1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "libiberty.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
48 // Struct Read_symbols_data.
50 // Destroy any remaining File_view objects.
52 Read_symbols_data::~Read_symbols_data()
54 if (this->section_headers
!= NULL
)
55 delete this->section_headers
;
56 if (this->section_names
!= NULL
)
57 delete this->section_names
;
58 if (this->symbols
!= NULL
)
60 if (this->symbol_names
!= NULL
)
61 delete this->symbol_names
;
62 if (this->versym
!= NULL
)
64 if (this->verdef
!= NULL
)
66 if (this->verneed
!= NULL
)
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
76 template<int size
, bool big_endian
>
78 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
80 if (!this->symtab_xindex_
.empty())
83 gold_assert(symtab_shndx
!= 0);
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i
= object
->shnum();
91 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
94 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
99 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 template<int size
, bool big_endian
>
108 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
109 const unsigned char* pshdrs
)
111 section_size_type bytecount
;
112 const unsigned char* contents
;
114 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
117 const unsigned char* p
= (pshdrs
119 * elfcpp::Elf_sizes
<size
>::shdr_size
));
120 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
121 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
122 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
125 gold_assert(this->symtab_xindex_
.empty());
126 this->symtab_xindex_
.reserve(bytecount
/ 4);
127 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
129 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
139 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
141 if (symndx
>= this->symtab_xindex_
.size())
143 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 return elfcpp::SHN_UNDEF
;
147 unsigned int shndx
= this->symtab_xindex_
[symndx
];
148 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
150 object
->error(_("extended index for symbol %u out of range: %u"),
152 return elfcpp::SHN_UNDEF
;
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
164 Object::error(const char* format
, ...) const
167 va_start(args
, format
);
169 if (vasprintf(&buf
, format
, args
) < 0)
172 gold_error(_("%s: %s"), this->name().c_str(), buf
);
176 // Return a view of the contents of a section.
179 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
182 Location
loc(this->do_section_contents(shndx
));
183 *plen
= convert_to_section_size_type(loc
.data_size
);
186 static const unsigned char empty
[1] = { '\0' };
189 return this->get_view(loc
.file_offset
, *plen
, true, cache
);
192 // Read the section data into SD. This is code common to Sized_relobj
193 // and Sized_dynobj, so we put it into Object.
195 template<int size
, bool big_endian
>
197 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
198 Read_symbols_data
* sd
)
200 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
202 // Read the section headers.
203 const off_t shoff
= elf_file
->shoff();
204 const unsigned int shnum
= this->shnum();
205 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
208 // Read the section names.
209 const unsigned char* pshdrs
= sd
->section_headers
->data();
210 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
211 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
213 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames
.get_sh_type()));
217 sd
->section_names_size
=
218 convert_to_section_size_type(shdrnames
.get_sh_size());
219 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
220 sd
->section_names_size
, false,
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
229 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
230 Symbol_table
* symtab
)
232 const char warn_prefix
[] = ".gnu.warning.";
233 const int warn_prefix_len
= sizeof warn_prefix
- 1;
234 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
242 section_size_type len
;
243 const unsigned char* contents
= this->section_contents(shndx
, &len
,
247 const char* warning
= name
+ warn_prefix_len
;
248 contents
= reinterpret_cast<const unsigned char*>(warning
);
249 len
= strlen(warning
);
251 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
252 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
262 Object::handle_split_stack_section(const char* name
)
264 if (strcmp(name
, ".note.GNU-split-stack") == 0)
266 this->uses_split_stack_
= true;
269 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
271 this->has_no_split_stack_
= true;
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
284 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
285 unsigned int section_header_size
)
287 gc_sd
->section_headers_data
=
288 new unsigned char[(section_header_size
)];
289 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
290 section_header_size
);
291 gc_sd
->section_names_data
=
292 new unsigned char[sd
->section_names_size
];
293 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
294 sd
->section_names_size
);
295 gc_sd
->section_names_size
= sd
->section_names_size
;
296 if (sd
->symbols
!= NULL
)
298 gc_sd
->symbols_data
=
299 new unsigned char[sd
->symbols_size
];
300 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
305 gc_sd
->symbols_data
= NULL
;
307 gc_sd
->symbols_size
= sd
->symbols_size
;
308 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
309 if (sd
->symbol_names
!= NULL
)
311 gc_sd
->symbol_names_data
=
312 new unsigned char[sd
->symbol_names_size
];
313 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
314 sd
->symbol_names_size
);
318 gc_sd
->symbol_names_data
= NULL
;
320 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
328 Relobj::is_section_name_included(const char* name
)
330 if (is_prefix_of(".ctors", name
)
331 || is_prefix_of(".dtors", name
)
332 || is_prefix_of(".note", name
)
333 || is_prefix_of(".init", name
)
334 || is_prefix_of(".fini", name
)
335 || is_prefix_of(".gcc_except_table", name
)
336 || is_prefix_of(".jcr", name
)
337 || is_prefix_of(".preinit_array", name
)
338 || (is_prefix_of(".text", name
)
339 && strstr(name
, "personality"))
340 || (is_prefix_of(".data", name
)
341 && strstr(name
, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name
)
343 && strstr(name
, "personality")))
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
356 Relobj::finalize_incremental_relocs(Layout
* layout
, bool clear_counts
)
358 unsigned int nsyms
= this->get_global_symbols()->size();
359 this->reloc_bases_
= new unsigned int[nsyms
];
361 gold_assert(this->reloc_bases_
!= NULL
);
362 gold_assert(layout
->incremental_inputs() != NULL
);
364 unsigned int rindex
= layout
->incremental_inputs()->get_reloc_count();
365 for (unsigned int i
= 0; i
< nsyms
; ++i
)
367 this->reloc_bases_
[i
] = rindex
;
368 rindex
+= this->reloc_counts_
[i
];
370 this->reloc_counts_
[i
] = 0;
372 layout
->incremental_inputs()->set_reloc_count(rindex
);
375 // Class Sized_relobj.
377 template<int size
, bool big_endian
>
378 Sized_relobj
<size
, big_endian
>::Sized_relobj(
379 const std::string
& name
,
380 Input_file
* input_file
,
382 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
383 : Sized_relobj_base
<size
, big_endian
>(name
, input_file
, offset
),
384 elf_file_(this, ehdr
),
386 local_symbol_count_(0),
387 output_local_symbol_count_(0),
388 output_local_dynsym_count_(0),
391 local_symbol_offset_(0),
392 local_dynsym_offset_(0),
394 local_got_offsets_(),
395 local_plt_offsets_(),
396 kept_comdat_sections_(),
397 has_eh_frame_(false),
398 discarded_eh_frame_shndx_(-1U),
400 deferred_layout_relocs_(),
401 compressed_sections_()
405 template<int size
, bool big_endian
>
406 Sized_relobj
<size
, big_endian
>::~Sized_relobj()
410 // Set up an object file based on the file header. This sets up the
411 // section information.
413 template<int size
, bool big_endian
>
415 Sized_relobj
<size
, big_endian
>::do_setup()
417 const unsigned int shnum
= this->elf_file_
.shnum();
418 this->set_shnum(shnum
);
421 // Find the SHT_SYMTAB section, given the section headers. The ELF
422 // standard says that maybe in the future there can be more than one
423 // SHT_SYMTAB section. Until somebody figures out how that could
424 // work, we assume there is only one.
426 template<int size
, bool big_endian
>
428 Sized_relobj
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
430 const unsigned int shnum
= this->shnum();
431 this->symtab_shndx_
= 0;
434 // Look through the sections in reverse order, since gas tends
435 // to put the symbol table at the end.
436 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
437 unsigned int i
= shnum
;
438 unsigned int xindex_shndx
= 0;
439 unsigned int xindex_link
= 0;
443 p
-= This::shdr_size
;
444 typename
This::Shdr
shdr(p
);
445 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
447 this->symtab_shndx_
= i
;
448 if (xindex_shndx
> 0 && xindex_link
== i
)
451 new Xindex(this->elf_file_
.large_shndx_offset());
452 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
455 this->set_xindex(xindex
);
460 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
461 // one. This will work if it follows the SHT_SYMTAB
463 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
466 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
472 // Return the Xindex structure to use for object with lots of
475 template<int size
, bool big_endian
>
477 Sized_relobj
<size
, big_endian
>::do_initialize_xindex()
479 gold_assert(this->symtab_shndx_
!= -1U);
480 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
481 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
485 // Return whether SHDR has the right type and flags to be a GNU
486 // .eh_frame section.
488 template<int size
, bool big_endian
>
490 Sized_relobj
<size
, big_endian
>::check_eh_frame_flags(
491 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
493 return (shdr
->get_sh_type() == elfcpp::SHT_PROGBITS
494 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
497 // Return whether there is a GNU .eh_frame section, given the section
498 // headers and the section names.
