
4370 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
);
4374 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4375 after an alternative or a begin-subexpression. We assume there is at
4376 least one character before the ^. */
4379 PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
)
4380 const CHAR_T
*pattern
, *p
;
4381 reg_syntax_t syntax
;
4383 const CHAR_T
*prev
= p
- 2;
4384 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4387 /* After a subexpression? */
4388 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4389 /* After an alternative? */
4390 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4394 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4395 at least one character after the $, i.e., `P < PEND'. */
4398 PREFIX(at_endline_loc_p
) (p
, pend
, syntax
)
4399 const CHAR_T
*p
, *pend
;
4400 reg_syntax_t syntax
;
4402 const CHAR_T
*next
= p
;
4403 boolean next_backslash
= *next
== '\\';
4404 const CHAR_T
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4407 /* Before a subexpression? */
4408 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4409 : next_backslash
&& next_next
&& *next_next
== ')')
4410 /* Before an alternative? */
4411 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4412 : next_backslash
&& next_next
&& *next_next
== '|');
4415 #else /* not INSIDE_RECURSION */
4417 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4418 false if it's not. */
4421 group_in_compile_stack (compile_stack
, regnum
)
4422 compile_stack_type compile_stack
;
4427 for (this_element
= compile_stack
.avail
- 1;
4430 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4435 #endif /* not INSIDE_RECURSION */
4437 #ifdef INSIDE_RECURSION
4440 /* This insert space, which size is "num", into the pattern at "loc".
4441 "end" must point the end of the allocated buffer. */
4443 insert_space (num
, loc
, end
)
4448 register CHAR_T
*pto
= end
;
4449 register CHAR_T
*pfrom
= end
- num
;
4451 while (pfrom
>= loc
)
4457 static reg_errcode_t
4458 wcs_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
,
4460 CHAR_T range_start_char
;
4461 const CHAR_T
**p_ptr
, *pend
;
4462 CHAR_T
*char_set
, *b
;
4463 RE_TRANSLATE_TYPE translate
;
4464 reg_syntax_t syntax
;
4466 const CHAR_T
*p
= *p_ptr
;
4467 CHAR_T range_start
, range_end
;
4471 uint32_t start_val
, end_val
;
4477 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4480 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4481 _NL_COLLATE_COLLSEQWC
);
4482 const unsigned char *extra
= (const unsigned char *)
4483 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4485 if (range_start_char
< -1)
4487 /* range_start is a collating symbol. */
4489 /* Retreive the index and get collation sequence value. */
4490 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4491 start_val
= wextra
[1 + *wextra
];
4494 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4496 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4498 /* Report an error if the range is empty and the syntax prohibits
4500 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4501 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4503 /* Insert space to the end of the char_ranges. */
4504 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4505 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4506 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4507 char_set
[4]++; /* ranges_index */
4512 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4514 range_end
= TRANSLATE (p
[0]);
4515 /* Report an error if the range is empty and the syntax prohibits
4517 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4518 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4520 /* Insert space to the end of the char_ranges. */
4521 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4522 *(b
- char_set
[5] - 2) = range_start
;
4523 *(b
- char_set
[5] - 1) = range_end
;
4524 char_set
[4]++; /* ranges_index */
4526 /* Have to increment the pointer into the pattern string, so the
4527 caller isn't still at the ending character. */
4533 /* Read the ending character of a range (in a bracket expression) from the
4534 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4535 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4536 Then we set the translation of all bits between the starting and
4537 ending characters (inclusive) in the compiled pattern B.
4539 Return an error code.
4541 We use these short variable names so we can use the same macros as
4542 `regex_compile' itself. */
4544 static reg_errcode_t
4545 byte_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
)
4546 unsigned int range_start_char
;
4547 const char **p_ptr
, *pend
;
4548 RE_TRANSLATE_TYPE translate
;
4549 reg_syntax_t syntax
;
4553 const char *p
= *p_ptr
;
4556 const unsigned char *collseq
;
4557 unsigned int start_colseq
;
4558 unsigned int end_colseq
;
4566 /* Have to increment the pointer into the pattern string, so the
4567 caller isn't still at the ending character. */
4570 /* Report an error if the range is empty and the syntax prohibits this. */
4571 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4574 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4575 _NL_COLLATE_COLLSEQMB
);
4577 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4578 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4579 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4581 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4583 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4585 SET_LIST_BIT (TRANSLATE (this_char
));
4590 /* Here we see why `this_char' has to be larger than an `unsigned
4591 char' -- we would otherwise go into an infinite loop, since all
4592 characters <= 0xff. */
4593 range_start_char
= TRANSLATE (range_start_char
);
4594 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4595 and some compilers cast it to int implicitly, so following for_loop
4596 may fall to (almost) infinite loop.
4597 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4598 To avoid this, we cast p[0] to unsigned int and truncate it. */
4599 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4601 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4603 SET_LIST_BIT (TRANSLATE (this_char
));
4612 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4613 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4614 characters can start a string that matches the pattern. This fastmap
4615 is used by re_search to skip quickly over impossible starting points.
4617 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4618 area as BUFP->fastmap.
4620 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4623 Returns 0 if we succeed, -2 if an internal error. */
4626 /* local function for re_compile_fastmap.
4627 truncate wchar_t character to char. */
4628 static unsigned char truncate_wchar (CHAR_T c
);
4630 static unsigned char
4634 unsigned char buf
[MB_CUR_MAX
];
4637 memset (&state
, '\0', sizeof (state
));
4639 retval
= __wcrtomb (buf
, c
, &state
);
4641 retval
= wcrtomb (buf
, c
, &state
);
4643 return retval
> 0 ? buf
[0] : (unsigned char) c
;
4648 PREFIX(re_compile_fastmap
) (bufp
)
4649 struct re_pattern_buffer
*bufp
;
4652 #ifdef MATCH_MAY_ALLOCATE
4653 PREFIX(fail_stack_type
) fail_stack
;
4655 #ifndef REGEX_MALLOC
4659 register char *fastmap
= bufp
->fastmap
;
4662 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4663 pattern to (char*) in regex_compile. */
4664 UCHAR_T
*pattern
= (UCHAR_T
*)bufp
->buffer
;
4665 register UCHAR_T
*pend
= (UCHAR_T
*) (bufp
->buffer
+ bufp
->used
);
4667 UCHAR_T
*pattern
= bufp
->buffer
;
4668 register UCHAR_T
*pend
= pattern
+ bufp
->used
;
4670 UCHAR_T
*p
= pattern
;
4673 /* This holds the pointer to the failure stack, when
4674 it is allocated relocatably. */
4675 fail_stack_elt_t
*failure_stack_ptr
;
4678 /* Assume that each path through the pattern can be null until
4679 proven otherwise. We set this false at the bottom of switch
4680 statement, to which we get only if a particular path doesn't
4681 match the empty string. */
4682 boolean path_can_be_null
= true;
4684 /* We aren't doing a `succeed_n' to begin with. */
4685 boolean succeed_n_p
= false;
4687 assert (fastmap
!= NULL
&& p
!= NULL
);
4690 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4691 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4692 bufp
->can_be_null
= 0;
4696 if (p
== pend
|| *p
== succeed
)
4698 /* We have reached the (effective) end of pattern. */
4699 if (!FAIL_STACK_EMPTY ())
4701 bufp
->can_be_null
|= path_can_be_null
;
4703 /* Reset for next path. */
4704 path_can_be_null
= true;
4706 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4714 /* We should never be about to go beyond the end of the pattern. */
4717 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4720 /* I guess the idea here is to simply not bother with a fastmap
4721 if a backreference is used, since it's too hard to figure out
4722 the fastmap for the corresponding group. Setting
4723 `can_be_null' stops `re_search_2' from using the fastmap, so
4724 that is all we do. */
4726 bufp
->can_be_null
= 1;
4730 /* Following are the cases which match a character. These end
4735 fastmap
[truncate_wchar(p
[1])] = 1;
4749 /* It is hard to distinguish fastmap from (multi byte) characters
4750 which depends on current locale. */
4755 bufp
->can_be_null
= 1;
4759 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4760 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4766 /* Chars beyond end of map must be allowed. */
4767 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4770 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4771 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4777 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4778 if (SYNTAX (j
) == Sword
)
4784 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4785 if (SYNTAX (j
) != Sword
)
4792 int fastmap_newline
= fastmap
['\n'];
4794 /* `.' matches anything ... */
4795 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4798 /* ... except perhaps newline. */
4799 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4800 fastmap
['\n'] = fastmap_newline
;
4802 /* Return if we have already set `can_be_null'; if we have,
4803 then the fastmap is irrelevant. Something's wrong here. */
4804 else if (bufp
->can_be_null
)
4807 /* Otherwise, have to check alternative paths. */
4814 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4815 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4822 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4823 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4828 /* All cases after this match the empty string. These end with
4848 case push_dummy_failure
:
4853 case pop_failure_jump
:
4854 case maybe_pop_jump
:
4857 case dummy_failure_jump
:
4858 EXTRACT_NUMBER_AND_INCR (j
, p
);
4863 /* Jump backward implies we just went through the body of a
4864 loop and matched nothing. Opcode jumped to should be
4865 `on_failure_jump' or `succeed_n'. Just treat it like an
4866 ordinary jump. For a * loop, it has pushed its failure
4867 point already; if so, discard that as redundant. */
4868 if ((re_opcode_t
) *p
!= on_failure_jump
4869 && (re_opcode_t
) *p
!= succeed_n
)
4873 EXTRACT_NUMBER_AND_INCR (j
, p
);
4876 /* If what's on the stack is where we are now, pop it. */
4877 if (!FAIL_STACK_EMPTY ()
4878 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4884 case on_failure_jump
:
4885 case on_failure_keep_string_jump
:
4886 handle_on_failure_jump
:
4887 EXTRACT_NUMBER_AND_INCR (j
, p
);
4889 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4890 end of the pattern. We don't want to push such a point,
4891 since when we restore it above, entering the switch will
4892 increment `p' past the end of the pattern. We don't need
4893 to push such a point since we obviously won't find any more
4894 fastmap entries beyond `pend'. Such a pattern can match
4895 the null string, though. */
4898 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4900 RESET_FAIL_STACK ();
4905 bufp
->can_be_null
= 1;
4909 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4910 succeed_n_p
= false;
4917 /* Get to the number of times to succeed. */
4918 p
+= OFFSET_ADDRESS_SIZE
;
4920 /* Increment p past the n for when k != 0. */
4921 EXTRACT_NUMBER_AND_INCR (k
, p
);
4924 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4925 succeed_n_p
= true; /* Spaghetti code alert. */
4926 goto handle_on_failure_jump
;
4932 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4943 abort (); /* We have listed all the cases. */
4946 /* Getting here means we have found the possible starting
4947 characters for one path of the pattern -- and that the empty
4948 string does not match. We need not follow this path further.
