It's OK to have a version if we have an existing symbol.
[binutils.git] / bfd / elflink.c
blob8e17f897904606b8af2df57cba3d9449aa3313e4
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
32 /* Define a symbol in a dynamic linkage section. */
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
84 switch (bed->s->arch_size)
86 case 32:
87 ptralign = 2;
88 break;
90 case 64:
91 ptralign = 3;
92 break;
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
99 flags = bed->dynamic_sec_flags;
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
106 if (bed->want_got_plt)
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
114 if (bed->want_got_sym)
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
129 return TRUE;
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
136 struct elf_link_hash_table *hash_table;
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
142 if (hash_table->dynstr == NULL)
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
148 return TRUE;
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
177 flags = bed->dynamic_sec_flags;
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
234 if (info->emit_hash)
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
243 if (info->emit_gnu_hash)
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
267 return TRUE;
270 /* Create dynamic sections when linking against a dynamic object. */
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
322 if (bed->want_dynbss)
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
359 return TRUE;
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
374 if (h->dynindx == -1)
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
397 default:
398 break;
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
427 if (p != NULL)
428 *p = ELF_VER_CHR;
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
435 return TRUE;
438 /* Mark a symbol dynamic. */
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
483 switch (h->root.type)
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
540 h->def_regular = 1;
542 if (provide && hidden)
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
578 return TRUE;
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
599 if (! is_elf_hash_table (info->hash))
600 return 0;
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
616 bfd_release (input_bfd, entry);
617 return 0;
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
624 asection *s;
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
654 eht = elf_hash_table (info);
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
666 /* The dynindx will be set at the end of size_dynamic_sections. */
668 return 1;
671 /* Return the dynindex of a local dynamic symbol. */
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
678 struct elf_link_local_dynamic_entry *e;
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
694 size_t *count = data;
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
699 if (h->forced_local)
700 return TRUE;
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
705 return TRUE;
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
716 size_t *count = data;
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
721 if (!h->forced_local)
722 return TRUE;
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
727 return TRUE;
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
737 struct elf_link_hash_table *htab;
739 switch (elf_section_data (p)->this_hdr.sh_type)
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
757 asection *ip;
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
765 return FALSE;
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
785 unsigned long dynsymcount = 0;
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
799 *section_sym_count = dynsymcount;
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
805 if (elf_hash_table (info)->dynlocal)
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
861 *skip = FALSE;
862 *override = FALSE;
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
872 *skip = TRUE;
873 return TRUE;
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->hash->creator != abfd->xvec)
888 return TRUE;
890 /* For merging, we only care about real symbols. */
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
905 if (h->root.type == bfd_link_hash_new)
907 h->non_elf = 0;
908 return TRUE;
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
914 switch (h->root.type)
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
953 newdyn = (abfd->flags & DYNAMIC) != 0;
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
993 *skip = TRUE;
994 return TRUE;
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1007 if (h->type == STT_TLS)
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1016 else
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1116 else
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1125 h = vh;
1127 else
1128 h = *sym_hash;
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1143 else
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1149 if (h->def_dynamic)
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1284 *size_change_ok = TRUE;
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1436 if (flip != NULL)
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1454 return TRUE;
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1494 if (override)
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1535 if (skip)
1536 goto nondefault;
1538 if (! override)
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1547 else
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1598 if (hi->root.type == bfd_link_hash_indirect)
1600 struct elf_link_hash_entry *ht;
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1609 if (! dynamic)
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1615 else
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1643 if (skip)
1644 return TRUE;
1646 if (override)
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1657 else
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1670 if (hi->root.type == bfd_link_hash_indirect)
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1678 if (! dynamic)
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1684 else
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1693 return TRUE;
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1702 struct elf_info_failed *eif = data;
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1724 if (t->globals.list != NULL)
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1731 if (t->locals.list != NULL)
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1739 if (!eif->verdefs)
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1744 eif->failed = TRUE;
1745 return FALSE;
1750 return TRUE;
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1788 break;
1791 /* This is a new version. Add it to tree we are building. */
1793 if (t == NULL)
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1799 rinfo->failed = TRUE;
1800 return FALSE;
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1812 rinfo->failed = TRUE;
1813 return FALSE;
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1830 t->vn_auxptr = a;
1832 return TRUE;
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1850 sinfo = data;
1851 info = sinfo->info;
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1878 hidden = TRUE;
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1885 hidden = FALSE;
1886 ++p;
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1900 if (strcmp (t->name, p) == 0)
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1910 sinfo->failed = TRUE;
1911 return FALSE;
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1936 free (alc);
1937 break;
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1957 sinfo->failed = TRUE;
1958 return FALSE;
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1973 *pp = t;
1975 h->verinfo.vertree = t;
1977 else if (t == NULL)
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1989 if (hidden)
1990 h->hidden = 1;
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2007 if (t->globals.list != NULL)
2009 bfd_boolean matched;
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2035 if (t->locals.list != NULL)
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2049 if (d != NULL)
2050 break;
2054 if (local_ver != NULL)
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2065 return TRUE;
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2075 Returns FALSE if something goes wrong. */
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2103 bed = get_elf_backend_data (abfd);
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2121 bfd_vma r_symndx;
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2141 return TRUE;
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2169 if (o->reloc_count == 0)
2170 return NULL;
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2174 if (internal_relocs == NULL)
2176 bfd_size_type size;
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2188 if (external_relocs == NULL)
2190 bfd_size_type size = rel_hdr->sh_size;
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2217 if (alloc1 != NULL)
2218 free (alloc1);
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2223 return internal_relocs;
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2270 struct elf_link_hash_entry **p;
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2276 elf_section_data (o)->rel_hashes = p;
2279 return TRUE;
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2319 else
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_object_format);
2325 return FALSE;
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2352 return TRUE;
2355 /* Make weak undefined symbols in PIE dynamic. */
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2366 return TRUE;
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2379 const struct elf_backend_data *bed;
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2396 else
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2405 else
2406 h->def_regular = 1;
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2415 eif->failed = TRUE;
2416 return FALSE;
2420 else
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2470 bfd_boolean force_local;
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2488 struct elf_link_hash_entry *weakdef;
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2511 return TRUE;
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2528 if (h->root.type == bfd_link_hash_warning)
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2603 if (h->u.weakdef != NULL)
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2631 eif->failed = TRUE;
2632 return FALSE;
2635 return TRUE;
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2658 mask >>= 1;
2659 --power_of_two;
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2681 return TRUE;
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2690 asection *sec;
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2700 bfd *output_bfd = data;
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2709 return TRUE;
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2725 if (h == NULL)
2726 return FALSE;
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742 switch (ELF_ST_VISIBILITY (h->other))
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2753 bed = get_elf_backend_data (hash_table->dynobj);
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2762 default:
2763 break;
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2792 /* Common symbols that become definitions don't get the DEF_REGULAR
2793 flag set, so test it first, and don't bail out. */
2794 if (ELF_COMMON_DEF_P (h))
2795 /* Do nothing. */;
2796 /* If we don't have a definition in a regular file, then we can't
2797 resolve locally. The sym is either undefined or dynamic. */
2798 else if (!h->def_regular)
2799 return FALSE;
2801 /* Forced local symbols resolve locally. */
2802 if (h->forced_local)
2803 return TRUE;
2805 /* As do non-dynamic symbols. */
2806 if (h->dynindx == -1)
2807 return TRUE;
2809 /* At this point, we know the symbol is defined and dynamic. In an
2810 executable it must resolve locally, likewise when building symbolic
2811 shared libraries. */
2812 if (info->executable || SYMBOLIC_BIND (info, h))
2813 return TRUE;
2815 /* Now deal with defined dynamic symbols in shared libraries. Ones
2816 with default visibility might not resolve locally. */
2817 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2818 return FALSE;
2820 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2821 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2822 return TRUE;
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2828 bed = get_elf_backend_data (hash_table->dynobj);
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2858 elf_hash_table (info)->tls_sec = tls;
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2865 return tls;
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2873 const struct elf_backend_data *bed;
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2906 return TRUE;
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2950 extsymcount = symcount;
2951 extsymoff = 0;
2953 else
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2959 if (extsymcount == 0)
2960 return FALSE;
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2972 const char *name;
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2979 if (strcmp (name, symdef->name) == 0)
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2986 free (isymbuf);
2988 return result;
2991 /* Add an entry to the .dynamic table. */
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3022 s->size = newsize;
3023 s->contents = newcontents;
3025 return TRUE;
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3064 Elf_Internal_Dyn dyn;
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3076 if (do_it)
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3088 return 0;
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3110 return 0;
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3119 struct elf_strtab_hash *dynstr = data;
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3156 Elf_Internal_Dyn dyn;
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3215 while (def.vd_next);
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3249 while (need.vn_next);
3252 return TRUE;
3255 /* Add symbols from an ELF object file to the linker hash table. */
3257 static bfd_boolean
3258 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3260 Elf_Internal_Shdr *hdr;
3261 bfd_size_type symcount;
3262 bfd_size_type extsymcount;
3263 bfd_size_type extsymoff;
3264 struct elf_link_hash_entry **sym_hash;
3265 bfd_boolean dynamic;
3266 Elf_External_Versym *extversym = NULL;
3267 Elf_External_Versym *ever;
3268 struct elf_link_hash_entry *weaks;
3269 struct elf_link_hash_entry **nondeflt_vers = NULL;
3270 bfd_size_type nondeflt_vers_cnt = 0;
3271 Elf_Internal_Sym *isymbuf = NULL;
3272 Elf_Internal_Sym *isym;
3273 Elf_Internal_Sym *isymend;
3274 const struct elf_backend_data *bed;
3275 bfd_boolean add_needed;
3276 struct elf_link_hash_table *htab;
3277 bfd_size_type amt;
3278 void *alloc_mark = NULL;
3279 struct bfd_hash_entry **old_table = NULL;
3280 unsigned int old_size = 0;
3281 unsigned int old_count = 0;
3282 void *old_tab = NULL;
3283 void *old_hash;
3284 void *old_ent;
3285 struct bfd_link_hash_entry *old_undefs = NULL;
3286 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3287 long old_dynsymcount = 0;
3288 size_t tabsize = 0;
3289 size_t hashsize = 0;
3291 htab = elf_hash_table (info);
3292 bed = get_elf_backend_data (abfd);
3294 if ((abfd->flags & DYNAMIC) == 0)
3295 dynamic = FALSE;
3296 else
3298 dynamic = TRUE;
3300 /* You can't use -r against a dynamic object. Also, there's no
3301 hope of using a dynamic object which does not exactly match
3302 the format of the output file. */
3303 if (info->relocatable
3304 || !is_elf_hash_table (htab)
3305 || htab->root.creator != abfd->xvec)
3307 if (info->relocatable)
3308 bfd_set_error (bfd_error_invalid_operation);
3309 else
3310 bfd_set_error (bfd_error_wrong_format);
3311 goto error_return;
3315 /* As a GNU extension, any input sections which are named
3316 .gnu.warning.SYMBOL are treated as warning symbols for the given
3317 symbol. This differs from .gnu.warning sections, which generate
3318 warnings when they are included in an output file. */
3319 if (info->executable)
3321 asection *s;
3323 for (s = abfd->sections; s != NULL; s = s->next)
3325 const char *name;
3327 name = bfd_get_section_name (abfd, s);
3328 if (CONST_STRNEQ (name, ".gnu.warning."))
3330 char *msg;
3331 bfd_size_type sz;
3333 name += sizeof ".gnu.warning." - 1;
3335 /* If this is a shared object, then look up the symbol
3336 in the hash table. If it is there, and it is already
3337 been defined, then we will not be using the entry
3338 from this shared object, so we don't need to warn.
3339 FIXME: If we see the definition in a regular object
3340 later on, we will warn, but we shouldn't. The only
3341 fix is to keep track of what warnings we are supposed
3342 to emit, and then handle them all at the end of the
3343 link. */
3344 if (dynamic)
3346 struct elf_link_hash_entry *h;
3348 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3350 /* FIXME: What about bfd_link_hash_common? */
3351 if (h != NULL
3352 && (h->root.type == bfd_link_hash_defined
3353 || h->root.type == bfd_link_hash_defweak))
3355 /* We don't want to issue this warning. Clobber
3356 the section size so that the warning does not
3357 get copied into the output file. */
3358 s->size = 0;
3359 continue;
3363 sz = s->size;
3364 msg = bfd_alloc (abfd, sz + 1);
3365 if (msg == NULL)
3366 goto error_return;
3368 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3369 goto error_return;
3371 msg[sz] = '\0';
3373 if (! (_bfd_generic_link_add_one_symbol
3374 (info, abfd, name, BSF_WARNING, s, 0, msg,
3375 FALSE, bed->collect, NULL)))
3376 goto error_return;
3378 if (! info->relocatable)
3380 /* Clobber the section size so that the warning does
3381 not get copied into the output file. */
3382 s->size = 0;
3384 /* Also set SEC_EXCLUDE, so that symbols defined in
3385 the warning section don't get copied to the output. */
3386 s->flags |= SEC_EXCLUDE;
3392 add_needed = TRUE;
3393 if (! dynamic)
3395 /* If we are creating a shared library, create all the dynamic
3396 sections immediately. We need to attach them to something,
3397 so we attach them to this BFD, provided it is the right
3398 format. FIXME: If there are no input BFD's of the same
3399 format as the output, we can't make a shared library. */
3400 if (info->shared
3401 && is_elf_hash_table (htab)
3402 && htab->root.creator == abfd->xvec
3403 && !htab->dynamic_sections_created)
3405 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3406 goto error_return;
3409 else if (!is_elf_hash_table (htab))
3410 goto error_return;
3411 else
3413 asection *s;
3414 const char *soname = NULL;
3415 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3416 int ret;
3418 /* ld --just-symbols and dynamic objects don't mix very well.
3419 ld shouldn't allow it. */
3420 if ((s = abfd->sections) != NULL
3421 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3422 abort ();
3424 /* If this dynamic lib was specified on the command line with
3425 --as-needed in effect, then we don't want to add a DT_NEEDED
3426 tag unless the lib is actually used. Similary for libs brought
3427 in by another lib's DT_NEEDED. When --no-add-needed is used
3428 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3429 any dynamic library in DT_NEEDED tags in the dynamic lib at
3430 all. */
3431 add_needed = (elf_dyn_lib_class (abfd)
3432 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3433 | DYN_NO_NEEDED)) == 0;
3435 s = bfd_get_section_by_name (abfd, ".dynamic");
3436 if (s != NULL)
3438 bfd_byte *dynbuf;
3439 bfd_byte *extdyn;
3440 int elfsec;
3441 unsigned long shlink;
3443 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3444 goto error_free_dyn;
3446 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3447 if (elfsec == -1)
3448 goto error_free_dyn;
3449 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3451 for (extdyn = dynbuf;
3452 extdyn < dynbuf + s->size;
3453 extdyn += bed->s->sizeof_dyn)
3455 Elf_Internal_Dyn dyn;
3457 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3458 if (dyn.d_tag == DT_SONAME)
3460 unsigned int tagv = dyn.d_un.d_val;
3461 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3462 if (soname == NULL)
3463 goto error_free_dyn;
3465 if (dyn.d_tag == DT_NEEDED)
3467 struct bfd_link_needed_list *n, **pn;
3468 char *fnm, *anm;
3469 unsigned int tagv = dyn.d_un.d_val;
3471 amt = sizeof (struct bfd_link_needed_list);
3472 n = bfd_alloc (abfd, amt);
3473 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3474 if (n == NULL || fnm == NULL)
3475 goto error_free_dyn;
3476 amt = strlen (fnm) + 1;
3477 anm = bfd_alloc (abfd, amt);
3478 if (anm == NULL)
3479 goto error_free_dyn;
3480 memcpy (anm, fnm, amt);
3481 n->name = anm;
3482 n->by = abfd;
3483 n->next = NULL;
3484 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3486 *pn = n;
3488 if (dyn.d_tag == DT_RUNPATH)
3490 struct bfd_link_needed_list *n, **pn;
3491 char *fnm, *anm;
3492 unsigned int tagv = dyn.d_un.d_val;
3494 amt = sizeof (struct bfd_link_needed_list);
3495 n = bfd_alloc (abfd, amt);
3496 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3497 if (n == NULL || fnm == NULL)
3498 goto error_free_dyn;
3499 amt = strlen (fnm) + 1;
3500 anm = bfd_alloc (abfd, amt);
3501 if (anm == NULL)
3502 goto error_free_dyn;
3503 memcpy (anm, fnm, amt);
3504 n->name = anm;
3505 n->by = abfd;
3506 n->next = NULL;
3507 for (pn = & runpath;
3508 *pn != NULL;
3509 pn = &(*pn)->next)
3511 *pn = n;
3513 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3514 if (!runpath && dyn.d_tag == DT_RPATH)
3516 struct bfd_link_needed_list *n, **pn;
3517 char *fnm, *anm;
3518 unsigned int tagv = dyn.d_un.d_val;
3520 amt = sizeof (struct bfd_link_needed_list);
3521 n = bfd_alloc (abfd, amt);
3522 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3523 if (n == NULL || fnm == NULL)
3524 goto error_free_dyn;
3525 amt = strlen (fnm) + 1;
3526 anm = bfd_alloc (abfd, amt);
3527 if (anm == NULL)
3529 error_free_dyn:
3530 free (dynbuf);
3531 goto error_return;
3533 memcpy (anm, fnm, amt);
3534 n->name = anm;
3535 n->by = abfd;
3536 n->next = NULL;
3537 for (pn = & rpath;
3538 *pn != NULL;
3539 pn = &(*pn)->next)
3541 *pn = n;
3545 free (dynbuf);
3548 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3549 frees all more recently bfd_alloc'd blocks as well. */
3550 if (runpath)
3551 rpath = runpath;
3553 if (rpath)
3555 struct bfd_link_needed_list **pn;
3556 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3558 *pn = rpath;
3561 /* We do not want to include any of the sections in a dynamic
3562 object in the output file. We hack by simply clobbering the
3563 list of sections in the BFD. This could be handled more
3564 cleanly by, say, a new section flag; the existing
3565 SEC_NEVER_LOAD flag is not the one we want, because that one
3566 still implies that the section takes up space in the output
3567 file. */
3568 bfd_section_list_clear (abfd);
3570 /* Find the name to use in a DT_NEEDED entry that refers to this
3571 object. If the object has a DT_SONAME entry, we use it.
3572 Otherwise, if the generic linker stuck something in
3573 elf_dt_name, we use that. Otherwise, we just use the file
3574 name. */
3575 if (soname == NULL || *soname == '\0')
3577 soname = elf_dt_name (abfd);
3578 if (soname == NULL || *soname == '\0')
3579 soname = bfd_get_filename (abfd);
3582 /* Save the SONAME because sometimes the linker emulation code
3583 will need to know it. */
3584 elf_dt_name (abfd) = soname;
3586 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3587 if (ret < 0)
3588 goto error_return;
3590 /* If we have already included this dynamic object in the
3591 link, just ignore it. There is no reason to include a
3592 particular dynamic object more than once. */
3593 if (ret > 0)
3594 return TRUE;
3597 /* If this is a dynamic object, we always link against the .dynsym
3598 symbol table, not the .symtab symbol table. The dynamic linker
3599 will only see the .dynsym symbol table, so there is no reason to
3600 look at .symtab for a dynamic object. */
3602 if (! dynamic || elf_dynsymtab (abfd) == 0)
3603 hdr = &elf_tdata (abfd)->symtab_hdr;
3604 else
3605 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3607 symcount = hdr->sh_size / bed->s->sizeof_sym;
3609 /* The sh_info field of the symtab header tells us where the
3610 external symbols start. We don't care about the local symbols at
3611 this point. */
3612 if (elf_bad_symtab (abfd))
3614 extsymcount = symcount;
3615 extsymoff = 0;
3617 else
3619 extsymcount = symcount - hdr->sh_info;
3620 extsymoff = hdr->sh_info;
3623 sym_hash = NULL;
3624 if (extsymcount != 0)
3626 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3627 NULL, NULL, NULL);
3628 if (isymbuf == NULL)
3629 goto error_return;
3631 /* We store a pointer to the hash table entry for each external
3632 symbol. */
3633 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3634 sym_hash = bfd_alloc (abfd, amt);
3635 if (sym_hash == NULL)
3636 goto error_free_sym;
3637 elf_sym_hashes (abfd) = sym_hash;
3640 if (dynamic)
3642 /* Read in any version definitions. */
3643 if (!_bfd_elf_slurp_version_tables (abfd,
3644 info->default_imported_symver))
3645 goto error_free_sym;
3647 /* Read in the symbol versions, but don't bother to convert them
3648 to internal format. */
3649 if (elf_dynversym (abfd) != 0)
3651 Elf_Internal_Shdr *versymhdr;
3653 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3654 extversym = bfd_malloc (versymhdr->sh_size);
3655 if (extversym == NULL)
3656 goto error_free_sym;
3657 amt = versymhdr->sh_size;
3658 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3659 || bfd_bread (extversym, amt, abfd) != amt)
3660 goto error_free_vers;
3664 /* If we are loading an as-needed shared lib, save the symbol table
3665 state before we start adding symbols. If the lib turns out
3666 to be unneeded, restore the state. */
3667 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3669 unsigned int i;
3670 size_t entsize;
3672 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3674 struct bfd_hash_entry *p;
3675 struct elf_link_hash_entry *h;
3677 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3679 h = (struct elf_link_hash_entry *) p;
3680 entsize += htab->root.table.entsize;
3681 if (h->root.type == bfd_link_hash_warning)
3682 entsize += htab->root.table.entsize;
3686 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3687 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3688 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3689 if (old_tab == NULL)
3690 goto error_free_vers;
3692 /* Remember the current objalloc pointer, so that all mem for
3693 symbols added can later be reclaimed. */
3694 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3695 if (alloc_mark == NULL)
3696 goto error_free_vers;
3698 /* Make a special call to the linker "notice" function to
3699 tell it that we are about to handle an as-needed lib. */
3700 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3701 notice_as_needed))
3702 goto error_free_vers;
3704 /* Clone the symbol table and sym hashes. Remember some
3705 pointers into the symbol table, and dynamic symbol count. */
3706 old_hash = (char *) old_tab + tabsize;
3707 old_ent = (char *) old_hash + hashsize;
3708 memcpy (old_tab, htab->root.table.table, tabsize);
3709 memcpy (old_hash, sym_hash, hashsize);
3710 old_undefs = htab->root.undefs;
3711 old_undefs_tail = htab->root.undefs_tail;
3712 old_table = htab->root.table.table;
3713 old_size = htab->root.table.size;
3714 old_count = htab->root.table.count;
3715 old_dynsymcount = htab->dynsymcount;
3717 for (i = 0; i < htab->root.table.size; i++)
3719 struct bfd_hash_entry *p;
3720 struct elf_link_hash_entry *h;
3722 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3724 memcpy (old_ent, p, htab->root.table.entsize);
3725 old_ent = (char *) old_ent + htab->root.table.entsize;
3726 h = (struct elf_link_hash_entry *) p;
3727 if (h->root.type == bfd_link_hash_warning)
3729 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3730 old_ent = (char *) old_ent + htab->root.table.entsize;
3736 weaks = NULL;
3737 ever = extversym != NULL ? extversym + extsymoff : NULL;
3738 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3739 isym < isymend;
3740 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3742 int bind;
3743 bfd_vma value;
3744 asection *sec, *new_sec;
3745 flagword flags;
3746 const char *name;
3747 struct elf_link_hash_entry *h;
3748 bfd_boolean definition;
3749 bfd_boolean size_change_ok;
3750 bfd_boolean type_change_ok;
3751 bfd_boolean new_weakdef;
3752 bfd_boolean override;
3753 bfd_boolean common;
3754 unsigned int old_alignment;
3755 bfd *old_bfd;
3757 override = FALSE;
3759 flags = BSF_NO_FLAGS;
3760 sec = NULL;
3761 value = isym->st_value;
3762 *sym_hash = NULL;
3763 common = bed->common_definition (isym);
3765 bind = ELF_ST_BIND (isym->st_info);
3766 if (bind == STB_LOCAL)
3768 /* This should be impossible, since ELF requires that all
3769 global symbols follow all local symbols, and that sh_info
3770 point to the first global symbol. Unfortunately, Irix 5
3771 screws this up. */
3772 continue;
3774 else if (bind == STB_GLOBAL)
3776 if (isym->st_shndx != SHN_UNDEF && !common)
3777 flags = BSF_GLOBAL;
3779 else if (bind == STB_WEAK)
3780 flags = BSF_WEAK;
3781 else
3783 /* Leave it up to the processor backend. */
3786 if (isym->st_shndx == SHN_UNDEF)
3787 sec = bfd_und_section_ptr;
3788 else if (isym->st_shndx < SHN_LORESERVE
3789 || isym->st_shndx > SHN_HIRESERVE)
3791 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3792 if (sec == NULL)
3793 sec = bfd_abs_section_ptr;
3794 else if (sec->kept_section)
3796 /* Symbols from discarded section are undefined. We keep
3797 its visibility. */
3798 sec = bfd_und_section_ptr;
3799 isym->st_shndx = SHN_UNDEF;
3801 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3802 value -= sec->vma;
3804 else if (isym->st_shndx == SHN_ABS)
3805 sec = bfd_abs_section_ptr;
3806 else if (isym->st_shndx == SHN_COMMON)
3808 sec = bfd_com_section_ptr;
3809 /* What ELF calls the size we call the value. What ELF
3810 calls the value we call the alignment. */
3811 value = isym->st_size;
3813 else
3815 /* Leave it up to the processor backend. */
3818 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3819 isym->st_name);
3820 if (name == NULL)
3821 goto error_free_vers;
3823 if (isym->st_shndx == SHN_COMMON
3824 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3825 && !info->relocatable)
3827 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3829 if (tcomm == NULL)
3831 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3832 (SEC_ALLOC
3833 | SEC_IS_COMMON
3834 | SEC_LINKER_CREATED
3835 | SEC_THREAD_LOCAL));
3836 if (tcomm == NULL)
3837 goto error_free_vers;
3839 sec = tcomm;
3841 else if (bed->elf_add_symbol_hook)
3843 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3844 &sec, &value))
3845 goto error_free_vers;
3847 /* The hook function sets the name to NULL if this symbol
3848 should be skipped for some reason. */
3849 if (name == NULL)
3850 continue;
3853 /* Sanity check that all possibilities were handled. */
3854 if (sec == NULL)
3856 bfd_set_error (bfd_error_bad_value);
3857 goto error_free_vers;
3860 if (bfd_is_und_section (sec)
3861 || bfd_is_com_section (sec))
3862 definition = FALSE;
3863 else
3864 definition = TRUE;
3866 size_change_ok = FALSE;
3867 type_change_ok = bed->type_change_ok;
3868 old_alignment = 0;
3869 old_bfd = NULL;
3870 new_sec = sec;
3872 if (is_elf_hash_table (htab))
3874 Elf_Internal_Versym iver;
3875 unsigned int vernum = 0;
3876 bfd_boolean skip;
3878 if (ever == NULL)
3880 if (info->default_imported_symver)
3881 /* Use the default symbol version created earlier. */
3882 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3883 else
3884 iver.vs_vers = 0;
3886 else
3887 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3889 vernum = iver.vs_vers & VERSYM_VERSION;
3891 /* If this is a hidden symbol, or if it is not version
3892 1, we append the version name to the symbol name.
3893 However, we do not modify a non-hidden absolute symbol
3894 if it is not a function, because it might be the version
3895 symbol itself. FIXME: What if it isn't? */
3896 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3897 || (vernum > 1
3898 && (!bfd_is_abs_section (sec)
3899 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3901 const char *verstr;
3902 size_t namelen, verlen, newlen;
3903 char *newname, *p;
3905 if (isym->st_shndx != SHN_UNDEF)
3907 if (vernum > elf_tdata (abfd)->cverdefs)
3908 verstr = NULL;
3909 else if (vernum > 1)
3910 verstr =
3911 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3912 else
3913 verstr = "";
3915 if (verstr == NULL)
3917 (*_bfd_error_handler)
3918 (_("%B: %s: invalid version %u (max %d)"),
3919 abfd, name, vernum,
3920 elf_tdata (abfd)->cverdefs);
3921 bfd_set_error (bfd_error_bad_value);
3922 goto error_free_vers;
3925 else
3927 /* We cannot simply test for the number of
3928 entries in the VERNEED section since the
3929 numbers for the needed versions do not start
3930 at 0. */
3931 Elf_Internal_Verneed *t;
3933 verstr = NULL;
3934 for (t = elf_tdata (abfd)->verref;
3935 t != NULL;
3936 t = t->vn_nextref)
3938 Elf_Internal_Vernaux *a;
3940 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3942 if (a->vna_other == vernum)
3944 verstr = a->vna_nodename;
3945 break;
3948 if (a != NULL)
3949 break;
3951 if (verstr == NULL)
3953 (*_bfd_error_handler)
3954 (_("%B: %s: invalid needed version %d"),
3955 abfd, name, vernum);
3956 bfd_set_error (bfd_error_bad_value);
3957 goto error_free_vers;
3961 namelen = strlen (name);
3962 verlen = strlen (verstr);
3963 newlen = namelen + verlen + 2;
3964 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3965 && isym->st_shndx != SHN_UNDEF)
3966 ++newlen;
3968 newname = bfd_hash_allocate (&htab->root.table, newlen);
3969 if (newname == NULL)
3970 goto error_free_vers;
3971 memcpy (newname, name, namelen);
3972 p = newname + namelen;
3973 *p++ = ELF_VER_CHR;
3974 /* If this is a defined non-hidden version symbol,
3975 we add another @ to the name. This indicates the
3976 default version of the symbol. */
3977 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3978 && isym->st_shndx != SHN_UNDEF)
3979 *p++ = ELF_VER_CHR;
3980 memcpy (p, verstr, verlen + 1);
3982 name = newname;
3985 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3986 &value, &old_alignment,
3987 sym_hash, &skip, &override,
3988 &type_change_ok, &size_change_ok))
3989 goto error_free_vers;
3991 if (skip)
3992 continue;
3994 if (override)
3995 definition = FALSE;
3997 h = *sym_hash;
3998 while (h->root.type == bfd_link_hash_indirect
3999 || h->root.type == bfd_link_hash_warning)
4000 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4002 /* Remember the old alignment if this is a common symbol, so
4003 that we don't reduce the alignment later on. We can't
4004 check later, because _bfd_generic_link_add_one_symbol
4005 will set a default for the alignment which we want to
4006 override. We also remember the old bfd where the existing
4007 definition comes from. */
4008 switch (h->root.type)
4010 default:
4011 break;
4013 case bfd_link_hash_defined:
4014 case bfd_link_hash_defweak:
4015 old_bfd = h->root.u.def.section->owner;
4016 break;
4018 case bfd_link_hash_common:
4019 old_bfd = h->root.u.c.p->section->owner;
4020 old_alignment = h->root.u.c.p->alignment_power;
4021 break;
4024 if (elf_tdata (abfd)->verdef != NULL
4025 && ! override
4026 && vernum > 1
4027 && definition)
4028 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4031 if (! (_bfd_generic_link_add_one_symbol
4032 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4033 (struct bfd_link_hash_entry **) sym_hash)))
4034 goto error_free_vers;
4036 h = *sym_hash;
4037 while (h->root.type == bfd_link_hash_indirect
4038 || h->root.type == bfd_link_hash_warning)
4039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4040 *sym_hash = h;
4042 new_weakdef = FALSE;
4043 if (dynamic
4044 && definition
4045 && (flags & BSF_WEAK) != 0
4046 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4047 && is_elf_hash_table (htab)
4048 && h->u.weakdef == NULL)
4050 /* Keep a list of all weak defined non function symbols from
4051 a dynamic object, using the weakdef field. Later in this
4052 function we will set the weakdef field to the correct
4053 value. We only put non-function symbols from dynamic
4054 objects on this list, because that happens to be the only
4055 time we need to know the normal symbol corresponding to a
4056 weak symbol, and the information is time consuming to
4057 figure out. If the weakdef field is not already NULL,
4058 then this symbol was already defined by some previous
4059 dynamic object, and we will be using that previous
4060 definition anyhow. */
4062 h->u.weakdef = weaks;
4063 weaks = h;
4064 new_weakdef = TRUE;
4067 /* Set the alignment of a common symbol. */
4068 if ((common || bfd_is_com_section (sec))
4069 && h->root.type == bfd_link_hash_common)
4071 unsigned int align;
4073 if (common)
4074 align = bfd_log2 (isym->st_value);
4075 else
4077 /* The new symbol is a common symbol in a shared object.