500 template<int size
, bool big_endian
>
502 Sized_relobj
<size
, big_endian
>::find_eh_frame(
503 const unsigned char* pshdrs
,
505 section_size_type names_size
) const
507 const unsigned int shnum
= this->shnum();
508 const unsigned char* p
= pshdrs
+ This::shdr_size
;
509 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
511 typename
This::Shdr
shdr(p
);
512 if (this->check_eh_frame_flags(&shdr
))
514 if (shdr
.get_sh_name() >= names_size
)
516 this->error(_("bad section name offset for section %u: %lu"),
517 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
521 const char* name
= names
+ shdr
.get_sh_name();
522 if (strcmp(name
, ".eh_frame") == 0)
529 // Build a table for any compressed debug sections, mapping each section index
530 // to the uncompressed size.
532 template<int size
, bool big_endian
>
533 Compressed_section_map
*
534 build_compressed_section_map(
535 const unsigned char* pshdrs
,
538 section_size_type names_size
,
539 Sized_relobj
<size
, big_endian
>* obj
)
541 Compressed_section_map
* uncompressed_sizes
= new Compressed_section_map();
542 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
543 const unsigned char* p
= pshdrs
+ shdr_size
;
544 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
546 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
547 if (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
548 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
550 if (shdr
.get_sh_name() >= names_size
)
552 obj
->error(_("bad section name offset for section %u: %lu"),
553 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
557 const char* name
= names
+ shdr
.get_sh_name();
558 if (is_compressed_debug_section(name
))
560 section_size_type len
;
561 const unsigned char* contents
=
562 obj
->section_contents(i
, &len
, false);
563 uint64_t uncompressed_size
= get_uncompressed_size(contents
, len
);
564 if (uncompressed_size
!= -1ULL)
565 (*uncompressed_sizes
)[i
] =
566 convert_to_section_size_type(uncompressed_size
);
570 return uncompressed_sizes
;
573 // Read the sections and symbols from an object file.
575 template<int size
, bool big_endian
>
577 Sized_relobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
579 this->read_section_data(&this->elf_file_
, sd
);
581 const unsigned char* const pshdrs
= sd
->section_headers
->data();
583 this->find_symtab(pshdrs
);
585 const unsigned char* namesu
= sd
->section_names
->data();
586 const char* names
= reinterpret_cast<const char*>(namesu
);
587 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
589 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
590 this->has_eh_frame_
= true;
592 if (memmem(names
, sd
->section_names_size
, ".zdebug_", 8) != NULL
)
593 this->compressed_sections_
=
594 build_compressed_section_map(pshdrs
, this->shnum(), names
,
595 sd
->section_names_size
, this);
598 sd
->symbols_size
= 0;
599 sd
->external_symbols_offset
= 0;
600 sd
->symbol_names
= NULL
;
601 sd
->symbol_names_size
= 0;
603 if (this->symtab_shndx_
== 0)
605 // No symbol table. Weird but legal.
609 // Get the symbol table section header.
610 typename
This::Shdr
symtabshdr(pshdrs
611 + this->symtab_shndx_
* This::shdr_size
);
612 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
614 // If this object has a .eh_frame section, we need all the symbols.
615 // Otherwise we only need the external symbols. While it would be
616 // simpler to just always read all the symbols, I've seen object
617 // files with well over 2000 local symbols, which for a 64-bit
618 // object file format is over 5 pages that we don't need to read
621 const int sym_size
= This::sym_size
;
622 const unsigned int loccount
= symtabshdr
.get_sh_info();
623 this->local_symbol_count_
= loccount
;
624 this->local_values_
.resize(loccount
);
625 section_offset_type locsize
= loccount
* sym_size
;
626 off_t dataoff
= symtabshdr
.get_sh_offset();
627 section_size_type datasize
=
628 convert_to_section_size_type(symtabshdr
.get_sh_size());
629 off_t extoff
= dataoff
+ locsize
;
630 section_size_type extsize
= datasize
- locsize
;
632 off_t readoff
= this->has_eh_frame_
? dataoff
: extoff
;
633 section_size_type readsize
= this->has_eh_frame_
? datasize
: extsize
;
637 // No external symbols. Also weird but also legal.
641 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
643 // Read the section header for the symbol names.
644 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
645 if (strtab_shndx
>= this->shnum())
647 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
650 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
651 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
653 this->error(_("symbol table name section has wrong type: %u"),
654 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
658 // Read the symbol names.
659 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
660 strtabshdr
.get_sh_size(),
663 sd
->symbols
= fvsymtab
;
664 sd
->symbols_size
= readsize
;
665 sd
->external_symbols_offset
= this->has_eh_frame_
? locsize
: 0;
666 sd
->symbol_names
= fvstrtab
;
667 sd
->symbol_names_size
=
668 convert_to_section_size_type(strtabshdr
.get_sh_size());
671 // Return the section index of symbol SYM. Set *VALUE to its value in
672 // the object file. Set *IS_ORDINARY if this is an ordinary section
673 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
674 // Note that for a symbol which is not defined in this object file,
675 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
676 // the final value of the symbol in the link.
678 template<int size
, bool big_endian
>
680 Sized_relobj
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
684 section_size_type symbols_size
;
685 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
689 const size_t count
= symbols_size
/ This::sym_size
;
690 gold_assert(sym
< count
);
692 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
693 *value
= elfsym
.get_st_value();
695 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
698 // Return whether to include a section group in the link. LAYOUT is
699 // used to keep track of which section groups we have already seen.
700 // INDEX is the index of the section group and SHDR is the section
701 // header. If we do not want to include this group, we set bits in
702 // OMIT for each section which should be discarded.
704 template<int size
, bool big_endian
>
706 Sized_relobj
<size
, big_endian
>::include_section_group(
707 Symbol_table
* symtab
,
711 const unsigned char* shdrs
,
712 const char* section_names
,
713 section_size_type section_names_size
,
714 std::vector
<bool>* omit
)
716 // Read the section contents.
717 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
718 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
719 shdr
.get_sh_size(), true, false);
720 const elfcpp::Elf_Word
* pword
=
721 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
723 // The first word contains flags. We only care about COMDAT section
724 // groups. Other section groups are always included in the link
725 // just like ordinary sections.
726 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
728 // Look up the group signature, which is the name of a symbol. This
729 // is a lot of effort to go to to read a string. Why didn't they
730 // just have the group signature point into the string table, rather
731 // than indirect through a symbol?
733 // Get the appropriate symbol table header (this will normally be
734 // the single SHT_SYMTAB section, but in principle it need not be).
735 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
736 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
738 // Read the symbol table entry.
739 unsigned int symndx
= shdr
.get_sh_info();
740 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
742 this->error(_("section group %u info %u out of range"),
746 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
747 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
749 elfcpp::Sym
<size
, big_endian
> sym(psym
);
751 // Read the symbol table names.
752 section_size_type symnamelen
;
753 const unsigned char* psymnamesu
;
754 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
756 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
758 // Get the section group signature.
759 if (sym
.get_st_name() >= symnamelen
)
761 this->error(_("symbol %u name offset %u out of range"),
762 symndx
, sym
.get_st_name());
766 std::string
signature(psymnames
+ sym
.get_st_name());
768 // It seems that some versions of gas will create a section group
769 // associated with a section symbol, and then fail to give a name to
770 // the section symbol. In such a case, use the name of the section.
771 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
774 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
777 if (!is_ordinary
|| sym_shndx
>= this->shnum())
779 this->error(_("symbol %u invalid section index %u"),
783 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
784 if (member_shdr
.get_sh_name() < section_names_size
)
785 signature
= section_names
+ member_shdr
.get_sh_name();
788 // Record this section group in the layout, and see whether we've already
789 // seen one with the same signature.
792 Kept_section
* kept_section
= NULL
;
794 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
796 include_group
= true;
801 include_group
= layout
->find_or_add_kept_section(signature
,
803 true, &kept_section
);
807 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
809 std::vector
<unsigned int> shndxes
;
810 bool relocate_group
= include_group
&& parameters
->options().relocatable();
812 shndxes
.reserve(count
- 1);
814 for (size_t i
= 1; i
< count
; ++i
)
816 elfcpp::Elf_Word shndx
=
817 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
820 shndxes
.push_back(shndx
);
822 if (shndx
>= this->shnum())
824 this->error(_("section %u in section group %u out of range"),
829 // Check for an earlier section number, since we're going to get
830 // it wrong--we may have already decided to include the section.
832 this->error(_("invalid section group %u refers to earlier section %u"),
835 // Get the name of the member section.
836 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
837 if (member_shdr
.get_sh_name() >= section_names_size
)
839 // This is an error, but it will be diagnosed eventually
840 // in do_layout, so we don't need to do anything here but
844 std::string
mname(section_names
+ member_shdr
.get_sh_name());
849 kept_section
->add_comdat_section(mname
, shndx
,
850 member_shdr
.get_sh_size());
854 (*omit
)[shndx
] = true;
858 Relobj
* kept_object
= kept_section
->object();
859 if (kept_section
->is_comdat())
861 // Find the corresponding kept section, and store
862 // that info in the discarded section table.
863 unsigned int kept_shndx
;
865 if (kept_section
->find_comdat_section(mname
, &kept_shndx
,
868 // We don't keep a mapping for this section if
869 // it has a different size. The mapping is only
870 // used for relocation processing, and we don't
871 // want to treat the sections as similar if the
872 // sizes are different. Checking the section
873 // size is the approach used by the GNU linker.