4949 Instead, look at the next alternative (remembered on the
4950 stack), or quit if no more. The test at the top of the loop
4951 does these things. */
4952 path_can_be_null
= false;
4956 /* Set `can_be_null' for the last path (also the first path, if the
4957 pattern is empty). */
4958 bufp
->can_be_null
|= path_can_be_null
;
4961 RESET_FAIL_STACK ();
4965 #else /* not INSIDE_RECURSION */
4968 re_compile_fastmap (bufp
)
4969 struct re_pattern_buffer
*bufp
;
4972 if (MB_CUR_MAX
!= 1)
4973 return wcs_re_compile_fastmap(bufp
);
4976 return byte_re_compile_fastmap(bufp
);
4977 } /* re_compile_fastmap */
4979 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4983 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4984 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4985 this memory for recording register information. STARTS and ENDS
4986 must be allocated using the malloc library routine, and must each
4987 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4989 If NUM_REGS == 0, then subsequent matches should allocate their own
4992 Unless this function is called, the first search or match using
4993 PATTERN_BUFFER will allocate its own register data, without
4994 freeing the old data. */
4997 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4998 struct re_pattern_buffer
*bufp
;
4999 struct re_registers
*regs
;
5001 regoff_t
*starts
, *ends
;
5005 bufp
->regs_allocated
= REGS_REALLOCATE
;
5006 regs
->num_regs
= num_regs
;
5007 regs
->start
= starts
;
5012 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5014 regs
->start
= regs
->end
= (regoff_t
*) 0;
5018 weak_alias (__re_set_registers
, re_set_registers
)
5021 /* Searching routines. */
5023 /* Like re_search_2, below, but only one string is specified, and
5024 doesn't let you say where to stop matching. */
5027 re_search (bufp
, string
, size
, startpos
, range
, regs
)
5028 struct re_pattern_buffer
*bufp
;
5030 int size
, startpos
, range
;
5031 struct re_registers
*regs
;
5033 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
5037 weak_alias (__re_search
, re_search
)
5041 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5042 virtual concatenation of STRING1 and STRING2, starting first at index
5043 STARTPOS, then at STARTPOS + 1, and so on.
5045 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5047 RANGE is how far to scan while trying to match. RANGE = 0 means try
5048 only at STARTPOS; in general, the last start tried is STARTPOS +
5051 In REGS, return the indices of the virtual concatenation of STRING1
5052 and STRING2 that matched the entire BUFP->buffer and its contained
5055 Do not consider matching one past the index STOP in the virtual
5056 concatenation of STRING1 and STRING2.
5058 We return either the position in the strings at which the match was
5059 found, -1 if no match, or -2 if error (such as failure
5063 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
5064 struct re_pattern_buffer
*bufp
;
5065 const char *string1
, *string2
;
5069 struct re_registers
*regs
;
5073 if (MB_CUR_MAX
!= 1)
5074 return wcs_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5078 return byte_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5082 weak_alias (__re_search_2
, re_search_2
)
5085 #endif /* not INSIDE_RECURSION */
5087 #ifdef INSIDE_RECURSION
5089 #ifdef MATCH_MAY_ALLOCATE
5090 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5092 # define FREE_VAR(var) if (var) free (var); var = NULL
5096 # define MAX_ALLOCA_SIZE 2000
5098 # define FREE_WCS_BUFFERS() \
5100 if (size1 > MAX_ALLOCA_SIZE) \
5102 free (wcs_string1); \
5103 free (mbs_offset1); \
5107 FREE_VAR (wcs_string1); \
5108 FREE_VAR (mbs_offset1); \
5110 if (size2 > MAX_ALLOCA_SIZE) \
5112 free (wcs_string2); \
5113 free (mbs_offset2); \
5117 FREE_VAR (wcs_string2); \
5118 FREE_VAR (mbs_offset2); \
5126 PREFIX(re_search_2
) (bufp
, string1
, size1
, string2
, size2
, startpos
, range
,
5128 struct re_pattern_buffer
*bufp
;
5129 const char *string1
, *string2
;
5133 struct re_registers
*regs
;
5137 register char *fastmap
= bufp
->fastmap
;
5138 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5139 int total_size
= size1
+ size2
;
5140 int endpos
= startpos
+ range
;
5142 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5143 wchar_t *wcs_string1
= NULL
, *wcs_string2
= NULL
;
5144 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5145 int wcs_size1
= 0, wcs_size2
= 0;
5146 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5147 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5148 /* They hold whether each wchar_t is binary data or not. */
5149 char *is_binary
= NULL
;
5152 /* Check for out-of-range STARTPOS. */
5153 if (startpos
< 0 || startpos
> total_size
)
5156 /* Fix up RANGE if it might eventually take us outside
5157 the virtual concatenation of STRING1 and STRING2.
5158 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5160 range
= 0 - startpos
;
5161 else if (endpos
> total_size
)
5162 range
= total_size
- startpos
;
5164 /* If the search isn't to be a backwards one, don't waste time in a
5165 search for a pattern that must be anchored. */
5166 if (bufp
->used
> 0 && range
> 0
5167 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
5168 /* `begline' is like `begbuf' if it cannot match at newlines. */
5169 || ((re_opcode_t
) bufp
->buffer
[0] == begline
5170 && !bufp
->newline_anchor
)))
5179 /* In a forward search for something that starts with \=.
5180 don't keep searching past point. */
5181 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
5183 range
= PT
- startpos
;
5189 /* Update the fastmap now if not correct already. */
5190 if (fastmap
&& !bufp
->fastmap_accurate
)
5191 if (re_compile_fastmap (bufp
) == -2)
5195 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5196 fill them with converted string. */
5199 if (size1
> MAX_ALLOCA_SIZE
)
5201 wcs_string1
= TALLOC (size1
+ 1, CHAR_T
);
5202 mbs_offset1
= TALLOC (size1
+ 1, int);
5203 is_binary
= TALLOC (size1
+ 1, char);
5207 wcs_string1
= REGEX_TALLOC (size1
+ 1, CHAR_T
);
5208 mbs_offset1
= REGEX_TALLOC (size1
+ 1, int);
5209 is_binary
= REGEX_TALLOC (size1
+ 1, char);
5211 if (!wcs_string1
|| !mbs_offset1
|| !is_binary
)
5213 if (size1
> MAX_ALLOCA_SIZE
)
5221 FREE_VAR (wcs_string1
);
5222 FREE_VAR (mbs_offset1
);
5223 FREE_VAR (is_binary
);
5227 wcs_size1
= convert_mbs_to_wcs(wcs_string1
, string1
, size1
,
5228 mbs_offset1
, is_binary
);
5229 wcs_string1
[wcs_size1
] = L
'\0'; /* for a sentinel */
5230 if (size1
> MAX_ALLOCA_SIZE
)
5233 FREE_VAR (is_binary
);
5237 if (size2
> MAX_ALLOCA_SIZE
)
5239 wcs_string2
= TALLOC (size2
+ 1, CHAR_T
);
5240 mbs_offset2
= TALLOC (size2
+ 1, int);
5241 is_binary
= TALLOC (size2
+ 1, char);
5245 wcs_string2
= REGEX_TALLOC (size2
+ 1, CHAR_T
);
5246 mbs_offset2
= REGEX_TALLOC (size2
+ 1, int);
5247 is_binary
= REGEX_TALLOC (size2
+ 1, char);
5249 if (!wcs_string2
|| !mbs_offset2
|| !is_binary
)
5251 FREE_WCS_BUFFERS ();
5252 if (size2
> MAX_ALLOCA_SIZE
)
5255 FREE_VAR (is_binary
);
5258 wcs_size2
= convert_mbs_to_wcs(wcs_string2
, string2
, size2
,
5259 mbs_offset2
, is_binary
);
5260 wcs_string2
[wcs_size2
] = L
'\0'; /* for a sentinel */
5261 if (size2
> MAX_ALLOCA_SIZE
)
5264 FREE_VAR (is_binary
);
5269 /* Loop through the string, looking for a place to start matching. */
5272 /* If a fastmap is supplied, skip quickly over characters that
5273 cannot be the start of a match. If the pattern can match the
5274 null string, however, we don't need to skip characters; we want
5275 the first null string. */
5276 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5278 if (range
> 0) /* Searching forwards. */
5280 register const char *d
;
5281 register int lim
= 0;
5284 if (startpos
< size1
&& startpos
+ range
>= size1
)
5285 lim
= range
- (size1
- startpos
);
5287 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5289 /* Written out as an if-else to avoid testing `translate'
5293 && !fastmap
[(unsigned char)
5294 translate
[(unsigned char) *d
++]])
5297 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5300 startpos
+= irange
- range
;
5302 else /* Searching backwards. */
5304 register CHAR_T c
= (size1
== 0 || startpos
>= size1
5305 ? string2
[startpos
- size1
]
5306 : string1
[startpos
]);
5308 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5313 /* If can't match the null string, and that's all we have left, fail. */
5314 if (range
>= 0 && startpos
== total_size
&& fastmap
5315 && !bufp
->can_be_null
)
5318 FREE_WCS_BUFFERS ();
5324 val
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
,
5325 size2
, startpos
, regs
, stop
,
5326 wcs_string1
, wcs_size1
,
5327 wcs_string2
, wcs_size2
,
5328 mbs_offset1
, mbs_offset2
);
5330 val
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
,
5331 size2
, startpos
, regs
, stop
);
5334 #ifndef REGEX_MALLOC
5343 FREE_WCS_BUFFERS ();
5351 FREE_WCS_BUFFERS ();
5371 FREE_WCS_BUFFERS ();
5377 /* This converts PTR, a pointer into one of the search wchar_t strings
5378 `string1' and `string2' into an multibyte string offset from the
5379 beginning of that string. We use mbs_offset to optimize.