4078 We need to get the alignment from the section. */
4079 align = new_sec->alignment_power;
4081 if (align > old_alignment
4082 /* Permit an alignment power of zero if an alignment of one
4083 is specified and no other alignments have been specified. */
4084 || (isym->st_value == 1 && old_alignment == 0))
4085 h->root.u.c.p->alignment_power = align;
4086 else
4087 h->root.u.c.p->alignment_power = old_alignment;
4090 if (is_elf_hash_table (htab))
4092 bfd_boolean dynsym;
4094 /* Check the alignment when a common symbol is involved. This
4095 can change when a common symbol is overridden by a normal
4096 definition or a common symbol is ignored due to the old
4097 normal definition. We need to make sure the maximum
4098 alignment is maintained. */
4099 if ((old_alignment || common)
4100 && h->root.type != bfd_link_hash_common)
4102 unsigned int common_align;
4103 unsigned int normal_align;
4104 unsigned int symbol_align;
4105 bfd *normal_bfd;
4106 bfd *common_bfd;
4108 symbol_align = ffs (h->root.u.def.value) - 1;
4109 if (h->root.u.def.section->owner != NULL
4110 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4112 normal_align = h->root.u.def.section->alignment_power;
4113 if (normal_align > symbol_align)
4114 normal_align = symbol_align;
4116 else
4117 normal_align = symbol_align;
4119 if (old_alignment)
4121 common_align = old_alignment;
4122 common_bfd = old_bfd;
4123 normal_bfd = abfd;
4125 else
4127 common_align = bfd_log2 (isym->st_value);
4128 common_bfd = abfd;
4129 normal_bfd = old_bfd;
4132 if (normal_align < common_align)
4134 /* PR binutils/2735 */
4135 if (normal_bfd == NULL)
4136 (*_bfd_error_handler)
4137 (_("Warning: alignment %u of common symbol `%s' in %B"
4138 " is greater than the alignment (%u) of its section %A"),
4139 common_bfd, h->root.u.def.section,
4140 1 << common_align, name, 1 << normal_align);
4141 else
4142 (*_bfd_error_handler)
4143 (_("Warning: alignment %u of symbol `%s' in %B"
4144 " is smaller than %u in %B"),
4145 normal_bfd, common_bfd,
4146 1 << normal_align, name, 1 << common_align);
4150 /* Remember the symbol size if it isn't undefined. */
4151 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4152 && (definition || h->size == 0))
4154 if (h->size != 0
4155 && h->size != isym->st_size
4156 && ! size_change_ok)
4157 (*_bfd_error_handler)
4158 (_("Warning: size of symbol `%s' changed"
4159 " from %lu in %B to %lu in %B"),
4160 old_bfd, abfd,
4161 name, (unsigned long) h->size,
4162 (unsigned long) isym->st_size);
4164 h->size = isym->st_size;
4167 /* If this is a common symbol, then we always want H->SIZE
4168 to be the size of the common symbol. The code just above
4169 won't fix the size if a common symbol becomes larger. We
4170 don't warn about a size change here, because that is
4171 covered by --warn-common. Allow changed between different
4172 function types. */
4173 if (h->root.type == bfd_link_hash_common)
4174 h->size = h->root.u.c.size;
4176 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4177 && (definition || h->type == STT_NOTYPE))
4179 if (h->type != STT_NOTYPE
4180 && h->type != ELF_ST_TYPE (isym->st_info)
4181 && ! type_change_ok)
4182 (*_bfd_error_handler)
4183 (_("Warning: type of symbol `%s' changed"
4184 " from %d to %d in %B"),
4185 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4187 h->type = ELF_ST_TYPE (isym->st_info);
4190 /* If st_other has a processor-specific meaning, specific
4191 code might be needed here. We never merge the visibility
4192 attribute with the one from a dynamic object. */
4193 if (bed->elf_backend_merge_symbol_attribute)
4194 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4195 dynamic);
4197 /* If this symbol has default visibility and the user has requested
4198 we not re-export it, then mark it as hidden. */
4199 if (definition && !dynamic
4200 && (abfd->no_export
4201 || (abfd->my_archive && abfd->my_archive->no_export))
4202 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4203 isym->st_other = (STV_HIDDEN
4204 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4206 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4208 unsigned char hvis, symvis, other, nvis;
4210 /* Only merge the visibility. Leave the remainder of the
4211 st_other field to elf_backend_merge_symbol_attribute. */
4212 other = h->other & ~ELF_ST_VISIBILITY (-1);
4214 /* Combine visibilities, using the most constraining one. */
4215 hvis = ELF_ST_VISIBILITY (h->other);
4216 symvis = ELF_ST_VISIBILITY (isym->st_other);
4217 if (! hvis)
4218 nvis = symvis;
4219 else if (! symvis)
4220 nvis = hvis;
4221 else
4222 nvis = hvis < symvis ? hvis : symvis;
4224 h->other = other | nvis;
4227 /* Set a flag in the hash table entry indicating the type of
4228 reference or definition we just found. Keep a count of
4229 the number of dynamic symbols we find. A dynamic symbol
4230 is one which is referenced or defined by both a regular
4231 object and a shared object. */
4232 dynsym = FALSE;
4233 if (! dynamic)
4235 if (! definition)
4237 h->ref_regular = 1;
4238 if (bind != STB_WEAK)
4239 h->ref_regular_nonweak = 1;
4241 else
4242 h->def_regular = 1;
4243 if (! info->executable
4244 || h->def_dynamic
4245 || h->ref_dynamic)
4246 dynsym = TRUE;
4248 else
4250 if (! definition)
4251 h->ref_dynamic = 1;
4252 else
4253 h->def_dynamic = 1;
4254 if (h->def_regular
4255 || h->ref_regular
4256 || (h->u.weakdef != NULL
4257 && ! new_weakdef
4258 && h->u.weakdef->dynindx != -1))
4259 dynsym = TRUE;
4262 if (definition && (sec->flags & SEC_DEBUGGING))
4264 /* We don't want to make debug symbol dynamic. */
4265 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4266 dynsym = FALSE;
4269 /* Check to see if we need to add an indirect symbol for
4270 the default name. */
4271 if (definition || h->root.type == bfd_link_hash_common)
4272 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4273 &sec, &value, &dynsym,
4274 override))
4275 goto error_free_vers;
4277 if (definition && !dynamic)
4279 char *p = strchr (name, ELF_VER_CHR);
4280 if (p != NULL && p[1] != ELF_VER_CHR)
4282 /* Queue non-default versions so that .symver x, x@FOO
4283 aliases can be checked. */
4284 if (!nondeflt_vers)
4286 amt = ((isymend - isym + 1)
4287 * sizeof (struct elf_link_hash_entry *));
4288 nondeflt_vers = bfd_malloc (amt);
4289 if (!nondeflt_vers)
4290 goto error_free_vers;
4292 nondeflt_vers[nondeflt_vers_cnt++] = h;
4296 if (dynsym && h->dynindx == -1)
4298 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4299 goto error_free_vers;
4300 if (h->u.weakdef != NULL
4301 && ! new_weakdef
4302 && h->u.weakdef->dynindx == -1)
4304 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4305 goto error_free_vers;
4308 else if (dynsym && h->dynindx != -1)
4309 /* If the symbol already has a dynamic index, but
4310 visibility says it should not be visible, turn it into
4311 a local symbol. */
4312 switch (ELF_ST_VISIBILITY (h->other))
4314 case STV_INTERNAL:
4315 case STV_HIDDEN:
4316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4317 dynsym = FALSE;
4318 break;
4321 if (!add_needed
4322 && definition
4323 && dynsym
4324 && h->ref_regular)
4326 int ret;
4327 const char *soname = elf_dt_name (abfd);
4329 /* A symbol from a library loaded via DT_NEEDED of some
4330 other library is referenced by a regular object.
4331 Add a DT_NEEDED entry for it. Issue an error if
4332 --no-add-needed is used. */
4333 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4335 (*_bfd_error_handler)
4336 (_("%s: invalid DSO for symbol `%s' definition"),
4337 abfd, name);
4338 bfd_set_error (bfd_error_bad_value);
4339 goto error_free_vers;
4342 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4344 add_needed = TRUE;
4345 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4346 if (ret < 0)
4347 goto error_free_vers;
4349 BFD_ASSERT (ret == 0);
4354 if (extversym != NULL)
4356 free (extversym);
4357 extversym = NULL;
4360 if (isymbuf != NULL)
4362 free (isymbuf);
4363 isymbuf = NULL;
4366 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4368 unsigned int i;
4370 /* Restore the symbol table. */
4371 if (bed->as_needed_cleanup)
4372 (*bed->as_needed_cleanup) (abfd, info);
4373 old_hash = (char *) old_tab + tabsize;
4374 old_ent = (char *) old_hash + hashsize;
4375 sym_hash = elf_sym_hashes (abfd);
4376 htab->root.table.table = old_table;
4377 htab->root.table.size = old_size;
4378 htab->root.table.count = old_count;
4379 memcpy (htab->root.table.table, old_tab, tabsize);
4380 memcpy (sym_hash, old_hash, hashsize);
4381 htab->root.undefs = old_undefs;
4382 htab->root.undefs_tail = old_undefs_tail;
4383 for (i = 0; i < htab->root.table.size; i++)
4385 struct bfd_hash_entry *p;
4386 struct elf_link_hash_entry *h;
4388 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4390 h = (struct elf_link_hash_entry *) p;
4391 if (h->root.type == bfd_link_hash_warning)
4392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4393 if (h->dynindx >= old_dynsymcount)
4394 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4396 memcpy (p, old_ent, htab->root.table.entsize);
4397 old_ent = (char *) old_ent + htab->root.table.entsize;
4398 h = (struct elf_link_hash_entry *) p;
4399 if (h->root.type == bfd_link_hash_warning)
4401 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4402 old_ent = (char *) old_ent + htab->root.table.entsize;
4407 /* Make a special call to the linker "notice" function to
4408 tell it that symbols added for crefs may need to be removed. */
4409 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4410 notice_not_needed))
4411 goto error_free_vers;
4413 free (old_tab);
4414 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4415 alloc_mark);
4416 if (nondeflt_vers != NULL)
4417 free (nondeflt_vers);
4418 return TRUE;
4421 if (old_tab != NULL)
4423 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4424 notice_needed))
4425 goto error_free_vers;
4426 free (old_tab);
4427 old_tab = NULL;
4430 /* Now that all the symbols from this input file are created, handle
4431 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4432 if (nondeflt_vers != NULL)
4434 bfd_size_type cnt, symidx;
4436 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4438 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4439 char *shortname, *p;
4441 p = strchr (h->root.root.string, ELF_VER_CHR);
4442 if (p == NULL
4443 || (h->root.type != bfd_link_hash_defined
4444 && h->root.type != bfd_link_hash_defweak))
4445 continue;
4447 amt = p - h->root.root.string;
4448 shortname = bfd_malloc (amt + 1);
4449 if (!shortname)
4450 goto error_free_vers;
4451 memcpy (shortname, h->root.root.string, amt);
4452 shortname[amt] = '\0';
4454 hi = (struct elf_link_hash_entry *)
4455 bfd_link_hash_lookup (&htab->root, shortname,
4456 FALSE, FALSE, FALSE);
4457 if (hi != NULL
4458 && hi->root.type == h->root.type
4459 && hi->root.u.def.value == h->root.u.def.value
4460 && hi->root.u.def.section == h->root.u.def.section)
4462 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4463 hi->root.type = bfd_link_hash_indirect;
4464 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4465 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4466 sym_hash = elf_sym_hashes (abfd);
4467 if (sym_hash)
4468 for (symidx = 0; symidx < extsymcount; ++symidx)
4469 if (sym_hash[symidx] == hi)
4471 sym_hash[symidx] = h;
4472 break;
4475 free (shortname);
4477 free (nondeflt_vers);
4478 nondeflt_vers = NULL;
4481 /* Now set the weakdefs field correctly for all the weak defined
4482 symbols we found. The only way to do this is to search all the
4483 symbols. Since we only need the information for non functions in
4484 dynamic objects, that's the only time we actually put anything on
4485 the list WEAKS. We need this information so that if a regular
4486 object refers to a symbol defined weakly in a dynamic object, the
4487 real symbol in the dynamic object is also put in the dynamic
4488 symbols; we also must arrange for both symbols to point to the
4489 same memory location. We could handle the general case of symbol
4490 aliasing, but a general symbol alias can only be generated in
4491 assembler code, handling it correctly would be very time
4492 consuming, and other ELF linkers don't handle general aliasing
4493 either. */
4494 if (weaks != NULL)
4496 struct elf_link_hash_entry **hpp;
4497 struct elf_link_hash_entry **hppend;
4498 struct elf_link_hash_entry **sorted_sym_hash;
4499 struct elf_link_hash_entry *h;
4500 size_t sym_count;
4502 /* Since we have to search the whole symbol list for each weak
4503 defined symbol, search time for N weak defined symbols will be
4504 O(N^2). Binary search will cut it down to O(NlogN). */
4505 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4506 sorted_sym_hash = bfd_malloc (amt);
4507 if (sorted_sym_hash == NULL)
4508 goto error_return;
4509 sym_hash = sorted_sym_hash;
4510 hpp = elf_sym_hashes (abfd);
4511 hppend = hpp + extsymcount;
4512 sym_count = 0;
4513 for (; hpp < hppend; hpp++)
4515 h = *hpp;
4516 if (h != NULL
4517 && h->root.type == bfd_link_hash_defined
4518 && !bed->is_function_type (h->type))
4520 *sym_hash = h;
4521 sym_hash++;
4522 sym_count++;
4526 qsort (sorted_sym_hash, sym_count,
4527 sizeof (struct elf_link_hash_entry *),
4528 elf_sort_symbol);
4530 while (weaks != NULL)
4532 struct elf_link_hash_entry *hlook;
4533 asection *slook;
4534 bfd_vma vlook;
4535 long ilook;
4536 size_t i, j, idx;
4538 hlook = weaks;
4539 weaks = hlook->u.weakdef;
4540 hlook->u.weakdef = NULL;
4542 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4543 || hlook->root.type == bfd_link_hash_defweak
4544 || hlook->root.type == bfd_link_hash_common
4545 || hlook->root.type == bfd_link_hash_indirect);
4546 slook = hlook->root.u.def.section;
4547 vlook = hlook->root.u.def.value;
4549 ilook = -1;
4550 i = 0;
4551 j = sym_count;
4552 while (i < j)
4554 bfd_signed_vma vdiff;
4555 idx = (i + j) / 2;
4556 h = sorted_sym_hash [idx];
4557 vdiff = vlook - h->root.u.def.value;
4558 if (vdiff < 0)
4559 j = idx;
4560 else if (vdiff > 0)
4561 i = idx + 1;
4562 else
4564 long sdiff = slook->id - h->root.u.def.section->id;
4565 if (sdiff < 0)
4566 j = idx;
4567 else if (sdiff > 0)
4568 i = idx + 1;
4569 else
4571 ilook = idx;
4572 break;
4577 /* We didn't find a value/section match. */
4578 if (ilook == -1)
4579 continue;
4581 for (i = ilook; i < sym_count; i++)
4583 h = sorted_sym_hash [i];
4585 /* Stop if value or section doesn't match. */
4586 if (h->root.u.def.value != vlook
4587 || h->root.u.def.section != slook)
4588 break;
4589 else if (h != hlook)
4591 hlook->u.weakdef = h;
4593 /* If the weak definition is in the list of dynamic
4594 symbols, make sure the real definition is put
4595 there as well. */
4596 if (hlook->dynindx != -1 && h->dynindx == -1)
4598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4599 goto error_return;
4602 /* If the real definition is in the list of dynamic
4603 symbols, make sure the weak definition is put
4604 there as well. If we don't do this, then the
4605 dynamic loader might not merge the entries for the
4606 real definition and the weak definition. */
4607 if (h->dynindx != -1 && hlook->dynindx == -1)
4609 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4610 goto error_return;
4612 break;
4617 free (sorted_sym_hash);
4620 if (bed->check_directives)
4621 (*bed->check_directives) (abfd, info);
4623 /* If this object is the same format as the output object, and it is
4624 not a shared library, then let the backend look through the
4625 relocs.
4627 This is required to build global offset table entries and to
4628 arrange for dynamic relocs. It is not required for the
4629 particular common case of linking non PIC code, even when linking
4630 against shared libraries, but unfortunately there is no way of
4631 knowing whether an object file has been compiled PIC or not.
4632 Looking through the relocs is not particularly time consuming.
4633 The problem is that we must either (1) keep the relocs in memory,
4634 which causes the linker to require additional runtime memory or
4635 (2) read the relocs twice from the input file, which wastes time.
4636 This would be a good case for using mmap.
4638 I have no idea how to handle linking PIC code into a file of a
4639 different format. It probably can't be done. */
4640 if (! dynamic
4641 && is_elf_hash_table (htab)
4642 && htab->root.creator == abfd->xvec
4643 && bed->check_relocs != NULL)
4645 asection *o;
4647 for (o = abfd->sections; o != NULL; o = o->next)
4649 Elf_Internal_Rela *internal_relocs;
4650 bfd_boolean ok;
4652 if ((o->flags & SEC_RELOC) == 0
4653 || o->reloc_count == 0
4654 || ((info->strip == strip_all || info->strip == strip_debugger)
4655 && (o->flags & SEC_DEBUGGING) != 0)
4656 || bfd_is_abs_section (o->output_section))
4657 continue;
4659 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4660 info->keep_memory);
4661 if (internal_relocs == NULL)
4662 goto error_return;
4664 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4666 if (elf_section_data (o)->relocs != internal_relocs)
4667 free (internal_relocs);
4669 if (! ok)
4670 goto error_return;
4674 /* If this is a non-traditional link, try to optimize the handling
4675 of the .stab/.stabstr sections. */
4676 if (! dynamic
4677 && ! info->traditional_format
4678 && is_elf_hash_table (htab)
4679 && (info->strip != strip_all && info->strip != strip_debugger))
4681 asection *stabstr;
4683 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4684 if (stabstr != NULL)
4686 bfd_size_type string_offset = 0;
4687 asection *stab;
4689 for (stab = abfd->sections; stab; stab = stab->next)
4690 if (CONST_STRNEQ (stab->name, ".stab")
4691 && (!stab->name[5] ||
4692 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4693 && (stab->flags & SEC_MERGE) == 0
4694 && !bfd_is_abs_section (stab->output_section))
4696 struct bfd_elf_section_data *secdata;
4698 secdata = elf_section_data (stab);
4699 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4700 stabstr, &secdata->sec_info,
4701 &string_offset))
4702 goto error_return;
4703 if (secdata->sec_info)
4704 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4709 if (is_elf_hash_table (htab) && add_needed)
4711 /* Add this bfd to the loaded list. */
4712 struct elf_link_loaded_list *n;
4714 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4715 if (n == NULL)
4716 goto error_return;
4717 n->abfd = abfd;
4718 n->next = htab->loaded;
4719 htab->loaded = n;
4722 return TRUE;
4724 error_free_vers:
4725 if (old_tab != NULL)
4726 free (old_tab);
4727 if (nondeflt_vers != NULL)
4728 free (nondeflt_vers);
4729 if (extversym != NULL)
4730 free (extversym);
4731 error_free_sym:
4732 if (isymbuf != NULL)
4733 free (isymbuf);
4734 error_return:
4735 return FALSE;
4738 /* Return the linker hash table entry of a symbol that might be
4739 satisfied by an archive symbol. Return -1 on error. */
4741 struct elf_link_hash_entry *
4742 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4743 struct bfd_link_info *info,
4744 const char *name)
4746 struct elf_link_hash_entry *h;
4747 char *p, *copy;
4748 size_t len, first;
4750 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4751 if (h != NULL)
4752 return h;
4754 /* If this is a default version (the name contains @@), look up the
4755 symbol again with only one `@' as well as without the version.
4756 The effect is that references to the symbol with and without the
4757 version will be matched by the default symbol in the archive. */
4759 p = strchr (name, ELF_VER_CHR);
4760 if (p == NULL || p[1] != ELF_VER_CHR)
4761 return h;
4763 /* First check with only one `@'. */
4764 len = strlen (name);
4765 copy = bfd_alloc (abfd, len);
4766 if (copy == NULL)
4767 return (struct elf_link_hash_entry *) 0 - 1;
4769 first = p - name + 1;
4770 memcpy (copy, name, first);
4771 memcpy (copy + first, name + first + 1, len - first);
4773 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4774 if (h == NULL)
4776 /* We also need to check references to the symbol without the
4777 version. */
4778 copy[first - 1] = '\0';
4779 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4780 FALSE, FALSE, FALSE);
4783 bfd_release (abfd, copy);
4784 return h;
4787 /* Add symbols from an ELF archive file to the linker hash table. We
4788 don't use _bfd_generic_link_add_archive_symbols because of a
4789 problem which arises on UnixWare. The UnixWare libc.so is an
4790 archive which includes an entry libc.so.1 which defines a bunch of
4791 symbols. The libc.so archive also includes a number of other
4792 object files, which also define symbols, some of which are the same
4793 as those defined in libc.so.1. Correct linking requires that we
4794 consider each object file in turn, and include it if it defines any
4795 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4796 this; it looks through the list of undefined symbols, and includes
4797 any object file which defines them. When this algorithm is used on
4798 UnixWare, it winds up pulling in libc.so.1 early and defining a
4799 bunch of symbols. This means that some of the other objects in the
4800 archive are not included in the link, which is incorrect since they
4801 precede libc.so.1 in the archive.
4803 Fortunately, ELF archive handling is simpler than that done by
4804 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4805 oddities. In ELF, if we find a symbol in the archive map, and the
4806 symbol is currently undefined, we know that we must pull in that
4807 object file.
4809 Unfortunately, we do have to make multiple passes over the symbol
4810 table until nothing further is resolved. */
4812 static bfd_boolean
4813 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4815 symindex c;
4816 bfd_boolean *defined = NULL;
4817 bfd_boolean *included = NULL;
4818 carsym *symdefs;
4819 bfd_boolean loop;
4820 bfd_size_type amt;
4821 const struct elf_backend_data *bed;
4822 struct elf_link_hash_entry * (*archive_symbol_lookup)
4823 (bfd *, struct bfd_link_info *, const char *);
4825 if (! bfd_has_map (abfd))
4827 /* An empty archive is a special case. */
4828 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4829 return TRUE;
4830 bfd_set_error (bfd_error_no_armap);
4831 return FALSE;
4834 /* Keep track of all symbols we know to be already defined, and all
4835 files we know to be already included. This is to speed up the
4836 second and subsequent passes. */
4837 c = bfd_ardata (abfd)->symdef_count;
4838 if (c == 0)
4839 return TRUE;
4840 amt = c;
4841 amt *= sizeof (bfd_boolean);
4842 defined = bfd_zmalloc (amt);
4843 included = bfd_zmalloc (amt);
4844 if (defined == NULL || included == NULL)
4845 goto error_return;
4847 symdefs = bfd_ardata (abfd)->symdefs;
4848 bed = get_elf_backend_data (abfd);
4849 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4853 file_ptr last;
4854 symindex i;
4855 carsym *symdef;
4856 carsym *symdefend;
4858 loop = FALSE;
4859 last = -1;
4861 symdef = symdefs;
4862 symdefend = symdef + c;
4863 for (i = 0; symdef < symdefend; symdef++, i++)
4865 struct elf_link_hash_entry *h;
4866 bfd *element;
4867 struct bfd_link_hash_entry *undefs_tail;
4868 symindex mark;
4870 if (defined[i] || included[i])
4871 continue;
4872 if (symdef->file_offset == last)
4874 included[i] = TRUE;
4875 continue;
4878 h = archive_symbol_lookup (abfd, info, symdef->name);
4879 if (h == (struct elf_link_hash_entry *) 0 - 1)
4880 goto error_return;
4882 if (h == NULL)
4883 continue;
4885 if (h->root.type == bfd_link_hash_common)
4887 /* We currently have a common symbol. The archive map contains
4888 a reference to this symbol, so we may want to include it. We
4889 only want to include it however, if this archive element
4890 contains a definition of the symbol, not just another common
4891 declaration of it.
4893 Unfortunately some archivers (including GNU ar) will put
4894 declarations of common symbols into their archive maps, as
4895 well as real definitions, so we cannot just go by the archive
4896 map alone. Instead we must read in the element's symbol
4897 table and check that to see what kind of symbol definition
4898 this is. */
4899 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4900 continue;
4902 else if (h->root.type != bfd_link_hash_undefined)
4904 if (h->root.type != bfd_link_hash_undefweak)
4905 defined[i] = TRUE;
4906 continue;
4909 /* We need to include this archive member. */
4910 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4911 if (element == NULL)
4912 goto error_return;
4914 if (! bfd_check_format (element, bfd_object))
4915 goto error_return;
4917 /* Doublecheck that we have not included this object
4918 already--it should be impossible, but there may be
4919 something wrong with the archive. */
4920 if (element->archive_pass != 0)
4922 bfd_set_error (bfd_error_bad_value);
4923 goto error_return;
4925 element->archive_pass = 1;
4927 undefs_tail = info->hash->undefs_tail;
4929 if (! (*info->callbacks->add_archive_element) (info, element,
4930 symdef->name))
4931 goto error_return;
4932 if (! bfd_link_add_symbols (element, info))
4933 goto error_return;
4935 /* If there are any new undefined symbols, we need to make
4936 another pass through the archive in order to see whether
4937 they can be defined. FIXME: This isn't perfect, because
4938 common symbols wind up on undefs_tail and because an
4939 undefined symbol which is defined later on in this pass
4940 does not require another pass. This isn't a bug, but it
4941 does make the code less efficient than it could be. */
4942 if (undefs_tail != info->hash->undefs_tail)
4943 loop = TRUE;
4945 /* Look backward to mark all symbols from this object file
4946 which we have already seen in this pass. */
4947 mark = i;
4950 included[mark] = TRUE;
4951 if (mark == 0)
4952 break;
4953 --mark;
4955 while (symdefs[mark].file_offset == symdef->file_offset);
4957 /* We mark subsequent symbols from this object file as we go
4958 on through the loop. */
4959 last = symdef->file_offset;
4962 while (loop);
4964 free (defined);
4965 free (included);
4967 return TRUE;
4969 error_return:
4970 if (defined != NULL)
4971 free (defined);
4972 if (included != NULL)
4973 free (included);
4974 return FALSE;
4977 /* Given an ELF BFD, add symbols to the global hash table as
4978 appropriate. */
4980 bfd_boolean
4981 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4983 switch (bfd_get_format (abfd))
4985 case bfd_object:
4986 return elf_link_add_object_symbols (abfd, info);
4987 case bfd_archive:
4988 return elf_link_add_archive_symbols (abfd, info);
4989 default:
4990 bfd_set_error (bfd_error_wrong_format);
4991 return FALSE;
4995 struct hash_codes_info
4997 unsigned long *hashcodes;
4998 bfd_boolean error;
5001 /* This function will be called though elf_link_hash_traverse to store
5002 all hash value of the exported symbols in an array. */
5004 static bfd_boolean
5005 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5007 struct hash_codes_info *inf = data;
5008 const char *name;
5009 char *p;
5010 unsigned long ha;
5011 char *alc = NULL;
5013 if (h->root.type == bfd_link_hash_warning)
5014 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5016 /* Ignore indirect symbols. These are added by the versioning code. */
5017 if (h->dynindx == -1)
5018 return TRUE;
5020 name = h->root.root.string;
5021 p = strchr (name, ELF_VER_CHR);
5022 if (p != NULL)
5024 alc = bfd_malloc (p - name + 1);
5025 if (alc == NULL)
5027 inf->error = TRUE;
5028 return FALSE;
5030 memcpy (alc, name, p - name);
5031 alc[p - name] = '\0';
5032 name = alc;
5035 /* Compute the hash value. */
5036 ha = bfd_elf_hash (name);
5038 /* Store the found hash value in the array given as the argument. */
5039 *(inf->hashcodes)++ = ha;
5041 /* And store it in the struct so that we can put it in the hash table
5042 later. */
5043 h->u.elf_hash_value = ha;
5045 if (alc != NULL)
5046 free (alc);
5048 return TRUE;
5051 struct collect_gnu_hash_codes
5053 bfd *output_bfd;
5054 const struct elf_backend_data *bed;
5055 unsigned long int nsyms;
5056 unsigned long int maskbits;
5057 unsigned long int *hashcodes;
5058 unsigned long int *hashval;
5059 unsigned long int *indx;
5060 unsigned long int *counts;
5061 bfd_vma *bitmask;
5062 bfd_byte *contents;
5063 long int min_dynindx;
5064 unsigned long int bucketcount;
5065 unsigned long int symindx;
5066 long int local_indx;
5067 long int shift1, shift2;
5068 unsigned long int mask;
5069 bfd_boolean error;
5072 /* This function will be called though elf_link_hash_traverse to store
5073 all hash value of the exported symbols in an array. */
5075 static bfd_boolean
5076 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5078 struct collect_gnu_hash_codes *s = data;
5079 const char *name;
5080 char *p;
5081 unsigned long ha;
5082 char *alc = NULL;
5084 if (h->root.type == bfd_link_hash_warning)
5085 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5087 /* Ignore indirect symbols. These are added by the versioning code. */
5088 if (h->dynindx == -1)
5089 return TRUE;
5091 /* Ignore also local symbols and undefined symbols. */
5092 if (! (*s->bed->elf_hash_symbol) (h))
5093 return TRUE;
5095 name = h->root.root.string;
5096 p = strchr (name, ELF_VER_CHR);
5097 if (p != NULL)
5099 alc = bfd_malloc (p - name + 1);
5100 if (alc == NULL)
5102 s->error = TRUE;
5103 return FALSE;
5105 memcpy (alc, name, p - name);
5106 alc[p - name] = '\0';
5107 name = alc;
5110 /* Compute the hash value. */
5111 ha = bfd_elf_gnu_hash (name);
5113 /* Store the found hash value in the array for compute_bucket_count,
5114 and also for .dynsym reordering purposes. */
5115 s->hashcodes[s->nsyms] = ha;
5116 s->hashval[h->dynindx] = ha;
5117 ++s->nsyms;
5118 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5119 s->min_dynindx = h->dynindx;
5121 if (alc != NULL)
5122 free (alc);
5124 return TRUE;
5127 /* This function will be called though elf_link_hash_traverse to do
5128 final dynaminc symbol renumbering. */
5130 static bfd_boolean
5131 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5133 struct collect_gnu_hash_codes *s = data;
5134 unsigned long int bucket;
5135 unsigned long int val;
5137 if (h->root.type == bfd_link_hash_warning)
5138 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5140 /* Ignore indirect symbols. */
5141 if (h->dynindx == -1)
5142 return TRUE;
5144 /* Ignore also local symbols and undefined symbols. */
5145 if (! (*s->bed->elf_hash_symbol) (h))
5147 if (h->dynindx >= s->min_dynindx)
5148 h->dynindx = s->local_indx++;
5149 return TRUE;
5152 bucket = s->hashval[h->dynindx] % s->bucketcount;
5153 val = (s->hashval[h->dynindx] >> s->shift1)
5154 & ((s->maskbits >> s->shift1) - 1);
5155 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5156 s->bitmask[val]
5157 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5158 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5159 if (s->counts[bucket] == 1)
5160 /* Last element terminates the chain. */
5161 val |= 1;
5162 bfd_put_32 (s->output_bfd, val,
5163 s->contents + (s->indx[bucket] - s->symindx) * 4);
5164 --s->counts[bucket];
5165 h->dynindx = s->indx[bucket]++;
5166 return TRUE;
5169 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5171 bfd_boolean
5172 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5174 return !(h->forced_local
5175 || h->root.type == bfd_link_hash_undefined
5176 || h->root.type == bfd_link_hash_undefweak
5177 || ((h->root.type == bfd_link_hash_defined
5178 || h->root.type == bfd_link_hash_defweak)
5179 && h->root.u.def.section->output_section == NULL));
5182 /* Array used to determine the number of hash table buckets to use
5183 based on the number of symbols there are. If there are fewer than
5184 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5185 fewer than 37 we use 17 buckets, and so forth. We never use more
5186 than 32771 buckets. */
5188 static const size_t elf_buckets[] =
5190 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5191 16411, 32771, 0
5194 /* Compute bucket count for hashing table. We do not use a static set
5195 of possible tables sizes anymore. Instead we determine for all
5196 possible reasonable sizes of the table the outcome (i.e., the
5197 number of collisions etc) and choose the best solution. The
5198 weighting functions are not too simple to allow the table to grow
5199 without bounds. Instead one of the weighting factors is the size.