874 if (kept_size
== member_shdr
.get_sh_size())
875 this->set_kept_comdat_section(shndx
, kept_object
,
881 // The existing section is a linkonce section. Add
882 // a mapping if there is exactly one section in the
883 // group (which is true when COUNT == 2) and if it
886 && (kept_section
->linkonce_size()
887 == member_shdr
.get_sh_size()))
888 this->set_kept_comdat_section(shndx
, kept_object
,
889 kept_section
->shndx());
896 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
897 shdr
, flags
, &shndxes
);
899 return include_group
;
902 // Whether to include a linkonce section in the link. NAME is the
903 // name of the section and SHDR is the section header.
905 // Linkonce sections are a GNU extension implemented in the original
906 // GNU linker before section groups were defined. The semantics are
907 // that we only include one linkonce section with a given name. The
908 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
909 // where T is the type of section and SYMNAME is the name of a symbol.
910 // In an attempt to make linkonce sections interact well with section
911 // groups, we try to identify SYMNAME and use it like a section group
912 // signature. We want to block section groups with that signature,
913 // but not other linkonce sections with that signature. We also use
914 // the full name of the linkonce section as a normal section group
917 template<int size
, bool big_endian
>
919 Sized_relobj
<size
, big_endian
>::include_linkonce_section(
923 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
925 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
926 // In general the symbol name we want will be the string following
927 // the last '.'. However, we have to handle the case of
928 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
929 // some versions of gcc. So we use a heuristic: if the name starts
930 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
931 // we look for the last '.'. We can't always simply skip
932 // ".gnu.linkonce.X", because we have to deal with cases like
933 // ".gnu.linkonce.d.rel.ro.local".
934 const char* const linkonce_t
= ".gnu.linkonce.t.";
936 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
937 symname
= name
+ strlen(linkonce_t
);
939 symname
= strrchr(name
, '.') + 1;
940 std::string
sig1(symname
);
941 std::string
sig2(name
);
944 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
946 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
951 // We are not including this section because we already saw the
952 // name of the section as a signature. This normally implies
953 // that the kept section is another linkonce section. If it is
954 // the same size, record it as the section which corresponds to
956 if (kept2
->object() != NULL
957 && !kept2
->is_comdat()
958 && kept2
->linkonce_size() == sh_size
)
959 this->set_kept_comdat_section(index
, kept2
->object(), kept2
->shndx());
963 // The section is being discarded on the basis of its symbol
964 // name. This means that the corresponding kept section was
965 // part of a comdat group, and it will be difficult to identify
966 // the specific section within that group that corresponds to
967 // this linkonce section. We'll handle the simple case where
968 // the group has only one member section. Otherwise, it's not
970 unsigned int kept_shndx
;
972 if (kept1
->object() != NULL
973 && kept1
->is_comdat()
974 && kept1
->find_single_comdat_section(&kept_shndx
, &kept_size
)
975 && kept_size
== sh_size
)
976 this->set_kept_comdat_section(index
, kept1
->object(), kept_shndx
);
980 kept1
->set_linkonce_size(sh_size
);
981 kept2
->set_linkonce_size(sh_size
);
984 return include1
&& include2
;
987 // Layout an input section.
989 template<int size
, bool big_endian
>
991 Sized_relobj
<size
, big_endian
>::layout_section(Layout
* layout
,
994 typename
This::Shdr
& shdr
,
995 unsigned int reloc_shndx
,
996 unsigned int reloc_type
)
999 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
,
1000 reloc_shndx
, reloc_type
, &offset
);
1002 this->output_sections()[shndx
] = os
;
1004 this->section_offsets_
[shndx
] = invalid_address
;
1006 this->section_offsets_
[shndx
] = convert_types
<Address
, off_t
>(offset
);
1008 // If this section requires special handling, and if there are
1009 // relocs that apply to it, then we must do the special handling
1010 // before we apply the relocs.
1011 if (offset
== -1 && reloc_shndx
!= 0)
1012 this->set_relocs_must_follow_section_writes();
1015 // Lay out the input sections. We walk through the sections and check
1016 // whether they should be included in the link. If they should, we
1017 // pass them to the Layout object, which will return an output section
1019 // During garbage collection (--gc-sections) and identical code folding
1020 // (--icf), this function is called twice. When it is called the first
1021 // time, it is for setting up some sections as roots to a work-list for
1022 // --gc-sections and to do comdat processing. Actual layout happens the
1023 // second time around after all the relevant sections have been determined.
1024 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1025 // set to true after the garbage collection worklist or identical code
1026 // folding is processed and the relevant sections to be kept are
1027 // determined. Then, this function is called again to layout the sections.
1029 template<int size
, bool big_endian
>
1031 Sized_relobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
1033 Read_symbols_data
* sd
)
1035 const unsigned int shnum
= this->shnum();
1036 bool is_gc_pass_one
= ((parameters
->options().gc_sections()
1037 && !symtab
->gc()->is_worklist_ready())
1038 || (parameters
->options().icf_enabled()
1039 && !symtab
->icf()->is_icf_ready()));
1041 bool is_gc_pass_two
= ((parameters
->options().gc_sections()
1042 && symtab
->gc()->is_worklist_ready())
1043 || (parameters
->options().icf_enabled()
1044 && symtab
->icf()->is_icf_ready()));
1046 bool is_gc_or_icf
= (parameters
->options().gc_sections()
1047 || parameters
->options().icf_enabled());
1049 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1050 gold_assert(!(is_gc_pass_one
&& is_gc_pass_two
));
1054 Symbols_data
* gc_sd
= NULL
;
1057 // During garbage collection save the symbols data to use it when
1058 // re-entering this function.
1059 gc_sd
= new Symbols_data
;
1060 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
1061 this->set_symbols_data(gc_sd
);
1063 else if (is_gc_pass_two
)
1065 gc_sd
= this->get_symbols_data();
1068 const unsigned char* section_headers_data
= NULL
;
1069 section_size_type section_names_size
;
1070 const unsigned char* symbols_data
= NULL
;
1071 section_size_type symbols_size
;
1072 section_offset_type external_symbols_offset
;
1073 const unsigned char* symbol_names_data
= NULL
;
1074 section_size_type symbol_names_size
;
1078 section_headers_data
= gc_sd
->section_headers_data
;
1079 section_names_size
= gc_sd
->section_names_size
;
1080 symbols_data
= gc_sd
->symbols_data
;
1081 symbols_size
= gc_sd
->symbols_size
;
1082 external_symbols_offset
= gc_sd
->external_symbols_offset
;
1083 symbol_names_data
= gc_sd
->symbol_names_data
;
1084 symbol_names_size
= gc_sd
->symbol_names_size
;
1088 section_headers_data
= sd
->section_headers
->data();
1089 section_names_size
= sd
->section_names_size
;
1090 if (sd
->symbols
!= NULL
)
1091 symbols_data
= sd
->symbols
->data();
1092 symbols_size
= sd
->symbols_size
;
1093 external_symbols_offset
= sd
->external_symbols_offset
;
1094 if (sd
->symbol_names
!= NULL
)
1095 symbol_names_data
= sd
->symbol_names
->data();
1096 symbol_names_size
= sd
->symbol_names_size
;
1099 // Get the section headers.
1100 const unsigned char* shdrs
= section_headers_data
;
1101 const unsigned char* pshdrs
;
1103 // Get the section names.
1104 const unsigned char* pnamesu
= (is_gc_or_icf
)
1105 ? gc_sd
->section_names_data
1106 : sd
->section_names
->data();
1108 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1110 // If any input files have been claimed by plugins, we need to defer
1111 // actual layout until the replacement files have arrived.
1112 const bool should_defer_layout
=
1113 (parameters
->options().has_plugins()
1114 && parameters
->options().plugins()->should_defer_layout());
1115 unsigned int num_sections_to_defer
= 0;
1117 // For each section, record the index of the reloc section if any.
1118 // Use 0 to mean that there is no reloc section, -1U to mean that
1119 // there is more than one.
1120 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1121 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1122 // Skip the first, dummy, section.
1123 pshdrs
= shdrs
+ This::shdr_size
;
1124 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1126 typename
This::Shdr
shdr(pshdrs
);
1128 // Count the number of sections whose layout will be deferred.
1129 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1130 ++num_sections_to_defer
;
1132 unsigned int sh_type
= shdr
.get_sh_type();
1133 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1135 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1136 if (target_shndx
== 0 || target_shndx
>= shnum
)
1138 this->error(_("relocation section %u has bad info %u"),
1143 if (reloc_shndx
[target_shndx
] != 0)
1144 reloc_shndx
[target_shndx
] = -1U;
1147 reloc_shndx
[target_shndx
] = i
;
1148 reloc_type
[target_shndx
] = sh_type
;
1153 Output_sections
& out_sections(this->output_sections());
1154 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
1156 if (!is_gc_pass_two
)
1158 out_sections
.resize(shnum
);
1159 out_section_offsets
.resize(shnum
);
1162 // If we are only linking for symbols, then there is nothing else to
1164 if (this->input_file()->just_symbols())
1166 if (!is_gc_pass_two
)
1168 delete sd
->section_headers
;
1169 sd
->section_headers
= NULL
;
1170 delete sd
->section_names
;
1171 sd
->section_names
= NULL
;
1176 if (num_sections_to_defer
> 0)
1178 parameters
->options().plugins()->add_deferred_layout_object(this);
1179 this->deferred_layout_
.reserve(num_sections_to_defer
);
1182 // Whether we've seen a .note.GNU-stack section.