5380 See convert_mbs_to_wcs. */
5381 # define POINTER_TO_OFFSET(ptr) \
5382 (FIRST_STRING_P (ptr) \
5383 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5384 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5387 /* This converts PTR, a pointer into one of the search strings `string1'
5388 and `string2' into an offset from the beginning of that string. */
5389 # define POINTER_TO_OFFSET(ptr) \
5390 (FIRST_STRING_P (ptr) \
5391 ? ((regoff_t) ((ptr) - string1)) \
5392 : ((regoff_t) ((ptr) - string2 + size1)))
5395 /* Macros for dealing with the split strings in re_match_2. */
5397 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5399 /* Call before fetching a character with *d. This switches over to
5400 string2 if necessary. */
5401 #define PREFETCH() \
5404 /* End of string2 => fail. */ \
5405 if (dend == end_match_2) \
5407 /* End of string1 => advance to string2. */ \
5409 dend = end_match_2; \
5412 /* Test if at very beginning or at very end of the virtual concatenation
5413 of `string1' and `string2'. If only one string, it's `string2'. */
5414 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5415 #define AT_STRINGS_END(d) ((d) == end2)
5418 /* Test if D points to a character which is word-constituent. We have
5419 two special cases to check for: if past the end of string1, look at
5420 the first character in string2; and if before the beginning of
5421 string2, look at the last character in string1. */
5423 /* Use internationalized API instead of SYNTAX. */
5424 # define WORDCHAR_P(d) \
5425 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5426 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5427 || ((d) == end1 ? *string2 \
5428 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5430 # define WORDCHAR_P(d) \
5431 (SYNTAX ((d) == end1 ? *string2 \
5432 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5436 /* Disabled due to a compiler bug -- see comment at case wordbound */
5438 /* Test if the character before D and the one at D differ with respect
5439 to being word-constituent. */
5440 #define AT_WORD_BOUNDARY(d) \
5441 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5442 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5445 /* Free everything we malloc. */
5446 #ifdef MATCH_MAY_ALLOCATE
5448 # define FREE_VARIABLES() \
5450 REGEX_FREE_STACK (fail_stack.stack); \
5451 FREE_VAR (regstart); \
5452 FREE_VAR (regend); \
5453 FREE_VAR (old_regstart); \
5454 FREE_VAR (old_regend); \
5455 FREE_VAR (best_regstart); \
5456 FREE_VAR (best_regend); \
5457 FREE_VAR (reg_info); \
5458 FREE_VAR (reg_dummy); \
5459 FREE_VAR (reg_info_dummy); \
5460 if (!cant_free_wcs_buf) \
5462 FREE_VAR (string1); \
5463 FREE_VAR (string2); \
5464 FREE_VAR (mbs_offset1); \
5465 FREE_VAR (mbs_offset2); \
5469 # define FREE_VARIABLES() \
5471 REGEX_FREE_STACK (fail_stack.stack); \
5472 FREE_VAR (regstart); \
5473 FREE_VAR (regend); \
5474 FREE_VAR (old_regstart); \
5475 FREE_VAR (old_regend); \
5476 FREE_VAR (best_regstart); \
5477 FREE_VAR (best_regend); \
5478 FREE_VAR (reg_info); \
5479 FREE_VAR (reg_dummy); \
5480 FREE_VAR (reg_info_dummy); \
5485 # define FREE_VARIABLES() \
5487 if (!cant_free_wcs_buf) \
5489 FREE_VAR (string1); \
5490 FREE_VAR (string2); \
5491 FREE_VAR (mbs_offset1); \
5492 FREE_VAR (mbs_offset2); \
5496 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5498 #endif /* not MATCH_MAY_ALLOCATE */
5500 /* These values must meet several constraints. They must not be valid
5501 register values; since we have a limit of 255 registers (because
5502 we use only one byte in the pattern for the register number), we can
5503 use numbers larger than 255. They must differ by 1, because of
5504 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5505 be larger than the value for the highest register, so we do not try
5506 to actually save any registers when none are active. */
5507 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5508 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5510 #else /* not INSIDE_RECURSION */
5511 /* Matching routines. */
5513 #ifndef emacs /* Emacs never uses this. */
5514 /* re_match is like re_match_2 except it takes only a single string. */
5517 re_match (bufp
, string
, size
, pos
, regs
)
5518 struct re_pattern_buffer
*bufp
;
5521 struct re_registers
*regs
;
5525 if (MB_CUR_MAX
!= 1)
5526 result
= wcs_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5528 NULL
, 0, NULL
, 0, NULL
, NULL
);
5531 result
= byte_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5533 # ifndef REGEX_MALLOC
5541 weak_alias (__re_match
, re_match
)
5543 #endif /* not emacs */
5545 #endif /* not INSIDE_RECURSION */
5547 #ifdef INSIDE_RECURSION
5548 static boolean
PREFIX(group_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5550 PREFIX(register_info_type
) *reg_info
));
5551 static boolean
PREFIX(alt_match_null_string_p
) _RE_ARGS ((UCHAR_T
*p
,
5553 PREFIX(register_info_type
) *reg_info
));
5554 static boolean
PREFIX(common_op_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5556 PREFIX(register_info_type
) *reg_info
));
5557 static int PREFIX(bcmp_translate
) _RE_ARGS ((const CHAR_T
*s1
, const CHAR_T
*s2
,
5558 int len
, char *translate
));
5559 #else /* not INSIDE_RECURSION */
5561 /* re_match_2 matches the compiled pattern in BUFP against the
5562 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5563 and SIZE2, respectively). We start matching at POS, and stop
5566 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5567 store offsets for the substring each group matched in REGS. See the
5568 documentation for exactly how many groups we fill.
5570 We return -1 if no match, -2 if an internal error (such as the
5571 failure stack overflowing). Otherwise, we return the length of the
5572 matched substring. */
5575 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5576 struct re_pattern_buffer
*bufp
;
5577 const char *string1
, *string2
;
5580 struct re_registers
*regs
;
5585 if (MB_CUR_MAX
!= 1)
5586 result
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5588 NULL
, 0, NULL
, 0, NULL
, NULL
);
5591 result
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5594 #ifndef REGEX_MALLOC
5602 weak_alias (__re_match_2
, re_match_2
)
5605 #endif /* not INSIDE_RECURSION */
5607 #ifdef INSIDE_RECURSION
5610 static int count_mbs_length
PARAMS ((int *, int));
5612 /* This check the substring (from 0, to length) of the multibyte string,
5613 to which offset_buffer correspond. And count how many wchar_t_characters
5614 the substring occupy. We use offset_buffer to optimization.
5615 See convert_mbs_to_wcs. */
5618 count_mbs_length(offset_buffer
, length
)
5624 /* Check whether the size is valid. */
5628 if (offset_buffer
== NULL
)
5631 /* If there are no multibyte character, offset_buffer[i] == i.
5632 Optmize for this case. */
5633 if (offset_buffer
[length
] == length
)
5636 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5642 int middle
= (lower
+ upper
) / 2;
5643 if (middle
== lower
|| middle
== upper
)
5645 if (offset_buffer
[middle
] > length
)
5647 else if (offset_buffer
[middle
] < length
)
5657 /* This is a separate function so that we can force an alloca cleanup
5661 wcs_re_match_2_internal (bufp
, cstring1
, csize1
, cstring2
, csize2
, pos
,
5662 regs
, stop
, string1
, size1
, string2
, size2
,
5663 mbs_offset1
, mbs_offset2
)
5664 struct re_pattern_buffer
*bufp
;
5665 const char *cstring1
, *cstring2
;
5668 struct re_registers
*regs
;
5670 /* string1 == string2 == NULL means string1/2, size1/2 and
5671 mbs_offset1/2 need seting up in this function. */
5672 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5673 wchar_t *string1
, *string2
;
5674 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5676 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5677 int *mbs_offset1
, *mbs_offset2
;
5680 byte_re_match_2_internal (bufp
, string1
, size1
,string2
, size2
, pos
,
5682 struct re_pattern_buffer
*bufp
;
5683 const char *string1
, *string2
;
5686 struct re_registers
*regs
;
5690 /* General temporaries. */
5694 /* They hold whether each wchar_t is binary data or not. */
5695 char *is_binary
= NULL
;
5696 /* If true, we can't free string1/2, mbs_offset1/2. */
5697 int cant_free_wcs_buf
= 1;
5700 /* Just past the end of the corresponding string. */
5701 const CHAR_T
*end1
, *end2
;
5703 /* Pointers into string1 and string2, just past the last characters in
5704 each to consider matching. */
5705 const CHAR_T
*end_match_1
, *end_match_2
;
5707 /* Where we are in the data, and the end of the current string. */
5708 const CHAR_T
*d
, *dend
;
5710 /* Where we are in the pattern, and the end of the pattern. */
5712 UCHAR_T
*pattern
, *p
;
5713 register UCHAR_T
*pend
;
5715 UCHAR_T
*p
= bufp
->buffer
;
5716 register UCHAR_T
*pend
= p
+ bufp
->used
;
5719 /* Mark the opcode just after a start_memory, so we can test for an
5720 empty subpattern when we get to the stop_memory. */
5721 UCHAR_T
*just_past_start_mem
= 0;
5723 /* We use this to map every character in the string. */
5724 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5726 /* Failure point stack. Each place that can handle a failure further
5727 down the line pushes a failure point on this stack. It consists of
5728 restart, regend, and reg_info for all registers corresponding to
5729 the subexpressions we're currently inside, plus the number of such
5730 registers, and, finally, two char *'s. The first char * is where
5731 to resume scanning the pattern; the second one is where to resume
5732 scanning the strings. If the latter is zero, the failure point is
5733 a ``dummy''; if a failure happens and the failure point is a dummy,
5734 it gets discarded and the next next one is tried. */
5735 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5736 PREFIX(fail_stack_type
) fail_stack
;
5739 static unsigned failure_id
;
5740 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5744 /* This holds the pointer to the failure stack, when
5745 it is allocated relocatably. */
5746 fail_stack_elt_t
*failure_stack_ptr
;
5749 /* We fill all the registers internally, independent of what we
5750 return, for use in backreferences. The number here includes
5751 an element for register zero. */
5752 size_t num_regs
= bufp
->re_nsub
+ 1;
5754 /* The currently active registers. */
5755 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5756 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5758 /* Information on the contents of registers. These are pointers into
5759 the input strings; they record just what was matched (on this
5760 attempt) by a subexpression part of the pattern, that is, the
5761 regnum-th regstart pointer points to where in the pattern we began
5762 matching and the regnum-th regend points to right after where we
5763 stopped matching the regnum-th subexpression. (The zeroth register
5764 keeps track of what the whole pattern matches.) */
5765 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5766 const CHAR_T
**regstart
, **regend
;
5769 /* If a group that's operated upon by a repetition operator fails to
5770 match anything, then the register for its start will need to be
5771 restored because it will have been set to wherever in the string we
5772 are when we last see its open-group operator. Similarly for a
5774 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5775 const CHAR_T
**old_regstart
, **old_regend
;
5778 /* The is_active field of reg_info helps us keep track of which (possibly
5779 nested) subexpressions we are currently in. The matched_something
5780 field of reg_info[reg_num] helps us tell whether or not we have
5781 matched any of the pattern so far this time through the reg_num-th
5782 subexpression. These two fields get reset each time through any
5783 loop their register is in. */
5784 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5785 PREFIX(register_info_type
) *reg_info
;
5788 /* The following record the register info as found in the above
5789 variables when we find a match better than any we've seen before.