5200 Therefore the result is always a good payoff between few collisions
5201 (= short chain lengths) and table size. */
5202 static size_t
5203 compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5204 unsigned long int nsyms, int gnu_hash)
5206 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5207 size_t best_size = 0;
5208 unsigned long int i;
5209 bfd_size_type amt;
5211 /* We have a problem here. The following code to optimize the table
5212 size requires an integer type with more the 32 bits. If
5213 BFD_HOST_U_64_BIT is set we know about such a type. */
5214 #ifdef BFD_HOST_U_64_BIT
5215 if (info->optimize)
5217 size_t minsize;
5218 size_t maxsize;
5219 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5220 bfd *dynobj = elf_hash_table (info)->dynobj;
5221 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5222 unsigned long int *counts;
5224 /* Possible optimization parameters: if we have NSYMS symbols we say
5225 that the hashing table must at least have NSYMS/4 and at most
5226 2*NSYMS buckets. */
5227 minsize = nsyms / 4;
5228 if (minsize == 0)
5229 minsize = 1;
5230 best_size = maxsize = nsyms * 2;
5231 if (gnu_hash)
5233 if (minsize < 2)
5234 minsize = 2;
5235 if ((best_size & 31) == 0)
5236 ++best_size;
5239 /* Create array where we count the collisions in. We must use bfd_malloc
5240 since the size could be large. */
5241 amt = maxsize;
5242 amt *= sizeof (unsigned long int);
5243 counts = bfd_malloc (amt);
5244 if (counts == NULL)
5245 return 0;
5247 /* Compute the "optimal" size for the hash table. The criteria is a
5248 minimal chain length. The minor criteria is (of course) the size
5249 of the table. */
5250 for (i = minsize; i < maxsize; ++i)
5252 /* Walk through the array of hashcodes and count the collisions. */
5253 BFD_HOST_U_64_BIT max;
5254 unsigned long int j;
5255 unsigned long int fact;
5257 if (gnu_hash && (i & 31) == 0)
5258 continue;
5260 memset (counts, '\0', i * sizeof (unsigned long int));
5262 /* Determine how often each hash bucket is used. */
5263 for (j = 0; j < nsyms; ++j)
5264 ++counts[hashcodes[j] % i];
5266 /* For the weight function we need some information about the
5267 pagesize on the target. This is information need not be 100%
5268 accurate. Since this information is not available (so far) we
5269 define it here to a reasonable default value. If it is crucial
5270 to have a better value some day simply define this value. */
5271 # ifndef BFD_TARGET_PAGESIZE
5272 # define BFD_TARGET_PAGESIZE (4096)
5273 # endif
5275 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5276 and the chains. */
5277 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5279 # if 1
5280 /* Variant 1: optimize for short chains. We add the squares
5281 of all the chain lengths (which favors many small chain
5282 over a few long chains). */
5283 for (j = 0; j < i; ++j)
5284 max += counts[j] * counts[j];
5286 /* This adds penalties for the overall size of the table. */
5287 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5288 max *= fact * fact;
5289 # else
5290 /* Variant 2: Optimize a lot more for small table. Here we
5291 also add squares of the size but we also add penalties for
5292 empty slots (the +1 term). */
5293 for (j = 0; j < i; ++j)
5294 max += (1 + counts[j]) * (1 + counts[j]);
5296 /* The overall size of the table is considered, but not as
5297 strong as in variant 1, where it is squared. */
5298 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5299 max *= fact;
5300 # endif
5302 /* Compare with current best results. */
5303 if (max < best_chlen)
5305 best_chlen = max;
5306 best_size = i;
5310 free (counts);
5312 else
5313 #endif /* defined (BFD_HOST_U_64_BIT) */
5315 /* This is the fallback solution if no 64bit type is available or if we
5316 are not supposed to spend much time on optimizations. We select the
5317 bucket count using a fixed set of numbers. */
5318 for (i = 0; elf_buckets[i] != 0; i++)
5320 best_size = elf_buckets[i];
5321 if (nsyms < elf_buckets[i + 1])
5322 break;
5324 if (gnu_hash && best_size < 2)
5325 best_size = 2;
5328 return best_size;
5331 /* Set up the sizes and contents of the ELF dynamic sections. This is
5332 called by the ELF linker emulation before_allocation routine. We
5333 must set the sizes of the sections before the linker sets the
5334 addresses of the various sections. */
5336 bfd_boolean
5337 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5338 const char *soname,
5339 const char *rpath,
5340 const char *filter_shlib,
5341 const char * const *auxiliary_filters,
5342 struct bfd_link_info *info,
5343 asection **sinterpptr,
5344 struct bfd_elf_version_tree *verdefs)
5346 bfd_size_type soname_indx;
5347 bfd *dynobj;
5348 const struct elf_backend_data *bed;
5349 struct elf_assign_sym_version_info asvinfo;
5351 *sinterpptr = NULL;
5353 soname_indx = (bfd_size_type) -1;
5355 if (!is_elf_hash_table (info->hash))
5356 return TRUE;
5358 bed = get_elf_backend_data (output_bfd);
5359 if (info->execstack)
5360 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5361 else if (info->noexecstack)
5362 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5363 else
5365 bfd *inputobj;
5366 asection *notesec = NULL;
5367 int exec = 0;
5369 for (inputobj = info->input_bfds;
5370 inputobj;
5371 inputobj = inputobj->link_next)
5373 asection *s;
5375 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5376 continue;
5377 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5378 if (s)
5380 if (s->flags & SEC_CODE)
5381 exec = PF_X;
5382 notesec = s;
5384 else if (bed->default_execstack)
5385 exec = PF_X;
5387 if (notesec)
5389 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5390 if (exec && info->relocatable
5391 && notesec->output_section != bfd_abs_section_ptr)
5392 notesec->output_section->flags |= SEC_CODE;
5396 /* Any syms created from now on start with -1 in
5397 got.refcount/offset and plt.refcount/offset. */
5398 elf_hash_table (info)->init_got_refcount
5399 = elf_hash_table (info)->init_got_offset;
5400 elf_hash_table (info)->init_plt_refcount
5401 = elf_hash_table (info)->init_plt_offset;
5403 /* The backend may have to create some sections regardless of whether
5404 we're dynamic or not. */
5405 if (bed->elf_backend_always_size_sections
5406 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5407 return FALSE;
5409 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5410 return FALSE;
5412 dynobj = elf_hash_table (info)->dynobj;
5414 /* If there were no dynamic objects in the link, there is nothing to
5415 do here. */
5416 if (dynobj == NULL)
5417 return TRUE;
5419 if (elf_hash_table (info)->dynamic_sections_created)
5421 struct elf_info_failed eif;
5422 struct elf_link_hash_entry *h;
5423 asection *dynstr;
5424 struct bfd_elf_version_tree *t;
5425 struct bfd_elf_version_expr *d;
5426 asection *s;
5427 bfd_boolean all_defined;
5429 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5430 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5432 if (soname != NULL)
5434 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5435 soname, TRUE);
5436 if (soname_indx == (bfd_size_type) -1
5437 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5438 return FALSE;
5441 if (info->symbolic)
5443 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5444 return FALSE;
5445 info->flags |= DF_SYMBOLIC;
5448 if (rpath != NULL)
5450 bfd_size_type indx;
5452 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5453 TRUE);
5454 if (indx == (bfd_size_type) -1
5455 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5456 return FALSE;
5458 if (info->new_dtags)
5460 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5461 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5462 return FALSE;
5466 if (filter_shlib != NULL)
5468 bfd_size_type indx;
5470 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5471 filter_shlib, TRUE);
5472 if (indx == (bfd_size_type) -1
5473 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5474 return FALSE;
5477 if (auxiliary_filters != NULL)
5479 const char * const *p;
5481 for (p = auxiliary_filters; *p != NULL; p++)
5483 bfd_size_type indx;
5485 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5486 *p, TRUE);
5487 if (indx == (bfd_size_type) -1
5488 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5489 return FALSE;
5493 eif.info = info;
5494 eif.verdefs = verdefs;
5495 eif.failed = FALSE;
5497 /* If we are supposed to export all symbols into the dynamic symbol
5498 table (this is not the normal case), then do so. */
5499 if (info->export_dynamic
5500 || (info->executable && info->dynamic))
5502 elf_link_hash_traverse (elf_hash_table (info),
5503 _bfd_elf_export_symbol,
5504 &eif);
5505 if (eif.failed)
5506 return FALSE;
5509 /* Make all global versions with definition. */
5510 for (t = verdefs; t != NULL; t = t->next)
5511 for (d = t->globals.list; d != NULL; d = d->next)
5512 if (!d->symver && d->symbol)
5514 const char *verstr, *name;
5515 size_t namelen, verlen, newlen;
5516 char *newname, *p;
5517 struct elf_link_hash_entry *newh;
5519 name = d->symbol;
5520 namelen = strlen (name);
5521 verstr = t->name;
5522 verlen = strlen (verstr);
5523 newlen = namelen + verlen + 3;
5525 newname = bfd_malloc (newlen);
5526 if (newname == NULL)
5527 return FALSE;
5528 memcpy (newname, name, namelen);
5530 /* Check the hidden versioned definition. */
5531 p = newname + namelen;
5532 *p++ = ELF_VER_CHR;
5533 memcpy (p, verstr, verlen + 1);
5534 newh = elf_link_hash_lookup (elf_hash_table (info),
5535 newname, FALSE, FALSE,
5536 FALSE);
5537 if (newh == NULL
5538 || (newh->root.type != bfd_link_hash_defined
5539 && newh->root.type != bfd_link_hash_defweak))
5541 /* Check the default versioned definition. */
5542 *p++ = ELF_VER_CHR;
5543 memcpy (p, verstr, verlen + 1);
5544 newh = elf_link_hash_lookup (elf_hash_table (info),
5545 newname, FALSE, FALSE,
5546 FALSE);
5548 free (newname);
5550 /* Mark this version if there is a definition and it is
5551 not defined in a shared object. */
5552 if (newh != NULL
5553 && !newh->def_dynamic
5554 && (newh->root.type == bfd_link_hash_defined
5555 || newh->root.type == bfd_link_hash_defweak))
5556 d->symver = 1;
5559 /* Attach all the symbols to their version information. */
5560 asvinfo.output_bfd = output_bfd;
5561 asvinfo.info = info;
5562 asvinfo.verdefs = verdefs;
5563 asvinfo.failed = FALSE;
5565 elf_link_hash_traverse (elf_hash_table (info),
5566 _bfd_elf_link_assign_sym_version,
5567 &asvinfo);
5568 if (asvinfo.failed)
5569 return FALSE;
5571 if (!info->allow_undefined_version)
5573 /* Check if all global versions have a definition. */
5574 all_defined = TRUE;
5575 for (t = verdefs; t != NULL; t = t->next)
5576 for (d = t->globals.list; d != NULL; d = d->next)
5577 if (!d->symver && !d->script)
5579 (*_bfd_error_handler)
5580 (_("%s: undefined version: %s"),
5581 d->pattern, t->name);
5582 all_defined = FALSE;
5585 if (!all_defined)
5587 bfd_set_error (bfd_error_bad_value);
5588 return FALSE;
5592 /* Find all symbols which were defined in a dynamic object and make
5593 the backend pick a reasonable value for them. */
5594 elf_link_hash_traverse (elf_hash_table (info),
5595 _bfd_elf_adjust_dynamic_symbol,
5596 &eif);
5597 if (eif.failed)
5598 return FALSE;
5600 /* Add some entries to the .dynamic section. We fill in some of the
5601 values later, in bfd_elf_final_link, but we must add the entries
5602 now so that we know the final size of the .dynamic section. */
5604 /* If there are initialization and/or finalization functions to
5605 call then add the corresponding DT_INIT/DT_FINI entries. */
5606 h = (info->init_function
5607 ? elf_link_hash_lookup (elf_hash_table (info),
5608 info->init_function, FALSE,
5609 FALSE, FALSE)
5610 : NULL);
5611 if (h != NULL
5612 && (h->ref_regular
5613 || h->def_regular))
5615 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5616 return FALSE;
5618 h = (info->fini_function
5619 ? elf_link_hash_lookup (elf_hash_table (info),
5620 info->fini_function, FALSE,
5621 FALSE, FALSE)
5622 : NULL);
5623 if (h != NULL
5624 && (h->ref_regular
5625 || h->def_regular))
5627 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5628 return FALSE;
5631 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5632 if (s != NULL && s->linker_has_input)
5634 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5635 if (! info->executable)
5637 bfd *sub;
5638 asection *o;
5640 for (sub = info->input_bfds; sub != NULL;
5641 sub = sub->link_next)
5642 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5643 for (o = sub->sections; o != NULL; o = o->next)
5644 if (elf_section_data (o)->this_hdr.sh_type
5645 == SHT_PREINIT_ARRAY)
5647 (*_bfd_error_handler)
5648 (_("%B: .preinit_array section is not allowed in DSO"),
5649 sub);
5650 break;
5653 bfd_set_error (bfd_error_nonrepresentable_section);
5654 return FALSE;
5657 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5658 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5659 return FALSE;
5661 s = bfd_get_section_by_name (output_bfd, ".init_array");
5662 if (s != NULL && s->linker_has_input)
5664 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5665 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5666 return FALSE;
5668 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5669 if (s != NULL && s->linker_has_input)
5671 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5672 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5673 return FALSE;
5676 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5677 /* If .dynstr is excluded from the link, we don't want any of
5678 these tags. Strictly, we should be checking each section
5679 individually; This quick check covers for the case where
5680 someone does a /DISCARD/ : { *(*) }. */
5681 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5683 bfd_size_type strsize;
5685 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5686 if ((info->emit_hash
5687 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5688 || (info->emit_gnu_hash
5689 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5690 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5691 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5692 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5693 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5694 bed->s->sizeof_sym))
5695 return FALSE;
5699 /* The backend must work out the sizes of all the other dynamic
5700 sections. */
5701 if (bed->elf_backend_size_dynamic_sections
5702 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5703 return FALSE;
5705 if (elf_hash_table (info)->dynamic_sections_created)
5707 unsigned long section_sym_count;
5708 asection *s;
5710 /* Set up the version definition section. */
5711 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5712 BFD_ASSERT (s != NULL);
5714 /* We may have created additional version definitions if we are
5715 just linking a regular application. */
5716 verdefs = asvinfo.verdefs;
5718 /* Skip anonymous version tag. */
5719 if (verdefs != NULL && verdefs->vernum == 0)
5720 verdefs = verdefs->next;
5722 if (verdefs == NULL && !info->create_default_symver)
5723 s->flags |= SEC_EXCLUDE;
5724 else
5726 unsigned int cdefs;
5727 bfd_size_type size;
5728 struct bfd_elf_version_tree *t;
5729 bfd_byte *p;
5730 Elf_Internal_Verdef def;
5731 Elf_Internal_Verdaux defaux;
5732 struct bfd_link_hash_entry *bh;
5733 struct elf_link_hash_entry *h;
5734 const char *name;
5736 cdefs = 0;
5737 size = 0;
5739 /* Make space for the base version. */
5740 size += sizeof (Elf_External_Verdef);
5741 size += sizeof (Elf_External_Verdaux);
5742 ++cdefs;
5744 /* Make space for the default version. */
5745 if (info->create_default_symver)
5747 size += sizeof (Elf_External_Verdef);
5748 ++cdefs;
5751 for (t = verdefs; t != NULL; t = t->next)
5753 struct bfd_elf_version_deps *n;
5755 size += sizeof (Elf_External_Verdef);
5756 size += sizeof (Elf_External_Verdaux);
5757 ++cdefs;
5759 for (n = t->deps; n != NULL; n = n->next)
5760 size += sizeof (Elf_External_Verdaux);
5763 s->size = size;
5764 s->contents = bfd_alloc (output_bfd, s->size);
5765 if (s->contents == NULL && s->size != 0)
5766 return FALSE;
5768 /* Fill in the version definition section. */
5770 p = s->contents;
5772 def.vd_version = VER_DEF_CURRENT;
5773 def.vd_flags = VER_FLG_BASE;
5774 def.vd_ndx = 1;
5775 def.vd_cnt = 1;
5776 if (info->create_default_symver)
5778 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5779 def.vd_next = sizeof (Elf_External_Verdef);
5781 else
5783 def.vd_aux = sizeof (Elf_External_Verdef);
5784 def.vd_next = (sizeof (Elf_External_Verdef)
5785 + sizeof (Elf_External_Verdaux));
5788 if (soname_indx != (bfd_size_type) -1)
5790 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5791 soname_indx);
5792 def.vd_hash = bfd_elf_hash (soname);
5793 defaux.vda_name = soname_indx;
5794 name = soname;
5796 else
5798 bfd_size_type indx;
5800 name = lbasename (output_bfd->filename);
5801 def.vd_hash = bfd_elf_hash (name);
5802 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5803 name, FALSE);
5804 if (indx == (bfd_size_type) -1)
5805 return FALSE;
5806 defaux.vda_name = indx;
5808 defaux.vda_next = 0;
5810 _bfd_elf_swap_verdef_out (output_bfd, &def,
5811 (Elf_External_Verdef *) p);
5812 p += sizeof (Elf_External_Verdef);
5813 if (info->create_default_symver)
5815 /* Add a symbol representing this version. */
5816 bh = NULL;
5817 if (! (_bfd_generic_link_add_one_symbol
5818 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5819 0, NULL, FALSE,
5820 get_elf_backend_data (dynobj)->collect, &bh)))
5821 return FALSE;
5822 h = (struct elf_link_hash_entry *) bh;
5823 h->non_elf = 0;
5824 h->def_regular = 1;
5825 h->type = STT_OBJECT;
5826 h->verinfo.vertree = NULL;
5828 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5829 return FALSE;
5831 /* Create a duplicate of the base version with the same
5832 aux block, but different flags. */
5833 def.vd_flags = 0;
5834 def.vd_ndx = 2;
5835 def.vd_aux = sizeof (Elf_External_Verdef);
5836 if (verdefs)
5837 def.vd_next = (sizeof (Elf_External_Verdef)
5838 + sizeof (Elf_External_Verdaux));
5839 else
5840 def.vd_next = 0;
5841 _bfd_elf_swap_verdef_out (output_bfd, &def,
5842 (Elf_External_Verdef *) p);
5843 p += sizeof (Elf_External_Verdef);
5845 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5846 (Elf_External_Verdaux *) p);
5847 p += sizeof (Elf_External_Verdaux);
5849 for (t = verdefs; t != NULL; t = t->next)
5851 unsigned int cdeps;
5852 struct bfd_elf_version_deps *n;
5854 cdeps = 0;
5855 for (n = t->deps; n != NULL; n = n->next)
5856 ++cdeps;
5858 /* Add a symbol representing this version. */
5859 bh = NULL;
5860 if (! (_bfd_generic_link_add_one_symbol
5861 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5862 0, NULL, FALSE,
5863 get_elf_backend_data (dynobj)->collect, &bh)))
5864 return FALSE;
5865 h = (struct elf_link_hash_entry *) bh;
5866 h->non_elf = 0;
5867 h->def_regular = 1;
5868 h->type = STT_OBJECT;
5869 h->verinfo.vertree = t;
5871 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5872 return FALSE;
5874 def.vd_version = VER_DEF_CURRENT;
5875 def.vd_flags = 0;
5876 if (t->globals.list == NULL
5877 && t->locals.list == NULL
5878 && ! t->used)
5879 def.vd_flags |= VER_FLG_WEAK;
5880 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5881 def.vd_cnt = cdeps + 1;
5882 def.vd_hash = bfd_elf_hash (t->name);
5883 def.vd_aux = sizeof (Elf_External_Verdef);
5884 def.vd_next = 0;
5885 if (t->next != NULL)
5886 def.vd_next = (sizeof (Elf_External_Verdef)
5887 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5889 _bfd_elf_swap_verdef_out (output_bfd, &def,
5890 (Elf_External_Verdef *) p);
5891 p += sizeof (Elf_External_Verdef);
5893 defaux.vda_name = h->dynstr_index;
5894 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5895 h->dynstr_index);
5896 defaux.vda_next = 0;
5897 if (t->deps != NULL)
5898 defaux.vda_next = sizeof (Elf_External_Verdaux);
5899 t->name_indx = defaux.vda_name;
5901 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5902 (Elf_External_Verdaux *) p);
5903 p += sizeof (Elf_External_Verdaux);
5905 for (n = t->deps; n != NULL; n = n->next)
5907 if (n->version_needed == NULL)
5909 /* This can happen if there was an error in the
5910 version script. */
5911 defaux.vda_name = 0;
5913 else
5915 defaux.vda_name = n->version_needed->name_indx;
5916 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5917 defaux.vda_name);
5919 if (n->next == NULL)
5920 defaux.vda_next = 0;
5921 else
5922 defaux.vda_next = sizeof (Elf_External_Verdaux);
5924 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5925 (Elf_External_Verdaux *) p);
5926 p += sizeof (Elf_External_Verdaux);
5930 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5931 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5932 return FALSE;
5934 elf_tdata (output_bfd)->cverdefs = cdefs;
5937 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5939 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5940 return FALSE;
5942 else if (info->flags & DF_BIND_NOW)
5944 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5945 return FALSE;
5948 if (info->flags_1)
5950 if (info->executable)
5951 info->flags_1 &= ~ (DF_1_INITFIRST
5952 | DF_1_NODELETE
5953 | DF_1_NOOPEN);
5954 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5955 return FALSE;
5958 /* Work out the size of the version reference section. */
5960 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5961 BFD_ASSERT (s != NULL);
5963 struct elf_find_verdep_info sinfo;
5965 sinfo.output_bfd = output_bfd;
5966 sinfo.info = info;
5967 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5968 if (sinfo.vers == 0)
5969 sinfo.vers = 1;
5970 sinfo.failed = FALSE;
5972 elf_link_hash_traverse (elf_hash_table (info),
5973 _bfd_elf_link_find_version_dependencies,
5974 &sinfo);
5975 if (sinfo.failed)
5976 return FALSE;
5978 if (elf_tdata (output_bfd)->verref == NULL)
5979 s->flags |= SEC_EXCLUDE;
5980 else
5982 Elf_Internal_Verneed *t;
5983 unsigned int size;
5984 unsigned int crefs;
5985 bfd_byte *p;
5987 /* Build the version definition section. */
5988 size = 0;
5989 crefs = 0;
5990 for (t = elf_tdata (output_bfd)->verref;
5991 t != NULL;
5992 t = t->vn_nextref)
5994 Elf_Internal_Vernaux *a;
5996 size += sizeof (Elf_External_Verneed);
5997 ++crefs;
5998 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5999 size += sizeof (Elf_External_Vernaux);
6002 s->size = size;
6003 s->contents = bfd_alloc (output_bfd, s->size);
6004 if (s->contents == NULL)
6005 return FALSE;
6007 p = s->contents;
6008 for (t = elf_tdata (output_bfd)->verref;
6009 t != NULL;
6010 t = t->vn_nextref)
6012 unsigned int caux;
6013 Elf_Internal_Vernaux *a;
6014 bfd_size_type indx;
6016 caux = 0;
6017 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6018 ++caux;
6020 t->vn_version = VER_NEED_CURRENT;
6021 t->vn_cnt = caux;
6022 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6023 elf_dt_name (t->vn_bfd) != NULL
6024 ? elf_dt_name (t->vn_bfd)
6025 : lbasename (t->vn_bfd->filename),
6026 FALSE);
6027 if (indx == (bfd_size_type) -1)
6028 return FALSE;
6029 t->vn_file = indx;
6030 t->vn_aux = sizeof (Elf_External_Verneed);
6031 if (t->vn_nextref == NULL)
6032 t->vn_next = 0;
6033 else
6034 t->vn_next = (sizeof (Elf_External_Verneed)
6035 + caux * sizeof (Elf_External_Vernaux));
6037 _bfd_elf_swap_verneed_out (output_bfd, t,
6038 (Elf_External_Verneed *) p);
6039 p += sizeof (Elf_External_Verneed);
6041 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6043 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6044 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6045 a->vna_nodename, FALSE);
6046 if (indx == (bfd_size_type) -1)
6047 return FALSE;
6048 a->vna_name = indx;
6049 if (a->vna_nextptr == NULL)
6050 a->vna_next = 0;
6051 else
6052 a->vna_next = sizeof (Elf_External_Vernaux);
6054 _bfd_elf_swap_vernaux_out (output_bfd, a,
6055 (Elf_External_Vernaux *) p);
6056 p += sizeof (Elf_External_Vernaux);
6060 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6061 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6062 return FALSE;
6064 elf_tdata (output_bfd)->cverrefs = crefs;
6068 if ((elf_tdata (output_bfd)->cverrefs == 0
6069 && elf_tdata (output_bfd)->cverdefs == 0)
6070 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6071 &section_sym_count) == 0)
6073 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6074 s->flags |= SEC_EXCLUDE;
6077 return TRUE;
6080 /* Find the first non-excluded output section. We'll use its
6081 section symbol for some emitted relocs. */
6082 void
6083 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6085 asection *s;
6087 for (s = output_bfd->sections; s != NULL; s = s->next)
6088 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6089 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6091 elf_hash_table (info)->text_index_section = s;
6092 break;
6096 /* Find two non-excluded output sections, one for code, one for data.
6097 We'll use their section symbols for some emitted relocs. */
6098 void
6099 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6101 asection *s;
6103 for (s = output_bfd->sections; s != NULL; s = s->next)
6104 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6105 == (SEC_ALLOC | SEC_READONLY))
6106 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6108 elf_hash_table (info)->text_index_section = s;
6109 break;
6112 for (s = output_bfd->sections; s != NULL; s = s->next)
6113 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6114 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6116 elf_hash_table (info)->data_index_section = s;
6117 break;
6120 if (elf_hash_table (info)->text_index_section == NULL)
6121 elf_hash_table (info)->text_index_section
6122 = elf_hash_table (info)->data_index_section;
6125 bfd_boolean
6126 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6128 const struct elf_backend_data *bed;
6130 if (!is_elf_hash_table (info->hash))
6131 return TRUE;
6133 bed = get_elf_backend_data (output_bfd);
6134 (*bed->elf_backend_init_index_section) (output_bfd, info);
6136 if (elf_hash_table (info)->dynamic_sections_created)
6138 bfd *dynobj;
6139 asection *s;
6140 bfd_size_type dynsymcount;
6141 unsigned long section_sym_count;
6142 unsigned int dtagcount;
6144 dynobj = elf_hash_table (info)->dynobj;
6146 /* Assign dynsym indicies. In a shared library we generate a
6147 section symbol for each output section, which come first.
6148 Next come all of the back-end allocated local dynamic syms,
6149 followed by the rest of the global symbols. */
6151 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6152 &section_sym_count);
6154 /* Work out the size of the symbol version section. */
6155 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6156 BFD_ASSERT (s != NULL);
6157 if (dynsymcount != 0
6158 && (s->flags & SEC_EXCLUDE) == 0)
6160 s->size = dynsymcount * sizeof (Elf_External_Versym);
6161 s->contents = bfd_zalloc (output_bfd, s->size);
6162 if (s->contents == NULL)
6163 return FALSE;
6165 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6166 return FALSE;
6169 /* Set the size of the .dynsym and .hash sections. We counted
6170 the number of dynamic symbols in elf_link_add_object_symbols.
6171 We will build the contents of .dynsym and .hash when we build
6172 the final symbol table, because until then we do not know the
6173 correct value to give the symbols. We built the .dynstr
6174 section as we went along in elf_link_add_object_symbols. */
6175 s = bfd_get_section_by_name (dynobj, ".dynsym");
6176 BFD_ASSERT (s != NULL);
6177 s->size = dynsymcount * bed->s->sizeof_sym;
6179 if (dynsymcount != 0)
6181 s->contents = bfd_alloc (output_bfd, s->size);
6182 if (s->contents == NULL)
6183 return FALSE;
6185 /* The first entry in .dynsym is a dummy symbol.
6186 Clear all the section syms, in case we don't output them all. */
6187 ++section_sym_count;
6188 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6191 elf_hash_table (info)->bucketcount = 0;
6193 /* Compute the size of the hashing table. As a side effect this
6194 computes the hash values for all the names we export. */
6195 if (info->emit_hash)
6197 unsigned long int *hashcodes;
6198 struct hash_codes_info hashinf;
6199 bfd_size_type amt;
6200 unsigned long int nsyms;
6201 size_t bucketcount;
6202 size_t hash_entry_size;
6204 /* Compute the hash values for all exported symbols. At the same
6205 time store the values in an array so that we could use them for
6206 optimizations. */
6207 amt = dynsymcount * sizeof (unsigned long int);
6208 hashcodes = bfd_malloc (amt);
6209 if (hashcodes == NULL)
6210 return FALSE;
6211 hashinf.hashcodes = hashcodes;
6212 hashinf.error = FALSE;
6214 /* Put all hash values in HASHCODES. */
6215 elf_link_hash_traverse (elf_hash_table (info),
6216 elf_collect_hash_codes, &hashinf);
6217 if (hashinf.error)
6218 return FALSE;
6220 nsyms = hashinf.hashcodes - hashcodes;
6221 bucketcount
6222 = compute_bucket_count (info, hashcodes, nsyms, 0);
6223 free (hashcodes);
6225 if (bucketcount == 0)
6226 return FALSE;
6228 elf_hash_table (info)->bucketcount = bucketcount;
6230 s = bfd_get_section_by_name (dynobj, ".hash");
6231 BFD_ASSERT (s != NULL);
6232 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6233 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6234 s->contents = bfd_zalloc (output_bfd, s->size);
6235 if (s->contents == NULL)
6236 return FALSE;
6238 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6239 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6240 s->contents + hash_entry_size);
6243 if (info->emit_gnu_hash)
6245 size_t i, cnt;
6246 unsigned char *contents;
6247 struct collect_gnu_hash_codes cinfo;
6248 bfd_size_type amt;
6249 size_t bucketcount;
6251 memset (&cinfo, 0, sizeof (cinfo));
6253 /* Compute the hash values for all exported symbols. At the same
6254 time store the values in an array so that we could use them for
6255 optimizations. */
6256 amt = dynsymcount * 2 * sizeof (unsigned long int);
6257 cinfo.hashcodes = bfd_malloc (amt);
6258 if (cinfo.hashcodes == NULL)
6259 return FALSE;
6261 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6262 cinfo.min_dynindx = -1;
6263 cinfo.output_bfd = output_bfd;
6264 cinfo.bed = bed;
6266 /* Put all hash values in HASHCODES. */
6267 elf_link_hash_traverse (elf_hash_table (info),
6268 elf_collect_gnu_hash_codes, &cinfo);
6269 if (cinfo.error)
6270 return FALSE;
6272 bucketcount
6273 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6275 if (bucketcount == 0)
6277 free (cinfo.hashcodes);
6278 return FALSE;
6281 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6282 BFD_ASSERT (s != NULL);
6284 if (cinfo.nsyms == 0)
6286 /* Empty .gnu.hash section is special. */
6287 BFD_ASSERT (cinfo.min_dynindx == -1);
6288 free (cinfo.hashcodes);
6289 s->size = 5 * 4 + bed->s->arch_size / 8;
6290 contents = bfd_zalloc (output_bfd, s->size);
6291 if (contents == NULL)
6292 return FALSE;
6293 s->contents = contents;
6294 /* 1 empty bucket. */
6295 bfd_put_32 (output_bfd, 1, contents);
6296 /* SYMIDX above the special symbol 0. */
6297 bfd_put_32 (output_bfd, 1, contents + 4);
6298 /* Just one word for bitmask. */
6299 bfd_put_32 (output_bfd, 1, contents + 8);
6300 /* Only hash fn bloom filter. */
6301 bfd_put_32 (output_bfd, 0, contents + 12);
6302 /* No hashes are valid - empty bitmask. */
6303 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6304 /* No hashes in the only bucket. */
6305 bfd_put_32 (output_bfd, 0,
6306 contents + 16 + bed->s->arch_size / 8);
6308 else
6310 unsigned long int maskwords, maskbitslog2;
6311 BFD_ASSERT (cinfo.min_dynindx != -1);
6313 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6314 if (maskbitslog2 < 3)
6315 maskbitslog2 = 5;
6316 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6317 maskbitslog2 = maskbitslog2 + 3;
6318 else
6319 maskbitslog2 = maskbitslog2 + 2;
6320 if (bed->s->arch_size == 64)
6322 if (maskbitslog2 == 5)
6323 maskbitslog2 = 6;
6324 cinfo.shift1 = 6;
6326 else
6327 cinfo.shift1 = 5;
6328 cinfo.mask = (1 << cinfo.shift1) - 1;
6329 cinfo.shift2 = maskbitslog2;
6330 cinfo.maskbits = 1 << maskbitslog2;
6331 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6332 amt = bucketcount * sizeof (unsigned long int) * 2;
6333 amt += maskwords * sizeof (bfd_vma);
6334 cinfo.bitmask = bfd_malloc (amt);
6335 if (cinfo.bitmask == NULL)
6337 free (cinfo.hashcodes);
6338 return FALSE;
6341 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6342 cinfo.indx = cinfo.counts + bucketcount;
6343 cinfo.symindx = dynsymcount - cinfo.nsyms;
6344 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6346 /* Determine how often each hash bucket is used. */
6347 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6348 for (i = 0; i < cinfo.nsyms; ++i)
6349 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6351 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6352 if (cinfo.counts[i] != 0)
6354 cinfo.indx[i] = cnt;
6355 cnt += cinfo.counts[i];
6357 BFD_ASSERT (cnt == dynsymcount);
6358 cinfo.bucketcount = bucketcount;
6359 cinfo.local_indx = cinfo.min_dynindx;
6361 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6362 s->size += cinfo.maskbits / 8;
6363 contents = bfd_zalloc (output_bfd, s->size);
6364 if (contents == NULL)
6366 free (cinfo.bitmask);
6367 free (cinfo.hashcodes);
6368 return FALSE;
6371 s->contents = contents;
6372 bfd_put_32 (output_bfd, bucketcount, contents);
6373 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6374 bfd_put_32 (output_bfd, maskwords, contents + 8);
6375 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6376 contents += 16 + cinfo.maskbits / 8;
6378 for (i = 0; i < bucketcount; ++i)
6380 if (cinfo.counts[i] == 0)
6381 bfd_put_32 (output_bfd, 0, contents);
6382 else
6383 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6384 contents += 4;
6387 cinfo.contents = contents;
6389 /* Renumber dynamic symbols, populate .gnu.hash section. */
6390 elf_link_hash_traverse (elf_hash_table (info),
6391 elf_renumber_gnu_hash_syms, &cinfo);
6393 contents = s->contents + 16;
6394 for (i = 0; i < maskwords; ++i)
6396 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6397 contents);
6398 contents += bed->s->arch_size / 8;
6401 free (cinfo.bitmask);
6402 free (cinfo.hashcodes);
6406 s = bfd_get_section_by_name (dynobj, ".dynstr");
6407 BFD_ASSERT (s != NULL);
6409 elf_finalize_dynstr (output_bfd, info);
6411 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6413 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6414 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6415 return FALSE;
6418 return TRUE;
6421 /* Indicate that we are only retrieving symbol values from this
6422 section. */
6424 void
6425 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6427 if (is_elf_hash_table (info->hash))
6428 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6429 _bfd_generic_link_just_syms (sec, info);
6432 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6434 static void
6435 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6436 asection *sec)
6438 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6439 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6442 /* Finish SHF_MERGE section merging. */
6444 bfd_boolean
6445 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6447 bfd *ibfd;
6448 asection *sec;
6450 if (!is_elf_hash_table (info->hash))
6451 return FALSE;
6453 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6454 if ((ibfd->flags & DYNAMIC) == 0)
6455 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6456 if ((sec->flags & SEC_MERGE) != 0
6457 && !bfd_is_abs_section (sec->output_section))
6459 struct bfd_elf_section_data *secdata;
6461 secdata = elf_section_data (sec);
6462 if (! _bfd_add_merge_section (abfd,
6463 &elf_hash_table (info)->merge_info,
6464 sec, &secdata->sec_info))
6465 return FALSE;
6466 else if (secdata->sec_info)
6467 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6470 if (elf_hash_table (info)->merge_info != NULL)
6471 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6472 merge_sections_remove_hook);
6473 return TRUE;
6476 /* Create an entry in an ELF linker hash table. */
6478 struct bfd_hash_entry *
6479 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6480 struct bfd_hash_table *table,
6481 const char *string)
6483 /* Allocate the structure if it has not already been allocated by a
6484 subclass. */
6485 if (entry == NULL)
6487 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6488 if (entry == NULL)
6489 return entry;
6492 /* Call the allocation method of the superclass. */
6493 entry = _bfd_link_hash_newfunc (entry, table, string);
6494 if (entry != NULL)
6496 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6497 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6499 /* Set local fields. */
6500 ret->indx = -1;
6501 ret->dynindx = -1;
6502 ret->got = htab->init_got_refcount;
6503 ret->plt = htab->init_plt_refcount;
6504 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6505 - offsetof (struct elf_link_hash_entry, size)));
6506 /* Assume that we have been called by a non-ELF symbol reader.