1183 bool seen_gnu_stack
= false;
1184 // The flags of a .note.GNU-stack section.
1185 uint64_t gnu_stack_flags
= 0;
1187 // Keep track of which sections to omit.
1188 std::vector
<bool> omit(shnum
, false);
1190 // Keep track of reloc sections when emitting relocations.
1191 const bool relocatable
= parameters
->options().relocatable();
1192 const bool emit_relocs
= (relocatable
1193 || parameters
->options().emit_relocs());
1194 std::vector
<unsigned int> reloc_sections
;
1196 // Keep track of .eh_frame sections.
1197 std::vector
<unsigned int> eh_frame_sections
;
1199 // Skip the first, dummy, section.
1200 pshdrs
= shdrs
+ This::shdr_size
;
1201 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1203 typename
This::Shdr
shdr(pshdrs
);
1205 if (shdr
.get_sh_name() >= section_names_size
)
1207 this->error(_("bad section name offset for section %u: %lu"),
1208 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
1212 const char* name
= pnames
+ shdr
.get_sh_name();
1214 if (!is_gc_pass_two
)
1216 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1222 // The .note.GNU-stack section is special. It gives the
1223 // protection flags that this object file requires for the stack
1225 if (strcmp(name
, ".note.GNU-stack") == 0)
1227 seen_gnu_stack
= true;
1228 gnu_stack_flags
|= shdr
.get_sh_flags();
1232 // The .note.GNU-split-stack section is also special. It
1233 // indicates that the object was compiled with
1235 if (this->handle_split_stack_section(name
))
1237 if (!parameters
->options().relocatable()
1238 && !parameters
->options().shared())
1242 // Skip attributes section.
1243 if (parameters
->target().is_attributes_section(name
))
1248 bool discard
= omit
[i
];
1251 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1253 if (!this->include_section_group(symtab
, layout
, i
, name
,
1259 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1260 && Layout::is_linkonce(name
))
1262 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1267 // Add the section to the incremental inputs layout.
1268 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1269 if (incremental_inputs
!= NULL
1271 && (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
1272 || shdr
.get_sh_type() == elfcpp::SHT_NOBITS
1273 || shdr
.get_sh_type() == elfcpp::SHT_NOTE
))
1274 incremental_inputs
->report_input_section(this, i
, name
,
1275 shdr
.get_sh_size());
1279 // Do not include this section in the link.
1280 out_sections
[i
] = NULL
;
1281 out_section_offsets
[i
] = invalid_address
;
1286 if (is_gc_pass_one
&& parameters
->options().gc_sections())
1288 if (this->is_section_name_included(name
)
1289 || shdr
.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1290 || shdr
.get_sh_type() == elfcpp::SHT_FINI_ARRAY
)
1292 symtab
->gc()->worklist().push(Section_id(this, i
));
1294 // If the section name XXX can be represented as a C identifier
1295 // it cannot be discarded if there are references to
1296 // __start_XXX and __stop_XXX symbols. These need to be
1297 // specially handled.
1298 if (is_cident(name
))
1300 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1304 // When doing a relocatable link we are going to copy input
1305 // reloc sections into the output. We only want to copy the
1306 // ones associated with sections which are not being discarded.
1307 // However, we don't know that yet for all sections. So save
1308 // reloc sections and process them later. Garbage collection is
1309 // not triggered when relocatable code is desired.
1311 && (shdr
.get_sh_type() == elfcpp::SHT_REL
1312 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
1314 reloc_sections
.push_back(i
);
1318 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1321 // The .eh_frame section is special. It holds exception frame
1322 // information that we need to read in order to generate the
1323 // exception frame header. We process these after all the other
1324 // sections so that the exception frame reader can reliably
1325 // determine which sections are being discarded, and discard the
1326 // corresponding information.
1328 && strcmp(name
, ".eh_frame") == 0
1329 && this->check_eh_frame_flags(&shdr
))
1333 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1334 out_section_offsets
[i
] = invalid_address
;
1337 eh_frame_sections
.push_back(i
);
1341 if (is_gc_pass_two
&& parameters
->options().gc_sections())
1343 // This is executed during the second pass of garbage
1344 // collection. do_layout has been called before and some
1345 // sections have been already discarded. Simply ignore
1346 // such sections this time around.
1347 if (out_sections
[i
] == NULL
)
1349 gold_assert(out_section_offsets
[i
] == invalid_address
);
1352 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1353 && symtab
->gc()->is_section_garbage(this, i
))
1355 if (parameters
->options().print_gc_sections())
1356 gold_info(_("%s: removing unused section from '%s'"
1358 program_name
, this->section_name(i
).c_str(),
1359 this->name().c_str());
1360 out_sections
[i
] = NULL
;
1361 out_section_offsets
[i
] = invalid_address
;
1366 if (is_gc_pass_two
&& parameters
->options().icf_enabled())
1368 if (out_sections
[i
] == NULL
)
1370 gold_assert(out_section_offsets
[i
] == invalid_address
);
1373 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1374 && symtab
->icf()->is_section_folded(this, i
))
1376 if (parameters
->options().print_icf_sections())
1379 symtab
->icf()->get_folded_section(this, i
);
1380 Relobj
* folded_obj
=
1381 reinterpret_cast<Relobj
*>(folded
.first
);
1382 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1383 "into '%s' in file '%s'"),
1384 program_name
, this->section_name(i
).c_str(),
1385 this->name().c_str(),
1386 folded_obj
->section_name(folded
.second
).c_str(),
1387 folded_obj
->name().c_str());
1389 out_sections
[i
] = NULL
;
1390 out_section_offsets
[i
] = invalid_address
;
1395 // Defer layout here if input files are claimed by plugins. When gc
1396 // is turned on this function is called twice. For the second call
1397 // should_defer_layout should be false.
1398 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1400 gold_assert(!is_gc_pass_two
);
1401 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1405 // Put dummy values here; real values will be supplied by
1406 // do_layout_deferred_sections.
1407 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1408 out_section_offsets
[i
] = invalid_address
;
1412 // During gc_pass_two if a section that was previously deferred is
1413 // found, do not layout the section as layout_deferred_sections will
1414 // do it later from gold.cc.
1416 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1421 // This is during garbage collection. The out_sections are
1422 // assigned in the second call to this function.
1423 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1424 out_section_offsets
[i
] = invalid_address
;
1428 // When garbage collection is switched on the actual layout
1429 // only happens in the second call.
1430 this->layout_section(layout
, i
, name
, shdr
, reloc_shndx
[i
],
1435 if (!is_gc_pass_two
)
1436 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
, this);
1438 // When doing a relocatable link handle the reloc sections at the
1439 // end. Garbage collection and Identical Code Folding is not
1440 // turned on for relocatable code.
1442 this->size_relocatable_relocs();
1444 gold_assert(!(is_gc_or_icf
) || reloc_sections
.empty());
1446 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1447 p
!= reloc_sections
.end();
1450 unsigned int i
= *p
;
1451 const unsigned char* pshdr
;
1452 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1453 typename
This::Shdr
shdr(pshdr
);
1455 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1456 if (data_shndx
>= shnum
)
1458 // We already warned about this above.
1462 Output_section
* data_section
= out_sections
[data_shndx
];
1463 if (data_section
== reinterpret_cast<Output_section
*>(2))
1465 // The layout for the data section was deferred, so we need
1466 // to defer the relocation section, too.
1467 const char* name
= pnames
+ shdr
.get_sh_name();
1468 this->deferred_layout_relocs_
.push_back(
1469 Deferred_layout(i
, name
, pshdr
, 0, elfcpp::SHT_NULL
));
1470 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1471 out_section_offsets
[i
] = invalid_address
;
1474 if (data_section
== NULL
)
1476 out_sections
[i
] = NULL
;
1477 out_section_offsets
[i
] = invalid_address
;
1481 Relocatable_relocs
* rr
= new Relocatable_relocs();
1482 this->set_relocatable_relocs(i
, rr
);
1484 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1486 out_sections
[i
] = os
;
1487 out_section_offsets
[i
] = invalid_address
;
1490 // Handle the .eh_frame sections at the end.
1491 gold_assert(!is_gc_pass_one
|| eh_frame_sections
.empty());
1492 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1493 p
!= eh_frame_sections
.end();
1496 gold_assert(this->has_eh_frame_
);
1497 gold_assert(external_symbols_offset
!= 0);
1499 unsigned int i
= *p
;
1500 const unsigned char* pshdr
;
1501 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1502 typename
This::Shdr
shdr(pshdr
);
1505 Output_section
* os
= layout
->layout_eh_frame(this,
1514 out_sections
[i
] = os
;
1515 if (os
== NULL
|| offset
== -1)
1517 // An object can contain at most one section holding exception
1518 // frame information.
1519 gold_assert(this->discarded_eh_frame_shndx_
== -1U);
1520 this->discarded_eh_frame_shndx_
= i
;
1521 out_section_offsets
[i
] = invalid_address
;
1524 out_section_offsets
[i
] = convert_types
<Address
, off_t
>(offset
);
1526 // If this section requires special handling, and if there are
1527 // relocs that apply to it, then we must do the special handling
1528 // before we apply the relocs.