5790 This happens as we backtrack through the failure points, which in
5791 turn happens only if we have not yet matched the entire string. */
5792 unsigned best_regs_set
= false;
5793 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5794 const CHAR_T
**best_regstart
, **best_regend
;
5797 /* Logically, this is `best_regend[0]'. But we don't want to have to
5798 allocate space for that if we're not allocating space for anything
5799 else (see below). Also, we never need info about register 0 for
5800 any of the other register vectors, and it seems rather a kludge to
5801 treat `best_regend' differently than the rest. So we keep track of
5802 the end of the best match so far in a separate variable. We
5803 initialize this to NULL so that when we backtrack the first time
5804 and need to test it, it's not garbage. */
5805 const CHAR_T
*match_end
= NULL
;
5807 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5808 int set_regs_matched_done
= 0;
5810 /* Used when we pop values we don't care about. */
5811 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5812 const CHAR_T
**reg_dummy
;
5813 PREFIX(register_info_type
) *reg_info_dummy
;
5817 /* Counts the total number of registers pushed. */
5818 unsigned num_regs_pushed
= 0;
5821 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5825 #ifdef MATCH_MAY_ALLOCATE
5826 /* Do not bother to initialize all the register variables if there are
5827 no groups in the pattern, as it takes a fair amount of time. If
5828 there are groups, we include space for register 0 (the whole
5829 pattern), even though we never use it, since it simplifies the
5830 array indexing. We should fix this. */
5833 regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5834 regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5835 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5836 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5837 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5838 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5839 reg_info
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5840 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5841 reg_info_dummy
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5843 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5844 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5852 /* We must initialize all our variables to NULL, so that
5853 `FREE_VARIABLES' doesn't try to free them. */
5854 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5855 = best_regend
= reg_dummy
= NULL
;
5856 reg_info
= reg_info_dummy
= (PREFIX(register_info_type
) *) NULL
;
5858 #endif /* MATCH_MAY_ALLOCATE */
5860 /* The starting position is bogus. */
5862 if (pos
< 0 || pos
> csize1
+ csize2
)
5864 if (pos
< 0 || pos
> size1
+ size2
)
5872 /* Allocate wchar_t array for string1 and string2 and
5873 fill them with converted string. */
5874 if (string1
== NULL
&& string2
== NULL
)
5876 /* We need seting up buffers here. */
5878 /* We must free wcs buffers in this function. */
5879 cant_free_wcs_buf
= 0;
5883 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_T
);
5884 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5885 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5886 if (!string1
|| !mbs_offset1
|| !is_binary
)
5889 FREE_VAR (mbs_offset1
);
5890 FREE_VAR (is_binary
);
5896 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_T
);
5897 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5898 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5899 if (!string2
|| !mbs_offset2
|| !is_binary
)
5902 FREE_VAR (mbs_offset1
);
5904 FREE_VAR (mbs_offset2
);
5905 FREE_VAR (is_binary
);
5908 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5909 mbs_offset2
, is_binary
);
5910 string2
[size2
] = L
'\0'; /* for a sentinel */
5911 FREE_VAR (is_binary
);
5915 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5916 pattern to (char*) in regex_compile. */
5917 p
= pattern
= (CHAR_T
*)bufp
->buffer
;
5918 pend
= (CHAR_T
*)(bufp
->buffer
+ bufp
->used
);
5922 /* Initialize subexpression text positions to -1 to mark ones that no
5923 start_memory/stop_memory has been seen for. Also initialize the
5924 register information struct. */
5925 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5927 regstart
[mcnt
] = regend
[mcnt
]
5928 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
5930 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
5931 IS_ACTIVE (reg_info
[mcnt
]) = 0;
5932 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5933 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5936 /* We move `string1' into `string2' if the latter's empty -- but not if
5937 `string1' is null. */
5938 if (size2
== 0 && string1
!= NULL
)
5945 mbs_offset2
= mbs_offset1
;
5951 end1
= string1
+ size1
;
5952 end2
= string2
+ size2
;
5954 /* Compute where to stop matching, within the two strings. */
5958 mcnt
= count_mbs_length(mbs_offset1
, stop
);
5959 end_match_1
= string1
+ mcnt
;
5960 end_match_2
= string2
;
5964 if (stop
> csize1
+ csize2
)
5965 stop
= csize1
+ csize2
;
5967 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
5968 end_match_2
= string2
+ mcnt
;
5971 { /* count_mbs_length return error. */
5978 end_match_1
= string1
+ stop
;
5979 end_match_2
= string2
;
5984 end_match_2
= string2
+ stop
- size1
;
5988 /* `p' scans through the pattern as `d' scans through the data.
5989 `dend' is the end of the input string that `d' points within. `d'
5990 is advanced into the following input string whenever necessary, but
5991 this happens before fetching; therefore, at the beginning of the
5992 loop, `d' can be pointing at the end of a string, but it cannot
5995 if (size1
> 0 && pos
<= csize1
)
5997 mcnt
= count_mbs_length(mbs_offset1
, pos
);
6003 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
6009 { /* count_mbs_length return error. */
6014 if (size1
> 0 && pos
<= size1
)
6021 d
= string2
+ pos
- size1
;
6026 DEBUG_PRINT1 ("The compiled pattern is:\n");
6027 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
6028 DEBUG_PRINT1 ("The string to match is: `");
6029 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
6030 DEBUG_PRINT1 ("'\n");
6032 /* This loops over pattern commands. It exits by returning from the
6033 function if the match is complete, or it drops through if the match
6034 fails at this starting point in the input data. */
6038 DEBUG_PRINT2 ("\n%p: ", p
);
6040 DEBUG_PRINT2 ("\n0x%x: ", p
);
6044 { /* End of pattern means we might have succeeded. */
6045 DEBUG_PRINT1 ("end of pattern ... ");
6047 /* If we haven't matched the entire string, and we want the
6048 longest match, try backtracking. */
6049 if (d
!= end_match_2
)
6051 /* 1 if this match ends in the same string (string1 or string2)
6052 as the best previous match. */
6053 boolean same_str_p
= (FIRST_STRING_P (match_end
)
6054 == MATCHING_IN_FIRST_STRING
);
6055 /* 1 if this match is the best seen so far. */
6056 boolean best_match_p
;
6058 /* AIX compiler got confused when this was combined
6059 with the previous declaration. */
6061 best_match_p
= d
> match_end
;
6063 best_match_p
= !MATCHING_IN_FIRST_STRING
;
6065 DEBUG_PRINT1 ("backtracking.\n");
6067 if (!FAIL_STACK_EMPTY ())
6068 { /* More failure points to try. */
6070 /* If exceeds best match so far, save it. */
6071 if (!best_regs_set
|| best_match_p
)
6073 best_regs_set
= true;
6076 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6078 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6080 best_regstart
[mcnt
] = regstart
[mcnt
];
6081 best_regend
[mcnt
] = regend
[mcnt
];
6087 /* If no failure points, don't restore garbage. And if
6088 last match is real best match, don't restore second
6090 else if (best_regs_set
&& !best_match_p
)
6093 /* Restore best match. It may happen that `dend ==
6094 end_match_1' while the restored d is in string2.
6095 For example, the pattern `x.*y.*z' against the
6096 strings `x-' and `y-z-', if the two strings are
6097 not consecutive in memory. */
6098 DEBUG_PRINT1 ("Restoring best registers.\n");
6101 dend
= ((d
>= string1
&& d
<= end1
)
6102 ? end_match_1
: end_match_2
);
6104 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6106 regstart
[mcnt
] = best_regstart
[mcnt
];
6107 regend
[mcnt
] = best_regend
[mcnt
];
6110 } /* d != end_match_2 */
6113 DEBUG_PRINT1 ("Accepting match.\n");
6114 /* If caller wants register contents data back, do it. */
6115 if (regs
&& !bufp
->no_sub
)
6117 /* Have the register data arrays been allocated? */
6118 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
6119 { /* No. So allocate them with malloc. We need one
6120 extra element beyond `num_regs' for the `-1' marker
6122 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
6123 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
6124 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
6125 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6130 bufp
->regs_allocated
= REGS_REALLOCATE
;
6132 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
6133 { /* Yes. If we need more elements than were already
6134 allocated, reallocate them. If we need fewer, just
6136 if (regs
->num_regs
< num_regs
+ 1)
6138 regs
->num_regs
= num_regs
+ 1;
6139 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
6140 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
6141 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6150 /* These braces fend off a "empty body in an else-statement"
6151 warning under GCC when assert expands to nothing. */
6152 assert (bufp
->regs_allocated
== REGS_FIXED
);
6155 /* Convert the pointer data in `regstart' and `regend' to
6156 indices. Register zero has to be set differently,
6157 since we haven't kept track of any info for it. */
6158 if (regs
->num_regs
> 0)
6160 regs
->start
[0] = pos
;
6162 if (MATCHING_IN_FIRST_STRING
)
6163 regs
->end
[0] = mbs_offset1
!= NULL
?
6164 mbs_offset1
[d
-string1
] : 0;
6166 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
?
