More section layout code.
[binutils.git] / gold / symtab.cc
blob8538c4220834cf2736babde38da95a4cca300f23
1 // symtab.cc -- the gold symbol table
3 #include "gold.h"
5 #include <cassert>
6 #include <stdint.h>
7 #include <string>
8 #include <utility>
10 #include "object.h"
11 #include "symtab.h"
13 namespace gold
16 // Class Symbol.
18 // Initialize the fields in the base class Symbol.
20 template<int size, bool big_endian>
21 void
22 Symbol::init_base(const char* name, const char* version, Object* object,
23 const elfcpp::Sym<size, big_endian>& sym)
25 this->name_ = name;
26 this->version_ = version;
27 this->object_ = object;
28 this->shnum_ = sym.get_st_shndx(); // FIXME: Handle SHN_XINDEX.
29 this->type_ = sym.get_st_type();
30 this->binding_ = sym.get_st_bind();
31 this->visibility_ = sym.get_st_visibility();
32 this->other_ = sym.get_st_nonvis();
33 this->is_special_ = false;
34 this->is_def_ = false;
35 this->is_forwarder_ = false;
36 this->in_dyn_ = object->is_dynamic();
39 // Initialize the fields in Sized_symbol.
41 template<int size>
42 template<bool big_endian>
43 void
44 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
45 const elfcpp::Sym<size, big_endian>& sym)
47 this->init_base(name, version, object, sym);
48 this->value_ = sym.get_st_value();
49 this->size_ = sym.get_st_size();
52 // Class Symbol_table.
54 Symbol_table::Symbol_table()
55 : size_(0), table_(), namepool_(), output_pool_(), forwarders_()
59 Symbol_table::~Symbol_table()
63 // The hash function. The key is always canonicalized, so we use a
64 // simple combination of the pointers.
66 size_t
67 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
69 return (reinterpret_cast<size_t>(key.first)
70 ^ reinterpret_cast<size_t>(key.second));
73 // The symbol table key equality function. This is only called with
74 // canonicalized name and version strings, so we can use pointer
75 // comparison.
77 bool
78 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
79 const Symbol_table_key& k2) const
81 return k1.first == k2.first && k1.second == k2.second;
84 // Make TO a symbol which forwards to FROM.
86 void
87 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
89 assert(!from->is_forwarder() && !to->is_forwarder());
90 this->forwarders_[from] = to;
91 from->set_forwarder();
94 Symbol*
95 Symbol_table::resolve_forwards(Symbol* from) const
97 assert(from->is_forwarder());
98 Unordered_map<Symbol*, Symbol*>::const_iterator p =
99 this->forwarders_.find(from);
100 assert(p != this->forwarders_.end());
101 return p->second;
104 // Resolve a Symbol with another Symbol. This is only used in the
105 // unusual case where there are references to both an unversioned
106 // symbol and a symbol with a version, and we then discover that that
107 // version is the default version. Because this is unusual, we do
108 // this the slow way, by converting back to an ELF symbol.
110 template<int size, bool big_endian>
111 void
112 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
114 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
115 elfcpp::Sym_write<size, big_endian> esym(buf);
116 // We don't bother to set the st_name field.
117 esym.put_st_value(from->value());
118 esym.put_st_size(from->symsize());
119 esym.put_st_info(from->binding(), from->type());
120 esym.put_st_other(from->visibility(), from->other());
121 esym.put_st_shndx(from->shnum());
122 Symbol_table::resolve(to, esym.sym(), from->object());
125 // Add one symbol from OBJECT to the symbol table. NAME is symbol
126 // name and VERSION is the version; both are canonicalized. DEF is
127 // whether this is the default version.
129 // If DEF is true, then this is the definition of a default version of
130 // a symbol. That means that any lookup of NAME/NULL and any lookup
131 // of NAME/VERSION should always return the same symbol. This is
132 // obvious for references, but in particular we want to do this for
133 // definitions: overriding NAME/NULL should also override
134 // NAME/VERSION. If we don't do that, it would be very hard to
135 // override functions in a shared library which uses versioning.