1529 if (os
!= NULL
&& offset
== -1 && reloc_shndx
[i
] != 0)
1530 this->set_relocs_must_follow_section_writes();
1535 delete[] gc_sd
->section_headers_data
;
1536 delete[] gc_sd
->section_names_data
;
1537 delete[] gc_sd
->symbols_data
;
1538 delete[] gc_sd
->symbol_names_data
;
1539 this->set_symbols_data(NULL
);
1543 delete sd
->section_headers
;
1544 sd
->section_headers
= NULL
;
1545 delete sd
->section_names
;
1546 sd
->section_names
= NULL
;
1550 // Layout sections whose layout was deferred while waiting for
1551 // input files from a plugin.
1553 template<int size
, bool big_endian
>
1555 Sized_relobj
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1557 typename
std::vector
<Deferred_layout
>::iterator deferred
;
1559 for (deferred
= this->deferred_layout_
.begin();
1560 deferred
!= this->deferred_layout_
.end();
1563 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1564 // If the section is not included, it is because the garbage collector
1565 // decided it is not needed. Avoid reverting that decision.
1566 if (!this->is_section_included(deferred
->shndx_
))
1569 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
1570 shdr
, deferred
->reloc_shndx_
, deferred
->reloc_type_
);
1573 this->deferred_layout_
.clear();
1575 // Now handle the deferred relocation sections.
1577 Output_sections
& out_sections(this->output_sections());
1578 std::vector
<Address
>& out_section_offsets(this->section_offsets_
);
1580 for (deferred
= this->deferred_layout_relocs_
.begin();
1581 deferred
!= this->deferred_layout_relocs_
.end();
1584 unsigned int shndx
= deferred
->shndx_
;
1585 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1586 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1588 Output_section
* data_section
= out_sections
[data_shndx
];
1589 if (data_section
== NULL
)
1591 out_sections
[shndx
] = NULL
;
1592 out_section_offsets
[shndx
] = invalid_address
;
1596 Relocatable_relocs
* rr
= new Relocatable_relocs();
1597 this->set_relocatable_relocs(shndx
, rr
);
1599 Output_section
* os
= layout
->layout_reloc(this, shndx
, shdr
,
1601 out_sections
[shndx
] = os
;
1602 out_section_offsets
[shndx
] = invalid_address
;
1606 // Add the symbols to the symbol table.
1608 template<int size
, bool big_endian
>
1610 Sized_relobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1611 Read_symbols_data
* sd
,
1614 if (sd
->symbols
== NULL
)
1616 gold_assert(sd
->symbol_names
== NULL
);
1620 const int sym_size
= This::sym_size
;
1621 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1623 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1625 this->error(_("size of symbols is not multiple of symbol size"));
1629 this->symbols_
.resize(symcount
);
1631 const char* sym_names
=
1632 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1633 symtab
->add_from_relobj(this,
1634 sd
->symbols
->data() + sd
->external_symbols_offset
,
1635 symcount
, this->local_symbol_count_
,
1636 sym_names
, sd
->symbol_names_size
,
1638 &this->defined_count_
);
1642 delete sd
->symbol_names
;
1643 sd
->symbol_names
= NULL
;
1646 // Find out if this object, that is a member of a lib group, should be included
1647 // in the link. We check every symbol defined by this object. If the symbol
1648 // table has a strong undefined reference to that symbol, we have to include
1651 template<int size
, bool big_endian
>
1652 Archive::Should_include
1653 Sized_relobj
<size
, big_endian
>::do_should_include_member(Symbol_table
* symtab
,
1655 Read_symbols_data
* sd
,
1658 char* tmpbuf
= NULL
;
1659 size_t tmpbuflen
= 0;
1660 const char* sym_names
=
1661 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1662 const unsigned char* syms
=
1663 sd
->symbols
->data() + sd
->external_symbols_offset
;
1664 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1665 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1668 const unsigned char* p
= syms
;
1670 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1672 elfcpp::Sym
<size
, big_endian
> sym(p
);
1673 unsigned int st_shndx
= sym
.get_st_shndx();
1674 if (st_shndx
== elfcpp::SHN_UNDEF
)
1677 unsigned int st_name
= sym
.get_st_name();
1678 const char* name
= sym_names
+ st_name
;
1680 Archive::Should_include t
= Archive::should_include_member(symtab
,
1686 if (t
== Archive::SHOULD_INCLUDE_YES
)
1695 return Archive::SHOULD_INCLUDE_UNKNOWN
;
1698 // Iterate over global defined symbols, calling a visitor class V for each.
1700 template<int size
, bool big_endian
>
1702 Sized_relobj
<size
, big_endian
>::do_for_all_global_symbols(
1703 Read_symbols_data
* sd
,
1704 Library_base::Symbol_visitor_base
* v
)
1706 const char* sym_names
=
1707 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1708 const unsigned char* syms
=
1709 sd
->symbols
->data() + sd
->external_symbols_offset
;
1710 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1711 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1713 const unsigned char* p
= syms
;
1715 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1717 elfcpp::Sym
<size
, big_endian
> sym(p
);
1718 if (sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
1719 v
->visit(sym_names
+ sym
.get_st_name());
1723 // Iterate over local symbols, calling a visitor class V for each GOT offset
1724 // associated with a local symbol.
1726 template<int size
, bool big_endian
>
1728 Sized_relobj
<size
, big_endian
>::do_for_all_local_got_entries(
1729 Got_offset_list::Visitor
* v
) const
1731 unsigned int nsyms
= this->local_symbol_count();
1732 for (unsigned int i
= 0; i
< nsyms
; i
++)
1734 Local_got_offsets::const_iterator p
= this->local_got_offsets_
.find(i
);
1735 if (p
!= this->local_got_offsets_
.end())
1737 const Got_offset_list
* got_offsets
= p
->second
;
1738 got_offsets
->for_all_got_offsets(v
);
1743 // Return whether the local symbol SYMNDX has a PLT offset.
1745 template<int size
, bool big_endian
>
1747 Sized_relobj
<size
, big_endian
>::local_has_plt_offset(unsigned int symndx
) const
1749 typename
Local_plt_offsets::const_iterator p
=
1750 this->local_plt_offsets_
.find(symndx
);
1751 return p
!= this->local_plt_offsets_
.end();
1754 // Get the PLT offset of a local symbol.
1756 template<int size
, bool big_endian
>
1758 Sized_relobj
<size
, big_endian
>::local_plt_offset(unsigned int symndx
) const
1760 typename
Local_plt_offsets::const_iterator p
=
1761 this->local_plt_offsets_
.find(symndx
);
1762 gold_assert(p
!= this->local_plt_offsets_
.end());
1766 // Set the PLT offset of a local symbol.
1768 template<int size
, bool big_endian
>
1770 Sized_relobj
<size
, big_endian
>::set_local_plt_offset(unsigned int symndx
,
1771 unsigned int plt_offset
)
1773 std::pair
<typename
Local_plt_offsets::iterator
, bool> ins
=
1774 this->local_plt_offsets_
.insert(std::make_pair(symndx
, plt_offset
));
1775 gold_assert(ins
.second
);
1778 // First pass over the local symbols. Here we add their names to
1779 // *POOL and *DYNPOOL, and we store the symbol value in
1780 // THIS->LOCAL_VALUES_. This function is always called from a
1781 // singleton thread. This is followed by a call to
1782 // finalize_local_symbols.
1784 template<int size
, bool big_endian
>
1786 Sized_relobj
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1787 Stringpool
* dynpool
)
1789 gold_assert(this->symtab_shndx_
!= -1U);
1790 if (this->symtab_shndx_
== 0)
1792 // This object has no symbols. Weird but legal.
1796 // Read the symbol table section header.
1797 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1798 typename
This::Shdr
symtabshdr(this,
1799 this->elf_file_
.section_header(symtab_shndx
));
1800 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1802 // Read the local symbols.
1803 const int sym_size
= This::sym_size
;
1804 const unsigned int loccount
= this->local_symbol_count_
;
1805 gold_assert(loccount
== symtabshdr
.get_sh_info());
1806 off_t locsize
= loccount
* sym_size
;
1807 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1808 locsize
, true, true);
1810 // Read the symbol names.
1811 const unsigned int strtab_shndx
=
1812 this->adjust_shndx(symtabshdr
.get_sh_link());
1813 section_size_type strtab_size
;
1814 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1817 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1819 // Loop over the local symbols.
1821 const Output_sections
& out_sections(this->output_sections());
1822 unsigned int shnum
= this->shnum();
1823 unsigned int count
= 0;
1824 unsigned int dyncount
= 0;
1825 // Skip the first, dummy, symbol.
1827 bool strip_all
= parameters
->options().strip_all();
1828 bool discard_all
= parameters
->options().discard_all();
1829 bool discard_locals
= parameters
->options().discard_locals();
1830 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1832 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1834 Symbol_value
<size
>& lv(this->local_values_
[i
]);
1837 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
1839 lv
.set_input_shndx(shndx
, is_ordinary
);
1841 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1842 lv
.set_is_section_symbol();
1843 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
1844 lv
.set_is_tls_symbol();
1845 else if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
1846 lv
.set_is_ifunc_symbol();
1848 // Save the input symbol value for use in do_finalize_local_symbols().