6507 This flag is then reset by the code which reads an ELF input
6508 file. This ensures that a symbol created by a non-ELF symbol
6509 reader will have the flag set correctly. */
6510 ret->non_elf = 1;
6513 return entry;
6516 /* Copy data from an indirect symbol to its direct symbol, hiding the
6517 old indirect symbol. Also used for copying flags to a weakdef. */
6519 void
6520 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6521 struct elf_link_hash_entry *dir,
6522 struct elf_link_hash_entry *ind)
6524 struct elf_link_hash_table *htab;
6526 /* Copy down any references that we may have already seen to the
6527 symbol which just became indirect. */
6529 dir->ref_dynamic |= ind->ref_dynamic;
6530 dir->ref_regular |= ind->ref_regular;
6531 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6532 dir->non_got_ref |= ind->non_got_ref;
6533 dir->needs_plt |= ind->needs_plt;
6534 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6536 if (ind->root.type != bfd_link_hash_indirect)
6537 return;
6539 /* Copy over the global and procedure linkage table refcount entries.
6540 These may have been already set up by a check_relocs routine. */
6541 htab = elf_hash_table (info);
6542 if (ind->got.refcount > htab->init_got_refcount.refcount)
6544 if (dir->got.refcount < 0)
6545 dir->got.refcount = 0;
6546 dir->got.refcount += ind->got.refcount;
6547 ind->got.refcount = htab->init_got_refcount.refcount;
6550 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6552 if (dir->plt.refcount < 0)
6553 dir->plt.refcount = 0;
6554 dir->plt.refcount += ind->plt.refcount;
6555 ind->plt.refcount = htab->init_plt_refcount.refcount;
6558 if (ind->dynindx != -1)
6560 if (dir->dynindx != -1)
6561 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6562 dir->dynindx = ind->dynindx;
6563 dir->dynstr_index = ind->dynstr_index;
6564 ind->dynindx = -1;
6565 ind->dynstr_index = 0;
6569 void
6570 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6571 struct elf_link_hash_entry *h,
6572 bfd_boolean force_local)
6574 h->plt = elf_hash_table (info)->init_plt_offset;
6575 h->needs_plt = 0;
6576 if (force_local)
6578 h->forced_local = 1;
6579 if (h->dynindx != -1)
6581 h->dynindx = -1;
6582 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6583 h->dynstr_index);
6588 /* Initialize an ELF linker hash table. */
6590 bfd_boolean
6591 _bfd_elf_link_hash_table_init
6592 (struct elf_link_hash_table *table,
6593 bfd *abfd,
6594 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6595 struct bfd_hash_table *,
6596 const char *),
6597 unsigned int entsize)
6599 bfd_boolean ret;
6600 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6602 memset (table, 0, sizeof * table);
6603 table->init_got_refcount.refcount = can_refcount - 1;
6604 table->init_plt_refcount.refcount = can_refcount - 1;
6605 table->init_got_offset.offset = -(bfd_vma) 1;
6606 table->init_plt_offset.offset = -(bfd_vma) 1;
6607 /* The first dynamic symbol is a dummy. */
6608 table->dynsymcount = 1;
6610 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6611 table->root.type = bfd_link_elf_hash_table;
6613 return ret;
6616 /* Create an ELF linker hash table. */
6618 struct bfd_link_hash_table *
6619 _bfd_elf_link_hash_table_create (bfd *abfd)
6621 struct elf_link_hash_table *ret;
6622 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6624 ret = bfd_malloc (amt);
6625 if (ret == NULL)
6626 return NULL;
6628 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6629 sizeof (struct elf_link_hash_entry)))
6631 free (ret);
6632 return NULL;
6635 return &ret->root;
6638 /* This is a hook for the ELF emulation code in the generic linker to
6639 tell the backend linker what file name to use for the DT_NEEDED
6640 entry for a dynamic object. */
6642 void
6643 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6645 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6646 && bfd_get_format (abfd) == bfd_object)
6647 elf_dt_name (abfd) = name;
6651 bfd_elf_get_dyn_lib_class (bfd *abfd)
6653 int lib_class;
6654 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6655 && bfd_get_format (abfd) == bfd_object)
6656 lib_class = elf_dyn_lib_class (abfd);
6657 else
6658 lib_class = 0;
6659 return lib_class;
6662 void
6663 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6665 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6666 && bfd_get_format (abfd) == bfd_object)
6667 elf_dyn_lib_class (abfd) = lib_class;
6670 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6671 the linker ELF emulation code. */
6673 struct bfd_link_needed_list *
6674 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6675 struct bfd_link_info *info)
6677 if (! is_elf_hash_table (info->hash))
6678 return NULL;
6679 return elf_hash_table (info)->needed;
6682 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6683 hook for the linker ELF emulation code. */
6685 struct bfd_link_needed_list *
6686 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6687 struct bfd_link_info *info)
6689 if (! is_elf_hash_table (info->hash))
6690 return NULL;
6691 return elf_hash_table (info)->runpath;
6694 /* Get the name actually used for a dynamic object for a link. This
6695 is the SONAME entry if there is one. Otherwise, it is the string
6696 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6698 const char *
6699 bfd_elf_get_dt_soname (bfd *abfd)
6701 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6702 && bfd_get_format (abfd) == bfd_object)
6703 return elf_dt_name (abfd);
6704 return NULL;
6707 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6708 the ELF linker emulation code. */
6710 bfd_boolean
6711 bfd_elf_get_bfd_needed_list (bfd *abfd,
6712 struct bfd_link_needed_list **pneeded)
6714 asection *s;
6715 bfd_byte *dynbuf = NULL;
6716 int elfsec;
6717 unsigned long shlink;
6718 bfd_byte *extdyn, *extdynend;
6719 size_t extdynsize;
6720 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6722 *pneeded = NULL;
6724 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6725 || bfd_get_format (abfd) != bfd_object)
6726 return TRUE;
6728 s = bfd_get_section_by_name (abfd, ".dynamic");
6729 if (s == NULL || s->size == 0)
6730 return TRUE;
6732 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6733 goto error_return;
6735 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6736 if (elfsec == -1)
6737 goto error_return;
6739 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6741 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6742 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6744 extdyn = dynbuf;
6745 extdynend = extdyn + s->size;
6746 for (; extdyn < extdynend; extdyn += extdynsize)
6748 Elf_Internal_Dyn dyn;
6750 (*swap_dyn_in) (abfd, extdyn, &dyn);
6752 if (dyn.d_tag == DT_NULL)
6753 break;
6755 if (dyn.d_tag == DT_NEEDED)
6757 const char *string;
6758 struct bfd_link_needed_list *l;
6759 unsigned int tagv = dyn.d_un.d_val;
6760 bfd_size_type amt;
6762 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6763 if (string == NULL)
6764 goto error_return;
6766 amt = sizeof *l;
6767 l = bfd_alloc (abfd, amt);
6768 if (l == NULL)
6769 goto error_return;
6771 l->by = abfd;
6772 l->name = string;
6773 l->next = *pneeded;
6774 *pneeded = l;
6778 free (dynbuf);
6780 return TRUE;
6782 error_return:
6783 if (dynbuf != NULL)
6784 free (dynbuf);
6785 return FALSE;
6788 struct elf_symbuf_symbol
6790 unsigned long st_name; /* Symbol name, index in string tbl */
6791 unsigned char st_info; /* Type and binding attributes */
6792 unsigned char st_other; /* Visibilty, and target specific */
6795 struct elf_symbuf_head
6797 struct elf_symbuf_symbol *ssym;
6798 bfd_size_type count;
6799 unsigned int st_shndx;
6802 struct elf_symbol
6804 union
6806 Elf_Internal_Sym *isym;
6807 struct elf_symbuf_symbol *ssym;
6808 } u;
6809 const char *name;
6812 /* Sort references to symbols by ascending section number. */
6814 static int
6815 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6817 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6818 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6820 return s1->st_shndx - s2->st_shndx;
6823 static int
6824 elf_sym_name_compare (const void *arg1, const void *arg2)
6826 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6827 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6828 return strcmp (s1->name, s2->name);
6831 static struct elf_symbuf_head *
6832 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6834 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6835 struct elf_symbuf_symbol *ssym;
6836 struct elf_symbuf_head *ssymbuf, *ssymhead;
6837 bfd_size_type i, shndx_count;
6839 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6840 if (indbuf == NULL)
6841 return NULL;
6843 for (ind = indbuf, i = 0; i < symcount; i++)
6844 if (isymbuf[i].st_shndx != SHN_UNDEF)
6845 *ind++ = &isymbuf[i];
6846 indbufend = ind;
6848 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6849 elf_sort_elf_symbol);
6851 shndx_count = 0;
6852 if (indbufend > indbuf)
6853 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6854 if (ind[0]->st_shndx != ind[1]->st_shndx)
6855 shndx_count++;
6857 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
6858 + (indbufend - indbuf) * sizeof (*ssymbuf));
6859 if (ssymbuf == NULL)
6861 free (indbuf);
6862 return NULL;
6865 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
6866 ssymbuf->ssym = NULL;
6867 ssymbuf->count = shndx_count;
6868 ssymbuf->st_shndx = 0;
6869 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6871 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6873 ssymhead++;
6874 ssymhead->ssym = ssym;
6875 ssymhead->count = 0;
6876 ssymhead->st_shndx = (*ind)->st_shndx;
6878 ssym->st_name = (*ind)->st_name;
6879 ssym->st_info = (*ind)->st_info;
6880 ssym->st_other = (*ind)->st_other;
6881 ssymhead->count++;
6883 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
6885 free (indbuf);
6886 return ssymbuf;
6889 /* Check if 2 sections define the same set of local and global
6890 symbols. */
6892 bfd_boolean
6893 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6894 struct bfd_link_info *info)
6896 bfd *bfd1, *bfd2;
6897 const struct elf_backend_data *bed1, *bed2;
6898 Elf_Internal_Shdr *hdr1, *hdr2;
6899 bfd_size_type symcount1, symcount2;
6900 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6901 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6902 Elf_Internal_Sym *isym, *isymend;
6903 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6904 bfd_size_type count1, count2, i;
6905 int shndx1, shndx2;
6906 bfd_boolean result;
6908 bfd1 = sec1->owner;
6909 bfd2 = sec2->owner;
6911 /* If both are .gnu.linkonce sections, they have to have the same
6912 section name. */
6913 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
6914 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
6915 return strcmp (sec1->name + sizeof ".gnu.linkonce",
6916 sec2->name + sizeof ".gnu.linkonce") == 0;
6918 /* Both sections have to be in ELF. */
6919 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6920 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6921 return FALSE;
6923 if (elf_section_type (sec1) != elf_section_type (sec2))
6924 return FALSE;
6926 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
6927 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
6929 /* If both are members of section groups, they have to have the
6930 same group name. */
6931 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
6932 return FALSE;
6935 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6936 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6937 if (shndx1 == -1 || shndx2 == -1)
6938 return FALSE;
6940 bed1 = get_elf_backend_data (bfd1);
6941 bed2 = get_elf_backend_data (bfd2);
6942 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6943 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6944 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6945 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6947 if (symcount1 == 0 || symcount2 == 0)
6948 return FALSE;
6950 result = FALSE;
6951 isymbuf1 = NULL;
6952 isymbuf2 = NULL;
6953 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6954 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6956 if (ssymbuf1 == NULL)
6958 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6959 NULL, NULL, NULL);
6960 if (isymbuf1 == NULL)
6961 goto done;
6963 if (!info->reduce_memory_overheads)
6964 elf_tdata (bfd1)->symbuf = ssymbuf1
6965 = elf_create_symbuf (symcount1, isymbuf1);
6968 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6970 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6971 NULL, NULL, NULL);
6972 if (isymbuf2 == NULL)
6973 goto done;
6975 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6976 elf_tdata (bfd2)->symbuf = ssymbuf2
6977 = elf_create_symbuf (symcount2, isymbuf2);
6980 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
6982 /* Optimized faster version. */
6983 bfd_size_type lo, hi, mid;
6984 struct elf_symbol *symp;
6985 struct elf_symbuf_symbol *ssym, *ssymend;
6987 lo = 0;
6988 hi = ssymbuf1->count;
6989 ssymbuf1++;
6990 count1 = 0;
6991 while (lo < hi)
6993 mid = (lo + hi) / 2;
6994 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
6995 hi = mid;
6996 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
6997 lo = mid + 1;
6998 else
7000 count1 = ssymbuf1[mid].count;
7001 ssymbuf1 += mid;
7002 break;
7006 lo = 0;
7007 hi = ssymbuf2->count;
7008 ssymbuf2++;
7009 count2 = 0;
7010 while (lo < hi)
7012 mid = (lo + hi) / 2;
7013 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
7014 hi = mid;
7015 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
7016 lo = mid + 1;
7017 else
7019 count2 = ssymbuf2[mid].count;
7020 ssymbuf2 += mid;
7021 break;
7025 if (count1 == 0 || count2 == 0 || count1 != count2)
7026 goto done;
7028 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7029 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7030 if (symtable1 == NULL || symtable2 == NULL)
7031 goto done;
7033 symp = symtable1;
7034 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7035 ssym < ssymend; ssym++, symp++)
7037 symp->u.ssym = ssym;
7038 symp->name = bfd_elf_string_from_elf_section (bfd1,
7039 hdr1->sh_link,
7040 ssym->st_name);
7043 symp = symtable2;
7044 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7045 ssym < ssymend; ssym++, symp++)
7047 symp->u.ssym = ssym;
7048 symp->name = bfd_elf_string_from_elf_section (bfd2,
7049 hdr2->sh_link,
7050 ssym->st_name);
7053 /* Sort symbol by name. */
7054 qsort (symtable1, count1, sizeof (struct elf_symbol),
7055 elf_sym_name_compare);
7056 qsort (symtable2, count1, sizeof (struct elf_symbol),
7057 elf_sym_name_compare);
7059 for (i = 0; i < count1; i++)
7060 /* Two symbols must have the same binding, type and name. */
7061 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7062 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7063 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7064 goto done;
7066 result = TRUE;
7067 goto done;
7070 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7071 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7072 if (symtable1 == NULL || symtable2 == NULL)
7073 goto done;
7075 /* Count definitions in the section. */
7076 count1 = 0;
7077 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7078 if (isym->st_shndx == (unsigned int) shndx1)
7079 symtable1[count1++].u.isym = isym;
7081 count2 = 0;
7082 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7083 if (isym->st_shndx == (unsigned int) shndx2)
7084 symtable2[count2++].u.isym = isym;
7086 if (count1 == 0 || count2 == 0 || count1 != count2)
7087 goto done;
7089 for (i = 0; i < count1; i++)
7090 symtable1[i].name
7091 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7092 symtable1[i].u.isym->st_name);
7094 for (i = 0; i < count2; i++)
7095 symtable2[i].name
7096 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7097 symtable2[i].u.isym->st_name);
7099 /* Sort symbol by name. */
7100 qsort (symtable1, count1, sizeof (struct elf_symbol),
7101 elf_sym_name_compare);
7102 qsort (symtable2, count1, sizeof (struct elf_symbol),
7103 elf_sym_name_compare);
7105 for (i = 0; i < count1; i++)
7106 /* Two symbols must have the same binding, type and name. */
7107 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7108 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7109 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7110 goto done;
7112 result = TRUE;
7114 done:
7115 if (symtable1)
7116 free (symtable1);
7117 if (symtable2)
7118 free (symtable2);
7119 if (isymbuf1)
7120 free (isymbuf1);
7121 if (isymbuf2)
7122 free (isymbuf2);
7124 return result;
7127 /* Return TRUE if 2 section types are compatible. */
7129 bfd_boolean
7130 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7131 bfd *bbfd, const asection *bsec)
7133 if (asec == NULL
7134 || bsec == NULL
7135 || abfd->xvec->flavour != bfd_target_elf_flavour
7136 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7137 return TRUE;
7139 return elf_section_type (asec) == elf_section_type (bsec);
7142 /* Final phase of ELF linker. */
7144 /* A structure we use to avoid passing large numbers of arguments. */
7146 struct elf_final_link_info
7148 /* General link information. */
7149 struct bfd_link_info *info;
7150 /* Output BFD. */
7151 bfd *output_bfd;
7152 /* Symbol string table. */
7153 struct bfd_strtab_hash *symstrtab;
7154 /* .dynsym section. */
7155 asection *dynsym_sec;
7156 /* .hash section. */
7157 asection *hash_sec;
7158 /* symbol version section (.gnu.version). */
7159 asection *symver_sec;
7160 /* Buffer large enough to hold contents of any section. */
7161 bfd_byte *contents;
7162 /* Buffer large enough to hold external relocs of any section. */
7163 void *external_relocs;
7164 /* Buffer large enough to hold internal relocs of any section. */
7165 Elf_Internal_Rela *internal_relocs;
7166 /* Buffer large enough to hold external local symbols of any input
7167 BFD. */
7168 bfd_byte *external_syms;
7169 /* And a buffer for symbol section indices. */
7170 Elf_External_Sym_Shndx *locsym_shndx;
7171 /* Buffer large enough to hold internal local symbols of any input
7172 BFD. */
7173 Elf_Internal_Sym *internal_syms;
7174 /* Array large enough to hold a symbol index for each local symbol
7175 of any input BFD. */
7176 long *indices;
7177 /* Array large enough to hold a section pointer for each local
7178 symbol of any input BFD. */
7179 asection **sections;
7180 /* Buffer to hold swapped out symbols. */
7181 bfd_byte *symbuf;
7182 /* And one for symbol section indices. */
7183 Elf_External_Sym_Shndx *symshndxbuf;
7184 /* Number of swapped out symbols in buffer. */
7185 size_t symbuf_count;
7186 /* Number of symbols which fit in symbuf. */
7187 size_t symbuf_size;
7188 /* And same for symshndxbuf. */
7189 size_t shndxbuf_size;
7192 /* This struct is used to pass information to elf_link_output_extsym. */
7194 struct elf_outext_info
7196 bfd_boolean failed;
7197 bfd_boolean localsyms;
7198 struct elf_final_link_info *finfo;
7202 /* Support for evaluating a complex relocation.
7204 Complex relocations are generalized, self-describing relocations. The
7205 implementation of them consists of two parts: complex symbols, and the
7206 relocations themselves.
7208 The relocations are use a reserved elf-wide relocation type code (R_RELC
7209 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7210 information (start bit, end bit, word width, etc) into the addend. This
7211 information is extracted from CGEN-generated operand tables within gas.
7213 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7214 internal) representing prefix-notation expressions, including but not
7215 limited to those sorts of expressions normally encoded as addends in the
7216 addend field. The symbol mangling format is:
7218 <node> := <literal>
7219 | <unary-operator> ':' <node>
7220 | <binary-operator> ':' <node> ':' <node>
7223 <literal> := 's' <digits=N> ':' <N character symbol name>
7224 | 'S' <digits=N> ':' <N character section name>
7225 | '#' <hexdigits>
7228 <binary-operator> := as in C
7229 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7231 static void
7232 set_symbol_value (bfd * bfd_with_globals,
7233 struct elf_final_link_info * finfo,
7234 int symidx,
7235 bfd_vma val)
7237 bfd_boolean is_local;
7238 Elf_Internal_Sym * sym;
7239 struct elf_link_hash_entry ** sym_hashes;
7240 struct elf_link_hash_entry * h;
7242 sym_hashes = elf_sym_hashes (bfd_with_globals);
7243 sym = finfo->internal_syms + symidx;
7244 is_local = ELF_ST_BIND(sym->st_info) == STB_LOCAL;
7246 if (is_local)
7248 /* It is a local symbol: move it to the
7249 "absolute" section and give it a value. */
7250 sym->st_shndx = SHN_ABS;
7251 sym->st_value = val;
7253 else
7255 /* It is a global symbol: set its link type
7256 to "defined" and give it a value. */
7257 h = sym_hashes [symidx];
7258 while (h->root.type == bfd_link_hash_indirect
7259 || h->root.type == bfd_link_hash_warning)
7260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7261 h->root.type = bfd_link_hash_defined;
7262 h->root.u.def.value = val;
7263 h->root.u.def.section = bfd_abs_section_ptr;
7267 static bfd_boolean
7268 resolve_symbol (const char * name,
7269 bfd * input_bfd,
7270 struct elf_final_link_info * finfo,
7271 bfd_vma * result,
7272 size_t locsymcount)
7274 Elf_Internal_Sym * sym;
7275 struct bfd_link_hash_entry * global_entry;
7276 const char * candidate = NULL;
7277 Elf_Internal_Shdr * symtab_hdr;
7278 asection * sec = NULL;
7279 size_t i;
7281 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7283 for (i = 0; i < locsymcount; ++ i)
7285 sym = finfo->internal_syms + i;
7286 sec = finfo->sections [i];
7288 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7289 continue;
7291 candidate = bfd_elf_string_from_elf_section (input_bfd,
7292 symtab_hdr->sh_link,
7293 sym->st_name);
7294 #ifdef DEBUG
7295 printf ("Comparing string: '%s' vs. '%s' = 0x%x\n",
7296 name, candidate, (unsigned int)sym->st_value);
7297 #endif
7298 if (candidate && strcmp (candidate, name) == 0)
7300 * result = sym->st_value;
7302 if (sym->st_shndx > SHN_UNDEF &&
7303 sym->st_shndx < SHN_LORESERVE)
7305 #ifdef DEBUG
7306 printf ("adjusting for sec '%s' @ 0x%x + 0x%x\n",
7307 sec->output_section->name,
7308 (unsigned int)sec->output_section->vma,
7309 (unsigned int)sec->output_offset);
7310 #endif
7311 * result += sec->output_offset + sec->output_section->vma;
7313 #ifdef DEBUG
7314 printf ("Found symbol with effective value %8.8x\n", (unsigned int)* result);
7315 #endif
7316 return TRUE;
7320 /* Hmm, haven't found it yet. perhaps it is a global. */
7321 global_entry = bfd_link_hash_lookup (finfo->info->hash, name, FALSE, FALSE, TRUE);
7322 if (!global_entry)
7323 return FALSE;
7325 if (global_entry->type == bfd_link_hash_defined
7326 || global_entry->type == bfd_link_hash_defweak)
7328 * result = global_entry->u.def.value
7329 + global_entry->u.def.section->output_section->vma
7330 + global_entry->u.def.section->output_offset;
7331 #ifdef DEBUG
7332 printf ("Found GLOBAL symbol '%s' with value %8.8x\n",
7333 global_entry->root.string, (unsigned int)*result);
7334 #endif
7335 return TRUE;
7338 if (global_entry->type == bfd_link_hash_common)
7340 *result = global_entry->u.def.value +
7341 bfd_com_section_ptr->output_section->vma +
7342 bfd_com_section_ptr->output_offset;
7343 #ifdef DEBUG
7344 printf ("Found COMMON symbol '%s' with value %8.8x\n",
7345 global_entry->root.string, (unsigned int)*result);
7346 #endif
7347 return TRUE;
7350 return FALSE;
7353 static bfd_boolean
7354 resolve_section (const char * name,
7355 asection * sections,
7356 bfd_vma * result)
7358 asection * curr;
7359 unsigned int len;
7361 for (curr = sections; curr; curr = curr->next)
7362 if (strcmp (curr->name, name) == 0)
7364 *result = curr->vma;
7365 return TRUE;
7368 /* Hmm. still haven't found it. try pseudo-section names. */
7369 for (curr = sections; curr; curr = curr->next)
7371 len = strlen (curr->name);
7372 if (len > strlen (name))
7373 continue;
7375 if (strncmp (curr->name, name, len) == 0)
7377 if (strncmp (".end", name + len, 4) == 0)
7379 *result = curr->vma + curr->size;
7380 return TRUE;
7383 /* Insert more pseudo-section names here, if you like. */
7387 return FALSE;
7390 static void
7391 undefined_reference (const char * reftype,
7392 const char * name)
7394 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), reftype, name);
7397 static bfd_boolean
7398 eval_symbol (bfd_vma * result,
7399 char * sym,
7400 char ** advanced,
7401 bfd * input_bfd,
7402 struct elf_final_link_info * finfo,
7403 bfd_vma addr,
7404 bfd_vma section_offset,
7405 size_t locsymcount,
7406 int signed_p)
7408 int len;
7409 int symlen;
7410 bfd_vma a;
7411 bfd_vma b;
7412 const int bufsz = 4096;
7413 char symbuf [bufsz];
7414 const char * symend;
7415 bfd_boolean symbol_is_section = FALSE;
7417 len = strlen (sym);
7418 symend = sym + len;
7420 if (len < 1 || len > bufsz)
7422 bfd_set_error (bfd_error_invalid_operation);
7423 return FALSE;
7426 switch (* sym)
7428 case '.':
7429 * result = addr + section_offset;
7430 * advanced = sym + 1;
7431 return TRUE;
7433 case '#':
7434 ++ sym;
7435 * result = strtoul (sym, advanced, 16);
7436 return TRUE;
7438 case 'S':
7439 symbol_is_section = TRUE;
7440 case 's':
7441 ++ sym;
7442 symlen = strtol (sym, &sym, 10);
7443 ++ sym; /* Skip the trailing ':'. */
7445 if ((symend < sym) || ((symlen + 1) > bufsz))
7447 bfd_set_error (bfd_error_invalid_operation);
7448 return FALSE;
7451 memcpy (symbuf, sym, symlen);
7452 symbuf [symlen] = '\0';
7453 * advanced = sym + symlen;
7455 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7456 the symbol as a section, or vice-versa. so we're pretty liberal in our
7457 interpretation here; section means "try section first", not "must be a
7458 section", and likewise with symbol. */
7460 if (symbol_is_section)
7462 if ((resolve_section (symbuf, finfo->output_bfd->sections, result) != TRUE)
7463 && (resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE))
7465 undefined_reference ("section", symbuf);
7466 return FALSE;
7469 else
7471 if ((resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE)
7472 && (resolve_section (symbuf, finfo->output_bfd->sections,
7473 result) != TRUE))
7475 undefined_reference ("symbol", symbuf);
7476 return FALSE;
7480 return TRUE;
7482 /* All that remains are operators. */
7484 #define UNARY_OP(op) \
7485 if (strncmp (sym, #op, strlen (#op)) == 0) \
7487 sym += strlen (#op); \
7488 if (* sym == ':') \
7489 ++ sym; \
7490 if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
7491 section_offset, locsymcount, signed_p) \
7492 != TRUE) \
7493 return FALSE; \
7494 if (signed_p) \
7495 * result = op ((signed)a); \
7496 else \
7497 * result = op a; \
7498 * advanced = sym; \
7499 return TRUE; \
7502 #define BINARY_OP(op) \
7503 if (strncmp (sym, #op, strlen (#op)) == 0) \
7505 sym += strlen (#op); \
7506 if (* sym == ':') \
7507 ++ sym; \
7508 if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
7509 section_offset, locsymcount, signed_p) \
7510 != TRUE) \
7511 return FALSE; \
7512 ++ sym; \
7513 if (eval_symbol (& b, sym, & sym, input_bfd, finfo, addr, \
7514 section_offset, locsymcount, signed_p) \
7515 != TRUE) \
7516 return FALSE; \
7517 if (signed_p) \
7518 * result = ((signed) a) op ((signed) b); \
7519 else \
7520 * result = a op b; \
7521 * advanced = sym; \
7522 return TRUE; \
7525 default:
7526 UNARY_OP (0-);
7527 BINARY_OP (<<);
7528 BINARY_OP (>>);
7529 BINARY_OP (==);
7530 BINARY_OP (!=);
7531 BINARY_OP (<=);
7532 BINARY_OP (>=);
7533 BINARY_OP (&&);
7534 BINARY_OP (||);
7535 UNARY_OP (~);
7536 UNARY_OP (!);
7537 BINARY_OP (*);
7538 BINARY_OP (/);
7539 BINARY_OP (%);
7540 BINARY_OP (^);
7541 BINARY_OP (|);
7542 BINARY_OP (&);
7543 BINARY_OP (+);
7544 BINARY_OP (-);
7545 BINARY_OP (<);
7546 BINARY_OP (>);
7547 #undef UNARY_OP
7548 #undef BINARY_OP
7549 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7550 bfd_set_error (bfd_error_invalid_operation);
7551 return FALSE;
7555 /* Entry point to evaluator, called from elf_link_input_bfd. */
7557 static bfd_boolean
7558 evaluate_complex_relocation_symbols (bfd * input_bfd,
7559 struct elf_final_link_info * finfo,
7560 size_t locsymcount)
7562 const struct elf_backend_data * bed;
7563 Elf_Internal_Shdr * symtab_hdr;
7564 struct elf_link_hash_entry ** sym_hashes;
7565 asection * reloc_sec;
7566 bfd_boolean result = TRUE;
7568 /* For each section, we're going to check and see if it has any
7569 complex relocations, and we're going to evaluate any of them
7570 we can. */
7572 if (finfo->info->relocatable)
7573 return TRUE;
7575 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7576 sym_hashes = elf_sym_hashes (input_bfd);
7577 bed = get_elf_backend_data (input_bfd);
7579 for (reloc_sec = input_bfd->sections; reloc_sec; reloc_sec = reloc_sec->next)
7581 Elf_Internal_Rela * internal_relocs;
7582 unsigned long i;
7584 /* This section was omitted from the link. */
7585 if (! reloc_sec->linker_mark)
7586 continue;
7588 /* Only process sections containing relocs. */
7589 if ((reloc_sec->flags & SEC_RELOC) == 0)
7590 continue;
7592 if (reloc_sec->reloc_count == 0)
7593 continue;
7595 /* Read in the relocs for this section. */
7596 internal_relocs
7597 = _bfd_elf_link_read_relocs (input_bfd, reloc_sec, NULL,
7598 (Elf_Internal_Rela *) NULL,
7599 FALSE);
7600 if (internal_relocs == NULL)
7601 continue;
7603 for (i = reloc_sec->reloc_count; i--;)
7605 Elf_Internal_Rela * rel;
7606 char * sym_name;
7607 bfd_vma index;
7608 Elf_Internal_Sym * sym;
7609 bfd_vma result;
7610 bfd_vma section_offset;
7611 bfd_vma addr;
7612 int signed_p = 0;
7614 rel = internal_relocs + i;
7615 section_offset = reloc_sec->output_section->vma
7616 + reloc_sec->output_offset;
7617 addr = rel->r_offset;
7619 index = ELF32_R_SYM (rel->r_info);
7620 if (bed->s->arch_size == 64)
7621 index >>= 24;
7623 if (index == STN_UNDEF)
7624 continue;
7626 if (index < locsymcount)
7628 /* The symbol is local. */
7629 sym = finfo->internal_syms + index;
7631 /* We're only processing STT_RELC or STT_SRELC type symbols. */
7632 if ((ELF_ST_TYPE (sym->st_info) != STT_RELC) &&
7633 (ELF_ST_TYPE (sym->st_info) != STT_SRELC))
7634 continue;
7636 sym_name = bfd_elf_string_from_elf_section
7637 (input_bfd, symtab_hdr->sh_link, sym->st_name);
7639 signed_p = (ELF_ST_TYPE (sym->st_info) == STT_SRELC);
7641 else
7643 /* The symbol is global. */
7644 struct elf_link_hash_entry * h;
7646 if (elf_bad_symtab (input_bfd))
7647 continue;
7649 h = sym_hashes [index - locsymcount];
7650 while ( h->root.type == bfd_link_hash_indirect
7651 || h->root.type == bfd_link_hash_warning)
7652 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7654 if (h->type != STT_RELC && h->type != STT_SRELC)
7655 continue;
7657 signed_p = (h->type == STT_SRELC);
7658 sym_name = (char *) h->root.root.string;
7660 #ifdef DEBUG
7661 printf ("Encountered a complex symbol!");
7662 printf (" (input_bfd %s, section %s, reloc %ld\n",
7663 input_bfd->filename, reloc_sec->name, i);
7664 printf (" symbol: idx %8.8lx, name %s\n",
7665 index, sym_name);
7666 printf (" reloc : info %8.8lx, addr %8.8lx\n",
7667 rel->r_info, addr);
7668 printf (" Evaluating '%s' ...\n ", sym_name);
7669 #endif
7670 if (eval_symbol (& result, sym_name, & sym_name, input_bfd,
7671 finfo, addr, section_offset, locsymcount,
7672 signed_p))
7673 /* Symbol evaluated OK. Update to absolute value. */
7674 set_symbol_value (input_bfd, finfo, index, result);
7676 else
7677 result = FALSE;
7680 if (internal_relocs != elf_section_data (reloc_sec)->relocs)
7681 free (internal_relocs);
7684 /* If nothing went wrong, then we adjusted
7685 everything we wanted to adjust. */
7686 return result;
7689 static void
7690 put_value (bfd_vma size,
7691 unsigned long chunksz,
7692 bfd * input_bfd,
7693 bfd_vma x,
7694 bfd_byte * location)
7696 location += (size - chunksz);
7698 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7700 switch (chunksz)
7702 default:
7703 case 0:
7704 abort ();
7705 case 1:
7706 bfd_put_8 (input_bfd, x, location);
7707 break;
7708 case 2:
7709 bfd_put_16 (input_bfd, x, location);
7710 break;
7711 case 4:
7712 bfd_put_32 (input_bfd, x, location);
7713 break;
7714 case 8:
7715 #ifdef BFD64
7716 bfd_put_64 (input_bfd, x, location);
7717 #else
7718 abort ();
7719 #endif
7720 break;
7725 static bfd_vma
7726 get_value (bfd_vma size,
7727 unsigned long chunksz,
7728 bfd * input_bfd,
7729 bfd_byte * location)
7731 bfd_vma x = 0;
7733 for (; size; size -= chunksz, location += chunksz)
7735 switch (chunksz)
7737 default:
7738 case 0:
7739 abort ();
7740 case 1:
7741 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7742 break;
7743 case 2:
7744 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7745 break;
7746 case 4:
7747 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7748 break;
7749 case 8:
7750 #ifdef BFD64
7751 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7752 #else
7753 abort ();
7754 #endif
7755 break;
7758 return x;
7761 static void
7762 decode_complex_addend
7763 (unsigned long * start, /* in bits */
7764 unsigned long * oplen, /* in bits */
7765 unsigned long * len, /* in bits */
7766 unsigned long * wordsz, /* in bytes */
7767 unsigned long * chunksz, /* in bytes */
7768 unsigned long * lsb0_p,
7769 unsigned long * signed_p,
7770 unsigned long * trunc_p,
7771 unsigned long encoded)
7773 * start = encoded & 0x3F;
7774 * len = (encoded >> 6) & 0x3F;
7775 * oplen = (encoded >> 12) & 0x3F;
7776 * wordsz = (encoded >> 18) & 0xF;
7777 * chunksz = (encoded >> 22) & 0xF;
7778 * lsb0_p = (encoded >> 27) & 1;
7779 * signed_p = (encoded >> 28) & 1;
7780 * trunc_p = (encoded >> 29) & 1;
7783 void
7784 bfd_elf_perform_complex_relocation
7785 (bfd * output_bfd ATTRIBUTE_UNUSED,
7786 struct bfd_link_info * info,
7787 bfd * input_bfd,
7788 asection * input_section,
7789 bfd_byte * contents,
7790 Elf_Internal_Rela * rel,
7791 Elf_Internal_Sym * local_syms,
7792 asection ** local_sections)
7794 const struct elf_backend_data * bed;
7795 Elf_Internal_Shdr * symtab_hdr;
7796 asection * sec;
7797 bfd_vma relocation = 0, shift, x;
7798 bfd_vma r_symndx;
7799 bfd_vma mask;
7800 unsigned long start, oplen, len, wordsz,
7801 chunksz, lsb0_p, signed_p, trunc_p;
7803 /* Perform this reloc, since it is complex.