6167 mbs_offset2
[d
-string2
] : 0);
6169 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
6170 ? ((regoff_t
) (d
- string1
))
6171 : ((regoff_t
) (d
- string2
+ size1
)));
6175 /* Go through the first `min (num_regs, regs->num_regs)'
6176 registers, since that is all we initialized. */
6177 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
6180 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
6181 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6185 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
6187 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
6191 /* If the regs structure we return has more elements than
6192 were in the pattern, set the extra elements to -1. If
6193 we (re)allocated the registers, this is the case,
6194 because we always allocate enough to have at least one
6196 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
6197 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6198 } /* regs && !bufp->no_sub */
6200 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6201 nfailure_points_pushed
, nfailure_points_popped
,
6202 nfailure_points_pushed
- nfailure_points_popped
);
6203 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
6206 if (MATCHING_IN_FIRST_STRING
)
6207 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
6209 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
6213 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
6218 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
6224 /* Otherwise match next pattern command. */
6225 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
6227 /* Ignore these. Used to ignore the n of succeed_n's which
6228 currently have n == 0. */
6230 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6234 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6237 /* Match the next n pattern characters exactly. The following
6238 byte in the pattern defines n, and the n bytes after that
6239 are the characters to match. */
6245 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
6247 /* This is written out as an if-else so we don't waste time
6248 testing `translate' inside the loop. */
6257 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6263 if (*d
++ != (CHAR_T
) *p
++)
6267 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6279 if (*d
++ != (CHAR_T
) *p
++) goto fail
;
6283 SET_REGS_MATCHED ();
6287 /* Match any character except possibly a newline or a null. */
6289 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6293 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
6294 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
6297 SET_REGS_MATCHED ();
6298 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
6308 unsigned int i
, char_class_length
, coll_symbol_length
,
6309 equiv_class_length
, ranges_length
, chars_length
, length
;
6310 CHAR_T
*workp
, *workp2
, *charset_top
;
6311 #define WORK_BUFFER_SIZE 128
6312 CHAR_T str_buf
[WORK_BUFFER_SIZE
];
6317 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
6319 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6321 c
= TRANSLATE (*d
); /* The character to match. */
6324 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
6326 charset_top
= p
- 1;
6327 char_class_length
= *p
++;
6328 coll_symbol_length
= *p
++;
6329 equiv_class_length
= *p
++;
6330 ranges_length
= *p
++;
6331 chars_length
= *p
++;
6332 /* p points charset[6], so the address of the next instruction
6333 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6334 where l=length of char_classes, m=length of collating_symbol,
6335 n=equivalence_class, o=length of char_range,
6336 p'=length of character. */
6338 /* Update p to indicate the next instruction. */
6339 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
6340 2*ranges_length
+ chars_length
;
6342 /* match with char_class? */
6343 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6346 uintptr_t alignedp
= ((uintptr_t)workp
6347 + __alignof__(wctype_t) - 1)
6348 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6349 wctype
= *((wctype_t*)alignedp
);
6350 workp
+= CHAR_CLASS_SIZE
;
6352 if (__iswctype((wint_t)c
, wctype
))
6353 goto char_set_matched
;
6355 if (iswctype((wint_t)c
, wctype
))
6356 goto char_set_matched
;
6360 /* match with collating_symbol? */
6364 const unsigned char *extra
= (const unsigned char *)
6365 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6367 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6371 wextra
= (int32_t*)(extra
+ *workp
++);
6372 for (i
= 0; i
< *wextra
; ++i
)
6373 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6378 /* Update d, however d will be incremented at
6379 char_set_matched:, we decrement d here. */
6381 goto char_set_matched
;
6385 else /* (nrules == 0) */
6387 /* If we can't look up collation data, we use wcscoll
6390 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6392 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6394 length
= __wcslen (workp
);
6396 length
= wcslen (workp
);
6399 /* If wcscoll(the collating symbol, whole string) > 0,
6400 any substring of the string never match with the
6401 collating symbol. */
6403 if (__wcscoll (workp
, d
) > 0)
6405 if (wcscoll (workp
, d
) > 0)
6408 workp
+= length
+ 1;
6412 /* First, we compare the collating symbol with
6413 the first character of the string.
6414 If it don't match, we add the next character to
6415 the compare buffer in turn. */
6416 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6421 if (dend
== end_match_2
)
6427 /* add next character to the compare buffer. */
6428 str_buf
[i
] = TRANSLATE(*d
);
6429 str_buf
[i
+1] = '\0';
6432 match
= __wcscoll (workp
, str_buf
);
6434 match
= wcscoll (workp
, str_buf
);
6437 goto char_set_matched
;
6440 /* (str_buf > workp) indicate (str_buf + X > workp),
6441 because for all X (str_buf + X > str_buf).
6442 So we don't need continue this loop. */
6445 /* Otherwise(str_buf < workp),
6446 (str_buf+next_character) may equals (workp).
6447 So we continue this loop. */
6452 workp
+= length
+ 1;
6455 /* match with equivalence_class? */
6459 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6460 /* Try to match the equivalence class against
6461 those known to the collate implementation. */
6462 const int32_t *table
;
6463 const int32_t *weights
;
6464 const int32_t *extra
;
6465 const int32_t *indirect
;
6470 /* This #include defines a local function! */
6471 # include <locale/weightwc.h>
6473 table
= (const int32_t *)
6474 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6475 weights
= (const wint_t *)
6476 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6477 extra
= (const wint_t *)
6478 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6479 indirect
= (const int32_t *)
6480 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6482 /* Write 1 collating element to str_buf, and
6486 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6488 cp
= (wint_t*)str_buf
;
6491 if (dend
== end_match_2
)
6496 str_buf
[i
] = TRANSLATE(*(d
+i
));
6497 str_buf
[i
+1] = '\0'; /* sentinel */
6498 idx2
= findidx ((const wint_t**)&cp
);
6501 /* Update d, however d will be incremented at
6502 char_set_matched:, we decrement d here. */
6503 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6506 if (dend
== end_match_2
)
6515 len
= weights
[idx2
];
6517 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6520 idx
= (int32_t)*workp
;
6521 /* We already checked idx != 0 in regex_compile. */
6523 if (idx2
!= 0 && len
== weights
[idx
])
6526 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6527 == weights
[idx2
+ 1 + cnt
]))
6531 goto char_set_matched
;
6538 else /* (nrules == 0) */
6540 /* If we can't look up collation data, we use wcscoll
6543 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6545 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6547 length
= __wcslen (workp
);
6549 length
= wcslen (workp
);
6552 /* If wcscoll(the collating symbol, whole string) > 0,
6553 any substring of the string never match with the
6554 collating symbol. */
6556 if (__wcscoll (workp
, d
) > 0)
6558 if (wcscoll (workp
, d
) > 0)
6561 workp
+= length
+ 1;
6565 /* First, we compare the equivalence class with
6566 the first character of the string.
6567 If it don't match, we add the next character to
6568 the compare buffer in turn. */
6569 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6574 if (dend
== end_match_2
)
6580 /* add next character to the compare buffer. */
6581 str_buf
[i
] = TRANSLATE(*d
);
6582 str_buf
[i
+1] = '\0';
6585 match
= __wcscoll (workp
, str_buf
);
6587 match
= wcscoll (workp
, str_buf
);
6591 goto char_set_matched
;
6594 /* (str_buf > workp) indicate (str_buf + X > workp),
6595 because for all X (str_buf + X > str_buf).
6596 So we don't need continue this loop. */
6599 /* Otherwise(str_buf < workp),
6600 (str_buf+next_character) may equals (workp).
6601 So we continue this loop. */
6606 workp
+= length
+ 1;
6610 /* match with char_range? */
6614 uint32_t collseqval
;
6615 const char *collseq
= (const char *)
6616 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6618 collseqval
= collseq_table_lookup (collseq
, c
);
6620 for (; workp
< p
- chars_length
;)
6622 uint32_t start_val
, end_val
;
6624 /* We already compute the collation sequence value
6625 of the characters (or collating symbols). */
6626 start_val
= (uint32_t) *workp
++; /* range_start */
6627 end_val
= (uint32_t) *workp
++; /* range_end */
6629 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6630 goto char_set_matched
;
6636 /* We set range_start_char at str_buf[0], range_end_char
6637 at str_buf[4], and compared char at str_buf[2]. */
6642 for (; workp
< p
- chars_length
;)
6644 wchar_t *range_start_char
, *range_end_char
;
6646 /* match if (range_start_char <= c <= range_end_char). */
6648 /* If range_start(or end) < 0, we assume -range_start(end)
6649 is the offset of the collating symbol which is specified
6650 as the character of the range start(end). */
6654 range_start_char
= charset_top
- (*workp
++);
6657 str_buf
[0] = *workp
++;
6658 range_start_char
= str_buf
;
6663 range_end_char
= charset_top
- (*workp
++);
6666 str_buf
[4] = *workp
++;
6667 range_end_char
= str_buf
+ 4;
6671 if (__wcscoll (range_start_char
, str_buf
+2) <= 0
6672 && __wcscoll (str_buf
+2, range_end_char
) <= 0)
6674 if (wcscoll (range_start_char
, str_buf
+2) <= 0
6675 && wcscoll (str_buf
+2, range_end_char
) <= 0)
6677 goto char_set_matched
;
6681 /* match with char? */
6682 for (; workp
< p
; workp
++)
6684 goto char_set_matched
;
6691 /* Cast to `unsigned' instead of `unsigned char' in case the
6692 bit list is a full 32 bytes long. */
6693 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6694 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6699 if (!not) goto fail
;
6700 #undef WORK_BUFFER_SIZE
6702 SET_REGS_MATCHED ();
6708 /* The beginning of a group is represented by start_memory.
6709 The arguments are the register number in the next byte, and the
6710 number of groups inner to this one in the next. The text
6711 matched within the group is recorded (in the internal
6712 registers data structure) under the register number. */
6714 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6715 (long int) *p
, (long int) p
[1]);
6717 /* Find out if this group can match the empty string. */
6718 p1
= p
; /* To send to group_match_null_string_p. */
6720 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6721 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6722 = PREFIX(group_match_null_string_p
) (&p1
, pend
, reg_info
);
6724 /* Save the position in the string where we were the last time
6725 we were at this open-group operator in case the group is
6726 operated upon by a repetition operator, e.g., with `(a*)*b'
6727 against `ab'; then we want to ignore where we are now in
6728 the string in case this attempt to match fails. */
6729 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6730 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6732 DEBUG_PRINT2 (" old_regstart: %d\n",
6733 POINTER_TO_OFFSET (old_regstart
[*p
]));
6736 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6738 IS_ACTIVE (reg_info
[*p
]) = 1;
6739 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6741 /* Clear this whenever we change the register activity status. */
6742 set_regs_matched_done
= 0;
6744 /* This is the new highest active register. */
6745 highest_active_reg
= *p
;
6747 /* If nothing was active before, this is the new lowest active
6749 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6750 lowest_active_reg
= *p
;
6752 /* Move past the register number and inner group count. */
6754 just_past_start_mem
= p
;
6759 /* The stop_memory opcode represents the end of a group. Its
6760 arguments are the same as start_memory's: the register
6761 number, and the number of inner groups. */
6763 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6764 (long int) *p
, (long int) p
[1]);
6766 /* We need to save the string position the last time we were at
6767 this close-group operator in case the group is operated
6768 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6769 against `aba'; then we want to ignore where we are now in
6770 the string in case this attempt to match fails. */
6771 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6772 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6774 DEBUG_PRINT2 (" old_regend: %d\n",
6775 POINTER_TO_OFFSET (old_regend
[*p
]));
6778 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6780 /* This register isn't active anymore. */
6781 IS_ACTIVE (reg_info
[*p
]) = 0;
6783 /* Clear this whenever we change the register activity status. */
6784 set_regs_matched_done
= 0;
6786 /* If this was the only register active, nothing is active
6788 if (lowest_active_reg
== highest_active_reg
)
6790 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6791 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6794 { /* We must scan for the new highest active register, since
6795 it isn't necessarily one less than now: consider
6796 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6797 new highest active register is 1. */
6799 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6802 /* If we end up at register zero, that means that we saved
6803 the registers as the result of an `on_failure_jump', not
6804 a `start_memory', and we jumped to past the innermost
6805 `stop_memory'. For example, in ((.)*) we save
6806 registers 1 and 2 as a result of the *, but when we pop
6807 back to the second ), we are at the stop_memory 1.