1849 lv
.set_input_value(sym
.get_st_value());
1851 // Decide whether this symbol should go into the output file.
1853 if ((shndx
< shnum
&& out_sections
[shndx
] == NULL
)
1854 || shndx
== this->discarded_eh_frame_shndx_
)
1856 lv
.set_no_output_symtab_entry();
1857 gold_assert(!lv
.needs_output_dynsym_entry());
1861 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
1863 lv
.set_no_output_symtab_entry();
1864 gold_assert(!lv
.needs_output_dynsym_entry());
1868 if (sym
.get_st_name() >= strtab_size
)
1870 this->error(_("local symbol %u section name out of range: %u >= %u"),
1871 i
, sym
.get_st_name(),
1872 static_cast<unsigned int>(strtab_size
));
1873 lv
.set_no_output_symtab_entry();
1877 const char* name
= pnames
+ sym
.get_st_name();
1879 // If needed, add the symbol to the dynamic symbol table string pool.
1880 if (lv
.needs_output_dynsym_entry())
1882 dynpool
->add(name
, true, NULL
);
1887 || (discard_all
&& lv
.may_be_discarded_from_output_symtab()))
1889 lv
.set_no_output_symtab_entry();
1893 // If --discard-locals option is used, discard all temporary local
1894 // symbols. These symbols start with system-specific local label
1895 // prefixes, typically .L for ELF system. We want to be compatible
1896 // with GNU ld so here we essentially use the same check in
1897 // bfd_is_local_label(). The code is different because we already
1900 // - the symbol is local and thus cannot have global or weak binding.
1901 // - the symbol is not a section symbol.
1902 // - the symbol has a name.
1904 // We do not discard a symbol if it needs a dynamic symbol entry.
1906 && sym
.get_st_type() != elfcpp::STT_FILE
1907 && !lv
.needs_output_dynsym_entry()
1908 && lv
.may_be_discarded_from_output_symtab()
1909 && parameters
->target().is_local_label_name(name
))
1911 lv
.set_no_output_symtab_entry();
1915 // Discard the local symbol if -retain_symbols_file is specified
1916 // and the local symbol is not in that file.
1917 if (!parameters
->options().should_retain_symbol(name
))
1919 lv
.set_no_output_symtab_entry();
1923 // Add the symbol to the symbol table string pool.
1924 pool
->add(name
, true, NULL
);
1928 this->output_local_symbol_count_
= count
;
1929 this->output_local_dynsym_count_
= dyncount
;
1932 // Compute the final value of a local symbol.
1934 template<int size
, bool big_endian
>
1935 typename Sized_relobj
<size
, big_endian
>::Compute_final_local_value_status
1936 Sized_relobj
<size
, big_endian
>::compute_final_local_value_internal(
1938 const Symbol_value
<size
>* lv_in
,
1939 Symbol_value
<size
>* lv_out
,
1941 const Output_sections
& out_sections
,
1942 const std::vector
<Address
>& out_offsets
,
1943 const Symbol_table
* symtab
)
1945 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1946 // we may have a memory leak.
1947 gold_assert(lv_out
->has_output_value());
1950 unsigned int shndx
= lv_in
->input_shndx(&is_ordinary
);
1952 // Set the output symbol value.
1956 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
1957 lv_out
->set_output_value(lv_in
->input_value());
1960 this->error(_("unknown section index %u for local symbol %u"),
1962 lv_out
->set_output_value(0);
1963 return This::CFLV_ERROR
;
1968 if (shndx
>= this->shnum())
1970 this->error(_("local symbol %u section index %u out of range"),
1972 lv_out
->set_output_value(0);
1973 return This::CFLV_ERROR
;
1976 Output_section
* os
= out_sections
[shndx
];
1977 Address secoffset
= out_offsets
[shndx
];
1978 if (symtab
->is_section_folded(this, shndx
))
1980 gold_assert(os
== NULL
&& secoffset
== invalid_address
);
1981 // Get the os of the section it is folded onto.
1982 Section_id folded
= symtab
->icf()->get_folded_section(this,
1984 gold_assert(folded
.first
!= NULL
);
1985 Sized_relobj
<size
, big_endian
>* folded_obj
= reinterpret_cast
1986 <Sized_relobj
<size
, big_endian
>*>(folded
.first
);
1987 os
= folded_obj
->output_section(folded
.second
);
1988 gold_assert(os
!= NULL
);
1989 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
1991 // This could be a relaxed input section.
1992 if (secoffset
== invalid_address
)
1994 const Output_relaxed_input_section
* relaxed_section
=
1995 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
1996 gold_assert(relaxed_section
!= NULL
);
1997 secoffset
= relaxed_section
->address() - os
->address();
2003 // This local symbol belongs to a section we are discarding.
2004 // In some cases when applying relocations later, we will
2005 // attempt to match it to the corresponding kept section,
2006 // so we leave the input value unchanged here.
2007 return This::CFLV_DISCARDED
;
2009 else if (secoffset
== invalid_address
)
2013 // This is a SHF_MERGE section or one which otherwise
2014 // requires special handling.
2015 if (shndx
== this->discarded_eh_frame_shndx_
)
2017 // This local symbol belongs to a discarded .eh_frame
2018 // section. Just treat it like the case in which
2019 // os == NULL above.
2020 gold_assert(this->has_eh_frame_
);
2021 return This::CFLV_DISCARDED
;
2023 else if (!lv_in
->is_section_symbol())
2025 // This is not a section symbol. We can determine
2026 // the final value now.
2027 lv_out
->set_output_value(
2028 os
->output_address(this, shndx
, lv_in
->input_value()));
2030 else if (!os
->find_starting_output_address(this, shndx
, &start
))
2032 // This is a section symbol, but apparently not one in a
2033 // merged section. First check to see if this is a relaxed
2034 // input section. If so, use its address. Otherwise just
2035 // use the start of the output section. This happens with
2036 // relocatable links when the input object has section
2037 // symbols for arbitrary non-merge sections.
2038 const Output_section_data
* posd
=
2039 os
->find_relaxed_input_section(this, shndx
);
2042 Address relocatable_link_adjustment
=
2043 relocatable
? os
->address() : 0;
2044 lv_out
->set_output_value(posd
->address()
2045 - relocatable_link_adjustment
);
2048 lv_out
->set_output_value(os
->address());
2052 // We have to consider the addend to determine the
2053 // value to use in a relocation. START is the start
2054 // of this input section. If we are doing a relocatable
2055 // link, use offset from start output section instead of
2057 Address adjusted_start
=
2058 relocatable
? start
- os
->address() : start
;
2059 Merged_symbol_value
<size
>* msv
=
2060 new Merged_symbol_value
<size
>(lv_in
->input_value(),
2062 lv_out
->set_merged_symbol_value(msv
);
2065 else if (lv_in
->is_tls_symbol())
2066 lv_out
->set_output_value(os
->tls_offset()
2068 + lv_in
->input_value());
2070 lv_out
->set_output_value((relocatable
? 0 : os
->address())
2072 + lv_in
->input_value());
2074 return This::CFLV_OK
;
2077 // Compute final local symbol value. R_SYM is the index of a local
2078 // symbol in symbol table. LV points to a symbol value, which is
2079 // expected to hold the input value and to be over-written by the
2080 // final value. SYMTAB points to a symbol table. Some targets may want
2081 // to know would-be-finalized local symbol values in relaxation.
2082 // Hence we provide this method. Since this method updates *LV, a
2083 // callee should make a copy of the original local symbol value and
2084 // use the copy instead of modifying an object's local symbols before
2085 // everything is finalized. The caller should also free up any allocated
2086 // memory in the return value in *LV.
2087 template<int size
, bool big_endian
>
2088 typename Sized_relobj
<size
, big_endian
>::Compute_final_local_value_status
2089 Sized_relobj
<size
, big_endian
>::compute_final_local_value(
2091 const Symbol_value
<size
>* lv_in
,
2092 Symbol_value
<size
>* lv_out
,
2093 const Symbol_table
* symtab
)
2095 // This is just a wrapper of compute_final_local_value_internal.
2096 const bool relocatable
= parameters
->options().relocatable();
2097 const Output_sections
& out_sections(this->output_sections());
2098 const std::vector
<Address
>& out_offsets(this->section_offsets_
);
2099 return this->compute_final_local_value_internal(r_sym
, lv_in
, lv_out
,
2100 relocatable
, out_sections
,
2101 out_offsets
, symtab
);
2104 // Finalize the local symbols. Here we set the final value in
2105 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2106 // This function is always called from a singleton thread. The actual
2107 // output of the local symbols will occur in a separate task.