7804 (this is not to say that it necessarily refers to a complex
7805 symbol; merely that it is a self-describing CGEN based reloc.
7806 i.e. the addend has the complete reloc information (bit start, end,
7807 word size, etc) encoded within it.). */
7808 r_symndx = ELF32_R_SYM (rel->r_info);
7809 bed = get_elf_backend_data (input_bfd);
7810 if (bed->s->arch_size == 64)
7811 r_symndx >>= 24;
7813 #ifdef DEBUG
7814 printf ("Performing complex relocation %ld...\n", r_symndx);
7815 #endif
7817 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7818 if (r_symndx < symtab_hdr->sh_info)
7820 /* The symbol is local. */
7821 Elf_Internal_Sym * sym;
7823 sym = local_syms + r_symndx;
7824 sec = local_sections [r_symndx];
7825 relocation = sym->st_value;
7826 if (sym->st_shndx > SHN_UNDEF &&
7827 sym->st_shndx < SHN_LORESERVE)
7828 relocation += (sec->output_offset +
7829 sec->output_section->vma);
7831 else
7833 /* The symbol is global. */
7834 struct elf_link_hash_entry **sym_hashes;
7835 struct elf_link_hash_entry * h;
7837 sym_hashes = elf_sym_hashes (input_bfd);
7838 h = sym_hashes [r_symndx];
7840 while (h->root.type == bfd_link_hash_indirect
7841 || h->root.type == bfd_link_hash_warning)
7842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7844 if (h->root.type == bfd_link_hash_defined
7845 || h->root.type == bfd_link_hash_defweak)
7847 sec = h->root.u.def.section;
7848 relocation = h->root.u.def.value;
7850 if (! bfd_is_abs_section (sec))
7851 relocation += (sec->output_section->vma
7852 + sec->output_offset);
7854 if (h->root.type == bfd_link_hash_undefined
7855 && !((*info->callbacks->undefined_symbol)
7856 (info, h->root.root.string, input_bfd,
7857 input_section, rel->r_offset,
7858 info->unresolved_syms_in_objects == RM_GENERATE_ERROR
7859 || ELF_ST_VISIBILITY (h->other))))
7860 return;
7863 decode_complex_addend (& start, & oplen, & len, & wordsz,
7864 & chunksz, & lsb0_p, & signed_p,
7865 & trunc_p, rel->r_addend);
7867 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7869 if (lsb0_p)
7870 shift = (start + 1) - len;
7871 else
7872 shift = (8 * wordsz) - (start + len);
7874 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7876 #ifdef DEBUG
7877 printf ("Doing complex reloc: "
7878 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7879 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7880 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7881 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7882 oplen, x, mask, relocation);
7883 #endif
7885 if (! trunc_p)
7887 /* Now do an overflow check. */
7888 if (bfd_check_overflow ((signed_p ?
7889 complain_overflow_signed :
7890 complain_overflow_unsigned),
7891 len, 0, (8 * wordsz),
7892 relocation) == bfd_reloc_overflow)
7893 (*_bfd_error_handler)
7894 ("%s (%s + 0x%lx): relocation overflow: 0x%lx %sdoes not fit "
7895 "within 0x%lx",
7896 input_bfd->filename, input_section->name, rel->r_offset,
7897 relocation, (signed_p ? "(signed) " : ""), mask);
7900 /* Do the deed. */
7901 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7903 #ifdef DEBUG
7904 printf (" relocation: %8.8lx\n"
7905 " shifted mask: %8.8lx\n"
7906 " shifted/masked reloc: %8.8lx\n"
7907 " result: %8.8lx\n",
7908 relocation, (mask << shift),
7909 ((relocation & mask) << shift), x);
7910 #endif
7911 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7914 /* When performing a relocatable link, the input relocations are
7915 preserved. But, if they reference global symbols, the indices
7916 referenced must be updated. Update all the relocations in
7917 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7919 static void
7920 elf_link_adjust_relocs (bfd *abfd,
7921 Elf_Internal_Shdr *rel_hdr,
7922 unsigned int count,
7923 struct elf_link_hash_entry **rel_hash)
7925 unsigned int i;
7926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7927 bfd_byte *erela;
7928 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7929 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7930 bfd_vma r_type_mask;
7931 int r_sym_shift;
7933 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7935 swap_in = bed->s->swap_reloc_in;
7936 swap_out = bed->s->swap_reloc_out;
7938 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7940 swap_in = bed->s->swap_reloca_in;
7941 swap_out = bed->s->swap_reloca_out;
7943 else
7944 abort ();
7946 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7947 abort ();
7949 if (bed->s->arch_size == 32)
7951 r_type_mask = 0xff;
7952 r_sym_shift = 8;
7954 else
7956 r_type_mask = 0xffffffff;
7957 r_sym_shift = 32;
7960 erela = rel_hdr->contents;
7961 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7963 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7964 unsigned int j;
7966 if (*rel_hash == NULL)
7967 continue;
7969 BFD_ASSERT ((*rel_hash)->indx >= 0);
7971 (*swap_in) (abfd, erela, irela);
7972 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7973 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7974 | (irela[j].r_info & r_type_mask));
7975 (*swap_out) (abfd, irela, erela);
7979 struct elf_link_sort_rela
7981 union {
7982 bfd_vma offset;
7983 bfd_vma sym_mask;
7984 } u;
7985 enum elf_reloc_type_class type;
7986 /* We use this as an array of size int_rels_per_ext_rel. */
7987 Elf_Internal_Rela rela[1];
7990 static int
7991 elf_link_sort_cmp1 (const void *A, const void *B)
7993 const struct elf_link_sort_rela *a = A;
7994 const struct elf_link_sort_rela *b = B;
7995 int relativea, relativeb;
7997 relativea = a->type == reloc_class_relative;
7998 relativeb = b->type == reloc_class_relative;
8000 if (relativea < relativeb)
8001 return 1;
8002 if (relativea > relativeb)
8003 return -1;
8004 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8005 return -1;
8006 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8007 return 1;
8008 if (a->rela->r_offset < b->rela->r_offset)
8009 return -1;
8010 if (a->rela->r_offset > b->rela->r_offset)
8011 return 1;
8012 return 0;
8015 static int
8016 elf_link_sort_cmp2 (const void *A, const void *B)
8018 const struct elf_link_sort_rela *a = A;
8019 const struct elf_link_sort_rela *b = B;
8020 int copya, copyb;
8022 if (a->u.offset < b->u.offset)
8023 return -1;
8024 if (a->u.offset > b->u.offset)
8025 return 1;
8026 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8027 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8028 if (copya < copyb)
8029 return -1;
8030 if (copya > copyb)
8031 return 1;
8032 if (a->rela->r_offset < b->rela->r_offset)
8033 return -1;
8034 if (a->rela->r_offset > b->rela->r_offset)
8035 return 1;
8036 return 0;
8039 static size_t
8040 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8042 asection *dynamic_relocs;
8043 asection *rela_dyn;
8044 asection *rel_dyn;
8045 bfd_size_type count, size;
8046 size_t i, ret, sort_elt, ext_size;
8047 bfd_byte *sort, *s_non_relative, *p;
8048 struct elf_link_sort_rela *sq;
8049 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8050 int i2e = bed->s->int_rels_per_ext_rel;
8051 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8052 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8053 struct bfd_link_order *lo;
8054 bfd_vma r_sym_mask;
8055 bfd_boolean use_rela;
8057 /* Find a dynamic reloc section. */
8058 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8059 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8060 if (rela_dyn != NULL && rela_dyn->size > 0
8061 && rel_dyn != NULL && rel_dyn->size > 0)
8063 bfd_boolean use_rela_initialised = FALSE;
8065 /* This is just here to stop gcc from complaining.
8066 It's initialization checking code is not perfect. */
8067 use_rela = TRUE;
8069 /* Both sections are present. Examine the sizes
8070 of the indirect sections to help us choose. */
8071 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8072 if (lo->type == bfd_indirect_link_order)
8074 asection *o = lo->u.indirect.section;
8076 if ((o->size % bed->s->sizeof_rela) == 0)
8078 if ((o->size % bed->s->sizeof_rel) == 0)
8079 /* Section size is divisible by both rel and rela sizes.
8080 It is of no help to us. */
8082 else
8084 /* Section size is only divisible by rela. */
8085 if (use_rela_initialised && (use_rela == FALSE))
8087 _bfd_error_handler
8088 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8089 bfd_set_error (bfd_error_invalid_operation);
8090 return 0;
8092 else
8094 use_rela = TRUE;
8095 use_rela_initialised = TRUE;
8099 else if ((o->size % bed->s->sizeof_rel) == 0)
8101 /* Section size is only divisible by rel. */
8102 if (use_rela_initialised && (use_rela == TRUE))
8104 _bfd_error_handler
8105 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8106 bfd_set_error (bfd_error_invalid_operation);
8107 return 0;
8109 else
8111 use_rela = FALSE;
8112 use_rela_initialised = TRUE;
8115 else
8117 /* The section size is not divisible by either - something is wrong. */
8118 _bfd_error_handler
8119 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8120 bfd_set_error (bfd_error_invalid_operation);
8121 return 0;
8125 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8126 if (lo->type == bfd_indirect_link_order)
8128 asection *o = lo->u.indirect.section;
8130 if ((o->size % bed->s->sizeof_rela) == 0)
8132 if ((o->size % bed->s->sizeof_rel) == 0)
8133 /* Section size is divisible by both rel and rela sizes.
8134 It is of no help to us. */
8136 else
8138 /* Section size is only divisible by rela. */
8139 if (use_rela_initialised && (use_rela == FALSE))
8141 _bfd_error_handler
8142 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8143 bfd_set_error (bfd_error_invalid_operation);
8144 return 0;
8146 else
8148 use_rela = TRUE;
8149 use_rela_initialised = TRUE;
8153 else if ((o->size % bed->s->sizeof_rel) == 0)
8155 /* Section size is only divisible by rel. */
8156 if (use_rela_initialised && (use_rela == TRUE))
8158 _bfd_error_handler
8159 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8160 bfd_set_error (bfd_error_invalid_operation);
8161 return 0;
8163 else
8165 use_rela = FALSE;
8166 use_rela_initialised = TRUE;
8169 else
8171 /* The section size is not divisible by either - something is wrong. */
8172 _bfd_error_handler
8173 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8174 bfd_set_error (bfd_error_invalid_operation);
8175 return 0;
8179 if (! use_rela_initialised)
8180 /* Make a guess. */
8181 use_rela = TRUE;
8183 else if (rela_dyn != NULL && rela_dyn->size > 0)
8184 use_rela = TRUE;
8185 else if (rel_dyn != NULL && rel_dyn->size > 0)
8186 use_rela = FALSE;
8187 else
8188 return 0;
8190 if (use_rela)
8192 dynamic_relocs = rela_dyn;
8193 ext_size = bed->s->sizeof_rela;
8194 swap_in = bed->s->swap_reloca_in;
8195 swap_out = bed->s->swap_reloca_out;
8197 else
8199 dynamic_relocs = rel_dyn;
8200 ext_size = bed->s->sizeof_rel;
8201 swap_in = bed->s->swap_reloc_in;
8202 swap_out = bed->s->swap_reloc_out;
8205 size = 0;
8206 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8207 if (lo->type == bfd_indirect_link_order)
8208 size += lo->u.indirect.section->size;
8210 if (size != dynamic_relocs->size)
8211 return 0;
8213 sort_elt = (sizeof (struct elf_link_sort_rela)
8214 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8216 count = dynamic_relocs->size / ext_size;
8217 sort = bfd_zmalloc (sort_elt * count);
8219 if (sort == NULL)
8221 (*info->callbacks->warning)
8222 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8223 return 0;
8226 if (bed->s->arch_size == 32)
8227 r_sym_mask = ~(bfd_vma) 0xff;
8228 else
8229 r_sym_mask = ~(bfd_vma) 0xffffffff;
8231 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8232 if (lo->type == bfd_indirect_link_order)
8234 bfd_byte *erel, *erelend;
8235 asection *o = lo->u.indirect.section;
8237 if (o->contents == NULL && o->size != 0)
8239 /* This is a reloc section that is being handled as a normal
8240 section. See bfd_section_from_shdr. We can't combine
8241 relocs in this case. */
8242 free (sort);
8243 return 0;
8245 erel = o->contents;
8246 erelend = o->contents + o->size;
8247 p = sort + o->output_offset / ext_size * sort_elt;
8249 while (erel < erelend)
8251 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8253 (*swap_in) (abfd, erel, s->rela);
8254 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8255 s->u.sym_mask = r_sym_mask;
8256 p += sort_elt;
8257 erel += ext_size;
8261 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8263 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8265 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8266 if (s->type != reloc_class_relative)
8267 break;
8269 ret = i;
8270 s_non_relative = p;
8272 sq = (struct elf_link_sort_rela *) s_non_relative;
8273 for (; i < count; i++, p += sort_elt)
8275 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8276 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8277 sq = sp;
8278 sp->u.offset = sq->rela->r_offset;
8281 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8284 if (lo->type == bfd_indirect_link_order)
8286 bfd_byte *erel, *erelend;
8287 asection *o = lo->u.indirect.section;
8289 erel = o->contents;
8290 erelend = o->contents + o->size;
8291 p = sort + o->output_offset / ext_size * sort_elt;
8292 while (erel < erelend)
8294 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8295 (*swap_out) (abfd, s->rela, erel);
8296 p += sort_elt;
8297 erel += ext_size;
8301 free (sort);
8302 *psec = dynamic_relocs;
8303 return ret;
8306 /* Flush the output symbols to the file. */
8308 static bfd_boolean
8309 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8310 const struct elf_backend_data *bed)
8312 if (finfo->symbuf_count > 0)
8314 Elf_Internal_Shdr *hdr;
8315 file_ptr pos;
8316 bfd_size_type amt;
8318 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8319 pos = hdr->sh_offset + hdr->sh_size;
8320 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8321 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8322 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8323 return FALSE;
8325 hdr->sh_size += amt;
8326 finfo->symbuf_count = 0;
8329 return TRUE;
8332 /* Add a symbol to the output symbol table. */
8334 static bfd_boolean
8335 elf_link_output_sym (struct elf_final_link_info *finfo,
8336 const char *name,
8337 Elf_Internal_Sym *elfsym,
8338 asection *input_sec,
8339 struct elf_link_hash_entry *h)
8341 bfd_byte *dest;
8342 Elf_External_Sym_Shndx *destshndx;
8343 bfd_boolean (*output_symbol_hook)
8344 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8345 struct elf_link_hash_entry *);
8346 const struct elf_backend_data *bed;
8348 bed = get_elf_backend_data (finfo->output_bfd);
8349 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8350 if (output_symbol_hook != NULL)
8352 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8353 return FALSE;
8356 if (name == NULL || *name == '\0')
8357 elfsym->st_name = 0;
8358 else if (input_sec->flags & SEC_EXCLUDE)
8359 elfsym->st_name = 0;
8360 else
8362 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8363 name, TRUE, FALSE);
8364 if (elfsym->st_name == (unsigned long) -1)
8365 return FALSE;
8368 if (finfo->symbuf_count >= finfo->symbuf_size)
8370 if (! elf_link_flush_output_syms (finfo, bed))
8371 return FALSE;
8374 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8375 destshndx = finfo->symshndxbuf;
8376 if (destshndx != NULL)
8378 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8380 bfd_size_type amt;
8382 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8383 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
8384 if (destshndx == NULL)
8385 return FALSE;
8386 memset ((char *) destshndx + amt, 0, amt);
8387 finfo->shndxbuf_size *= 2;
8389 destshndx += bfd_get_symcount (finfo->output_bfd);
8392 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8393 finfo->symbuf_count += 1;
8394 bfd_get_symcount (finfo->output_bfd) += 1;
8396 return TRUE;
8399 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8401 static bfd_boolean
8402 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8404 if (sym->st_shndx > SHN_HIRESERVE)
8406 /* The gABI doesn't support dynamic symbols in output sections
8407 beyond 64k. */
8408 (*_bfd_error_handler)
8409 (_("%B: Too many sections: %d (>= %d)"),
8410 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8411 bfd_set_error (bfd_error_nonrepresentable_section);
8412 return FALSE;
8414 return TRUE;
8417 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8418 allowing an unsatisfied unversioned symbol in the DSO to match a
8419 versioned symbol that would normally require an explicit version.
8420 We also handle the case that a DSO references a hidden symbol
8421 which may be satisfied by a versioned symbol in another DSO. */
8423 static bfd_boolean
8424 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8425 const struct elf_backend_data *bed,
8426 struct elf_link_hash_entry *h)
8428 bfd *abfd;
8429 struct elf_link_loaded_list *loaded;
8431 if (!is_elf_hash_table (info->hash))
8432 return FALSE;
8434 switch (h->root.type)
8436 default:
8437 abfd = NULL;
8438 break;
8440 case bfd_link_hash_undefined:
8441 case bfd_link_hash_undefweak:
8442 abfd = h->root.u.undef.abfd;
8443 if ((abfd->flags & DYNAMIC) == 0
8444 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8445 return FALSE;
8446 break;
8448 case bfd_link_hash_defined:
8449 case bfd_link_hash_defweak:
8450 abfd = h->root.u.def.section->owner;
8451 break;
8453 case bfd_link_hash_common:
8454 abfd = h->root.u.c.p->section->owner;
8455 break;
8457 BFD_ASSERT (abfd != NULL);
8459 for (loaded = elf_hash_table (info)->loaded;
8460 loaded != NULL;
8461 loaded = loaded->next)
8463 bfd *input;
8464 Elf_Internal_Shdr *hdr;
8465 bfd_size_type symcount;
8466 bfd_size_type extsymcount;
8467 bfd_size_type extsymoff;
8468 Elf_Internal_Shdr *versymhdr;
8469 Elf_Internal_Sym *isym;
8470 Elf_Internal_Sym *isymend;
8471 Elf_Internal_Sym *isymbuf;
8472 Elf_External_Versym *ever;
8473 Elf_External_Versym *extversym;
8475 input = loaded->abfd;
8477 /* We check each DSO for a possible hidden versioned definition. */
8478 if (input == abfd
8479 || (input->flags & DYNAMIC) == 0
8480 || elf_dynversym (input) == 0)
8481 continue;
8483 hdr = &elf_tdata (input)->dynsymtab_hdr;
8485 symcount = hdr->sh_size / bed->s->sizeof_sym;
8486 if (elf_bad_symtab (input))
8488 extsymcount = symcount;
8489 extsymoff = 0;
8491 else
8493 extsymcount = symcount - hdr->sh_info;
8494 extsymoff = hdr->sh_info;
8497 if (extsymcount == 0)
8498 continue;
8500 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8501 NULL, NULL, NULL);
8502 if (isymbuf == NULL)
8503 return FALSE;
8505 /* Read in any version definitions. */
8506 versymhdr = &elf_tdata (input)->dynversym_hdr;
8507 extversym = bfd_malloc (versymhdr->sh_size);
8508 if (extversym == NULL)
8509 goto error_ret;
8511 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8512 || (bfd_bread (extversym, versymhdr->sh_size, input)
8513 != versymhdr->sh_size))
8515 free (extversym);
8516 error_ret:
8517 free (isymbuf);
8518 return FALSE;
8521 ever = extversym + extsymoff;
8522 isymend = isymbuf + extsymcount;
8523 for (isym = isymbuf; isym < isymend; isym++, ever++)
8525 const char *name;
8526 Elf_Internal_Versym iver;
8527 unsigned short version_index;
8529 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8530 || isym->st_shndx == SHN_UNDEF)
8531 continue;
8533 name = bfd_elf_string_from_elf_section (input,
8534 hdr->sh_link,
8535 isym->st_name);
8536 if (strcmp (name, h->root.root.string) != 0)
8537 continue;
8539 _bfd_elf_swap_versym_in (input, ever, &iver);
8541 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8543 /* If we have a non-hidden versioned sym, then it should
8544 have provided a definition for the undefined sym. */
8545 abort ();
8548 version_index = iver.vs_vers & VERSYM_VERSION;
8549 if (version_index == 1 || version_index == 2)
8551 /* This is the base or first version. We can use it. */
8552 free (extversym);
8553 free (isymbuf);
8554 return TRUE;
8558 free (extversym);
8559 free (isymbuf);
8562 return FALSE;
8565 /* Add an external symbol to the symbol table. This is called from
8566 the hash table traversal routine. When generating a shared object,
8567 we go through the symbol table twice. The first time we output
8568 anything that might have been forced to local scope in a version
8569 script. The second time we output the symbols that are still
8570 global symbols. */
8572 static bfd_boolean
8573 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8575 struct elf_outext_info *eoinfo = data;
8576 struct elf_final_link_info *finfo = eoinfo->finfo;
8577 bfd_boolean strip;
8578 Elf_Internal_Sym sym;
8579 asection *input_sec;
8580 const struct elf_backend_data *bed;
8582 if (h->root.type == bfd_link_hash_warning)
8584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8585 if (h->root.type == bfd_link_hash_new)
8586 return TRUE;
8589 /* Decide whether to output this symbol in this pass. */
8590 if (eoinfo->localsyms)
8592 if (!h->forced_local)
8593 return TRUE;
8595 else
8597 if (h->forced_local)
8598 return TRUE;
8601 bed = get_elf_backend_data (finfo->output_bfd);
8603 if (h->root.type == bfd_link_hash_undefined)
8605 /* If we have an undefined symbol reference here then it must have
8606 come from a shared library that is being linked in. (Undefined
8607 references in regular files have already been handled). */
8608 bfd_boolean ignore_undef = FALSE;
8610 /* Some symbols may be special in that the fact that they're
8611 undefined can be safely ignored - let backend determine that. */
8612 if (bed->elf_backend_ignore_undef_symbol)
8613 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8615 /* If we are reporting errors for this situation then do so now. */
8616 if (ignore_undef == FALSE
8617 && h->ref_dynamic
8618 && ! h->ref_regular
8619 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8620 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8622 if (! (finfo->info->callbacks->undefined_symbol
8623 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8624 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8626 eoinfo->failed = TRUE;
8627 return FALSE;
8632 /* We should also warn if a forced local symbol is referenced from
8633 shared libraries. */
8634 if (! finfo->info->relocatable
8635 && (! finfo->info->shared)
8636 && h->forced_local
8637 && h->ref_dynamic
8638 && !h->dynamic_def
8639 && !h->dynamic_weak
8640 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8642 (*_bfd_error_handler)
8643 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8644 finfo->output_bfd,
8645 h->root.u.def.section == bfd_abs_section_ptr
8646 ? finfo->output_bfd : h->root.u.def.section->owner,
8647 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8648 ? "internal"
8649 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8650 ? "hidden" : "local",
8651 h->root.root.string);
8652 eoinfo->failed = TRUE;
8653 return FALSE;
8656 /* We don't want to output symbols that have never been mentioned by
8657 a regular file, or that we have been told to strip. However, if
8658 h->indx is set to -2, the symbol is used by a reloc and we must
8659 output it. */
8660 if (h->indx == -2)
8661 strip = FALSE;
8662 else if ((h->def_dynamic
8663 || h->ref_dynamic
8664 || h->root.type == bfd_link_hash_new)
8665 && !h->def_regular
8666 && !h->ref_regular)
8667 strip = TRUE;
8668 else if (finfo->info->strip == strip_all)
8669 strip = TRUE;
8670 else if (finfo->info->strip == strip_some
8671 && bfd_hash_lookup (finfo->info->keep_hash,
8672 h->root.root.string, FALSE, FALSE) == NULL)
8673 strip = TRUE;
8674 else if (finfo->info->strip_discarded
8675 && (h->root.type == bfd_link_hash_defined
8676 || h->root.type == bfd_link_hash_defweak)
8677 && elf_discarded_section (h->root.u.def.section))
8678 strip = TRUE;
8679 else
8680 strip = FALSE;
8682 /* If we're stripping it, and it's not a dynamic symbol, there's
8683 nothing else to do unless it is a forced local symbol. */
8684 if (strip
8685 && h->dynindx == -1
8686 && !h->forced_local)
8687 return TRUE;
8689 sym.st_value = 0;
8690 sym.st_size = h->size;
8691 sym.st_other = h->other;
8692 if (h->forced_local)
8693 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8694 else if (h->root.type == bfd_link_hash_undefweak
8695 || h->root.type == bfd_link_hash_defweak)
8696 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8697 else
8698 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8700 switch (h->root.type)
8702 default:
8703 case bfd_link_hash_new:
8704 case bfd_link_hash_warning:
8705 abort ();
8706 return FALSE;
8708 case bfd_link_hash_undefined:
8709 case bfd_link_hash_undefweak:
8710 input_sec = bfd_und_section_ptr;
8711 sym.st_shndx = SHN_UNDEF;
8712 break;
8714 case bfd_link_hash_defined:
8715 case bfd_link_hash_defweak:
8717 input_sec = h->root.u.def.section;
8718 if (input_sec->output_section != NULL)
8720 sym.st_shndx =
8721 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8722 input_sec->output_section);
8723 if (sym.st_shndx == SHN_BAD)
8725 (*_bfd_error_handler)
8726 (_("%B: could not find output section %A for input section %A"),
8727 finfo->output_bfd, input_sec->output_section, input_sec);
8728 eoinfo->failed = TRUE;
8729 return FALSE;
8732 /* ELF symbols in relocatable files are section relative,
8733 but in nonrelocatable files they are virtual
8734 addresses. */
8735 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8736 if (! finfo->info->relocatable)
8738 sym.st_value += input_sec->output_section->vma;
8739 if (h->type == STT_TLS)
8741 /* STT_TLS symbols are relative to PT_TLS segment
8742 base. */
8743 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
8744 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
8748 else
8750 BFD_ASSERT (input_sec->owner == NULL
8751 || (input_sec->owner->flags & DYNAMIC) != 0);
8752 sym.st_shndx = SHN_UNDEF;
8753 input_sec = bfd_und_section_ptr;
8756 break;
8758 case bfd_link_hash_common:
8759 input_sec = h->root.u.c.p->section;
8760 sym.st_shndx = bed->common_section_index (input_sec);
8761 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8762 break;
8764 case bfd_link_hash_indirect:
8765 /* These symbols are created by symbol versioning. They point
8766 to the decorated version of the name. For example, if the
8767 symbol foo@@GNU_1.2 is the default, which should be used when
8768 foo is used with no version, then we add an indirect symbol
8769 foo which points to foo@@GNU_1.2. We ignore these symbols,
8770 since the indirected symbol is already in the hash table. */
8771 return TRUE;
8774 /* Give the processor backend a chance to tweak the symbol value,
8775 and also to finish up anything that needs to be done for this
8776 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8777 forced local syms when non-shared is due to a historical quirk. */
8778 if ((h->dynindx != -1
8779 || h->forced_local)
8780 && ((finfo->info->shared
8781 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8782 || h->root.type != bfd_link_hash_undefweak))
8783 || !h->forced_local)
8784 && elf_hash_table (finfo->info)->dynamic_sections_created)
8786 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8787 (finfo->output_bfd, finfo->info, h, &sym)))
8789 eoinfo->failed = TRUE;
8790 return FALSE;
8794 /* If we are marking the symbol as undefined, and there are no
8795 non-weak references to this symbol from a regular object, then
8796 mark the symbol as weak undefined; if there are non-weak
8797 references, mark the symbol as strong. We can't do this earlier,
8798 because it might not be marked as undefined until the
8799 finish_dynamic_symbol routine gets through with it. */
8800 if (sym.st_shndx == SHN_UNDEF
8801 && h->ref_regular
8802 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8803 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8805 int bindtype;
8807 if (h->ref_regular_nonweak)
8808 bindtype = STB_GLOBAL;
8809 else
8810 bindtype = STB_WEAK;
8811 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8814 /* If a non-weak symbol with non-default visibility is not defined
8815 locally, it is a fatal error. */
8816 if (! finfo->info->relocatable
8817 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8818 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8819 && h->root.type == bfd_link_hash_undefined
8820 && !h->def_regular)
8822 (*_bfd_error_handler)
8823 (_("%B: %s symbol `%s' isn't defined"),
8824 finfo->output_bfd,
8825 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8826 ? "protected"
8827 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8828 ? "internal" : "hidden",
8829 h->root.root.string);
8830 eoinfo->failed = TRUE;
8831 return FALSE;
8834 /* If this symbol should be put in the .dynsym section, then put it
8835 there now. We already know the symbol index. We also fill in
8836 the entry in the .hash section. */
8837 if (h->dynindx != -1
8838 && elf_hash_table (finfo->info)->dynamic_sections_created)
8840 bfd_byte *esym;
8842 sym.st_name = h->dynstr_index;
8843 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8844 if (! check_dynsym (finfo->output_bfd, &sym))
8846 eoinfo->failed = TRUE;
8847 return FALSE;
8849 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8851 if (finfo->hash_sec != NULL)
8853 size_t hash_entry_size;
8854 bfd_byte *bucketpos;
8855 bfd_vma chain;
8856 size_t bucketcount;
8857 size_t bucket;
8859 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8860 bucket = h->u.elf_hash_value % bucketcount;
8862 hash_entry_size
8863 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8864 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8865 + (bucket + 2) * hash_entry_size);
8866 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8867 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8868 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8869 ((bfd_byte *) finfo->hash_sec->contents
8870 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8873 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8875 Elf_Internal_Versym iversym;
8876 Elf_External_Versym *eversym;
8878 if (!h->def_regular)
8880 if (h->verinfo.verdef == NULL)
8881 iversym.vs_vers = 0;
8882 else
8883 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8885 else
8887 if (h->verinfo.vertree == NULL)
8888 iversym.vs_vers = 1;
8889 else
8890 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8891 if (finfo->info->create_default_symver)
8892 iversym.vs_vers++;
8895 if (h->hidden)
8896 iversym.vs_vers |= VERSYM_HIDDEN;
8898 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8899 eversym += h->dynindx;
8900 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8904 /* If we're stripping it, then it was just a dynamic symbol, and
8905 there's nothing else to do. */
8906 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8907 return TRUE;
8909 h->indx = bfd_get_symcount (finfo->output_bfd);
8911 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8913 eoinfo->failed = TRUE;
8914 return FALSE;
8917 return TRUE;
8920 /* Return TRUE if special handling is done for relocs in SEC against
8921 symbols defined in discarded sections. */
8923 static bfd_boolean
8924 elf_section_ignore_discarded_relocs (asection *sec)
8926 const struct elf_backend_data *bed;
8928 switch (sec->sec_info_type)
8930 case ELF_INFO_TYPE_STABS:
8931 case ELF_INFO_TYPE_EH_FRAME:
8932 return TRUE;
8933 default:
8934 break;
8937 bed = get_elf_backend_data (sec->owner);
8938 if (bed->elf_backend_ignore_discarded_relocs != NULL
8939 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8940 return TRUE;
8942 return FALSE;
8945 /* Return a mask saying how ld should treat relocations in SEC against
8946 symbols defined in discarded sections. If this function returns
8947 COMPLAIN set, ld will issue a warning message. If this function
8948 returns PRETEND set, and the discarded section was link-once and the
8949 same size as the kept link-once section, ld will pretend that the
8950 symbol was actually defined in the kept section. Otherwise ld will
8951 zero the reloc (at least that is the intent, but some cooperation by
8952 the target dependent code is needed, particularly for REL targets). */
8954 unsigned int
8955 _bfd_elf_default_action_discarded (asection *sec)
8957 if (sec->flags & SEC_DEBUGGING)
8958 return PRETEND;
8960 if (strcmp (".eh_frame", sec->name) == 0)
8961 return 0;
8963 if (strcmp (".gcc_except_table", sec->name) == 0)
8964 return 0;
8966 return COMPLAIN | PRETEND;
8969 /* Find a match between a section and a member of a section group. */
8971 static asection *
8972 match_group_member (asection *sec, asection *group,
8973 struct bfd_link_info *info)
8975 asection *first = elf_next_in_group (group);
8976 asection *s = first;
8978 while (s != NULL)
8980 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8981 return s;
8983 s = elf_next_in_group (s);
8984 if (s == first)
8985 break;
8988 return NULL;
8991 /* Check if the kept section of a discarded section SEC can be used
8992 to replace it. Return the replacement if it is OK. Otherwise return
8993 NULL. */
8995 asection *
8996 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8998 asection *kept;
9000 kept = sec->kept_section;
9001 if (kept != NULL)
9003 if ((kept->flags & SEC_GROUP) != 0)
9004 kept = match_group_member (sec, kept, info);
9005 if (kept != NULL && sec->size != kept->size)
9006 kept = NULL;
9007 sec->kept_section = kept;
9009 return kept;
9012 /* Link an input file into the linker output file. This function
9013 handles all the sections and relocations of the input file at once.