6808 Thus, nothing is active. */
6811 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6812 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6815 highest_active_reg
= r
;
6818 /* If just failed to match something this time around with a
6819 group that's operated on by a repetition operator, try to
6820 force exit from the ``loop'', and restore the register
6821 information for this group that we had before trying this
6823 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6824 || just_past_start_mem
== p
- 1)
6827 boolean is_a_jump_n
= false;
6831 switch ((re_opcode_t
) *p1
++)
6835 case pop_failure_jump
:
6836 case maybe_pop_jump
:
6838 case dummy_failure_jump
:
6839 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6841 p1
+= OFFSET_ADDRESS_SIZE
;
6849 /* If the next operation is a jump backwards in the pattern
6850 to an on_failure_jump right before the start_memory
6851 corresponding to this stop_memory, exit from the loop
6852 by forcing a failure after pushing on the stack the
6853 on_failure_jump's jump in the pattern, and d. */
6854 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6855 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6856 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6858 /* If this group ever matched anything, then restore
6859 what its registers were before trying this last
6860 failed match, e.g., with `(a*)*b' against `ab' for
6861 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6862 against `aba' for regend[3].
6864 Also restore the registers for inner groups for,
6865 e.g., `((a*)(b*))*' against `aba' (register 3 would
6866 otherwise get trashed). */
6868 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6872 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6874 /* Restore this and inner groups' (if any) registers. */
6875 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6878 regstart
[r
] = old_regstart
[r
];
6880 /* xx why this test? */
6881 if (old_regend
[r
] >= regstart
[r
])
6882 regend
[r
] = old_regend
[r
];
6886 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6887 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6893 /* Move past the register number and the inner group count. */
6898 /* \<digit> has been turned into a `duplicate' command which is
6899 followed by the numeric value of <digit> as the register number. */
6902 register const CHAR_T
*d2
, *dend2
;
6903 int regno
= *p
++; /* Get which register to match against. */
6904 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6906 /* Can't back reference a group which we've never matched. */
6907 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6910 /* Where in input to try to start matching. */
6911 d2
= regstart
[regno
];
6913 /* Where to stop matching; if both the place to start and
6914 the place to stop matching are in the same string, then
6915 set to the place to stop, otherwise, for now have to use
6916 the end of the first string. */
6918 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6919 == FIRST_STRING_P (regend
[regno
]))
6920 ? regend
[regno
] : end_match_1
);
6923 /* If necessary, advance to next segment in register
6927 if (dend2
== end_match_2
) break;
6928 if (dend2
== regend
[regno
]) break;
6930 /* End of string1 => advance to string2. */
6932 dend2
= regend
[regno
];
6934 /* At end of register contents => success */
6935 if (d2
== dend2
) break;
6937 /* If necessary, advance to next segment in data. */
6940 /* How many characters left in this segment to match. */
6943 /* Want how many consecutive characters we can match in
6944 one shot, so, if necessary, adjust the count. */
6945 if (mcnt
> dend2
- d2
)
6948 /* Compare that many; failure if mismatch, else move
6951 ? PREFIX(bcmp_translate
) (d
, d2
, mcnt
, translate
)
6952 : memcmp (d
, d2
, mcnt
*sizeof(UCHAR_T
)))
6954 d
+= mcnt
, d2
+= mcnt
;
6956 /* Do this because we've match some characters. */
6957 SET_REGS_MATCHED ();
6963 /* begline matches the empty string at the beginning of the string
6964 (unless `not_bol' is set in `bufp'), and, if
6965 `newline_anchor' is set, after newlines. */
6967 DEBUG_PRINT1 ("EXECUTING begline.\n");
6969 if (AT_STRINGS_BEG (d
))
6971 if (!bufp
->not_bol
) break;
6973 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
6977 /* In all other cases, we fail. */
6981 /* endline is the dual of begline. */
6983 DEBUG_PRINT1 ("EXECUTING endline.\n");
6985 if (AT_STRINGS_END (d
))
6987 if (!bufp
->not_eol
) break;
6990 /* We have to ``prefetch'' the next character. */
6991 else if ((d
== end1
? *string2
: *d
) == '\n'
6992 && bufp
->newline_anchor
)
6999 /* Match at the very beginning of the data. */
7001 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7002 if (AT_STRINGS_BEG (d
))
7007 /* Match at the very end of the data. */
7009 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7010 if (AT_STRINGS_END (d
))
7015 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7016 pushes NULL as the value for the string on the stack. Then
7017 `pop_failure_point' will keep the current value for the
7018 string, instead of restoring it. To see why, consider
7019 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7020 then the . fails against the \n. But the next thing we want
7021 to do is match the \n against the \n; if we restored the
7022 string value, we would be back at the foo.
7024 Because this is used only in specific cases, we don't need to
7025 check all the things that `on_failure_jump' does, to make
7026 sure the right things get saved on the stack. Hence we don't
7027 share its code. The only reason to push anything on the
7028 stack at all is that otherwise we would have to change
7029 `anychar's code to do something besides goto fail in this
7030 case; that seems worse than this. */
7031 case on_failure_keep_string_jump
:
7032 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7034 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7036 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
7038 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
7041 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
7045 /* Uses of on_failure_jump:
7047 Each alternative starts with an on_failure_jump that points
7048 to the beginning of the next alternative. Each alternative
7049 except the last ends with a jump that in effect jumps past
7050 the rest of the alternatives. (They really jump to the
7051 ending jump of the following alternative, because tensioning
7052 these jumps is a hassle.)
7054 Repeats start with an on_failure_jump that points past both
7055 the repetition text and either the following jump or
7056 pop_failure_jump back to this on_failure_jump. */
7057 case on_failure_jump
:
7059 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7061 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7063 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
7065 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
7068 /* If this on_failure_jump comes right before a group (i.e.,
7069 the original * applied to a group), save the information
7070 for that group and all inner ones, so that if we fail back
7071 to this point, the group's information will be correct.
7072 For example, in \(a*\)*\1, we need the preceding group,
7073 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7075 /* We can't use `p' to check ahead because we push
7076 a failure point to `p + mcnt' after we do this. */
7079 /* We need to skip no_op's before we look for the
7080 start_memory in case this on_failure_jump is happening as
7081 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7083 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
7086 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
7088 /* We have a new highest active register now. This will
7089 get reset at the start_memory we are about to get to,
7090 but we will have saved all the registers relevant to
7091 this repetition op, as described above. */
7092 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
7093 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
7094 lowest_active_reg
= *(p1
+ 1);
7097 DEBUG_PRINT1 (":\n");
7098 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
7102 /* A smart repeat ends with `maybe_pop_jump'.
7103 We change it to either `pop_failure_jump' or `jump'. */
7104 case maybe_pop_jump
:
7105 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7106 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
7108 register UCHAR_T
*p2
= p
;
7110 /* Compare the beginning of the repeat with what in the
7111 pattern follows its end. If we can establish that there
7112 is nothing that they would both match, i.e., that we
7113 would have to backtrack because of (as in, e.g., `a*a')
7114 then we can change to pop_failure_jump, because we'll
7115 never have to backtrack.
7117 This is not true in the case of alternatives: in
7118 `(a|ab)*' we do need to backtrack to the `ab' alternative
7119 (e.g., if the string was `ab'). But instead of trying to
7120 detect that here, the alternative has put on a dummy
7121 failure point which is what we will end up popping. */
7123 /* Skip over open/close-group commands.
7124 If what follows this loop is a ...+ construct,
7125 look at what begins its body, since we will have to
7126 match at least one of that. */
7130 && ((re_opcode_t
) *p2
== stop_memory
7131 || (re_opcode_t
) *p2
== start_memory
))
7133 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
7134 && (re_opcode_t
) *p2
== dummy_failure_jump
)
7135 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
7141 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7142 to the `maybe_finalize_jump' of this case. Examine what
7145 /* If we're at the end of the pattern, we can change. */
7148 /* Consider what happens when matching ":\(.*\)"
7149 against ":/". I don't really understand this code
7151 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7154 (" End of pattern: change to `pop_failure_jump'.\n");
7157 else if ((re_opcode_t
) *p2
== exactn
7159 || (re_opcode_t
) *p2
== exactn_bin
7161 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
7164 = *p2
== (UCHAR_T
) endline
? '\n' : p2
[2];
7166 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
7168 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
7170 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
7172 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7175 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7177 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
7179 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7181 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
7186 else if ((re_opcode_t
) p1
[3] == charset
7187 || (re_opcode_t
) p1
[3] == charset_not
)
7189 int not = (re_opcode_t
) p1
[3] == charset_not
;
7191 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
7192 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
7195 /* `not' is equal to 1 if c would match, which means
7196 that we can't change to pop_failure_jump. */
7199 p
[-3] = (unsigned char) pop_failure_jump
;
7200 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7203 #endif /* not WCHAR */
7206 else if ((re_opcode_t
) *p2
== charset
)
7208 /* We win if the first character of the loop is not part
7210 if ((re_opcode_t
) p1
[3] == exactn
7211 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
7212 && (p2
[2 + p1
[5] / BYTEWIDTH
]
7213 & (1 << (p1
[5] % BYTEWIDTH
)))))
7215 p
[-3] = (unsigned char) pop_failure_jump
;
7216 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7219 else if ((re_opcode_t
) p1
[3] == charset_not
)
7222 /* We win if the charset_not inside the loop
7223 lists every character listed in the charset after. */
7224 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
7225 if (! (p2
[2 + idx
] == 0
7226 || (idx
< (int) p1
[4]
7227 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
7232 p
[-3] = (unsigned char) pop_failure_jump
;
7233 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7236 else if ((re_opcode_t
) p1
[3] == charset
)
7239 /* We win if the charset inside the loop
7240 has no overlap with the one after the loop. */
7242 idx
< (int) p2
[1] && idx
< (int) p1
[4];
7244 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
7247 if (idx
== p2
[1] || idx
== p1
[4])
7249 p
[-3] = (unsigned char) pop_failure_jump
;
7250 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7254 #endif /* not WCHAR */
7256 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
7257 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
7259 p
[-1] = (UCHAR_T
) jump
;
7260 DEBUG_PRINT1 (" Match => jump.\n");
7261 goto unconditional_jump
;
7263 /* Note fall through. */
7266 /* The end of a simple repeat has a pop_failure_jump back to
7267 its matching on_failure_jump, where the latter will push a
7268 failure point. The pop_failure_jump takes off failure
7269 points put on by this pop_failure_jump's matching
7270 on_failure_jump; we got through the pattern to here from the
7271 matching on_failure_jump, so didn't fail. */
7272 case pop_failure_jump
:
7274 /* We need to pass separate storage for the lowest and
7275 highest registers, even though we don't care about the
7276 actual values. Otherwise, we will restore only one
7277 register from the stack, since lowest will == highest in
7278 `pop_failure_point'. */
7279 active_reg_t dummy_low_reg
, dummy_high_reg
;
7280 UCHAR_T
*pdummy
= NULL
;
7281 const CHAR_T
*sdummy
= NULL
;
7283 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7284 POP_FAILURE_POINT (sdummy
, pdummy
,
7285 dummy_low_reg
, dummy_high_reg
,
7286 reg_dummy
, reg_dummy
, reg_info_dummy
);
7288 /* Note fall through. */
7292 DEBUG_PRINT2 ("\n%p: ", p
);
7294 DEBUG_PRINT2 ("\n0x%x: ", p
);
7296 /* Note fall through. */
7298 /* Unconditionally jump (without popping any failure points). */
7300 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
7301 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
7302 p
+= mcnt
; /* Do the jump. */
7304 DEBUG_PRINT2 ("(to %p).\n", p
);
7306 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
7311 /* We need this opcode so we can detect where alternatives end
7312 in `group_match_null_string_p' et al. */
7314 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7315 goto unconditional_jump
;
7318 /* Normally, the on_failure_jump pushes a failure point, which
7319 then gets popped at pop_failure_jump. We will end up at
7320 pop_failure_jump, also, and with a pattern of, say, `a+', we
7321 are skipping over the on_failure_jump, so we have to push
7322 something meaningless for pop_failure_jump to pop. */
7323 case dummy_failure_jump
:
7324 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7325 /* It doesn't matter what we push for the string here. What
7326 the code at `fail' tests is the value for the pattern. */
7327 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7328 goto unconditional_jump
;
7331 /* At the end of an alternative, we need to push a dummy failure
7332 point in case we are followed by a `pop_failure_jump', because
7333 we don't want the failure point for the alternative to be
7334 popped. For example, matching `(a|ab)*' against `aab'
7335 requires that we match the `ab' alternative. */
7336 case push_dummy_failure
:
7337 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7338 /* See comments just above at `dummy_failure_jump' about the
7340 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7343 /* Have to succeed matching what follows at least n times.