2109 template<int size
, bool big_endian
>
2111 Sized_relobj
<size
, big_endian
>::do_finalize_local_symbols(unsigned int index
,
2113 Symbol_table
* symtab
)
2115 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2117 const unsigned int loccount
= this->local_symbol_count_
;
2118 this->local_symbol_offset_
= off
;
2120 const bool relocatable
= parameters
->options().relocatable();
2121 const Output_sections
& out_sections(this->output_sections());
2122 const std::vector
<Address
>& out_offsets(this->section_offsets_
);
2124 for (unsigned int i
= 1; i
< loccount
; ++i
)
2126 Symbol_value
<size
>* lv
= &this->local_values_
[i
];
2128 Compute_final_local_value_status cflv_status
=
2129 this->compute_final_local_value_internal(i
, lv
, lv
, relocatable
,
2130 out_sections
, out_offsets
,
2132 switch (cflv_status
)
2135 if (!lv
->is_output_symtab_index_set())
2137 lv
->set_output_symtab_index(index
);
2141 case CFLV_DISCARDED
:
2152 // Set the output dynamic symbol table indexes for the local variables.
2154 template<int size
, bool big_endian
>
2156 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_indexes(unsigned int index
)
2158 const unsigned int loccount
= this->local_symbol_count_
;
2159 for (unsigned int i
= 1; i
< loccount
; ++i
)
2161 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2162 if (lv
.needs_output_dynsym_entry())
2164 lv
.set_output_dynsym_index(index
);
2171 // Set the offset where local dynamic symbol information will be stored.
2172 // Returns the count of local symbols contributed to the symbol table by
2175 template<int size
, bool big_endian
>
2177 Sized_relobj
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
2179 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2180 this->local_dynsym_offset_
= off
;
2181 return this->output_local_dynsym_count_
;
2184 // If Symbols_data is not NULL get the section flags from here otherwise
2185 // get it from the file.
2187 template<int size
, bool big_endian
>
2189 Sized_relobj
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
2191 Symbols_data
* sd
= this->get_symbols_data();
2194 const unsigned char* pshdrs
= sd
->section_headers_data
2195 + This::shdr_size
* shndx
;
2196 typename
This::Shdr
shdr(pshdrs
);
2197 return shdr
.get_sh_flags();
2199 // If sd is NULL, read the section header from the file.
2200 return this->elf_file_
.section_flags(shndx
);
2203 // Get the section's ent size from Symbols_data. Called by get_section_contents
2206 template<int size
, bool big_endian
>
2208 Sized_relobj
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
2210 Symbols_data
* sd
= this->get_symbols_data();
2211 gold_assert(sd
!= NULL
);
2213 const unsigned char* pshdrs
= sd
->section_headers_data
2214 + This::shdr_size
* shndx
;
2215 typename
This::Shdr
shdr(pshdrs
);
2216 return shdr
.get_sh_entsize();
2219 // Write out the local symbols.
2221 template<int size
, bool big_endian
>
2223 Sized_relobj
<size
, big_endian
>::write_local_symbols(
2225 const Stringpool
* sympool
,
2226 const Stringpool
* dynpool
,
2227 Output_symtab_xindex
* symtab_xindex
,
2228 Output_symtab_xindex
* dynsym_xindex
,
2231 const bool strip_all
= parameters
->options().strip_all();
2234 if (this->output_local_dynsym_count_
== 0)
2236 this->output_local_symbol_count_
= 0;
2239 gold_assert(this->symtab_shndx_
!= -1U);
2240 if (this->symtab_shndx_
== 0)
2242 // This object has no symbols. Weird but legal.
2246 // Read the symbol table section header.
2247 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2248 typename
This::Shdr
symtabshdr(this,
2249 this->elf_file_
.section_header(symtab_shndx
));
2250 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2251 const unsigned int loccount
= this->local_symbol_count_
;
2252 gold_assert(loccount
== symtabshdr
.get_sh_info());
2254 // Read the local symbols.
2255 const int sym_size
= This::sym_size
;
2256 off_t locsize
= loccount
* sym_size
;
2257 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2258 locsize
, true, false);
2260 // Read the symbol names.
2261 const unsigned int strtab_shndx
=
2262 this->adjust_shndx(symtabshdr
.get_sh_link());
2263 section_size_type strtab_size
;
2264 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2267 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2269 // Get views into the output file for the portions of the symbol table
2270 // and the dynamic symbol table that we will be writing.
2271 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
2272 unsigned char* oview
= NULL
;
2273 if (output_size
> 0)
2274 oview
= of
->get_output_view(symtab_off
+ this->local_symbol_offset_
,
2277 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
2278 unsigned char* dyn_oview
= NULL
;
2279 if (dyn_output_size
> 0)
2280 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
2283 const Output_sections
out_sections(this->output_sections());
2285 gold_assert(this->local_values_
.size() == loccount
);
2287 unsigned char* ov
= oview
;
2288 unsigned char* dyn_ov
= dyn_oview
;
2290 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2292 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2294 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2297 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2301 gold_assert(st_shndx
< out_sections
.size());
2302 if (out_sections
[st_shndx
] == NULL
)
2304 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2305 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2307 if (lv
.has_output_symtab_entry())
2308 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2309 if (lv
.has_output_dynsym_entry())
2310 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2311 st_shndx
= elfcpp::SHN_XINDEX
;
2315 // Write the symbol to the output symbol table.
2316 if (lv
.has_output_symtab_entry())
2318 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2320 gold_assert(isym
.get_st_name() < strtab_size
);
2321 const char* name
= pnames
+ isym
.get_st_name();
2322 osym
.put_st_name(sympool
->get_offset(name
));
2323 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2324 osym
.put_st_size(isym
.get_st_size());
2325 osym
.put_st_info(isym
.get_st_info());
2326 osym
.put_st_other(isym
.get_st_other());
2327 osym
.put_st_shndx(st_shndx
);
2332 // Write the symbol to the output dynamic symbol table.
2333 if (lv
.has_output_dynsym_entry())
2335 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2336 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2338 gold_assert(isym
.get_st_name() < strtab_size
);
2339 const char* name
= pnames
+ isym
.get_st_name();
2340 osym
.put_st_name(dynpool
->get_offset(name
));
2341 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2342 osym
.put_st_size(isym
.get_st_size());
2343 osym
.put_st_info(isym
.get_st_info());
2344 osym
.put_st_other(isym
.get_st_other());
2345 osym
.put_st_shndx(st_shndx
);
2352 if (output_size
> 0)
2354 gold_assert(ov
- oview
== output_size
);
2355 of
->write_output_view(symtab_off
+ this->local_symbol_offset_
,
2356 output_size
, oview
);
2359 if (dyn_output_size
> 0)
2361 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2362 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2367 // Set *INFO to symbolic information about the offset OFFSET in the
2368 // section SHNDX. Return true if we found something, false if we
2371 template<int size
, bool big_endian
>
2373 Sized_relobj
<size
, big_endian
>::get_symbol_location_info(
2376 Symbol_location_info
* info
)
2378 if (this->symtab_shndx_
== 0)
2381 section_size_type symbols_size
;
2382 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2386 unsigned int symbol_names_shndx
=
2387 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2388 section_size_type names_size
;
2389 const unsigned char* symbol_names_u
=
2390 this->section_contents(symbol_names_shndx
, &names_size
, false);
2391 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2393 const int sym_size
= This::sym_size
;
2394 const size_t count
= symbols_size
/ sym_size
;
2396 const unsigned char* p
= symbols
;
2397 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2399 elfcpp::Sym
<size
, big_endian
> sym(p
);
2401 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2403 if (sym
.get_st_name() >= names_size
)
2404 info
->source_file
= "(invalid)";
2406 info
->source_file
= symbol_names
+ sym
.get_st_name();
2411 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2414 && st_shndx
== shndx
2415 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2416 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2419 if (sym
.get_st_name() > names_size
)
2420 info
->enclosing_symbol_name
= "(invalid)";
2423 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2424 if (parameters
->options().do_demangle())
2426 char* demangled_name
= cplus_demangle(
2427 info
->enclosing_symbol_name
.c_str(),
2428 DMGL_ANSI
| DMGL_PARAMS
);
2429 if (demangled_name
!= NULL
)
2431 info
->enclosing_symbol_name
.assign(demangled_name
);
2432 free(demangled_name
);
2443 // Look for a kept section corresponding to the given discarded section,
2444 // and return its output address. This is used only for relocations in
2445 // debugging sections. If we can't find the kept section, return 0.
2447 template<int size
, bool big_endian
>
2448 typename Sized_relobj
<size
, big_endian
>::Address
2449 Sized_relobj
<size
, big_endian
>::map_to_kept_section(
2453 Relobj
* kept_object
;
2454 unsigned int kept_shndx
;
2455 if (this->get_kept_comdat_section(shndx
, &kept_object
, &kept_shndx
))
2457 Sized_relobj
<size
, big_endian
>* kept_relobj
=
2458 static_cast<Sized_relobj
<size
, big_endian
>*>(kept_object
);
2459 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2460 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2461 if (os
!= NULL
&& offset
!= invalid_address
)
2464 return os
->address() + offset
;
2471 // Get symbol counts.
2473 template<int size
, bool big_endian
>
2475 Sized_relobj
<size
, big_endian
>::do_get_global_symbol_counts(
2476 const Symbol_table
*,
2480 *defined
= this->defined_count_
;
2482 for (typename
Symbols::const_iterator p
= this->symbols_
.begin();
2483 p
!= this->symbols_
.end();
2486 && (*p
)->source() == Symbol::FROM_OBJECT
2487 && (*p
)->object() == this
2488 && (*p
)->is_defined())
2493 // Input_objects methods.