9014 This is so that we only have to read the local symbols once, and
9015 don't have to keep them in memory. */
9017 static bfd_boolean
9018 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9020 int (*relocate_section)
9021 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9022 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9023 bfd *output_bfd;
9024 Elf_Internal_Shdr *symtab_hdr;
9025 size_t locsymcount;
9026 size_t extsymoff;
9027 Elf_Internal_Sym *isymbuf;
9028 Elf_Internal_Sym *isym;
9029 Elf_Internal_Sym *isymend;
9030 long *pindex;
9031 asection **ppsection;
9032 asection *o;
9033 const struct elf_backend_data *bed;
9034 struct elf_link_hash_entry **sym_hashes;
9036 output_bfd = finfo->output_bfd;
9037 bed = get_elf_backend_data (output_bfd);
9038 relocate_section = bed->elf_backend_relocate_section;
9040 /* If this is a dynamic object, we don't want to do anything here:
9041 we don't want the local symbols, and we don't want the section
9042 contents. */
9043 if ((input_bfd->flags & DYNAMIC) != 0)
9044 return TRUE;
9046 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9047 if (elf_bad_symtab (input_bfd))
9049 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9050 extsymoff = 0;
9052 else
9054 locsymcount = symtab_hdr->sh_info;
9055 extsymoff = symtab_hdr->sh_info;
9058 /* Read the local symbols. */
9059 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9060 if (isymbuf == NULL && locsymcount != 0)
9062 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9063 finfo->internal_syms,
9064 finfo->external_syms,
9065 finfo->locsym_shndx);
9066 if (isymbuf == NULL)
9067 return FALSE;
9069 /* evaluate_complex_relocation_symbols looks for symbols in
9070 finfo->internal_syms. */
9071 else if (isymbuf != NULL && locsymcount != 0)
9073 bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9074 finfo->internal_syms,
9075 finfo->external_syms,
9076 finfo->locsym_shndx);
9079 /* Find local symbol sections and adjust values of symbols in
9080 SEC_MERGE sections. Write out those local symbols we know are
9081 going into the output file. */
9082 isymend = isymbuf + locsymcount;
9083 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9084 isym < isymend;
9085 isym++, pindex++, ppsection++)
9087 asection *isec;
9088 const char *name;
9089 Elf_Internal_Sym osym;
9091 *pindex = -1;
9093 if (elf_bad_symtab (input_bfd))
9095 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9097 *ppsection = NULL;
9098 continue;
9102 if (isym->st_shndx == SHN_UNDEF)
9103 isec = bfd_und_section_ptr;
9104 else if (isym->st_shndx < SHN_LORESERVE
9105 || isym->st_shndx > SHN_HIRESERVE)
9107 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9108 if (isec
9109 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
9110 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9111 isym->st_value =
9112 _bfd_merged_section_offset (output_bfd, &isec,
9113 elf_section_data (isec)->sec_info,
9114 isym->st_value);
9116 else if (isym->st_shndx == SHN_ABS)
9117 isec = bfd_abs_section_ptr;
9118 else if (isym->st_shndx == SHN_COMMON)
9119 isec = bfd_com_section_ptr;
9120 else
9122 /* Don't attempt to output symbols with st_shnx in the
9123 reserved range other than SHN_ABS and SHN_COMMON. */
9124 *ppsection = NULL;
9125 continue;
9128 *ppsection = isec;
9130 /* Don't output the first, undefined, symbol. */
9131 if (ppsection == finfo->sections)
9132 continue;
9134 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9136 /* We never output section symbols. Instead, we use the
9137 section symbol of the corresponding section in the output
9138 file. */
9139 continue;
9142 /* If we are stripping all symbols, we don't want to output this
9143 one. */
9144 if (finfo->info->strip == strip_all)
9145 continue;
9147 /* If we are discarding all local symbols, we don't want to
9148 output this one. If we are generating a relocatable output
9149 file, then some of the local symbols may be required by
9150 relocs; we output them below as we discover that they are
9151 needed. */
9152 if (finfo->info->discard == discard_all)
9153 continue;
9155 /* If this symbol is defined in a section which we are
9156 discarding, we don't need to keep it. */
9157 if (isym->st_shndx != SHN_UNDEF
9158 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9159 && (isec == NULL
9160 || bfd_section_removed_from_list (output_bfd,
9161 isec->output_section)))
9162 continue;
9164 /* Get the name of the symbol. */
9165 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9166 isym->st_name);
9167 if (name == NULL)
9168 return FALSE;
9170 /* See if we are discarding symbols with this name. */
9171 if ((finfo->info->strip == strip_some
9172 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9173 == NULL))
9174 || (((finfo->info->discard == discard_sec_merge
9175 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9176 || finfo->info->discard == discard_l)
9177 && bfd_is_local_label_name (input_bfd, name)))
9178 continue;
9180 /* If we get here, we are going to output this symbol. */
9182 osym = *isym;
9184 /* Adjust the section index for the output file. */
9185 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9186 isec->output_section);
9187 if (osym.st_shndx == SHN_BAD)
9188 return FALSE;
9190 *pindex = bfd_get_symcount (output_bfd);
9192 /* ELF symbols in relocatable files are section relative, but
9193 in executable files they are virtual addresses. Note that
9194 this code assumes that all ELF sections have an associated
9195 BFD section with a reasonable value for output_offset; below
9196 we assume that they also have a reasonable value for
9197 output_section. Any special sections must be set up to meet
9198 these requirements. */
9199 osym.st_value += isec->output_offset;
9200 if (! finfo->info->relocatable)
9202 osym.st_value += isec->output_section->vma;
9203 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9205 /* STT_TLS symbols are relative to PT_TLS segment base. */
9206 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9207 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9211 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9212 return FALSE;
9215 if (! evaluate_complex_relocation_symbols (input_bfd, finfo, locsymcount))
9216 return FALSE;
9218 /* Relocate the contents of each section. */
9219 sym_hashes = elf_sym_hashes (input_bfd);
9220 for (o = input_bfd->sections; o != NULL; o = o->next)
9222 bfd_byte *contents;
9224 if (! o->linker_mark)
9226 /* This section was omitted from the link. */
9227 continue;
9230 if ((o->flags & SEC_HAS_CONTENTS) == 0
9231 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9232 continue;
9234 if ((o->flags & SEC_LINKER_CREATED) != 0)
9236 /* Section was created by _bfd_elf_link_create_dynamic_sections
9237 or somesuch. */
9238 continue;
9241 /* Get the contents of the section. They have been cached by a
9242 relaxation routine. Note that o is a section in an input
9243 file, so the contents field will not have been set by any of
9244 the routines which work on output files. */
9245 if (elf_section_data (o)->this_hdr.contents != NULL)
9246 contents = elf_section_data (o)->this_hdr.contents;
9247 else
9249 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9251 contents = finfo->contents;
9252 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9253 return FALSE;
9256 if ((o->flags & SEC_RELOC) != 0)
9258 Elf_Internal_Rela *internal_relocs;
9259 bfd_vma r_type_mask;
9260 int r_sym_shift;
9261 int ret;
9263 /* Get the swapped relocs. */
9264 internal_relocs
9265 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9266 finfo->internal_relocs, FALSE);
9267 if (internal_relocs == NULL
9268 && o->reloc_count > 0)
9269 return FALSE;
9271 if (bed->s->arch_size == 32)
9273 r_type_mask = 0xff;
9274 r_sym_shift = 8;
9276 else
9278 r_type_mask = 0xffffffff;
9279 r_sym_shift = 32;
9282 /* Run through the relocs looking for any against symbols
9283 from discarded sections and section symbols from
9284 removed link-once sections. Complain about relocs
9285 against discarded sections. Zero relocs against removed
9286 link-once sections. */
9287 if (!elf_section_ignore_discarded_relocs (o))
9289 Elf_Internal_Rela *rel, *relend;
9290 unsigned int action = (*bed->action_discarded) (o);
9292 rel = internal_relocs;
9293 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9294 for ( ; rel < relend; rel++)
9296 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9297 asection **ps, *sec;
9298 struct elf_link_hash_entry *h = NULL;
9299 const char *sym_name;
9301 if (r_symndx == STN_UNDEF)
9302 continue;
9304 if (r_symndx >= locsymcount
9305 || (elf_bad_symtab (input_bfd)
9306 && finfo->sections[r_symndx] == NULL))
9308 h = sym_hashes[r_symndx - extsymoff];
9310 /* Badly formatted input files can contain relocs that
9311 reference non-existant symbols. Check here so that
9312 we do not seg fault. */
9313 if (h == NULL)
9315 char buffer [32];
9317 sprintf_vma (buffer, rel->r_info);
9318 (*_bfd_error_handler)
9319 (_("error: %B contains a reloc (0x%s) for section %A "
9320 "that references a non-existent global symbol"),
9321 input_bfd, o, buffer);
9322 bfd_set_error (bfd_error_bad_value);
9323 return FALSE;
9326 while (h->root.type == bfd_link_hash_indirect
9327 || h->root.type == bfd_link_hash_warning)
9328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9330 if (h->root.type != bfd_link_hash_defined
9331 && h->root.type != bfd_link_hash_defweak)
9332 continue;
9334 ps = &h->root.u.def.section;
9335 sym_name = h->root.root.string;
9337 else
9339 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9340 ps = &finfo->sections[r_symndx];
9341 sym_name = bfd_elf_sym_name (input_bfd,
9342 symtab_hdr,
9343 sym, *ps);
9346 /* Complain if the definition comes from a
9347 discarded section. */
9348 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9350 BFD_ASSERT (r_symndx != 0);
9351 if (action & COMPLAIN)
9352 (*finfo->info->callbacks->einfo)
9353 (_("%X`%s' referenced in section `%A' of %B: "
9354 "defined in discarded section `%A' of %B\n"),
9355 sym_name, o, input_bfd, sec, sec->owner);
9357 /* Try to do the best we can to support buggy old
9358 versions of gcc. Pretend that the symbol is
9359 really defined in the kept linkonce section.
9360 FIXME: This is quite broken. Modifying the
9361 symbol here means we will be changing all later
9362 uses of the symbol, not just in this section. */
9363 if (action & PRETEND)
9365 asection *kept;
9367 kept = _bfd_elf_check_kept_section (sec,
9368 finfo->info);
9369 if (kept != NULL)
9371 *ps = kept;
9372 continue;
9379 /* Relocate the section by invoking a back end routine.
9381 The back end routine is responsible for adjusting the
9382 section contents as necessary, and (if using Rela relocs
9383 and generating a relocatable output file) adjusting the
9384 reloc addend as necessary.
9386 The back end routine does not have to worry about setting
9387 the reloc address or the reloc symbol index.
9389 The back end routine is given a pointer to the swapped in
9390 internal symbols, and can access the hash table entries
9391 for the external symbols via elf_sym_hashes (input_bfd).
9393 When generating relocatable output, the back end routine
9394 must handle STB_LOCAL/STT_SECTION symbols specially. The
9395 output symbol is going to be a section symbol
9396 corresponding to the output section, which will require
9397 the addend to be adjusted. */
9399 ret = (*relocate_section) (output_bfd, finfo->info,
9400 input_bfd, o, contents,
9401 internal_relocs,
9402 isymbuf,
9403 finfo->sections);
9404 if (!ret)
9405 return FALSE;
9407 if (ret == 2
9408 || finfo->info->relocatable
9409 || finfo->info->emitrelocations)
9411 Elf_Internal_Rela *irela;
9412 Elf_Internal_Rela *irelaend;
9413 bfd_vma last_offset;
9414 struct elf_link_hash_entry **rel_hash;
9415 struct elf_link_hash_entry **rel_hash_list;
9416 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9417 unsigned int next_erel;
9418 bfd_boolean rela_normal;
9420 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9421 rela_normal = (bed->rela_normal
9422 && (input_rel_hdr->sh_entsize
9423 == bed->s->sizeof_rela));
9425 /* Adjust the reloc addresses and symbol indices. */
9427 irela = internal_relocs;
9428 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9429 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9430 + elf_section_data (o->output_section)->rel_count
9431 + elf_section_data (o->output_section)->rel_count2);
9432 rel_hash_list = rel_hash;
9433 last_offset = o->output_offset;
9434 if (!finfo->info->relocatable)
9435 last_offset += o->output_section->vma;
9436 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9438 unsigned long r_symndx;
9439 asection *sec;
9440 Elf_Internal_Sym sym;
9442 if (next_erel == bed->s->int_rels_per_ext_rel)
9444 rel_hash++;
9445 next_erel = 0;
9448 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9449 finfo->info, o,
9450 irela->r_offset);
9451 if (irela->r_offset >= (bfd_vma) -2)
9453 /* This is a reloc for a deleted entry or somesuch.
9454 Turn it into an R_*_NONE reloc, at the same
9455 offset as the last reloc. elf_eh_frame.c and
9456 bfd_elf_discard_info rely on reloc offsets
9457 being ordered. */
9458 irela->r_offset = last_offset;
9459 irela->r_info = 0;
9460 irela->r_addend = 0;
9461 continue;
9464 irela->r_offset += o->output_offset;
9466 /* Relocs in an executable have to be virtual addresses. */
9467 if (!finfo->info->relocatable)
9468 irela->r_offset += o->output_section->vma;
9470 last_offset = irela->r_offset;
9472 r_symndx = irela->r_info >> r_sym_shift;
9473 if (r_symndx == STN_UNDEF)
9474 continue;
9476 if (r_symndx >= locsymcount
9477 || (elf_bad_symtab (input_bfd)
9478 && finfo->sections[r_symndx] == NULL))
9480 struct elf_link_hash_entry *rh;
9481 unsigned long indx;
9483 /* This is a reloc against a global symbol. We
9484 have not yet output all the local symbols, so
9485 we do not know the symbol index of any global
9486 symbol. We set the rel_hash entry for this
9487 reloc to point to the global hash table entry
9488 for this symbol. The symbol index is then
9489 set at the end of bfd_elf_final_link. */
9490 indx = r_symndx - extsymoff;
9491 rh = elf_sym_hashes (input_bfd)[indx];
9492 while (rh->root.type == bfd_link_hash_indirect
9493 || rh->root.type == bfd_link_hash_warning)
9494 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9496 /* Setting the index to -2 tells
9497 elf_link_output_extsym that this symbol is
9498 used by a reloc. */
9499 BFD_ASSERT (rh->indx < 0);
9500 rh->indx = -2;
9502 *rel_hash = rh;
9504 continue;
9507 /* This is a reloc against a local symbol. */
9509 *rel_hash = NULL;
9510 sym = isymbuf[r_symndx];
9511 sec = finfo->sections[r_symndx];
9512 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9514 /* I suppose the backend ought to fill in the
9515 section of any STT_SECTION symbol against a
9516 processor specific section. */
9517 r_symndx = 0;
9518 if (bfd_is_abs_section (sec))
9520 else if (sec == NULL || sec->owner == NULL)
9522 bfd_set_error (bfd_error_bad_value);
9523 return FALSE;
9525 else
9527 asection *osec = sec->output_section;
9529 /* If we have discarded a section, the output
9530 section will be the absolute section. In
9531 case of discarded SEC_MERGE sections, use
9532 the kept section. relocate_section should
9533 have already handled discarded linkonce
9534 sections. */
9535 if (bfd_is_abs_section (osec)
9536 && sec->kept_section != NULL
9537 && sec->kept_section->output_section != NULL)
9539 osec = sec->kept_section->output_section;
9540 irela->r_addend -= osec->vma;
9543 if (!bfd_is_abs_section (osec))
9545 r_symndx = osec->target_index;
9546 if (r_symndx == 0)
9548 struct elf_link_hash_table *htab;
9549 asection *oi;
9551 htab = elf_hash_table (finfo->info);
9552 oi = htab->text_index_section;
9553 if ((osec->flags & SEC_READONLY) == 0
9554 && htab->data_index_section != NULL)
9555 oi = htab->data_index_section;
9557 if (oi != NULL)
9559 irela->r_addend += osec->vma - oi->vma;
9560 r_symndx = oi->target_index;
9564 BFD_ASSERT (r_symndx != 0);
9568 /* Adjust the addend according to where the
9569 section winds up in the output section. */
9570 if (rela_normal)
9571 irela->r_addend += sec->output_offset;
9573 else
9575 if (finfo->indices[r_symndx] == -1)
9577 unsigned long shlink;
9578 const char *name;
9579 asection *osec;
9581 if (finfo->info->strip == strip_all)
9583 /* You can't do ld -r -s. */
9584 bfd_set_error (bfd_error_invalid_operation);
9585 return FALSE;
9588 /* This symbol was skipped earlier, but
9589 since it is needed by a reloc, we
9590 must output it now. */
9591 shlink = symtab_hdr->sh_link;
9592 name = (bfd_elf_string_from_elf_section
9593 (input_bfd, shlink, sym.st_name));
9594 if (name == NULL)
9595 return FALSE;
9597 osec = sec->output_section;
9598 sym.st_shndx =
9599 _bfd_elf_section_from_bfd_section (output_bfd,
9600 osec);
9601 if (sym.st_shndx == SHN_BAD)
9602 return FALSE;
9604 sym.st_value += sec->output_offset;
9605 if (! finfo->info->relocatable)
9607 sym.st_value += osec->vma;
9608 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9610 /* STT_TLS symbols are relative to PT_TLS
9611 segment base. */
9612 BFD_ASSERT (elf_hash_table (finfo->info)
9613 ->tls_sec != NULL);
9614 sym.st_value -= (elf_hash_table (finfo->info)
9615 ->tls_sec->vma);
9619 finfo->indices[r_symndx]
9620 = bfd_get_symcount (output_bfd);
9622 if (! elf_link_output_sym (finfo, name, &sym, sec,
9623 NULL))
9624 return FALSE;
9627 r_symndx = finfo->indices[r_symndx];
9630 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9631 | (irela->r_info & r_type_mask));
9634 /* Swap out the relocs. */
9635 if (input_rel_hdr->sh_size != 0
9636 && !bed->elf_backend_emit_relocs (output_bfd, o,
9637 input_rel_hdr,
9638 internal_relocs,
9639 rel_hash_list))
9640 return FALSE;
9642 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9643 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9645 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9646 * bed->s->int_rels_per_ext_rel);
9647 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9648 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9649 input_rel_hdr2,
9650 internal_relocs,
9651 rel_hash_list))
9652 return FALSE;
9657 /* Write out the modified section contents. */
9658 if (bed->elf_backend_write_section
9659 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9660 contents))
9662 /* Section written out. */
9664 else switch (o->sec_info_type)
9666 case ELF_INFO_TYPE_STABS:
9667 if (! (_bfd_write_section_stabs
9668 (output_bfd,
9669 &elf_hash_table (finfo->info)->stab_info,
9670 o, &elf_section_data (o)->sec_info, contents)))
9671 return FALSE;
9672 break;
9673 case ELF_INFO_TYPE_MERGE:
9674 if (! _bfd_write_merged_section (output_bfd, o,
9675 elf_section_data (o)->sec_info))
9676 return FALSE;
9677 break;
9678 case ELF_INFO_TYPE_EH_FRAME:
9680 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9681 o, contents))
9682 return FALSE;
9684 break;
9685 default:
9687 if (! (o->flags & SEC_EXCLUDE)
9688 && ! bfd_set_section_contents (output_bfd, o->output_section,
9689 contents,
9690 (file_ptr) o->output_offset,
9691 o->size))
9692 return FALSE;
9694 break;
9698 return TRUE;
9701 /* Generate a reloc when linking an ELF file. This is a reloc
9702 requested by the linker, and does not come from any input file. This
9703 is used to build constructor and destructor tables when linking
9704 with -Ur. */
9706 static bfd_boolean
9707 elf_reloc_link_order (bfd *output_bfd,
9708 struct bfd_link_info *info,
9709 asection *output_section,
9710 struct bfd_link_order *link_order)
9712 reloc_howto_type *howto;
9713 long indx;
9714 bfd_vma offset;
9715 bfd_vma addend;
9716 struct elf_link_hash_entry **rel_hash_ptr;
9717 Elf_Internal_Shdr *rel_hdr;
9718 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9719 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9720 bfd_byte *erel;
9721 unsigned int i;
9723 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9724 if (howto == NULL)
9726 bfd_set_error (bfd_error_bad_value);
9727 return FALSE;
9730 addend = link_order->u.reloc.p->addend;
9732 /* Figure out the symbol index. */
9733 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9734 + elf_section_data (output_section)->rel_count
9735 + elf_section_data (output_section)->rel_count2);
9736 if (link_order->type == bfd_section_reloc_link_order)
9738 indx = link_order->u.reloc.p->u.section->target_index;
9739 BFD_ASSERT (indx != 0);
9740 *rel_hash_ptr = NULL;
9742 else
9744 struct elf_link_hash_entry *h;
9746 /* Treat a reloc against a defined symbol as though it were
9747 actually against the section. */
9748 h = ((struct elf_link_hash_entry *)
9749 bfd_wrapped_link_hash_lookup (output_bfd, info,
9750 link_order->u.reloc.p->u.name,
9751 FALSE, FALSE, TRUE));
9752 if (h != NULL
9753 && (h->root.type == bfd_link_hash_defined
9754 || h->root.type == bfd_link_hash_defweak))
9756 asection *section;
9758 section = h->root.u.def.section;
9759 indx = section->output_section->target_index;
9760 *rel_hash_ptr = NULL;
9761 /* It seems that we ought to add the symbol value to the
9762 addend here, but in practice it has already been added
9763 because it was passed to constructor_callback. */
9764 addend += section->output_section->vma + section->output_offset;
9766 else if (h != NULL)
9768 /* Setting the index to -2 tells elf_link_output_extsym that
9769 this symbol is used by a reloc. */
9770 h->indx = -2;
9771 *rel_hash_ptr = h;
9772 indx = 0;
9774 else
9776 if (! ((*info->callbacks->unattached_reloc)
9777 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9778 return FALSE;
9779 indx = 0;
9783 /* If this is an inplace reloc, we must write the addend into the
9784 object file. */
9785 if (howto->partial_inplace && addend != 0)
9787 bfd_size_type size;
9788 bfd_reloc_status_type rstat;
9789 bfd_byte *buf;
9790 bfd_boolean ok;
9791 const char *sym_name;
9793 size = bfd_get_reloc_size (howto);
9794 buf = bfd_zmalloc (size);
9795 if (buf == NULL)
9796 return FALSE;
9797 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9798 switch (rstat)
9800 case bfd_reloc_ok:
9801 break;
9803 default:
9804 case bfd_reloc_outofrange:
9805 abort ();
9807 case bfd_reloc_overflow:
9808 if (link_order->type == bfd_section_reloc_link_order)
9809 sym_name = bfd_section_name (output_bfd,
9810 link_order->u.reloc.p->u.section);
9811 else
9812 sym_name = link_order->u.reloc.p->u.name;
9813 if (! ((*info->callbacks->reloc_overflow)
9814 (info, NULL, sym_name, howto->name, addend, NULL,
9815 NULL, (bfd_vma) 0)))
9817 free (buf);
9818 return FALSE;
9820 break;
9822 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9823 link_order->offset, size);
9824 free (buf);
9825 if (! ok)
9826 return FALSE;
9829 /* The address of a reloc is relative to the section in a
9830 relocatable file, and is a virtual address in an executable
9831 file. */
9832 offset = link_order->offset;
9833 if (! info->relocatable)
9834 offset += output_section->vma;
9836 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9838 irel[i].r_offset = offset;
9839 irel[i].r_info = 0;
9840 irel[i].r_addend = 0;
9842 if (bed->s->arch_size == 32)
9843 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9844 else
9845 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9847 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9848 erel = rel_hdr->contents;
9849 if (rel_hdr->sh_type == SHT_REL)
9851 erel += (elf_section_data (output_section)->rel_count
9852 * bed->s->sizeof_rel);
9853 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9855 else
9857 irel[0].r_addend = addend;
9858 erel += (elf_section_data (output_section)->rel_count
9859 * bed->s->sizeof_rela);
9860 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9863 ++elf_section_data (output_section)->rel_count;
9865 return TRUE;
9869 /* Get the output vma of the section pointed to by the sh_link field. */
9871 static bfd_vma
9872 elf_get_linked_section_vma (struct bfd_link_order *p)
9874 Elf_Internal_Shdr **elf_shdrp;
9875 asection *s;
9876 int elfsec;
9878 s = p->u.indirect.section;
9879 elf_shdrp = elf_elfsections (s->owner);
9880 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9881 elfsec = elf_shdrp[elfsec]->sh_link;
9882 /* PR 290:
9883 The Intel C compiler generates SHT_IA_64_UNWIND with
9884 SHF_LINK_ORDER. But it doesn't set the sh_link or
9885 sh_info fields. Hence we could get the situation
9886 where elfsec is 0. */
9887 if (elfsec == 0)
9889 const struct elf_backend_data *bed
9890 = get_elf_backend_data (s->owner);
9891 if (bed->link_order_error_handler)
9892 bed->link_order_error_handler
9893 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9894 return 0;
9896 else
9898 s = elf_shdrp[elfsec]->bfd_section;
9899 return s->output_section->vma + s->output_offset;
9904 /* Compare two sections based on the locations of the sections they are
9905 linked to. Used by elf_fixup_link_order. */
9907 static int
9908 compare_link_order (const void * a, const void * b)
9910 bfd_vma apos;
9911 bfd_vma bpos;
9913 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9914 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9915 if (apos < bpos)
9916 return -1;
9917 return apos > bpos;
9921 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9922 order as their linked sections. Returns false if this could not be done
9923 because an output section includes both ordered and unordered
9924 sections. Ideally we'd do this in the linker proper. */
9926 static bfd_boolean
9927 elf_fixup_link_order (bfd *abfd, asection *o)
9929 int seen_linkorder;
9930 int seen_other;
9931 int n;
9932 struct bfd_link_order *p;
9933 bfd *sub;
9934 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9935 unsigned elfsec;
9936 struct bfd_link_order **sections;
9937 asection *s, *other_sec, *linkorder_sec;
9938 bfd_vma offset;
9940 other_sec = NULL;
9941 linkorder_sec = NULL;
9942 seen_other = 0;
9943 seen_linkorder = 0;
9944 for (p = o->map_head.link_order; p != NULL; p = p->next)
9946 if (p->type == bfd_indirect_link_order)
9948 s = p->u.indirect.section;
9949 sub = s->owner;
9950 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9951 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9952 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9953 && elfsec < elf_numsections (sub)
9954 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9956 seen_linkorder++;
9957 linkorder_sec = s;
9959 else
9961 seen_other++;
9962 other_sec = s;
9965 else
9966 seen_other++;
9968 if (seen_other && seen_linkorder)
9970 if (other_sec && linkorder_sec)
9971 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9972 o, linkorder_sec,
9973 linkorder_sec->owner, other_sec,
9974 other_sec->owner);
9975 else
9976 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9978 bfd_set_error (bfd_error_bad_value);
9979 return FALSE;
9983 if (!seen_linkorder)
9984 return TRUE;
9986 sections = (struct bfd_link_order **)
9987 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9988 if (sections == NULL)
9989 return FALSE;
9990 seen_linkorder = 0;
9992 for (p = o->map_head.link_order; p != NULL; p = p->next)
9994 sections[seen_linkorder++] = p;
9996 /* Sort the input sections in the order of their linked section. */
9997 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9998 compare_link_order);
10000 /* Change the offsets of the sections. */
10001 offset = 0;
10002 for (n = 0; n < seen_linkorder; n++)
10004 s = sections[n]->u.indirect.section;
10005 offset &= ~(bfd_vma) 0 << s->alignment_power;
10006 s->output_offset = offset;
10007 sections[n]->offset = offset;
10008 offset += sections[n]->size;
10011 return TRUE;
10015 /* Do the final step of an ELF link. */
10017 bfd_boolean
10018 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10020 bfd_boolean dynamic;
10021 bfd_boolean emit_relocs;
10022 bfd *dynobj;
10023 struct elf_final_link_info finfo;
10024 register asection *o;
10025 register struct bfd_link_order *p;
10026 register bfd *sub;
10027 bfd_size_type max_contents_size;
10028 bfd_size_type max_external_reloc_size;
10029 bfd_size_type max_internal_reloc_count;
10030 bfd_size_type max_sym_count;
10031 bfd_size_type max_sym_shndx_count;
10032 file_ptr off;
10033 Elf_Internal_Sym elfsym;
10034 unsigned int i;
10035 Elf_Internal_Shdr *symtab_hdr;
10036 Elf_Internal_Shdr *symtab_shndx_hdr;
10037 Elf_Internal_Shdr *symstrtab_hdr;
10038 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10039 struct elf_outext_info eoinfo;
10040 bfd_boolean merged;
10041 size_t relativecount = 0;
10042 asection *reldyn = 0;
10043 bfd_size_type amt;
10044 asection *attr_section = NULL;
10045 bfd_vma attr_size = 0;
10046 const char *std_attrs_section;
10048 if (! is_elf_hash_table (info->hash))
10049 return FALSE;
10051 if (info->shared)
10052 abfd->flags |= DYNAMIC;
10054 dynamic = elf_hash_table (info)->dynamic_sections_created;
10055 dynobj = elf_hash_table (info)->dynobj;
10057 emit_relocs = (info->relocatable
10058 || info->emitrelocations);
10060 finfo.info = info;
10061 finfo.output_bfd = abfd;
10062 finfo.symstrtab = _bfd_elf_stringtab_init ();
10063 if (finfo.symstrtab == NULL)
10064 return FALSE;
10066 if (! dynamic)
10068 finfo.dynsym_sec = NULL;
10069 finfo.hash_sec = NULL;
10070 finfo.symver_sec = NULL;
10072 else
10074 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10075 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10076 BFD_ASSERT (finfo.dynsym_sec != NULL);
10077 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10078 /* Note that it is OK if symver_sec is NULL. */
10081 finfo.contents = NULL;
10082 finfo.external_relocs = NULL;
10083 finfo.internal_relocs = NULL;
10084 finfo.external_syms = NULL;
10085 finfo.locsym_shndx = NULL;
10086 finfo.internal_syms = NULL;
10087 finfo.indices = NULL;
10088 finfo.sections = NULL;
10089 finfo.symbuf = NULL;
10090 finfo.symshndxbuf = NULL;
10091 finfo.symbuf_count = 0;
10092 finfo.shndxbuf_size = 0;
10094 /* The object attributes have been merged. Remove the input
10095 sections from the link, and set the contents of the output
10096 secton. */
10097 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10098 for (o = abfd->sections; o != NULL; o = o->next)
10100 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10101 || strcmp (o->name, ".gnu.attributes") == 0)
10103 for (p = o->map_head.link_order; p != NULL; p = p->next)
10105 asection *input_section;
10107 if (p->type != bfd_indirect_link_order)
10108 continue;
10109 input_section = p->u.indirect.section;
10110 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10111 elf_link_input_bfd ignores this section. */
10112 input_section->flags &= ~SEC_HAS_CONTENTS;
10115 attr_size = bfd_elf_obj_attr_size (abfd);
10116 if (attr_size)
10118 bfd_set_section_size (abfd, o, attr_size);
10119 attr_section = o;
10120 /* Skip this section later on. */
10121 o->map_head.link_order = NULL;
10123 else
10124 o->flags |= SEC_EXCLUDE;
10128 /* Count up the number of relocations we will output for each output
10129 section, so that we know the sizes of the reloc sections. We
10130 also figure out some maximum sizes. */
10131 max_contents_size = 0;
10132 max_external_reloc_size = 0;
10133 max_internal_reloc_count = 0;
10134 max_sym_count = 0;
10135 max_sym_shndx_count = 0;
10136 merged = FALSE;
10137 for (o = abfd->sections; o != NULL; o = o->next)
10139 struct bfd_elf_section_data *esdo = elf_section_data (o);
10140 o->reloc_count = 0;
10142 for (p = o->map_head.link_order; p != NULL; p = p->next)
10144 unsigned int reloc_count = 0;
10145 struct bfd_elf_section_data *esdi = NULL;
10146 unsigned int *rel_count1;
10148 if (p->type == bfd_section_reloc_link_order
10149 || p->type == bfd_symbol_reloc_link_order)
10150 reloc_count = 1;
10151 else if (p->type == bfd_indirect_link_order)
10153 asection *sec;
10155 sec = p->u.indirect.section;
10156 esdi = elf_section_data (sec);
10158 /* Mark all sections which are to be included in the
10159 link. This will normally be every section. We need
10160 to do this so that we can identify any sections which
10161 the linker has decided to not include. */
10162 sec->linker_mark = TRUE;
10164 if (sec->flags & SEC_MERGE)
10165 merged = TRUE;
10167 if (info->relocatable || info->emitrelocations)
10168 reloc_count = sec->reloc_count;
10169 else if (bed->elf_backend_count_relocs)
10171 Elf_Internal_Rela * relocs;
10173 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10174 NULL, NULL,
10175 info->keep_memory);
10177 if (relocs != NULL)
10179 reloc_count
10180 = (*bed->elf_backend_count_relocs) (sec, relocs);
10182 if (elf_section_data (sec)->relocs != relocs)
10183 free (relocs);
10187 if (sec->rawsize > max_contents_size)
10188 max_contents_size = sec->rawsize;
10189 if (sec->size > max_contents_size)
10190 max_contents_size = sec->size;
10192 /* We are interested in just local symbols, not all
10193 symbols. */
10194 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10195 && (sec->owner->flags & DYNAMIC) == 0)
10197 size_t sym_count;
10199 if (elf_bad_symtab (sec->owner))
10200 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10201 / bed->s->sizeof_sym);
10202 else
10203 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10205 if (sym_count > max_sym_count)
10206 max_sym_count = sym_count;
10208 if (sym_count > max_sym_shndx_count
10209 && elf_symtab_shndx (sec->owner) != 0)
10210 max_sym_shndx_count = sym_count;
10212 if ((sec->flags & SEC_RELOC) != 0)
10214 size_t ext_size;
10216 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10217 if (ext_size > max_external_reloc_size)
10218 max_external_reloc_size = ext_size;
10219 if (sec->reloc_count > max_internal_reloc_count)
10220 max_internal_reloc_count = sec->reloc_count;
10225 if (reloc_count == 0)
10226 continue;
10228 o->reloc_count += reloc_count;
10230 /* MIPS may have a mix of REL and RELA relocs on sections.