137 // We implement this by simply making both entries in the hash table
138 // point to the same Symbol structure. That is easy enough if this is
139 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
140 // that we have seen both already, in which case they will both have
141 // independent entries in the symbol table. We can't simply change
142 // the symbol table entry, because we have pointers to the entries
143 // attached to the object files. So we mark the entry attached to the
144 // object file as a forwarder, and record it in the forwarders_ map.
145 // Note that entries in the hash table will never be marked as
146 // forwarders.
148 template<int size, bool big_endian>
149 Symbol*
150 Symbol_table::add_from_object(Sized_object<size, big_endian>* object,
151 const char *name,
152 const char *version, bool def,
153 const elfcpp::Sym<size, big_endian>& sym)
155 Symbol* const snull = NULL;
156 std::pair<typename Symbol_table_type::iterator, bool> ins =
157 this->table_.insert(std::make_pair(std::make_pair(name, version), snull));
159 std::pair<typename Symbol_table_type::iterator, bool> insdef =
160 std::make_pair(this->table_.end(), false);
161 if (def)
163 const char* const vnull = NULL;
164 insdef = this->table_.insert(std::make_pair(std::make_pair(name, vnull),
165 snull));
168 // ins.first: an iterator, which is a pointer to a pair.
169 // ins.first->first: the key (a pair of name and version).
170 // ins.first->second: the value (Symbol*).
171 // ins.second: true if new entry was inserted, false if not.
173 Sized_symbol<size>* ret;
174 if (!ins.second)
176 // We already have an entry for NAME/VERSION.
177 ret = this->get_sized_symbol<size>(ins.first->second);
178 assert(ret != NULL);
179 Symbol_table::resolve(ret, sym, object);
181 if (def)
183 if (insdef.second)
185 // This is the first time we have seen NAME/NULL. Make
186 // NAME/NULL point to NAME/VERSION.
187 insdef.first->second = ret;
189 else
191 // This is the unfortunate case where we already have
192 // entries for both NAME/VERSION and NAME/NULL.
193 const Sized_symbol<size>* sym2 =
194 this->get_sized_symbol<size>(insdef.first->second);
195 Symbol_table::resolve<size, big_endian>(ret, sym2);
196 this->make_forwarder(insdef.first->second, ret);
197 insdef.first->second = ret;
201 else
203 // This is the first time we have seen NAME/VERSION.
204 assert(ins.first->second == NULL);
205 if (def && !insdef.second)
207 // We already have an entry for NAME/NULL. Make
208 // NAME/VERSION point to it.
209 ret = this->get_sized_symbol<size>(insdef.first->second);
210 Symbol_table::resolve(ret, sym, object);
211 ins.first->second = ret;
213 else
215 Sized_target<size, big_endian>* target = object->sized_target();
216 if (!target->has_make_symbol())
217 ret = new Sized_symbol<size>();
218 else
220 ret = target->make_symbol();
221 if (ret == NULL)
223 // This means that we don't want a symbol table
224 // entry after all.
225 if (!def)
226 this->table_.erase(ins.first);
227 else
229 this->table_.erase(insdef.first);
230 // Inserting insdef invalidated ins.
231 this->table_.erase(std::make_pair(name, version));
233 return NULL;
237 ret->init(name, version, object, sym);
239 ins.first->second = ret;
240 if (def)
242 // This is the first time we have seen NAME/NULL. Point
243 // it at the new entry for NAME/VERSION.
244 assert(insdef.second);
245 insdef.first->second = ret;
250 return ret;
253 // Add all the symbols in an object to the hash table.
255 template<int size, bool big_endian>
256 void
257 Symbol_table::add_from_object(
258 Sized_object<size, big_endian>* object,
259 const elfcpp::Sym<size, big_endian>* syms,
260 size_t count,
261 const char* sym_names,
262 size_t sym_name_size,
263 Symbol** sympointers)
265 // We take the size from the first object we see.
266 if (this->get_size() == 0)
267 this->set_size(size);
269 if (size != this->get_size() || size != object->target()->get_size())
271 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
272 program_name, object->name().c_str());
273 gold_exit(false);
276 const unsigned char* p = reinterpret_cast<const unsigned char*>(syms);
277 for (size_t i = 0; i < count; ++i)
279 elfcpp::Sym<size, big_endian> sym(p);
281 unsigned int st_name = sym.get_st_name();
282 if (st_name >= sym_name_size)
284 fprintf(stderr,
285 _("%s: %s: bad global symbol name offset %u at %lu\n"),
286 program_name, object->name().c_str(), st_name,
287 static_cast<unsigned long>(i));
288 gold_exit(false);
291 const char* name = sym_names + st_name;
293 // In an object file, an '@' in the name separates the symbol
294 // name from the version name. If there are two '@' characters,
295 // this is the default version.