2495 // Add a regular relocatable object to the list. Return false if this
2496 // object should be ignored.
2499 Input_objects::add_object(Object
* obj
)
2501 // Print the filename if the -t/--trace option is selected.
2502 if (parameters
->options().trace())
2503 gold_info("%s", obj
->name().c_str());
2505 if (!obj
->is_dynamic())
2506 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
2509 // See if this is a duplicate SONAME.
2510 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
2511 const char* soname
= dynobj
->soname();
2513 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
2514 this->sonames_
.insert(soname
);
2517 // We have already seen a dynamic object with this soname.
2521 this->dynobj_list_
.push_back(dynobj
);
2524 // Add this object to the cross-referencer if requested.
2525 if (parameters
->options().user_set_print_symbol_counts()
2526 || parameters
->options().cref())
2528 if (this->cref_
== NULL
)
2529 this->cref_
= new Cref();
2530 this->cref_
->add_object(obj
);
2536 // For each dynamic object, record whether we've seen all of its
2537 // explicit dependencies.
2540 Input_objects::check_dynamic_dependencies() const
2542 bool issued_copy_dt_needed_error
= false;
2543 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
2544 p
!= this->dynobj_list_
.end();
2547 const Dynobj::Needed
& needed((*p
)->needed());
2548 bool found_all
= true;
2549 Dynobj::Needed::const_iterator pneeded
;
2550 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
2552 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
2558 (*p
)->set_has_unknown_needed_entries(!found_all
);
2560 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2561 // that gold does not support. However, they cause no trouble
2562 // unless there is a DT_NEEDED entry that we don't know about;
2563 // warn only in that case.
2565 && !issued_copy_dt_needed_error
2566 && (parameters
->options().copy_dt_needed_entries()
2567 || parameters
->options().add_needed()))
2569 const char* optname
;
2570 if (parameters
->options().copy_dt_needed_entries())
2571 optname
= "--copy-dt-needed-entries";
2573 optname
= "--add-needed";
2574 gold_error(_("%s is not supported but is required for %s in %s"),
2575 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
2576 issued_copy_dt_needed_error
= true;
2581 // Start processing an archive.
2584 Input_objects::archive_start(Archive
* archive
)
2586 if (parameters
->options().user_set_print_symbol_counts()
2587 || parameters
->options().cref())
2589 if (this->cref_
== NULL
)
2590 this->cref_
= new Cref();
2591 this->cref_
->add_archive_start(archive
);
2595 // Stop processing an archive.
2598 Input_objects::archive_stop(Archive
* archive
)
2600 if (parameters
->options().user_set_print_symbol_counts()
2601 || parameters
->options().cref())
2602 this->cref_
->add_archive_stop(archive
);
2605 // Print symbol counts
2608 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
2610 if (parameters
->options().user_set_print_symbol_counts()
2611 && this->cref_
!= NULL
)
2612 this->cref_
->print_symbol_counts(symtab
);
2615 // Print a cross reference table.
2618 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
2620 if (parameters
->options().cref() && this->cref_
!= NULL
)
2621 this->cref_
->print_cref(symtab
, f
);
2624 // Relocate_info methods.
2626 // Return a string describing the location of a relocation when file
2627 // and lineno information is not available. This is only used in
2630 template<int size
, bool big_endian
>
2632 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
2634 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
2635 std::string ret
= line_info
.addr2line(this->data_shndx
, offset
, NULL
);
2639 ret
= this->object
->name();
2641 Symbol_location_info info
;
2642 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
2644 if (!info
.source_file
.empty())
2647 ret
+= info
.source_file
;
2649 size_t len
= info
.enclosing_symbol_name
.length() + 100;
2650 char* buf
= new char[len
];
2651 snprintf(buf
, len
, _(":function %s"),
2652 info
.enclosing_symbol_name
.c_str());
2659 ret
+= this->object
->section_name(this->data_shndx
);
2661 snprintf(buf
, sizeof buf
, "+0x%lx)", static_cast<long>(offset
));
2666 } // End namespace gold.
2671 using namespace gold
;
2673 // Read an ELF file with the header and return the appropriate
2674 // instance of Object.
2676 template<int size
, bool big_endian
>
2678 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
2679 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
2680 bool* punconfigured
)
2682 Target
* target
= select_target(ehdr
.get_e_machine(), size
, big_endian
,
2683 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
2684 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
2686 gold_fatal(_("%s: unsupported ELF machine number %d"),
2687 name
.c_str(), ehdr
.get_e_machine());
2689 if (!parameters
->target_valid())
2690 set_parameters_target(target
);
2691 else if (target
!= ¶meters
->target())
2693 if (punconfigured
!= NULL
)
2694 *punconfigured
= true;
2696 gold_error(_("%s: incompatible target"), name
.c_str());
2700 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
2704 } // End anonymous namespace.
2709 // Return whether INPUT_FILE is an ELF object.
2712 is_elf_object(Input_file
* input_file
, off_t offset
,
2713 const unsigned char** start
, int* read_size
)
2715 off_t filesize
= input_file
->file().filesize();
2716 int want
= elfcpp::Elf_recognizer::max_header_size
;
2717 if (filesize
- offset
< want
)
2718 want
= filesize
- offset
;
2720 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
2725 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
2728 // Read an ELF file and return the appropriate instance of Object.
2731 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
2732 const unsigned char* p
, section_offset_type bytes
,
2733 bool* punconfigured
)
2735 if (punconfigured
!= NULL
)
2736 *punconfigured
= false;
2739 bool big_endian
= false;
2741 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
2742 &big_endian
, &error
))
2744 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
2752 #ifdef HAVE_TARGET_32_BIG
2753 elfcpp::Ehdr
<32, true> ehdr(p
);
2754 return make_elf_sized_object
<32, true>(name
, input_file
,
2755 offset
, ehdr
, punconfigured
);
2757 if (punconfigured
!= NULL
)
2758 *punconfigured
= true;
2760 gold_error(_("%s: not configured to support "
2761 "32-bit big-endian object"),
2768 #ifdef HAVE_TARGET_32_LITTLE
2769 elfcpp::Ehdr
<32, false> ehdr(p
);
2770 return make_elf_sized_object
<32, false>(name
, input_file
,
2771 offset
, ehdr
, punconfigured
);
2773 if (punconfigured
!= NULL
)
2774 *punconfigured
= true;
2776 gold_error(_("%s: not configured to support "
2777 "32-bit little-endian object"),
2783 else if (size
== 64)
2787 #ifdef HAVE_TARGET_64_BIG
2788 elfcpp::Ehdr
<64, true> ehdr(p
);
2789 return make_elf_sized_object
<64, true>(name
, input_file
,
2790 offset
, ehdr
, punconfigured
);
2792 if (punconfigured
!= NULL
)
2793 *punconfigured
= true;
2795 gold_error(_("%s: not configured to support "
2796 "64-bit big-endian object"),
2803 #ifdef HAVE_TARGET_64_LITTLE
2804 elfcpp::Ehdr
<64, false> ehdr(p
);
2805 return make_elf_sized_object
<64, false>(name
, input_file
,
2806 offset
, ehdr
, punconfigured
);
2808 if (punconfigured
!= NULL
)
2809 *punconfigured
= true;
2811 gold_error(_("%s: not configured to support "
2812 "64-bit little-endian object"),
2822 // Instantiate the templates we need.
2824 #ifdef HAVE_TARGET_32_LITTLE
2827 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
2828 Read_symbols_data
*);
2831 #ifdef HAVE_TARGET_32_BIG
2834 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
2835 Read_symbols_data
*);
2838 #ifdef HAVE_TARGET_64_LITTLE
2841 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
2842 Read_symbols_data
*);
2845 #ifdef HAVE_TARGET_64_BIG
2848 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
2849 Read_symbols_data
*);
2852 #ifdef HAVE_TARGET_32_LITTLE
2854 class Sized_relobj
<32, false>;
2857 #ifdef HAVE_TARGET_32_BIG
2859 class Sized_relobj
<32, true>;
2862 #ifdef HAVE_TARGET_64_LITTLE
2864 class Sized_relobj
<64, false>;
2867 #ifdef HAVE_TARGET_64_BIG
2869 class Sized_relobj
<64, true>;
2872 #ifdef HAVE_TARGET_32_LITTLE
2874 struct Relocate_info
<32, false>;
2877 #ifdef HAVE_TARGET_32_BIG
2879 struct Relocate_info
<32, true>;
2882 #ifdef HAVE_TARGET_64_LITTLE
2884 struct Relocate_info
<64, false>;
2887 #ifdef HAVE_TARGET_64_BIG
2889 struct Relocate_info
<64, true>;
2892 #ifdef HAVE_TARGET_32_LITTLE
2895 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
2899 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
2900 const unsigned char*);
2903 #ifdef HAVE_TARGET_32_BIG
2906 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
2910 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
2911 const unsigned char*);
2914 #ifdef HAVE_TARGET_64_LITTLE
2917 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
2921 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
2922 const unsigned char*);
2925 #ifdef HAVE_TARGET_64_BIG
2928 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
2932 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
2933 const unsigned char*);
2936 } // End namespace gold.