10231 To support this curious ABI we keep reloc counts in
10232 elf_section_data too. We must be careful to add the
10233 relocations from the input section to the right output
10234 count. FIXME: Get rid of one count. We have
10235 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10236 rel_count1 = &esdo->rel_count;
10237 if (esdi != NULL)
10239 bfd_boolean same_size;
10240 bfd_size_type entsize1;
10242 entsize1 = esdi->rel_hdr.sh_entsize;
10243 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10244 || entsize1 == bed->s->sizeof_rela);
10245 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10247 if (!same_size)
10248 rel_count1 = &esdo->rel_count2;
10250 if (esdi->rel_hdr2 != NULL)
10252 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10253 unsigned int alt_count;
10254 unsigned int *rel_count2;
10256 BFD_ASSERT (entsize2 != entsize1
10257 && (entsize2 == bed->s->sizeof_rel
10258 || entsize2 == bed->s->sizeof_rela));
10260 rel_count2 = &esdo->rel_count2;
10261 if (!same_size)
10262 rel_count2 = &esdo->rel_count;
10264 /* The following is probably too simplistic if the
10265 backend counts output relocs unusually. */
10266 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10267 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10268 *rel_count2 += alt_count;
10269 reloc_count -= alt_count;
10272 *rel_count1 += reloc_count;
10275 if (o->reloc_count > 0)
10276 o->flags |= SEC_RELOC;
10277 else
10279 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10280 set it (this is probably a bug) and if it is set
10281 assign_section_numbers will create a reloc section. */
10282 o->flags &=~ SEC_RELOC;
10285 /* If the SEC_ALLOC flag is not set, force the section VMA to
10286 zero. This is done in elf_fake_sections as well, but forcing
10287 the VMA to 0 here will ensure that relocs against these
10288 sections are handled correctly. */
10289 if ((o->flags & SEC_ALLOC) == 0
10290 && ! o->user_set_vma)
10291 o->vma = 0;
10294 if (! info->relocatable && merged)
10295 elf_link_hash_traverse (elf_hash_table (info),
10296 _bfd_elf_link_sec_merge_syms, abfd);
10298 /* Figure out the file positions for everything but the symbol table
10299 and the relocs. We set symcount to force assign_section_numbers
10300 to create a symbol table. */
10301 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10302 BFD_ASSERT (! abfd->output_has_begun);
10303 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10304 goto error_return;
10306 /* Set sizes, and assign file positions for reloc sections. */
10307 for (o = abfd->sections; o != NULL; o = o->next)
10309 if ((o->flags & SEC_RELOC) != 0)
10311 if (!(_bfd_elf_link_size_reloc_section
10312 (abfd, &elf_section_data (o)->rel_hdr, o)))
10313 goto error_return;
10315 if (elf_section_data (o)->rel_hdr2
10316 && !(_bfd_elf_link_size_reloc_section
10317 (abfd, elf_section_data (o)->rel_hdr2, o)))
10318 goto error_return;
10321 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10322 to count upwards while actually outputting the relocations. */
10323 elf_section_data (o)->rel_count = 0;
10324 elf_section_data (o)->rel_count2 = 0;
10327 _bfd_elf_assign_file_positions_for_relocs (abfd);
10329 /* We have now assigned file positions for all the sections except
10330 .symtab and .strtab. We start the .symtab section at the current
10331 file position, and write directly to it. We build the .strtab
10332 section in memory. */
10333 bfd_get_symcount (abfd) = 0;
10334 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10335 /* sh_name is set in prep_headers. */
10336 symtab_hdr->sh_type = SHT_SYMTAB;
10337 /* sh_flags, sh_addr and sh_size all start off zero. */
10338 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10339 /* sh_link is set in assign_section_numbers. */
10340 /* sh_info is set below. */
10341 /* sh_offset is set just below. */
10342 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10344 off = elf_tdata (abfd)->next_file_pos;
10345 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10347 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10348 incorrect. We do not yet know the size of the .symtab section.
10349 We correct next_file_pos below, after we do know the size. */
10351 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10352 continuously seeking to the right position in the file. */
10353 if (! info->keep_memory || max_sym_count < 20)
10354 finfo.symbuf_size = 20;
10355 else
10356 finfo.symbuf_size = max_sym_count;
10357 amt = finfo.symbuf_size;
10358 amt *= bed->s->sizeof_sym;
10359 finfo.symbuf = bfd_malloc (amt);
10360 if (finfo.symbuf == NULL)
10361 goto error_return;
10362 if (elf_numsections (abfd) > SHN_LORESERVE)
10364 /* Wild guess at number of output symbols. realloc'd as needed. */
10365 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10366 finfo.shndxbuf_size = amt;
10367 amt *= sizeof (Elf_External_Sym_Shndx);
10368 finfo.symshndxbuf = bfd_zmalloc (amt);
10369 if (finfo.symshndxbuf == NULL)
10370 goto error_return;
10373 /* Start writing out the symbol table. The first symbol is always a
10374 dummy symbol. */
10375 if (info->strip != strip_all
10376 || emit_relocs)
10378 elfsym.st_value = 0;
10379 elfsym.st_size = 0;
10380 elfsym.st_info = 0;
10381 elfsym.st_other = 0;
10382 elfsym.st_shndx = SHN_UNDEF;
10383 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10384 NULL))
10385 goto error_return;
10388 /* Output a symbol for each section. We output these even if we are
10389 discarding local symbols, since they are used for relocs. These
10390 symbols have no names. We store the index of each one in the
10391 index field of the section, so that we can find it again when
10392 outputting relocs. */
10393 if (info->strip != strip_all
10394 || emit_relocs)
10396 elfsym.st_size = 0;
10397 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10398 elfsym.st_other = 0;
10399 elfsym.st_value = 0;
10400 for (i = 1; i < elf_numsections (abfd); i++)
10402 o = bfd_section_from_elf_index (abfd, i);
10403 if (o != NULL)
10405 o->target_index = bfd_get_symcount (abfd);
10406 elfsym.st_shndx = i;
10407 if (!info->relocatable)
10408 elfsym.st_value = o->vma;
10409 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10410 goto error_return;
10412 if (i == SHN_LORESERVE - 1)
10413 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10417 /* Allocate some memory to hold information read in from the input
10418 files. */
10419 if (max_contents_size != 0)
10421 finfo.contents = bfd_malloc (max_contents_size);
10422 if (finfo.contents == NULL)
10423 goto error_return;
10426 if (max_external_reloc_size != 0)
10428 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10429 if (finfo.external_relocs == NULL)
10430 goto error_return;
10433 if (max_internal_reloc_count != 0)
10435 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10436 amt *= sizeof (Elf_Internal_Rela);
10437 finfo.internal_relocs = bfd_malloc (amt);
10438 if (finfo.internal_relocs == NULL)
10439 goto error_return;
10442 if (max_sym_count != 0)
10444 amt = max_sym_count * bed->s->sizeof_sym;
10445 finfo.external_syms = bfd_malloc (amt);
10446 if (finfo.external_syms == NULL)
10447 goto error_return;
10449 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10450 finfo.internal_syms = bfd_malloc (amt);
10451 if (finfo.internal_syms == NULL)
10452 goto error_return;
10454 amt = max_sym_count * sizeof (long);
10455 finfo.indices = bfd_malloc (amt);
10456 if (finfo.indices == NULL)
10457 goto error_return;
10459 amt = max_sym_count * sizeof (asection *);
10460 finfo.sections = bfd_malloc (amt);
10461 if (finfo.sections == NULL)
10462 goto error_return;
10465 if (max_sym_shndx_count != 0)
10467 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10468 finfo.locsym_shndx = bfd_malloc (amt);
10469 if (finfo.locsym_shndx == NULL)
10470 goto error_return;
10473 if (elf_hash_table (info)->tls_sec)
10475 bfd_vma base, end = 0;
10476 asection *sec;
10478 for (sec = elf_hash_table (info)->tls_sec;
10479 sec && (sec->flags & SEC_THREAD_LOCAL);
10480 sec = sec->next)
10482 bfd_size_type size = sec->size;
10484 if (size == 0
10485 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10487 struct bfd_link_order *o = sec->map_tail.link_order;
10488 if (o != NULL)
10489 size = o->offset + o->size;
10491 end = sec->vma + size;
10493 base = elf_hash_table (info)->tls_sec->vma;
10494 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10495 elf_hash_table (info)->tls_size = end - base;
10498 /* Reorder SHF_LINK_ORDER sections. */
10499 for (o = abfd->sections; o != NULL; o = o->next)
10501 if (!elf_fixup_link_order (abfd, o))
10502 return FALSE;
10505 /* Since ELF permits relocations to be against local symbols, we
10506 must have the local symbols available when we do the relocations.
10507 Since we would rather only read the local symbols once, and we
10508 would rather not keep them in memory, we handle all the
10509 relocations for a single input file at the same time.
10511 Unfortunately, there is no way to know the total number of local
10512 symbols until we have seen all of them, and the local symbol
10513 indices precede the global symbol indices. This means that when
10514 we are generating relocatable output, and we see a reloc against
10515 a global symbol, we can not know the symbol index until we have
10516 finished examining all the local symbols to see which ones we are
10517 going to output. To deal with this, we keep the relocations in
10518 memory, and don't output them until the end of the link. This is
10519 an unfortunate waste of memory, but I don't see a good way around
10520 it. Fortunately, it only happens when performing a relocatable
10521 link, which is not the common case. FIXME: If keep_memory is set
10522 we could write the relocs out and then read them again; I don't
10523 know how bad the memory loss will be. */
10525 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10526 sub->output_has_begun = FALSE;
10527 for (o = abfd->sections; o != NULL; o = o->next)
10529 for (p = o->map_head.link_order; p != NULL; p = p->next)
10531 if (p->type == bfd_indirect_link_order
10532 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10533 == bfd_target_elf_flavour)
10534 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10536 if (! sub->output_has_begun)
10538 if (! elf_link_input_bfd (&finfo, sub))
10539 goto error_return;
10540 sub->output_has_begun = TRUE;
10543 else if (p->type == bfd_section_reloc_link_order
10544 || p->type == bfd_symbol_reloc_link_order)
10546 if (! elf_reloc_link_order (abfd, info, o, p))
10547 goto error_return;
10549 else
10551 if (! _bfd_default_link_order (abfd, info, o, p))
10552 goto error_return;
10557 /* Free symbol buffer if needed. */
10558 if (!info->reduce_memory_overheads)
10560 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10561 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10562 && elf_tdata (sub)->symbuf)
10564 free (elf_tdata (sub)->symbuf);
10565 elf_tdata (sub)->symbuf = NULL;
10569 /* Output any global symbols that got converted to local in a
10570 version script or due to symbol visibility. We do this in a
10571 separate step since ELF requires all local symbols to appear
10572 prior to any global symbols. FIXME: We should only do this if
10573 some global symbols were, in fact, converted to become local.
10574 FIXME: Will this work correctly with the Irix 5 linker? */
10575 eoinfo.failed = FALSE;
10576 eoinfo.finfo = &finfo;
10577 eoinfo.localsyms = TRUE;
10578 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10579 &eoinfo);
10580 if (eoinfo.failed)
10581 return FALSE;
10583 /* If backend needs to output some local symbols not present in the hash
10584 table, do it now. */
10585 if (bed->elf_backend_output_arch_local_syms)
10587 typedef bfd_boolean (*out_sym_func)
10588 (void *, const char *, Elf_Internal_Sym *, asection *,
10589 struct elf_link_hash_entry *);
10591 if (! ((*bed->elf_backend_output_arch_local_syms)
10592 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10593 return FALSE;
10596 /* That wrote out all the local symbols. Finish up the symbol table
10597 with the global symbols. Even if we want to strip everything we
10598 can, we still need to deal with those global symbols that got
10599 converted to local in a version script. */
10601 /* The sh_info field records the index of the first non local symbol. */
10602 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10604 if (dynamic
10605 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10607 Elf_Internal_Sym sym;
10608 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10609 long last_local = 0;
10611 /* Write out the section symbols for the output sections. */
10612 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10614 asection *s;
10616 sym.st_size = 0;
10617 sym.st_name = 0;
10618 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10619 sym.st_other = 0;
10621 for (s = abfd->sections; s != NULL; s = s->next)
10623 int indx;
10624 bfd_byte *dest;
10625 long dynindx;
10627 dynindx = elf_section_data (s)->dynindx;
10628 if (dynindx <= 0)
10629 continue;
10630 indx = elf_section_data (s)->this_idx;
10631 BFD_ASSERT (indx > 0);
10632 sym.st_shndx = indx;
10633 if (! check_dynsym (abfd, &sym))
10634 return FALSE;
10635 sym.st_value = s->vma;
10636 dest = dynsym + dynindx * bed->s->sizeof_sym;
10637 if (last_local < dynindx)
10638 last_local = dynindx;
10639 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10643 /* Write out the local dynsyms. */
10644 if (elf_hash_table (info)->dynlocal)
10646 struct elf_link_local_dynamic_entry *e;
10647 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10649 asection *s;
10650 bfd_byte *dest;
10652 sym.st_size = e->isym.st_size;
10653 sym.st_other = e->isym.st_other;
10655 /* Copy the internal symbol as is.
10656 Note that we saved a word of storage and overwrote
10657 the original st_name with the dynstr_index. */
10658 sym = e->isym;
10660 if (e->isym.st_shndx != SHN_UNDEF
10661 && (e->isym.st_shndx < SHN_LORESERVE
10662 || e->isym.st_shndx > SHN_HIRESERVE))
10664 s = bfd_section_from_elf_index (e->input_bfd,
10665 e->isym.st_shndx);
10667 sym.st_shndx =
10668 elf_section_data (s->output_section)->this_idx;
10669 if (! check_dynsym (abfd, &sym))
10670 return FALSE;
10671 sym.st_value = (s->output_section->vma
10672 + s->output_offset
10673 + e->isym.st_value);
10676 if (last_local < e->dynindx)
10677 last_local = e->dynindx;
10679 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10680 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10684 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10685 last_local + 1;
10688 /* We get the global symbols from the hash table. */
10689 eoinfo.failed = FALSE;
10690 eoinfo.localsyms = FALSE;
10691 eoinfo.finfo = &finfo;
10692 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10693 &eoinfo);
10694 if (eoinfo.failed)
10695 return FALSE;
10697 /* If backend needs to output some symbols not present in the hash
10698 table, do it now. */
10699 if (bed->elf_backend_output_arch_syms)
10701 typedef bfd_boolean (*out_sym_func)
10702 (void *, const char *, Elf_Internal_Sym *, asection *,
10703 struct elf_link_hash_entry *);
10705 if (! ((*bed->elf_backend_output_arch_syms)
10706 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10707 return FALSE;
10710 /* Flush all symbols to the file. */
10711 if (! elf_link_flush_output_syms (&finfo, bed))
10712 return FALSE;
10714 /* Now we know the size of the symtab section. */
10715 off += symtab_hdr->sh_size;
10717 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10718 if (symtab_shndx_hdr->sh_name != 0)
10720 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10721 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10722 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10723 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10724 symtab_shndx_hdr->sh_size = amt;
10726 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10727 off, TRUE);
10729 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10730 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10731 return FALSE;
10735 /* Finish up and write out the symbol string table (.strtab)
10736 section. */
10737 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10738 /* sh_name was set in prep_headers. */
10739 symstrtab_hdr->sh_type = SHT_STRTAB;
10740 symstrtab_hdr->sh_flags = 0;
10741 symstrtab_hdr->sh_addr = 0;
10742 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10743 symstrtab_hdr->sh_entsize = 0;
10744 symstrtab_hdr->sh_link = 0;
10745 symstrtab_hdr->sh_info = 0;
10746 /* sh_offset is set just below. */
10747 symstrtab_hdr->sh_addralign = 1;
10749 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10750 elf_tdata (abfd)->next_file_pos = off;
10752 if (bfd_get_symcount (abfd) > 0)
10754 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10755 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10756 return FALSE;
10759 /* Adjust the relocs to have the correct symbol indices. */
10760 for (o = abfd->sections; o != NULL; o = o->next)
10762 if ((o->flags & SEC_RELOC) == 0)
10763 continue;
10765 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10766 elf_section_data (o)->rel_count,
10767 elf_section_data (o)->rel_hashes);
10768 if (elf_section_data (o)->rel_hdr2 != NULL)
10769 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10770 elf_section_data (o)->rel_count2,
10771 (elf_section_data (o)->rel_hashes
10772 + elf_section_data (o)->rel_count));
10774 /* Set the reloc_count field to 0 to prevent write_relocs from
10775 trying to swap the relocs out itself. */
10776 o->reloc_count = 0;
10779 if (dynamic && info->combreloc && dynobj != NULL)
10780 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10782 /* If we are linking against a dynamic object, or generating a
10783 shared library, finish up the dynamic linking information. */
10784 if (dynamic)
10786 bfd_byte *dyncon, *dynconend;
10788 /* Fix up .dynamic entries. */
10789 o = bfd_get_section_by_name (dynobj, ".dynamic");
10790 BFD_ASSERT (o != NULL);
10792 dyncon = o->contents;
10793 dynconend = o->contents + o->size;
10794 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10796 Elf_Internal_Dyn dyn;
10797 const char *name;
10798 unsigned int type;
10800 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10802 switch (dyn.d_tag)
10804 default:
10805 continue;
10806 case DT_NULL:
10807 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10809 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10811 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10812 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10813 default: continue;
10815 dyn.d_un.d_val = relativecount;
10816 relativecount = 0;
10817 break;
10819 continue;
10821 case DT_INIT:
10822 name = info->init_function;
10823 goto get_sym;
10824 case DT_FINI:
10825 name = info->fini_function;
10826 get_sym:
10828 struct elf_link_hash_entry *h;
10830 h = elf_link_hash_lookup (elf_hash_table (info), name,
10831 FALSE, FALSE, TRUE);
10832 if (h != NULL
10833 && (h->root.type == bfd_link_hash_defined
10834 || h->root.type == bfd_link_hash_defweak))
10836 dyn.d_un.d_val = h->root.u.def.value;
10837 o = h->root.u.def.section;
10838 if (o->output_section != NULL)
10839 dyn.d_un.d_val += (o->output_section->vma
10840 + o->output_offset);
10841 else
10843 /* The symbol is imported from another shared
10844 library and does not apply to this one. */
10845 dyn.d_un.d_val = 0;
10847 break;
10850 continue;
10852 case DT_PREINIT_ARRAYSZ:
10853 name = ".preinit_array";
10854 goto get_size;
10855 case DT_INIT_ARRAYSZ:
10856 name = ".init_array";
10857 goto get_size;
10858 case DT_FINI_ARRAYSZ:
10859 name = ".fini_array";
10860 get_size:
10861 o = bfd_get_section_by_name (abfd, name);
10862 if (o == NULL)
10864 (*_bfd_error_handler)
10865 (_("%B: could not find output section %s"), abfd, name);
10866 goto error_return;
10868 if (o->size == 0)
10869 (*_bfd_error_handler)
10870 (_("warning: %s section has zero size"), name);
10871 dyn.d_un.d_val = o->size;
10872 break;
10874 case DT_PREINIT_ARRAY:
10875 name = ".preinit_array";
10876 goto get_vma;
10877 case DT_INIT_ARRAY:
10878 name = ".init_array";
10879 goto get_vma;
10880 case DT_FINI_ARRAY:
10881 name = ".fini_array";
10882 goto get_vma;
10884 case DT_HASH:
10885 name = ".hash";
10886 goto get_vma;
10887 case DT_GNU_HASH:
10888 name = ".gnu.hash";
10889 goto get_vma;
10890 case DT_STRTAB:
10891 name = ".dynstr";
10892 goto get_vma;
10893 case DT_SYMTAB:
10894 name = ".dynsym";
10895 goto get_vma;
10896 case DT_VERDEF:
10897 name = ".gnu.version_d";
10898 goto get_vma;
10899 case DT_VERNEED:
10900 name = ".gnu.version_r";
10901 goto get_vma;
10902 case DT_VERSYM:
10903 name = ".gnu.version";
10904 get_vma:
10905 o = bfd_get_section_by_name (abfd, name);
10906 if (o == NULL)
10908 (*_bfd_error_handler)
10909 (_("%B: could not find output section %s"), abfd, name);
10910 goto error_return;
10912 dyn.d_un.d_ptr = o->vma;
10913 break;
10915 case DT_REL:
10916 case DT_RELA:
10917 case DT_RELSZ:
10918 case DT_RELASZ:
10919 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10920 type = SHT_REL;
10921 else
10922 type = SHT_RELA;
10923 dyn.d_un.d_val = 0;
10924 for (i = 1; i < elf_numsections (abfd); i++)
10926 Elf_Internal_Shdr *hdr;
10928 hdr = elf_elfsections (abfd)[i];
10929 if (hdr->sh_type == type
10930 && (hdr->sh_flags & SHF_ALLOC) != 0)
10932 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10933 dyn.d_un.d_val += hdr->sh_size;
10934 else
10936 if (dyn.d_un.d_val == 0
10937 || hdr->sh_addr < dyn.d_un.d_val)
10938 dyn.d_un.d_val = hdr->sh_addr;
10942 break;
10944 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10948 /* If we have created any dynamic sections, then output them. */
10949 if (dynobj != NULL)
10951 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10952 goto error_return;
10954 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10955 if (info->warn_shared_textrel && info->shared)
10957 bfd_byte *dyncon, *dynconend;
10959 /* Fix up .dynamic entries. */
10960 o = bfd_get_section_by_name (dynobj, ".dynamic");
10961 BFD_ASSERT (o != NULL);
10963 dyncon = o->contents;
10964 dynconend = o->contents + o->size;
10965 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10967 Elf_Internal_Dyn dyn;
10969 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10971 if (dyn.d_tag == DT_TEXTREL)
10973 info->callbacks->einfo
10974 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10975 break;
10980 for (o = dynobj->sections; o != NULL; o = o->next)
10982 if ((o->flags & SEC_HAS_CONTENTS) == 0
10983 || o->size == 0
10984 || o->output_section == bfd_abs_section_ptr)
10985 continue;
10986 if ((o->flags & SEC_LINKER_CREATED) == 0)
10988 /* At this point, we are only interested in sections
10989 created by _bfd_elf_link_create_dynamic_sections. */
10990 continue;
10992 if (elf_hash_table (info)->stab_info.stabstr == o)
10993 continue;
10994 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10995 continue;
10996 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10997 != SHT_STRTAB)
10998 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11000 if (! bfd_set_section_contents (abfd, o->output_section,
11001 o->contents,
11002 (file_ptr) o->output_offset,
11003 o->size))
11004 goto error_return;
11006 else
11008 /* The contents of the .dynstr section are actually in a
11009 stringtab. */
11010 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11011 if (bfd_seek (abfd, off, SEEK_SET) != 0
11012 || ! _bfd_elf_strtab_emit (abfd,
11013 elf_hash_table (info)->dynstr))
11014 goto error_return;
11019 if (info->relocatable)
11021 bfd_boolean failed = FALSE;
11023 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11024 if (failed)
11025 goto error_return;
11028 /* If we have optimized stabs strings, output them. */
11029 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11031 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11032 goto error_return;
11035 if (info->eh_frame_hdr)
11037 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11038 goto error_return;
11041 if (finfo.symstrtab != NULL)
11042 _bfd_stringtab_free (finfo.symstrtab);
11043 if (finfo.contents != NULL)
11044 free (finfo.contents);
11045 if (finfo.external_relocs != NULL)
11046 free (finfo.external_relocs);
11047 if (finfo.internal_relocs != NULL)
11048 free (finfo.internal_relocs);
11049 if (finfo.external_syms != NULL)
11050 free (finfo.external_syms);
11051 if (finfo.locsym_shndx != NULL)
11052 free (finfo.locsym_shndx);
11053 if (finfo.internal_syms != NULL)
11054 free (finfo.internal_syms);
11055 if (finfo.indices != NULL)
11056 free (finfo.indices);
11057 if (finfo.sections != NULL)
11058 free (finfo.sections);
11059 if (finfo.symbuf != NULL)
11060 free (finfo.symbuf);
11061 if (finfo.symshndxbuf != NULL)
11062 free (finfo.symshndxbuf);
11063 for (o = abfd->sections; o != NULL; o = o->next)
11065 if ((o->flags & SEC_RELOC) != 0
11066 && elf_section_data (o)->rel_hashes != NULL)
11067 free (elf_section_data (o)->rel_hashes);
11070 elf_tdata (abfd)->linker = TRUE;
11072 if (attr_section)
11074 bfd_byte *contents = bfd_malloc (attr_size);
11075 if (contents == NULL)
11076 return FALSE; /* Bail out and fail. */
11077 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11078 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11079 free (contents);
11082 return TRUE;
11084 error_return:
11085 if (finfo.symstrtab != NULL)
11086 _bfd_stringtab_free (finfo.symstrtab);
11087 if (finfo.contents != NULL)
11088 free (finfo.contents);
11089 if (finfo.external_relocs != NULL)
11090 free (finfo.external_relocs);
11091 if (finfo.internal_relocs != NULL)
11092 free (finfo.internal_relocs);
11093 if (finfo.external_syms != NULL)
11094 free (finfo.external_syms);
11095 if (finfo.locsym_shndx != NULL)
11096 free (finfo.locsym_shndx);
11097 if (finfo.internal_syms != NULL)
11098 free (finfo.internal_syms);
11099 if (finfo.indices != NULL)
11100 free (finfo.indices);
11101 if (finfo.sections != NULL)
11102 free (finfo.sections);
11103 if (finfo.symbuf != NULL)
11104 free (finfo.symbuf);
11105 if (finfo.symshndxbuf != NULL)
11106 free (finfo.symshndxbuf);
11107 for (o = abfd->sections; o != NULL; o = o->next)
11109 if ((o->flags & SEC_RELOC) != 0
11110 && elf_section_data (o)->rel_hashes != NULL)
11111 free (elf_section_data (o)->rel_hashes);
11114 return FALSE;
11117 /* Garbage collect unused sections. */
11119 /* Default gc_mark_hook. */
11121 asection *
11122 _bfd_elf_gc_mark_hook (asection *sec,
11123 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11124 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11125 struct elf_link_hash_entry *h,
11126 Elf_Internal_Sym *sym)
11128 if (h != NULL)
11130 switch (h->root.type)
11132 case bfd_link_hash_defined:
11133 case bfd_link_hash_defweak:
11134 return h->root.u.def.section;
11136 case bfd_link_hash_common:
11137 return h->root.u.c.p->section;
11139 default:
11140 break;
11143 else
11144 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11146 return NULL;
11149 /* The mark phase of garbage collection. For a given section, mark
11150 it and any sections in this section's group, and all the sections
11151 which define symbols to which it refers. */
11153 bfd_boolean
11154 _bfd_elf_gc_mark (struct bfd_link_info *info,
11155 asection *sec,
11156 elf_gc_mark_hook_fn gc_mark_hook)
11158 bfd_boolean ret;
11159 bfd_boolean is_eh;
11160 asection *group_sec;
11162 sec->gc_mark = 1;
11164 /* Mark all the sections in the group. */
11165 group_sec = elf_section_data (sec)->next_in_group;
11166 if (group_sec && !group_sec->gc_mark)
11167 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11168 return FALSE;
11170 /* Look through the section relocs. */
11171 ret = TRUE;
11172 is_eh = strcmp (sec->name, ".eh_frame") == 0;
11173 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
11175 Elf_Internal_Rela *relstart, *rel, *relend;
11176 Elf_Internal_Shdr *symtab_hdr;
11177 struct elf_link_hash_entry **sym_hashes;
11178 size_t nlocsyms;
11179 size_t extsymoff;
11180 bfd *input_bfd = sec->owner;
11181 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
11182 Elf_Internal_Sym *isym = NULL;
11183 int r_sym_shift;
11185 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
11186 sym_hashes = elf_sym_hashes (input_bfd);
11188 /* Read the local symbols. */
11189 if (elf_bad_symtab (input_bfd))
11191 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
11192 extsymoff = 0;
11194 else
11195 extsymoff = nlocsyms = symtab_hdr->sh_info;
11197 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11198 if (isym == NULL && nlocsyms != 0)
11200 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
11201 NULL, NULL, NULL);
11202 if (isym == NULL)
11203 return FALSE;
11206 /* Read the relocations. */
11207 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
11208 info->keep_memory);
11209 if (relstart == NULL)
11211 ret = FALSE;
11212 goto out1;
11214 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11216 if (bed->s->arch_size == 32)
11217 r_sym_shift = 8;
11218 else
11219 r_sym_shift = 32;
11221 for (rel = relstart; rel < relend; rel++)
11223 unsigned long r_symndx;
11224 asection *rsec;
11225 struct elf_link_hash_entry *h;
11227 r_symndx = rel->r_info >> r_sym_shift;
11228 if (r_symndx == 0)
11229 continue;
11231 if (r_symndx >= nlocsyms
11232 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
11234 h = sym_hashes[r_symndx - extsymoff];
11235 while (h->root.type == bfd_link_hash_indirect
11236 || h->root.type == bfd_link_hash_warning)
11237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11238 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
11240 else