296 const char* ver = strchr(name, '@');
298 Symbol* res;
299 if (ver == NULL)
301 name = this->namepool_.add(name);
302 res = this->add_from_object(object, name, NULL, false, sym);
304 else
306 name = this->namepool_.add(name, ver - name);
307 bool def = false;
308 ++ver;
309 if (*ver == '@')
311 def = true;
312 ++ver;
314 ver = this->namepool_.add(ver);
315 res = this->add_from_object(object, name, ver, def, sym);
318 *sympointers++ = res;
320 p += elfcpp::Elf_sizes<size>::sym_size;
324 // Record the names of the local symbols for an object.
326 template<int size, bool big_endian>
327 void
328 Symbol_table::add_local_symbol_names(Sized_object<size, big_endian>* object,
329 const elfcpp::Sym<size, big_endian>* syms,
330 size_t count, const char* sym_names,
331 size_t sym_name_size)
333 const unsigned char* p = reinterpret_cast<const unsigned char*>(syms);
334 for (size_t i = 0; i < count; ++i)
336 elfcpp::Sym<size, big_endian> sym(p);
338 unsigned int st_name = sym.get_st_name();
339 if (st_name >= sym_name_size)
341 fprintf(stderr,
342 _("%s: %s: bad local symbol name offset %u at %lu\n"),
343 program_name, object->name().c_str(), st_name,
344 static_cast<unsigned long>(i));
345 gold_exit(false);
348 this->output_pool_.add(sym_names + st_name);
352 // Instantiate the templates we need. We could use the configure
353 // script to restrict this to only the ones needed for implemented
354 // targets.
356 template
357 void
358 Symbol_table::add_from_object<32, true>(
359 Sized_object<32, true>* object,
360 const elfcpp::Sym<32, true>* syms,
361 size_t count,
362 const char* sym_names,
363 size_t sym_name_size,
364 Symbol** sympointers);
366 template
367 void
368 Symbol_table::add_from_object<32, false>(
369 Sized_object<32, false>* object,
370 const elfcpp::Sym<32, false>* syms,
371 size_t count,
372 const char* sym_names,
373 size_t sym_name_size,
374 Symbol** sympointers);
376 template
377 void
378 Symbol_table::add_from_object<64, true>(
379 Sized_object<64, true>* object,
380 const elfcpp::Sym<64, true>* syms,
381 size_t count,
382 const char* sym_names,
383 size_t sym_name_size,
384 Symbol** sympointers);
386 template
387 void
388 Symbol_table::add_from_object<64, false>(
389 Sized_object<64, false>* object,
390 const elfcpp::Sym<64, false>* syms,
391 size_t count,
392 const char* sym_names,
393 size_t sym_name_size,
394 Symbol** sympointers);
396 template
397 void
398 Symbol_table::add_local_symbol_names<32, true>(
399 Sized_object<32, true>* object,
400 const elfcpp::Sym<32, true>* syms,
401 size_t count,
402 const char* sym_names,
403 size_t sym_name_size);
405 template
406 void
407 Symbol_table::add_local_symbol_names<32, false>(
408 Sized_object<32, false>* object,
409 const elfcpp::Sym<32, false>* syms,
410 size_t count,
411 const char* sym_names,
412 size_t sym_name_size);
414 template
415 void
416 Symbol_table::add_local_symbol_names<64, true>(
417 Sized_object<64, true>* object,
418 const elfcpp::Sym<64, true>* syms,
419 size_t count,
420 const char* sym_names,
421 size_t sym_name_size);
423 template
424 void
425 Symbol_table::add_local_symbol_names<64, false>(
426 Sized_object<64, false>* object,
427 const elfcpp::Sym<64, false>* syms,
428 size_t count,
429 const char* sym_names,
430 size_t sym_name_size);
432 } // End namespace gold.