7344 After that, handle like `on_failure_jump'. */
7346 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7347 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
7350 /* Originally, this is how many times we HAVE to succeed. */
7354 p
+= OFFSET_ADDRESS_SIZE
;
7355 STORE_NUMBER_AND_INCR (p
, mcnt
);
7357 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
7360 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
7367 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7368 p
+ OFFSET_ADDRESS_SIZE
);
7370 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7371 p
+ OFFSET_ADDRESS_SIZE
);
7375 p
[1] = (UCHAR_T
) no_op
;
7377 p
[2] = (UCHAR_T
) no_op
;
7378 p
[3] = (UCHAR_T
) no_op
;
7385 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7386 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7388 /* Originally, this is how many times we CAN jump. */
7392 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7395 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7398 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7401 goto unconditional_jump
;
7403 /* If don't have to jump any more, skip over the rest of command. */
7405 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7410 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7412 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7414 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7416 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7418 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7420 STORE_NUMBER (p1
, mcnt
);
7425 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7426 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7427 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7428 macro and introducing temporary variables works around the bug. */
7431 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7432 if (AT_WORD_BOUNDARY (d
))
7437 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7438 if (AT_WORD_BOUNDARY (d
))
7444 boolean prevchar
, thischar
;
7446 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7447 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7450 prevchar
= WORDCHAR_P (d
- 1);
7451 thischar
= WORDCHAR_P (d
);
7452 if (prevchar
!= thischar
)
7459 boolean prevchar
, thischar
;
7461 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7462 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7465 prevchar
= WORDCHAR_P (d
- 1);
7466 thischar
= WORDCHAR_P (d
);
7467 if (prevchar
!= thischar
)
7474 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7475 if (!AT_STRINGS_END (d
) && WORDCHAR_P (d
)
7476 && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7481 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7482 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7483 && (AT_STRINGS_END (d
) || !WORDCHAR_P (d
)))
7489 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7490 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7495 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7496 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7501 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7502 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7507 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7512 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7516 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7518 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7520 SET_REGS_MATCHED ();
7524 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7526 goto matchnotsyntax
;
7529 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7533 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7535 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7537 SET_REGS_MATCHED ();
7540 #else /* not emacs */
7542 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7544 if (!WORDCHAR_P (d
))
7546 SET_REGS_MATCHED ();
7551 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7555 SET_REGS_MATCHED ();
7558 #endif /* not emacs */
7563 continue; /* Successfully executed one pattern command; keep going. */
7566 /* We goto here if a matching operation fails. */
7568 if (!FAIL_STACK_EMPTY ())
7569 { /* A restart point is known. Restore to that state. */
7570 DEBUG_PRINT1 ("\nFAIL:\n");
7571 POP_FAILURE_POINT (d
, p
,
7572 lowest_active_reg
, highest_active_reg
,
7573 regstart
, regend
, reg_info
);
7575 /* If this failure point is a dummy, try the next one. */
7579 /* If we failed to the end of the pattern, don't examine *p. */
7583 boolean is_a_jump_n
= false;
7585 /* If failed to a backwards jump that's part of a repetition
7586 loop, need to pop this failure point and use the next one. */
7587 switch ((re_opcode_t
) *p
)
7591 case maybe_pop_jump
:
7592 case pop_failure_jump
:
7595 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7598 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7600 && (re_opcode_t
) *p1
== on_failure_jump
))
7608 if (d
>= string1
&& d
<= end1
)
7612 break; /* Matching at this starting point really fails. */
7616 goto restore_best_regs
;
7620 return -1; /* Failure to match. */
7623 /* Subroutine definitions for re_match_2. */
7626 /* We are passed P pointing to a register number after a start_memory.
7628 Return true if the pattern up to the corresponding stop_memory can
7629 match the empty string, and false otherwise.
7631 If we find the matching stop_memory, sets P to point to one past its number.
7632 Otherwise, sets P to an undefined byte less than or equal to END.
7634 We don't handle duplicates properly (yet). */
7637 PREFIX(group_match_null_string_p
) (p
, end
, reg_info
)
7639 PREFIX(register_info_type
) *reg_info
;
7642 /* Point to after the args to the start_memory. */
7643 UCHAR_T
*p1
= *p
+ 2;
7647 /* Skip over opcodes that can match nothing, and return true or
7648 false, as appropriate, when we get to one that can't, or to the
7649 matching stop_memory. */
7651 switch ((re_opcode_t
) *p1
)
7653 /* Could be either a loop or a series of alternatives. */
7654 case on_failure_jump
:
7656 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7658 /* If the next operation is not a jump backwards in the
7663 /* Go through the on_failure_jumps of the alternatives,
7664 seeing if any of the alternatives cannot match nothing.
7665 The last alternative starts with only a jump,
7666 whereas the rest start with on_failure_jump and end
7667 with a jump, e.g., here is the pattern for `a|b|c':
7669 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7670 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7673 So, we have to first go through the first (n-1)
7674 alternatives and then deal with the last one separately. */
7677 /* Deal with the first (n-1) alternatives, which start
7678 with an on_failure_jump (see above) that jumps to right
7679 past a jump_past_alt. */
7681 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7684 /* `mcnt' holds how many bytes long the alternative
7685 is, including the ending `jump_past_alt' and
7688 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
-
7689 (1 + OFFSET_ADDRESS_SIZE
),
7693 /* Move to right after this alternative, including the
7697 /* Break if it's the beginning of an n-th alternative
7698 that doesn't begin with an on_failure_jump. */
7699 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7702 /* Still have to check that it's not an n-th
7703 alternative that starts with an on_failure_jump. */
7705 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7706 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7709 /* Get to the beginning of the n-th alternative. */
7710 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7715 /* Deal with the last alternative: go back and get number
7716 of the `jump_past_alt' just before it. `mcnt' contains
7717 the length of the alternative. */
7718 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7720 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
, reg_info
))
7723 p1
+= mcnt
; /* Get past the n-th alternative. */
7729 assert (p1
[1] == **p
);
7735 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7738 } /* while p1 < end */
7741 } /* group_match_null_string_p */
7744 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7745 It expects P to be the first byte of a single alternative and END one
7746 byte past the last. The alternative can contain groups. */
7749 PREFIX(alt_match_null_string_p
) (p
, end
, reg_info
)
7751 PREFIX(register_info_type
) *reg_info
;
7758 /* Skip over opcodes that can match nothing, and break when we get
7759 to one that can't. */
7761 switch ((re_opcode_t
) *p1
)
7764 case on_failure_jump
:
7766 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7771 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7774 } /* while p1 < end */
7777 } /* alt_match_null_string_p */
7780 /* Deals with the ops common to group_match_null_string_p and
7781 alt_match_null_string_p.
7783 Sets P to one after the op and its arguments, if any. */
7786 PREFIX(common_op_match_null_string_p
) (p
, end
, reg_info
)
7788 PREFIX(register_info_type
) *reg_info
;
7795 switch ((re_opcode_t
) *p1
++)
7815 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7816 ret
= PREFIX(group_match_null_string_p
) (&p1
, end
, reg_info
);
7818 /* Have to set this here in case we're checking a group which
7819 contains a group and a back reference to it. */
7821 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7822 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7828 /* If this is an optimized succeed_n for zero times, make the jump. */
7830 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7838 /* Get to the number of times to succeed. */
7839 p1
+= OFFSET_ADDRESS_SIZE
;
7840 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7844 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7845 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7853 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7858 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7861 /* All other opcodes mean we cannot match the empty string. */
7867 } /* common_op_match_null_string_p */
7870 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7871 bytes; nonzero otherwise. */
7874 PREFIX(bcmp_translate
) (s1
, s2
, len
, translate
)
7875 const CHAR_T
*s1
, *s2
;
7877 RE_TRANSLATE_TYPE translate
;
7879 register const UCHAR_T
*p1
= (const UCHAR_T
*) s1
;
7880 register const UCHAR_T
*p2
= (const UCHAR_T
*) s2
;
7884 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7885 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7888 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7896 #else /* not INSIDE_RECURSION */
7898 /* Entry points for GNU code. */
7900 /* re_compile_pattern is the GNU regular expression compiler: it
7901 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7902 Returns 0 if the pattern was valid, otherwise an error string.