11242 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
11245 if (rsec && !rsec->gc_mark)
11247 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11248 rsec->gc_mark = 1;
11249 else if (is_eh)
11250 rsec->gc_mark_from_eh = 1;
11251 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11253 ret = FALSE;
11254 goto out2;
11259 out2:
11260 if (elf_section_data (sec)->relocs != relstart)
11261 free (relstart);
11262 out1:
11263 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
11265 if (! info->keep_memory)
11266 free (isym);
11267 else
11268 symtab_hdr->contents = (unsigned char *) isym;
11272 return ret;
11275 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11277 struct elf_gc_sweep_symbol_info
11279 struct bfd_link_info *info;
11280 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11281 bfd_boolean);
11284 static bfd_boolean
11285 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11287 if (h->root.type == bfd_link_hash_warning)
11288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11290 if ((h->root.type == bfd_link_hash_defined
11291 || h->root.type == bfd_link_hash_defweak)
11292 && !h->root.u.def.section->gc_mark
11293 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11295 struct elf_gc_sweep_symbol_info *inf = data;
11296 (*inf->hide_symbol) (inf->info, h, TRUE);
11299 return TRUE;
11302 /* The sweep phase of garbage collection. Remove all garbage sections. */
11304 typedef bfd_boolean (*gc_sweep_hook_fn)
11305 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11307 static bfd_boolean
11308 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11310 bfd *sub;
11311 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11312 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11313 unsigned long section_sym_count;
11314 struct elf_gc_sweep_symbol_info sweep_info;
11316 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11318 asection *o;
11320 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11321 continue;
11323 for (o = sub->sections; o != NULL; o = o->next)
11325 /* Keep debug and special sections. */
11326 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11327 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11328 o->gc_mark = 1;
11330 if (o->gc_mark)
11331 continue;
11333 /* Skip sweeping sections already excluded. */
11334 if (o->flags & SEC_EXCLUDE)
11335 continue;
11337 /* Since this is early in the link process, it is simple
11338 to remove a section from the output. */
11339 o->flags |= SEC_EXCLUDE;
11341 if (info->print_gc_sections && o->size != 0)
11342 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11344 /* But we also have to update some of the relocation
11345 info we collected before. */
11346 if (gc_sweep_hook
11347 && (o->flags & SEC_RELOC) != 0
11348 && o->reloc_count > 0
11349 && !bfd_is_abs_section (o->output_section))
11351 Elf_Internal_Rela *internal_relocs;
11352 bfd_boolean r;
11354 internal_relocs
11355 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11356 info->keep_memory);
11357 if (internal_relocs == NULL)
11358 return FALSE;
11360 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11362 if (elf_section_data (o)->relocs != internal_relocs)
11363 free (internal_relocs);
11365 if (!r)
11366 return FALSE;
11371 /* Remove the symbols that were in the swept sections from the dynamic
11372 symbol table. GCFIXME: Anyone know how to get them out of the
11373 static symbol table as well? */
11374 sweep_info.info = info;
11375 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11376 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11377 &sweep_info);
11379 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11380 return TRUE;
11383 /* Propagate collected vtable information. This is called through
11384 elf_link_hash_traverse. */
11386 static bfd_boolean
11387 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11389 if (h->root.type == bfd_link_hash_warning)
11390 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11392 /* Those that are not vtables. */
11393 if (h->vtable == NULL || h->vtable->parent == NULL)
11394 return TRUE;
11396 /* Those vtables that do not have parents, we cannot merge. */
11397 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11398 return TRUE;
11400 /* If we've already been done, exit. */
11401 if (h->vtable->used && h->vtable->used[-1])
11402 return TRUE;
11404 /* Make sure the parent's table is up to date. */
11405 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11407 if (h->vtable->used == NULL)
11409 /* None of this table's entries were referenced. Re-use the
11410 parent's table. */
11411 h->vtable->used = h->vtable->parent->vtable->used;
11412 h->vtable->size = h->vtable->parent->vtable->size;
11414 else
11416 size_t n;
11417 bfd_boolean *cu, *pu;
11419 /* Or the parent's entries into ours. */
11420 cu = h->vtable->used;
11421 cu[-1] = TRUE;
11422 pu = h->vtable->parent->vtable->used;
11423 if (pu != NULL)
11425 const struct elf_backend_data *bed;
11426 unsigned int log_file_align;
11428 bed = get_elf_backend_data (h->root.u.def.section->owner);
11429 log_file_align = bed->s->log_file_align;
11430 n = h->vtable->parent->vtable->size >> log_file_align;
11431 while (n--)
11433 if (*pu)
11434 *cu = TRUE;
11435 pu++;
11436 cu++;
11441 return TRUE;
11444 static bfd_boolean
11445 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11447 asection *sec;
11448 bfd_vma hstart, hend;
11449 Elf_Internal_Rela *relstart, *relend, *rel;
11450 const struct elf_backend_data *bed;
11451 unsigned int log_file_align;
11453 if (h->root.type == bfd_link_hash_warning)
11454 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11456 /* Take care of both those symbols that do not describe vtables as
11457 well as those that are not loaded. */
11458 if (h->vtable == NULL || h->vtable->parent == NULL)
11459 return TRUE;
11461 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11462 || h->root.type == bfd_link_hash_defweak);
11464 sec = h->root.u.def.section;
11465 hstart = h->root.u.def.value;
11466 hend = hstart + h->size;
11468 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11469 if (!relstart)
11470 return *(bfd_boolean *) okp = FALSE;
11471 bed = get_elf_backend_data (sec->owner);
11472 log_file_align = bed->s->log_file_align;
11474 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11476 for (rel = relstart; rel < relend; ++rel)
11477 if (rel->r_offset >= hstart && rel->r_offset < hend)
11479 /* If the entry is in use, do nothing. */
11480 if (h->vtable->used
11481 && (rel->r_offset - hstart) < h->vtable->size)
11483 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11484 if (h->vtable->used[entry])
11485 continue;
11487 /* Otherwise, kill it. */
11488 rel->r_offset = rel->r_info = rel->r_addend = 0;
11491 return TRUE;
11494 /* Mark sections containing dynamically referenced symbols. When
11495 building shared libraries, we must assume that any visible symbol is
11496 referenced. */
11498 bfd_boolean
11499 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11501 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11503 if (h->root.type == bfd_link_hash_warning)
11504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11506 if ((h->root.type == bfd_link_hash_defined
11507 || h->root.type == bfd_link_hash_defweak)
11508 && (h->ref_dynamic
11509 || (!info->executable
11510 && h->def_regular
11511 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11512 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11513 h->root.u.def.section->flags |= SEC_KEEP;
11515 return TRUE;
11518 /* Do mark and sweep of unused sections. */
11520 bfd_boolean
11521 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11523 bfd_boolean ok = TRUE;
11524 bfd *sub;
11525 elf_gc_mark_hook_fn gc_mark_hook;
11526 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11528 if (!bed->can_gc_sections
11529 || info->relocatable
11530 || info->emitrelocations
11531 || !is_elf_hash_table (info->hash))
11533 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11534 return TRUE;
11537 /* Apply transitive closure to the vtable entry usage info. */
11538 elf_link_hash_traverse (elf_hash_table (info),
11539 elf_gc_propagate_vtable_entries_used,
11540 &ok);
11541 if (!ok)
11542 return FALSE;
11544 /* Kill the vtable relocations that were not used. */
11545 elf_link_hash_traverse (elf_hash_table (info),
11546 elf_gc_smash_unused_vtentry_relocs,
11547 &ok);
11548 if (!ok)
11549 return FALSE;
11551 /* Mark dynamically referenced symbols. */
11552 if (elf_hash_table (info)->dynamic_sections_created)
11553 elf_link_hash_traverse (elf_hash_table (info),
11554 bed->gc_mark_dynamic_ref,
11555 info);
11557 /* Grovel through relocs to find out who stays ... */
11558 gc_mark_hook = bed->gc_mark_hook;
11559 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11561 asection *o;
11563 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11564 continue;
11566 for (o = sub->sections; o != NULL; o = o->next)
11567 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11568 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11569 return FALSE;
11572 /* Allow the backend to mark additional target specific sections. */
11573 if (bed->gc_mark_extra_sections)
11574 bed->gc_mark_extra_sections(info, gc_mark_hook);
11576 /* ... again for sections marked from eh_frame. */
11577 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11579 asection *o;
11581 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11582 continue;
11584 /* Keep .gcc_except_table.* if the associated .text.* (or the
11585 associated .gnu.linkonce.t.* if .text.* doesn't exist) is
11586 marked. This isn't very nice, but the proper solution,
11587 splitting .eh_frame up and using comdat doesn't pan out
11588 easily due to needing special relocs to handle the
11589 difference of two symbols in separate sections.
11590 Don't keep code sections referenced by .eh_frame. */
11591 #define TEXT_PREFIX ".text."
11592 #define TEXT_PREFIX2 ".gnu.linkonce.t."
11593 #define GCC_EXCEPT_TABLE_PREFIX ".gcc_except_table."
11594 for (o = sub->sections; o != NULL; o = o->next)
11595 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
11597 if (CONST_STRNEQ (o->name, GCC_EXCEPT_TABLE_PREFIX))
11599 char *fn_name;
11600 const char *sec_name;
11601 asection *fn_text;
11602 unsigned o_name_prefix_len , fn_name_prefix_len, tmp;
11604 o_name_prefix_len = strlen (GCC_EXCEPT_TABLE_PREFIX);
11605 sec_name = o->name + o_name_prefix_len;
11606 fn_name_prefix_len = strlen (TEXT_PREFIX);
11607 tmp = strlen (TEXT_PREFIX2);
11608 if (tmp > fn_name_prefix_len)
11609 fn_name_prefix_len = tmp;
11610 fn_name
11611 = bfd_malloc (fn_name_prefix_len + strlen (sec_name) + 1);
11612 if (fn_name == NULL)
11613 return FALSE;
11615 /* Try the first prefix. */
11616 sprintf (fn_name, "%s%s", TEXT_PREFIX, sec_name);
11617 fn_text = bfd_get_section_by_name (sub, fn_name);
11619 /* Try the second prefix. */
11620 if (fn_text == NULL)
11622 sprintf (fn_name, "%s%s", TEXT_PREFIX2, sec_name);
11623 fn_text = bfd_get_section_by_name (sub, fn_name);
11626 free (fn_name);
11627 if (fn_text == NULL || !fn_text->gc_mark)
11628 continue;
11631 /* If not using specially named exception table section,
11632 then keep whatever we are using. */
11633 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11634 return FALSE;
11638 /* ... and mark SEC_EXCLUDE for those that go. */
11639 return elf_gc_sweep (abfd, info);
11642 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11644 bfd_boolean
11645 bfd_elf_gc_record_vtinherit (bfd *abfd,
11646 asection *sec,
11647 struct elf_link_hash_entry *h,
11648 bfd_vma offset)
11650 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11651 struct elf_link_hash_entry **search, *child;
11652 bfd_size_type extsymcount;
11653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11655 /* The sh_info field of the symtab header tells us where the
11656 external symbols start. We don't care about the local symbols at
11657 this point. */
11658 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11659 if (!elf_bad_symtab (abfd))
11660 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11662 sym_hashes = elf_sym_hashes (abfd);
11663 sym_hashes_end = sym_hashes + extsymcount;
11665 /* Hunt down the child symbol, which is in this section at the same
11666 offset as the relocation. */
11667 for (search = sym_hashes; search != sym_hashes_end; ++search)
11669 if ((child = *search) != NULL
11670 && (child->root.type == bfd_link_hash_defined
11671 || child->root.type == bfd_link_hash_defweak)
11672 && child->root.u.def.section == sec
11673 && child->root.u.def.value == offset)
11674 goto win;
11677 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11678 abfd, sec, (unsigned long) offset);
11679 bfd_set_error (bfd_error_invalid_operation);
11680 return FALSE;
11682 win:
11683 if (!child->vtable)
11685 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11686 if (!child->vtable)
11687 return FALSE;
11689 if (!h)
11691 /* This *should* only be the absolute section. It could potentially
11692 be that someone has defined a non-global vtable though, which
11693 would be bad. It isn't worth paging in the local symbols to be
11694 sure though; that case should simply be handled by the assembler. */
11696 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11698 else
11699 child->vtable->parent = h;
11701 return TRUE;
11704 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11706 bfd_boolean
11707 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11708 asection *sec ATTRIBUTE_UNUSED,
11709 struct elf_link_hash_entry *h,
11710 bfd_vma addend)
11712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11713 unsigned int log_file_align = bed->s->log_file_align;
11715 if (!h->vtable)
11717 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11718 if (!h->vtable)
11719 return FALSE;
11722 if (addend >= h->vtable->size)
11724 size_t size, bytes, file_align;
11725 bfd_boolean *ptr = h->vtable->used;
11727 /* While the symbol is undefined, we have to be prepared to handle
11728 a zero size. */
11729 file_align = 1 << log_file_align;
11730 if (h->root.type == bfd_link_hash_undefined)
11731 size = addend + file_align;
11732 else
11734 size = h->size;
11735 if (addend >= size)
11737 /* Oops! We've got a reference past the defined end of
11738 the table. This is probably a bug -- shall we warn? */
11739 size = addend + file_align;
11742 size = (size + file_align - 1) & -file_align;
11744 /* Allocate one extra entry for use as a "done" flag for the
11745 consolidation pass. */
11746 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11748 if (ptr)
11750 ptr = bfd_realloc (ptr - 1, bytes);
11752 if (ptr != NULL)
11754 size_t oldbytes;
11756 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11757 * sizeof (bfd_boolean));
11758 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11761 else
11762 ptr = bfd_zmalloc (bytes);
11764 if (ptr == NULL)
11765 return FALSE;
11767 /* And arrange for that done flag to be at index -1. */
11768 h->vtable->used = ptr + 1;
11769 h->vtable->size = size;
11772 h->vtable->used[addend >> log_file_align] = TRUE;
11774 return TRUE;
11777 struct alloc_got_off_arg {
11778 bfd_vma gotoff;
11779 unsigned int got_elt_size;
11782 /* We need a special top-level link routine to convert got reference counts
11783 to real got offsets. */
11785 static bfd_boolean
11786 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11788 struct alloc_got_off_arg *gofarg = arg;
11790 if (h->root.type == bfd_link_hash_warning)
11791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11793 if (h->got.refcount > 0)
11795 h->got.offset = gofarg->gotoff;
11796 gofarg->gotoff += gofarg->got_elt_size;
11798 else
11799 h->got.offset = (bfd_vma) -1;
11801 return TRUE;
11804 /* And an accompanying bit to work out final got entry offsets once
11805 we're done. Should be called from final_link. */
11807 bfd_boolean
11808 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11809 struct bfd_link_info *info)
11811 bfd *i;
11812 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11813 bfd_vma gotoff;
11814 unsigned int got_elt_size = bed->s->arch_size / 8;
11815 struct alloc_got_off_arg gofarg;
11817 if (! is_elf_hash_table (info->hash))
11818 return FALSE;
11820 /* The GOT offset is relative to the .got section, but the GOT header is
11821 put into the .got.plt section, if the backend uses it. */
11822 if (bed->want_got_plt)
11823 gotoff = 0;
11824 else
11825 gotoff = bed->got_header_size;
11827 /* Do the local .got entries first. */
11828 for (i = info->input_bfds; i; i = i->link_next)
11830 bfd_signed_vma *local_got;
11831 bfd_size_type j, locsymcount;
11832 Elf_Internal_Shdr *symtab_hdr;
11834 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11835 continue;
11837 local_got = elf_local_got_refcounts (i);
11838 if (!local_got)
11839 continue;
11841 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11842 if (elf_bad_symtab (i))
11843 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11844 else
11845 locsymcount = symtab_hdr->sh_info;
11847 for (j = 0; j < locsymcount; ++j)
11849 if (local_got[j] > 0)
11851 local_got[j] = gotoff;
11852 gotoff += got_elt_size;
11854 else
11855 local_got[j] = (bfd_vma) -1;
11859 /* Then the global .got entries. .plt refcounts are handled by
11860 adjust_dynamic_symbol */
11861 gofarg.gotoff = gotoff;
11862 gofarg.got_elt_size = got_elt_size;
11863 elf_link_hash_traverse (elf_hash_table (info),
11864 elf_gc_allocate_got_offsets,
11865 &gofarg);
11866 return TRUE;
11869 /* Many folk need no more in the way of final link than this, once
11870 got entry reference counting is enabled. */
11872 bfd_boolean
11873 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11875 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11876 return FALSE;
11878 /* Invoke the regular ELF backend linker to do all the work. */
11879 return bfd_elf_final_link (abfd, info);
11882 bfd_boolean
11883 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11885 struct elf_reloc_cookie *rcookie = cookie;
11887 if (rcookie->bad_symtab)
11888 rcookie->rel = rcookie->rels;
11890 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11892 unsigned long r_symndx;
11894 if (! rcookie->bad_symtab)
11895 if (rcookie->rel->r_offset > offset)
11896 return FALSE;
11897 if (rcookie->rel->r_offset != offset)
11898 continue;
11900 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11901 if (r_symndx == SHN_UNDEF)
11902 return TRUE;
11904 if (r_symndx >= rcookie->locsymcount
11905 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11907 struct elf_link_hash_entry *h;
11909 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11911 while (h->root.type == bfd_link_hash_indirect
11912 || h->root.type == bfd_link_hash_warning)
11913 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11915 if ((h->root.type == bfd_link_hash_defined
11916 || h->root.type == bfd_link_hash_defweak)
11917 && elf_discarded_section (h->root.u.def.section))
11918 return TRUE;
11919 else
11920 return FALSE;
11922 else
11924 /* It's not a relocation against a global symbol,
11925 but it could be a relocation against a local
11926 symbol for a discarded section. */
11927 asection *isec;
11928 Elf_Internal_Sym *isym;
11930 /* Need to: get the symbol; get the section. */
11931 isym = &rcookie->locsyms[r_symndx];
11932 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11934 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11935 if (isec != NULL && elf_discarded_section (isec))
11936 return TRUE;
11939 return FALSE;
11941 return FALSE;
11944 /* Discard unneeded references to discarded sections.
11945 Returns TRUE if any section's size was changed. */
11946 /* This function assumes that the relocations are in sorted order,
11947 which is true for all known assemblers. */
11949 bfd_boolean
11950 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11952 struct elf_reloc_cookie cookie;
11953 asection *stab, *eh;
11954 Elf_Internal_Shdr *symtab_hdr;
11955 const struct elf_backend_data *bed;
11956 bfd *abfd;
11957 unsigned int count;
11958 bfd_boolean ret = FALSE;
11960 if (info->traditional_format
11961 || !is_elf_hash_table (info->hash))
11962 return FALSE;
11964 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11966 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11967 continue;
11969 bed = get_elf_backend_data (abfd);
11971 if ((abfd->flags & DYNAMIC) != 0)
11972 continue;
11974 eh = NULL;
11975 if (!info->relocatable)
11977 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11978 if (eh != NULL
11979 && (eh->size == 0
11980 || bfd_is_abs_section (eh->output_section)))
11981 eh = NULL;
11984 stab = bfd_get_section_by_name (abfd, ".stab");
11985 if (stab != NULL
11986 && (stab->size == 0
11987 || bfd_is_abs_section (stab->output_section)
11988 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11989 stab = NULL;
11991 if (stab == NULL
11992 && eh == NULL
11993 && bed->elf_backend_discard_info == NULL)
11994 continue;
11996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11997 cookie.abfd = abfd;
11998 cookie.sym_hashes = elf_sym_hashes (abfd);
11999 cookie.bad_symtab = elf_bad_symtab (abfd);
12000 if (cookie.bad_symtab)
12002 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12003 cookie.extsymoff = 0;
12005 else
12007 cookie.locsymcount = symtab_hdr->sh_info;
12008 cookie.extsymoff = symtab_hdr->sh_info;
12011 if (bed->s->arch_size == 32)
12012 cookie.r_sym_shift = 8;
12013 else
12014 cookie.r_sym_shift = 32;
12016 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12017 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
12019 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12020 cookie.locsymcount, 0,
12021 NULL, NULL, NULL);
12022 if (cookie.locsyms == NULL)
12024 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12025 return FALSE;
12029 if (stab != NULL)
12031 cookie.rels = NULL;
12032 count = stab->reloc_count;
12033 if (count != 0)
12034 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
12035 info->keep_memory);
12036 if (cookie.rels != NULL)
12038 cookie.rel = cookie.rels;
12039 cookie.relend = cookie.rels;
12040 cookie.relend += count * bed->s->int_rels_per_ext_rel;
12041 if (_bfd_discard_section_stabs (abfd, stab,
12042 elf_section_data (stab)->sec_info,
12043 bfd_elf_reloc_symbol_deleted_p,
12044 &cookie))
12045 ret = TRUE;
12046 if (elf_section_data (stab)->relocs != cookie.rels)
12047 free (cookie.rels);
12051 if (eh != NULL)
12053 cookie.rels = NULL;
12054 count = eh->reloc_count;
12055 if (count != 0)
12056 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
12057 info->keep_memory);
12058 cookie.rel = cookie.rels;
12059 cookie.relend = cookie.rels;
12060 if (cookie.rels != NULL)
12061 cookie.relend += count * bed->s->int_rels_per_ext_rel;
12063 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12064 bfd_elf_reloc_symbol_deleted_p,
12065 &cookie))
12066 ret = TRUE;
12068 if (cookie.rels != NULL
12069 && elf_section_data (eh)->relocs != cookie.rels)
12070 free (cookie.rels);
12073 if (bed->elf_backend_discard_info != NULL
12074 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12075 ret = TRUE;
12077 if (cookie.locsyms != NULL
12078 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
12080 if (! info->keep_memory)
12081 free (cookie.locsyms);
12082 else
12083 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
12087 if (info->eh_frame_hdr
12088 && !info->relocatable
12089 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12090 ret = TRUE;
12092 return ret;
12095 void
12096 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
12097 struct bfd_link_info *info)
12099 flagword flags;
12100 const char *name, *p;
12101 struct bfd_section_already_linked *l;
12102 struct bfd_section_already_linked_hash_entry *already_linked_list;
12104 if (sec->output_section == bfd_abs_section_ptr)
12105 return;
12107 flags = sec->flags;
12109 /* Return if it isn't a linkonce section. A comdat group section
12110 also has SEC_LINK_ONCE set. */
12111 if ((flags & SEC_LINK_ONCE) == 0)
12112 return;
12114 /* Don't put group member sections on our list of already linked
12115 sections. They are handled as a group via their group section. */
12116 if (elf_sec_group (sec) != NULL)
12117 return;
12119 /* FIXME: When doing a relocatable link, we may have trouble
12120 copying relocations in other sections that refer to local symbols
12121 in the section being discarded. Those relocations will have to
12122 be converted somehow; as of this writing I'm not sure that any of
12123 the backends handle that correctly.
12125 It is tempting to instead not discard link once sections when
12126 doing a relocatable link (technically, they should be discarded
12127 whenever we are building constructors). However, that fails,
12128 because the linker winds up combining all the link once sections
12129 into a single large link once section, which defeats the purpose
12130 of having link once sections in the first place.
12132 Also, not merging link once sections in a relocatable link
12133 causes trouble for MIPS ELF, which relies on link once semantics
12134 to handle the .reginfo section correctly. */
12136 name = bfd_get_section_name (abfd, sec);
12138 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12139 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12140 p++;
12141 else
12142 p = name;
12144 already_linked_list = bfd_section_already_linked_table_lookup (p);
12146 for (l = already_linked_list->entry; l != NULL; l = l->next)
12148 /* We may have 2 different types of sections on the list: group
12149 sections and linkonce sections. Match like sections. */
12150 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12151 && strcmp (name, l->sec->name) == 0
12152 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12154 /* The section has already been linked. See if we should
12155 issue a warning. */
12156 switch (flags & SEC_LINK_DUPLICATES)
12158 default:
12159 abort ();
12161 case SEC_LINK_DUPLICATES_DISCARD:
12162 break;
12164 case SEC_LINK_DUPLICATES_ONE_ONLY:
12165 (*_bfd_error_handler)
12166 (_("%B: ignoring duplicate section `%A'"),
12167 abfd, sec);
12168 break;
12170 case SEC_LINK_DUPLICATES_SAME_SIZE:
12171 if (sec->size != l->sec->size)
12172 (*_bfd_error_handler)
12173 (_("%B: duplicate section `%A' has different size"),
12174 abfd, sec);
12175 break;
12177 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12178 if (sec->size != l->sec->size)
12179 (*_bfd_error_handler)
12180 (_("%B: duplicate section `%A' has different size"),
12181 abfd, sec);
12182 else if (sec->size != 0)
12184 bfd_byte *sec_contents, *l_sec_contents;
12186 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12187 (*_bfd_error_handler)
12188 (_("%B: warning: could not read contents of section `%A'"),
12189 abfd, sec);
12190 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12191 &l_sec_contents))
12192 (*_bfd_error_handler)
12193 (_("%B: warning: could not read contents of section `%A'"),
12194 l->sec->owner, l->sec);
12195 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12196 (*_bfd_error_handler)
12197 (_("%B: warning: duplicate section `%A' has different contents"),
12198 abfd, sec);
12200 if (sec_contents)
12201 free (sec_contents);
12202 if (l_sec_contents)
12203 free (l_sec_contents);
12205 break;
12208 /* Set the output_section field so that lang_add_section
12209 does not create a lang_input_section structure for this
12210 section. Since there might be a symbol in the section
12211 being discarded, we must retain a pointer to the section
12212 which we are really going to use. */
12213 sec->output_section = bfd_abs_section_ptr;
12214 sec->kept_section = l->sec;
12216 if (flags & SEC_GROUP)
12218 asection *first = elf_next_in_group (sec);
12219 asection *s = first;
12221 while (s != NULL)
12223 s->output_section = bfd_abs_section_ptr;
12224 /* Record which group discards it. */
12225 s->kept_section = l->sec;
12226 s = elf_next_in_group (s);
12227 /* These lists are circular. */
12228 if (s == first)
12229 break;
12233 return;
12237 /* A single member comdat group section may be discarded by a
12238 linkonce section and vice versa. */
12240 if ((flags & SEC_GROUP) != 0)
12242 asection *first = elf_next_in_group (sec);
12244 if (first != NULL && elf_next_in_group (first) == first)
12245 /* Check this single member group against linkonce sections. */
12246 for (l = already_linked_list->entry; l != NULL; l = l->next)
12247 if ((l->sec->flags & SEC_GROUP) == 0
12248 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12249 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12251 first->output_section = bfd_abs_section_ptr;
12252 first->kept_section = l->sec;
12253 sec->output_section = bfd_abs_section_ptr;
12254 break;
12257 else
12258 /* Check this linkonce section against single member groups. */
12259 for (l = already_linked_list->entry; l != NULL; l = l->next)
12260 if (l->sec->flags & SEC_GROUP)
12262 asection *first = elf_next_in_group (l->sec);
12264 if (first != NULL
12265 && elf_next_in_group (first) == first
12266 && bfd_elf_match_symbols_in_sections (first, sec, info))
12268 sec->output_section = bfd_abs_section_ptr;
12269 sec->kept_section = first;
12270 break;
12274 /* This is the first section with this name. Record it. */
12275 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12276 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12279 bfd_boolean
12280 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12282 return sym->st_shndx == SHN_COMMON;
12285 unsigned int
12286 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12288 return SHN_COMMON;
12291 asection *
12292 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12294 return bfd_com_section_ptr;