7904 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7905 are set in BUFP on entry.
7907 We call regex_compile to do the actual compilation. */
7910 re_compile_pattern (pattern
, length
, bufp
)
7911 const char *pattern
;
7913 struct re_pattern_buffer
*bufp
;
7917 /* GNU code is written to assume at least RE_NREGS registers will be set
7918 (and at least one extra will be -1). */
7919 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7921 /* And GNU code determines whether or not to get register information
7922 by passing null for the REGS argument to re_match, etc., not by
7926 /* Match anchors at newline. */
7927 bufp
->newline_anchor
= 1;
7930 if (MB_CUR_MAX
!= 1)
7931 ret
= wcs_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7934 ret
= byte_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7938 return gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
7941 weak_alias (__re_compile_pattern
, re_compile_pattern
)
7944 /* Entry points compatible with 4.2 BSD regex library. We don't define
7945 them unless specifically requested. */
7947 #if defined _REGEX_RE_COMP || defined _LIBC
7949 /* BSD has one and only one pattern buffer. */
7950 static struct re_pattern_buffer re_comp_buf
;
7954 /* Make these definitions weak in libc, so POSIX programs can redefine
7955 these names if they don't use our functions, and still use
7956 regcomp/regexec below without link errors. */
7966 if (!re_comp_buf
.buffer
)
7967 return gettext ("No previous regular expression");
7971 if (!re_comp_buf
.buffer
)
7973 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
7974 if (re_comp_buf
.buffer
== NULL
)
7975 return (char *) gettext (re_error_msgid
7976 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7977 re_comp_buf
.allocated
= 200;
7979 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7980 if (re_comp_buf
.fastmap
== NULL
)
7981 return (char *) gettext (re_error_msgid
7982 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7985 /* Since `re_exec' always passes NULL for the `regs' argument, we
7986 don't need to initialize the pattern buffer fields which affect it. */
7988 /* Match anchors at newlines. */
7989 re_comp_buf
.newline_anchor
= 1;
7992 if (MB_CUR_MAX
!= 1)
7993 ret
= wcs_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7996 ret
= byte_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
8001 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
8002 return (char *) gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
8013 const int len
= strlen (s
);
8015 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
8018 #endif /* _REGEX_RE_COMP */
8020 /* POSIX.2 functions. Don't define these for Emacs. */
8024 /* regcomp takes a regular expression as a string and compiles it.
8026 PREG is a regex_t *. We do not expect any fields to be initialized,
8027 since POSIX says we shouldn't. Thus, we set
8029 `buffer' to the compiled pattern;
8030 `used' to the length of the compiled pattern;
8031 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8032 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8033 RE_SYNTAX_POSIX_BASIC;
8034 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8035 `fastmap' to an allocated space for the fastmap;
8036 `fastmap_accurate' to zero;
8037 `re_nsub' to the number of subexpressions in PATTERN.
8039 PATTERN is the address of the pattern string.
8041 CFLAGS is a series of bits which affect compilation.
8043 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8044 use POSIX basic syntax.
8046 If REG_NEWLINE is set, then . and [^...] don't match newline.
8047 Also, regexec will try a match beginning after every newline.
8049 If REG_ICASE is set, then we considers upper- and lowercase
8050 versions of letters to be equivalent when matching.
8052 If REG_NOSUB is set, then when PREG is passed to regexec, that
8053 routine will report only success or failure, and nothing about the
8056 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8057 the return codes and their meanings.) */
8060 regcomp (preg
, pattern
, cflags
)
8062 const char *pattern
;
8067 = (cflags
& REG_EXTENDED
) ?
8068 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
8070 /* regex_compile will allocate the space for the compiled pattern. */
8072 preg
->allocated
= 0;
8075 /* Try to allocate space for the fastmap. */
8076 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
8078 if (cflags
& REG_ICASE
)
8083 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
8084 * sizeof (*(RE_TRANSLATE_TYPE
)0));
8085 if (preg
->translate
== NULL
)
8086 return (int) REG_ESPACE
;
8088 /* Map uppercase characters to corresponding lowercase ones. */
8089 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
8090 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
8093 preg
->translate
= NULL
;
8095 /* If REG_NEWLINE is set, newlines are treated differently. */
8096 if (cflags
& REG_NEWLINE
)
8097 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8098 syntax
&= ~RE_DOT_NEWLINE
;
8099 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
8100 /* It also changes the matching behavior. */
8101 preg
->newline_anchor
= 1;
8104 preg
->newline_anchor
= 0;
8106 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
8108 /* POSIX says a null character in the pattern terminates it, so we
8109 can use strlen here in compiling the pattern. */
8111 if (MB_CUR_MAX
!= 1)
8112 ret
= wcs_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8115 ret
= byte_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8117 /* POSIX doesn't distinguish between an unmatched open-group and an
8118 unmatched close-group: both are REG_EPAREN. */
8119 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
8121 if (ret
== REG_NOERROR
&& preg
->fastmap
)
8123 /* Compute the fastmap now, since regexec cannot modify the pattern
8125 if (re_compile_fastmap (preg
) == -2)
8127 /* Some error occurred while computing the fastmap, just forget
8129 free (preg
->fastmap
);
8130 preg
->fastmap
= NULL
;
8137 weak_alias (__regcomp
, regcomp
)
8141 /* regexec searches for a given pattern, specified by PREG, in the
8144 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8145 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8146 least NMATCH elements, and we set them to the offsets of the
8147 corresponding matched substrings.
8149 EFLAGS specifies `execution flags' which affect matching: if
8150 REG_NOTBOL is set, then ^ does not match at the beginning of the
8151 string; if REG_NOTEOL is set, then $ does not match at the end.
8153 We return 0 if we find a match and REG_NOMATCH if not. */
8156 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
8157 const regex_t
*preg
;
8160 regmatch_t pmatch
[];
8164 struct re_registers regs
;
8165 regex_t private_preg
;
8166 int len
= strlen (string
);
8167 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
8169 private_preg
= *preg
;
8171 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
8172 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
8174 /* The user has told us exactly how many registers to return
8175 information about, via `nmatch'. We have to pass that on to the
8176 matching routines. */
8177 private_preg
.regs_allocated
= REGS_FIXED
;
8181 regs
.num_regs
= nmatch
;
8182 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
8183 if (regs
.start
== NULL
)
8184 return (int) REG_NOMATCH
;
8185 regs
.end
= regs
.start
+ nmatch
;
8188 /* Perform the searching operation. */
8189 ret
= re_search (&private_preg
, string
, len
,
8190 /* start: */ 0, /* range: */ len
,
8191 want_reg_info
? ®s
: (struct re_registers
*) 0);
8193 /* Copy the register information to the POSIX structure. */
8200 for (r
= 0; r
< nmatch
; r
++)
8202 pmatch
[r
].rm_so
= regs
.start
[r
];
8203 pmatch
[r
].rm_eo
= regs
.end
[r
];
8207 /* If we needed the temporary register info, free the space now. */
8211 /* We want zero return to mean success, unlike `re_search'. */
8212 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
8215 weak_alias (__regexec
, regexec
)
8219 /* Returns a message corresponding to an error code, ERRCODE, returned
8220 from either regcomp or regexec. We don't use PREG here. */
8223 regerror (errcode
, preg
, errbuf
, errbuf_size
)
8225 const regex_t
*preg
;
8233 || errcode
>= (int) (sizeof (re_error_msgid_idx
)
8234 / sizeof (re_error_msgid_idx
[0])))
8235 /* Only error codes returned by the rest of the code should be passed
8236 to this routine. If we are given anything else, or if other regex
8237 code generates an invalid error code, then the program has a bug.
8238 Dump core so we can fix it. */
8241 msg
= gettext (re_error_msgid
+ re_error_msgid_idx
[errcode
]);
8243 msg_size
= strlen (msg
) + 1; /* Includes the null. */
8245 if (errbuf_size
!= 0)
8247 if (msg_size
> errbuf_size
)
8249 #if defined HAVE_MEMPCPY || defined _LIBC
8250 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
8252 memcpy (errbuf
, msg
, errbuf_size
- 1);
8253 errbuf
[errbuf_size
- 1] = 0;
8257 memcpy (errbuf
, msg
, msg_size
);
8263 weak_alias (__regerror
, regerror
)
8267 /* Free dynamically allocated space used by PREG. */
8273 if (preg
->buffer
!= NULL
)
8274 free (preg
->buffer
);
8275 preg
->buffer
= NULL
;
8277 preg
->allocated
= 0;
8280 if (preg
->fastmap
!= NULL
)
8281 free (preg
->fastmap
);
8282 preg
->fastmap
= NULL
;
8283 preg
->fastmap_accurate
= 0;
8285 if (preg
->translate
!= NULL
)
8286 free (preg
->translate
);
8287 preg
->translate
= NULL
;
8290 weak_alias (__regfree
, regfree
)
8293 #endif /* not emacs */
8295 #endif /* not INSIDE_RECURSION */
8299 #undef STORE_NUMBER_AND_INCR
8300 #undef EXTRACT_NUMBER
8301 #undef EXTRACT_NUMBER_AND_INCR
8303 #undef DEBUG_PRINT_COMPILED_PATTERN
8304 #undef DEBUG_PRINT_DOUBLE_STRING
8306 #undef INIT_FAIL_STACK
8307 #undef RESET_FAIL_STACK
8308 #undef DOUBLE_FAIL_STACK
8309 #undef PUSH_PATTERN_OP
8310 #undef PUSH_FAILURE_POINTER
8311 #undef PUSH_FAILURE_INT
8312 #undef PUSH_FAILURE_ELT
8313 #undef POP_FAILURE_POINTER
8314 #undef POP_FAILURE_INT
8315 #undef POP_FAILURE_ELT
8318 #undef PUSH_FAILURE_POINT
8319 #undef POP_FAILURE_POINT
8321 #undef REG_UNSET_VALUE
8329 #undef INIT_BUF_SIZE
8330 #undef GET_BUFFER_SPACE
8338 #undef EXTEND_BUFFER
8339 #undef GET_UNSIGNED_NUMBER
8340 #undef FREE_STACK_RETURN
8342 # undef POINTER_TO_OFFSET
8343 # undef MATCHING_IN_FRST_STRING
8345 # undef AT_STRINGS_BEG
8346 # undef AT_STRINGS_END
8349 # undef FREE_VARIABLES
8350 # undef NO_HIGHEST_ACTIVE_REG
8351 # undef NO_LOWEST_ACTIVE_REG
8355 # undef COMPILED_BUFFER_VAR
8356 # undef OFFSET_ADDRESS_SIZE
8357 # undef CHAR_CLASS_SIZE
8364 # define DEFINED_ONCE